

Python Data Science Handbook

2nd Edition

Essential Tools for Working with Data

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Jake VanderPlas

Python Data Science Handbook

by Jake VanderPlas

Copyright © 2022 Jake VanderPlas. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Jessica Haberman

		Development Editor: Jill Leonard

		Production Editor: Daniel Elfanbaum

	
		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		December 2022: Second Edition

Revision History for the Early Release

		2022-01-18: First Release

		2022-03-29: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098121228 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python Data Science Handbook, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-12116-7

[LSI]

Preface

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

If you have comments about how we might improve
the content and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at jleonard@oreilly.com.

What Is Data Science?

This is a book about doing data science with Python, which immediately
begs the question: what is data science? It’s a
surprisingly hard definition to nail down, especially given how
ubiquitous the term has become. Vocal critics have variously dismissed
the term as a superfluous label (after all, what science
doesn’t involve data?) or a simple buzzword that only exists
to salt resumes and catch the eye of overzealous tech recruiters.

In my mind, these critiques miss something important. Data science,
despite its hype-laden veneer, is perhaps the best label we have for the
cross-disciplinary set of skills that are becoming increasingly
important in many applications across industry and academia. This
cross-disciplinary piece is key: in my mind, the best extisting
definition of data science is illustrated by Drew Conway’s
Data Science Venn Diagram, first published on his blog in September
2010:

[image: Data Science VD]
Figure P-1. Drew Conway’s Data Science Venn Diagram

(Source:
Drew
Conway. Used by permission.)

While some of the intersection labels are a bit tongue-in-cheek, this
diagram captures the essence of what I think people mean when they say
“data science”: it is fundamentally an interdisciplinary subject.
Data science comprises three distinct and overlapping areas: the skills
of a statistician who knows how to model and summarize datasets (which
are growing ever larger); the skills of a computer scientist who can
design and use algorithms to efficiently store, process, and visualize
this data; and the domain expertise—what we might think of as
“classical” training in a subject—necessary both to formulate the
right questions and to put their answers in context.

With this in mind, I would encourage you to think of data science not as
a new domain of knowledge to learn, but a new set of skills that you can
apply within your current area of expertise. Whether you are reporting
election results, forecasting stock returns, optimizing online ad
clicks, identifying microorganisms in microscope photos, seeking new
classes of astronomical objects, or working with data in any other
field, the goal of this book is to give you the ability to ask and
answer new questions about your chosen subject area.

Who Is This Book For?

In my teaching both at the University of Washington and at various
tech-focused conferences and meetups, one of the most common questions I
have heard is this: “how should I learn Python?” The people asking are
generally technically minded students, developers, or researchers, often
with an already strong background in writing code and using
computational and numerical tools. Most of these folks don’t
want to learn Python per se, but want to learn the language with the
aim of using it as a tool for data-intensive and computational science.
While a large patchwork of videos, blog posts, and tutorials for this
audience is available online, I’ve long been frustrated by
the lack of a single good answer to this question; that is what inspired
this book.

The book is not meant to be an introduction to Python or to programming
in general; I assume the reader has familiarity with the Python
language, including defining functions, assigning variables, calling
methods of objects, controlling the flow of a program, and other basic
tasks. Instead it is meant to help Python users learn to use
Python’s data science stack–libraries such as IPython,
NumPy, Pandas, Matplotlib, Scikit-Learn, and related tools–to
effectively store, manipulate, and gain insight from data.

Why Python?

Python has emerged over the last couple decades as a first-class tool
for scientific computing tasks, including the analysis and visualization
of large datasets. This may have come as a surprise to early proponents
of the Python language: the language itself was not specifically
designed with data analysis or scientific computing in mind. The
usefulness of Python for data science stems primarily from the large and
active ecosystem of third-party packages: NumPy for manipulation of
homogeneous array-based data, Pandas for manipulation of heterogeneous
and labeled data, SciPy for common scientific computing tasks,
Matplotlib for publication-quality visualizations, IPython for
interactive execution and sharing of code, Scikit-Learn for machine
learning, and many more tools that will be mentioned in the following
pages.

If you are looking for a guide to the Python language itself, I would
suggest the sister project to this book,
“https://github.com/jakevdp/WhirlwindTourOfPython[A Whirlwind Tour of
the Python Language]”. This short report provides a tour of the
essential features of the Python language, aimed at data scientists who
already are familiar with one or more other programming languages.

Outline of the Book

Each chapter of this book focuses on a particular package or tool that
contributes a fundamental piece of the Python Data Sciece story.

	
IPython and Jupyter: these packages provide the computational
environment in which many Python-using data scientists work.
.
NumPy: this library provides the ndarray for efficient storage and
manipulation of dense data arrays in Python.

	
Pandas: this
library provides the DataFrame for efficient storage and manipulation
of labeled/columnar data in Python.

	
Matplotlib: this library
provides capabilities for a flexible range of data visualizations in
Python.

	
Scikit-Learn: this library provides efficient & clean
Python implementations of the most important and established machine
learning algorithms.

The PyData world is certainly much larger than these five packages, and
is growing every day. With this in mind, I make every attempt through
these pages to provide references to other interesting efforts,
projects, and packages that are pushing the boundaries of what can be
done in Python. Nevertheless, these five are currently fundamental to
much of the work being done in the Python data science space, and I
expect they will remain important even as the ecosystem continues
growing around them.

Using Code Examples

Supplemental material (code examples, figures, etc.) is available for
download at http://github.com/jakevdp/PythonDataScienceHandbook/. This
book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission.
Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example:

Example P-1.

The Python Data Science Handbook by Jake VanderPlas (O’Reilly). Copyright 2016 Jake VanderPlas, 978-1-491-91205-8.

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Installation Considerations

Installing Python and the suite of libraries that enable scientific
computing is straightforward . This section will outline some of the
considerations when setting up your computer.

Though there are various ways to install Python, the one I would suggest
for use in data science is the Anaconda distribution, which works
similarly whether you use Windows, Linux, or Mac OS X. The Anaconda
distribution comes in two flavors:

	
Miniconda gives you the Python
interpreter itself, along with a command-line tool called conda which
operates as a cross-platform package manager geared toward Python
packages, similar in spirit to the apt or yum tools that Linux users
might be familiar with.

	
Anaconda includes both Python and
conda, and additionally bundles a suite of other pre-installed packages
geared toward scientific computing. Because of the size of this bundle,
expect the installation to consume several gigabytes of disk space.

Any of the packages included with Anaconda can also be installed
manually on top of Miniconda; for this reason I suggest starting with
Miniconda.

To get started, download and install the Miniconda package–make sure to
choose a version with Python 3–and then install the core packages used
in this book:

[~]$ conda install numpy pandas scikit-learn matplotlib seaborn jupyter

Throughout the text, we will also make use of other more specialized
tools in Python’s scientific ecosystem; installation is
usually as easy as typing conda install packagename. For more
information on conda, including information about creating and using
conda environments (which I would highly recommend), refer to
conda’s online documentation.

Chapter 1. IPython: Beyond Normal Python

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. You can find preliminary code and notebook files on GitHub.

If you have comments about how we might improve
the content and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at jleonard@oreilly.com.

There are many options for development environments for Python, and
I’m often asked which one I use in my own work. My answer
sometimes surprises people: my preferred environment is
IPython plus a text editor (in my case, Emacs or
VSCode depending on my mood). IPython (short for Interactive Python)
was started in 2001 by Fernando Perez as an enhanced Python interpreter,
and has since grown into a project aiming to provide, in
Perez’s words, “Tools for the entire life cycle of research
computing.” If Python is the engine of our data science task, you might
think of IPython as the interactive control panel.

As well as being a useful interactive interface to Python, IPython also
provides a number of useful syntactic additions to the language;
we’ll cover the most useful of these additions here. In
addition, IPython is closely tied with the Jupyter
project, which provides a browser-based notebook that is useful for
development, collaboration, sharing, and even publication of data
science results. The IPython notebook is actually a special case of the
broader Jupyter notebook structure, which encompasses notebooks for
Julia, R, and other programming languages. As an example of the
usefulness of the notebook format, look no further than the page you are
reading: the entire manuscript for this book was composed as a set of
IPython notebooks.

IPython is about using Python effectively for interactive scientific and
data-intensive computing. This chapter will start by stepping through
some of the IPython features that are useful to the practice of data
science, focusing especially on the syntax it offers beyond the standard
features of Python. Next, we will go into a bit more depth on some of
the more useful “magic commands” that can speed-up common tasks in
creating and using data science code. Finally, we will touch on some of
the features of the notebook that make it useful in understanding data
and sharing results.

Shell or Notebook?

There are two primary means of using IPython that we’ll
discuss in this chapter: the IPython shell and the IPython notebook. The
bulk of the material in this chapter is relevant to both, and the
examples will switch between them depending on what is most convenient.
In the few sections that are relevant to just one or the other, we will
explicitly state that fact. Before we start, some words on how to launch
the IPython shell and IPython notebook.

Launching the IPython Shell

This chapter, like most of this book, is not designed to be absorbed
passively. I recommend that as you read through it, you follow along and
experiment with the tools and syntax we cover: the muscle-memory you
build through doing this will be far more useful than the simple act of
reading about it. Start by launching the IPython interpreter by typing
ipython on the command-line; alternatively, if you’ve
installed a distribution like Anaconda or EPD, there may be a launcher
specific to your system (we’ll discuss this more fully in
“Help and Documentation in IPython”).

Once you do this, you should see a prompt like the following:

Python 3.9.2 (v3.9.2:1a79785e3e, Feb 19 2021, 09:06:10)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.21.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

With that, you’re ready to follow along.

Launching the Jupyter Notebook

The Jupyter notebook is a browser-based graphical interface to the
IPython shell, and builds on it a rich set of dynamic display
capabilities. As well as executing Python/IPython statements, the
notebook allows the user to include formatted text, static and dynamic
visualizations, mathematical equations, JavaScript widgets, and much
more. Furthermore, these documents can be saved in a way that lets other
people open them and execute the code on their own systems.

Though the IPython notebook is viewed and edited through your web
browser window, it must connect to a running Python process in order to
execute code. This process (known as a “kernel”) can be started by
running the following command in your system shell:

$ jupyter lab

This command will launch a local web server that will be visible to your
browser. It immediately spits out a log showing what it is doing; that
log will look something like this:

$ jupyter lab
[ServerApp] Serving notebooks from local directory: /Users/jakevdp/PythonDataScienceHandbook
[ServerApp] Jupyter Server 1.4.1 is running at:
[ServerApp] http://localhost:8888/lab?token=dd852649
[ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

Upon issuing the command, your default browser should automatically open
and navigate to the listed local URL; the exact address will depend on
your system. If the browser does not open automatically, you can open a
window and manually open this address (http://localhost:8888/lab/ in
this example).

Help and Documentation in IPython

If you read no other section in this chapter, read this one: I find the
tools discussed here to be the most transformative contributions of
IPython to my daily workflow.

When a technologically-minded person is asked to help a friend, family
member, or colleague with a computer problem, most of the time
it’s less a matter of knowing the answer as much as knowing
how to quickly find an unknown answer. In data science it’s
the same: searchable web resources such as online documentation,
mailing-list threads, and StackOverflow answers contain a wealth of
information, even (especially?) if it is a topic you’ve
found yourself searching before. Being an effective practitioner of data
science is less about memorizing the tool or command you should use for
every possible situation, and more about learning to effectively find
the information you don’t know, whether through a web search
engine or another means.

One of the most useful functions of IPython/Jupyter is to shorten the
gap between the user and the type of documentation and search that will
help them do their work effectively. While web searches still play a
role in answering complicated questions, an amazing amount of
information can be found through IPython alone. Some examples of the
questions IPython can help answer in a few keystrokes:

	
How do I call this function? What arguments and options does it have?

	
What does the source code of this Python object look like?

	
What is in this package I imported? What attributes or methods does
this object have?

Here we’ll discuss IPython’s tools to quickly
access this information, namely the ? character to explore
documentation, the ?? characters to explore source code, and the Tab
key for auto-completion.

Accessing Documentation with ?

The Python language and its data science ecosystem is built with the
user in mind, and one big part of that is access to documentation. Every
Python object contains the reference to a string, known as a doc
string, which in most cases will contain a concise summary of the
object and how to use it. Python has a built-in help() function that
can access this information and prints the results. For example, to see
the documentation of the built-in len function, you can do the
following:

In [1]: help(len)
Help on built-in function len in module builtins:

len(obj, /)
 Return the number of items in a container.

Depending on your interpreter, this information may be displayed as
inline text, or in some separate pop-up window.

Because finding help on an object is so common and useful, IPython
introduces the ? character as a shorthand for accessing this
documentation and other relevant information:

In [2]: len?
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

This notation works for just about anything, including object methods:

In [3]: L = [1, 2, 3]
In [4]: L.insert?
Signature: L.insert(index, object, /)
Docstring: Insert object before index.
Type: builtin_function_or_method

or even objects themselves, with the documentation from their type:

In [5]: L?
Type: list
String form: [1, 2, 3]
Length: 3
Docstring:
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Importantly, this will even work for functions or other objects you
create yourself! Here we’ll define a small function with a
docstring:

In [6]: def square(a):
 : """Return the square of a."""
 : return a ** 2
 :

Note that to create a docstring for our function, we simply placed a
string literal in the first line. Because doc strings are usually
multiple lines, by convention we used Python’s triple-quote
notation for multi-line strings.

Now we’ll use the ? mark to find this doc string:

In [7]: square?
Signature: square(a)
Docstring: Return the square of a.
File: <ipython-input-6>
Type: function

This quick access to documentation via docstrings is one reason you
should get in the habit of always adding such inline documentation to
the code you write!

Accessing Source Code with ??

Because the Python language is so easily readable, another level of
insight can usually be gained by reading the source code of the object
you’re curious about. IPython provides a shortcut to the
source code with the double question mark (??):

In [8]: square??
Signature: square(a)
Source:
def square(a):
 """Return the square of a."""
 return a ** 2
File: <ipython-input-6>
Type: function

For simple functions like this, the double question-mark can give quick
insight into the under-the-hood details.

If you play with this much, you’ll notice that sometimes the
?? suffix doesn’t display any source code: this is
generally because the object in question is not implemented in Python,
but in C or some other compiled extension language. If this is the case,
the ?? suffix gives the same output as the ? suffix.
You’ll find this particularly with many of
Python’s built-in objects and types, for example len from
above:

In [9]: len??
Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin_function_or_method

Using ? and/or ?? gives a powerful and quick interface for finding
information about what any Python function or module does.

Exploring Modules with Tab-Completion

IPython’s other useful interface is the use of the tab key
for auto-completion and exploration of the contents of objects, modules,
and name-spaces. In the examples that follow, we’ll use
<TAB> to indicate when the Tab key should be pressed.

Tab-completion of object contents

Every Python object has various attributes and methods associated with
it. Like with the help function discussed before, Python has a
built-in dir function that returns a list of these, but the
tab-completion interface is much easier to use in practice. To see a
list of all available attributes of an object, you can type the name of
the object followed by a period (.) character and the Tab key:

In [10]: L.<TAB>
 append() count insert reverse
 clear extend pop sort
 copy index remove

To narrow-down the list, you can type the first character or several
characters of the name, and the Tab key will find the matching
attributes and methods:

In [10]: L.c<TAB>
 clear() count()
 copy()

In [10]: L.co<TAB>
 copy() count()

If there is only a single option, pressing the Tab key will complete the
line for you. For example, the following will instantly be replaced with
L.count:

In [10]: L.cou<TAB>

Though Python has no strictly-enforced distinction between
public/external attributes and private/internal attributes, by
convention a preceding underscore is used to denote such methods. For
clarity, these private methods and special methods are omitted from the
list by default, but it’s possible to list them by
explicitly typing the underscore:

In [10]: L._<TAB>
 __add__ __delattr__ __eq__
 __class__ __delitem__ __format__()
 __class_getitem__() __dir__() __ge__ >
 __contains__ __doc__ __getattribute__

For brevity, we’ve only shown the first few columns of the
output. Most of these are Python’s special double-underscore
methods (often nicknamed “dunder” methods).

Tab completion when importing

Tab completion is also useful when importing objects from packages. Here
we’ll use it to find all possible imports in the itertools
package that start with co:

In [10]: from itertools import co<TAB>
 combinations() compress()
 combinations_with_replacement() count()

Similarly, you can use tab-completion to see which imports are available
on your system (this will change depending on which third-party scripts
and modules are visible to your Python session):

In [10]: import <TAB>
 abc anyio
 activate_this appdirs
 aifc appnope >
 antigravity argon2

In [10]: import h<TAB>
 hashlib html
 heapq http
 hmac

Beyond tab completion: wildcard matching

Tab completion is useful if you know the first few characters of the
object or attribute you’re looking for, but is little help
if you’d like to match characters at the middle or end of
the word. For this use-case, IPython provides a means of wildcard
matching for names using the * character.

For example, we can use this to list every object in the namespace that
ends with Warning:

In [10]: *Warning?
BytesWarning RuntimeWarning
DeprecationWarning SyntaxWarning
FutureWarning UnicodeWarning
ImportWarning UserWarning
PendingDeprecationWarning Warning
ResourceWarning

Notice that the * character matches any string, including the empty
string.

Similarly, suppose we are looking for a string method that contains the
word find somewhere in its name. We can search for it this way:

In [11]: str.*find*?
str.find
str.rfind

I find this type of flexible wildcard search can be useful for finding a
particular command when getting to know a new package or reacquainting
myself with a familiar one.

Keyboard Shortcuts in the IPython Shell

If you spend any amount of time on the computer, you’ve
probably found a use for keyboard shortcuts in your workflow. Most
familiar perhaps are the Cmd-C and Cmd-V (or Ctrl-C and Ctrl-V) for
copying and pasting in a wide variety of programs and systems.
Power-users tend to go even further: popular text editors like Emacs,
Vim, and others provide users an incredible range of operations through
intricate combinations of keystrokes.

The IPython shell doesn’t go this far, but does provide a
number of keyboard shortcuts for fast navigation while typing commands.
These shortcuts are not in fact provided by IPython itself, but through
its dependency on the GNU Readline library: as such, some of the
following shortcuts may differ depending on your system configuration.
Also, while some of these shortcuts do work in the browser-based
notebook, this section is primarily about shortcuts in the IPython
shell.

Once you get accustomed to these, they can be very useful for quickly
performing certain commands without moving your hands from the “home”
keyboard position. If you’re an Emacs user or if you have
experience with Linux-style shells, the following will be very familiar.
We’ll group these shortcuts into a few categories:
navigation shortcuts, text entry shortcuts, command history
shortcuts, and miscellaneous shortcuts.

Navigation shortcuts

While the use of the left and right arrow keys to move backward and
forward in the line is quite obvious, there are other options that
don’t require moving your hands from the “home” keyboard
position:

	Keystroke
	Action

	Ctrl-a

	Move cursor to the beginning of the line

	Ctrl-e

	Move cursor to the end of the line

	Ctrl-b or the left arrow key

	Move cursor back one character

	Ctrl-f or the right arrow key

	Move cursor forward one character

Text Entry Shortcuts

While everyone is familiar with using the Backspace key to delete the
previous character, reaching for the key often requires some minor
finger gymnastics, and it only deletes a single character at a time. In
IPython there are several shortcuts for removing some portion of the
text you’re typing. The most immediately useful of these are
the commands to delete entire lines of text. You’ll know
these have become second-nature if you find yourself using a combination
of Ctrl-b and Ctrl-d instead of reaching for Backspace to delete the
previous character!

	Keystroke
	Action

	Backspace key

	Delete previous character in line

	Ctrl-d

	Delete next character in line

	Ctrl-k

	Cut text from cursor to end of line

	Ctrl-u

	Cut text from beginning of line to cursor

	Ctrl-y

	Yank (i.e. paste) text that was previously cut

	Ctrl-t

	Transpose (i.e., switch) previous two characters

Command History Shortcuts

Perhaps the most impactful shortcuts discussed here are the ones IPython
provides for navigating the command history. This command history goes
beyond your current IPython session: your entire command history is
stored in a SQLite database in your IPython profile directory. The most
straightforward way to access these is with the up and down arrow keys
to step through the history, but other options exist as well:

	Keystroke
	Action

	Ctrl-p (or the up arrow key)

	Access previous command in history

	Ctrl-n (or the down arrow key)

	Access next command in history

	Ctrl-r

	Reverse-search through command history

The reverse-search can be particularly useful. Recall that in the
previous section we defined a function called square.
Let’s reverse-search our Python history from a new IPython
shell and find this definition again. When you press Ctrl-r in the
IPython terminal, you’ll see the following prompt:

In [1]:
(reverse-i-search)`':

If you start typing characters at this prompt, IPython will auto-fill
the most recent command, if any, that matches those characters:

In [1]:
(reverse-i-search)`sqa': square??

At any point, you can add more characters to refine the search, or press
Ctrl-r again to search further for another command that matches the
query. If you followed along in the previous section, pressing Ctrl-r
twice more gives:

In [1]:
(reverse-i-search)`sqa': def square(a):
 """Return the square of a"""
 return a ** 2

Once you have found the command you’re looking for, press
Return and the search will end. We can then use the retrieved command,
and carry-on with our session:

In [1]: def square(a):
 """Return the square of a"""
 return a ** 2

In [2]: square(2)
Out[2]: 4

Note that Ctrl-p/Ctrl-n or the up/down arrow keys can also be used to
search through history, but only by matching characters at the beginning
of the line. That is, if you type def and then press Ctrl-p, it
would find the most recent command (if any) in your history that begins
with the characters def.

Miscellaneous Shortcuts

Finally, there are a few miscellaneous shortcuts that don’t
fit into any of the preceding categories, but are nevertheless useful to
know:

	Keystroke
	Action

	Ctrl-l

	Clear terminal screen

	Ctrl-c

	Interrupt current Python command

	Ctrl-d

	Exit IPython session

The Ctrl-c in particular can be useful when you inadvertently start a
very long-running job.

While some of the shortcuts discussed here may seem a bit tedious at
first, they quickly become automatic with practice. Once you develop
that muscle memory, I suspect you will even find yourself wishing they
were available in other contexts.

IPython Magic Commands

The previous two sections showed how IPython lets you use and explore
Python efficiently and interactively. Here we’ll begin
discussing some of the enhancements that IPython adds on top of the
normal Python syntax. These are known in IPython as magic commands,
and are prefixed by the % character. These magic commands are designed
to succinctly solve various common problems in standard data analysis.
Magic commands come in two flavors: line magics, which are denoted by
a single % prefix and operate on a single line of input, and cell
magics, which are denoted by a double %% prefix and operate on
multiple lines of input. We’ll demonstrate and discuss a few
brief examples here, and come back to more focused discussion of several
useful magic commands later in the chapter.

Pasting Code Blocks: %paste and %cpaste

When working in the IPython interpreter, one common gotcha is that
pasting multi-line code blocks can lead to unexpected errors, especially
when indentation and interpreter markers are involved. A common case is
that you find some example code on a website and want to paste it into
your interpreter. Consider the following simple function:

[>> DEF DONOTHING(X)]
====
... return x
====

``` The code is formatted as it would appear in the Python interpreter,
and if you copy and paste this directly into older IPython versions, you
get an error:

[source,ipython]
----
In [2]: >>> def donothing(x):
   ...:     ...     return x
   ...:
  File "<ipython-input-20-5a66c8964687>", line 2
    ...     return x
                 ^
SyntaxError: invalid syntax
----

In the direct paste, the interpreter is confused by the additional
prompt characters. But never fear–IPython's `%paste` magic
function is designed to handle this exact type of multi-line, marked-up
input:

```ipython In [3]: %paste

[>> DEF DONOTHING(X)]
====
... return x
====

== – End pasted text –

The %paste command both enters and executes the code, so now the
function is ready to be used:

In [4]: donothing(10)
Out[4]: 10

A command with a similar intent is %cpaste, which opens up an
interactive multiline prompt in which you can paste one or more chunks
of code to be executed in a batch:

In [5]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:>>> def donothing(x):
:... return x
:--

These magic commands, like others we’ll see, make available
functionality that would be difficult or impossible in a standard Python
interpreter.

Running External Code: %run

As you begin developing more extensive code, you will likely find
yourself working in both IPython for interactive exploration, as well as
a text editor to store code that you want to reuse. Rather than running
this code in a new window, it can be convenient to run it within your
IPython session. This can be done with the %run magic.

For example, imagine you’ve created a myscript.py file
with the following contents:

#

-
file: myscript.py

def square(x):
 """square a number"""
 return x ** 2

for N in range(1, 4):
 print(f"{N} squared is {square(N)}")

You can execute this from your IPython session as follows:

In [6]: %run myscript.py
1 squared is 1
2 squared is 4
3 squared is 9

Note also that after you’ve run this script, any functions
defined within it are available for use in your IPython session:

In [7]: square(5)
Out[7]: 25

There are several options to fine-tune how your code is run; you can see
the documentation in the normal way, by typing %run? in the IPython
interpreter.

Timing Code Execution: %timeit

Another example of a useful magic function is %timeit, which will
automatically determine the execution time of the single-line Python
statement that follows it. For example, we may want to check the
performance of a list comprehension:

In [8]: %timeit L = [n ** 2 for n in range(1000)]
430 µs ± 3.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The benefit of %timeit is that for short commands it will
automatically perform multiple runs in order to attain more robust
results. For multi line statements, adding a second % sign will turn
this into a cell magic that can handle multiple lines of input. For
example, here’s the equivalent construction with a
for-loop:

In [9]: %%timeit
 ...: L = []
 ...: for n in range(1000):
 ...: L.append(n ** 2)
 ...:
484 µs ± 5.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

We can immediately see that list comprehensions are about 10% faster
than the equivalent for-loop construction in this case.
We’ll explore %timeit and other approaches to timing and
profiling code in “Profiling and Timing Code”.

Help on Magic Functions: ?, %magic, and %lsmagic

Like normal Python functions, IPython magic functions have docstrings,
and this useful documentation can be accessed in the standard manner.
So, for example, to read the documentation of the %timeit magic simply
type this:

In [10]: %timeit?

Documentation for other functions can be accessed similarly. To access a
general description of available magic functions, including some
examples, you can type this:

In [11]: %magic

For a quick and simple list of all available magic functions, type this:

In [12]: %lsmagic

Finally, I’ll mention that it is quite straightforward to
define your own magic functions if you wish. We won’t
discuss it here, but if you are interested, see the references listed in
“More IPython Resources”.

Input and Output History

Previously we saw that the IPython shell allows you to access previous
commands with the up and down arrow keys, or equivalently the
Ctrl-p/Ctrl-n shortcuts. Additionally, in both the shell and the
notebook, IPython exposes several ways to obtain the output of previous
commands, as well as string versions of the commands themselves.
We’ll explore those here.

IPython’s In and Out Objects

By now I imagine you’re becoming familiar with the
In [1]:/Out[1]: style prompts used by IPython. But it turns out that
these are not just pretty decoration: they give a clue as to how you can
access previous inputs and outputs in your current session. Imagine you
start a session that looks like this:

In [1]: import math

In [2]: math.sin(2)
Out[2]: 0.9092974268256817

In [3]: math.cos(2)
Out[3]: -0.4161468365471424

We’ve imported the built-in math package, then computed
the sine and the cosine of the number 2. These inputs and outputs are
displayed in the shell with In/Out labels, but there’s
more–IPython actually creates some Python variables called In and
Out that are automatically updated to reflect this history:

In [4]: In
Out[4]: ['', 'import math', 'math.sin(2)', 'math.cos(2)', 'In']

In [5]: Out
Out[5]:
{2: 0.9092974268256817,
 3: -0.4161468365471424,
 4: ['', 'import math', 'math.sin(2)', 'math.cos(2)', 'In', 'Out']}

The In object is a list, which keeps track of the commands in order
(the first item in the list is a place-holder so that In[1] can refer
to the first command):

In [6]: print(In[1])
import math

The Out object is not a list but a dictionary mapping input numbers to
their outputs (if any):

In [7]: print(Out[2])
.9092974268256817

Note that not all operations have outputs: for example, import
statements and print statements don’t affect the output.
The latter may be surprising, but makes sense if you consider that
print is a function that returns None; for brevity, any command that
returns None is not added to Out.

Where this can be useful is if you want to interact with past results.
For example, let’s check the sum of sin(2) ** 2 and
cos(2) ** 2 using the previously-computed results:

In [8]: Out[2] ** 2 + Out[3] ** 2
Out[8]: 1.0

The result is 1.0 as we’d expect from the well-known
trigonometric identity. In this case, using these previous results
probably is not necessary, but it can become very handy if you execute a
very expensive computation and want to reuse the result!

Underscore Shortcuts and Previous Outputs

The standard Python shell contains just one simple shortcut for
accessing previous output; the variable _ (i.e., a single underscore)
is kept updated with the previous output; this works in IPython as well:

In [9]: print(_)
.0

But IPython takes this a bit further—you can use a double underscore to
access the second-to-last output, and a triple underscore to access the
third-to-last output (skipping any commands with no output):

In [10]: print(__)
-0.4161468365471424

In [11]: print(___)
.9092974268256817

IPython stops there: more than three underscores starts to get a bit
hard to count, and at that point it’s easier to refer to the
output by line number.

There is one more shortcut we should mention, however–a shorthand for
Out[X] is _X (i.e., a single underscore followed by the line
number):

In [12]: Out[2]
Out[12]: 0.9092974268256817

In [13]: _2
Out[13]: 0.9092974268256817

Suppressing Output

Sometimes you might wish to suppress the output of a statement (this is
perhaps most common with the plotting commands that we’ll
explore in [Link to Come]). Or maybe the command you’re executing produces
a result that you’d prefer not like to store in your output
history, perhaps so that it can be deallocated when other references are
removed. The easiest way to suppress the output of a command is to add a
semicolon to the end of the line:

In [14]: math.sin(2) + math.cos(2);

The result is computed silently, and the output is neither displayed on
the screen nor stored in the Out dictionary:

In [15]: 14 in Out
Out[15]: False

Related Magic Commands

For accessing a batch of previous inputs at once, the %history magic
command is very helpful. Here is how you can print the first four
inputs:

In [16]: %history -n 1-3
 1: import math
 2: math.sin(2)
 3: math.cos(2)

As usual, you can type %history? for more information and a
description of options available. Other similar magic commands are
%rerun (which will re-execute some portion of the command history) and
%save (which saves some set of the command history to a file). For
more information, I suggest exploring these using the ? help
functionality discussed in “Help and Documentation in IPython”.

IPython and Shell Commands

When working interactively with the standard Python interpreter, one of
the frustrations is the need to switch between multiple windows to
access Python tools and system command-line tools. IPython bridges this
gap, and gives you a syntax for executing shell commands directly from
within the IPython terminal. The magic happens with the exclamation
point: anything appearing after ! on a line will be executed not by
the Python kernel, but by the system command-line.

The following assumes you’re on a Unix-like system, such as
Linux or Mac OSX. Some of the examples that follow will fail on Windows,
which uses a different type of shell by default, though if you use the
Windows Subsystem for Linux the examples here should run correctly. If
you’re unfamiliar with shell commands, I’d
suggest reviewing the Shell
Tutorial put together by the always excellent Software Carpentry
Foundation.

Quick Introduction to the Shell

A full intro to using the shell/terminal/command-line is well beyond the
scope of this chapter, but for the uninitiated we will offer a quick
introduction here. The shell is a way to interact textually with your
computer. Ever since the mid 1980s, when Microsoft and Apple introduced
the first versions of their now ubiquitous graphical operating systems,
most computer users have interacted with their operating system through
familiar clicking of menus and drag-and-drop movements. But operating
systems existed long before these graphical user interfaces, and were
primarily controlled through sequences of text input: at the prompt, the
user would type a command, and the computer would do what the user told
it to. Those early prompt systems are the precursors of the shells and
terminals that most data scientists still use today.

Someone unfamiliar with the shell might ask why you would bother with
this, when many results can be accomplished by simply clicking on icons
and menus. A shell user might reply with another question: why hunt
icons and click menus when you can accomplish things much more easily by
typing? While it might sound like a typical tech preference impasse,
when moving beyond basic tasks it quickly becomes clear that the shell
offers much more control of advanced tasks, though admittedly the
learning curve can be intimidating.

As an example, here is a sample of a Linux/OSX shell session where a
user explores, creates, and modifies directories and files on their
system (osx:~ $ is the prompt, and everything after the $ sign is
the typed command; text that is preceded by a # is meant just as
description, rather than something you would actually type in):

osx:~ $ echo "hello world" # echo is like Python's print function
hello world

osx:~ $ pwd # pwd = print working directory
/home/jake # this is the "path" that we're sitting in

osx:~ $ ls # ls = list working directory contents
notebooks projects

osx:~ $ cd projects/ # cd = change directory

osx:projects $ pwd
/home/jake/projects

osx:projects $ ls
datasci_book mpld3 myproject.txt

osx:projects $ mkdir myproject # mkdir = make new directory

osx:projects $ cd myproject/

osx:myproject $ mv ../myproject.txt ./ # mv = move file. Here we're moving the
 # file myproject.txt from one directory
 # up (../) to the current directory (./)
osx:myproject $ ls
myproject.txt

Notice that all of this is just a compact way to do familiar operations
(navigating a directory structure, creating a directory, moving a file,
etc.) by typing commands rather than clicking icons and menus. With just
a few commands (pwd, ls, cd, mkdir, and cp) you can do many of
the most common file operations. It’s when you go beyond
these basics that the shell approach becomes really powerful.

Shell Commands in IPython

Any standard shell command can be used directly in IPython by prefixing
it with the ! character. For example, the ls, pwd, and echo
commands can be run as follows:

In [1]: !ls
myproject.txt

In [2]: !pwd
/home/jake/projects/myproject

In [3]: !echo "printing from the shell"
printing from the shell

Passing Values to and from the Shell

Shell commands can not only be called from IPython, but can also be made
to interact with the IPython namespace. For example, you can save the
output of any shell command to a Python list using the assignment
operator:

In [4]: contents = !ls

In [5]: print(contents)
['myproject.txt']

In [6]: directory = !pwd

In [7]: print(directory)
['/Users/jakevdp/notebooks/tmp/myproject']

These results are not returned as lists, but as a special shell return
type defined in IPython:

In [8]: type(directory)
IPython.utils.text.SList

This looks and acts a lot like a Python list, but has additional
functionality, such as the grep and fields methods and the s, n,
and p properties that allow you to search, filter, and display the
results in convenient ways. For more information on these, you can use
IPython’s built-in help features.

Communication in the other direction–passing Python variables into the
shell–is possible using the {varname} syntax:

In [9]: message = "hello from Python"

In [10]: !echo {message}
hello from Python

The curly braces contain the variable name, which is replaced by the
variable’s contents in the shell command.

Shell-Related Magic Commands

If you play with IPython’s shell commands for a while, you
might notice that you cannot use !cd to navigate the filesystem:

In [11]: !pwd
/home/jake/projects/myproject

In [12]: !cd ..

In [13]: !pwd
/home/jake/projects/myproject

The reason is that shell commands in the notebook are executed in a
temporary subshell that does not maintain state from command to command.
If you’d like to change the working directory in a more
enduring way, you can use the %cd magic command:

In [14]: %cd ..
/home/jake/projects

In fact, by default you can even use this without the % sign:

In [15]: cd myproject
/home/jake/projects/myproject

This is known as an automagic function, and the ability to execute
such commands without an explicit % can be toggled with the
%automagic magic function.

Besides %cd, other available shell-like magic functions are %cat,
%cp, %env, %ls, %man, %mkdir, %more, %mv, %pwd, %rm,
and %rmdir, any of which can be used without the % sign if
automagic is on. This makes it so that you can almost treat the
IPython prompt as if it’s a normal shell:

In [16]: mkdir tmp

In [17]: ls
myproject.txt tmp/

In [18]: cp myproject.txt tmp/

In [19]: ls tmp
myproject.txt

In [20]: rm -r tmp

This access to the shell from within the same terminal window as your
Python session lets you more naturally combine Python and the shell in
your workflows with fewer context switches.

Errors and Debugging

Code development and data analysis always require a bit of trial and
error, and IPython contains tools to streamline this process. This
section will briefly cover some options for controlling
Python’s exception reporting, followed by exploring tools
for debugging errors in code.

Controlling Exceptions: %xmode

Most of the time when a Python script fails, it will raise an Exception.
When the interpreter hits one of these exceptions, information about the
cause of the error can be found in the traceback, which can be
accessed from within Python. With the %xmode magic function, IPython
allows you to control the amount of information printed when the
exception is raised. Consider the following code:

def func1(a, b):
 return a / b

def func2(x):
 a = x
 b = x - 1
 return func1(a, b)

func2(1)

 ZeroDivisionError: division by zero

Calling func2 results in an error, and reading the printed trace lets
us see exactly what happened. In the default mode, this trace includes
several lines showing the context of each step that led to the error.
Using the %xmode magic function (short for Exception mode), we can
change what information is printed.

%xmode takes a single argument, the mode, and there are three
possibilities: Plain, Context, and Verbose. The default is
Context, and gives output like that just shown before. Plain is more
compact and gives less information:

%xmode Plain

Exception reporting mode: Plain

func2(1)

 ZeroDivisionError: division by zero

The Verbose mode adds some extra information, including the arguments
to any functions that are called:

%xmode Verbose

Exception reporting mode: Verbose

func2(1)

 ZeroDivisionError: division by zero

This extra information can help narrow-in on why the exception is being
raised. So why not use the Verbose mode all the time? As code gets
complicated, this kind of traceback can get extremely long. Depending on
the context, sometimes the brevity of Plain or Context mode is
easier to work with.

Debugging: When Reading Tracebacks Is Not Enough

The standard Python tool for interactive debugging is pdb, the Python
debugger. This debugger lets the user step through the code line by line
in order to see what might be causing a more difficult error. The
IPython-enhanced version of this is ipdb, the IPython debugger.

There are many ways to launch and use both these debuggers; we
won’t cover them fully here. Refer to the online
documentation of these two utilities to learn more.

In IPython, perhaps the most convenient interface to debugging is the
%debug magic command. If you call it after hitting an exception, it
will automatically open an interactive debugging prompt at the point of
the exception. The ipdb prompt lets you explore the current state of
the stack, explore the available variables, and even run Python
commands!

Let’s look at the most recent exception, then do some basic
tasks–print the values of a and b, and type quit to quit the
debugging session:

%debug

> <ipython-input-1-d849e34d61fb>(2)func1()
 1 def func1(a, b):

2 return a / b
 3

ipdb> print(a)
1
ipdb> print(b)
0
ipdb> quit

The interactive debugger allows much more than this, though–we can even
step up and down through the stack and explore the values of variables
there:

[source, python]

%debug

<ipython-input-1-d849e34d61fb>(2)func1()
 1 def func1(a, b):

> 2 return a / b
 3

ipdb> up
> <ipython-input-1-d849e34d61fb>(7)func2()
 5 a = x
 6 b = x - 1

7 return func1(a, b)

ipdb> print(x)
1
ipdb> up
> <ipython-input-6-b2e110f6fc8f>(1)<module>()

> 1 func2(1)

ipdb> down
> <ipython-input-1-d849e34d61fb>(7)func2()
 5 a = x
 6 b = x - 1

7 return func1(a, b)

ipdb> quit

This allows you to quickly find out not only what caused the error, but
what function calls led up to the error.

If you'd like the debugger to launch automatically whenever
an exception is raised, you can use the `%pdb` magic function to turn on
this automatic behavior:

[source, python]

%xmode Plain
%pdb on
func2(1)

Exception reporting mode: Plain
Automatic pdb calling has been turned ON
 ZeroDivisionError: division by zero
> <ipython-input-1-d849e34d61fb>(2)func1()
 1 def func1(a, b):

> 2 return a / b
 3

ipdb> print(b)
0
ipdb> quit

Finally, if you have a script that you’d like to run from
the beginning in interactive mode, you can run it with the command
%run -d, and use the next command to step through the lines of code
interactively.

Partial list of debugging commands

There are many more available commands for interactive debugging than
we’ve listed here; the following table contains a
description of some of the more common and useful ones:

	Command
	Description

	l(ist)

	Show the current location in the file

	h(elp)

	Show a list of commands, or find help on a specific command

	q(uit)

	Quit the debugger and the program

	c(ontinue)

	Quit the debugger, continue in the program

	n(ext)

	Go to the next step of the program

	<enter>

	Repeat the previous command

	p(rint)

	Print variables

	s(tep)

	Step into a subroutine

	r(eturn)

	Return out of a subroutine

For more information, use the help command in the debugger, or take a
look at ipdb’s online
documentation.

Profiling and Timing Code

In the process of developing code and creating data processing
pipelines, there are often trade-offs you can make between various
implementations. Early in developing your algorithm, it can be
counterproductive to worry about such things. As Donald Knuth famously
quipped, “We should forget about small efficiencies, say about 97% of
the time: premature optimization is the root of all evil.”

But once you have your code working, it can be useful to dig into its
efficiency a bit. Sometimes it’s useful to check the
execution time of a given command or set of commands; other times
it’s useful to examine a multiline process and determine
where the bottleneck lies in some complicated series of operations.
IPython provides access to a wide array of functionality for this kind
of timing and profiling of code. Here we’ll discuss the
following IPython magic commands:

	
%time: Time the execution of a single statement

	
%timeit: Time repeated execution of a single statement for more
accuracy

	
%prun: Run code with the profiler

	
%lprun: Run code with the line-by-line profiler

	
%memit: Measure the memory use of a single statement

	
%mprun: Run code with the line-by-line memory profiler

The last four commands are not bundled with IPython–you’ll
need to get the line_profiler and memory_profiler extensions, which
we will discuss in the following sections.

Timing Code Snippets: %timeit and %time

We saw the %timeit line-magic and %%timeit cell-magic in the
introduction to magic functions in
“IPython Magic Commands”; it can be used
to time the repeated execution of snippets of code:

%timeit sum(range(100))

1.53 µs ± 47.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Note that because this operation is so fast, %timeit automatically
does a large number of repetitions. For slower commands, %timeit will
automatically adjust and perform fewer repetitions:

%%timeit
total = 0
for i in range(1000):
 for j in range(1000):
 total += i * (-1) ** j

536 ms ± 15.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Sometimes repeating an operation is not the best option. For example, if
we have a list that we’d like to sort, we might be misled by
a repeated operation. Sorting a pre-sorted list is much faster than
sorting an unsorted list, so the repetition will skew the result:

import random
L = [random.random() for i in range(100000)]
%timeit L.sort()

1.71 ms ± 334 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For this, the %time magic function may be a better choice. It also is
a good choice for longer-running commands, when short, system-related
delays are unlikely to affect the result. Let’s time the
sorting of an unsorted and a presorted list:

import random
L = [random.random() for i in range(100000)]
print("sorting an unsorted list:")
%time L.sort()

sorting an unsorted list:
CPU times: user 31.3 ms, sys: 686 µs, total: 32 ms
Wall time: 33.3 ms

print("sorting an already sorted list:")
%time L.sort()

sorting an already sorted list:
CPU times: user 5.19 ms, sys: 268 µs, total: 5.46 ms
Wall time: 14.1 ms

Notice how much faster the presorted list is to sort, but notice also
how much longer the timing takes with %time versus %timeit, even for
the presorted list! This is a result of the fact that %timeit does
some clever things under the hood to prevent system calls from
interfering with the timing. For example, it prevents cleanup of unused
Python objects (known as garbage collection) which might otherwise
affect the timing. For this reason, %timeit results are usually
noticeably faster than %time results.

For %time as with %timeit, using the double-percent-sign cell magic
syntax allows timing of multiline scripts:

%%time
total = 0
for i in range(1000):
 for j in range(1000):
 total += i * (-1) ** j

CPU times: user 655 ms, sys: 5.68 ms, total: 661 ms
Wall time: 710 ms

For more information on %time and %timeit, as well as their
available options, use the IPython help functionality (i.e., type
%time? at the IPython prompt).

Profiling Full Scripts: %prun

A program is made of many single statements, and sometimes timing these
statements in context is more important than timing them on their own.
Python contains a built-in code profiler (which you can read about in
the Python documentation), but IPython offers a much more convenient way
to use this profiler, in the form of the magic function %prun.

By way of example, we’ll define a simple function that does
some calculations:

def sum_of_lists(N):
 total = 0
 for i in range(5):
 L = [j ^ (j >> i) for j in range(N)]
 total += sum(L)
 return total

Now we can call %prun with a function call to see the profiled
results:

%prun sum_of_lists(1000000)

 14 function calls in 0.932 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 5 0.808 0.162 0.808 0.162 <ipython-
 > input-7-f105717832a2>:4(<listcomp>)
 5 0.066 0.013 0.066 0.013 {built-in method builtins.sum}
 1 0.044 0.044 0.918 0.918 <ipython-
 > input-7-f105717832a2>:1(sum_of_lists)
 1 0.014 0.014 0.932 0.932 <string>:1(<module>)
 1 0.000 0.000 0.932 0.932 {built-in method builtins.exec}
 1 0.000 0.000 0.000 0.000 {method 'disable' of
 > '_lsprof.Profiler' objects}

The result is a table that indicates, in order of total time on each
function call, where the execution is spending the most time. In this
case, the bulk of execution time is in the list comprehension inside
sum_of_lists. From here, we could start thinking about what changes we
might make to improve the performance in the algorithm.

For more information on %prun, as well as its available options, use
the IPython help functionality (i.e., type %prun? at the IPython
prompt).

Line-By-Line Profiling with %lprun

The function-by-function profiling of %prun is useful, but sometimes
it’s more convenient to have a line-by-line profile report.
This is not built into Python or IPython, but there is a line_profiler
package available for installation that can do this. Start by using
Python’s packaging tool, pip, to install the
line_profiler package:

$ pip install line_profiler

Next, you can use IPython to load the line_profiler IPython extension,
offered as part of this package:

%load_ext line_profiler

Now the %lprun command will do a line-by-line profiling of any
function–in this case, we need to tell it explicitly which functions
we’re interested in profiling:

%lprun -f sum_of_lists sum_of_lists(5000)

Timer unit: 1e-06 s

Total time: 0.014803 s
File: <ipython-input-7-f105717832a2>
Function: sum_of_lists at line 1

Line # Hits Time Per Hit % Time Line Contents
==
 1 def sum_of_lists(N):
 2 1 6.0 6.0 0.0 total = 0
 3 6 13.0 2.2 0.1 for i in range(5):
 4 5 14242.0 2848.4 96.2 L = [j ^ (j >> i) for j
 > in range(N)]
 5 5 541.0 108.2 3.7 total += sum(L)
 6 1 1.0 1.0 0.0 return total

The information at the top gives us the key to reading the results: the
time is reported in microseconds and we can see where the program is
spending the most time. At this point, we may be able to use this
information to modify aspects of the script and make it perform better
for our desired use case.

For more information on %lprun, as well as its available options, use
the IPython help functionality (i.e., type %lprun? at the IPython
prompt).

Profiling Memory Use: %memit and %mprun

Another aspect of profiling is the amount of memory an operation uses.
This can be evaluated with another IPython extension, the
memory_profiler. As with the line_profiler, we start by
pip-installing the extension:

$ pip install memory_profiler

Then we can use IPython to load the extension:

%load_ext memory_profiler

The memory profiler extension contains two useful magic functions: the
%memit magic (which offers a memory-measuring equivalent of %timeit)
and the %mprun function (which offers a memory-measuring equivalent of
%lprun). The %memit function can be used rather simply:

%memit sum_of_lists(1000000)

peak memory: 141.70 MiB, increment: 75.65 MiB

We see that this function uses about 140 MB of memory.

For a line-by-line description of memory use, we can use the %mprun
magic. Unfortunately, this magic works only for functions defined in
separate modules rather than the notebook itself, so we’ll
start by using the %%file magic to create a simple module called
mprun_demo.py, which contains our sum_of_lists function, with one
addition that will make our memory profiling results more clear:

%%file mprun_demo.py
def sum_of_lists(N):
 total = 0
 for i in range(5):
 L = [j ^ (j >> i) for j in range(N)]
 total += sum(L)
 del L # remove reference to L
 return total

Overwriting mprun_demo.py

We can now import the new version of this function and run the memory
line profiler:

from mprun_demo import sum_of_lists
%mprun -f sum_of_lists sum_of_lists(1000000)

Filename: /Users/jakevdp/github/jakevdp/PythonDataScienceHandbook/notebooks_v2/m
 > prun_demo.py

Line # Mem usage Increment Occurences Line Contents
==
 1 66.7 MiB 66.7 MiB 1 def sum_of_lists(N):
 2 66.7 MiB 0.0 MiB 1 total = 0
 3 75.1 MiB 8.4 MiB 6 for i in range(5):
 4 105.9 MiB 30.8 MiB 5000015 L = [j ^ (j >> i) for j
 > in range(N)]
 5 109.8 MiB 3.8 MiB 5 total += sum(L)
 6 75.1 MiB -34.6 MiB 5 del L # remove reference
 > to L
 7 66.9 MiB -8.2 MiB 1 return total

Here the Increment column tells us how much each line affects the
total memory budget: observe that when we create and delete the list
L, we are adding about 30 MB of memory usage. This is on top of the
background memory usage from the Python interpreter itself.

For more information on %memit and %mprun, as well as their
available options, use the IPython help functionality (i.e., type
%memit? at the IPython prompt).

More IPython Resources

In this chapter, we’ve just scratched the surface of using
IPython to enable data science tasks. Much more information is available
both in print and on the Web, and here we’ll list some other
resources that you may find helpful.

Web Resources

	
The IPython website: The IPython website links to
documentation, examples, tutorials, and a variety of other resources.

	
The nbviewer website: This site shows
static renderings of any IPython notebook available on the internet. The
front page features some example notebooks that you can browse to see
what other folks are using IPython for!

	
A curated collectioin of
Jupyter Notebooks: This ever-growing list of notebooks, powered by
nbviewer, shows the depth and breadth of numerical analysis you can do
with IPython. It includes everything from short examples and tutorials
to full-blown courses and books composed in the notebook format!

	
Video Tutorials: searching the Internet, you will find many
video-recorded tutorials on IPython. I’d especially
recommend seeking tutorials from the PyCon, SciPy, and PyData conferenes
by Fernando Perez and Brian Granger, two of the primary creators and
maintainers of IPython and Jupyter.

Books

	
Python for Data
Analysis: Wes McKinney’s book includes a chapter that
covers using IPython as a data scientist. Although much of the material
overlaps what we’ve discussed here, another perspective is
always helpful.

	
Learning
IPython for Interactive Computing and Data Visualization: This short
book by Cyrille Rossant offers a good introduction to using IPython for
data analysis.

	
IPython
Interactive Computing and Visualization Cookbook: Also by Cyrille
Rossant, this book is a longer and more advanced treatment of using
IPython for data science. Despite its name, it’s not just
about IPython–it also goes into some depth on a broad range of data
science topics.

Finally, a reminder that you can find help on your own:
IPython’s ?-based help functionality (discussed in
“Help and Documentation in IPython”) can be useful if you use it well and use it often. As you go
through the examples here and elsewhere, this can be used to familiarize
yourself with all the tools that IPython has to offer.

Chapter 2. Introduction to NumPy

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. You can find preliminary code and notebook files on GitHub.

If you have comments about how we might improve
the content and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at jleonard@oreilly.com.

This chapter, along with chapter 3, outlines techniques for effectively
loading, storing, and manipulating in-memory data in Python. The topic
is very broad: datasets can come from a wide range of sources and a wide
range of formats, including be collections of documents, collections of
images, collections of sound clips, collections of numerical
measurements, or nearly anything else. Despite this apparent
heterogeneity, it will help us to think of all data fundamentally as
arrays of numbers.

For example, images–particularly digital images–can be thought of as
simply two-dimensional arrays of numbers representing pixel brightness
across the area. Sound clips can be thought of as one-dimensional arrays
of intensity versus time. Text can be converted in various ways into
numerical representations, perhaps binary digits representing the
frequency of certain words or pairs of words. No matter what the data
are, the first step in making it analyzable will be to transform them
into arrays of numbers. (We will discuss some specific examples of this
process later in [Link to Come])

For this reason, efficient storage and manipulation of numerical arrays
is absolutely fundamental to the process of doing data science.
We’ll now take a look at the specialized tools that Python
has for handling such numerical arrays: the NumPy package, and the
Pandas package (discussed in Chapter 3).

This chapter will cover NumPy in detail. NumPy (short for Numerical
Python) provides an efficient interface to store and operate on dense
data buffers. In some ways, NumPy arrays are like Python’s
built-in list type, but NumPy arrays provide much more efficient
storage and data operations as the arrays grow larger in size. NumPy
arrays form the core of nearly the entire ecosystem of data science
tools in Python, so time spent learning to use NumPy effectively will be
valuable no matter what aspect of data science interests you.

If you followed the advice outlined in the Preface and installed the
Anaconda stack, you already have NumPy installed and ready to go. If
you’re more the do-it-yourself type, you can go to
http://www.numpy.org/ and follow the installation instructions found
there. Once you do, you can import NumPy and double-check the version:

import numpy
numpy.__version__

'1.21.2'

For the pieces of the package discussed here, I’d recommend
NumPy version 1.8 or later. By convention, you’ll find that
most people in the SciPy/PyData world will import NumPy using np as an
alias:

import numpy as np

Throughout this chapter, and indeed the rest of the book,
you’ll find that this is the way we will import and use
NumPy.

Reminder about Built-In Documentation

As you read through this chapter, don’t forget that IPython
gives you the ability to quickly explore the contents of a package (by
using the tab-completion feature), as well as the documentation of
various functions (using the ? character – Refer back to
“Help and Documentation in IPython”).

For example, to display all the contents of the numpy namespace, you can
type this:

In [3]: np.<TAB>

And to display NumPy’s built-in documentation, you can use
this:

In [4]: np?

More detailed documentation, along with tutorials and other resources,
can be found at http://www.numpy.org.

Understanding Data Types in Python

Effective data-driven science and computation requires understanding how
data is stored and manipulated. This section outlines and contrasts how
arrays of data are handled in the Python language itself, and how NumPy
improves on this. Understanding this difference is fundamental to
understanding much of the material throughout the rest of the book.

Users of Python are often drawn-in by its ease of use, one piece of
which is dynamic typing. While a statically-typed language like C or
Java requires each variable to be explicitly declared, a
dynamically-typed language like Python skips this specification. For
example, in C you might specify a particular operation as follows:

/* C code */
int result = 0;
for(int i=0; i<100; i++){
 result += i;
}

While in Python the equivalent operation could be written this way:

Python code
result = 0
for i in range(100):
 result += i

Notice one main difference: in C, the data types of each variable are
explicitly declared, while in Python the types are dynamically inferred.
This means, for example, that we can assign any kind of data to any
variable:

Python code
x = 4
x = "four"

Here we’ve switched the contents of x from an integer to a
string. The same thing in C would lead (depending on compiler settings)
to a compilation error or other unintented consequences:

/* C code */
int x = 4;
x = "four"; // FAILS

This sort of flexibility is one piece that makes Python and other
dynamically-typed languages convenient and easy to use. Understanding
how this works is an important piece of learning to analyze data
efficiently and effectively with Python. But what this type-flexibility
also points to is the fact that Python variables are more than just
their value; they also contain extra information about the type of the
value. We’ll explore this more in the sections that follow.

A Python Integer Is More Than Just an Integer

The standard Python implementation is written in C. This means that
every Python object is simply a cleverly-disguised C structure, which
contains not only its value, but other information as well. For example,
when we define an integer in Python, such as x = 10000, x is not
just a “raw” integer. It’s actually a pointer to a
compound C structure, which contains several values. Looking through the
Python 3.10 source code, we find that the integer (long) type definition
effectively looks like this (once the C macros are expanded):

struct _longobject {
 long ob_refcnt;
 PyTypeObject *ob_type;
 size_t ob_size;
 long ob_digit[1];
};

A single integer in Python 3.10 actually contains four pieces:

	
ob_refcnt, a reference count that helps Python silently handle
memory allocation and deallocation

	
ob_type, which encodes the type of the variable

	
ob_size, which specifies the size of the following data members

	
ob_digit, which contains the actual integer value that we expect the
Python variable to represent.

This means that there is some overhead in storing an integer in Python
as compared to an integer in a compiled language like C, as illustrated
in Figure 2-1.

[image: cint vs pyint]
Figure 2-1. The difference between C and Python integers

Here PyObject_HEAD is the part of the structure containing the
reference count, type code, and other pieces mentioned before.

Notice the difference here: a C integer is essentially a label for a
position in memory whose bytes encode an integer value. A Python integer
is a pointer to a position in memory containing all the Python object
information, including the bytes that contain the integer value. This
extra information in the Python integer structure is what allows Python
to be coded so freely and dynamically. All this additional information
in Python types comes at a cost, however, which becomes especially
apparent in structures that combine many of these objects.

A Python List Is More Than Just a List

Let’s consider now what happens when we use a Python data
structure that holds many Python objects. The standard mutable
multi-element container in Python is the list. We can create a list of
integers as follows:

L = list(range(10))
L

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

type(L[0])

int

Or, similarly, a list of strings:

L2 = [str(c) for c in L]
L2

['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

type(L2[0])

str

Because of Python’s dynamic typing, we can even create
heterogeneous lists:

L3 = [True, "2", 3.0, 4]
[type(item) for item in L3]

[bool, str, float, int]

But this flexibility comes at a cost: to allow these flexible types,
each item in the list must contain its own type info, reference count,
and other information–that is, each item is a complete Python object. In
the special case that all variables are of the same type, much of this
information is redundant: it can be much more efficient to store data in
a fixed-type array. The difference between a dynamic-type list and a
fixed-type (NumPy-style) array is illustrated in Figure 2-2.

[image: array vs list]
Figure 2-2. The difference between C and Python lists

At the implementation level, the array essentially contains a single
pointer to one contiguous block of data. The Python list, on the other
hand, contains a pointer to a block of pointers, each of which in turn
points to a full Python object like the Python integer we saw earlier.
Again, the advantage of the list is flexibility: because each list
element is a full structure containing both data and type information,
the list can be filled with data of any desired type. Fixed-type
NumPy-style arrays lack this flexibility, but are much more efficient
for storing and manipulating data.

Fixed-Type Arrays in Python

Python offers several different options for storing data in efficient,
fixed-type data buffers. The built-in array module (available since
Python 3.3) can be used to create dense arrays of a uniform type:

import array
L = list(range(10))
A = array.array('i', L)
A

array('i', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Here 'i' is a type code indicating the
contents are integers.

Much more useful, however, is the ndarray object of the NumPy package.
While Python’s array object provides efficient storage of
array-based data, NumPy adds to this efficient operations on that
data. We will explore these operations in later sections; here
we’ll demonstrate several ways of creating a NumPy array.

We’ll start with the standard NumPy import, under the alias
np:

import numpy as np

Creating Arrays from Python Lists

First, we can use np.array to create arrays from Python lists:

integer array:
np.array([1, 4, 2, 5, 3])

array([1, 4, 2, 5, 3])

Remember that unlike Python lists, NumPy is constrained to arrays that
all contain the same type. If types do not match, NumPy will upcast if
possible (here, integers are up-cast to floating point):

np.array([3.14, 4, 2, 3])

array([3.14, 4. , 2. , 3.])

If we want to explicitly set the data type of the resulting array, we
can use the dtype keyword:

np.array([1, 2, 3, 4], dtype=np.float32)

array([1., 2., 3., 4.], dtype=float32)

Finally, unlike Python lists, NumPy arrays can explicitly be
multi-dimensional; here’s one way of initializing a
multidimensional array using a list of lists:

nested lists result in multi-dimensional arrays
np.array([range(i, i + 3) for i in [2, 4, 6]])

array([[2, 3, 4],
 [4, 5, 6],
 [6, 7, 8]])

The inner lists are treated as rows of the resulting two-dimensional
array.

Creating Arrays from Scratch

Especially for larger arrays, it is more efficient to create arrays from
scratch using routines built into NumPy. Here are several examples:

Create a length-10 integer array filled with zeros
np.zeros(10, dtype=int)

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Create a 3x5 floating-point array filled with ones
np.ones((3, 5), dtype=float)

array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

Create a 3x5 array filled with 3.14
np.full((3, 5), 3.14)

array([[3.14, 3.14, 3.14, 3.14, 3.14],
 [3.14, 3.14, 3.14, 3.14, 3.14],
 [3.14, 3.14, 3.14, 3.14, 3.14]])

Create an array filled with a linear sequence
Starting at 0, ending at 20, stepping by 2
(this is similar to the built-in range() function)
np.arange(0, 20, 2)

array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

Create an array of five values evenly spaced between 0 and 1
np.linspace(0, 1, 5)

array([0. , 0.25, 0.5 , 0.75, 1.])

Create a 3x3 array of uniformly distributed
pseudo-random values between 0 and 1
np.random.random((3, 3))

array([[0.09610171, 0.88193001, 0.70548015],
 [0.35885395, 0.91670468, 0.8721031],
 [0.73237865, 0.09708562, 0.52506779]])

Create a 3x3 array of normally distributed pseudo-random
values with mean 0 and standard deviation 1
np.random.normal(0, 1, (3, 3))

array([[-0.46652655, -0.59158776, -1.05392451],
 [-1.72634268, 0.03194069, -0.51048869],
 [1.41240208, 1.77734462, -0.43820037]])

Create a 3x3 array of pseudo-random integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))

array([[4, 3, 8],
 [6, 5, 0],
 [1, 1, 4]])

Create a 3x3 identity matrix
np.eye(3)

array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Create an uninitialized array of three integers
The values will be whatever happens to already exist at that memory location
np.empty(3)

array([1., 1., 1.])

NumPy Standard Data Types

NumPy arrays contain values of a single type, so it is important to have
detailed knowledge of those types and their limitations. Because NumPy
is built in C, the types will be familiar to users of C, Fortran, and
other related languages.

The standard NumPy data types are listed in the following table. Note
that when constructing an array, they can be specified using a string:

np.zeros(10, dtype='int16')

Or using the associated NumPy object:

np.zeros(10, dtype=np.int16)

	Data type
	Description

	bool_

	Boolean (True or False) stored as a byte

	int_

	Default integer type (same as C long; normally either int64
or int32)

	intc

	Identical to C int (normally int32 or int64)

	intp

	Integer used for indexing (same as C ssize_t; normally either
int32 or int64)

	int8

	Byte (-128 to 127)

	int16

	Integer (-32768 to 32767)

	int32

	Integer (-2147483648 to 2147483647)

	int64

	Integer (-9223372036854775808 to 9223372036854775807)

	uint8

	Unsigned integer (0 to 255)

	uint16

	Unsigned integer (0 to 65535)

	uint32

	Unsigned integer (0 to 4294967295)

	uint64

	Unsigned integer (0 to 18446744073709551615)

	float_

	Shorthand for float64.

	float16

	Half precision float: sign bit, 5 bits exponent, 10 bits
mantissa

	float32

	Single precision float: sign bit, 8 bits exponent, 23 bits
mantissa

	float64

	Double precision float: sign bit, 11 bits exponent, 52 bits
mantissa

	complex_

	Shorthand for complex128.

	complex64

	Complex number, represented by two 32-bit floats

	complex128

	Complex number, represented by two 64-bit floats

More advanced type specification is possible, such as specifying big or
little endian numbers; for more information, refer to the
NumPy documentation. NumPy also supports compound
data types, which will be covered in
“Structured Data: NumPy’s Structured Arrays”.

The Basics of NumPy Arrays

Data manipulation in Python is nearly synonymous with NumPy array
manipulation: even newer tools like Pandas
(Chapter 3) are built around
the NumPy array. This section will present several examples of using
NumPy array manipulation to access data and subarrays, and to split,
reshape, and join the arrays. While the types of operations shown here
may seem a bit dry and pedantic, they comprise the building blocks of
many other examples used throughout the book. Get to know them well!

We’ll cover a few categories of basic array manipulations
here:

	
Attributes of arrays: Determining the size, shape, memory
consumption, and data types of arrays

	
Indexing of arrays: Getting and setting the value of individual
array elements

	
Slicing of arrays: Getting and setting smaller subarrays within a
larger array

	
Reshaping of arrays: Changing the shape of a given array

	
Joining and splitting of arrays: Combining multiple arrays into one,
and splitting one array into many

NumPy Array Attributes

First let’s discuss some useful array attributes.
We’ll start by defining random arrays of one, two, and three
dimensions. We’ll use NumPy’s random number
generator, which we will seed with a set value in order to ensure that
the same random arrays are generated each time this code is run:

import numpy as np
rng = np.random.default_rng(seed=1701) # seed for reproducibility

x1 = rng.integers(10, size=6) # One-dimensional array
x2 = rng.integers(10, size=(3, 4)) # Two-dimensional array
x3 = rng.integers(10, size=(3, 4, 5)) # Three-dimensional array

Each array has attributes including ndim (the number of dimensions),
shape (the size of each dimension), and size (the total size of the
array), and dtype (the type of each element);

print("x3 ndim: ", x3.ndim)
print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)
print("dtype: ", x3.dtype)

x3 ndim: 3
x3 shape: (3, 4, 5)
x3 size: 60
dtype: int64

For more discussion of dtype, see
“Understanding Data Types in Python”):

Array Indexing: Accessing Single Elements

If you are familiar with Python’s standard list indexing,
indexing in NumPy will feel quite familiar. In a one-dimensional array,
the
 i th
 value (counting from zero) can be accessed by
specifying the desired index in square brackets, just as with Python
lists:

x1

array([9, 4, 0, 3, 8, 6])

x1[0]

9

x1[4]

8

To index from the end of the array, you can use negative indices:

x1[-1]

6

x1[-2]

8

In a multi-dimensional array, items can be accessed using a
comma-separated (row, column) tuple:

x2

array([[3, 1, 3, 7],
 [4, 0, 2, 3],
 [0, 0, 6, 9]])

x2[0, 0]

3

x2[2, 0]

0

x2[2, -1]

9

Values can also be modified using any of the above index notation:

x2[0, 0] = 12
x2

array([[12, 1, 3, 7],
 [4, 0, 2, 3],
 [0, 0, 6, 9]])

Keep in mind that, unlike Python lists, NumPy arrays have a fixed type.
This means, for example, that if you attempt to insert a floating-point
value to an integer array, the value will be silently truncated.
Don’t be caught unaware by this behavior!

x1[0] = 3.14159 # this will be truncated!
x1

array([3, 4, 0, 3, 8, 6])

Array Slicing: Accessing Subarrays

Just as we can use square brackets to access individual array elements,
we can also use them to access subarrays with the slice notation,
marked by the colon (:) character. The NumPy slicing syntax follows
that of the standard Python list; to access a slice of an array x, use
this:

x[start:stop:step]

If any of these are unspecified, they default to the values start=0,
stop=`__`size of dimension`__, `step=1. We’ll take a look
at accessing sub-arrays in one dimension and in multiple dimensions.

One-dimensional subarrays

x1

array([3, 4, 0, 3, 8, 6])

x1[:3] # first three elements

array([3, 4, 0])

x1[3:] # elements after index 3

array([3, 8, 6])

x1[1:4] # middle sub-array

array([4, 0, 3])

x1[::2] # every other element

array([3, 0, 8])

x1[1::2] # every other element, starting at index 1

array([4, 3, 6])

A potentially confusing case is when the step value is negative. In
this case, the defaults for start and stop are swapped. This becomes
a convenient way to reverse an array:

x1[::-1] # all elements, reversed

array([6, 8, 3, 0, 4, 3])

x1[4::-2] # reversed every other from index 4

array([8, 0, 3])

Multi-dimensional subarrays

Multi-dimensional slices work in the same way, with multiple slices
separated by commas. For example:

x2

array([[12, 1, 3, 7],
 [4, 0, 2, 3],
 [0, 0, 6, 9]])

x2[:2, :3] # first two rows & three columns

array([[12, 1, 3],
 [4, 0, 2]])

x2[:3, ::2] # three rows, every other column

array([[12, 3],
 [4, 2],
 [0, 6]])

x2[::-1, ::-1] # all rows & columns, reversed

array([[9, 6, 0, 0],
 [3, 2, 0, 4],
 [7, 3, 1, 12]])

Accessing array rows and columns

One commonly needed routine is accessing of single rows or columns of an
array. This can be done by combining indexing and slicing, using an
empty slice marked by a single colon (:):

x2[:, 0] # first column of x2

array([12, 4, 0])

x2[0, :] # first row of x2

array([12, 1, 3, 7])

In the case of row access, the empty slice can be omitted for a more
compact syntax:

x2[0] # equivalent to x2[0, :]

array([12, 1, 3, 7])

Subarrays as no-copy views

Unlike Python list slices, NumPy array slices are returned as views
rather than copies of the array data. Consider our two-dimensional
array from before:

print(x2)

[[12 1 3 7]
 [4 0 2 3]
 [0 0 6 9]]

Let’s extract a

 2
 ×
 2

 subarray from this:

x2_sub = x2[:2, :2]
print(x2_sub)

[[12 1]
 [4 0]]

Now if we modify this subarray, we’ll see that the original
array is changed! Observe:

x2_sub[0, 0] = 99
print(x2_sub)

[[99 1]
 [4 0]]

print(x2)

[[99 1 3 7]
 [4 0 2 3]
 [0 0 6 9]]

Some users may find this surprising, but it can be advantageous: for
example, when working with large datasets, we can access and process
pieces of these datasets without the need to copy the underlying data
buffer.

Creating copies of arrays

Despite the nice features of array views, it is sometimes useful to
instead explicitly copy the data within an array or a subarray. This can
be most easily done with the copy() method:

x2_sub_copy = x2[:2, :2].copy()
print(x2_sub_copy)

[[99 1]
 [4 0]]

If we now modify this subarray, the original array is not touched:

x2_sub_copy[0, 0] = 42
print(x2_sub_copy)

[[42 1]
 [4 0]]

print(x2)

[[99 1 3 7]
 [4 0 2 3]
 [0 0 6 9]]

Reshaping of Arrays

Another useful type of operation is reshaping of arrays, which can be
done with the reshape method. For example, if you want to put the
numbers 1 through 9 in a

 3
 ×
 3

 grid, you can do the
following:

grid = np.arange(1, 10).reshape(3, 3)
print(grid)

[[1 2 3]
 [4 5 6]
 [7 8 9]]

Note that for this to work, the size of the initial array must match the
size of the reshaped array, and in most cases the reshape method will
return a no-copy view of the initial array.

A common reshaping operation is converting a one-dimensional array into
a two-dimensional row or column matrix:

x = np.array([1, 2, 3])
x.reshape((1, 3)) # row vector via reshape

array([[1, 2, 3]])

x.reshape((3, 1)) # column vector via reshape

array([[1],
 [2],
 [3]])

A convenient shorthand for this is to use np.newaxis within a slicing
syntax:

x[np.newaxis, :] # row vector via newaxis

array([[1, 2, 3]])

x[:, np.newaxis] # column vector via newaxis

array([[1],
 [2],
 [3]])

This is a pattern that we will utilize often through the remainder of
the book.

Array Concatenation and Splitting

All of the preceding routines worked on single arrays. NumPy also
provides tools to combine multiple arrays into one, and to conversely
split a single array into multiple arrays.

Concatenation of arrays

Concatenation, or joining of two arrays in NumPy, is primarily
accomplished using the routines np.concatenate, np.vstack, and
np.hstack. np.concatenate takes a tuple or list of arrays as its
first argument, as we can see here:

x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
np.concatenate([x, y])

array([1, 2, 3, 3, 2, 1])

You can also concatenate more than two arrays at once:

z = np.array([99, 99, 99])
print(np.concatenate([x, y, z]))

[1 2 3 3 2 1 99 99 99]

It can also be used for two-dimensional arrays:

grid = np.array([[1, 2, 3],
 [4, 5, 6]])

concatenate along the first axis
np.concatenate([grid, grid])

array([[1, 2, 3],
 [4, 5, 6],
 [1, 2, 3],
 [4, 5, 6]])

concatenate along the second axis (zero-indexed)
np.concatenate([grid, grid], axis=1)

array([[1, 2, 3, 1, 2, 3],
 [4, 5, 6, 4, 5, 6]])

For working with arrays of mixed dimensions, it can be clearer to use
the np.vstack (vertical stack) and np.hstack (horizontal stack)
functions:

vertically stack the arrays
np.vstack([x, grid])

array([[1, 2, 3],
 [1, 2, 3],
 [4, 5, 6]])

horizontally stack the arrays
y = np.array([[99],
 [99]])
np.hstack([grid, y])

array([[1, 2, 3, 99],
 [4, 5, 6, 99]])

Similary, for higher-dimensional arrays, np.dstack will stack arrays
along the third axis.

Splitting of arrays

The opposite of concatenation is splitting, which is implemented by the
functions np.split, np.hsplit, and np.vsplit. For each of these,
we can pass a list of indices giving the split points:

x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

[1 2 3] [99 99] [3 2 1]

Notice that N split-points, leads to N + 1 subarrays. The related
functions np.hsplit and np.vsplit are similar:

grid = np.arange(16).reshape((4, 4))
grid

array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

[[0 1 2 3]
 [4 5 6 7]]
[[8 9 10 11]
 [12 13 14 15]]

left, right = np.hsplit(grid, [2])
print(left)
print(right)

[[0 1]
 [4 5]
 [8 9]
 [12 13]]
[[2 3]
 [6 7]
 [10 11]
 [14 15]]

Similarly, for higher-dimensional arrays, np.dsplit will split arrays
along the third axis.

Computation on NumPy Arrays: Universal Functions

Up until now, we have been discussing some of the basic nuts and bolts
of NumPy; in the next few sections, we will dive into the reasons that
NumPy is so important in the Python data science world. Namely, it
provides an easy and flexible interface to optimized computation with
arrays of data.

Computation on NumPy arrays can be very fast, or it can be very slow.
The key to making it fast is to use vectorized operations, generally
implemented through NumPy’s universal functions (ufuncs).
This section motivates the need for NumPy’s ufuncs, which
can be used to make repeated calculations on array elements much more
efficient. It then introduces many of the most common and useful
arithmetic ufuncs available in the NumPy package.

The Slowness of Loops

Python’s default implementation (known as CPython) does some
operations very slowly. This is in part due to the dynamic, interpreted
nature of the language: the fact that types are flexible, so that
sequences of operations cannot be compiled down to efficient machine
code as in languages like C and Fortran. Recently there have been
various attempts to address this weakness: well-known examples are the
PyPy project, a just-in-time compiled implementation
of Python; the Cython project, which converts Python
code to compilable C code; and the Numba
project, which converts snippets of Python code to fast LLVM bytecode.
Each of these has its strengths and weaknesses, but it is safe to say
that none of the three approaches has yet surpassed the reach and
popularity of the standard CPython engine.

The relative sluggishness of Python generally manifests itself in
situations where many small operations are being repeated – for instance
looping over arrays to operate on each element. For example, imagine we
have an array of values and we’d like to compute the
reciprocal of each. A straightforward approach might look like this:

import numpy as np
rng = np.random.default_rng(seed=1701)

def compute_reciprocals(values):
 output = np.empty(len(values))
 for i in range(len(values)):
 output[i] = 1.0 / values[i]
 return output

values = rng.integers(1, 10, size=5)
compute_reciprocals(values)

array([0.11111111, 0.25 , 1. , 0.33333333, 0.125])

This implementation probably feels fairly natural to someone from, say,
a C or Java background. But if we measure the execution time of this
code for a large input, we see that this operation is very slow, perhaps
surprisingly so! We’ll benchmark this with
IPython’s %timeit magic (discussed in
“Profiling and Timing Code”):

big_array = rng.integers(1, 100, size=1000000)
%timeit compute_reciprocals(big_array)

2.61 s ± 192 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

It takes several seconds to compute these million operations and to
store the result! When even cell phones have processing speeds measured
in Giga-FLOPS (i.e., billions of numerical operations per second), this
seems almost absurdly slow. It turns out that the bottleneck here is not
the operations themselves, but the type-checking and function dispatches
that CPython must do at each cycle of the loop. Each time the reciprocal
is computed, Python first examines the object’s type and
does a dynamic lookup of the correct function to use for that type. If
we were working in compiled code instead, this type specification would
be known before the code executes and the result could be computed much
more efficiently.

Introducing UFuncs

For many types of operations, NumPy provides a convenient interface into
just this kind of statically typed, compiled routine. This is known as a
vectorized operation. For simple operations like the element-wise
division here, vectorization is as simple as using Python arithmetic
operators directly on the array object. This vectorized approach is
designed to push the loop into the compiled layer that underlies NumPy,
leading to much faster execution.

Compare the results of the following two:

print(compute_reciprocals(values))
print(1.0 / values)

[0.11111111 0.25 1. 0.33333333 0.125]
[0.11111111 0.25 1. 0.33333333 0.125]

Looking at the execution time for our big array, we see that it
completes orders of magnitude faster than the Python loop:

%timeit (1.0 / big_array)

2.54 ms ± 383 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Vectorized operations in NumPy are implemented via ufuncs, whose main
purpose is to quickly execute repeated operations on values in NumPy
arrays. Ufuncs are extremely flexible – before we saw an operation
between a scalar and an array, but we can also operate between two
arrays:

np.arange(5) / np.arange(1, 6)

array([0. , 0.5 , 0.66666667, 0.75 , 0.8])

And ufunc operations are not limited to one-dimensional arrays–they can
also act on multi-dimensional arrays as well:

x = np.arange(9).reshape((3, 3))
2 ** x

array([[1, 2, 4],
 [8, 16, 32],
 [64, 128, 256]])

Computations using vectorization through ufuncs are nearly always more
efficient than their counterpart implemented using Python loops,
especially as the arrays grow in size. Any time you see such a loop in a
NumPy script, you should consider whether it can be replaced with a
vectorized expression.

Exploring NumPy’s UFuncs

Ufuncs exist in two flavors: unary ufuncs, which operate on a single
input, and binary ufuncs, which operate on two inputs.
We’ll see examples of both these types of functions here.

Array arithmetic

NumPy’s ufuncs feel very natural to use because they make
use of Python’s native arithmetic operators. The standard
addition, subtraction, multiplication, and division can all be used:

x = np.arange(4)
print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2) # floor division

x = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
x * 2 = [0 2 4 6]
x / 2 = [0. 0.5 1. 1.5]
x // 2 = [0 0 1 1]

There is also a unary ufunc for negation, and a ** operator for
exponentiation, and a % operator for modulus:

print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)

-x = [0 -1 -2 -3]
x ** 2 = [0 1 4 9]
x % 2 = [0 1 0 1]

In addition, these can be strung together however you wish, and the
standard order of operations is respected:

-(0.5*x + 1) ** 2

array([-1. , -2.25, -4. , -6.25])

Each of these arithmetic operations are simply convenient wrappers
around specific ufuncs built into NumPy; for example, the + operator
is a wrapper for the add ufunc:

np.add(x, 2)

array([2, 3, 4, 5])

The following table lists the arithmetic operators implemented in NumPy:

	Operator
	Equivalent ufunc
	Description

	+

	np.add

	Addition (e.g., 1 + 1 = 2)

	-

	np.subtract

	Subtraction (e.g., 3 - 2 = 1)

	-

	np.negative

	Unary negation (e.g., -2)

	*

	np.multiply

	Multiplication (e.g., 2 * 3 = 6)

	/

	np.divide

	Division (e.g., 3 / 2 = 1.5)

	//

	np.floor_divide

	Floor division (e.g., 3 // 2 = 1)

	**

	np.power

	Exponentiation (e.g., 2 ** 3 = 8)

	%

	np.mod

	Modulus/remainder (e.g., 9 % 4 = 1)

Additionally there are Boolean/bitwise operators; we will explore these
in “Comparisons, Masks, and Boolean Logic”.

Absolute value

Just as NumPy understands Python’s built-in arithmetic
operators, it also understands Python’s built-in absolute
value function:

x = np.array([-2, -1, 0, 1, 2])
abs(x)

array([2, 1, 0, 1, 2])

The corresponding NumPy ufunc is np.absolute, which is also available
under the alias np.abs:

np.absolute(x)

array([2, 1, 0, 1, 2])

np.abs(x)

array([2, 1, 0, 1, 2])

This ufunc can also handle complex data, in which the absolute value
returns the magnitude:

x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)

array([5., 5., 2., 1.])

Trigonometric functions

NumPy provides a large number of useful ufuncs, and some of the most
useful for the data scientist are the trigonometric functions.
We’ll start by defining an array of angles:

theta = np.linspace(0, np.pi, 3)

Now we can compute some trigonometric functions on these values:

print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

theta = [0. 1.57079633 3.14159265]
sin(theta) = [0.0000000e+00 1.0000000e+00 1.2246468e-16]
cos(theta) = [1.000000e+00 6.123234e-17 -1.000000e+00]
tan(theta) = [0.00000000e+00 1.63312394e+16 -1.22464680e-16]

The values are computed to within machine precision, which is why values
that should be zero do not always hit exactly zero. Inverse
trigonometric functions are also available:

x = [-1, 0, 1]
print("x = ", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))
print("arctan(x) = ", np.arctan(x))

x = [-1, 0, 1]
arcsin(x) = [-1.57079633 0. 1.57079633]
arccos(x) = [3.14159265 1.57079633 0.]
arctan(x) = [-0.78539816 0. 0.78539816]

Exponents and logarithms

Another common type of operation available in a NumPy ufunc are the
exponentials:

x = [1, 2, 3]
print("x =", x)
print("e^x =", np.exp(x))
print("2^x =", np.exp2(x))
print("3^x =", np.power(3., x))

x = [1, 2, 3]
e^x = [2.71828183 7.3890561 20.08553692]
2^x = [2. 4. 8.]
3^x = [3. 9. 27.]

The inverse of the exponentials, the logarithms, are also available. The
basic np.log gives the natural logarithm; if you prefer to compute the
base-2 logarithm or the base-10 logarithm, these are available as well:

x = [1, 2, 4, 10]
print("x =", x)
print("ln(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.log10(x))

x = [1, 2, 4, 10]
ln(x) = [0. 0.69314718 1.38629436 2.30258509]
log2(x) = [0. 1. 2. 3.32192809]
log10(x) = [0. 0.30103 0.60205999 1.]

There are also some specialized versions that are useful for maintaining
precision with very small input:

x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 =", np.expm1(x))
print("log(1 + x) =", np.log1p(x))

exp(x) - 1 = [0. 0.0010005 0.01005017 0.10517092]
log(1 + x) = [0. 0.0009995 0.00995033 0.09531018]

When x is very small, these functions give more precise values than if
the raw np.log or np.exp were to be used.

Specialized ufuncs

NumPy has many more ufuncs available, including hyperbolic trig
functions, bitwise arithmetic, comparison operators, conversions from
radians to degrees, rounding and remainders, and much more. A look
through the NumPy documentation reveals a lot of interesting
functionality.

Another excellent source for more specialized and obscure ufuncs is the
submodule scipy.special. If you want to compute some obscure
mathematical function on your data, chances are it is implemented in
scipy.special. There are far too many functions to list them all, but
the following snippet shows a couple that might come up in a statistics
context:

from scipy import special

Gamma functions (generalized factorials) and related functions
x = [1, 5, 10]
print("gamma(x) =", special.gamma(x))
print("ln|gamma(x)| =", special.gammaln(x))
print("beta(x, 2) =", special.beta(x, 2))

gamma(x) = [1.0000e+00 2.4000e+01 3.6288e+05]
ln|gamma(x)| = [0. 3.17805383 12.80182748]
beta(x, 2) = [0.5 0.03333333 0.00909091]

Error function (integral of Gaussian)
its complement, and its inverse
x = np.array([0, 0.3, 0.7, 1.0])
print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))
print("erfinv(x) =", special.erfinv(x))

erf(x) = [0. 0.32862676 0.67780119 0.84270079]
erfc(x) = [1. 0.67137324 0.32219881 0.15729921]
erfinv(x) = [0. 0.27246271 0.73286908 inf]

There are many, many more ufuncs available in both NumPy and
scipy.special. Because the documentation of these packages is
available online, a web search along the lines of “gamma function
python” will generally find the relevant information.

Advanced Ufunc Features

Many NumPy users make use of ufuncs without ever learning their full set
of features. We’ll outline a few specialized features of
ufuncs here.

Specifying output

For large calculations, it is sometimes useful to be able to specify the
array where the result of the calculation will be stored. Rather than
creating a temporary array, this can be used to write computation
results directly to the memory location where you’d like
them to be. For all ufuncs, this can be done using the out argument of
the function:

x = np.arange(5)
y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)

[0. 10. 20. 30. 40.]

This can even be used with array views. For example, we can write the
results of a computation to every other element of a specified array:

y = np.zeros(10)
np.power(2, x, out=y[::2])
print(y)

[1. 0. 2. 0. 4. 0. 8. 0. 16. 0.]

If we had instead written y[::2] = 2 ** x, this would have resulted in
the creation of a temporary array to hold the results of 2 ** x,
followed by a second operation copying those values into the y array.
This doesn’t make much of a difference for such a small
computation, but for very large arrays the memory savings from careful
use of the out argument can be significant.

Aggregations

For binary ufuncs, there are some interesting aggregations that can be
computed directly from the object. For example, if we’d like
to reduce an array with a particular operation, we can use the
reduce method of any ufunc. A reduce repeatedly applies a given
operation to the elements of an array until only a single result
remains.

For example, calling reduce on the add ufunc returns the sum of all
elements in the array:

x = np.arange(1, 6)
np.add.reduce(x)

15

Similarly, calling reduce on the multiply ufunc results in the
product of all array elements:

np.multiply.reduce(x)

120

If we’d like to store all the intermediate results of the
computation, we can instead use accumulate:

np.add.accumulate(x)

array([1, 3, 6, 10, 15])

np.multiply.accumulate(x)

array([1, 2, 6, 24, 120])

Note that for these particular cases, there are dedicated NumPy
functions to compute the results (np.sum, np.prod, np.cumsum,
np.cumprod), which we’ll explore in
“Aggregations: Min, Max, and Everything In Between”.

Outer products

Finally, any ufunc can compute the output of all pairs of two different
inputs using the outer method. This allows you, in one line, to do
things like create a multiplication table:

x = np.arange(1, 6)
np.multiply.outer(x, x)

array([[1, 2, 3, 4, 5],
 [2, 4, 6, 8, 10],
 [3, 6, 9, 12, 15],
 [4, 8, 12, 16, 20],
 [5, 10, 15, 20, 25]])

The ufunc.at and ufunc.reduceat methods are useful as well, and we
will explore them in “Fancy Indexing”.

We will also encounter the ability of ufuncs to operate between arrays
of different shapes and sizes, a set of operations known as
broadcasting. This subject is important enough that we will devote a
whole section to it (see
“Computation on Arrays: Broadcasting”).

Ufuncs: Learning More

More information on universal functions (including the full list of
available functions) can be found on the NumPy and
SciPy documentation websites.

Recall that you can also access information directly from within IPython
by importing the packages and using IPython’s tab-completion
and help (?) functionality, as described in
“Help and Documentation in IPython”.

Aggregations: Min, Max, and Everything In Between

A first step in exploring any dataset is often to compute various
summary statistics. Perhaps the most common summary statistics are the
mean and standard deviation, which allow you to summarize the
“typical” values in a dataset, but other aggregations are useful as
well (the sum, product, median, minimum and maximum, quantiles, etc.).

NumPy has fast built-in aggregation functions for working on arrays;
we’ll discuss and demonstrate some of them here.

Summing the Values in an Array

As a quick example, consider computing the sum of all values in an
array. Python itself can do this using the built-in sum function:

import numpy as np
rng = np.random.default_rng()

L = rng.random(100)
sum(L)

52.76825337322368

The syntax is quite similar to that of NumPy’s sum
function, and the result is the same in the simplest case:

np.sum(L)

52.76825337322366

However, because it executes the operation in compiled code,
NumPy’s version of the operation is computed much more
quickly:

big_array = rng.random(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)

89.9 ms ± 233 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
521 µs ± 8.37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Be careful, though: the sum function and the np.sum function are not
identical, which can sometimes lead to confusion! In particular, their
optional arguments have different meanings, and np.sum is aware of
multiple array dimensions, as we will see in the following section.

Minimum and Maximum

Similarly, Python has built-in min and max functions, used to find
the minimum value and maximum value of any given array:

min(big_array), max(big_array)

(2.0114398036064074e-07, 0.9999997912802653)

NumPy’s corresponding functions have similar syntax, and
again operate much more quickly:

np.min(big_array), np.max(big_array)

(2.0114398036064074e-07, 0.9999997912802653)

%timeit min(big_array)
%timeit np.min(big_array)

72 ms ± 177 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
564 µs ± 3.11 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For min, max, sum, and several other NumPy aggregates, a shorter
syntax is to use methods of the array object itself:

print(big_array.min(), big_array.max(), big_array.sum())

2.0114398036064074e-07 0.9999997912802653 499854.0273321711

Whenever possible, make sure that you are using the NumPy version of
these aggregates when operating on NumPy arrays!

Multi dimensional aggregates

One common type of aggregation operation is an aggregate along a row or
column. Say you have some data stored in a two-dimensional array:

M = rng.integers(0, 10, (3, 4))
print(M)

[[0 3 1 2]
 [1 9 7 0]
 [4 8 3 7]]

Numpy aggregations will apply across all elements of a multi-dimensional
array:

M.sum()

45

Aggregation functions take an additional argument specifying the axis
along which the aggregate is computed. For example, we can find the
minimum value within each column by specifying axis=0:

M.min(axis=0)

array([0, 3, 1, 0])

The function returns four values, corresponding to the four columns of
numbers.

Similarly, we can find the maximum value within each row:

M.max(axis=1)

array([3, 9, 8])

The way the axis is specified here can be confusing to users coming from
other languages. The axis keyword specifies the dimension of the
array that will be collapsed, rather than the dimension that will be
returned. So specifying axis=0 means that the first axis will be
collapsed: for two-dimensional arrays, values within each column will be
aggregated.

Other aggregation functions

NumPy provides several other aggregation functions with a similar API,
and additionally most have a NaN-safe counterpart that computes the
result while ignoring missing values, which are marked by the special
IEEE floating-point NaN value (see
“Handling Missing Data”).

The following table provides a list of useful aggregation functions
available in NumPy:

	Function Name
	NaN-safe Version
	Description

	np.sum

	np.nansum

	Compute sum of elements

	np.prod

	np.nanprod

	Compute product of elements

	np.mean

	np.nanmean

	Compute mean of elements

	np.std

	np.nanstd

	Compute standard deviation

	np.var

	np.nanvar

	Compute variance

	np.min

	np.nanmin

	Find minimum value

	np.max

	np.nanmax

	Find maximum value

	np.argmin

	np.nanargmin

	Find index of minimum value

	np.argmax

	np.nanargmax

	Find index of maximum value

	np.median

	np.nanmedian

	Compute median of elements

	np.percentile

	np.nanpercentile

	Compute rank-based statistics of
elements

	np.any

	N/A

	Evaluate whether any elements are true

	np.all

	N/A

	Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Example: What is the Average Height of US Presidents?

Aggregates available in NumPy can act as summary statistics for a set of
values. As a simple example, let’s consider the heights of
all US presidents. This data is available in the file
president_heights.csv, which is a simple comma-separated list of
labels and values:

!head -4 data/president_heights.csv

order,name,height(cm)
1,George Washington,189
2,John Adams,170
3,Thomas Jefferson,189

We’ll use the Pandas package, which we’ll
explore more fully in Chapter 3, to read the file and extract this information (note that the heights
are measured in centimeters).

import pandas as pd
data = pd.read_csv('data/president_heights.csv')
heights = np.array(data['height(cm)'])
print(heights)

[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173
 174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183
 177 185 188 188 182 185 191 182]

Now that we have this data array, we can compute a variety of summary
statistics:

print("Mean height: ", heights.mean())
print("Standard deviation:", heights.std())
print("Minimum height: ", heights.min())
print("Maximum height: ", heights.max())

Mean height: 180.04545454545453
Standard deviation: 6.983599441335736
Minimum height: 163
Maximum height: 193

Note that in each case, the aggregation operation reduced the entire
array to a single summarizing value, which gives us information about
the distribution of values. We may also wish to compute quantiles:

print("25th percentile: ", np.percentile(heights, 25))
print("Median: ", np.median(heights))
print("75th percentile: ", np.percentile(heights, 75))

25th percentile: 174.75
Median: 182.0
75th percentile: 183.5

We see that the median height of US presidents is 182 cm, or just shy of
six feet.

Of course, sometimes it’s more useful to see a visual
representation of this data, which we can accomplish using tools in
Matplotlib (we’ll discuss Matplotlib more fully in
[Link to Come]). For example,
this code generates Figure 2-3.

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')

plt.hist(heights)
plt.title('Height Distribution of US Presidents')
plt.xlabel('height (cm)')
plt.ylabel('number');

[image: output 39 0]
Figure 2-3. Histogram of presidential heights

Computation on Arrays: Broadcasting

We saw in a previous section how NumPy’s universal functions
can be used to vectorize operations and thereby remove slow Python
loops. This section discusses broadcasting: a set of rules by which
NumPy lets you apply binary operations (e.g., addition, subtraction,
multiplication, etc.) between arrays of different sizes and shapes.

Introducing Broadcasting

Recall that for arrays of the same size, binary operations are performed
on an element-by-element basis:

import numpy as np

a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
a + b

array([5, 6, 7])

Broadcasting allows these types of binary operations to be performed on
arrays of different sizes–for example, we can just as easily add a
scalar (think of it as a zero-dimensional array) to an array:

a + 5

array([5, 6, 7])

We can think of this as an operation that stretches or duplicates the
value 5 into the array [5, 5, 5], and adds the results. The
advantage of NumPy’s broadcasting is that this duplication
of values does not actually take place, but it is a useful mental model
as we think about broadcasting.

We can similarly extend this idea to arrays of higher dimension. Observe
the result when we add a one-dimensional array to a two-dimensional
array:

M = np.ones((3, 3))
M

array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

M + a

array([[1., 2., 3.],
 [1., 2., 3.],
 [1., 2., 3.]])

Here the one-dimensional array a is stretched, or broadcast across the
second dimension in order to match the shape of M.

While these examples are relatively easy to understand, more complicated
cases can involve broadcasting of both arrays. Consider the following
example:

a = np.arange(3)
b = np.arange(3)[:, np.newaxis]

print(a)
print(b)

[0 1 2]
[[0]
 [1]
 [2]]

a + b

array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

Just as before we stretched or broadcasted one value to match the shape
of the other, here we’ve stretched both a and b to
match a common shape, and the result is a two-dimensional array! The
geometry of these examples is visualized in Figure 2-4 (Code
to produce this plot can be found in the online
[Link to Come], and is adapted from
source published in the astroML documentation. Used
by permission).

[image: 02.05 broadcasting]
Figure 2-4. Visualization of NumPy broadcasting

The light boxes represent the broadcasted values: again, this extra
memory is not actually allocated in the course of the operation, but it
can be useful conceptually to imagine that it is.

Rules of Broadcasting

Broadcasting in NumPy follows a strict set of rules to determine the
interaction between the two arrays:

	
Rule 1: If the two arrays differ in their number of dimensions, the
shape of the one with fewer dimensions is padded with ones on its
leading (left) side.

	
Rule 2: If the shape of the two arrays does not match in any
dimension, the array with shape equal to 1 in that dimension is
stretched to match the other shape.

	
Rule 3: If in any dimension the sizes disagree and neither is equal to
1, an error is raised.

To make these rules clear, let’s consider a few examples in
detail.

Broadcasting example 1

Let’s look at adding a two-dimensional array to a
one-dimensional array:

M = np.ones((2, 3))
a = np.arange(3)

Let’s consider an operation on these two arrays. The shape
of the arrays are

	
M.shape = (2, 3)

	
a.shape = (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it
on the left with ones:

	
M.shape -> (2, 3)

	
a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch
this dimension to match:

	
M.shape -> (2, 3)

	
a.shape -> (2, 3)

The shapes match, and we see that the final shape will be (2, 3):

M + a

array([[1., 2., 3.],
 [1., 2., 3.]])

Broadcasting example 2

Let’s take a look at an example where both arrays need to be
broadcast:

a = np.arange(3).reshape((3, 1))
b = np.arange(3)

Again, we’ll start by writing out the shape of the arrays:

	
a.shape = (3, 1)

	
b.shape = (3,)

Rule 1 says we must pad the shape of b with ones:

	
a.shape -> (3, 1)

	
b.shape -> (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the
corresponding size of the other array:

	
a.shape -> (3, 3)

	
b.shape -> (3, 3)

Because the result matches, these shapes are compatible. We can see this
here:

a + b

array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

Broadcasting example 3

Now let’s take a look at an example in which the two arrays
are not compatible:

M = np.ones((3, 2))
a = np.arange(3)

This is just a slightly different situation than in the first example:
the matrix M is transposed. How does this affect the calculation? The
shape of the arrays are

	
M.shape = (3, 2)

	
a.shape = (3,)

Again, rule 1 tells us that we must pad the shape of a with ones:

	
M.shape -> (3, 2)

	
a.shape -> (1, 3)

By rule 2, the first dimension of a is stretched to match that of M:

	
M.shape -> (3, 2)

	
a.shape -> (3, 3)

Now we hit rule 3–the final shapes do not match, so these two arrays are
incompatible, as we can observe by attempting this operation:

M + a

 ValueError: operands could not be broadcast together with shapes (3,2) (3,)

Note the potential confusion here: you could imagine making a and M
compatible by, say, padding a’s shape with ones on the
right rather than the left. But this is not how the broadcasting rules
work! That sort of flexibility might be useful in some cases, but it
would lead to potential areas of ambiguity. If right-side padding is
what you’d like, you can do this explicitly by reshaping the
array (we’ll use the np.newaxis keyword introduced in
“The Basics of NumPy Arrays”):

a[:, np.newaxis].shape

(3, 1)

M + a[:, np.newaxis]

array([[1., 1.],
 [2., 2.],
 [3., 3.]])

Also notice that while we’ve been focusing on the +
operator here, these broadcasting rules apply to any binary ufunc.
For example, here is the logaddexp(a, b) function, which computes
log(exp(a) + exp(b)) with more precision than the naive approach:

np.logaddexp(M, a[:, np.newaxis])

array([[1.31326169, 1.31326169],
 [1.69314718, 1.69314718],
 [2.31326169, 2.31326169]])

For more information on the many available universal functions, refer to
“Computation on NumPy Arrays: Universal Functions”.

Broadcasting in Practice

Broadcasting operations form the core of many examples we’ll
see throughout this book. We’ll now take a look at a couple
simple examples of where they can be useful.

Centering an array

In the previous section, we saw that ufuncs allow a NumPy user to remove
the need to explicitly write slow Python loops. Broadcasting extends
this ability. One commonly seen example is when centering an array of
data. Imagine you have an array of 10 observations, each of which
consists of 3 values. Using the standard convention (see
[Link to Come]), we’ll store this in a

 10
 ×
 3

 array:

rng = np.random.default_rng(seed=1701)
X = rng.random((10, 3))

We can compute the mean of each feature using the mean aggregate
across the first dimension:

Xmean = X.mean(0)
Xmean

array([0.38503638, 0.36991443, 0.63896043])

And now we can center the X array by subtracting the mean (this is a
broadcasting operation):

X_centered = X - Xmean

To double-check that we’ve done this correctly, we can check
that the centered array has near zero mean:

X_centered.mean(0)

array([4.99600361e-17, -4.44089210e-17, 0.00000000e+00])

To within machine precision, the mean is now zero.

Plotting a two-dimensional function

One place that broadcasting comes in handy is in displaying images based
on two-dimensional functions. If we want to define a function

 z
 =
 f
 (
 x
 ,
 y
)

, broadcasting can be used to compute the
function across the grid:

x and y have 50 steps from 0 to 5
x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 50)[:, np.newaxis]

z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)

We’ll use Matplotlib to plot this two-dimensional array
(these tools will be discussed in full in
[Link to Come]):

%matplotlib inline
import matplotlib.pyplot as plt

plt.imshow(z, origin='lower', extent=[0, 5, 0, 5])
plt.colorbar();

[image: output 52 0]
Figure 2-5. Visualization of a 2D array

The result is a compelling visualization of the two-dimensional
function.

Comparisons, Masks, and Boolean Logic

This section covers the use of Boolean masks to examine and manipulate
values within NumPy arrays. Masking comes up when you want to extract,
modify, count, or otherwise manipulate values in an array based on some
criterion: for example, you might wish to count all values greater than
a certain value, or perhaps remove all outliers that are above some
threshold. In NumPy, Boolean masking is often the most efficient way to
accomplish these types of tasks.

Example: Counting Rainy Days

Imagine you have a series of data that represents the amount of
precipitation each day for a year in a given city. For example, here
we’ll load the daily rainfall statistics for the city of
Seattle in 2015, using Pandas (see
Chapter 3):

import numpy as np
from vega_datasets import data

use dataframe operations to extract rainfall as a NumPy array
rainfall_mm = np.array(
 data.seattle_weather().set_index('date')['precipitation']['2015'])
len(rainfall_mm)

365

The array contains 365 values, giving daily rainfall in millimeters from
January 1 to December 31, 2015.

As a first quick visualization, let’s look at the histogram
of rainy days, which was generated using Matplotlib (we will explore
this tool more fully in
[Link to Come]):

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')

plt.hist(rainfall_mm, 40);

[image: output 6 0]
Figure 2-6. Histogram of 2014 rainfall in Seattle

This histogram gives us a general idea of what the data looks like:
despite the city’s rainy reputation, the vast majority of
days in Seattle saw near zero measured rainfall in 2015. But this
doesn’t do a good job of conveying some information
we’d like to see: for example, how many rainy days were
there in the year? What is the average precipitation on those rainy
days? How many days were there with more than 10mm of rainfall?

Digging into the data

One approach to this would be to answer these questions by hand: loop
through the data, incrementing a counter each time we see values in some
desired range. For reasons discussed throughout this chapter, such an
approach is very inefficient, both from the standpoint of time writing
code and time computing the result. We saw in
“Computation on NumPy Arrays: Universal Functions” that NumPy’s ufuncs can be used
in place of loops to do fast element-wise arithmetic operations on
arrays; in the same way, we can use other ufuncs to do element-wise
comparisons over arrays, and we can then manipulate the results to
answer the questions we have. We’ll leave the data aside for
right now, and discuss some general tools in NumPy to use masking to
quickly answer these types of questions.

Comparison Operators as ufuncs

In “Computation on NumPy Arrays: Universal Functions” we introduced ufuncs, and focused in
particular on arithmetic operators. We saw that using +, -, *,
/, and others on arrays leads to element-wise operations. NumPy also
implements comparison operators such as < (less than) and > (greater
than) as element-wise ufuncs. The result of these comparison operators
is always an array with a Boolean data type. All six of the standard
comparison operations are available:

x = np.array([1, 2, 3, 4, 5])

x < 3 # less than

array([True, True, False, False, False])

x > 3 # greater than

array([False, False, False, True, True])

x <= 3 # less than or equal

array([True, True, True, False, False])

x >= 3 # greater than or equal

array([False, False, True, True, True])

x != 3 # not equal

array([True, True, False, True, True])

x == 3 # equal

array([False, False, True, False, False])

It is also possible to do an element-wise comparison of two arrays, and
to include compound expressions:

(2 * x) == (x ** 2)

array([False, True, False, False, False])

As in the case of arithmetic operators, the comparison operators are
implemented as ufuncs in NumPy; for example, when you write x < 3,
internally NumPy uses np.less(x, 3). A summary of the comparison
operators and their equivalent ufunc is shown here:

Operator | Equivalent ufunc || Operator | Equivalent ufunc |

|————-|——————-||————|——————| |== |np.equal ||!= |np.not_equal |
|< |np.less ||<= |np.less_equal | |> |np.greater ||>=
|np.greater_equal|

Just as in the case of arithmetic ufuncs, these will work on arrays of
any size and shape. Here is a two-dimensional example:

rng = np.random.default_rng(seed=1701)
x = rng.integers(10, size=(3, 4))
x

array([[9, 4, 0, 3],
 [8, 6, 3, 1],
 [3, 7, 4, 0]])

x < 6

array([[False, True, True, True],
 [False, False, True, True],
 [True, False, True, True]])

In each case, the result is a Boolean array, and NumPy provides a number
of straightforward patterns for working with these Boolean results.

Working with Boolean Arrays

Given a Boolean array, there are a host of useful operations you can do.
We’ll work with x, the two-dimensional array we created
earlier.

print(x)

[[9 4 0 3]
 [8 6 3 1]
 [3 7 4 0]]

Counting entries

To count the number of True entries in a Boolean array,
np.count_nonzero is useful:

how many values less than 6?
np.count_nonzero(x < 6)

8

We see that there are eight array entries that are less than 6. Another
way to get at this information is to use np.sum; in this case, False
is interpreted as 0, and True is interpreted as 1:

np.sum(x < 6)

8

The benefit of sum() is that like with other NumPy aggregation
functions, this summation can be done along rows or columns as well:

how many values less than 6 in each row?
np.sum(x < 6, axis=1)

array([3, 2, 3])

This counts the number of values less than 6 in each row of the matrix.

If we’re interested in quickly checking whether any or all
the values are true, we can use (you guessed it) np.any or np.all:

are there any values greater than 8?
np.any(x > 8)

True

are there any values less than zero?
np.any(x < 0)

False

are all values less than 10?
np.all(x < 10)

True

are all values equal to 6?
np.all(x == 6)

False

np.all and np.any can be used along particular axes as well. For
example:

are all values in each row less than 8?
np.all(x < 8, axis=1)

array([False, False, True])

Here all the elements in the third row is less than 8, while this is not
the case for others.

Finally, a quick warning: as mentioned in
“Aggregations: Min, Max, and Everything In Between”, Python has built-in sum(), any(),
and all() functions. These have a different syntax than the NumPy
versions, and in particular will fail or produce unintended results when
used on multidimensional arrays. Be sure that you are using np.sum(),
np.any(), and np.all() for these examples!

Boolean operators

We’ve already seen how we might count, say, all days with
rain less than 20mm, or all days with rain greater than 10mm. But what
if we want to know about all days with rain less than 20mm and greater
than 10mm? This is accomplished through Python’s bitwise
logic operators, &, |, ^, and ~. Like with the standard
arithmetic operators, NumPy overloads these as ufuncs which work
element-wise on (usually Boolean) arrays.

For example, we can address this sort of compound question as follows:

np.sum((rainfall_mm > 10) & (rainfall_mm < 20))

16

So we see that there are 16 days with rainfall between 10 and 20
millimeters.

The parentheses here are important–because of operator precedence rules,
with parentheses removed this expression would be evaluated as follows,
which results in an error:

rainfall_mm > (10 & rainfall_mm) < 20

Let’s demonstrate a more complicated expression: using De
Morgan’s laws, we can compute the same result in a different
manner:

np.sum(~((rainfall_mm <= 10) | (rainfall_mm >= 20)))

16

Combining comparison operators and Boolean operators on arrays can lead
to a wide range of efficient logical operations.

The following table summarizes the bitwise Boolean operators and their
equivalent ufuncs:

Operator | Equivalent ufunc || Operator | Equivalent ufunc |

|————-|——————-||————-|——————-| |& |np.bitwise_and |||
|np.bitwise_or | |^ |np.bitwise_xor ||~ |np.bitwise_not |

Using these tools, we might start to answer the types of questions we
have about our weather data. Here are some examples of results we can
compute when combining masking with aggregations:

print("Number days without rain: ", np.sum(rainfall_mm == 0))
print("Number days with rain: ", np.sum(rainfall_mm != 0))
print("Days with more than 10 mm: ", np.sum(rainfall_mm > 10))
print("Rainy days with < 5 mm: ", np.sum((rainfall_mm > 0) &
 (rainfall_mm < 5)))

Number days without rain: 221
Number days with rain: 144
Days with more than 10 mm: 34
Rainy days with < 5 mm: 83

Boolean Arrays as Masks

In the preceding section we looked at aggregates computed directly on
Boolean arrays. A more powerful pattern is to use Boolean arrays as
masks, to select particular subsets of the data themselves. Returning to
our x array from before, suppose we want an array of all values in the
array that are less than, say, 5:

x

array([[9, 4, 0, 3],
 [8, 6, 3, 1],
 [3, 7, 4, 0]])

We can obtain a Boolean array for this condition easily, as
we’ve already seen:

x < 5

array([[False, True, True, True],
 [False, False, True, True],
 [True, False, True, True]])

Now to select these values from the array, we can simply index on this
Boolean array; this is known as a masking operation:

x[x < 5]

array([4, 0, 3, 3, 1, 3, 4, 0])

What is returned is a one-dimensional array filled with all the values
that meet this condition; in other words, all the values in positions at
which the mask array is True.

We are then free to operate on these values as we wish. For example, we
can compute some relevant statistics on our Seattle rain data:

construct a mask of all rainy days
rainy = (rainfall_mm > 0)

construct a mask of all summer days (June 21st is the 172nd day)
days = np.arange(365)
summer = (days > 172) & (days < 262)

print("Median precip on rainy days in 2015 (mm): ",
 np.median(rainfall_mm[rainy]))
print("Median precip on summer days in 2015 (mm): ",
 np.median(rainfall_mm[summer]))
print("Maximum precip on summer days in 2015 (mm): ",
 np.max(rainfall_mm[summer]))
print("Median precip on non-summer rainy days (mm):",
 np.median(rainfall_mm[rainy & ~summer]))

Median precip on rainy days in 2015 (mm): 3.8
Median precip on summer days in 2015 (mm): 0.0
Maximum precip on summer days in 2015 (mm): 32.5
Median precip on non-summer rainy days (mm): 4.1

By combining Boolean operations, masking operations, and aggregates, we
can very quickly answer these sorts of questions for our dataset.

Aside: Using the Keywords and/or Versus the Operators &/|

One common point of confusion is the difference between the keywords
and and or on one hand, and the operators & and | on the other
hand. When would you use one versus the other?

The difference is this: and and or gauge the truth or falsehood of
entire object, while & and | refer to bits within each object.

When you use and or or, it is equivalent to asking Python to treat
the object as a single Boolean entity. In Python, all nonzero integers
will evaluate as True. Thus:

bool(42), bool(0)

(True, False)

bool(42 and 0)

False

bool(42 or 0)

True

When you use & and | on integers, the expression operates on the
bits of the element, applying the and or the or to the individual
bits making up the number:

bin(42)

'0b101010'

bin(59)

'0b111011'

bin(42 & 59)

'0b101010'

bin(42 | 59)

'0b111011'

Notice that the corresponding bits of the binary representation are
compared in order to yield the result.

When you have an array of Boolean values in NumPy, this can be thought
of as a string of bits where 1 = True and 0 = False, and the result
of & and | operates similarly to above:

A = np.array([1, 0, 1, 0, 1, 0], dtype=bool)
B = np.array([1, 1, 1, 0, 1, 1], dtype=bool)
A | B

array([True, True, True, False, True, True])

Using or on these arrays will try to evaluate the truth or falsehood
of the entire array object, which is not a well-defined value:

A or B

 ValueError: The truth value of an array with more than one element is
 > ambiguous.
 a.any() or a.all()

Similarly, when doing a Boolean expression on a given array, you should
use | or & rather than or or and:

x = np.arange(10)
(x > 4) & (x < 8)

array([False, False, False, False, False, True, True, True, False,
 False])

Trying to evaluate the truth or falsehood of the entire array will give
the same ValueError we saw previously:

(x > 4) and (x < 8)

 ValueError: The truth value of an array with more than one element is
 > ambiguous.
 a.any() or a.all()

So remember this: and and or perform a single Boolean evaluation on
an entire object, while & and | perform multiple Boolean evaluations
on the content (the individual bits or bytes) of an object. For Boolean
NumPy arrays, the latter is nearly always the desired operation.

Fancy Indexing

In the previous sections, we saw how to access and modify portions of
arrays using simple indices (e.g., arr[0]), slices (e.g., arr[:5]),
and Boolean masks (e.g., arr[arr > 0]). In this section,
we’ll look at another style of array indexing, known as
fancy or vectorized indexing, in which we pass arrays of indices in
place of single scalars. This allows us to very quickly access and
modify complicated subsets of an array’s values.

Exploring Fancy Indexing

Fancy indexing is conceptually simple: it means passing an array of
indices to access multiple array elements at once. For example, consider
the following array:

import numpy as np
rng = np.random.default_rng(seed=1701)

x = rng.integers(100, size=10)
print(x)

[90 40 9 30 80 67 39 15 33 79]

Suppose we want to access three different elements. We could do it like
this:

[x[3], x[7], x[2]]

[30, 15, 9]

Alternatively, we can pass a single list or array of indices to obtain
the same result:

ind = [3, 7, 4]
x[ind]

array([30, 15, 80])

When using arrays of indices, the shape of the result reflects the shape
of the index arrays rather than the shape of the array being
indexed:

ind = np.array([[3, 7],
 [4, 5]])
x[ind]

array([[30, 15],
 [80, 67]])

Fancy indexing also works in multiple dimensions. Consider the following
array:

X = np.arange(12).reshape((3, 4))
X

array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

Like with standard indexing, the first index refers to the row, and the
second to the column:

row = np.array([0, 1, 2])
col = np.array([2, 1, 3])
X[row, col]

array([2, 5, 11])

Notice that the first value in the result is X[0, 2], the second is
X[1, 1], and the third is X[2, 3]. The pairing of indices in fancy
indexing follows all the broadcasting rules that were mentioned in
“Computation on Arrays: Broadcasting”. So, for example, if we combine a column vector
and a row vector within the indices, we get a two-dimensional result:

X[row[:, np.newaxis], col]

array([[2, 1, 3],
 [6, 5, 7],
 [10, 9, 11]])

Here, each row value is matched with each column vector, exactly as we
saw in broadcasting of arithmetic operations. For example:

row[:, np.newaxis] * col

array([[0, 0, 0],
 [2, 1, 3],
 [4, 2, 6]])

It is always important to remember with fancy indexing that the return
value reflects the broadcasted shape of the indices, rather than the
shape of the array being indexed.

Combined Indexing

For even more powerful operations, fancy indexing can be combined with
the other indexing schemes we’ve seen:

print(X)

[[0 1 2 3]
 [4 5 6 7]
 [8 9 10 11]]

We can combine fancy and simple indices:

X[2, [2, 0, 1]]

array([10, 8, 9])

We can also combine fancy indexing with slicing:

X[1:, [2, 0, 1]]

array([[6, 4, 5],
 [10, 8, 9]])

And we can combine fancy indexing with masking:

mask = np.array([True, False, True, False])
X[row[:, np.newaxis], mask]

array([[0, 2],
 [4, 6],
 [8, 10]])

All of these indexing options combined lead to a very flexible set of
operations for efficiently accessing and modifying array values.

Example: Selecting Random Points

One common use of fancy indexing is the selection of subsets of rows
from a matrix. For example, we might have an
 N
 by

 D
 matrix representing
 N
 points in

 D
 dimensions, such as the following points drawn from a
two-dimensional normal distribution:

mean = [0, 0]
cov = [[1, 2],
 [2, 5]]
X = rng.multivariate_normal(mean, cov, 100)
X.shape

(100, 2)

Using the plotting tools we will discuss in
[Link to Come],
we can visualize these points as a scatter-plot:

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')

plt.scatter(X[:, 0], X[:, 1]);

[image: output 31 0]
Figure 2-7. Normally distributed points

Let’s use fancy indexing to select 20 random points.
We’ll do this by first choosing 20 random indices with no
repeats, and use these indices to select a portion of the original
array:

indices = np.random.choice(X.shape[0], 20, replace=False)
indices

array([82, 84, 10, 55, 14, 33, 4, 16, 34, 92, 99, 64, 8, 76, 68, 18, 59,
 80, 87, 90])

selection = X[indices] # fancy indexing here
selection.shape

(20, 2)

Now to see which points were selected, let’s over-plot large
circles at the locations of the selected points:

plt.scatter(X[:, 0], X[:, 1], alpha=0.3)
plt.scatter(selection[:, 0], selection[:, 1],
 facecolor='none', edgecolor='black', s=200);

[image: output 36 0]
Figure 2-8. Random selection among points

This sort of strategy is often used to quickly partition datasets, as is
often needed in train/test splitting for validation of statistical
models (see
[Link to Come]), and in sampling approaches to answering
statistical questions.

Modifying Values with Fancy Indexing

Just as fancy indexing can be used to access parts of an array, it can
also be used to modify parts of an array. For example, imagine we have
an array of indices and we’d like to set the corresponding
items in an array to some value:

x = np.arange(10)
i = np.array([2, 1, 8, 4])
x[i] = 99
print(x)

[0 99 99 3 99 5 6 7 99 9]

We can use any assignment-type operator for this. For example:

x[i] -= 10
print(x)

[0 89 89 3 89 5 6 7 89 9]

Notice, though, that repeated indices with these operations can cause
some potentially unexpected results. Consider the following:

x = np.zeros(10)
x[[0, 0]] = [4, 6]
print(x)

[6. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Where did the 4 go? The result of this operation is to first assign
x[0] = 4, followed by x[0] = 6. The result, of course, is that
x[0] contains the value 6.

Fair enough, but consider this operation:

i = [2, 3, 3, 4, 4, 4]
x[i] += 1
x

array([6., 0., 1., 1., 1., 0., 0., 0., 0., 0.])

You might expect that x[3] would contain the value 2, and x[4] would
contain the value 3, as this is how many times each index is repeated.
Why is this not the case? Conceptually, this is because x[i] += 1 is
meant as a shorthand of x[i] = x[i] + 1. x[i] + 1 is evaluated, and
then the result is assigned to the indices in x. With this in mind, it
is not the augmentation that happens multiple times, but the assignment,
which leads to the rather nonintuitive results.

So what if you want the other behavior where the operation is repeated?
For this, you can use the at() method of ufuncs and do the following:

x = np.zeros(10)
np.add.at(x, i, 1)
print(x)

[0. 0. 1. 2. 3. 0. 0. 0. 0. 0.]

The at() method does an in-place application of the given operator at
the specified indices (here, i) with the specified value (here, 1).
Another method that is similar in spirit is the reduceat() method of
ufuncs, which you can read about in the NumPy documentation.

Example: Binning Data

You can use these ideas to efficiently bin data to create a histogram by
hand. For example, imagine we have 1,000 values and would like to
quickly find where they fall within an array of bins. We could compute
it using ufunc.at like this:

rng = np.random.default_rng(seed=1701)
x = rng.normal(size=100)

compute a histogram by hand
bins = np.linspace(-5, 5, 20)
counts = np.zeros_like(bins)

find the appropriate bin for each x
i = np.searchsorted(bins, x)

add 1 to each of these bins
np.add.at(counts, i, 1)

The counts now reflect the number of points within each bin–in other
words, a histogram:

plot the results
plt.plot(bins, counts, drawstyle='steps');

[image: output 52 0]
Figure 2-9. A histogram computed by hand

Of course, it would be silly to have to do this each time you want to
plot a histogram. This is why Matplotlib provides the plt.hist()
routine, which does the same in a single line:

plt.hist(x, bins, histtype='step');

This function will create a nearly identical plot to the one seen here.
To compute the binning, matplotlib uses the np.histogram function,
which does a very similar computation to what we did before.
Let’s compare the two here:

print(f"NumPy histogram ({len(x)} points):")
%timeit counts, edges = np.histogram(x, bins)

print(f"Custom histogram ({len(x)} points):")
%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy histogram (100 points):
33.8 µs ± 311 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Custom histogram (100 points):
17.6 µs ± 113 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Our own one-line algorithm is twice the speed of the optimized algorithm
in NumPy! How can this be? If you dig into the np.histogram source
code (you can do this in IPython by typing np.histogram??),
you’ll see that it’s quite a bit more involved
than the simple search-and-count that we’ve done; this is
because NumPy’s algorithm is more flexible, and particularly
is designed for better performance when the number of data points
becomes large:

x = rng.normal(size=1000000)
print(f"NumPy histogram ({len(x)} points):")
%timeit counts, edges = np.histogram(x, bins)

print(f"Custom histogram ({len(x)} points):")
%timeit np.add.at(counts, np.searchsorted(bins, x), 1)

NumPy histogram (1000000 points):
84.4 ms ± 2.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Custom histogram (1000000 points):
128 ms ± 2.04 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

What this comparison shows is that algorithmic efficiency is almost
never a simple question. An algorithm efficient for large datasets will
not always be the best choice for small datasets, and vice versa (see
02.08-Sorting.ipynb#Aside:-Big-O-Notation[Big-O Notation]). But the
advantage of coding this algorithm yourself is that with an
understanding of these basic methods, you could use these building
blocks to extend this to do some very interesting custom behaviors. A
key to efficiently using Python in data-intensive applications is
knowing about general convenience routines like np.histogram and when
they’re appropriate, but also knowing how to make use of
lower-level functionality when you need more pointed behavior.

Sorting Arrays

Up to this point we have been concerned mainly with tools to access and
operate on array data with NumPy. This section covers algorithms related
to sorting values in NumPy arrays. These algorithms are a favorite topic
in introductory computer science courses: if you’ve ever
taken one, you probably have had dreams (or, depending on your
temperament, nightmares) about insertion sorts, selection sorts,
merge sorts, quick sorts, bubble sorts, and many, many more. All
are means of accomplishing a similar task: sorting the values in a list
or array.

For example, a simple selection sort repeatedly finds the minimum
value from a list, and makes swaps until the list is sorted. We can code
this in just a few lines of Python:

import numpy as np

def selection_sort(x):
 for i in range(len(x)):
 swap = i + np.argmin(x[i:])
 (x[i], x[swap]) = (x[swap], x[i])
 return x

x = np.array([2, 1, 4, 3, 5])
selection_sort(x)

array([1, 2, 3, 4, 5])

As any first-year computer science major will tell you, the selection
sort is useful for its simplicity, but is much too slow to be useful for
larger arrays. For a list of
 N
 values, it requires

 N
 loops, each of which does on order

 ∼
 N

comparisons to find the swap value. In terms of the “big-O” notation
often used to characterize these algorithms (see
#Aside:-Big-O-Notation[Big-O Notation]), selection sort averages

 𝒪
 [
 N 2
]

: if you double the number of items in the
list, the execution time will go up by about a factor of four.

Even selection sort, though, is much better than my all-time favorite
sorting algorithms, the bogosort:

def bogosort(x):
 while np.any(x[:-1] > x[1:]):
 np.random.shuffle(x)
 return x

x = np.array([2, 1, 4, 3, 5])
bogosort(x)

array([1, 2, 3, 4, 5])

This silly sorting method relies on pure chance: it repeatedly applies a
random shuffling of the array until the result happens to be sorted.
With an average scaling of

 𝒪
 [
 N
 ×
 N
 !
]

,
(that’s N times N factorial) this should–quite
obviously–never be used for any real computation.

Fortunately, Python contains built-in sorting algorithms that are much
more efficient than either of the simplistic algorithms just shown.
We’ll start by looking at the Python built-ins, and then
take a look at the routines included in NumPy and optimized for NumPy
arrays.

Fast Sorting in NumPy: np.sort and np.argsort

Although Python has built-in sort and sorted functions to work with
lists, we won’t discuss them here because
NumPy’s np.sort function turns out to be much more
efficient and useful for our purposes. By default np.sort uses an

 𝒪
 [
 N
 log
 N
]

, quicksort algorithm, though
mergesort and heapsort are also available. For most applications,
the default quicksort is more than sufficient.

To return a sorted version of the array without modifying the input, you
can use np.sort:

x = np.array([2, 1, 4, 3, 5])
np.sort(x)

array([1, 2, 3, 4, 5])

If you prefer to sort the array in-place, you can instead use the sort
method of arrays:

x.sort()
print(x)

[1 2 3 4 5]

A related function is argsort, which instead returns the indices of
the sorted elements:

x = np.array([2, 1, 4, 3, 5])
i = np.argsort(x)
print(i)

[1 0 3 2 4]

The first element of this result gives the index of the smallest
element, the second value gives the index of the second smallest, and so
on. These indices can then be used (via fancy indexing) to construct the
sorted array if desired:

x[i]

array([1, 2, 3, 4, 5])

Sorting along rows or columns

A useful feature of NumPy’s sorting algorithms is the
ability to sort along specific rows or columns of a multidimensional
array using the axis argument. For example:

rng = np.random.default_rng(seed=42)
X = rng.integers(0, 10, (4, 6))
print(X)

[[0 7 6 4 4 8]
 [0 6 2 0 5 9]
 [7 7 7 7 5 1]
 [8 4 5 3 1 9]]

sort each column of X
np.sort(X, axis=0)

array([[0, 4, 2, 0, 1, 1],
 [0, 6, 5, 3, 4, 8],
 [7, 7, 6, 4, 5, 9],
 [8, 7, 7, 7, 5, 9]])

sort each row of X
np.sort(X, axis=1)

array([[0, 4, 4, 6, 7, 8],
 [0, 0, 2, 5, 6, 9],
 [1, 5, 7, 7, 7, 7],
 [1, 3, 4, 5, 8, 9]])

Keep in mind that this treats each row or column as an independent
array, and any relationships between the row or column values will be
lost!

Partial Sorts: Partitioning

Sometimes we’re not interested in sorting the entire array,
but simply want to find the k smallest values in the array. NumPy
provides this in the np.partition function. np.partition takes an
array and a number K; the result is a new array with the smallest K
values to the left of the partition, and the remaining values to the
right, in arbitrary order:

x = np.array([7, 2, 3, 1, 6, 5, 4])
np.partition(x, 3)

array([2, 1, 3, 4, 6, 5, 7])

Notice that the first three values in the resulting array are the three
smallest in the array, and the remaining array positions contain the
remaining values. Within the two partitions, the elements have arbitrary
order.

Similarly to sorting, we can partition along an arbitrary axis of a
multidimensional array:

np.partition(X, 2, axis=1)

array([[0, 4, 4, 7, 6, 8],
 [0, 0, 2, 6, 5, 9],
 [1, 5, 7, 7, 7, 7],
 [1, 3, 4, 5, 8, 9]])

The result is an array where the first two slots in each row contain the
smallest values from that row, with the remaining values filling the
remaining slots.

Finally, just as there is a np.argsort that computes indices of the
sort, there is a np.argpartition that computes indices of the
partition. We’ll see this in action in the following
section.

Example: k-Nearest Neighbors

Let’s quickly see how we might use this argsort function
along multiple axes to find the nearest neighbors of each point in a
set. We’ll start by creating a random set of 10 points on a
two-dimensional plane. Using the standard convention, we’ll
arrange these in a

 10
 ×
 2

 array:

X = rng.random((10, 2))

To get an idea of how these points look, let’s quickly
scatter plot them:

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
plt.scatter(X[:, 0], X[:, 1], s=100);

[image: output 30 0]
Figure 2-10. Visualization of points in the k-neighbors example

Now we’ll compute the distance between each pair of points.
Recall that the squared-distance between two points is the sum of the
squared differences in each dimension; using the efficient broadcasting
(“Computation on Arrays: Broadcasting”) and aggregation
(“Aggregations: Min, Max, and Everything In Between”) routines provided by NumPy we can
compute the matrix of square distances in a single line of code:

dist_sq = np.sum((X[:, np.newaxis] - X[np.newaxis, :]) ** 2, axis=-1)

This operation has a lot packed into it, and it might be a bit confusing
if you’re unfamiliar with NumPy’s broadcasting
rules. When you come across code like this, it can be useful to break it
down into its component steps:

for each pair of points, compute differences in their coordinates
differences = X[:, np.newaxis] - X[np.newaxis, :]
differences.shape

(10, 10, 2)

square the coordinate differences
sq_differences = differences ** 2
sq_differences.shape

(10, 10, 2)

sum the coordinate differences to get the squared distance
dist_sq = sq_differences.sum(-1)
dist_sq.shape

(10, 10)

As a quick check of our logic, we should see that the diagonal of this
matrix (i.e., the set of distances between each point and itself) is all
zero:

dist_sq.diagonal()

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

With the pairwise square-distances converted, we can now use
np.argsort to sort along each row. The leftmost columns will then give
the indices of the nearest neighbors:

nearest = np.argsort(dist_sq, axis=1)
print(nearest)

[[0 9 3 5 4 8 1 6 2 7]
 [1 7 2 6 4 8 3 0 9 5]
 [2 7 1 6 4 3 8 0 9 5]
 [3 0 4 5 9 6 1 2 8 7]
 [4 6 3 1 2 7 0 5 9 8]
 [5 9 3 0 4 6 8 1 2 7]
 [6 4 2 1 7 3 0 5 9 8]
 [7 2 1 6 4 3 8 0 9 5]
 [8 0 1 9 3 4 7 2 6 5]
 [9 0 5 3 4 8 6 1 2 7]]

Notice that the first column gives the numbers 0 through 9 in order:
this is due to the fact that each point’s closest neighbor
is itself, as we would expect.

By using a full sort here, we’ve actually done more work
than we need to in this case. If we’re simply interested in
the nearest
 k
 neighbors, all we need is to partition each
row so that the smallest

 k
 +
 1

 squared distances come
first, with larger distances filling the remaining positions of the
array. We can do this with the np.argpartition function:

K = 2
nearest_partition = np.argpartition(dist_sq, K + 1, axis=1)

In order to visualize this network of neighbors, let’s
quickly plot the points along with lines representing the connections
from each point to its two nearest neighbors:

plt.scatter(X[:, 0], X[:, 1], s=100)

draw lines from each point to its two nearest neighbors
K = 2

for i in range(X.shape[0]):
 for j in nearest_partition[i, :K+1]:
 # plot a line from X[i] to X[j]
 # use some zip magic to make it happen:
 plt.plot(*zip(X[j], X[i]), color='black')

[image: output 44 0]
Figure 2-11. Visualization of the neighbors of each point

Each point in the plot has lines drawn to its two nearest neighbors. At
first glance, it might seem strange that some of the points have more
than two lines coming out of them: this is due to the fact that if point
A is one of the two nearest neighbors of point B, this does not
necessarily imply that point B is one of the two nearest neighbors of
point A.

Although the broadcasting and row-wise sorting of this approach might
seem less straightforward than writing a loop, it turns out to be a very
efficient way of operating on this data in Python. You might be tempted
to do the same type of operation by manually looping through the data
and sorting each set of neighbors individually, but this would almost
certainly lead to a slower algorithm than the vectorized version we
used. The beauty of this approach is that it’s written in a
way that’s agnostic to the size of the input data: we could
just as easily compute the neighbors among 100 or 1,000,000 points in
any number of dimensions, and the code would look the same.

Finally, I’ll note that when doing very large nearest
neighbor searches, there are tree-based and/or approximate algorithms
that can scale as

 𝒪
 [
 N
 log
 N
]

 or better rather
than the

 𝒪
 [
 N 2
]

 of the brute-force algorithm.
One example of this is the KD-Tree,
implemented
in Scikit-learn.

Aside: Big-O Notation

Big-O notation is a means of describing how the number of operations
required for an algorithm scales as the input grows in size. To use it
correctly is to dive deeply into the realm of computer science theory,
and to carefully distinguish it from the related small-o notation,
big-
 θ
 notation, big-
 Ω
 notation,
and probably many mutant hybrids thereof. While these distinctions add
precision to statements about algorithmic scaling, outside computer
science theory exams and the remarks of pedantic blog commenters,
you’ll rarely see such distinctions made in practice. Far
more common in the data science world is a less rigid use of big-O
notation: as a general (if imprecise) description of the scaling of an
algorithm. With apologies to theorists and pedants, this is the
interpretation we’ll use throughout this book.

Big-O notation, in this loose sense, tells you how much time your
algorithm will take as you increase the amount of data. If you have an

 𝒪
 [
 N
]

 (read “order
 N
“) algorithm
that takes 1 second to operate on a list of length N=1,000, then you
should expect it to take roughly 5 seconds for a list of length
N=5,000. If you have an

 𝒪
 [
 N 2
]

 (read “order
N squared”) algorithm that takes 1 second for N=1000, then you
should expect it to take about 25 seconds for N=5000.

For our purposes, the N will usually indicate some aspect of the size
of the dataset (the number of points, the number of dimensions, etc.).
When trying to analyze billions or trillions of samples, the difference
between

 𝒪
 [
 N
]

 and

 𝒪
 [
 N 2
]

can make or break your analysis!

Notice that the big-O notation by itself tells you nothing about the
actual wall-clock time of a computation, but only about its scaling as
you change N. Generally, for example, an

 𝒪
 [
 N
]

algorithm is considered to have better scaling than an

 𝒪
 [
 N 2
]

 algorithm, and for good reason. But for
small datasets in particular, the algorithm with better scaling might
not be faster. For example, in a given problem an

 𝒪
 [
 N 2
]

 algorithm might take 0.01 seconds, while
a “better”

 𝒪
 [
 N
]

 algorithm might take 1 second.
Scale up N by a factor of 1,000, though, and the

 𝒪
 [
 N
]

 algorithm will win out.

Structured Data: NumPy’s Structured Arrays

While often our data can be well represented by a homogeneous array of
values, sometimes this is not the case. This section demonstrates the
use of NumPy’s structured arrays and record arrays,
which provide efficient storage for compound, heterogeneous data. While
the patterns shown here are useful for simple operations, scenarios like
this often lend themselves to the use of Pandas `Dataframe`s, which
we’ll explore in
Chapter 3.

import numpy as np

Imagine that we have several categories of data on a number of people
(say, name, age, and weight), and we’d like to store these
values for use in a Python program. It would be possible to store these
in three separate arrays:

name = ['Alice', 'Bob', 'Cathy', 'Doug']
age = [25, 45, 37, 19]
weight = [55.0, 85.5, 68.0, 61.5]

But this is a bit clumsy. There’s nothing here that tells us
that the three arrays are related; NumPy’s structured arrays
allow us to do this more naturally by using a single structure to store
all of this data.

Recall that previously we created a simple array using an expression
like this:

x = np.zeros(4, dtype=int)

We can similarly create a structured array using a compound data type
specification:

Use a compound data type for structured arrays
data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),
 'formats':('U10', 'i4', 'f8')})
print(data.dtype)

[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]

Here 'U10' translates to “Unicode string of
maximum length 10,” 'i4' translates to
“4-byte (i.e., 32 bit) integer,” and 'f8'
translates to “8-byte (i.e., 64 bit) float.” We’ll discuss
other options for these type codes in the following section.

Now that we’ve created an empty container array, we can fill
the array with our lists of values:

data['name'] = name
data['age'] = age
data['weight'] = weight
print(data)

[('Alice', 25, 55.) ('Bob', 45, 85.5) ('Cathy', 37, 68.)
 ('Doug', 19, 61.5)]

As we had hoped, the data is now conveniently arranged in one structured
array.

The handy thing with structured arrays is that you can now refer to
values either by index or by name:

Get all names
data['name']

array(['Alice', 'Bob', 'Cathy', 'Doug'], dtype='<U10')

Get first row of data
data[0]

('Alice', 25, 55.)

Get the name from the last row
data[-1]['name']

'Doug'

Using Boolean masking, this even allows you to do some more
sophisticated operations such as filtering on age:

Get names where age is under 30
data[data['age'] < 30]['name']

array(['Alice', 'Doug'], dtype='<U10')

If you’d like to do any operations that are any more
complicated than these, you should probably consider the Pandas package,
covered in the next chapter. As we’ll see, Pandas provides a
Dataframe object, which is a structure built on NumPy arrays that
offers a variety of useful data manipulation functionality similar to
what we’ve shown here, as well as much, much more.

Exploring Structured Array Creation

Structured array data types can be specified in a number of ways.
Earlier, we saw the dictionary method:

np.dtype({'names':('name', 'age', 'weight'),
 'formats':('U10', 'i4', 'f8')})

dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')])

For clarity, numerical types can be specified using Python types or
NumPy `dtype`s instead:

np.dtype({'names':('name', 'age', 'weight'),
 'formats':((np.str_, 10), int, np.float32)})

dtype([('name', '<U10'), ('age', '<i8'), ('weight', '<f4')])

A compound type can also be specified as a list of tuples:

np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')])

dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')])

If the names of the types do not matter to you, you can specify the
types alone in a comma-separated string:

np.dtype('S10,i4,f8')

dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')])

The shortened string format codes may not be immediately intuitive, but
they are built on simple principles. The first (optional) character is
< or >, means “little endian” or “big endian,” respectively, and
specifies the ordering convention for significant bits. The next
character specifies the type of data: characters, bytes, ints, floating
points, and so on (see the table below). The last character or
characters represents the size of the object in bytes.

	Character
	Description
	Example

	'b'

	Byte

	np.dtype('b')

	'i'

	Signed integer

	np.dtype('i4') == np.int32

	'u'

	Unsigned integer

	np.dtype('u1') == np.uint8

	'f'

	Floating point

	np.dtype('f8') == np.int64

	'c'

	Complex floating point

	np.dtype('c16') == np.complex128

	'S', 'a'

	String

	np.dtype('S5')

	'U'

	Unicode string

	np.dtype('U') == np.str_

	'V'

	Raw data (void)

	np.dtype('V') == np.void

More Advanced Compound Types

It is possible to define even more advanced compound types. For example,
you can create a type where each element contains an array or matrix of
values. Here, we’ll create a data type with a mat
component consisting of a

 3
 ×
 3

 floating-point matrix:

tp = np.dtype([('id', 'i8'), ('mat', 'f8', (3, 3))])
X = np.zeros(1, dtype=tp)
print(X[0])
print(X['mat'][0])

(0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]

Now each element in the X array consists of an id and a

 3
 ×
 3

 matrix. Why would you use this rather than a
simple multidimensional array, or perhaps a Python dictionary? One
reason is that this NumPy dtype directly maps onto a C structure
definition, so the buffer containing the array content can be accessed
directly within an appropriately written C program. If you find yourself
writing a Python interface to a legacy C or Fortran library that
manipulates structured data, structured arrays can provide a powerful
interface.

RecordArrays: Structured Arrays with a Twist

NumPy also provides the np.recarray class, which is almost identical
to the structured arrays just described, but with one additional
feature: fields can be accessed as attributes rather than as dictionary
keys. Recall that we previously accessed the ages by writing:

data['age']

array([25, 45, 37, 19], dtype=int32)

If we view our data as a record array instead, we can access this with
slightly fewer keystrokes:

data_rec = data.view(np.recarray)
data_rec.age

array([25, 45, 37, 19], dtype=int32)

The downside is that for record arrays, there is some extra overhead
involved in accessing the fields, even when using the same syntax:

%timeit data['age']
%timeit data_rec['age']
%timeit data_rec.age

121 ns ± 1.4 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
2.41 µs ± 15.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
3.98 µs ± 20.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Whether the more convenient notation is worth the (slight) overhead will
depend on your own application.

On to Pandas

This section on structured and record arrays is purposely at the end of
this chapter, because it leads so well into the next package we will
cover: the Pandas package. Structured arrays like the ones discussed
here are good to know about for certain situations, especially in case
you’re using NumPy arrays to map onto binary data formats in
C, Fortran, or another language. For day-to-day use of structured data,
the Pandas package is a much better choice, and we’ll dive
into a full discussion of it in the chapter that follows.

Chapter 3. Data Manipulation with Pandas

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. You can find preliminary code and notebook files on GitHub.

If you have comments about how we might improve
the content and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at jleonard@oreilly.com.

In the previous chapter, we dove into detail on NumPy and its ndarray
object, which provides efficient storage and manipulation of dense typed
arrays in Python. Here we’ll build on this knowledge by
looking in detail at the data structures provided by the Pandas library.
Pandas is a newer package built on top of NumPy, and provides an
efficient implementation of a DataFrame. `DataFrame`s are essentially
multidimensional arrays with attached row and column labels, and often
with heterogeneous types and/or missing data. As well as offering a
convenient storage interface for labeled data, Pandas implements a
number of powerful data operations familiar to users of both database
frameworks and spreadsheet programs.

As we saw, NumPy’s ndarray data structure provides
essential features for the type of clean, well-organized data typically
seen in numerical computing tasks. While it serves this purpose very
well, its limitations become clear when we need more flexibility (e.g.,
attaching labels to data, working with missing data, etc.) and when
attempting operations that do not map well to element-wise broadcasting
(e.g., groupings, pivots, etc.), each of which is an important piece of
analyzing the less structured data available in many forms in the world
around us. Pandas, and in particular its Series and DataFrame
objects, builds on the NumPy array structure and provides efficient
access to these sorts of “data munging” tasks that occupy much of a
data scientist’s time.

In this chapter, we will focus on the mechanics of using Series,
DataFrame, and related structures effectively. We will use examples
drawn from real datasets where appropriate, but these examples are not
necessarily the focus.

Installing and Using Pandas

Installation of Pandas on your system requires NumPy to be installed,
and if building the library from source, requires the appropriate tools
to compile the C and Cython sources on which Pandas is built. Details on
this installation can be found in the Pandas
documentation. If you followed the advice outlined in the
Preface and used the Anaconda stack, you
already have Pandas installed.

Once Pandas is installed, you can import it and check the version:

import pandas
pandas.__version__

'1.3.5'

Just as we generally import NumPy under the alias np, we will import
Pandas under the alias pd:

import pandas as pd

This import convention will be used throughout the remainder of this
book.

Reminder about Built-In Documentation

As you read through this chapter, don’t forget that IPython
gives you the ability to quickly explore the contents of a package (by
using the tab-completion feature) as well as the documentation of
various functions (using the ? character). (Refer back to
“Help and Documentation in IPython” if you need a refresher on this.)

For example, to display all the contents of the pandas namespace, you
can type

In [3]: pd.<TAB>

And to display Pandas’s built-in documentation, you can use
this:

In [4]: pd?

More detailed documentation, along with tutorials and other resources,
can be found at http://pandas.pydata.org/.

Introducing Pandas Objects

At the very basic level, Pandas objects can be thought of as enhanced
versions of NumPy structured arrays in which the rows and columns are
identified with labels rather than simple integer indices. As we will
see during the course of this chapter, Pandas provides a host of useful
tools, methods, and functionality on top of the basic data structures,
but nearly everything that follows will require an understanding of what
these structures are. Thus, before we go any further, let’s
introduce these three fundamental Pandas data structures: the Series,
DataFrame, and Index.

We will start our code sessions with the standard NumPy and Pandas
imports:

import numpy as np
import pandas as pd

The Pandas Series Object

A Pandas Series is a one-dimensional array of indexed data. It can be
created from a list or array as follows:

data = pd.Series([0.25, 0.5, 0.75, 1.0])
data

0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64

The Series combines a sequence of values with an explicit sequence of
indices, which we can access with the values and index attributes.
The values are simply a familiar NumPy array:

data.values

array([0.25, 0.5 , 0.75, 1.])

The index is an array-like object of type pd.Index, which
we’ll discuss in more detail momentarily.

data.index

RangeIndex(start=0, stop=4, step=1)

Like with a NumPy array, data can be accessed by the associated index
via the familiar Python square-bracket notation:

data[1]

0.5

data[1:3]

1 0.50
2 0.75
dtype: float64

As we will see, though, the Pandas Series is much more general and
flexible than the one-dimensional NumPy array that it emulates.

Series as generalized NumPy array

From what we’ve seen so far, the Series object may appear
to be basically interchangeable with a one-dimensional NumPy array. The
essential difference is that while the Numpy Array has an implicitly
defined integer index used to access the values, the Pandas Series
has an explicitly defined index associated with the values.

This explicit index definition gives the Series object additional
capabilities. For example, the index need not be an integer, but can
consist of values of any desired type. For example, if we wish, we can
use strings as an index:

data = pd.Series([0.25, 0.5, 0.75, 1.0],
 index=['a', 'b', 'c', 'd'])
data

a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64

And the item access works as expected:

data['b']

0.5

We can even use non-contiguous or non-sequential indices:

data = pd.Series([0.25, 0.5, 0.75, 1.0],
 index=[2, 5, 3, 7])
data

2 0.25
5 0.50
3 0.75
7 1.00
dtype: float64

data[5]

0.5

Series as specialized dictionary

In this way, you can think of a Pandas Series a bit like a
specialization of a Python dictionary. A dictionary is a structure that
maps arbitrary keys to a set of arbitrary values, and a Series is a
structure which maps typed keys to a set of typed values. This typing is
important: just as the type-specific compiled code behind a NumPy array
makes it more efficient than a Python list for certain operations, the
type information of a Pandas Series makes it more efficient than
Python dictionaries for certain operations.

The Series-as-dictionary analogy can be made even more clear by
constructing a Series object directly from a Python dictionary, here
the five most populous US states according to the 2020 census:

population_dict = {'California': 39538223, 'Texas': 29145505,
 'Florida': 21538187, 'New York': 20201249,
 'Pennsylvania': 13002700}
population = pd.Series(population_dict)
population

California 39538223
Texas 29145505
Florida 21538187
New York 20201249
Pennsylvania 13002700
dtype: int64

From here, typical dictionary-style item access can be performed:

population['California']

39538223

Unlike a dictionary, though, the Series also supports array-style
operations such as slicing:

population['California':'Florida']

California 39538223
Texas 29145505
Florida 21538187
dtype: int64

We’ll discuss some of the quirks of Pandas indexing and
slicing in “Data Indexing and Selection”.

Constructing Series objects

We’ve already seen a few ways of constructing a Pandas
Series from scratch; all of them are some version of the following:

pd.Series(data, index=index)

where index is an optional argument, and data can be one of many
entities.

For example, data can be a list or NumPy array, in which case index
defaults to an integer sequence:

pd.Series([2, 4, 6])

0 2
1 4
2 6
dtype: int64

data can be a scalar, which is repeated to fill the specified index:

pd.Series(5, index=[100, 200, 300])

100 5
200 5
300 5
dtype: int64

data can be a dictionary, in which index defaults to the dictionary
keys:

pd.Series({2:'a', 1:'b', 3:'c'})

2 a
1 b
3 c
dtype: object

In each case, the index can be explicitly set to control the order or
the subset of keys used:

pd.Series({2:'a', 1:'b', 3:'c'}, index=[1, 2])

1 b
2 a
dtype: object

The Pandas DataFrame Object

The next fundamental structure in Pandas is the DataFrame. Like the
Series object discussed in the previous section, the DataFrame can
be thought of either as a generalization of a NumPy array, or as a
specialization of a Python dictionary. We’ll now take a look
at each of these perspectives.

DataFrame as a generalized NumPy array

If a Series is an analog of a one-dimensional array with explicit
indices, a DataFrame is an analog of a two-dimensional array with
explicit row and column indices. Just as you might think of a
two-dimensional array as an ordered sequence of aligned one-dimensional
columns, you can think of a DataFrame as a sequence of aligned
Series objects. Here, by “aligned” we mean that they share the same
index.

To demonstrate this, let’s first construct a new Series
listing the area of each of the five states discussed in the previous
section (in square kilometers):

area_dict = {'California': 423967, 'Texas': 695662, 'Florida': 170312,
 'New York': 141297, 'Pennsylvania': 119280}
area = pd.Series(area_dict)
area

California 423967
Texas 695662
Florida 170312
New York 141297
Pennsylvania 119280
dtype: int64

Now that we have this along with the population Series from before, we
can use a dictionary to construct a single two-dimensional object
containing this information:

states = pd.DataFrame({'population': population,
 'area': area})
states

 	
 	population
 	area

 	California
 	39538223
 	423967

 	Texas
 	29145505
 	695662

 	Florida
 	21538187
 	170312

 	New York
 	20201249
 	141297

 	Pennsylvania
 	13002700
 	119280

Like the Series object, the DataFrame has an index attribute that
gives access to the index labels:

states.index

Index(['California', 'Texas', 'Florida', 'New York', 'Pennsylvania'],
 > dtype='object')

Additionally, the DataFrame has a columns attribute, which is an
Index object holding the column labels:

states.columns

Index(['population', 'area'], dtype='object')

Thus the DataFrame can be thought of as a generalization of a
two-dimensional NumPy array, where both the rows and columns have a
generalized index for accessing the data.

DataFrame as specialized dictionary

Similarly, we can also think of a DataFrame as a specialization of a
dictionary. Where a dictionary maps a key to a value, a DataFrame maps
a column name to a Series of column data. For example, asking for the
'area' attribute returns the Series object
containing the areas we saw earlier:

states['area']

California 423967
Texas 695662
Florida 170312
New York 141297
Pennsylvania 119280
Name: area, dtype: int64

Notice the potential point of confusion here: in a two-dimesnional NumPy
array, data[0] will return the first row. For a DataFrame,
data['col0'] will return the first column.
Because of this, it is probably better to think about `DataFrame`s as
generalized dictionaries rather than generalized arrays, though both
ways of looking at the situation can be useful. We’ll
explore more flexible means of indexing `DataFrame`s in
“Data Indexing and Selection”.

Constructing DataFrame objects

A Pandas DataFrame can be constructed in a variety of ways. Here
we’ll give several examples.

From a single Series object

A DataFrame is a collection of Series objects, and a single-column
DataFrame can be constructed from a single Series:

pd.DataFrame(population, columns=['population'])

 	
 	population

 	California
 	39538223

 	Texas
 	29145505

 	Florida
 	21538187

 	New York
 	20201249

 	Pennsylvania
 	13002700

From a list of dicts

Any list of dictionaries can be made into a DataFrame.
We’ll use a simple list comprehension to create some data:

data = [{'a': i, 'b': 2 * i}
 for i in range(3)]
pd.DataFrame(data)

 	
 	a
 	b

 	0
 	0
 	0

 	1
 	1
 	2

 	2
 	2
 	4

Even if some keys in the dictionary are missing, Pandas will fill them
in with NaN (i.e., “not a number”) values:

pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])

 	
 	a
 	b
 	c

 	0
 	1.0
 	2
 	NaN

 	1
 	NaN
 	3
 	4.0

From a dictionary of Series objects

As we saw before, a DataFrame can be constructed from a dictionary of
Series objects as well:

pd.DataFrame({'population': population,
 'area': area})

 	
 	population
 	area

 	California
 	39538223
 	423967

 	Texas
 	29145505
 	695662

 	Florida
 	21538187
 	170312

 	New York
 	20201249
 	141297

 	Pennsylvania
 	13002700
 	119280

From a two-dimensional NumPy array

Given a two-dimensional array of data, we can create a DataFrame with
any specified column and index names. If omitted, an integer index will
be used for each:

pd.DataFrame(np.random.rand(3, 2),
 columns=['foo', 'bar'],
 index=['a', 'b', 'c'])

 	
 	foo
 	bar

 	a
 	0.471098
 	0.317396

 	b
 	0.614766
 	0.305971

 	c
 	0.533596
 	0.512377

From a NumPy structured array

We covered structured arrays in
“Structured Data: NumPy’s Structured Arrays”. A Pandas DataFrame operates
much like a structured array, and can be created directly from one:

A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')])
A

array([(0, 0.), (0, 0.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])

pd.DataFrame(A)

 	
 	A
 	B

 	0
 	0
 	0.0

 	1
 	0
 	0.0

 	2
 	0
 	0.0

The Pandas Index Object

We have seen here that both the Series and DataFrame objects contain
an explicit index that lets you reference and modify data. This
Index object is an interesting structure in itself, and it can be
thought of either as an immutable array or as an ordered set
(technically a multi-set, as Index objects may contain repeated
values). Those views have some interesting consequences in the
operations available on Index objects. As a simple example,
let’s construct an Index from a list of integers:

ind = pd.Index([2, 3, 5, 7, 11])
ind

Int64Index([2, 3, 5, 7, 11], dtype='int64')

Index as immutable array

The Index in many ways operates like an array. For example, we can use
standard Python indexing notation to retrieve values or slices:

ind[1]

3

ind[::2]

Int64Index([2, 5, 11], dtype='int64')

Index objects also have many of the attributes familiar from NumPy
arrays:

print(ind.size, ind.shape, ind.ndim, ind.dtype)

5 (5,) 1 int64

One difference between Index objects and NumPy arrays is that indices
are immutable–that is, they cannot be modified via the normal means:

ind[1] = 0

 TypeError: Index does not support mutable operations

This immutability makes it safer to share indices between multiple
`DataFrame`s and arrays, without the potential for side effects from
inadvertent index modification.

Index as ordered set

Pandas objects are designed to facilitate operations such as joins
across datasets, which depend on many aspects of set arithmetic. The
Index object follows many of the conventions used by
Python’s built-in set data structure, so that unions,
intersections, differences, and other combinations can be computed in a
familiar way:

indA = pd.Index([1, 3, 5, 7, 9])
indB = pd.Index([2, 3, 5, 7, 11])

indA.intersection(indB)

Int64Index([3, 5, 7], dtype='int64')

indA.union(indB)

Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64')

indA.symmetric_difference(indB)

Int64Index([1, 2, 9, 11], dtype='int64')

Data Indexing and Selection

In Chapter 2, we looked in
detail at methods and tools to access, set, and modify values in NumPy
arrays. These included indexing (e.g., arr[2, 1]), slicing (e.g.,
arr[:, 1:5]), masking (e.g., arr[arr > 0]), fancy indexing (e.g.,
arr[0, [1, 5]]), and combinations thereof (e.g., arr[:, [1, 5]]).
Here we’ll look at similar means of accessing and modifying
values in Pandas Series and DataFrame objects. If you have used the
NumPy patterns, the corresponding patterns in Pandas will feel very
familiar, though there are a few quirks to be aware of.

We’ll start with the simple case of the one-dimensional
Series object, and then move on to the more complicated
two-dimesnional DataFrame object.

Data Selection in Series

As we saw in the previous section, a Series object acts in many ways
like a one-dimensional NumPy array, and in many ways like a standard
Python dictionary. If we keep these two overlapping analogies in mind,
it will help us to understand the patterns of data indexing and
selection in these arrays.

Series as dictionary

Like a dictionary, the Series object provides a mapping from a
collection of keys to a collection of values:

import pandas as pd
data = pd.Series([0.25, 0.5, 0.75, 1.0],
 index=['a', 'b', 'c', 'd'])
data

a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64

data['b']

0.5

We can also use dictionary-like Python expressions and methods to
examine the keys/indices and values:

'a' in data

True

data.keys()

Index(['a', 'b', 'c', 'd'], dtype='object')

list(data.items())

[('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]

Series objects can also be modified with a dictionary-like syntax.
Just as you can extend a dictionary by assigning to a new key, you can
extend a Series by assigning to a new index value:

data['e'] = 1.25
data

a 0.25
b 0.50
c 0.75
d 1.00
e 1.25
dtype: float64

This easy mutability of the objects is a convenient feature: under the
hood, Pandas is making decisions about memory layout and data copying
that might need to take place; the user generally does not need to worry
about these issues.

Series as one-dimensional array

A Series builds on this dictionary-like interface and provides
array-style item selection via the same basic mechanisms as NumPy arrays
– that is, slices, masking, and fancy indexing. Examples of these
are as follows:

slicing by explicit index
data['a':'c']

a 0.25
b 0.50
c 0.75
dtype: float64

slicing by implicit integer index
data[0:2]

a 0.25
b 0.50
dtype: float64

masking
data[(data > 0.3) & (data < 0.8)]

b 0.50
c 0.75
dtype: float64

fancy indexing
data[['a', 'e']]

a 0.25
e 1.25
dtype: float64

Among these, slicing may be the source of the most confusion. Notice
that when slicing with an explicit index (i.e.,
data['a':'c']), the
final index is included in the slice, while when slicing with an
implicit index (i.e., data[0:2]), the final index is excluded from
the slice.

Indexers: loc and iloc

These slicing and indexing conventions can be a source of confusion. For
example, if your Series has an explicit integer index, an indexing
operation such as data[1] will use the explicit indices, while a
slicing operation like data[1:3] will use the implicit Python-style
index.

data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
data

1 a
3 b
5 c
dtype: object

explicit index when indexing
data[1]

'a'

implicit index when slicing
data[1:3]

3 b
5 c
dtype: object

Because of this potential confusion in the case of integer indexes,
Pandas provides some special indexer attributes that explicitly expose
certain indexing schemes. These are not functional methods, but
attributes that expose a particular slicing interface to the data in the
Series.

First, the loc attribute allows indexing and slicing that always
references the explicit index:

data.loc[1]

'a'

data.loc[1:3]

1 a
3 b
dtype: object

The iloc attribute allows indexing and slicing that always references
the implicit Python-style index:

data.iloc[1]

'b'

data.iloc[1:3]

3 b
5 c
dtype: object

One guiding principle of Python code is that “explicit is better than
implicit.” The explicit nature of loc and iloc make them very in
maintaining clean and readable code; especially in the case of integer
indexes, using them consistently can prevent subtle bugs due to the
mixed indexing/slicing convention.

Data Selection in DataFrame

Recall that a DataFrame acts in many ways like a two-dimensional or
structured array, and in other ways like a dictionary of Series
structures sharing the same index. These analogies can be helpful to
keep in mind as we explore data selection within this structure.

DataFrame as a dictionary

The first analogy we will consider is the DataFrame as a dictionary of
related Series objects. Let’s return to our example of
areas and populations of states:

area = pd.Series({'California': 423967, 'Texas': 695662,
 'Florida': 170312, 'New York': 141297,
 'Pennsylvania': 119280})
pop = pd.Series({'California': 39538223, 'Texas': 29145505,
 'Florida': 21538187, 'New York': 20201249,
 'Pennsylvania': 13002700})
data = pd.DataFrame({'area':area, 'pop':pop})
data

 	
 	area
 	pop

 	California
 	423967
 	39538223

 	Texas
 	695662
 	29145505

 	Florida
 	170312
 	21538187

 	New York
 	141297
 	20201249

 	Pennsylvania
 	119280
 	13002700

The individual Series that make up the columns of the DataFrame can
be accessed via dictionary-style indexing of the column name:

data['area']

California 423967
Texas 695662
Florida 170312
New York 141297
Pennsylvania 119280
Name: area, dtype: int64

Equivalently, we can use attribute-style access with column names that
are strings:

data.area

California 423967
Texas 695662
Florida 170312
New York 141297
Pennsylvania 119280
Name: area, dtype: int64

Though this is a useful shorthand, keep in mind that it does not work
for all cases! For example, if the column names are not strings, or if
the column names conflict with methods of the DataFrame, this
attribute-style access is not possible. For example, the DataFrame has
a pop() method, so data.pop will point to this rather than the
"pop" column:

data.pop is data["pop"]

False

In particular, you should avoid the temptation to try column assignment
via attribute (i.e., use data['pop'] = z
rather than data.pop = z).

Like with the Series objects discussed earlier, this dictionary-style
syntax can also be used to modify the object, in this case adding a new
column:

data['density'] = data['pop'] / data['area']
data

 	
 	area
 	pop
 	density

 	California
 	423967
 	39538223
 	93.257784

 	Texas
 	695662
 	29145505
 	41.896072

 	Florida
 	170312
 	21538187
 	126.463121

 	New York
 	141297
 	20201249
 	142.970120

 	Pennsylvania
 	119280
 	13002700
 	109.009893

This shows a preview of the straightforward syntax of element-by-element
arithmetic between Series objects; we’ll dig into this
further in “Operating on Data in Pandas”.

DataFrame as two-dimensional array

As mentioned previously, we can also view the DataFrame as an enhanced
two-dimensional array. We can examine the raw underlying data array
using the values attribute:

data.values

array([[4.23967000e+05, 3.95382230e+07, 9.32577842e+01],
 [6.95662000e+05, 2.91455050e+07, 4.18960717e+01],
 [1.70312000e+05, 2.15381870e+07, 1.26463121e+02],
 [1.41297000e+05, 2.02012490e+07, 1.42970120e+02],
 [1.19280000e+05, 1.30027000e+07, 1.09009893e+02]])

With this picture in mind, many familiar array-like observations can be
done on the DataFrame itself. For example, we can transpose the full
DataFrame to swap rows and columns:

data.T

 	
 	California
 	Texas
 	Florida
 	New York
 	Pennsylvania

 	area
 	4.239670e+05
 	6.956620e+05
 	1.703120e+05
 	1.412970e+05
 	1.192800e+05

 	pop
 	3.953822e+07
 	2.914550e+07
 	2.153819e+07
 	2.020125e+07
 	1.300270e+07

 	density
 	9.325778e+01
 	4.189607e+01
 	1.264631e+02
 	1.429701e+02
 	1.090099e+02

When it comes to indexing of DataFrame objects, however, it is clear
that the dictionary-style indexing of columns precludes our ability to
simply treat it as a NumPy array. In particular, passing a single index
to an array accesses a row:

data.values[0]

array([4.23967000e+05, 3.95382230e+07, 9.32577842e+01])

and passing a single “index” to a DataFrame accesses a column:

data['area']

California 423967
Texas 695662
Florida 170312
New York 141297
Pennsylvania 119280
Name: area, dtype: int64

Thus for array-style indexing, we need another convention. Here Pandas
again uses the loc and iloc indexers mentioned earlier. Using the
iloc indexer, we can index the underlying array as if it is a simple
NumPy array (using the implicit Python-style index), but the DataFrame
index and column labels are maintained in the result:

data.iloc[:3, :2]

 	
 	area
 	pop

 	California
 	423967
 	39538223

 	Texas
 	695662
 	29145505

 	Florida
 	170312
 	21538187

Similarly, using the loc indexer we can index the underlying data in
an array-like style but using the explicit index and column names:

data.loc[:'Florida', :'pop']

 	
 	area
 	pop

 	California
 	423967
 	39538223

 	Texas
 	695662
 	29145505

 	Florida
 	170312
 	21538187

Any of the familiar NumPy-style data access patterns can be used within
these indexers. For example, in the loc indexer we can combine masking
and fancy indexing as in the following:

data.loc[data.density > 120, ['pop', 'density']]

 	
 	pop
 	density

 	Florida
 	21538187
 	126.463121

 	New York
 	20201249
 	142.970120

Any of these indexing conventions may also be used to set or modify
values; this is done in the standard way that you might be accustomed to
from working with NumPy:

data.iloc[0, 2] = 90
data

 	
 	area
 	pop
 	density

 	California
 	423967
 	39538223
 	90.000000

 	Texas
 	695662
 	29145505
 	41.896072

 	Florida
 	170312
 	21538187
 	126.463121

 	New York
 	141297
 	20201249
 	142.970120

 	Pennsylvania
 	119280
 	13002700
 	109.009893

To build up your fluency in Pandas data manipulation, I suggest spending
some time with a simple DataFrame and exploring the types of indexing,
slicing, masking, and fancy indexing that are allowed by these various
indexing approaches.

Additional indexing conventions

There are a couple extra indexing conventions that might seem at odds
with the preceding discussion, but nevertheless can be useful in
practice. First, while indexing refers to columns, slicing refers to
rows:

data['Florida':'New York']

 	
 	area
 	pop
 	density

 	Florida
 	170312
 	21538187
 	126.463121

 	New York
 	141297
 	20201249
 	142.970120

Such slices can also refer to rows by number rather than by index:

data[1:3]

 	
 	area
 	pop
 	density

 	Texas
 	695662
 	29145505
 	41.896072

 	Florida
 	170312
 	21538187
 	126.463121

Similarly, direct masking operations are also interpreted row-wise
rather than column-wise:

data[data.density > 120]

 	
 	area
 	pop
 	density

 	Florida
 	170312
 	21538187
 	126.463121

 	New York
 	141297
 	20201249
 	142.970120

These two conventions are syntactically similar to those on a NumPy
array, and while these may not precisely fit the mold of the Pandas
conventions, they are included due to their practical utility.

Operating on Data in Pandas

One of the strengths of NumPy is the ability to perform quick
element-wise operations, both with basic arithmetic (addition,
subtraction, multiplication, etc.) and with more sophisticated
operations (trigonometric functions, exponential and logarithmic
functions, etc.). Pandas inherits much of this functionality from NumPy,
and the ufuncs that we introduced in
“Computation on NumPy Arrays: Universal Functions” are key to this.

Pandas includes a couple useful twists, however: for unary operations
like negation and trigonometric functions, these ufuncs will preserve
index and column labels in the output, and for binary operations such
as addition and multiplication, Pandas will automatically align
indices when passing the objects to the ufunc. This means that keeping
the context of data and combining data from different sources–both
potentially error-prone tasks with raw NumPy arrays–become essentially
foolproof ones with Pandas. We will additionally see that there are
well-defined operations between one-dimensional Series structures and
two-dimensional DataFrame structures.

Ufuncs: Index Preservation

Because Pandas is designed to work with NumPy, any NumPy ufunc will work
on Pandas Series and DataFrame objects. Let’s start by
defining a simple Series and DataFrame on which to demonstrate this:

import pandas as pd
import numpy as np

rng = np.random.default_rng(42)
ser = pd.Series(rng.integers(0, 10, 4))
ser

0 0
1 7
2 6
3 4
dtype: int64

df = pd.DataFrame(rng.integers(0, 10, (3, 4)),
 columns=['A', 'B', 'C', 'D'])
df

 	
 	A
 	B
 	C
 	D

 	0
 	4
 	8
 	0
 	6

 	1
 	2
 	0
 	5
 	9

 	2
 	7
 	7
 	7
 	7

If we apply a NumPy ufunc on either of these objects, the result will be
another Pandas object with the indices preserved:

np.exp(ser)

0 1.000000
1 1096.633158
2 403.428793
3 54.598150
dtype: float64

This is true also for more involved sequences of operations:

np.sin(df * np.pi / 4)

 	
 	A
 	B
 	C
 	D

 	0
 	1.224647e-16
 	-2.449294e-16
 	0.000000
 	-1.000000

 	1
 	1.000000e+00
 	0.000000e+00
 	-0.707107
 	0.707107

 	2
 	-7.071068e-01
 	-7.071068e-01
 	-0.707107
 	-0.707107

Any of the ufuncs discussed in
“Computation on NumPy Arrays: Universal Functions” can be used in a similar manner.

UFuncs: Index Alignment

For binary operations on two Series or DataFrame objects, Pandas
will align indices in the process of performing the operation. This is
very convenient when working with incomplete data, as we’ll
see in some of the examples that follow.

Index alignment in Series

As an example, suppose we are combining two different data sources, and
find only the top three US states by area and the top three US states
by population:

area = pd.Series({'Alaska': 1723337, 'Texas': 695662,
 'California': 423967}, name='area')
population = pd.Series({'California': 39538223, 'Texas': 29145505,
 'Florida': 21538187}, name='population')

Let’s see what happens when we divide these to compute the
population density:

population / area

Alaska NaN
California 93.257784
Florida NaN
Texas 41.896072
dtype: float64

The resulting array contains the union of indices of the two input
arrays, which could be determined directly from these indices:

area.index.union(population.index)

Index(['Alaska', 'California', 'Florida', 'Texas'], dtype='object')

Any item for which one or the other does not have an entry is marked
with NaN, or “Not a Number,” which is how Pandas marks missing data
(see further discussion of missing data in
“Handling Missing Data”). This index
matching is implemented this way for any of Python’s
built-in arithmetic expressions; any missing values are marked by NaN:

A = pd.Series([2, 4, 6], index=[0, 1, 2])
B = pd.Series([1, 3, 5], index=[1, 2, 3])
A + B

0 NaN
1 5.0
2 9.0
3 NaN
dtype: float64

If using NaN values is not the desired behavior, the fill value can be
modified using appropriate object methods in place of the operators. For
example, calling A.add(B) is equivalent to calling A + B, but allows
optional explicit specification of the fill value for any elements in
A or B that might be missing:

A.add(B, fill_value=0)

0 2.0
1 5.0
2 9.0
3 5.0
dtype: float64

Index alignment in DataFrame

A similar type of alignment takes place for both columns and indices
when performing operations on DataFrame objects:

A = pd.DataFrame(rng.integers(0, 20, (2, 2)),
 columns=['a', 'b'])
A

 	
 	a
 	b

 	0
 	10
 	2

 	1
 	16
 	9

B = pd.DataFrame(rng.integers(0, 10, (3, 3)),
 columns=['b', 'a', 'c'])
B

 	
 	b
 	a
 	c

 	0
 	5
 	3
 	1

 	1
 	9
 	7
 	6

 	2
 	4
 	8
 	5

A + B

 	
 	a
 	b
 	c

 	0
 	13.0
 	7.0
 	NaN

 	1
 	23.0
 	18.0
 	NaN

 	2
 	NaN
 	NaN
 	NaN

Notice that indices are aligned correctly irrespective of their order in
the two objects, and indices in the result are sorted. As was the case
with Series, we can use the associated object’s arithmetic
method and pass any desired fill_value to be used in place of missing
entries. Here we’ll fill with the mean of all values in A:

A.add(B, fill_value=A.values.mean())

 	
 	a
 	b
 	c

 	0
 	13.00
 	7.00
 	10.25

 	1
 	23.00
 	18.00
 	15.25

 	2
 	17.25
 	13.25
 	14.25

The following table lists Python operators and their equivalent Pandas
object methods:

	Python Operator
	Pandas Method(s)

	+

	add()

	-

	sub(), subtract()

	*

	mul(), multiply()

	/

	truediv(), div(), divide()

	//

	floordiv()

	%

	mod()

	**

	pow()

Ufuncs: Operations Between DataFrame and Series

When performing operations between a DataFrame and a Series, the
index and column alignment is similarly maintained, and the result is
similar to operations between a two-dimensional and one-dimensional
NumPy array. Consider one common operation, where we find the difference
of a two-dimensional array and one of its rows:

A = rng.integers(10, size=(3, 4))
A

array([[4, 4, 2, 0],
 [5, 8, 0, 8],
 [8, 2, 6, 1]])

A - A[0]

array([[0, 0, 0, 0],
 [1, 4, -2, 8],
 [4, -2, 4, 1]])

According to NumPy’s broadcasting rules (see
“Computation on Arrays: Broadcasting”), subtraction between a two-dimensional array and
one of its rows is applied row-wise.

In Pandas, the convention similarly operates row-wise by default:

df = pd.DataFrame(A, columns=['Q', 'R', 'S', 'T'])
df - df.iloc[0]

 	
 	Q
 	R
 	S
 	T

 	0
 	0
 	0
 	0
 	0

 	1
 	1
 	4
 	-2
 	8

 	2
 	4
 	-2
 	4
 	1

If you would instead like to operate column-wise, you can use the object
methods mentioned earlier, while specifying the axis keyword:

df.subtract(df['R'], axis=0)

 	
 	Q
 	R
 	S
 	T

 	0
 	0
 	0
 	-2
 	-4

 	1
 	-3
 	0
 	-8
 	0

 	2
 	6
 	0
 	4
 	-1

Note that these DataFrame/Series operations, like the operations
discussed above, will automatically align indices between the two
elements:

halfrow = df.iloc[0, ::2]
halfrow

Q 4
S 2
Name: 0, dtype: int64

df - halfrow

 	
 	Q
 	R
 	S
 	T

 	0
 	0.0
 	NaN
 	0.0
 	NaN

 	1
 	1.0
 	NaN
 	-2.0
 	NaN

 	2
 	4.0
 	NaN
 	4.0
 	NaN

This preservation and alignment of indices and columns means that
operations on data in Pandas will always maintain the data context,
which prevents the common errors that might arise when working with
heterogeneous and/or misaligned data in raw NumPy arrays.

Handling Missing Data

The difference between data found in many tutorials and data in the real
world is that real-world data is rarely clean and homogeneous. In
particular, many interesting datasets will have some amount of data
missing. To make matters even more complicated, different data sources
may indicate missing data in different ways.

In this section, we will discuss some general considerations for missing
data, discuss how Pandas chooses to represent it, and demonstrate some
built-in Pandas tools for handling missing data in Python. Here and
throughout the book, we’ll refer to missing data in general
as null, NaN, or NA values.

Trade-Offs in Missing Data Conventions

A number of approaches have been developed to track the presence of
missing data in a table or DataFrame. Generally, they revolve around one
of two strategies: using a mask that globally indicates missing
values, or choosing a sentinel value that indicates a missing entry.

In the masking approach, the mask might be an entirely separate Boolean
array, or it may involve appropriation of one bit in the data
representation to locally indicate the null status of a value.

In the sentinel approach, the sentinel value could be some data-specific
convention, such as indicating a missing integer value with -9999 or
some rare bit pattern, or it could be a more global convention, such as
indicating a missing floating-point value with NaN (Not a Number), a
special value which is part of the IEEE floating-point specification.

None of these approaches is without trade-offs: use of a separate mask
array requires allocation of an additional Boolean array, which adds
overhead in both storage and computation. A sentinel value reduces the
range of valid values that can be represented, and may require extra
(often non-optimized) logic in CPU and GPU arithmetic. Common special
values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different
languages and systems use different conventions. For example, the R
language uses reserved bit patterns within each data type as sentinel
values indicating missing data, while the SciDB system uses an extra
byte attached to every cell which indicates a NA state.

Missing Data in Pandas

The way in which Pandas handles missing values is constrained by its
reliance on the NumPy package, which does not have a built-in notion of
NA values for non-floating-point data types.

Perhaps pandas could have followed R’s lead in specifying
bit patterns for each individual data type to indicate nullness, but
this approach turns out to be rather unwieldy. While R contains four
basic data types, NumPy supports far more than this: for example,
while R has a single integer type, NumPy supports fourteen basic
integer types once you account for available precisions, signedness, and
endianness of the encoding. Reserving a specific bit pattern in all
available NumPy types would lead to an unwieldy amount of overhead in
special-casing various operations for various types, likely even
requiring a new fork of the NumPy package. Further, for the smaller data
types (such as 8-bit integers), sacrificing a bit to use as a mask will
significantly reduce the range of values it can represent.

Because of these constraints and tradeoffs, Pandas has two “modes” of
storing and manipulating null values:

	
the default mode is to use a sentinel-based missing data scheme, with
sentinel values NaN or None depending on the type of the data.

	
alternatively, you can opt-in to using pandas’ nullable
dtypes, which results in the creation an accompanying mask array to
track missing entries. These missing entries are then presented to the
user as the special pd.NA value.

In either case, the data operations and manipulations provided by the
pandas API will handle and propagate those missing entries in a
predictable manner. But to develop some intuition into why these
choices are made, let’s dive quickly into the tradeoffs
inherent in None, NaN, and NA.

import numpy as np
import pandas as pd

None as a sentinel value

For some data types, pandas uses None as a sentinel value. None is a
Python object, which means that any array containing None must have
dtype=object, that is, it must be a sequence of Python objects.

For example, observe what happens if you pass None to a numpy array:

vals1 = np.array([1, None, 2, 3])
vals1

array([1, None, 2, 3], dtype=object)

This dtype=object means that the best common type representation NumPy
could infer for the contents of the array is that they are Python
objects. The downside of using None in this way is that operations on
the data will be done at the Python level, with much more overhead than
the typically fast operations seen for arrays with native types:

%timeit np.arange(1E6, dtype=int).sum()

2.73 ms ± 288 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

%timeit np.arange(1E6, dtype=object).sum()

92.1 ms ± 3.42 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Further, because Python does not support arithmetic operations with
None, then aggregations like sum() or min() will generally lead to
an error:

vals1.sum()

 TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

For this reason, pandas does not use None as a sentinel in its
numerical arrays.

NaN: Missing numerical data

The other missing data sentinel, NaN (acronym for Not a Number), is
different; it is a special floating-point value recognized by all
systems that use the standard IEEE floating-point representation:

vals2 = np.array([1, np.nan, 3, 4])
vals2

array([1., nan, 3., 4.])

Notice that NumPy chose a native floating-point type for this array:
this means that unlike the object array from before, this array supports
fast operations pushed into compiled code. Keep in mind that NaN is a
bit like a data virus–it infects any other object it touches. Regardless
of the operation, the result of arithmetic with NaN will be another
NaN:

1 + np.nan

nan

0 * np.nan

nan

This means that aggregates over the values are well defined (i.e., they
don’t result in an error) but not always useful:

vals2.sum(), vals2.min(), vals2.max()

(nan, nan, nan)

that said, NumPy does provide NaN-aware versions of aggregations that
will ignore these missing values:

np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)

(8.0, 1.0, 4.0)

The main downside of NaN is that it is specifically a floating-point
value; there is no equivalent NaN value for integers, strings, or other
types.

NaN and None in Pandas

NaN and None both have their place, and Pandas is built to handle
the two of them nearly interchangeably, converting between them where
appropriate:

pd.Series([1, np.nan, 2, None])

0 1.0
1 NaN
2 2.0
3 NaN
dtype: float64

For types that don’t have an available sentinel value,
Pandas automatically type-casts when NA values are present. For example,
if we set a value in an integer array to np.nan, it will automatically
be upcast to a floating-point type to accommodate the NA:

x = pd.Series(range(2), dtype=int)
x

0 0
1 1
dtype: int64

x[0] = None
x

0 NaN
1 1.0
dtype: float64

Notice that in addition to casting the integer array to floating point,
Pandas automatically converts the None to a NaN value. (Be aware
that there is a proposal to add a native integer NA to Pandas in the
future; as of this writing, it has not been included).

While this type of magic may feel a bit hackish compared to the more
unified approach to NA values in domain-specific languages like R, the
Pandas sentinel/casting approach works quite well in practice and in my
experience only rarely causes issues.

The following table lists the upcasting conventions in Pandas when NA
values are introduced:

	Typeclass
	Conversion When Storing NAs
	NA Sentinel Value

	floating

	No change

	np.nan

	object

	No change

	None or np.nan

	integer

	Cast to float64

	np.nan

	boolean

	Cast to object

	None or np.nan

Keep in mind that in Pandas, string data is always stored with an
object dtype.

Pandas Nullable Dtypes

In early versions of Pandas, NaN and None as sentinel values were
the only missing data representation available. The primary difficulty
of this is the implicit type casting: for example there was no way to
represent a true integer array with missing data.

To address this difficulty, Pandas later added nullable dtypes, which
are distinguished from regular dtypes by capitalization of their name
(e.g. pd.Int32 vs np.int32. For backward compatibility, these
nullable dtypes are only used if specifically requested.

For example, here is a Series of integers with missing data, created
from a list containing all three available markers of missing data:

pd.Series([1, np.nan, 2, None, pd.NA], dtype='Int32')

0 1
1 <NA>
2 2
3 <NA>
4 <NA>
dtype: Int32

This representation can be used interchangeably with the others in all
the operations explored through the rest of this section.

Operating on Null Values

As we have seen, Pandas treats None, NaN, and NA as essentially
interchangeable for indicating missing or null values. To facilitate
this convention, pandas provides several methods for detecting,
removing, and replacing null values in Pandas data structures. They are:

	
isnull(): Generate a boolean mask indicating missing values

	
notnull(): Opposite of isnull()

	
dropna(): Return a filtered version of the data

	
fillna(): Return a copy of the data with missing values filled or
imputed

We will conclude this section with a brief exploration and demonstration
of these routines.

Detecting null values

Pandas data structures have two useful methods for detecting null data:
isnull() and notnull(). Either one will return a Boolean mask over
the data. For example:

data = pd.Series([1, np.nan, 'hello', None])

data.isnull()

0 False
1 True
2 False
3 True
dtype: bool

As mentioned in “Data Indexing and Selection”, Boolean masks can be used directly as a
Series or DataFrame index:

data[data.notnull()]

0 1
2 hello
dtype: object

The isnull() and notnull() methods produce similar Boolean results
for DataFrame objects.

Dropping null values

In addition to these masking methods, there are the convenience methods,
dropna() (which removes NA values) and fillna() (which fills in NA
values). For a Series, the result is straightforward:

data.dropna()

0 1
2 hello
dtype: object

For a DataFrame, there are more options. Consider the following
DataFrame:

df = pd.DataFrame([[1, np.nan, 2],
 [2, 3, 5],
 [np.nan, 4, 6]])
df

 	
 	0
 	1
 	2

 	0
 	1.0
 	NaN
 	2

 	1
 	2.0
 	3.0
 	5

 	2
 	NaN
 	4.0
 	6

We cannot drop single values from a DataFrame; we can only drop entire
rows or columns. Depending on the application, you might want one or the
other, so dropna() includes a number of options for a DataFrame.

By default, dropna() will drop all rows in which any null value is
present:

df.dropna()

 	
 	0
 	1
 	2

 	1
 	2.0
 	3.0
 	5

Alternatively, you can drop NA values along a different axis; axis=1
or axis='columns' drops all columns containing
a null value:

df.dropna(axis='columns')

 	
 	2

 	0
 	2

 	1
 	5

 	2
 	6

But this drops some good data as well; you might rather be interested in
dropping rows or columns with all NA values, or a majority of NA
values. This can be specified through the how or thresh parameters,
which allow fine control of the number of nulls to allow through.

The default is how='any', such that any row or
column containing a null value will be dropped. You can also specify
how='all', which will only drop rows/columns
that are all null values:

df[3] = np.nan
df

 	
 	0
 	1
 	2
 	3

 	0
 	1.0
 	NaN
 	2
 	NaN

 	1
 	2.0
 	3.0
 	5
 	NaN

 	2
 	NaN
 	4.0
 	6
 	NaN

df.dropna(axis='columns', how='all')

 	
 	0
 	1
 	2

 	0
 	1.0
 	NaN
 	2

 	1
 	2.0
 	3.0
 	5

 	2
 	NaN
 	4.0
 	6

For finer-grained control, the thresh parameter lets you specify a
minimum number of non-null values for the row/column to be kept:

df.dropna(axis='rows', thresh=3)

 	
 	0
 	1
 	2
 	3

 	1
 	2.0
 	3.0
 	5
 	NaN

Here the first and last row have been dropped, because they contain only
two non-null values.

Filling null values

Sometimes rather than dropping NA values, you’d rather
replace them with a valid value. This value might be a single number
like zero, or it might be some sort of imputation or interpolation from
the good values. You could do this in-place using the isnull() method
as a mask, but because it is such a common operation Pandas provides the
fillna() method, which returns a copy of the array with the null
values replaced.

Consider the following Series:

data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'), dtype='Int32')
data

a 1
b <NA>
c 2
d <NA>
e 3
dtype: Int32

We can fill NA entries with a single value, such as zero:

data.fillna(0)

a 1
b 0
c 2
d 0
e 3
dtype: Int32

We can specify a forward-fill to propagate the previous value forward:

forward-fill
data.fillna(method='ffill')

a 1
b 1
c 2
d 2
e 3
dtype: Int32

Or we can specify a back-fill to propagate the next values backward:

back-fill
data.fillna(method='bfill')

a 1
b 2
c 2
d 3
e 3
dtype: Int32

In the case of a DataFrame, the options are similar, but we can also
specify an axis along which the fills take place:

df

 	
 	0
 	1
 	2
 	3

 	0
 	1.0
 	NaN
 	2
 	NaN

 	1
 	2.0
 	3.0
 	5
 	NaN

 	2
 	NaN
 	4.0
 	6
 	NaN

df.fillna(method='ffill', axis=1)

 	
 	0
 	1
 	2
 	3

 	0
 	1.0
 	1.0
 	2.0
 	2.0

 	1
 	2.0
 	3.0
 	5.0
 	5.0

 	2
 	NaN
 	4.0
 	6.0
 	6.0

Notice that if a previous value is not available during a forward fill,
the NA value remains.

Hierarchical Indexing

Up to this point we’ve been focused primarily on
one-dimensional and two-dimensional data, stored in Pandas Series and
DataFrame objects, respectively. Often it is useful to go beyond this
and store higher-dimensional data–that is, data indexed by more than one
or two keys. Early Pandas versions provided Panel and Panel4D
objects that could be thought of 3D or 4D analogs to the 2D DataFrame,
but they were somewhat clunky to use in practice. A a far more common
pattern for handling higher-dimensional data is to make use of
hierarchical indexing (also known as multi-indexing) to incorporate
multiple index levels within a single index. In this way,
higher-dimensional data can be compactly represented within the familiar
one-dimensional Series and two-dimensional DataFrame objects. (If
you’re interested in true N-dimensional arrays with
pandas-style flexible indices, you can look into the excelleng
xarray package).

In this section, we’ll explore the direct creation of
MultiIndex objects, considerations when indexing, slicing, and
computing statistics across multiply indexed data, and useful routines
for converting between simple and hierarchically indexed representations
of your data.

We begin with the standard imports:

import pandas as pd
import numpy as np

A Multiply Indexed Series

Let’s start by considering how we might represent
two-dimensional data within a one-dimensional Series. For
concreteness, we will consider a series of data where each point has a
character and numerical key.

The bad way

Suppose you would like to track data about states from two different
years. Using the Pandas tools we’ve already covered, you
might be tempted to simply use Python tuples as keys:

index = [('California', 2010), ('California', 2020),
 ('New York', 2010), ('New York', 2020),
 ('Texas', 2010), ('Texas', 2020)]
populations = [37253956, 39538223,
 19378102, 20201249,
 25145561, 29145505]
pop = pd.Series(populations, index=index)
pop

(California, 2010) 37253956
(California, 2020) 39538223
(New York, 2010) 19378102
(New York, 2020) 20201249
(Texas, 2010) 25145561
(Texas, 2020) 29145505
dtype: int64

With this indexing scheme, you can straightforwardly index or slice the
series based on this tuple index:

pop[('California', 2020):('Texas', 2010)]

(California, 2020) 39538223
(New York, 2010) 19378102
(New York, 2020) 20201249
(Texas, 2010) 25145561
dtype: int64

But the convenience ends there. For example, if you need to select all
values from 2010, you’ll need to do some messy (and
potentially slow) munging to make it happen:

pop[[i for i in pop.index if i[1] == 2010]]

(California, 2010) 37253956
(New York, 2010) 19378102
(Texas, 2010) 25145561
dtype: int64

This produces the desired result, but is not as clean (or as efficient
for large datasets) as the slicing syntax we’ve grown to
love in Pandas.

The Better Way: Pandas MultiIndex

Fortunately, Pandas provides a better way. Our tuple-based indexing is
essentially a rudimentary multi-index, and the Pandas MultiIndex type
gives us the type of operations we wish to have. We can create a
multi-index from the tuples as follows:

index = pd.MultiIndex.from_tuples(index)

The MultiIndex represents multiple levels of indexing–in this case,
the state names and the years, as well as multiple labels for each
data point which encode these levels.

If we re-index our series with this MultiIndex, we see the
hierarchical representation of the data:

pop = pop.reindex(index)
pop

California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

Here the first two columns of the Series representation show the
multiple index values, while the third column shows the data. Notice
that some entries are missing in the first column: in this multi-index
representation, any blank entry indicates the same value as the line
above it.

Now to access all data for which the second index is 2020, we can use
the Pandas slicing notation:

pop[:, 2020]

California 39538223
New York 20201249
Texas 29145505
dtype: int64

The result is a singly indexed Series with just the keys
we’re interested in. This syntax is much more convenient
(and the operation is much more efficient!) than the home-spun
tuple-based multi-indexing solution that we started with.
We’ll now further discuss this sort of indexing operation on
hieararchically indexed data.

MultiIndex as extra dimension

You might notice something else here: we could easily have stored the
same data using a simple DataFrame with index and column labels. In
fact, Pandas is built with this equivalence in mind. The unstack()
method will quickly convert a multiply indexed Series into a
conventionally indexed DataFrame:

pop_df = pop.unstack()
pop_df

 	
 	2010
 	2020

 	California
 	37253956
 	39538223

 	New York
 	19378102
 	20201249

 	Texas
 	25145561
 	29145505

Naturally, the stack() method provides the opposite operation:

pop_df.stack()

California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

Seeing this, you might wonder why would we would bother with
hierarchical indexing at all. The reason is simple: just as we were able
to use multi-indexing to manipulate two-dimensional data within a
one-dimensional Series, we can also use it to manipulate data of three
or more dimensions in a Series or DataFrame. Each extra level in a
multi-index represents an extra dimension of data; taking advantage of
this property gives us much more flexibility in the types of data we can
represent. Concretely, we might want to add another column of
demographic data for each state at each year (say, population under 18)
; with a MultiIndex this is as easy as adding another column to the
DataFrame:

pop_df = pd.DataFrame({'total': pop,
 'under18': [9284094, 8898092,
 4318033, 4181528,
 6879014, 7432474]})
pop_df

 	
 	
 	total
 	under18

 	California
 	2010
 	37253956
 	9284094

 	2020
 	39538223
 	8898092

 	New York
 	2010
 	19378102
 	4318033

 	2020
 	20201249
 	4181528

 	Texas
 	2010
 	25145561
 	6879014

 	2020
 	29145505
 	7432474

In addition, all the ufuncs and other functionality discussed in
“Operating on Data in Pandas” work
with hierarchical indices as well. Here we compute the fraction of
people under 18 by year, given the above data:

f_u18 = pop_df['under18'] / pop_df['total']
f_u18.unstack()

 	
 	2010
 	2020

 	California
 	0.249211
 	0.225050

 	New York
 	0.222831
 	0.206994

 	Texas
 	0.273568
 	0.255013

This allows us to easily and quickly manipulate and explore even
high-dimensional data.

Methods of MultiIndex Creation

The most straightforward way to construct a multiply indexed Series or
DataFrame is to simply pass a list of two or more index arrays to the
constructor. For example:

df = pd.DataFrame(np.random.rand(4, 2),
 index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
 columns=['data1', 'data2'])
df

 	
 	
 	data1
 	data2

 	a
 	1
 	0.748464
 	0.561409

 	2
 	0.379199
 	0.622461

 	b
 	1
 	0.701679
 	0.687932

 	2
 	0.436200
 	0.950664

The work of creating the MultiIndex is done in the background.

Similarly, if you pass a dictionary with appropriate tuples as keys,
Pandas will automatically recognize this and use a MultiIndex by
default:

data = {('California', 2010): 37253956,
 ('California', 2020): 39538223,
 ('New York', 2010): 19378102,
 ('New York', 2020): 20201249,
 ('Texas', 2010): 25145561,
 ('Texas', 2020): 29145505}
pd.Series(data)

California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

Nevertheless, it is sometimes useful to explicitly create a
MultiIndex; we’ll see a couple of these methods here.

Explicit MultiIndex constructors

For more flexibility in how the index is constructed, you can instead
use the class method constructors available in the pd.MultiIndex. For
example, as we did before, you can construct the MultiIndex from a
simple list of arrays giving the index values within each level:

pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]])

MultiIndex([('a', 1),
 ('a', 2),
 ('b', 1),
 ('b', 2)],
)

You can construct it from a list of tuples giving the multiple index
values of each point:

pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)])

MultiIndex([('a', 1),
 ('a', 2),
 ('b', 1),
 ('b', 2)],
)

You can even construct it from a Cartesian product of single indices:

pd.MultiIndex.from_product([['a', 'b'], [1, 2]])

MultiIndex([('a', 1),
 ('a', 2),
 ('b', 1),
 ('b', 2)],
)

Similarly, you can construct the MultiIndex directly using its
internal encoding by passing levels (a list of lists containing
available index values for each level) and codes (a list of lists that
reference these labels):

pd.MultiIndex(levels=[['a', 'b'], [1, 2]],
 codes=[[0, 0, 1, 1], [0, 1, 0, 1]])

MultiIndex([('a', 1),
 ('a', 2),
 ('b', 1),
 ('b', 2)],
)

Any of these objects can be passed as the index argument when creating
a Series or Dataframe, or be passed to the reindex method of an
existing Series or DataFrame.

MultiIndex level names

Sometimes it is convenient to name the levels of the MultiIndex. This
can be accomplished by passing the names argument to any of the above
MultiIndex constructors, or by setting the names attribute of the
index after the fact:

pop.index.names = ['state', 'year']
pop

state year
California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

With more involved datasets, this can be a useful way to keep track of
the meaning of various index values.

MultiIndex for columns

In a DataFrame, the rows and columns are completely symmetric, and
just as the rows can have multiple levels of indices, the columns can
have multiple levels as well. Consider the following, which is a mock-up
of some (somewhat realistic) medical data:

hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],
 names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
 names=['subject', 'type'])

mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37

create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data

 	
 	subject
 	Bob
 	Guido
 	Sue

 	
 	type
 	HR
 	Temp
 	HR
 	Temp
 	HR
 	Temp

 	year
 	visit
 	
 	
 	
 	
 	
 	

 	2013
 	1
 	30.0
 	38.0
 	56.0
 	38.3
 	45.0
 	35.8

 	2
 	47.0
 	37.1
 	27.0
 	36.0
 	37.0
 	36.4

 	2014
 	1
 	51.0
 	35.9
 	24.0
 	36.7
 	32.0
 	36.2

 	2
 	49.0
 	36.3
 	48.0
 	39.2
 	31.0
 	35.7

This is fundamentally four-dimensional data, where the dimensions are
the subject, the measurement type, the year, and the visit number. With
this in place we can, for example, index the top-level column by the
person’s name and get a full DataFrame containing just
that person’s information:

health_data['Guido']

 	
 	type
 	HR
 	Temp

 	year
 	visit
 	
 	

 	2013
 	1
 	56.0
 	38.3

 	2
 	27.0
 	36.0

 	2014
 	1
 	24.0
 	36.7

 	2
 	48.0
 	39.2

Indexing and Slicing a MultiIndex

Indexing and slicing on a MultiIndex is designed to be intuitive, and
it helps if you think about the indices as added dimensions.
We’ll first look at indexing multiply indexed Series, and
then multiply-indexed DataFrame objects.

Multiply indexed Series

Consider the multiply indexed Series of state populations we saw
earlier:

pop

state year
California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

We can access single elements by indexing with multiple terms:

pop['California', 2010]

37253956

The MultiIndex also supports partial indexing, or indexing just one
of the levels in the index. The result is another Series, with the
lower-level indices maintained:

pop['California']

year
2010 37253956
2020 39538223
dtype: int64

Partial slicing is available as well, as long as the MultiIndex is
sorted (see discussion in <<section-#sorted-and-unsorted-indices[sorted and
unsorted indices]):

poploc['california':'new york']

state year
california 2010 37253956
 2020 39538223
new york 2010 19378102
 2020 20201249
dtype: int64

with sorted indices, partial indexing can be performed on lower levels
by passing an empty slice in the first index:

pop[:, 2010]

state
california 37253956
new york 19378102
texas 25145561
dtype: int64

other types of indexing and selection (discussed in
link:0302-data-indexing-and-selection>>) work as well; for example, selection based on Boolean masks:

pop[pop > 22000000]

state year
California 2010 37253956
 2020 39538223
Texas 2010 25145561
 2020 29145505
dtype: int64

Selection based on fancy indexing also works:

pop[['California', 'Texas']]

state year
California 2010 37253956
 2020 39538223
Texas 2010 25145561
 2020 29145505
dtype: int64

Multiply indexed DataFrames

A multiply indexed DataFrame behaves in a similar manner. Consider our
toy medical DataFrame from before:

health_data

 	
 	subject
 	Bob
 	Guido
 	Sue

 	
 	type
 	HR
 	Temp
 	HR
 	Temp
 	HR
 	Temp

 	year
 	visit
 	
 	
 	
 	
 	
 	

 	2013
 	1
 	30.0
 	38.0
 	56.0
 	38.3
 	45.0
 	35.8

 	2
 	47.0
 	37.1
 	27.0
 	36.0
 	37.0
 	36.4

 	2014
 	1
 	51.0
 	35.9
 	24.0
 	36.7
 	32.0
 	36.2

 	2
 	49.0
 	36.3
 	48.0
 	39.2
 	31.0
 	35.7

Remember that columns are primary in a DataFrame, and the syntax used
for multiply indexed Series applies to the columns. For example, we
can recover Guido’s heart rate data with a simple operation:

health_data['Guido', 'HR']

year visit
2013 1 56.0
 2 27.0
2014 1 24.0
 2 48.0
Name: (Guido, HR), dtype: float64

Also, as with the single-index case, we can use the loc, iloc, and
ix indexers introduced in
“Data Indexing and Selection”. For example:

health_data.iloc[:2, :2]

 	
 	subject
 	Bob

 	
 	type
 	HR
 	Temp

 	year
 	visit
 	
 	

 	2013
 	1
 	30.0
 	38.0

 	2
 	47.0
 	37.1

These indexers provide an array-like view of the underlying
two-dimensional data, but each individual index in loc or iloc can
be passed a tuple of multiple indices. For example:

health_data.loc[:, ('Bob', 'HR')]

year visit
2013 1 30.0
 2 47.0
2014 1 51.0
 2 49.0
Name: (Bob, HR), dtype: float64

Working with slices within these index tuples is not especially
convenient; trying to create a slice within a tuple will lead to a
syntax error:

health_data.loc[(:, 1), (:, 'HR')]

 SyntaxError: invalid syntax (3311942670.py, line 1)

You could get around this by building the desired slice explicitly using
Python’s built-in slice() function, but a better way in
this context is to use an IndexSlice object, which Pandas provides for
precisely this situation. For example:

idx = pd.IndexSlice
health_data.loc[idx[:, 1], idx[:, 'HR']]

 	
 	subject
 	Bob
 	Guido
 	Sue

 	
 	type
 	HR
 	HR
 	HR

 	year
 	visit
 	
 	
 	

 	2013
 	1
 	30.0
 	56.0
 	45.0

 	2014
 	1
 	51.0
 	24.0
 	32.0

There are so many ways to interact with data in multiply indexed
Series and `DataFrame`s, and as with many tools in this book the best
way to become familiar with them is to try them out!

Rearranging Multi-Indices

One of the keys to working with multiply indexed data is knowing how to
effectively transform the data. There are a number of operations that
will preserve all the information in the dataset, but rearrange it for
the purposes of various computations. We saw a brief example of this in
the stack() and unstack() methods, but there are many more ways to
finely control the rearrangement of data between hierarchical indices
and columns, and we’ll explore them here.

Sorted and unsorted indices

Earlier, we briefly mentioned a caveat, but we should emphasize it more
here. Many of the MultiIndex slicing operations will fail if the
index is not sorted. Let’s take a look at this here.

We’ll start by creating some simple multiply indexed data
where the indices are not lexographically sorted:

index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]])
data = pd.Series(np.random.rand(6), index=index)
data.index.names = ['char', 'int']
data

char int
a 1 0.280341
 2 0.097290
c 1 0.206217
 2 0.431771
b 1 0.100183
 2 0.015851
dtype: float64

If we try to take a partial slice of this index, it will result in an
error:

try:
 data['a':'b']
except KeyError as e:
 print("KeyError", e)

KeyError 'Key length (1) was greater than MultiIndex lexsort depth (0)'

Although it is not entirely clear from the error message, this is the
result of the MultiIndex not being sorted. For various reasons, partial
slices and other similar operations require the levels in the
MultiIndex to be in sorted (i.e., lexographical) order. Pandas
provides a number of convenience routines to perform this type of
sorting; examples are the sort_index() and sortlevel() methods of
the DataFrame. We’ll use the simplest, sort_index(),
here:

data = data.sort_index()
data

char int
a 1 0.280341
 2 0.097290
b 1 0.100183
 2 0.015851
c 1 0.206217
 2 0.431771
dtype: float64

With the index sorted in this way, partial slicing will work as
expected:

data['a':'b']

char int
a 1 0.280341
 2 0.097290
b 1 0.100183
 2 0.015851
dtype: float64

Stacking and unstacking indices

As we saw briefly before, it is possible to convert a dataset from a
stacked multi-index to a simple two-dimensional representation,
optionally specifying the level to use:

pop.unstack(level=0)

 	state
 	California
 	New York
 	Texas

 	year
 	
 	
 	

 	2010
 	37253956
 	19378102
 	25145561

 	2020
 	39538223
 	20201249
 	29145505

pop.unstack(level=1)

 	year
 	2010
 	2020

 	state
 	
 	

 	California
 	37253956
 	39538223

 	New York
 	19378102
 	20201249

 	Texas
 	25145561
 	29145505

The opposite of unstack() is stack(), which here can be used to
recover the original series:

pop.unstack().stack()

state year
California 2010 37253956
 2020 39538223
New York 2010 19378102
 2020 20201249
Texas 2010 25145561
 2020 29145505
dtype: int64

Index setting and resetting

Another way to rearrange hierarchical data is to turn the index labels
into columns; this can be accomplished with the reset_index method.
Calling this on the population dictionary will result in a DataFrame
with a state and year column holding the information that was
formerly in the index. For clarity, we can optionally specify the name
of the data for the column representation:

pop_flat = pop.reset_index(name='population')
pop_flat

 	
 	state
 	year
 	population

 	0
 	California
 	2010
 	37253956

 	1
 	California
 	2020
 	39538223

 	2
 	New York
 	2010
 	19378102

 	3
 	New York
 	2020
 	20201249

 	4
 	Texas
 	2010
 	25145561

 	5
 	Texas
 	2020
 	29145505

Often when working with data in the real world, the raw input data looks
like this and it’s useful to build a MultiIndex from the
column values. This can be done with the set_index method of the
DataFrame, which returns a multiply indexed DataFrame:

pop_flat.set_index(['state', 'year'])

 	
 	
 	population

 	state
 	year
 	

 	California
 	2010
 	37253956

 	2020
 	39538223

 	New York
 	2010
 	19378102

 	2020
 	20201249

 	Texas
 	2010
 	25145561

 	2020
 	29145505

In practice, this type of reindexing to be one of the more useful
patterns when exploring real-world datasets.

Combining Datasets: Concat and Append

Some of the most interesting studies of data come from combining
different data sources. These operations can involve anything from very
straightforward concatenation of two different datasets, to more
complicated database-style joins and merges that correctly handle any
overlaps between the datasets. Series and `DataFrame`s are built with
this type of operation in mind, and Pandas includes functions and
methods that make this sort of data wrangling fast and straightforward.

Here we’ll take a look at simple concatenation of Series
and DataFrame`s with the `pd.concat function; later we’ll
dive into more sophisticated in-memory merges and joins implemented in
Pandas.

We begin with the standard imports:

import pandas as pd
import numpy as np

For convenience, we’ll define this function which creates a
DataFrame of a particular form that will be useful below:

def make_df(cols, ind):
 """Quickly make a DataFrame"""
 data = {c: [str(c) + str(i) for i in ind]
 for c in cols}
 return pd.DataFrame(data, ind)

example DataFrame
make_df('ABC', range(3))

 	
 	A
 	B
 	C

 	0
 	A0
 	B0
 	C0

 	1
 	A1
 	B1
 	C1

 	2
 	A2
 	B2
 	C2

In addition, we’ll create a quick class that allows us to
display multiple DataFrame`s side by side. The code makes use of the
special `_repr_html_ method, which IPython/Jupyter uses to implement
its rich object display:

class display(object):
 """Display HTML representation of multiple objects"""
 template = """<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>{0}{1}
 """
 def __init__(self, *args):
 self.args = args

 def _repr_html_(self):
 return '\n'.join(self.template.format(a, eval(a)._repr_html_())
 for a in self.args)

 def __repr__(self):
 return '\n\n'.join(a + '\n' + repr(eval(a))
 for a in self.args)

The use of this will become clearer as we continue our discussion in the
following section.

Recall: Concatenation of NumPy Arrays

Concatenation of Series and DataFrame objects behaves similarly to
concatenation of Numpy arrays, which can be done via the
np.concatenate function as discussed in
“The Basics of NumPy Arrays”.
Recall that with it, you can combine the contents of two or more arrays
into a single array:

x = [1, 2, 3]
y = [4, 5, 6]
z = [7, 8, 9]
np.concatenate([x, y, z])

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

The first argument is a list or tuple of arrays to concatenate.
Additionally, in the case of multi-dimensional arrays, it takes an
axis keyword that allows you to specify the axis along which the
result will be concatenated:

x = [[1, 2],
 [3, 4]]
np.concatenate([x, x], axis=1)

array([[1, 2, 1, 2],
 [3, 4, 3, 4]])

Simple Concatenation with pd.concat

The pd.concat() function provides a similar syntax to np.concatenate
but contains a number of options that we’ll discuss
momentarily:

Signature in Pandas v1.3.5
pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,
 levels=None, names=None, verify_integrity=False,
 sort=False, copy=True)

pd.concat() can be used for a simple concatenation of Series or
DataFrame objects, just as np.concatenate() can be used for simple
concatenations of arrays:

ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
pd.concat([ser1, ser2])

1 A
2 B
3 C
4 D
5 E
6 F
dtype: object

It also works to concatenate higher-dimensional objects, such as
`DataFrame`s:

df1 = make_df('AB', [1, 2])
df2 = make_df('AB', [3, 4])
display('df1', 'df2', 'pd.concat([df1, df2])')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	A
 	B

 	1
 	A1
 	B1

 	2
 	A2
 	B2

 	3
 	A3
 	B3

 	4
 	A4
 	B4

It’s default behavior is to concatenate row-wise within the
DataFrame (i.e., axis=0). Like np.concatenate, pd.concat allows
specification of an axis along which concatenation will take place.
Consider the following example:

df3 = make_df('AB', [0, 1])
df4 = make_df('CD', [0, 1])
display('df3', 'df4', "pd.concat([df3, df4], axis='columns')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df3

 	
 	A
 	B
 	C
 	D

 	0
 	A0
 	B0
 	C0
 	D0

 	1
 	A1
 	B1
 	C1
 	D1

We could have equivalently specified axis=1; here we’ve
used the more intuitive axis='columns'.

Duplicate indices

One important difference between np.concatenate and pd.concat is
that Pandas concatenation preserves indices, even if the result will
have duplicate indices! Consider this simple example:

x = make_df('AB', [0, 1])
y = make_df('AB', [2, 3])
y.index = x.index # make indices match
display('x', 'y', 'pd.concat([x, y])')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>x

 	
 	A
 	B

 	0
 	A0
 	B0

 	1
 	A1
 	B1

 	0
 	A2
 	B2

 	1
 	A3
 	B3

Notice the repeated indices in the result. While this is valid within
DataFrame`s, the outcome is often undesirable. `pd.concat() gives us a
few ways to handle it.

Treating repeated indices as an error

If you’d like to simply verify that the indices in the
result of pd.concat() do not overlap, you can specify the
verify_integrity flag. With this set to True, the concatenation will
raise an exception if there are duplicate indices. Here is an example,
where for clarity we’ll catch and print the error message:

try:
 pd.concat([x, y], verify_integrity=True)
except ValueError as e:
 print("ValueError:", e)

ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')

Ignoring the index

Sometimes the index itself does not matter, and you would prefer it to
simply be ignored. This option can be specified using the ignore_index
flag. With this set to true, the concatenation will create a new integer
index for the resulting DataFrame:

display('x', 'y', 'pd.concat([x, y], ignore_index=True)')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>x

 	
 	A
 	B

 	0
 	A0
 	B0

 	1
 	A1
 	B1

 	2
 	A2
 	B2

 	3
 	A3
 	B3

Adding MultiIndex keys

Another option is to use the keys option to specify a label for the
data sources; the result will be a hierarchically indexed series
containing the data:

display('x', 'y', "pd.concat([x, y], keys=['x', 'y'])")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>x

 	
 	
 	A
 	B

 	x
 	0
 	A0
 	B0

 	1
 	A1
 	B1

 	y
 	0
 	A2
 	B2

 	1
 	A3
 	B3

The result is a multiply indexed DataFrame, and we can use the tools
discussed in “Hierarchical Indexing” to transform this data into the representation
we’re interested in.

Concatenation with joins

In the simple examples we just looked at, we were mainly concatenating
DataFrame`s with shared column names. In practice, data from different
sources might have different sets of column names, and `pd.concat
offers several options in this case. Consider the concatenation of the
following two `DataFrame`s, which have some (but not all!) columns in
common:

df5 = make_df('ABC', [1, 2])
df6 = make_df('BCD', [3, 4])
display('df5', 'df6', 'pd.concat([df5, df6])')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df5

 	
 	A
 	B
 	C
 	D

 	1
 	A1
 	B1
 	C1
 	NaN

 	2
 	A2
 	B2
 	C2
 	NaN

 	3
 	NaN
 	B3
 	C3
 	D3

 	4
 	NaN
 	B4
 	C4
 	D4

The default behavior is to fill entries for which no data is available
are filled with NA values. To change this, we can adjust the join
parameter of the concatenate function. By default, the join is a union
of the input columns (join='outer'), but we
can change this to an intersection of the columns using
join='inner':

display('df5', 'df6',
 "pd.concat([df5, df6], join='inner')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df5

 	
 	B
 	C

 	1
 	B1
 	C1

 	2
 	B2
 	C2

 	3
 	B3
 	C3

 	4
 	B4
 	C4

Another useful pattern is to use the reindex method before
concatenation for finer control over which columns are dropped

pd.concat([df5, df6.reindex(df5.columns, axis=1)])

 	
 	A
 	B
 	C

 	1
 	A1
 	B1
 	C1

 	2
 	A2
 	B2
 	C2

 	3
 	NaN
 	B3
 	C3

 	4
 	NaN
 	B4
 	C4

The append() method

Because direct array concatenation is so common, Series and
DataFrame objects have an append method that can accomplish the same
thing in fewer keystrokes. For example, in place of
pd.concat([df1, df2]), you can use df1.append(df2):

display('df1', 'df2', 'df1.append(df2)')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	A
 	B

 	1
 	A1
 	B1

 	2
 	A2
 	B2

 	3
 	A3
 	B3

 	4
 	A4
 	B4

Keep in mind that unlike the append() and extend() methods of Python
lists, the append() method in Pandas does not modify the original
object–instead it creates a new object with the combined data. It also
is not a very efficient method, because it involves creation of a new
index and data buffer. Thus, if you plan to do multiple append
operations, it is generally better to build a list of DataFrame`s and
pass them all at once to the `concat() function.

In the next section, we’ll look at another more powerful
approach to combining data from multiple sources, the database-style
merges/joins implemented in pd.merge. For more information on
concat(), append(), and related functionality, see the
“Merge, Join,
and Concatenate” section of the Pandas documentation.

Combining Datasets: Merge and Join

One important feature offered by Pandas is its high-performance,
in-memory join and merge operations, which you may be familiar with if
you have ever worked with databases. The main interface for this is the
pd.merge function, and we’ll see few examples of how this
can work in practice.

For convenience, we will again define the display() functionality from
the previous section:

import pandas as pd
import numpy as np

class display(object):
 """Display HTML representation of multiple objects"""
 template = """<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>{0}{1}
 """
 def __init__(self, *args):
 self.args = args

 def _repr_html_(self):
 return '\n'.join(self.template.format(a, eval(a)._repr_html_())
 for a in self.args)

 def __repr__(self):
 return '\n\n'.join(a + '\n' + repr(eval(a))
 for a in self.args)

Relational Algebra

The behavior implemented in pd.merge() is a subset of what is known as
relational algebra, which is a formal set of rules for manipulating
relational data that forms the conceptual foundation of operations
available in most databases. The strength of the relational algebra
approach is that it proposes several fundamental operations, which
become the building blocks of more complicated operations on any
dataset. With this lexicon of fundamental operations implemented
efficiently in a database or other program, a wide range of fairly
complicated composite operations can be performed.

Pandas implements several of these fundamental building-blocks in the
pd.merge() function and the related join() method of Series and
Dataframe objects. As we will see, these let you efficiently link data
from different sources.

Categories of Joins

The pd.merge() function implements a number of types of joins: the
one-to-one, many-to-one, and many-to-many joins. All three types
of joins are accessed via an identical call to the pd.merge()
interface; the type of join performed depends on the form of the input
data. Here we will show simple examples of the three types of merges,
and discuss detailed options further below.

One-to-one joins

Perhaps the simplest type of merge expresion is the one-to-one join,
which is in many ways very similar to the column-wise concatenation seen
in “Combining Datasets: Concat and Append”. As a concrete example, consider the following two DataFrame
objects which contain information on several employees in a company:

df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'],
 'group': ['Accounting', 'Engineering',
 'Engineering', 'HR']})
df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'],
 'hire_date': [2004, 2008, 2012, 2014]})
display('df1', 'df2')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	employee
 	hire_date

 	0
 	Lisa
 	2004

 	1
 	Bob
 	2008

 	2
 	Jake
 	2012

 	3
 	Sue
 	2014

To combine this information into a single DataFrame, we can use the
pd.merge() function:

df3 = pd.merge(df1, df2)
df3

 	
 	employee
 	group
 	hire_date

 	0
 	Bob
 	Accounting
 	2008

 	1
 	Jake
 	Engineering
 	2012

 	2
 	Lisa
 	Engineering
 	2004

 	3
 	Sue
 	HR
 	2014

The pd.merge() function recognizes that each DataFrame has an
“employee” column, and automatically joins using this column as a key.
The result of the merge is a new DataFrame that combines the
information from the two inputs. Notice that the order of entries in
each column is not necessarily maintained: in this case, the order of
the “employee” column differs between df1 and df2, and the
pd.merge() function correctly accounts for this. Additionally, keep in
mind that the merge in general discards the index, except in the special
case of merges by index (see the left_index and right_index
keywords, discussed momentarily).

Many-to-one joins

Many-to-one joins are joins in which one of the two key columns contains
duplicate entries. For the many-to-one case, the resulting DataFrame
will preserve those duplicate entries as appropriate. Consider the
following example of a many-to-one join:

df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'],
 'supervisor': ['Carly', 'Guido', 'Steve']})
display('df3', 'df4', 'pd.merge(df3, df4)')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df3

 	
 	employee
 	group
 	hire_date
 	supervisor

 	0
 	Bob
 	Accounting
 	2008
 	Carly

 	1
 	Jake
 	Engineering
 	2012
 	Guido

 	2
 	Lisa
 	Engineering
 	2004
 	Guido

 	3
 	Sue
 	HR
 	2014
 	Steve

The resulting DataFrame has an aditional column with the
“supervisor” information, where the information is repeated in one or
more locations as required by the inputs.

Many-to-many joins

Many-to-many joins may be a bit confusing conceptually, but are
nevertheless well defined. If the key column in both the left and right
array contains duplicates, then the result is a many-to-many merge. This
will be perhaps most clear with a concrete example. Consider the
following, where we have a DataFrame showing one or more skills
associated with a particular group. By performing a many-to-many join,
we can recover the skills associated with any individual person:

df5 = pd.DataFrame({'group': ['Accounting', 'Accounting',
 'Engineering', 'Engineering', 'HR', 'HR'],
 'skills': ['math', 'spreadsheets', 'software', 'math',
 'spreadsheets', 'organization']})
display('df1', 'df5', "pd.merge(df1, df5)")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	employee
 	group
 	skills

 	0
 	Bob
 	Accounting
 	math

 	1
 	Bob
 	Accounting
 	spreadsheets

 	2
 	Jake
 	Engineering
 	software

 	3
 	Jake
 	Engineering
 	math

 	4
 	Lisa
 	Engineering
 	software

 	5
 	Lisa
 	Engineering
 	math

 	6
 	Sue
 	HR
 	spreadsheets

 	7
 	Sue
 	HR
 	organization

These three types of joins can be used with other Pandas tools to
implement a wide array of functionality. But in practice, datasets are
rarely as clean as the one we’re working with here. In the
following section we’ll consider some of the options
provided by pd.merge() that enable you to tune how the join operations
work.

Specification of the Merge Key

We’ve already seen the default behavior of pd.merge(): it
looks for one or more matching column names between the two inputs, and
uses this as the key. However, often the column names will not match so
nicely, and pd.merge() provides a variety of options for handling
this.

The on keyword

Most simply, you can explicitly specify the name of the key column using
the on keyword, which takes a column name or a list of column names:

display('df1', 'df2', "pd.merge(df1, df2, on='employee')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	employee
 	group
 	hire_date

 	0
 	Bob
 	Accounting
 	2008

 	1
 	Jake
 	Engineering
 	2012

 	2
 	Lisa
 	Engineering
 	2004

 	3
 	Sue
 	HR
 	2014

This option works only if both the left and right `DataFrame`s have the
specified column name.

The left_on and right_on keywords

At times you may wish to merge two datasets with different column names;
for example, we may have a dataset in which the employee name is labeled
as “name” rather than “employee”. In this case, we can use the
left_on and right_on keywords to specify the two column names:

df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
 'salary': [70000, 80000, 120000, 90000]})
display('df1', 'df3', 'pd.merge(df1, df3, left_on="employee", right_on="name")')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1

 	
 	employee
 	group
 	name
 	salary

 	0
 	Bob
 	Accounting
 	Bob
 	70000

 	1
 	Jake
 	Engineering
 	Jake
 	80000

 	2
 	Lisa
 	Engineering
 	Lisa
 	120000

 	3
 	Sue
 	HR
 	Sue
 	90000

The result has a redundant column that we can drop if desired–for
example, by using the DataFrame.drop() method:

pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1)

 	
 	employee
 	group
 	salary

 	0
 	Bob
 	Accounting
 	70000

 	1
 	Jake
 	Engineering
 	80000

 	2
 	Lisa
 	Engineering
 	120000

 	3
 	Sue
 	HR
 	90000

The left_index and right_index keywords

Sometimes, rather than merging on a column, you would instead like to
merge on an index. For example, your data might look like this:

df1a = df1.set_index('employee')
df2a = df2.set_index('employee')
display('df1a', 'df2a')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1a

 	
 	hire_date

 	employee
 	

 	Lisa
 	2004

 	Bob
 	2008

 	Jake
 	2012

 	Sue
 	2014

You can use the index as the key for merging by specifying the
left_index and/or right_index flags in pd.merge():

display('df1a', 'df2a',
 "pd.merge(df1a, df2a, left_index=True, right_index=True)")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1a

 	
 	group
 	hire_date

 	employee
 	
 	

 	Bob
 	Accounting
 	2008

 	Jake
 	Engineering
 	2012

 	Lisa
 	Engineering
 	2004

 	Sue
 	HR
 	2014

For convenience, Pandas includes the DataFrame.join() method, which
performs an index-based merge without extra keywords:

df1a.join(df2a)

 	
 	group
 	hire_date

 	employee
 	
 	

 	Bob
 	Accounting
 	2008

 	Jake
 	Engineering
 	2012

 	Lisa
 	Engineering
 	2004

 	Sue
 	HR
 	2014

If you’d like to mix indices and columns, you can combine
left_index with right_on or left_on with right_index to get the
desired behavior:

display('df1a', 'df3', "pd.merge(df1a, df3, left_index=True, right_on='name')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df1a

 	
 	group
 	name
 	salary

 	0
 	Accounting
 	Bob
 	70000

 	1
 	Engineering
 	Jake
 	80000

 	2
 	Engineering
 	Lisa
 	120000

 	3
 	HR
 	Sue
 	90000

All of these options also work with multiple indices and/or multiple
columns; the interface for this behavior is very intuitive. For more
information on this, see the
“Merge, Join,
and Concatenate” section of the Pandas documentation.

Specifying Set Arithmetic for Joins

In all the preceding examples we have glossed over one important
consideration in performing a join: the type of set arithmetic used in
the join. This comes up when a value appears in one key column but not
the other. Consider this example:

df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'],
 'food': ['fish', 'beans', 'bread']},
 columns=['name', 'food'])
df7 = pd.DataFrame({'name': ['Mary', 'Joseph'],
 'drink': ['wine', 'beer']},
 columns=['name', 'drink'])
display('df6', 'df7', 'pd.merge(df6, df7)')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df6

 	
 	name
 	food
 	drink

 	0
 	Mary
 	bread
 	wine

Here we have merged two datasets that have only a single “name” entry
in common: Mary. By default, the result contains the intersection of
the two sets of inputs; this is what is known as an inner join. We can
specify this explicitly using the how keyword, which defaults to
"inner":

pd.merge(df6, df7, how='inner')

 	
 	name
 	food
 	drink

 	0
 	Mary
 	bread
 	wine

Other options for the how keyword are
'outer', 'left', and
'right'. An outer join returns a join over
the union of the input columns, and fills in all missing values with
NAs:

display('df6', 'df7', "pd.merge(df6, df7, how='outer')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df6

 	
 	name
 	food
 	drink

 	0
 	Peter
 	fish
 	NaN

 	1
 	Paul
 	beans
 	NaN

 	2
 	Mary
 	bread
 	wine

 	3
 	Joseph
 	NaN
 	beer

The left join and right join return joins over the left entries and
right entries, respectively. For example:

display('df6', 'df7', "pd.merge(df6, df7, how='left')")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df6

 	
 	name
 	food
 	drink

 	0
 	Peter
 	fish
 	NaN

 	1
 	Paul
 	beans
 	NaN

 	2
 	Mary
 	bread
 	wine

The output rows now correspond to the entries in the left input. Using
how='right' works in a similar manner.

All of these options can be applied straightforwardly to any of the
preceding join types.

Overlapping Column Names: The suffixes Keyword

Finally, you may end up in a case where your two input `DataFrame`s have
conflicting column names. Consider this example:

df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
 'rank': [1, 2, 3, 4]})
df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'],
 'rank': [3, 1, 4, 2]})
display('df8', 'df9', 'pd.merge(df8, df9, on="name")')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df8

 	
 	name
 	rank_x
 	rank_y

 	0
 	Bob
 	1
 	3

 	1
 	Jake
 	2
 	1

 	2
 	Lisa
 	3
 	4

 	3
 	Sue
 	4
 	2

Because the output would have two conflicting column names, the merge
function automatically appends a suffix _x or _y to make the output
columns unique. If these defaults are inappropriate, it is possible to
specify a custom suffix using the suffixes keyword:

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])

 	
 	name
 	rank_L
 	rank_R

 	0
 	Bob
 	1
 	3

 	1
 	Jake
 	2
 	1

 	2
 	Lisa
 	3
 	4

 	3
 	Sue
 	4
 	2

These suffixes work in any of the possible join patterns, and work also
if there are multiple overlapping columns.

For more information on these patterns, see
“Aggregation and Grouping”
where we dive a bit deeper into relational algebra. Also see the
Pandas “Merge,
Join and Concatenate” documentation for further discussion of these
topics.

Example: US States Data

Merge and join operations come up most often when combining data from
different sources. Here we will consider an example of some data about
US states and their populations. The data files can be found at
http://github.com/jakevdp/data-USstates/:

Following are commands to download the data
repo = "https://raw.githubusercontent.com/jakevdp/data-USstates/master"
!cd data && curl -O {repo}/state-population.csv
!cd data && curl -O {repo}/state-areas.csv
!cd data && curl -O {repo}/state-abbrevs.csv

Let’s take a look at the three datasets, using the Pandas
read_csv() function:

pop = pd.read_csv('data/state-population.csv')
areas = pd.read_csv('data/state-areas.csv')
abbrevs = pd.read_csv('data/state-abbrevs.csv')

display('pop.head()', 'areas.head()', 'abbrevs.head()')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>pop.head()

 	
 	state
 	abbreviation

 	0
 	Alabama
 	AL

 	1
 	Alaska
 	AK

 	2
 	Arizona
 	AZ

 	3
 	Arkansas
 	AR

 	4
 	California
 	CA

Given this information, say we want to compute a relatively
straightforward result: rank US states and territories by their 2010
population density. We clearly have the data here to find this result,
but we’ll have to combine the datasets to find the result.

We’ll start with a many-to-one merge that will give us the
full state name within the population DataFrame. We want to merge
based on the state/region column of pop, and the abbreviation
column of abbrevs. We’ll use
how='outer' to make sure no data is thrown
away due to mismatched labels.

merged = pd.merge(pop, abbrevs, how='outer',
 left_on='state/region', right_on='abbreviation')
merged = merged.drop('abbreviation', axis=1) # drop duplicate info
merged.head()

 	
 	state/region
 	ages
 	year
 	population
 	state

 	0
 	AL
 	under18
 	2012
 	1117489.0
 	Alabama

 	1
 	AL
 	total
 	2012
 	4817528.0
 	Alabama

 	2
 	AL
 	under18
 	2010
 	1130966.0
 	Alabama

 	3
 	AL
 	total
 	2010
 	4785570.0
 	Alabama

 	4
 	AL
 	under18
 	2011
 	1125763.0
 	Alabama

Let’s double-check whether there were any mismatches here,
which we can do by looking for rows with nulls:

merged.isnull().any()

state/region False
ages False
year False
population True
state True
dtype: bool

Some of the population info is null; let’s figure out
which these are!

merged[merged['population'].isnull()].head()

 	
 	state/region
 	ages
 	year
 	population
 	state

 	2448
 	PR
 	under18
 	1990
 	NaN
 	NaN

 	2449
 	PR
 	total
 	1990
 	NaN
 	NaN

 	2450
 	PR
 	total
 	1991
 	NaN
 	NaN

 	2451
 	PR
 	under18
 	1991
 	NaN
 	NaN

 	2452
 	PR
 	total
 	1993
 	NaN
 	NaN

It appears that all the null population values are from Puerto Rico
prior to the year 2000; this is likely due to this data not being
available from the original source.

More importantly, we see also that some of the new state entries are
also null, which means that there was no corresponding entry in the
abbrevs key! Let’s figure out which regions lack this
match:

merged.loc[merged['state'].isnull(), 'state/region'].unique()

array(['PR', 'USA'], dtype=object)

We can quickly infer the issue: our population data includes entries for
Puerto Rico (PR) and the United States as a whole (USA), while these
entries do not appear in the state abbreviation key. We can fix these
quickly by filling in appropriate entries:

merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico'
merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States'
merged.isnull().any()

state/region False
ages False
year False
population True
state False
dtype: bool

No more nulls in the state column: we’re all set!

Now we can merge the result with the area data using a similar
procedure. Examining our results, we will want to join on the state
column in both:

final = pd.merge(merged, areas, on='state', how='left')
final.head()

 	
 	state/region
 	ages
 	year
 	population
 	state
 	area (sq. mi)

 	0
 	AL
 	under18
 	2012
 	1117489.0
 	Alabama
 	52423.0

 	1
 	AL
 	total
 	2012
 	4817528.0
 	Alabama
 	52423.0

 	2
 	AL
 	under18
 	2010
 	1130966.0
 	Alabama
 	52423.0

 	3
 	AL
 	total
 	2010
 	4785570.0
 	Alabama
 	52423.0

 	4
 	AL
 	under18
 	2011
 	1125763.0
 	Alabama
 	52423.0

Again, let’s check for nulls to see if there were any
mismatches:

final.isnull().any()

state/region False
ages False
year False
population True
state False
area (sq. mi) True
dtype: bool

There are nulls in the area column; we can take a look to see which
regions were ignored here:

final['state'][final['area (sq. mi)'].isnull()].unique()

array(['United States'], dtype=object)

We see that our areas DataFrame does not contain the area of the
United States as a whole. We could insert the appropriate value (using
the sum of all state areas, for instance), but in this case
we’ll just drop the null values because the population
density of the entire United States is not relevant to our current
discussion:

final.dropna(inplace=True)
final.head()

 	
 	state/region
 	ages
 	year
 	population
 	state
 	area (sq. mi)

 	0
 	AL
 	under18
 	2012
 	1117489.0
 	Alabama
 	52423.0

 	1
 	AL
 	total
 	2012
 	4817528.0
 	Alabama
 	52423.0

 	2
 	AL
 	under18
 	2010
 	1130966.0
 	Alabama
 	52423.0

 	3
 	AL
 	total
 	2010
 	4785570.0
 	Alabama
 	52423.0

 	4
 	AL
 	under18
 	2011
 	1125763.0
 	Alabama
 	52423.0

Now we have all the data we need. To answer the question of interest,
let’s first select the portion of the data corresponding
with the year 2000, and the total population. We’ll use the
query() function to do this quickly (this requires the numexpr
package to be installed; see
“High-Performance Pandas: eval() and query()”):

data2010 = final.query("year == 2010 & ages == 'total'")
data2010.head()

 	
 	state/region
 	ages
 	year
 	population
 	state
 	area (sq. mi)

 	3
 	AL
 	total
 	2010
 	4785570.0
 	Alabama
 	52423.0

 	91
 	AK
 	total
 	2010
 	713868.0
 	Alaska
 	656425.0

 	101
 	AZ
 	total
 	2010
 	6408790.0
 	Arizona
 	114006.0

 	189
 	AR
 	total
 	2010
 	2922280.0
 	Arkansas
 	53182.0

 	197
 	CA
 	total
 	2010
 	37333601.0
 	California
 	163707.0

Now let’s compute the population density and display it in
order. We’ll start by re-indexing our data on the state, and
then compute the result:

data2010.set_index('state', inplace=True)
density = data2010['population'] / data2010['area (sq. mi)']

density.sort_values(ascending=False, inplace=True)
density.head()

state
District of Columbia 8898.897059
Puerto Rico 1058.665149
New Jersey 1009.253268
Rhode Island 681.339159
Connecticut 645.600649
dtype: float64

The result is a ranking of US states, plus Washington, DC and Puerto
Rico, in order of their 2010 population density, in residents per square
mile. We can see that by far the densest region in this dataset is
Washington, DC (i.e., the District of Columbia); among states, the
densest is New Jersey.

We can also check the end of the list:

density.tail()

state
South Dakota 10.583512
North Dakota 9.537565
Montana 6.736171
Wyoming 5.768079
Alaska 1.087509
dtype: float64

We see that the least dense state, by far, is Alaska, averaging slightly
over one resident per square mile.

This type of messy data merging is a common task when trying to answer
questions using real-world data sources. I hope that this example has
given you an idea of the ways you can combine tools we’ve
covered in order to gain insight from your data!

Aggregation and Grouping

An fundamental piece of analysis of large data is efficient
summarization: computing aggregations like sum(), mean(),
median(), min(), and max(), in which a single number summarizes
aspects of a potentially large dataset. In this section,
we’ll explore aggregations in Pandas, from simple operations
akin to what we’ve seen on NumPy arrays, to more
sophisticated operations based on the concept of a groupby.

For convenience, we’ll use the same display magic function
that we’ve seen in previous sections:

import numpy as np
import pandas as pd

class display(object):
 """Display HTML representation of multiple objects"""
 template = """<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>{0}{1}
 """
 def __init__(self, *args):
 self.args = args

 def _repr_html_(self):
 return '\n'.join(self.template.format(a, eval(a)._repr_html_())
 for a in self.args)

 def __repr__(self):
 return '\n\n'.join(a + '\n' + repr(eval(a))
 for a in self.args)

Planets Data

Here we will use the Planets dataset, available via the
Seaborn package (see
[Link to Come]). It gives information on planets that astronomers have
discovered around other stars (known as extrasolar planets or
exoplanets for short). It can be downloaded with a simple Seaborn
command:

import seaborn as sns
planets = sns.load_dataset('planets')
planets.shape

(1035, 6)

planets.head()

 	
 	method
 	number
 	orbital_period
 	mass
 	distance
 	year

 	0
 	Radial Velocity
 	1
 	269.300
 	7.10
 	77.40
 	2006

 	1
 	Radial Velocity
 	1
 	874.774
 	2.21
 	56.95
 	2008

 	2
 	Radial Velocity
 	1
 	763.000
 	2.60
 	19.84
 	2011

 	3
 	Radial Velocity
 	1
 	326.030
 	19.40
 	110.62
 	2007

 	4
 	Radial Velocity
 	1
 	516.220
 	10.50
 	119.47
 	2009

This has some details on the 1,000+ extrasolar planets discovered up to
2014.

Simple Aggregation in Pandas

Earlier, we explored some of the data aggregations available for NumPy
arrays
(“Aggregations: Min, Max, and Everything In Between”). As with a one-dimensional NumPy
array, for a Pandas Series the aggregates return a single value:

rng = np.random.RandomState(42)
ser = pd.Series(rng.rand(5))
ser

0 0.374540
1 0.950714
2 0.731994
3 0.598658
4 0.156019
dtype: float64

ser.sum()

2.811925491708157

ser.mean()

0.5623850983416314

For a DataFrame, by default the aggregates return results within each
column:

df = pd.DataFrame({'A': rng.rand(5),
 'B': rng.rand(5)})
df

 	
 	A
 	B

 	0
 	0.155995
 	0.020584

 	1
 	0.058084
 	0.969910

 	2
 	0.866176
 	0.832443

 	3
 	0.601115
 	0.212339

 	4
 	0.708073
 	0.181825

df.mean()

A 0.477888
B 0.443420
dtype: float64

By specifying the axis argument, you can instead aggregate within each
row:

df.mean(axis='columns')

0 0.088290
1 0.513997
2 0.849309
3 0.406727
4 0.444949
dtype: float64

Pandas Series and DataFrame`s include all of the common aggregates
mentioned in
<<section-0204-computation-on-arrays-aggregates>>; in addition, there is a convenience
method `describe() that computes several common aggregates for each
column and returns the result. Let’s use this on the Planets
data, for now dropping rows with missing values:

planets.dropna().describe()

 	
 	number
 	orbital_period
 	mass
 	distance
 	year

 	count
 	498.00000
 	498.000000
 	498.000000
 	498.000000
 	498.000000

 	mean
 	1.73494
 	835.778671
 	2.509320
 	52.068213
 	2007.377510

 	std
 	1.17572
 	1469.128259
 	3.636274
 	46.596041
 	4.167284

 	min
 	1.00000
 	1.328300
 	0.003600
 	1.350000
 	1989.000000

 	25%
 	1.00000
 	38.272250
 	0.212500
 	24.497500
 	2005.000000

 	50%
 	1.00000
 	357.000000
 	1.245000
 	39.940000
 	2009.000000

 	75%
 	2.00000
 	999.600000
 	2.867500
 	59.332500
 	2011.000000

 	max
 	6.00000
 	17337.500000
 	25.000000
 	354.000000
 	2014.000000

This method helps us understand the overall properties of a dataset. For
example, we see in the year column that although exoplanets were
discovered as far back as 1989, half of all planets in the dataset were
not discovered until 2010 or after. This is largely thanks to the
Kepler mission, which is a space-based telescope specifically designed
for finding eclipsing planets around other stars.

The following table summarizes some other built-in Pandas aggregations:

	Aggregation
	Description

	count()

	Total number of items

	first(), last()

	First and last item

	mean(), median()

	Mean and median

	min(), max()

	Minimum and maximum

	std(), var()

	Standard deviation and variance

	mad()

	Mean absolute deviation

	prod()

	Product of all items

	sum()

	Sum of all items

These are all methods of DataFrame and Series objects.

To go deeper into the data, however, simple aggregates are often not
enough. The next level of data summarization is the groupby operation,
which allows you to quickly and efficiently compute aggregates on
subsets of data.

GroupBy: Split, Apply, Combine

Simple aggregations can give you a flavor of your dataset, but often we
would prefer to aggregate conditionally on some label or index: this is
implemented in the so-called groupby operation. The name “group by”
comes from a command in the SQL database language, but it is perhaps
more illuminative to think of it in the terms first coined by Hadley
Wickham of Rstats fame: split, apply, combine.

Split, apply, combine

A canonical example of this split-apply-combine operation, where the
“apply” is a summation aggregation, is illustrated in this figure:

[image: image]
[Link to Come]

This illustrates what the groupby operation accomplishes:

	
The split step involves breaking up and grouping a DataFrame
depending on the value of the specified key.

	
The apply step involves computing some function, usually an
aggregate, transformation, or filtering, within the individual groups.

	
The combine step merges the results of these operations into an
output array.

While this could certainly be done manually using some combination of
the masking, aggregation, and merging commands covered earlier, an
important realization is that the intermediate splits do not need to be
explicitly instantiated. Rather, the groupby can (often) do this in a
single pass over the data, updating the sum, mean, count, min, or other
aggregate for each group along the way. The power of the groupby is
that it abstracts away these steps: the user need not think about how
the computation is done under the hood, but rather thinks about the
operation as a whole.

As a concrete example, let’s take a look at using Pandas for
the computation shown in this diagram. We’ll start by
creating the input DataFrame:

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
 'data': range(6)}, columns=['key', 'data'])
df

 	
 	key
 	data

 	0
 	A
 	0

 	1
 	B
 	1

 	2
 	C
 	2

 	3
 	A
 	3

 	4
 	B
 	4

 	5
 	C
 	5

The most basic split-apply-combine operation can be computed with the
groupby() method of `DataFrame`s, passing the name of the desired key
column:

df.groupby('key')

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x11d241e20>

Notice that what is returned is not a set of DataFrame objects, but a
DataFrameGroupBy object. This object is where the magic is: you can
think of it as a special view of the DataFrame, which is poised to dig
into the groups but does no actual computation until the aggregation is
applied. This “lazy evaluation” approach means that common aggregates
can be implemented efficiently in a way that is almost transparent to
the user.

To produce a result, we can apply an aggregate to this
DataFrameGroupBy object, which will perform the appropriate
apply/combine steps to produce the desired result:

df.groupby('key').sum()

 	
 	data

 	key
 	

 	A
 	3

 	B
 	5

 	C
 	7

The sum() method is just one possibility here; you can apply virtually
any common Pandas or NumPy aggregation function, as well as virtually
any valid DataFrame operation, as we will see in the following
discussion.

The GroupBy object

The GroupBy object is a flexible abstraction: in many ways, it can be
treated as simply a collection of `DataFrame`s, though it is doing more
sophisticated things under the hood. Let’s see some examples
using the Planets data.

Perhaps the most important operations made available by a GroupBy are
aggregate, filter, transform, and apply. We’ll
discuss each of these more fully in Filter,Transform,Apply below, but before that let’s introduce
some of the other functionality that can be used with the basic
GroupBy operation.

Column indexing

The GroupBy object supports column indexing in the same way as the
DataFrame, and returns a modified GroupBy object. For example:

planets.groupby('method')

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x11d1bc820>

planets.groupby('method')['orbital_period']

<pandas.core.groupby.generic.SeriesGroupBy object at 0x11d1bcd60>

Here we’ve selected a particular Series group from the
original DataFrame group by reference to its column name. As with the
GroupBy object, no computation is done until we call some aggregate on
the object:

planets.groupby('method')['orbital_period'].median()

method
Astrometry 631.180000
Eclipse Timing Variations 4343.500000
Imaging 27500.000000
Microlensing 3300.000000
Orbital Brightness Modulation 0.342887
Pulsar Timing 66.541900
Pulsation Timing Variations 1170.000000
Radial Velocity 360.200000
Transit 5.714932
Transit Timing Variations 57.011000
Name: orbital_period, dtype: float64

This gives an idea of the general scale of orbital periods (in days)
that each method is sensitive to.

Iteration over groups

The GroupBy object supports direct iteration over the groups,
returning each group as a Series or DataFrame:

for (method, group) in planets.groupby('method'):
 print("{0:30s} shape={1}".format(method, group.shape))

Astrometry shape=(2, 6)
Eclipse Timing Variations shape=(9, 6)
Imaging shape=(38, 6)
Microlensing shape=(23, 6)
Orbital Brightness Modulation shape=(3, 6)
Pulsar Timing shape=(5, 6)
Pulsation Timing Variations shape=(1, 6)
Radial Velocity shape=(553, 6)
Transit shape=(397, 6)
Transit Timing Variations shape=(4, 6)

This can be useful for manual inspection of groups for the sake of
debugging, but it is often much faster to use the built-in apply
functionality, which we will discuss momentarily.

Dispatch methods

Through some Python class magic, any method not explicitly implemented
by the GroupBy object will be passed through and called on the groups,
whether they are DataFrame or Series objects. For example, the
describe() method is equivalent to calling describe() on the
DataFrame representing each group:

planets.groupby('method')['year'].describe().unstack()

 method
count Astrometry 2.0
 Eclipse Timing Variations 9.0
 Imaging 38.0
 Microlensing 23.0
 Orbital Brightness Modulation 3.0
 ...
max Pulsar Timing 2011.0
 Pulsation Timing Variations 2007.0
 Radial Velocity 2014.0
 Transit 2014.0
 Transit Timing Variations 2014.0
Length: 80, dtype: float64

Looking at this table helps us to better understand the data: for
example, the vast majority of planets until 2014 were discovered by the
Radial Velocity and Transit methods, though the latter method became
common more recently. The newest methods seem to be Transit Timing
Variation and Orbital Brightness Modulation, which were not used to
discover a new planet until 2011.

Notice that these dispatch methods are applied to each individual
group, and the results are then combined within GroupBy and returned.
Again, any valid DataFrame/Series method can be called in a similar
manner on the corresponding GroupBy object.

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine
operation, but there are more options available. In particular,
GroupBy objects have aggregate(), filter(), transform(), and
apply() methods that efficiently implement a variety of useful
operations before combining the grouped data.

For the purpose of the following subsections, we’ll use this
DataFrame:

rng = np.random.RandomState(0)
df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],
 'data1': range(6),
 'data2': rng.randint(0, 10, 6)},
 columns = ['key', 'data1', 'data2'])
df

 	
 	key
 	data1
 	data2

 	0
 	A
 	0
 	5

 	1
 	B
 	1
 	0

 	2
 	C
 	2
 	3

 	3
 	A
 	3
 	3

 	4
 	B
 	4
 	7

 	5
 	C
 	5
 	9

Aggregation

We’re now familiar with GroupBy aggregations with sum(),
median(), and the like, but the aggregate() method allows for even
more flexibility. It can take a string, a function, or a list thereof,
and compute all the aggregates at once. Here is a quick example
combining all these:

df.groupby('key').aggregate(['min', np.median, max])

 	
 	data1
 	data2

 	
 	min
 	median
 	max
 	min
 	median
 	max

 	key
 	
 	
 	
 	
 	
 	

 	A
 	0
 	1.5
 	3
 	3
 	4.0
 	5

 	B
 	1
 	2.5
 	4
 	0
 	3.5
 	7

 	C
 	2
 	3.5
 	5
 	3
 	6.0
 	9

Another common pattern is to pass a dictionary mapping column names to
operations to be applied on that column:

df.groupby('key').aggregate({'data1': 'min',
 'data2': 'max'})

 	
 	data1
 	data2

 	key
 	
 	

 	A
 	0
 	5

 	B
 	1
 	7

 	C
 	2
 	9

Filtering

A filtering operation allows you to drop data based on the group
properties. For example, we might want to keep all groups in which the
standard deviation is larger than some critical value:

def filter_func(x):
 return x['data2'].std() > 4

display('df', "df.groupby('key').std()",
 "df.groupby('key').filter(filter_func)")

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df

 	
 	key
 	data1
 	data2

 	1
 	B
 	1
 	0

 	2
 	C
 	2
 	3

 	4
 	B
 	4
 	7

 	5
 	C
 	5
 	9

The filter function should return a Boolean value specifying whether the
group passes the filtering. Here because group A does not have a
standard deviation greater than 4, it is dropped from the result.

Transformation

While aggregation must return a reduced version of the data,
transformation can return some transformed version of the full data to
recombine. For such a transformation, the output is the same shape as
the input. A common example is to center the data by subtracting the
group-wise mean:

df.groupby('key').transform(lambda x: x - x.mean())

 	
 	data1
 	data2

 	0
 	-1.5
 	1.0

 	1
 	-1.5
 	-3.5

 	2
 	-1.5
 	-3.0

 	3
 	1.5
 	-1.0

 	4
 	1.5
 	3.5

 	5
 	1.5
 	3.0

The apply() method

The apply() method lets you apply an arbitrary function to the group
results. The function should take a DataFrame, and return either a
Pandas object (e.g., DataFrame, Series) or a scalar; the behavior of
the combine step will be tailored to the type of output returned.

For example, here is an apply() that normalizes the first column by
the sum of the second:

def norm_by_data2(x):
 # x is a DataFrame of group values
 x['data1'] /= x['data2'].sum()
 return x

df.groupby('key').apply(norm_by_data2)

 	
 	key
 	data1
 	data2

 	0
 	A
 	0.000000
 	5

 	1
 	B
 	0.142857
 	0

 	2
 	C
 	0.166667
 	3

 	3
 	A
 	0.375000
 	3

 	4
 	B
 	0.571429
 	7

 	5
 	C
 	0.416667
 	9

apply() within a GroupBy is flexible: the only criterion is that the
function takes a DataFrame and returns a Pandas object or scalar; what
you do inbetween is up to you!

Specifying the split key

In the simple examples presented before, we split the DataFrame on a
single column name. This is just one of many options by which the groups
can be defined, and we’ll go through some other options for
group specification here.

A list, array, series, or index providing the grouping keys

The key can be any series or list with a length matching that of the
DataFrame. For example:

L = [0, 1, 0, 1, 2, 0]
df.groupby(L).sum()

 	
 	data1
 	data2

 	0
 	7
 	17

 	1
 	4
 	3

 	2
 	4
 	7

Of course, this means there’s another, more verbose way of
accomplishing the df.groupby('key') from
before:

df.groupby(df['key']).sum()

 	
 	data1
 	data2

 	key
 	
 	

 	A
 	3
 	8

 	B
 	5
 	7

 	C
 	7
 	12

A dictionary or series mapping index to group

Another method is to provide a dictionary that maps index values to the
group keys:

df2 = df.set_index('key')
mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'}
display('df2', 'df2.groupby(mapping).sum()')

<div style="float: left; padding: 10px;">
 <p style='font-family:"Courier New", Courier, monospace'>df2

 	
 	data1
 	data2

 	key
 	
 	

 	consonant
 	12
 	19

 	vowel
 	3
 	8

Any Python function

Similar to mapping, you can pass any Python function that will input the
index value and output the group:

df2.groupby(str.lower).mean()

 	
 	data1
 	data2

 	key
 	
 	

 	a
 	1.5
 	4.0

 	b
 	2.5
 	3.5

 	c
 	3.5
 	6.0

A list of valid keys

Further, any of the preceding key choices can be combined to group on a
multi-index:

df2.groupby([str.lower, mapping]).mean()

 	
 	
 	data1
 	data2

 	key
 	key
 	
 	

 	a
 	vowel
 	1.5
 	4.0

 	b
 	consonant
 	2.5
 	3.5

 	c
 	consonant
 	3.5
 	6.0

Grouping example

As an example of this, in a couple lines of Python code we can put all
these together and count discovered planets by method and by decade:

decade = 10 * (planets['year'] // 10)
decade = decade.astype(str) + 's'
decade.name = 'decade'
planets.groupby(['method', decade])['number'].sum().unstack().fillna(0)

 	decade
 	1980s
 	1990s
 	2000s
 	2010s

 	method
 	
 	
 	
 	

 	Astrometry
 	0.0
 	0.0
 	0.0
 	2.0

 	Eclipse Timing Variations
 	0.0
 	0.0
 	5.0
 	10.0

 	Imaging
 	0.0
 	0.0
 	29.0
 	21.0

 	Microlensing
 	0.0
 	0.0
 	12.0
 	15.0

 	Orbital Brightness Modulation
 	0.0
 	0.0
 	0.0
 	5.0

 	Pulsar Timing
 	0.0
 	9.0
 	1.0
 	1.0

 	Pulsation Timing Variations
 	0.0
 	0.0
 	1.0
 	0.0

 	Radial Velocity
 	1.0
 	52.0
 	475.0
 	424.0

 	Transit
 	0.0
 	0.0
 	64.0
 	712.0

 	Transit Timing Variations
 	0.0
 	0.0
 	0.0
 	9.0

This shows the power of combining many of the operations
we’ve discussed up to this point when looking at realistic
datasets. We quickly gain a coarse understanding of when and how
extrasolar planets were detected in the years after the first discovery.

Here I would suggest digging into these few lines of code, and
evaluating the individual steps to make sure you understand exactly what
they are doing to the result. It’s certainly a somewhat
complicated example, but understanding these pieces will give you the
means to similarly explore your own data.

Pivot Tables

We have seen how the groupby abstraction lets us explore relationships
within a dataset. A pivot table is a similar operation that is
commonly seen in spreadsheets and other programs that operate on tabular
data. The pivot table takes simple column-wise data as input, and groups
the entries into a two-dimensional table that provides a
multidimensional summarization of the data. The difference between pivot
tables and GroupBy can sometimes cause confusion; it helps me to think
of pivot tables as essentially a multidimensional version of GroupBy
aggregation. That is, you split-apply-combine, but both the split and
the combine happen across not a one-dimensional index, but across a
two-dimensional grid.

Motivating Pivot Tables

For the examples in this section, we’ll use the database of
passengers on the Titanic, available through the Seaborn library (see
[Link to Come]):

import numpy as np
import pandas as pd
import seaborn as sns
titanic = sns.load_dataset('titanic')

titanic.head()

 	
 	survived
 	pclass
 	sex
 	age
 	sibsp
 	parch
 	fare
 	embarked
 	class
 	who
 	adult_male
 	deck
 	embark_town
 	alive
 	alone

 	0
 	0
 	3
 	male
 	22.0
 	1
 	0
 	7.2500
 	S
 	Third
 	man
 	True
 	NaN
 	Southampton
 	no
 	False

 	1
 	1
 	1
 	female
 	38.0
 	1
 	0
 	71.2833
 	C
 	First
 	woman
 	False
 	C
 	Cherbourg
 	yes
 	False

 	2
 	1
 	3
 	female
 	26.0
 	0
 	0
 	7.9250
 	S
 	Third
 	woman
 	False
 	NaN
 	Southampton
 	yes
 	True

 	3
 	1
 	1
 	female
 	35.0
 	1
 	0
 	53.1000
 	S
 	First
 	woman
 	False
 	C
 	Southampton
 	yes
 	False

 	4
 	0
 	3
 	male
 	35.0
 	0
 	0
 	8.0500
 	S
 	Third
 	man
 	True
 	NaN
 	Southampton
 	no
 	True

This contains a number of data points on each passenger of that
ill-fated voyage, including gender, age, class, fare paid, and much
more.

Pivot Tables by Hand

To start learning more about this data, we might begin by grouping
according to gender, survival status, or some combination thereof. If
you have read the previous section, you might be tempted to apply a
groupby operation–for example, let’s look at survival rate
by gender:

titanic.groupby('sex')[['survived']].mean()

 	
 	survived

 	sex
 	

 	female
 	0.742038

 	male
 	0.188908

This gives us some initial insight: overall, three of every four females
on board survived, while only one in five males survived!

This is useful, but we might like to go one step deeper and look at
survival by both sex and, say, class. Using the vocabulary of groupby,
we might proceed using something like this: we group by class and
gender, select survival, apply a mean aggregate, combine the
resulting groups, and then unstack the hierarchical index to reveal
the hidden multidimensionality. In code:

titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack()

 	class
 	First
 	Second
 	Third

 	sex
 	
 	
 	

 	female
 	0.968085
 	0.921053
 	0.500000

 	male
 	0.368852
 	0.157407
 	0.135447

This gives us a better idea of how both gender and class affected
survival, but the code is starting to look a bit garbled. While each
step of this pipeline makes sense in light of the tools
we’ve previously discussed, the long string of code is not
particularly easy to read or use. This two-dimensional groupby is common
enough that Pandas includes a convenience routine, pivot_table, which
succinctly handles this type of multi-dimensional aggregation.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the
DataFrame.pivot_table method.

titanic.pivot_table('survived', index='sex', columns='class')

 	class
 	First
 	Second
 	Third

 	sex
 	
 	
 	

 	female
 	0.968085
 	0.921053
 	0.500000

 	male
 	0.368852
 	0.157407
 	0.135447

This is eminently more readable than the manual groupby approach, and
produces the same result. As you might expect of an early 20th-century
transatlantic cruise, the survival gradient favors both women and higher
classes. First-class women survived with near certainty (hi, Rose!),
while only one in ten third-class men survived (sorry, Jack!).

Multi-level pivot tables

Just as in the groupby, the grouping in pivot tables can be specified
with multiple levels, and via a number of options. For example, we might
be interested in looking at age as a third dimension. We’ll
bin the age using the pd.cut function:

age = pd.cut(titanic['age'], [0, 18, 80])
titanic.pivot_table('survived', ['sex', age], 'class')

 	
 	class
 	First
 	Second
 	Third

 	sex
 	age
 	
 	
 	

 	female
 	(0, 18]
 	0.909091
 	1.000000
 	0.511628

 	(18, 80]
 	0.972973
 	0.900000
 	0.423729

 	male
 	(0, 18]
 	0.800000
 	0.600000
 	0.215686

 	(18, 80]
 	0.375000
 	0.071429
 	0.133663

We can apply the same strategy when working with the columns as well;
let’s add info on the fare paid using pd.qcut to
automatically compute quantiles:

fare = pd.qcut(titanic['fare'], 2)
titanic.pivot_table('survived', ['sex', age], [fare, 'class'])

 	
 	fare
 	(-0.001, 14.454]
 	(14.454, 512.329]

 	
 	class
 	First
 	Second
 	Third
 	First
 	Second
 	Third

 	sex
 	age
 	
 	
 	
 	
 	
 	

 	female
 	(0, 18]
 	NaN
 	1.000000
 	0.714286
 	0.909091
 	1.000000
 	0.318182

 	(18, 80]
 	NaN
 	0.880000
 	0.444444
 	0.972973
 	0.914286
 	0.391304

 	male
 	(0, 18]
 	NaN
 	0.000000
 	0.260870
 	0.800000
 	0.818182
 	0.178571

 	(18, 80]
 	0.0
 	0.098039
 	0.125000
 	0.391304
 	0.030303
 	0.192308

The result is a four-dimensional aggregation with hierarchical indices
(see “Hierarchical Indexing”),
shown in a grid demonstrating the relationship between the values.

Additional pivot table options

The full call signature of the DataFrame.pivot_table method is as
follows:

call signature as of Pandas 1.3.5
DataFrame.pivot_table(data, values=None, index=None, columns=None,
 aggfunc='mean', fill_value=None, margins=False,
 dropna=True, margins_name='All', observed=False,
 sort=True)

We’ve already seen examples of the first three arguments;
here we’ll take a quick look at some of the remaining ones.
Two of the options, fill_value and dropna, have to do with missing
data and are fairly straightforward; we will not show examples of them
here.

The aggfunc keyword controls what type of aggregation is applied,
which is a mean by default. As in the GroupBy, the aggregation
specification can be a string representing one of several common choices
(e.g., 'sum',
'mean', 'count',
'min', 'max', etc.)
or a function that implements an aggregation (e.g., np.sum(), min(),
sum(), etc.). Additionally, it can be specified as a dictionary
mapping a column to any of the above desired options:

titanic.pivot_table(index='sex', columns='class',
 aggfunc={'survived':sum, 'fare':'mean'})

 	
 	fare
 	survived

 	class
 	First
 	Second
 	Third
 	First
 	Second
 	Third

 	sex
 	
 	
 	
 	
 	
 	

 	female
 	106.125798
 	21.970121
 	16.118810
 	91
 	70
 	72

 	male
 	67.226127
 	19.741782
 	12.661633
 	45
 	17
 	47

Notice also here that we’ve omitted the values keyword;
when specifying a mapping for aggfunc, this is determined
automatically.

At times it’s useful to compute totals along each grouping.
This can be done via the margins keyword:

titanic.pivot_table('survived', index='sex', columns='class', margins=True)

 	class
 	First
 	Second
 	Third
 	All

 	sex
 	
 	
 	
 	

 	female
 	0.968085
 	0.921053
 	0.500000
 	0.742038

 	male
 	0.368852
 	0.157407
 	0.135447
 	0.188908

 	All
 	0.629630
 	0.472826
 	0.242363
 	0.383838

Here this automatically gives us information about the class-agnostic
survival rate by gender, the gender-agnostic survival rate by class, and
the overall survival rate of 38%. The margin label can be specified with
the margins_name keyword, which defaults to "All".

Example: Birthrate Data

As a more interesting example, let’s take a look at the
freely available data on births in the United States, provided by the
Centers for Disease Control (CDC). This data can be found at
https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv
(this dataset has been analyzed rather extensively by Andrew Gelman and
his group; see, for example,
this
blog post):

shell command to download the data:
!cd data && curl -O \
https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv

births = pd.read_csv('data/births.csv')

Taking a look at the data, we see that it’s relatively
simple–it contains the number of births grouped by date and gender:

births.head()

 	
 	year
 	month
 	day
 	gender
 	births

 	0
 	1969
 	1
 	1.0
 	F
 	4046

 	1
 	1969
 	1
 	1.0
 	M
 	4440

 	2
 	1969
 	1
 	2.0
 	F
 	4454

 	3
 	1969
 	1
 	2.0
 	M
 	4548

 	4
 	1969
 	1
 	3.0
 	F
 	4548

We can start to understand this data a bit more by using a pivot table.
Let’s add a decade column, and take a look at male and
female births as a function of decade:

births['decade'] = 10 * (births['year'] // 10)
births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')

 	gender
 	F
 	M

 	decade
 	
 	

 	1960
 	1753634
 	1846572

 	1970
 	16263075
 	17121550

 	1980
 	18310351
 	19243452

 	1990
 	19479454
 	20420553

 	2000
 	18229309
 	19106428

We see that male births outnumber female births in every decade. To see
this trend a bit more clearly, we can use the built-in plotting tools in
Pandas to visualize the total number of births by year (see
[Link to Come]
for a discussion of plotting with Matplotlib):

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
births.pivot_table(
 'births', index='year', columns='gender', aggfunc='sum').plot()
plt.ylabel('total births per year');

[image:]

With a simple pivot table and plot() method, we can immediately see
the annual trend in births by gender. By eye, it appears that over the
past 50 years male births have outnumbered female births by around 5%.

Further data exploration

Though this doesn’t necessarily relate to the pivot table,
there are a few more interesting features we can pull out of this
dataset using the Pandas tools covered up to this point. We must start
by cleaning the data a bit, removing outliers caused by mistyped dates
(e.g., June 31st) or missing values (e.g., June 99th). One easy way to
remove these all at once is to cut outliers; we’ll do this
via a robust sigma-clipping operation:

quartiles = np.percentile(births['births'], [25, 50, 75])
mu = quartiles[1]
sig = 0.74 * (quartiles[2] - quartiles[0])

This final line is a robust estimate of the sample standard deviation,
where the 0.74 comes from the interquartile range of a Gaussian
distribution (You can learn more about sigma-clipping operations in a
book I coauthored with Željko Ivezić, Andrew J. Connolly, and Alexander
Gray:
“Statistics,
Data Mining, and Machine Learning in Astronomy” (Princeton University
Press, 2020)).

With this we can use the query() method (discussed further in
“High-Performance Pandas: eval() and query()”) to filter-out rows with births outside these
values:

births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)')

Next we set the day column to integers; previously it had been a
string because some columns in the dataset contained the value
'null':

set 'day' column to integer; it originally was a string due to nulls
births['day'] = births['day'].astype(int)

Finally, we can combine the day, month, and year to create a Date index
(see “Working with Time Series”). This allows us to quickly compute the weekday corresponding to
each row:

create a datetime index from the year, month, day
births.index = pd.to_datetime(10000 * births.year +
 100 * births.month +
 births.day, format='%Y%m%d')

births['dayofweek'] = births.index.dayofweek

Using this we can plot births by weekday for several decades:

import matplotlib.pyplot as plt
import matplotlib as mpl

births.pivot_table('births', index='dayofweek',
 columns='decade', aggfunc='mean').plot()
plt.gca().set(xticks=range(7),
 xticklabels=['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day');

[image:]

Apparently births are slightly less common on weekends than on weekdays!
Note that the 1990s and 2000s are missing because the CDC data contains
only the month of birth starting in 1989.

Another intersting view is to plot the mean number of births by the day
of the year. Let’s first group the data by month and day
separately:

births_by_date = births.pivot_table('births',
 [births.index.month, births.index.day])
births_by_date.head()

 	
 	
 	births

 	1
 	1
 	4009.225

 	2
 	4247.400

 	3
 	4500.900

 	4
 	4571.350

 	5
 	4603.625

The result is a multi-index over months and days. To make this
visualizable, let’s turn these months and days into a date
by associating them with a dummy year variable (making sure to choose a
leap year so February 29th is correctly handled!)

from datetime import datetime
births_by_date.index = [datetime(2012, month, day)
 for (month, day) in births_by_date.index]
births_by_date.head()

 	
 	births

 	2012-01-01
 	4009.225

 	2012-01-02
 	4247.400

 	2012-01-03
 	4500.900

 	2012-01-04
 	4571.350

 	2012-01-05
 	4603.625

Focusing on the month and day only, we now have a time series reflecting
the average number of births by date of the year. From this, we can use
the plot method to plot the data. It reveals some interesting trends:

Plot the results
fig, ax = plt.subplots(figsize=(12, 4))
births_by_date.plot(ax=ax);

[image:]

In particular, the striking feature of this graph is the dip in
birthrate on US holidays (e.g., Independence Day, Labor Day,
Thanksgiving, Christmas, New Year’s Day) although this
likely reflects trends in scheduled/induced births rather than some deep
psychosomatic effect on natural births. For more discussion on this
trend, see the analysis and links in
Andrew
Gelman’s blog post on the subject. We’ll return
to this figure in
04.09-Text-and-Annotation.ipynb#Example:-Effect-of-Holidays-on-US-Births[Example:-Effect-of-Holidays-on-US-Births],
where we will use Matplotlib’s tools to annotate this plot.

Looking at this short example, you can see that many of the Python and
Pandas tools we’ve seen to this point can be combined and
used to gain insight from a variety of datasets. We will see some more
sophisticated applications of these data manipulations in future
sections!

Vectorized String Operations

One strength of Python is its relative ease in handling and manipulating
string data. Pandas builds on this and provides a comprehensive set of
vectorized string operations that are an important part of the type of
munging required when working with (read: cleaning up) real-world data.
In this section, we’ll walk through some of the Pandas
string operations, and then take a look at using them to partially clean
up a very messy dataset of recipes collected from the Internet.

Introducing Pandas String Operations

We saw in previous sections how tools like NumPy and Pandas generalize
arithmetic operations so that we can easily and quickly perform the same
operation on many array elements. For example:

import numpy as np
x = np.array([2, 3, 5, 7, 11, 13])
x * 2

array([4, 6, 10, 14, 22, 26])

This vectorization of operations simplifies the syntax of operating on
arrays of data: we no longer have to worry about the size or shape of
the array, but just about what operation we want done. For arrays of
strings, NumPy does not provide such simple access, and thus
you’re stuck using a more verbose loop syntax:

data = ['peter', 'Paul', 'MARY', 'gUIDO']
[s.capitalize() for s in data]

['Peter', 'Paul', 'Mary', 'Guido']

This is perhaps sufficient to work with some data, but it will break if
there are any missing values, so this approach requires putting in extra
checks:

data = ['peter', 'Paul', None, 'MARY', 'gUIDO']
[s if s is None else s.capitalize() for s in data]

['Peter', 'Paul', None, 'Mary', 'Guido']

This kind of manual approach is not only verbose and inconvenient, it
can be error-prone.

Pandas includes features to address both this need for vectorized string
operations and for correctly handling missing data via the str
attribute of Pandas Series and Index objects containing strings. So, for
example, if we create a Pandas series with this data we can directly
call the str.capitalize() method, which has missing-value handling
built-in:

import pandas as pd
names = pd.Series(data)
names.str.capitalize()

0 Peter
1 Paul
2 None
3 Mary
4 Guido
dtype: object

Using tab completion on this str attribute will list all the
vectorized string methods available to Pandas.

Tables of Pandas String Methods

If you have a good understanding of string manipulation in Python, most
of Pandas string syntax is intuitive enough that it’s
probably sufficient to just list a table of available methods; we will
start with that here, before diving deeper into a few of the subtleties.
The examples in this section use the following Series object:

monte = pd.Series(['Graham Chapman', 'John Cleese', 'Terry Gilliam',
 'Eric Idle', 'Terry Jones', 'Michael Palin'])

Methods similar to Python string methods

Nearly all Python’s built-in string methods are mirrored by
a Pandas vectorized string method. Here is a list of Pandas str
methods that mirror Python string methods:

	len()

	lower()

	translate()

	islower()

	ljust()

	upper()

	startswith()

	isupper()

	rjust()

	find()

	endswith()

	isnumeric()

	center()

	rfind()

	isalnum()

	isdecimal()

	zfill()

	index()

	isalpha()

	split()

	strip()

	rindex()

	isdigit()

	rsplit()

	rstrip()

	capitalize()

	isspace()

	partition()

	lstrip()

	swapcase()

	istitle()

	rpartition()

Notice that these have various return values. Some, like lower(),
return a series of strings:

monte.str.lower()

0 graham chapman
1 john cleese
2 terry gilliam
3 eric idle
4 terry jones
5 michael palin
dtype: object

But some others return numbers:

monte.str.len()

0 14
1 11
2 13
3 9
4 11
5 13
dtype: int64

Or Boolean values:

monte.str.startswith('T')

0 False
1 False
2 True
3 False
4 True
5 False
dtype: bool

Still others return lists or other compound values for each element:

monte.str.split()

0 [Graham, Chapman]
1 [John, Cleese]
2 [Terry, Gilliam]
3 [Eric, Idle]
4 [Terry, Jones]
5 [Michael, Palin]
dtype: object

We’ll see further manipulations of this kind of
series-of-lists object as we continue our discussion.

Methods using regular expressions

In addition, there are several methods that accept regular expressions
to examine the content of each string element, and follow some of the
API conventions of Python’s built-in re module:

	Method
	Description

	match()

	Call re.match() on each element, returning a boolean.

	extract()

	Call re.match() on each element, returning matched
groups as strings.

	findall()

	Call re.findall() on each element

	replace()

	Replace occurrences of pattern with some other string

	contains()

	Call re.search() on each element, returning a boolean

	count()

	Count occurrences of pattern

	split()

	Equivalent to str.split(), but accepts regexps

	rsplit()

	Equivalent to str.rsplit(), but accepts regexps

With these, you can do a wide range of interesting operations. For
example, we can extract the first name from each by asking for a
contiguous group of characters at the beginning of each element:

monte.str.extract('([A-Za-z]+)', expand=False)

0 Graham
1 John
2 Terry
3 Eric
4 Terry
5 Michael
dtype: object

Or we can do something more complicated, like finding all names that
start and end with a consonant, making use of the start-of-string (^)
and end-of-string ($) regular expression characters:

monte.str.findall(r'^[^AEIOU].*[^aeiou]$')

0 [Graham Chapman]
1 []
2 [Terry Gilliam]
3 []
4 [Terry Jones]
5 [Michael Palin]
dtype: object

The ability to concisely apply regular expressions across Series or
Dataframe entries opens up many possibilities for analysis and
cleaning of data.

Miscellaneous methods

Finally, there are some miscellaneous methods that enable other
convenient operations:

	Method
	Description

	get()

	Index each element

	slice()

	Slice each element

	slice_replace()

	Replace slice in each element with passed value

	cat()

	Concatenate strings

	repeat()

	Repeat values

	normalize()

	Return Unicode form of string

	pad()

	Add whitespace to left, right, or both sides of strings

	wrap()

	Split long strings into lines with length less than a given
width

	join()

	Join strings in each element of the Series with passed
separator

	get_dummies()

	extract dummy variables as a dataframe

Vectorized item access and slicing

The get() and slice() operations, in particular, enable vectorized
element access from each array. For example, we can get a slice of the
first three characters of each array using str.slice(0, 3). Note that
this behavior is also available through Python’s normal
indexing syntax–for example, df.str.slice(0, 3) is equivalent to
df.str[0:3]:

monte.str[0:3]

0 Gra
1 Joh
2 Ter
3 Eri
4 Ter
5 Mic
dtype: object

Indexing via df.str.get(i) and df.str[i] are likewise similar.

These indexing methos also let you access elements of arrays returned by
split(). For example, to extract the last name of each entry, we can
combine split() with str indexing:

monte.str.split().str[-1]

0 Chapman
1 Cleese
2 Gilliam
3 Idle
4 Jones
5 Palin
dtype: object

Indicator variables

Another method that requires a bit of extra explanation is the
get_dummies() method. This is useful when your data has a column
containing some sort of coded indicator. For example, we might have a
dataset that contains information in the form of codes, such as A="born
in America,” B="born in the United Kingdom,” C="likes cheese,”
D="likes spam”:

full_monte = pd.DataFrame({'name': monte,
 'info': ['B|C|D', 'B|D', 'A|C',
 'B|D', 'B|C', 'B|C|D']})
full_monte

 	
 	name
 	info

 	0
 	Graham Chapman
 	B|C|D

 	1
 	John Cleese
 	B|D

 	2
 	Terry Gilliam
 	A|C

 	3
 	Eric Idle
 	B|D

 	4
 	Terry Jones
 	B|C

 	5
 	Michael Palin
 	B|C|D

The get_dummies() routine lets you split-out these indicator variables
into a DataFrame:

full_monte['info'].str.get_dummies('|')

 	
 	A
 	B
 	C
 	D

 	0
 	0
 	1
 	1
 	1

 	1
 	0
 	1
 	0
 	1

 	2
 	1
 	0
 	1
 	0

 	3
 	0
 	1
 	0
 	1

 	4
 	0
 	1
 	1
 	0

 	5
 	0
 	1
 	1
 	1

With these operations as building blocks, you can construct an endless
range of string processing procedures when cleaning your data.

We won’t dive further into these methods here, but I
encourage you to read through
Working
with Text Data in the Pandas online documentation, or to refer to the
resources listed in “Further Resources”.

Example: Recipe Database

These vectorized string operations become most useful in the process of
cleaning up messy, real-world data. Here I’ll walk through
an example of that, using an open recipe database compiled from various
sources on the Web. Our goal will be to parse the recipe data into
ingredient lists, so we can quickly find a recipe based on some
ingredients we have on hand.

The scripts used to compile this can be found at
https://github.com/fictivekin/openrecipes, and the link to the most
recent version of the database is found there as well.

This database is about 30 MB, and can be downloaded and unzipped with
these commands:

repo = "https://raw.githubusercontent.com/jakevdp/open-recipe-data/master"
!cd data && curl -O {repo}/recipeitems.json.gz
!gunzip data/recipeitems.json.gz

The database is in JSON format, so we will use pd.read_json to read it
(lines=True is required for this dataset because each line of the file
is a JSON entry):

recipes = pd.read_json('data/recipeitems.json', lines=True)
recipes.shape

(173278, 17)

We see there are nearly 175,000 recipes, and 17 columns.
Let’s take a look at one row to see what we have:

recipes.iloc[0]

_id {'$oid': '5160756b96cc62079cc2db15'}
name Drop Biscuits and Sausage Gravy
ingredients Biscuits\n3 cups All-purpose Flour\n2 Tablespo...
url http://thepioneerwoman.com/cooking/2013/03/dro...
image http://static.thepioneerwoman.com/cooking/file...
ts {'$date': 1365276011104}
cookTime PT30M
source thepioneerwoman
recipeYield 12
datePublished 2013-03-11
prepTime PT10M
description Late Saturday afternoon, after Marlboro Man ha...
totalTime NaN
creator NaN
recipeCategory NaN
dateModified NaN
recipeInstructions NaN
Name: 0, dtype: object

There is a lot of information there, but much of it is in a very messy
form, as is typical of data scraped from the Web. In particular, the
ingredient list is in string format; we’re going to have to
carefully extract the information we’re interested in.
Let’s start by taking a closer look at the ingredients:

recipes.ingredients.str.len().describe()

count 173278.000000
mean 244.617926
std 146.705285
min 0.000000
25% 147.000000
50% 221.000000
75% 314.000000
max 9067.000000
Name: ingredients, dtype: float64

The ingredient lists average 250 characters long, with a minimum of 0
and a maximum of nearly 10,000 characters!

Just out of curiousity, let’s see which recipe has the
longest ingredient list:

recipes.name[np.argmax(recipes.ingredients.str.len())]

'Carrot Pineapple Spice & Brownie Layer Cake with Whipped Cream & Cream
 > Cheese Frosting and Marzipan Carrots'

We can do other aggregate explorations; for example, let’s
see how many of the recipes are for breakfast food (using regular
expression syntax to match both lowercase and capital):

recipes.description.str.contains('[Bb]reakfast').sum()

3524

Or how many of the recipes list cinnamon as an ingredient:

recipes.ingredients.str.contains('[Cc]innamon').sum()

10526

We could even look to see whether any recipes misspell the ingredient as
“cinamon”:

recipes.ingredients.str.contains('[Cc]inamon').sum()

11

This is the type of data exploration that is possible with Pandas string
tools. It is data munging like this that Python really excels at.

A simple recipe recommender

Let’s go a bit further, and start working on a simple recipe
recommendation system: given a list of ingredients, find a recipe that
uses all those ingredients. While conceptually straightforward, the task
is complicated by the heterogeneity of the data: there is no easy
operation, for example, to extract a clean list of ingredients from each
row. So we will cheat a bit: we’ll start with a list of
common ingredients, and simply search to see whether they are in each
recipe’s ingredient list. For simplicity, let’s
just stick with herbs and spices for the time being:

spice_list = ['salt', 'pepper', 'oregano', 'sage', 'parsley',
 'rosemary', 'tarragon', 'thyme', 'paprika', 'cumin']

We can then build a Boolean DataFrame consisting of True and False
values, indicating whether this ingredient appears in the list:

import re
spice_df = pd.DataFrame({
 spice: recipes.ingredients.str.contains(spice, re.IGNORECASE)
 for spice in spice_list})
spice_df.head()

 	
 	salt
 	pepper
 	oregano
 	sage
 	parsley
 	rosemary
 	tarragon
 	thyme
 	paprika
 	cumin

 	0
 	False
 	False
 	False
 	True
 	False
 	False
 	False
 	False
 	False
 	False

 	1
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False

 	2
 	True
 	True
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	True

 	3
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False

 	4
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False
 	False

Now, as an example, let’s say we’d like to find
a recipe that uses parsley, paprika, and tarragon. We can compute this
very quickly using the query() method of `DataFrame`s, discussed in
“High-Performance Pandas: eval() and query()”:

selection = spice_df.query('parsley & paprika & tarragon')
len(selection)

10

We find only 10 recipes with this combination; let’s use the
index returned by this selection to discover the names of the recipes
that have this combination:

recipes.name[selection.index]

2069 All cremat with a Little Gem, dandelion and wa...
74964 Lobster with Thermidor butter
93768 Burton's Southern Fried Chicken with White Gravy
113926 Mijo's Slow Cooker Shredded Beef
137686 Asparagus Soup with Poached Eggs
140530 Fried Oyster Po’boys
158475 Lamb shank tagine with herb tabbouleh
158486 Southern fried chicken in buttermilk
163175 Fried Chicken Sliders with Pickles + Slaw
165243 Bar Tartine Cauliflower Salad
Name: name, dtype: object

Now that we have narrowed down our recipe selection from 175,000 to 10,
we are in a position to make a more informed decision about what
we’d like to cook for dinner.

Going further with recipes

Hopefully this example has given you a bit of a flavor (heh) for the
types of data cleaning operations that are efficiently enabled by Pandas
string methods. Of course, building a very robust recipe recommendation
system would require a lot more work! Extracting full ingredient lists
from each recipe would be an important piece of the task; unfortunately,
the wide variety of formats used makes this a relatively time-consuming
process. This points to the truism that in data science, cleaning and
munging of real-world data often comprises the majority of the work, and
Pandas provides the tools that can help you do this efficiently.

Working with Time Series

Pandas was originally developed in the context of financial modeling, so
as you might expect, it contains a fairly extensive set of tools for
working with dates, times, and time-indexed data. Date and time data
comes in a few flavors, which we will discuss here:

	
Time stamps reference particular moments in time (e.g., July 4th,
2021 at 7:00am).

	
Time intervals and periods reference a length of time between a
particular beginning and end point; for example, the month of June,

	
Periods usually reference a special case of time intervals in
which each interval is of uniform length and does not overlap (e.g., 24
hour-long periods comprising days).

	
Time deltas or durations reference an exact length of time (e.g.,
a duration of 22.56 seconds).

In this section, we will introduce how to work with each of these types
of date/time data in Pandas. This short section is by no means a
complete guide to the time series tools available in Python or Pandas,
but instead is intended as a broad overview of how you as a user should
approach working with time series. We will start with a brief discussion
of tools for dealing with dates and times in Python, before moving more
specifically to a discussion of the tools provided by Pandas. After
listing some resources that go into more depth, we will review some
short examples of working with time series data in Pandas.

Dates and Times in Python

The Python world has a number of available representations of dates,
times, deltas, and timespans. While the time series tools provided by
Pandas tend to be the most useful for data science applications, it is
helpful to see their relationship to other packages used in Python.

Native Python dates and times: datetime and dateutil

Python’s basic objects for working with dates and times
reside in the built-in datetime module. Along with the third-party
dateutil module, you can use it to quickly perform a host of useful
functionalities on dates and times. For example, you can manually build
a date using the datetime type:

from datetime import datetime
datetime(year=2021, month=7, day=4)

datetime.datetime(2021, 7, 4, 0, 0)

Or, using the dateutil module, you can parse dates from a variety of
string formats:

from dateutil import parser
date = parser.parse("4th of July, 2021")
date

datetime.datetime(2021, 7, 4, 0, 0)

Once you have a datetime object, you can do things like printing the
day of the week:

date.strftime('%A')

'Sunday'

In the final line, we’ve used one of the standard string
format codes for printing dates ("%A"), which you can read about in
the
strftime
section of Python’s
datetime documentation.
Documentation of other useful date utilities can be found in
dateutil’s online
documentation. A related package to be aware of is
pytz, which contains tools for working
with the most migrane-inducing piece of time series data: time zones.

The power of datetime and dateutil lie in their flexibility and easy
syntax: you can use these objects and their built-in methods to easily
perform nearly any operation you might be interested in. Where they
break down is when you wish to work with large arrays of dates and
times: just as lists of Python numerical variables are suboptimal
compared to NumPy-style typed numerical arrays, lists of Python datetime
objects are suboptimal compared to typed arrays of encoded dates.

Typed arrays of times: NumPy’s datetime64

NumPy’s datetime64 dtype encodes dates as 64-bit integers,
and thus allows arrays of dates to be represented compactly and operated
on in an efficient manner. The datetime64 requires a very specific
input format:

import numpy as np
date = np.array('2021-07-04', dtype=np.datetime64)
date

array('2021-07-04', dtype='datetime64[D]')

Once we have dates in this form, we can quickly do vectorized operations
on it:

date + np.arange(12)

array(['2021-07-04', '2021-07-05', '2021-07-06', '2021-07-07',
 '2021-07-08', '2021-07-09', '2021-07-10', '2021-07-11',
 '2021-07-12', '2021-07-13', '2021-07-14', '2021-07-15'],
 dtype='datetime64[D]')

Because of the uniform type in NumPy datetime64 arrays, this type of
operation can be accomplished much more quickly than if we were working
directly with Python’s datetime objects, especially as
arrays get large (we introduced this type of vectorization in
“Computation on NumPy Arrays: Universal Functions”).

One detail of the datetime64 and related timedelta64 objects is that
they are built on a fundamental time unit. Because the datetime64
object is limited to 64-bit precision, the range of encodable times is

 2 64
 times this fundamental unit. In other words,
datetime64 imposes a trade-off between time resolution and maximum
time span.

For example, if you want a time resolution of one nanosecond, you only
have enough information to encode a range of
 2 64

nanoseconds, or just under 600 years. NumPy will infer the desired unit
from the input; for example, here is a day-based datetime:

np.datetime64('2021-07-04')

numpy.datetime64('2021-07-04')

Here is a minute-based datetime:

np.datetime64('2021-07-04 12:00')

numpy.datetime64('2021-07-04T12:00')

You can force any desired fundamental unit using one of many format
codes; for example, here we’ll force a nanosecond-based
time:

np.datetime64('2021-07-04 12:59:59.50', 'ns')

numpy.datetime64('2021-07-04T12:59:59.500000000')

The following table, drawn from the
NumPy
datetime64 documentation, lists the available format codes along with
the relative and absolute timespans that they can encode:

	Code
	Meaning
	Time span (relative)
	Time span (absolute)

	Y

	Year

	± 9.2e18 years

	[9.2e18 BC, 9.2e18 AD]

	M

	Month

	± 7.6e17 years

	[7.6e17 BC, 7.6e17 AD]

	W

	Week

	± 1.7e17 years

	[1.7e17 BC, 1.7e17 AD]

	D

	Day

	± 2.5e16 years

	[2.5e16 BC, 2.5e16 AD]

	h

	Hour

	± 1.0e15 years

	[1.0e15 BC, 1.0e15 AD]

	m

	Minute

	± 1.7e13 years

	[1.7e13 BC, 1.7e13 AD]

	s

	Second

	± 2.9e12 years

	[2.9e9 BC, 2.9e9 AD]

	ms

	Millisecond

	± 2.9e9 years

	[2.9e6 BC, 2.9e6 AD]

	us

	Microsecond

	± 2.9e6 years

	[290301 BC, 294241 AD]

	ns

	Nanosecond

	± 292 years

	[1678 AD, 2262 AD]

	ps

	Picosecond

	± 106 days

	[1969 AD, 1970 AD]

	fs

	Femtosecond

	± 2.6 hours

	[1969 AD, 1970 AD]

	as

	Attosecond

	± 9.2 seconds

	[1969 AD, 1970 AD]

For the types of data we see in the real world, a useful default is
datetime64[ns], as it can encode a useful range of modern dates with a
suitably fine precision.

Finally, we will note that while the datetime64 data type addresses
some of the deficiencies of the built-in Python datetime type, it
lacks many of the convenient methods and functions provided by
datetime and especially dateutil. More information can be found in
NumPy’s
datetime64 documentation.

Dates and times in pandas: best of both worlds

Pandas builds upon all the tools just discussed to provide a Timestamp
object, which combines the ease-of-use of datetime and dateutil with
the efficient storage and vectorized interface of numpy.datetime64.
From a group of these Timestamp objects, Pandas can construct a
DatetimeIndex that can be used to index data in a Series or
DataFrame; we’ll see many examples of this below.

For example, we can use Pandas tools to repeat the demonstration from
above. We can parse a flexibly formatted string date, and use format
codes to output the day of the week:

import pandas as pd
date = pd.to_datetime("4th of July, 2021")
date

Timestamp('2021-07-04 00:00:00')

date.strftime('%A')

'Sunday'

Additionally, we can do NumPy-style vectorized operations directly on
this same object:

date + pd.to_timedelta(np.arange(12), 'D')

DatetimeIndex(['2021-07-04', '2021-07-05', '2021-07-06', '2021-07-07',
 '2021-07-08', '2021-07-09', '2021-07-10', '2021-07-11',
 '2021-07-12', '2021-07-13', '2021-07-14', '2021-07-15'],
 dtype='datetime64[ns]', freq=None)

In the next section, we will take a closer look at manipulating time
series data with the tools provided by Pandas.

Pandas Time Series: Indexing by Time

Where the Pandas time series tools really become useful is when you
begin to index data by timestamps. For example, we can construct a
Series object that has time indexed data:

index = pd.DatetimeIndex(['2020-07-04', '2020-08-04',
 '2021-07-04', '2021-08-04'])
data = pd.Series([0, 1, 2, 3], index=index)
data

2020-07-04 0
2020-08-04 1
2021-07-04 2
2021-08-04 3
dtype: int64

Now that we have this data in a Series, we can make use of any of the
Series indexing patterns we discussed in previous sections, passing
values that can be coerced into dates:

data['2020-07-04':'2021-07-04']

2020-07-04 0
2020-08-04 1
2021-07-04 2
dtype: int64

There are additional special date-only indexing operations, such as
passing a year to obtain a slice of all data from that year:

data['2021']

2021-07-04 2
2021-08-04 3
dtype: int64

Later, we will see additional examples of the convenience of
dates-as-indices. But first, a closer look at the available time series
data structures.

Pandas Time Series Data Structures

This section will introduce the fundamental Pandas data structures for
working with time series data:

	
For time stamps, Pandas provides the Timestamp type. As mentioned
before, it is essentially a replacement for Python’s native
datetime, but is based on the more efficient numpy.datetime64 data
type. The associated Index structure is DatetimeIndex.

	
For time Periods, Pandas provides the Period type. This encodes a
fixed-frequency interval based on numpy.datetime64. The associated
index structure is PeriodIndex.

	
For time deltas or durations, Pandas provides the Timedelta
type. Timedelta is a more efficient replacement for
Python’s native datetime.timedelta type, and is based on
numpy.timedelta64. The associated index structure is TimedeltaIndex.

The most fundamental of these date/time objects are the Timestamp and
DatetimeIndex objects. While these class objects can be invoked
directly, it is more common to use the pd.to_datetime() function,
which can parse a wide variety of formats. Passing a single date to
pd.to_datetime() yields a Timestamp; passing a series of dates by
default yields a DatetimeIndex:

dates = pd.to_datetime([datetime(2021, 7, 3), '4th of July, 2021',
 '2021-Jul-6', '07-07-2021', '20210708'])
dates

DatetimeIndex(['2021-07-03', '2021-07-04', '2021-07-06', '2021-07-07',
 '2021-07-08'],
 dtype='datetime64[ns]', freq=None)

Any DatetimeIndex can be converted to a PeriodIndex with the
to_period() function with the addition of a frequency code; here
we’ll use 'D' to indicate daily
frequency:

dates.to_period('D')

PeriodIndex(['2021-07-03', '2021-07-04', '2021-07-06', '2021-07-07',
 '2021-07-08'],
 dtype='period[D]')

A TimedeltaIndex is created, for example, when a date is subtracted
from another:

dates - dates[0]

TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'],
 > dtype='timedelta64[ns]', freq=None)

Regular sequences: pd.date_range()

To make creation of regular date sequences more convenient, Pandas
offers a few functions for this purpose: pd.date_range() for
timestamps, pd.period_range() for periods, and pd.timedelta_range()
for time deltas. We’ve seen that Python’s
range() and NumPy’s np.arange() take a startpoint,
endpoint, and optional stepsize and return a sequence. Similarly,
pd.date_range() accepts a start date, an end date, and an optional
frequency code to create a regular sequence of dates:

pd.date_range('2015-07-03', '2015-07-10')

DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
 '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
 dtype='datetime64[ns]', freq='D')

Alternatively, the date range can be specified not with a start and
endpoint, but with a startpoint and a number of periods:

pd.date_range('2015-07-03', periods=8)

DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06',
 '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'],
 dtype='datetime64[ns]', freq='D')

The spacing can be modified by altering the freq argument, which
defaults to D. For example, here we will construct a range of hourly
timestamps:

pd.date_range('2015-07-03', periods=8, freq='H')

DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00',
 '2015-07-03 02:00:00', '2015-07-03 03:00:00',
 '2015-07-03 04:00:00', '2015-07-03 05:00:00',
 '2015-07-03 06:00:00', '2015-07-03 07:00:00'],
 dtype='datetime64[ns]', freq='H')

To create regular sequences of Period or Timedelta values, the very
similar pd.period_range() and pd.timedelta_range() functions are
useful. Here are some monthly periods:

pd.period_range('2015-07', periods=8, freq='M')

PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12',
 '2016-01', '2016-02'],
 dtype='period[M]')

And a sequence of durations increasing by an hour:

pd.timedelta_range(0, periods=6, freq='H')

TimedeltaIndex(['0 days 00:00:00', '0 days 01:00:00', '0 days 02:00:00',
 '0 days 03:00:00', '0 days 04:00:00', '0 days 05:00:00'],
 dtype='timedelta64[ns]', freq='H')

All of these require an understanding of Pandas frequency codes, which
we’ll summarize in the next section.

Frequencies and Offsets

Fundamental to these Pandas time series tools is the concept of a
frequency or date offset. Just as we saw the D (day) and H (hour)
codes above, we can use such codes to specify any desired frequency
spacing. The following table summarizes the main codes available:

	Code
	Description
	Code
	Description

	D

	Calendar day

	B

	Business day

	W

	Weekly

	
	

	M

	Month end

	BM

	Business month end

	Q

	Quarter end

	BQ

	Business quarter end

	A

	Year end

	BA

	Business year end

	H

	Hours

	BH

	Business hours

	T

	Minutes

	
	

	S

	Seconds

	
	

	L

	Milliseonds

	
	

	U

	Microseconds

	
	

	N

	nanoseconds

	
	

The monthly, quarterly, and annual frequencies are all marked at the end
of the specified period. By adding an S suffix to any of these, they
instead will be marked at the beginning:

Code | Description || Code | Description |

|——-|——————-||——-|————————| | MS | Month start ||BMS | Business
month start | | QS | Quarter start ||BQS | Business quarter start |
| AS | Year start ||BAS | Business year start |

Additionally, you can change the month used to mark any quarterly or
annual code by adding a three-letter month code as a suffix:

	
Q-JAN, BQ-FEB, QS-MAR, BQS-APR, etc.

	
A-JAN, BA-FEB, AS-MAR, BAS-APR, etc.

In the same way, the split-point of the weekly frequency can be modified
by adding a three-letter weekday code:

	
W-SUN, W-MON, W-TUE, W-WED, etc.

On top of this, codes can be combined with numbers to specify other
frequencies. For example, for a frequency of 2 hours 30 minutes, we can
combine the hour (H) and minute (T) codes as follows:

pd.timedelta_range(0, periods=6, freq="2H30T")

TimedeltaIndex(['0 days 00:00:00', '0 days 02:30:00', '0 days 05:00:00',
 '0 days 07:30:00', '0 days 10:00:00', '0 days 12:30:00'],
 dtype='timedelta64[ns]', freq='150T')

All of these short codes refer to specific instances of Pandas time
series offsets, which can be found in the pd.tseries.offsets module.
For example, we can create a business day offset directly as follows:

from pandas.tseries.offsets import BDay
pd.date_range('2015-07-01', periods=6, freq=BDay())

DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06',
 '2015-07-07', '2015-07-08'],
 dtype='datetime64[ns]', freq='B')

For more discussion of the use of frequencies and offsets, see the
DateOffset
section of the Pandas documentation.

Resampling, Shifting, and Windowing

The ability to use dates and times as indices to intuitively organize
and access data is an important piece of the Pandas time series tools.
The benefits of indexed data in general (automatic alignment during
operations, intuitive data slicing and access, etc.) still apply, and
Pandas provides several additional time series-specific operations.

We will take a look at a few of those here, using some stock price data
as an example. Because Pandas was developed largely in a finance
context, it includes some very specific tools for financial data. For
example, the accompanying pandas-datareader package (installable via
pip install pandas-datareader), knows how to import data from various
online sources. Here we will load part of the Dow Jones Industrial
Average price history:

from pandas_datareader import data

djia = data.DataReader('DJIA', start='2018', end='2022',
 data_source='yahoo')
djia.head()

 	
 	High
 	Low
 	Open
 	Close
 	Volume
 	Adj Close

 	Date
 	
 	
 	
 	
 	
 	

 	2018-01-02
 	24983.480469
 	24632.800781
 	24809.349609
 	24824.009766
 	3.367250e+09
 	24824.009766

 	2018-01-03
 	25033.640625
 	24719.460938
 	24850.449219
 	24922.679688
 	3.538660e+09
 	24922.679688

 	2018-01-04
 	25207.640625
 	24889.359375
 	24964.859375
 	25075.130859
 	3.695260e+09
 	25075.130859

 	2018-01-05
 	25369.890625
 	24995.640625
 	25114.919922
 	25295.869141
 	3.236620e+09
 	25295.869141

 	2018-01-08
 	25442.390625
 	25114.060547
 	25308.400391
 	25283.000000
 	3.242650e+09
 	25283.000000

For simplicity, we’ll use just the closing price:

djia = djia['Close']

We can visualize this using the plot() method, after the normal
Matplotlib setup boilerplate (see
[Link to Come]):

%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
djia.plot();

[image:]

Resampling and converting frequencies

One common need for time series data is resampling at a higher or lower
frequency. This can be done using the resample() method, or the much
simpler asfreq() method. The primary difference between the two is
that resample() is fundamentally a data aggregation, while
asfreq() is fundamentally a data selection.

Taking a look at the DJIA closing price, let’s compare what
the two return when we down-sample the data. Here we will resample the
data at the end of business year:

djia.plot(alpha=0.5, style='-')
djia.resample('BA').mean().plot(style=':')
djia.asfreq('BA').plot(style='--');
plt.legend(['input', 'resample', 'asfreq'],
 loc='upper left');

[image:]

Notice the difference: at each point, resample reports the average of
the previous year, while asfreq reports the value at the end of the
year.

For up-sampling, resample() and asfreq() are largely equivalent,
though resample has many more options available. In this case, the
default for both methods is to leave the up-sampled points empty, that
is, filled with NA values. Just as with the pd.fillna() function
discussed previously, asfreq() accepts a method argument to specify
how values are imputed. Here, we will resample the business day data at
a daily frequency (i.e., including weekends):

fig, ax = plt.subplots(2, sharex=True)
data = djia.iloc[:20]

data.asfreq('D').plot(ax=ax[0], marker='o')

data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o')
data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o')
ax[1].legend(["back-fill", "forward-fill"]);

[image:]

Because the DJIA data only exists for business days, the top panel has
gaps representing NA values. The bottom panel shows the differences
between two strategies for filling the gaps: forward-filling and
backward-filling.

Time-shifts

Another common time series-specific operation is shifting of data in
time. For this, pandas provides the shift() method, which can be used
to shift data by a given number of entries. With time-series data
sampled at a regular frequency, this can give us a way to explore trends
over time.

For example, here we resample the data to daily values, and shift by 364
to compute the 1-year return-on-investment for the DJIA over time:

djia = djia.asfreq('D', method='pad')

ROI = 100 * (djia.shift(-365) - djia) / djia
ROI.plot()
plt.ylabel('% Return on Investment after 1 year');

[image:]

The worst 1-year return was around March 2019, with the
coronavirus-related market crash exactly a year later. As you might
expect, the best 1-year return was to be found in March 2020, for those
with enough foresight or luck to buy low.

This helps us to see the overall trend in Google stock: thus far, the
most profitable times to invest in Google have been (unsurprisingly, in
retrospect) shortly after its IPO, and in the middle of the 2009
recession.

Rolling windows

Rolling statistics are a third type of time series-specific operation
implemented by Pandas. These can be accomplished via the rolling()
attribute of Series and DataFrame objects, which returns a view
similar to what we saw with the groupby operation (see
“Aggregation and Grouping”).
This rolling view makes available a number of aggregation operations by
default.

For example, here is the one-year centered rolling mean and standard
deviation of the stock prices:

rolling = djia.rolling(365, center=True)

data = pd.DataFrame({'input': djia,
 'one-year rolling_mean': rolling.mean(),
 'one-year rolling_median': rolling.median()})
ax = data.plot(style=['-', '--', ':'])
ax.lines[0].set_alpha(0.3)

[image:]

As with group-by operations, the aggregate() and apply() methods can
be used for custom rolling computations.

Where to Learn More

This section has provided only a brief summary of some of the most
essential features of time series tools provided by Pandas; for a more
complete discussion, you can refer to the
“Time
Series/Date” section of the Pandas online documentation.

Another excellent resource is the textbook
Python
for Data Analysis by Wes McKinney (OReilly, 2017). Although it is now a
few years old, it is an invaluable resource on the use of Pandas. In
particular, this book emphasizes time series tools in the context of
business and finance, and focuses much more on particular details of
business calendars, time zones, and related topics.

As always, you can also use the IPython help functionality to explore
and try further options available to the functions and methods discussed
here. I find this often is the best way to learn a new Python tool.

Example: Visualizing Seattle Bicycle Counts

As a more involved example of working with some time series data,
let’s take a look at bicycle counts on Seattle’s
Fremont
Bridge. This data comes from an automated bicycle counter, installed in
late 2012, which has inductive sensors on the east and west sidewalks of
the bridge. The hourly bicycle counts can be downloaded from
http://data.seattle.gov/; here is the
direct
link to the dataset.

As of early 2022, the CSV can be downloaded as follows:

url = ('https://data.seattle.gov/api/views/65db-xm6k/'
'rows.csv?accessType=DOWNLOAD')
!cd data && curl -o FremontBridge.csv {url}

Once this dataset is downloaded, we can use Pandas to read the CSV
output into a DataFrame. We will specify that we want the Date as an
index, and we want these dates to be automatically parsed:

data = pd.read_csv('data/FremontBridge.csv', index_col='Date', parse_dates=True)
data.head()

 	
 	Fremont Bridge Total
 	Fremont Bridge East Sidewalk
 	Fremont Bridge West Sidewalk

 	Date
 	
 	
 	

 	2019-11-01 00:00:00
 	12.0
 	7.0
 	5.0

 	2019-11-01 01:00:00
 	7.0
 	0.0
 	7.0

 	2019-11-01 02:00:00
 	1.0
 	0.0
 	1.0

 	2019-11-01 03:00:00
 	6.0
 	6.0
 	0.0

 	2019-11-01 04:00:00
 	6.0
 	5.0
 	1.0

For convenience, we’ll shorten the column names:

data.columns = ['Total', 'East', 'West']

Now let’s take a look at the summary statistics for this
data:

data.dropna().describe()

 	
 	Total
 	East
 	West

 	count
 	147255.000000
 	147255.000000
 	147255.000000

 	mean
 	110.341462
 	50.077763
 	60.263699

 	std
 	140.422051
 	64.634038
 	87.252147

 	min
 	0.000000
 	0.000000
 	0.000000

 	25%
 	14.000000
 	6.000000
 	7.000000

 	50%
 	60.000000
 	28.000000
 	30.000000

 	75%
 	145.000000
 	68.000000
 	74.000000

 	max
 	1097.000000
 	698.000000
 	850.000000

Visualizing the data

We can gain some insight into the dataset by visualizing it.
Let’s start by plotting the raw data:

data.plot()
plt.ylabel('Hourly Bicycle Count');

[image:]

The ~150,000 hourly samples are far too dense for us to make much sense
of. We can gain more insight by resampling the data to a coarser grid.
Let’s resample by week:

weekly = data.resample('W').sum()
weekly.plot(style=['-', ':', '--'])
plt.ylabel('Weekly bicycle count');

[image:]

This shows us some interesting seasonal trends: as you might expect,
people bicycle more in the summer than in the winter, and even within a
particular season the bicycle use varies from week to week (likely
dependent on weather; see [Link to Come] where we explore this further). Further, the effect
of the pandemic on commute patterns is quite clear starting in early
2020.

Another way that comes in handy for aggregating the data is to use a
rolling mean, utilizing the pd.rolling_mean() function. Here
we’ll do a 30 day rolling mean of our data, making sure to
center the window:

daily = data.resample('D').sum()
daily.rolling(30, center=True).sum().plot(style=['-', ':', '--'])
plt.ylabel('mean hourly count');

[image:]

The jaggedness of the result is due to the hard cutoff of the window. We
can get a smoother version of a rolling mean using a window function–for
example, a Gaussian window. The following code specifies both the width
of the window (we chose 50 days) and the width of the Gaussian within
the window (we chose 10 days):

daily.rolling(50, center=True,
 win_type='gaussian').sum(std=10).plot(style=['-', ':', '--']);

[image:]

Digging into the data

While these smoothed data views are useful to get an idea of the general
trend in the data, they hide much of the interesting structure. For
example, we might want to look at the average traffic as a function of
the time of day. We can do this using the GroupBy functionality
discussed in “Aggregation and Grouping”:

by_time = data.groupby(data.index.time).mean()
hourly_ticks = 4 * 60 * 60 * np.arange(6)
by_time.plot(xticks=hourly_ticks, style=['-', ':', '--']);

[image:]

The hourly traffic is a strongly bimodal distribution, with peaks around
8:00 in the morning and 5:00 in the evening. This is likely evidence of
a strong component of commuter traffic crossing the bridge. There is a
directional component as well: according to the data, the east sidewalk
is used more during the AM commute, and the west sidewalk is used more
during the PM commute.

We also might be curious about how things change based on the day of the
week. Again, we can do this with a simple groupby:

by_weekday = data.groupby(data.index.dayofweek).mean()
by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']
by_weekday.plot(style=['-', ':', '--']);

[image:]

This shows a strong distinction between weekday and weekend totals, with
around twice as many average riders crossing the bridge on Monday
through Friday than on Saturday and Sunday.

With this in mind, let’s do a compound GroupBy and look at
the hourly trend on weekdays versus weekends. We’ll start by
grouping by both a flag marking the weekend, and the time of day:

weekend = np.where(data.index.weekday < 5, 'Weekday', 'Weekend')
by_time = data.groupby([weekend, data.index.time]).mean()

Now we’ll use some of the Matplotlib tools described in
[Link to Come] to plot two panels
side by side:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 2, figsize=(14, 5))
by_time.loc['Weekday'].plot(ax=ax[0], title='Weekdays',
 xticks=hourly_ticks, style=['-', ':', '--'])
by_time.loc['Weekend'].plot(ax=ax[1], title='Weekends',
 xticks=hourly_ticks, style=['-', ':', '--']);

[image:]

The result is very interesting: we see a bimodal commute pattern during
the work week, and a unimodal recreational pattern during the weekends.
It would be interesting to dig through this data in more detail, and
examine the effect of weather, temperature, time of year, and other
factors on people’s commuting patterns; for further
discussion, see my blog post
“Is
Seattle Really Seeing an Uptick In Cycling?”, which uses a subset of
this data. We will also revisit this dataset in the context of modeling
in [Link to Come].

High-Performance Pandas: eval() and query()

As we’ve already seen in previous sections, the power of the
PyData stack is built upon the ability of NumPy and Pandas to push basic
operations into C via an intuitive syntax: examples are
vectorized/broadcasted operations in NumPy, and grouping-type operations
in Pandas. While these abstractions are efficient and effective for many
common use cases, they often rely on the creation of temporary
intermediate objects, which can cause undue overhead in computational
time and memory use.

To address this, pandas includes some methods that allow you to directly
access C-speed operations without costly allocation of intermediate
arrays. These are the eval() and query() functions, which rely on
the Numexpr package. In this notebook
we will walk through their use and give some rules-of-thumb about when
you might think about using them.

Motivating query() and eval(): Compound Expressions

We’ve seen previously that NumPy and Pandas support fast
vectorized operations; for example, when adding the elements of two
arrays:

import numpy as np
rng = np.random.default_rng(42)
x = rng.random(1000000)
y = rng.random(1000000)
%timeit x + y

2.21 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

As discussed in
“Computation on NumPy Arrays: Universal Functions”, this is much faster than doing the
addition via a Python loop or comprehension:

%timeit np.fromiter((xi + yi for xi, yi in zip(x, y)),
 dtype=x.dtype, count=len(x))

263 ms ± 43.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

But this abstraction can become less efficient when computing compound
expressions. For example, consider the following expression:

mask = (x > 0.5) & (y < 0.5)

Because NumPy evaluates each subexpression, this is roughly equivalent
to the following:

tmp1 = (x > 0.5)
tmp2 = (y < 0.5)
mask = tmp1 & tmp2

In other words, every intermediate step is explicitly allocated in
memory. If the x and y arrays are very large, this can lead to
significant memory and computational overhead. The Numexpr library gives
you the ability to compute this type of compound expression element by
element, without the need to allocate full intermediate arrays. The
Numexpr documentation has more
details, but for the time being it is sufficient to say that the library
accepts a string giving the NumPy-style expression you’d
like to compute:

import numexpr
mask_numexpr = numexpr.evaluate('(x > 0.5) & (y < 0.5)')
np.allclose(mask, mask_numexpr)

True

The benefit here is that Numexpr evaluates the expression in a way that
avoids temporary arrays where possible, and thus can be much more
efficient than NumPy, especially for long sequences of computations on
large arrays. The Pandas eval() and query() tools that we will
discuss here are conceptually similar, and depend on the Numexpr
package.

pandas.eval() for Efficient Operations

The eval() function in Pandas uses string expressions to efficiently
compute operations on DataFrame objects. For example, consider the
following data:

import pandas as pd
nrows, ncols = 100000, 100
df1, df2, df3, df4 = (pd.DataFrame(rng.random((nrows, ncols)))
 for i in range(4))

To compute the sum of all four `DataFrame`s using the typical Pandas
approach, we can just write the sum:

%timeit df1 + df2 + df3 + df4

73.2 ms ± 6.72 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The same result can be computed via pd.eval by constructing the
expression as a string:

%timeit pd.eval('df1 + df2 + df3 + df4')

34 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

The eval() version of this expression is about 50% faster (and uses
much less memory), while giving the same result:

np.allclose(df1 + df2 + df3 + df4,
 pd.eval('df1 + df2 + df3 + df4'))

True

Operations supported by pd.eval()

pd.eval() supports a wide range of operations. To demonstrate these,
we’ll use the following integer data:

df1, df2, df3, df4, df5 = (pd.DataFrame(rng.integers(0, 1000, (100, 3)))
 for i in range(5))

Arithmetic operators

pd.eval() supports all arithmetic operators. For example:

result1 = -df1 * df2 / (df3 + df4) - df5
result2 = pd.eval('-df1 * df2 / (df3 + df4) - df5')
np.allclose(result1, result2)

True

Comparison operators

pd.eval() supports all comparison operators, including chained
expressions:

result1 = (df1 < df2) & (df2 <= df3) & (df3 != df4)
result2 = pd.eval('df1 < df2 <= df3 != df4')
np.allclose(result1, result2)

True

Bitwise operators

pd.eval() supports the & and | bitwise operators:

result1 = (df1 < 0.5) & (df2 < 0.5) | (df3 < df4)
result2 = pd.eval('(df1 < 0.5) & (df2 < 0.5) | (df3 < df4)')
np.allclose(result1, result2)

True

In addition, it supports the use of the literal and and or in
Boolean expressions:

result3 = pd.eval('(df1 < 0.5) and (df2 < 0.5) or (df3 < df4)')
np.allclose(result1, result3)

True

Object attributes and indices

pd.eval() supports access to object attributes via the obj.attr
syntax, and indexes via the obj[index] syntax:

result1 = df2.T[0] + df3.iloc[1]
result2 = pd.eval('df2.T[0] + df3.iloc[1]')
np.allclose(result1, result2)

True

Other operations

Other operations such as function calls, conditional statements, loops,
and other more involved constructs are currently not implemented in
pd.eval(). If you’d like to execute these more complicated
types of expressions, you can use the Numexpr library itself.

DataFrame.eval() for Column-Wise Operations

Just as Pandas has a top-level pd.eval() function, DataFrame objects
have an eval() method that works in similar ways. The benefit of the
eval() method is that columns can be referred to by name.
We’ll use this labeled array as an example:

df = pd.DataFrame(rng.random((1000, 3)), columns=['A', 'B', 'C'])
df.head()

 	
 	A
 	B
 	C

 	0
 	0.850888
 	0.966709
 	0.958690

 	1
 	0.820126
 	0.385686
 	0.061402

 	2
 	0.059729
 	0.831768
 	0.652259

 	3
 	0.244774
 	0.140322
 	0.041711

 	4
 	0.818205
 	0.753384
 	0.578851

Using pd.eval() as above, we can compute expressions with the three
columns like this:

result1 = (df['A'] + df['B']) / (df['C'] - 1)
result2 = pd.eval("(df.A + df.B) / (df.C - 1)")
np.allclose(result1, result2)

True

The DataFrame.eval() method allows much more succinct evaluation of
expressions with the columns:

result3 = df.eval('(A + B) / (C - 1)')
np.allclose(result1, result3)

True

Notice here that we treat column names as variables within the
evaluated expression, and the result is what we would wish.

Assignment in DataFrame.eval()

In addition to the options just discussed, DataFrame.eval() also
allows assignment to any column. Let’s use the DataFrame
from before, which has columns 'A',
'B', and 'C':

df.head()

 	
 	A
 	B
 	C

 	0
 	0.850888
 	0.966709
 	0.958690

 	1
 	0.820126
 	0.385686
 	0.061402

 	2
 	0.059729
 	0.831768
 	0.652259

 	3
 	0.244774
 	0.140322
 	0.041711

 	4
 	0.818205
 	0.753384
 	0.578851

We can use df.eval() to create a new column
'D' and assign to it a value computed from the
other columns:

df.eval('D = (A + B) / C', inplace=True)
df.head()

 	
 	A
 	B
 	C
 	D

 	0
 	0.850888
 	0.966709
 	0.958690
 	1.895916

 	1
 	0.820126
 	0.385686
 	0.061402
 	19.638139

 	2
 	0.059729
 	0.831768
 	0.652259
 	1.366782

 	3
 	0.244774
 	0.140322
 	0.041711
 	9.232370

 	4
 	0.818205
 	0.753384
 	0.578851
 	2.715013

In the same way, any existing column can be modified:

df.eval('D = (A - B) / C', inplace=True)
df.head()

 	
 	A
 	B
 	C
 	D

 	0
 	0.850888
 	0.966709
 	0.958690
 	-0.120812

 	1
 	0.820126
 	0.385686
 	0.061402
 	7.075399

 	2
 	0.059729
 	0.831768
 	0.652259
 	-1.183638

 	3
 	0.244774
 	0.140322
 	0.041711
 	2.504142

 	4
 	0.818205
 	0.753384
 	0.578851
 	0.111982

Local variables in DataFrame.eval()

The DataFrame.eval() method supports an additional syntax that lets it
work with local Python variables. Consider the following:

column_mean = df.mean(1)
result1 = df['A'] + column_mean
result2 = df.eval('A + @column_mean')
np.allclose(result1, result2)

True

The @ character here marks a variable name rather than a column
name, and lets you efficiently evaluate expressions involving the two
“namespaces”: the namespace of columns, and the namespace of Python
objects. Notice that this @ character is only supported by the
DataFrame.eval() method, not by the pandas.eval() function,
because the pandas.eval() function only has access to the one (Python)
namespace.

DataFrame.query() Method

The DataFrame has another method based on evaluated strings, called
the query() method. Consider the following:

result1 = df[(df.A < 0.5) & (df.B < 0.5)]
result2 = pd.eval('df[(df.A < 0.5) & (df.B < 0.5)]')
np.allclose(result1, result2)

True

As with the example used in our discussion of DataFrame.eval(), this
is an expression involving columns of the DataFrame. It cannot be
expressed using the DataFrame.eval() syntax, however! Instead, for
this type of filtering operation, you can use the query() method:

result2 = df.query('A < 0.5 and B < 0.5')
np.allclose(result1, result2)

True

In addition to being a more efficient computation, compared to the
masking expression this is much easier to read and understand. Note that
the query() method also accepts the @ flag to mark local variables:

Cmean = df['C'].mean()
result1 = df[(df.A < Cmean) & (df.B < Cmean)]
result2 = df.query('A < @Cmean and B < @Cmean')
np.allclose(result1, result2)

True

Performance: When to Use These Functions

When considering whether to use eval() and query(), there are two
considerations: computation time and memory use. Memory use is the
most predictable aspect. As already mentioned, every compound expression
involving NumPy arrays or Pandas `DataFrame`s will result in implicit
creation of temporary arrays: For example, this:

x = df[(df.A < 0.5) & (df.B < 0.5)]

Is roughly equivalent to this:

tmp1 = df.A < 0.5
tmp2 = df.B < 0.5
tmp3 = tmp1 & tmp2
x = df[tmp3]

If the size of the temporary DataFrame`s is significant compared to
your available system memory (typically several gigabytes) then
it's a good idea to use an `eval() or query() expression.
You can check the approximate size of your array in bytes using this:

df.values.nbytes

32000

On the performance side, eval() can be faster even when you are not
maxing-out your system memory. The issue is how your temporary objects
compare to the size of the L1 or L2 CPU cache on your system (typically
a few megabytes); if they are much bigger, then eval() can avoid some
potentially slow movement of values between the different memory caches.
In practice, I find that the difference in computation time between the
traditional methods and the eval/query method is usually not
significant–if anything, the traditional method is faster for smaller
arrays! The benefit of eval/query is mainly in the saved memory, and
the sometimes cleaner syntax they offer.

We’ve covered most of the details of eval() and query()
here; for more information on these, you can refer to the Pandas
documentation. In particular, different parsers and engines can be
specified for running these queries; for details on this, see the
discussion within the
“Enhancing
Performance” section.

Further Resources

In this chapter, we’ve covered many of the basics of using
Pandas effectively for data analysis. Still, much has been omitted from
our discussion. To learn more about Pandas, I recommend the following
resources:

	
Pandas online documentation: This is the
go-to source for complete documentation of the package. While the
examples in the documentation tend to be small generated datasets, the
description of the options is complete and generally very useful for
understanding the use of various functions.

	
Python
for Data Analysis Written by Wes McKinney (the original creator of
Pandas), this book contains much more detail on the Pandas package than
we had room for in this chapter. In particular, he takes a deep dive
into tools for time series, which were his bread and butter as a
financial consultant. The book also has many entertaining examples of
applying Pandas to gain insight from real-world datasets.

	
Effective Pandas is a short
e-book by Pandas developer Tom Augspurger which provides a succinct
outline of using the full power of the Pandas library in an effective
and idiomatic way.

	
Pandas on PyVideo: From PyCon to
SciPy to PyData, many conferences have featured tutorials from Pandas
developers and power users. The PyCon tutorials in particular tend to be
given by very well-vetted presenters.

Using these resources, combined with the walk-through given in this
chapter, my hope is that you’ll be poised to use Pandas to
tackle any data analysis problem you come across!

 About the Author

 Jake VanderPlas is a software engineer at Google Research, working on tools that support data-intensive research. He maintains a technical blog, Pythonic Perambulations, to share tutorials and opinions related to statistics, open software, and scientific computing in Python. He creates and develops Python tools for use in data-intensive science, including packages like Scikit-Learn, SciPy, AstroPy, Altair, JAX, and many others. He participates in the broader data science community, developing and presenting talks and tutorials on scientific computing topics at various conferences in the data science world.

OEBPS/Images/output_98_0.png
250000

g
H

150000

D mis D6 DT D Die 220 22

21

Dt

OEBPS/Images/output_52_0.png

OEBPS/Images/output_96_0.png
o
213 D 25 me D7 me 20 B2 B2
Dt

OEBPS/Images/output_76_0.png
5

% Retum on Investment after 1 year
B

8

M
21

»

.
E2)
Date

»

.
22

»

OEBPS/Images/Data_Science_VD.png

OEBPS/Images/array_vs_list.png
0x310718

Numpy Array Python List
PyObject HEAD PyObject HEAD
data length
dimensions items —
strides

0x310748

0x310730

0x310760

0x310700

0x3106b8

0x3106d0

0x3106e8

OEBPS/Images/output_6_0.png
150

00

0

OEBPS/Images/output_39_0.png
rumber

©

0

Height Distribution of US Presidents

s R0
height (em)

OEBPS/Images/output_36_0.png

OEBPS/Images/03.08-split-apply-combine.png
split

oy |t Apply (sum)
ey | data
NE -
Input N
tey [data Al
Combine
NE
ey | data
82 ey |data
tey | data als
c|s -5z - -
HE HE
Al BB
cle
BB
cle ey |data
ey | data
c|s -
cle
cle

OEBPS/Images/output_94_0.png
10000

213 D ms @6 D7 De B M0 22 m2
Dt

OEBPS/Images/output_33_0.png
I

P

s 0 BE5 B0 085 B0 205
yoar

o0

OEBPS/Images/output_70_0.png
L

PR S S
o

OEBPS/Images/output_31_0.png

OEBPS/Images/output_50_0.png
A.
8883883

-

OEBPS/Images/output_73_0.png
- e

o S 5

-

P
T

5000

25500

25000

5 2 B

s
o

.

OEBPS/Images/output_92_0.png
Hourly Bicycle Count

000

a0

@0

w0

20

5 50 g0
Do

P
— e
— st

oS

OEBPS/Images/output_30_0.png
10

05

s

0

OEBPS/Images/output_100_0.png
8

00

w0 w0 20
me

@

os00

OEBPS/Images/output_102_0.png
2

00

Mo Tss

Thurs

Ea——

OEBPS/Images/output_68_0.png
P o e o B e
o

OEBPS/Images/output_106_0.png
g ¥ g8 8 8

OEBPS/Images/cover.png
O'REILLY"

Python Data
Science
Handbook

Essential Tools for Working with Data

Early
Release

RAW &
UNEDITED

Jake VanderPlas

OEBPS/Images/cint_vs_pyint.png
CInteger Python Integer

11 PyObject_HEAD

digit |1

OEBPS/Images/output_80_0.png
s000

w2500,

500

25000

2500

2000

— ot
= one-year oling_mean
ne-year raling_median

»

.
21

»

.
2

»

.
22

»

OEBPS/Images/02.05-broadcasting.png
ap.srangs(3) +5

of1[z2]) « s
p.cnes((3. 3)) + np.arange(3

KRR o1z

DRI

KR 3
p.srangs(3).reshaps((3. 1)) + np. arangs (3

ololo o1z

1 + [Jo

2 3

OEBPS/Images/output_44_0.png
Thure
dayoinesk

dicad.
— o0
— o
— o

