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Preface



JetBrains created Kotlin for two reasons: there was no language that filled all the gaps in Android development
using (legacy) Java libraries, and a new language would allow Android development to set trends, rather than just
follow them.


In February 2015, Kotlin 1.0 was officially announced. Kotlin is concise, safe, pragmatic, and focused on interoperability with Java code. It can be used everywhere Java is used today: for server-side development, Android apps, desktop or portable clients, IoT device programming, and much, much more. Kotlin gained popularity among Android developers quite rapidly, and Google’s decision to adopt Kotlin as the official language of Android development resulted in skyrocketing interest in the language. According to the Android Developers website, more than 60% of professional Android developers currently use Kotlin.


The learning curve in Android is rather steep: admittedly, it’s hard to learn and harder to master. Part of the
Android developer “upbringing,” for many, is to be exposed over time to unintended interactions between the Android operating system and the application. This book intends to bring those kinds of exposures to readers in depth and up close by examining such problems in Android. We’ll talk not only about Kotlin and Java, but also about the concurrency problems that arise when using Android and how Kotlin is able to solve them.


We will sometimes compare Kotlin to Java when we believe doing so provides better insight (especially since most readers are expected to have a Java background). We can demonstrate, with working examples, how to bridge that gap, and how the underlying concepts of most Kotlin operations are more similar to the Java equivalent than not. The tasks will be organized by topic to provide software engineers with a structured decomposition of that mass of information, and they will show how to make an application robust and maintainable.


Additionally, users familiar with Java—including Android developers—will find their learning curve dramatically flatten when we present each of the common tasks in
both Java and Kotlin. Where appropriate, we’ll discuss the difference and the pitfalls of one or both,
but we hope to provide bite-size and easily digestible examples of a task that will “just work,”
and enable the reader to consume and adapt to the modern paradigm, as well as become aware of the
significance of the updated code immediately and instinctively.


While Kotlin is fully interoperable with Java, other Java application development (server-side programming,
desktop clients, middleware, etc.) has not caught on to the extent that Android has. This is largely due to the
maintainer of Android (Google) strongly “encouraging” its users to make the change. Users are regularly migrating
to Kotlin, but even more still fall back to Java for mission-critical work. Our hope is that this book will
serve as the lifeline an Android developer needs to feel safe in committing to the advantages and simplicity
that Kotlin represents.








Who Should Read This Book


Any of the over six million Android engineers. We believe that virtually every Android engineer could benefit from this book. While a small percentage will be fluent in Kotlin, even they will likely learn something from the information we’ll present. But realistically, we’re targeting the very large majority who haven’t made the transition to Kotlin. This book is also for those who have dipped a toe in but not gained the same level of familiarity with Kotlin that they may have accrued in Java-centric Android development:


	Scenario 1

	
A reader is proficient in Java, heard of this new Kotlin language, and wants to try it out. So they read some online tutorial and start using it and it works great. Soon they realize that this isn’t just a new syntax.
The idioms aren’t the same (e.g., functional programming, coroutines) and a whole new way of developing is now possible. But they lack guidelines, structure. For them, this book is a perfect fit.



	Scenario 2

	
A reader is part of a small team of Java developers. They have discussions about whether they should start including Kotlin in their project. Even if Kotlin is said to be 100% interoperable with Java, some colleagues argue that introducing another language will add complexity to the project. Others suggest it might limit the number of colleagues who will be able to work on the project because of the need to master two languages. The reader could use this book to convince their colleagues, if they can show that the benefits will outweigh the costs.



	Scenario 3

	
An experienced Android developer may have played around with Kotlin or written a feature in it, but still falls back to the home base of Java when things need to get done. This was the scenario we found ourselves in
when realizing the book we’re pitching now would have made our lives much easier. This is also the state we see most commonly around us—many Android devs have touched Kotlin, and many feel like they understand enough to write it when necessary, but they are either unaware, or simply unconvinced, of the significance of data classes, immutable properties, and structured concurrency. We think this book will turn a curious person into a committed evangelist.





















Why We Wrote This Book


There are plenty of books that show how Android works, how Kotlin works, or how concurrency works. Kotlin is becoming wildly popular with Android development for its easy adoption and cleaner syntax, but Kotlin offers Android much more than that: it offers new ways to solve concurrency problems in Android. We wrote this book to provide a unique and specific intersectionality of these topics in great depth. Both Android and Kotlin are rapidly changing, separately and together. Trying to keep up with all the changes can be difficult.


We view this book as a valuable checkpoint in history: showing where Android came from, where it is now, and how it will
continue to evolve with Kotlin as the language matures.

















Navigating This Book


Sometimes we include code snippets as screenshots instead of regular atlas code formatting. This is particularly useful with coroutines and flows, as suspension points are clearly identifiable. We also get type hints from the IDE.


Chapter 1, “Kotlin Essentials” and Chapter 2, “The Kotlin Collections Framework” cover major notable transitions made with Android in Kotlin. While the information in these chapters is enough to give you a good grounding in Kotlin, further chapters will take a deeper dive into more complex/advanced features. Users familiar with Java or similar syntactic structures will find the translation surprisingly natural.


Chapter 3, “Android Fundamentals” and Chapter 4, “Concurrency in Android” will provide you with a foundation in the Android system in relation to memory and threading. As in any other operating system, concurrency is hard to achieve.


Chapter 5, “Thread Safety” through Chapter 11, “Performance Considerations with 
Android Profiling Tools” examine common issues surrounding memory and threading, while indicating how the Android framework has evolved over time to grant developers more control around them. In tandem, these chapters show how Kotlin’s extensions and language features can help developers write better applications faster.


Chapter 12, “Trimming Down Resource Consumption with Performance Optimizations” explores the use of powerful Android developer tools to examine performance and memory-related analytics
under the hood—to be able to see things you never really knew about. This book will provide engineers with professionally developed and curated implementations of the most common tasks seen in native Android development. Many tasks will consist of a real-world problem, followed by the corresponding solution in both Java and Kotlin. When further explanation is required, the solutions will follow a snappy compare-and-contrast model with a focus on brevity and natural language.

















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.



	Constant width bold

	
Shows commands or other text that should be typed literally by the user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This element indicates a warning or caution.



















Using Code Examples



Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/ProgrammingAndroidWithKotlin.


If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require 
permission.


We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Programming Android with Kotlin by Pierre-Olivier Laurence, Amanda Hinchman-Dominguez, G. Blake Meike, and Mike Dunn (O’Reilly). Copyright 2022 Pierre-Olivier Laurence and Amanda Hinchman-Dominguez, 978-1-492-06300-1.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

















O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.




Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/pak.



Email bookquestions@oreilly.com to comment or ask technical questions about this book.


For news and information about our books and courses, visit http://oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://youtube.com/oreillymedia
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Chapter 1. Kotlin Essentials



Kotlin was created by the JetBrains team from St. Petersburg, Russia.
JetBrains is perhaps best known for the IntelliJ Idea IDE, the
basis for Android Studio. Kotlin is now used in a wide variety of
environments across multiple operating systems. It has been nearly
five years since Google announced support for Kotlin on Android. According to the Android Developers Blog, as of
2021, over 1.2 million apps in the Google Play store use Kotlin, including 80% of the top one thousand apps.


If you’ve picked up this book, we are assuming that you are already an
Android developer and that you are familiar with Java.


Kotlin was designed to interoperate with Java. Even its name, taken
from an island near St. Petersburg, is a sly allusion to Java, an island in Indonesia. Though Kotlin supports other platforms
(iOS, WebAssembly, Kotlin/JS, etc.), a key to Kotlin’s broad use is its
support for the Java virtual machine (JVM). Since Kotlin can be compiled to Java bytecode, it can run anywhere that a JVM runs.


Much of the discussion in this chapter will compare Kotlin to Java.
It’s important to understand, though, that Kotlin is not just
warmed-over Java with some added bells and whistles. Kotlin is a new
and different language with connections to Scala, Swift, and C# that
are nearly as strong as its connection with Java. It has its own
styles and its own idioms. While it is possible to think Java and
write Kotlin, thinking in idiomatic Kotlin will reveal the full power
of the language.


We realize that there may be some Android developers who have been
working with Kotlin for some time, and who have never written any Java at
all. If this sounds like you, you may be able to skim this
chapter and its review of the Kotlin language. However, even if you are fairly
handy with the language, this may be a good chance to remind
yourself of some of the details.


This chapter isn’t meant to be a full-fledged primer on Kotlin, so if
you are completely new to Kotlin, we recommend the excellent Kotlin in Action.1
Instead, this chapter is a review of some Kotlin basics:
the type system, variables, functions, and classes.  Even if you are
not a Kotlin language expert, it should provide enough of a foundation
for you to understand the rest of the book.


As with all statically typed languages, Kotlin’s type system is the
meta language that Kotlin uses to describe itself.  Because it is an
essential aspect for discussing Kotlin, we’ll start by reviewing it.








The Kotlin Type System


Like Java, Kotlin is a statically typed language. The Kotlin compiler
knows the type of every entity that a program manipulates. It can
make deductions2
about those entities and, using those deductions,
identify errors that will occur when code contradicts them. Type
checking allows a compiler to catch and flag an entire large class of
programming errors.  This section highlights some of the
most interesting features of Kotlin’s type system, including the
Unit type, functional types, null safety, and 
generics.










Primitive Types


The most obvious difference between Java’s and Kotlin’s type systems
is that Kotlin has no notion of a primitive type.


Java has the types int, float, boolean, etc. These types are
peculiar in that they do not inherit from Java’s base type, Object.
For instance, the statement int n = null; is not legal Java. Neither
is List<int> integers;. In order to mitigate this inconsistency, each
Java primitive type has a boxed type equivalent. Integer, for instance, is the analog of int; Boolean of boolean; and so on. The
distinction between primitive and boxed types has nearly vanished
because, since Java 5, the Java compiler automatically converts between
the boxed and unboxed types. It is now legal to say 
Integer i = 1.


Kotlin does not have primitive types cluttering up its type system.
Its single base type, Any, analogous to Java’s Object,
is the root of the entire Kotlin type hierarchy.

Note

Kotlin’s internal representation of simple types is not connected to
its type system. The Kotlin compiler has sufficient information to
represent, for instance, a 32-bit integer with as much
efficiency as any other language. So, writing val i: Int = 1 might
result in using a primitive type or a boxed type, depending on how the i
variable is used in the code. Whenever possible, the Kotlin compiler will
use primitive types.



















Null Safety


A second major difference between Java and Kotlin is that
nullability is part of Kotlin’s type system. A nullable type is
distinguished from its nonnullable analog by the question mark at
the end of its name; for example, String and String?, Person and
Person?. The Kotlin compiler will allow the assignment of null to a
nullable type: 
var name: String? = null. It will not, however, permit
var name: String = null (because String is not a nullable type).


Any is the root of the Kotlin type system, just like Object in Java. However, there’s a significant difference: Any
is the base class for all nonnullable classes, while Any? is the base class for all nullable ones. This is the basis
of null safety. In other words, it may be useful to think of Kotlin’s type system as two identical
type trees: all nonnullable types are subtypes of Any and all nullable types are subtypes of Any?.


Variables must be initialized. There is no
default value for a variable. This code, for instance,
will generate a compiler error:


val name: String // error! Nonnullable types must be initialized!


As described earlier, the Kotlin compiler makes deductions using type
information. Often the compiler can figure out the type of an
identifier from information it already has. This process is called type inference. When the compiler can infer a type, there is no need for the developer to specify it. For instance, the assignment var name = "Jerry" is perfectly legal, despite the fact that the type of the variable name has not been specified.  The compiler can infer that the variable name must be a String because it is assigned the value "Jerry" (which is a String).


Inferred types can be surprising, though. This code will generate a
compiler error:


var name = "Jerry"
name = null


The compiler inferred the type String for the variable name,
not the type String?.  Because String is not a nullable type,
attempting to assign null to it is illegal.


It is important to note that a nullable type is not the same as its
nonnullable counterpart.  As makes sense, a nullable type behaves as
the supertype of the related nonnullable type. This code, for instance, compiles with no problem because a String is a String?:


val name = Jerry
fun showNameLength(name: String?) { // Function accepts a nullable parameter
     // ...
}

showNameLength(name)


On the other hand, the following code will not compile at all, because a String? is not a String:


val name: String? = null
fun showNameLength(name: String) { // This function only accepts non-nulls
    println(name.length)
}

showNameLength(name)               // error! Won't compile because "name"
                                   // can be null


Simply changing the type of the parameter will not entirely fix the
problem:


val name: String? = null
fun showNameLength(name: String?) { // This function now accepts nulls
    println(name.length)            // error!
}

showNameLength(name)                // Compiles


This snippet fails with the error Only safe (?.) or non-null asserted (!!.)
calls are allowed on a nullable receiver of type String?.


Kotlin requires that nullable variables be handled safely—in a way that cannot generate a null pointer exception.  In order
to make the code compile, it must correctly handle the case in which
name is null:


val name: String? = null
fun showNameLength(name: String?) {
    println(if (name == null) 0 else name.length)
    // we will use an even nicer syntax shortly
}


Kotlin has special operators, ?. and ?:, that simplify working
with nullable entities:


val name: String? = null
fun showNameLength(name: String?) {
    println(name?.length ?: 0)
}


In the preceding example, when name is not null, the value of name?.length is the same as the value of name.length. When name is null, however, the value of name?.length is null. The expression does not throw a null pointer exception. Thus, the first operator in the previous example, the safe operator ?., is syntactically equivalent to:


if (name == null) null else name.length


The second operator, the elvis operator ?:, returns the left expression if it is non-null, or the right expression otherwise. Note that the expression on the right-hand side is evaluated only if the left expression is null.


It is equivalent to:


if (name?.length == null) 0 else name.length

















The Unit Type


In Kotlin, everything has a value. Always. Once you understand this,
it is not difficult to imagine that even a method that doesn’t specifically return
anything has a default value. That default value is named Unit.
Unit is the name of exactly one object, the value things have if
they don’t have any other value. The type of the Unit object is,
conveniently, named Unit.


The whole concept of Unit can seem odd to Java developers who are
used to a distinction between expressions—things that have a value—and statements—things that don’t.


Java’s conditional is a great example of the distinction between a
statement and an expression because it has one of each! In Java
you can say:


if (maybe) doThis() else doThat();


You cannot, however, say:


int n = if (maybe) doThis() else doThat();


Statements, like the if statement, do not return a value.  You cannot
assign the value of an if statement to a variable, because if statements don’t return anything.
The same is true for loop statements, case statements, and so on.


Java’s if statement, however, has an analog, the ternary expression.
Since it is an expression, it returns a value and that value
can be assigned. This is legal Java (provided both doThis and
doThat return integers):


int n = (maybe) ? doThis() : doThat();


In Kotlin, there is no need for two conditionals because if is an expression and returns a value.
For example, this is perfectly legal:


val n = if (maybe) doThis() else doThat()


In Java, a method with void as the return type is like a statement. Actually, this is a
bit of a misnomer because void isn’t a type. It is a reserved word in the Java
language that indicates that the method does not return a value. When Java introduced generics, it
introduced the type Void to fill the void (intended!). The two
representations of “nothing,” the keyword and the type, however, are
confusing and inconsistent: a function whose return type is Void
must explicitly return null.


Kotlin is much more consistent: all functions return a value and have a type. If the code for a function does not return a value explicitly, the function has the value Unit.

















Function Types


Kotlin’s type system supports function types. For example, the following code defines a variable, func, whose value is a function, the lambda { x -> x.pow(2.0) }:


val func: (Double) -> Double = { x -> x.pow(2.0) }


Since func is a function that takes one Double type argument and returns a Double, it’s type is (Double) ->
Double.


In the previous example, we specified the type of func explicitly.
However, the Kotlin compiler can infer a lot about the type of the
variable func from the value assigned to it.  It knows the return
type because it knows the type of pow.  It doesn’t, however, have
enough information to guess the type of the parameter x.  If we
supply that, though, we can omit the type specifier for the variable:


val func = { x: Double -> x.pow(2.0)}

Note

Java’s type system cannot describe a function type—there is no way
to talk about functions outside the context of the classes that
contain them. In Java, to do something similar to the previous example, we would use the functional type Function, like this:


Function<Double, Double> func
    = x -> Math.pow(x, 2.0);

func.apply(256.0);


The variable func has been assigned an anonymous instance of the
type Function whose method apply is the given lambda.




Thanks to function types, functions can receive other functions as parameters or return them as values. We call these higher-order functions.
Consider a template for a Kotlin type: (A, B) -> C.  It describes a function
that takes two parameters, one of type A and one of type B
(whatever types those may be), and returns a value of type C. Because
Kotlin’s type language can describe functions, A, B, and C can all,
themselves, be functions.


If that sounds rather meta, it’s because it is. Let’s make it more
concrete. For A in the template, let’s substitute (Double, Double) -> Int. That’s a function that takes two Doubles and returns an Int. For
B, let’s just substitute a Double.  So far, we have ((Double,
Double) -> Int, Double) -> C.


Finally, let’s say our new functional type returns a (Double) -> Int,
a function that takes one parameter, a Double, and returns an Int. The following code shows the complete signature for our hypothetical function:


fun getCurve(
    surface: (Double, Double) -> Int,
    x: Double
): (Double) -> Int {
    return { y -> surface(x, y) }
}


We have just described a function type that takes two arguments. The first is a function (surface) of two parameters, both Doubles, that returns an Int. The second is a Double (x).
Our getCurve function returns a function that takes one parameter, a 
Double (y),
and returns an Int.


The ability to pass functions as arguments into other functions is a pillar of functional languages.
Using higher-order functions, you can reduce code redundancy, while not having to create new
classes as you would in Java (subclassing Runnable or Function interfaces).
When used wisely, higher-order functions improve code 
readability.

















Generics


Like Java, Kotlin’s type system supports type variables.  For instance:


fun <T> simplePair(x: T, y: T) = Pair(x, y)


This function creates a Kotlin Pair object in which both of the
elements must be of the same type. Given this definition,

simplePair("Hello", "Goodbye") and simplePair(4, 5) are both
legal, but simplePair("Hello", 5) is not.


The generic type denoted as T in the definition of simplePair is a type variable:
the values it can take are Kotlin types (in this example, String or
Int).  A function (or a class) that uses a type variable is said to be
generic.
























Variables and Functions


Now that we have Kotlin’s type language to support us, we can start to
discuss the syntax of Kotlin itself.


In Java the top-level syntactic entity is the class.  All variables
and methods are members of some class or other, and the class is the
main element in a homonymous file.


Kotlin has no such limitations.  You can put your entire program in
one file, if you like (please don’t). You can also define variables
and functions outside any class.










Variables


There are two ways to declare a variable: with the keywords val and
var. The keyword is required, is the first thing on the line, and
introduces the declaration:


val ronDeeLay = "the night time"


The keyword val creates a variable that is read-only: it cannot be
reassigned. Be careful, though! You might think val is like a Java variable
declared using the final 
keyword.  Though similar, it is not the same!
Although it cannot be reassigned, a val definitely can change value!  A val
variable in Kotlin is more like a Java class’s field, which has a getter but no setter,
as shown in the following code:


val surprising: Double
    get() = Math.random()


Every time surprising is accessed, it will return a different random value. This is an example of a property with
no backing field. We’ll cover properties later in this chapter.
On the other hand, if we had written val rand = Random(), then rand wouldn’t change in value and would be more like a final variable in Java.


The second keyword, var, creates a familiar mutable variable: like a
little box that holds the last thing that was put into it.


In the next section, we will move on to one of Kotlin’s features as a functional language: lambdas.

















Lambdas


Kotlin supports function literals: lambdas.  In Kotlin, lambdas are always surrounded by curly braces.
Within the braces, the argument list is to the left of an arrow, ->, and the expression that is the
value of executing the lambda is to the right, as shown in the following code:


{ x: Int, y: Int -> x * y }


By convention, the returned value is the value of the last expression in
the body of the lambda.  For example, the function shown in the following code is of type
(Int, Int) -> String:


{ x: Int, y: Int -> x * y; "down on the corner" }


Kotlin has a very interesting feature that allows actually extending
the language. When the last argument to a function is another
function (the function is higher-order), you can move the lambda
expression passed as a parameter out of the parentheses that normally
delimit the actual parameter list, as shown in the following code:


// The last argument, "callback", is a function
fun apiCall(param: Int, callback: () -> Unit)


This function would typically be used like this:


apiCall(1, { println("I'm called back!")})


But thanks to the language feature we mentioned, it can also be used like this:


apiCall(1) {
   println("I'm called back!")
}


This is much nicer, isn’t it? Thanks to this feature, your code can be more readable. A more advanced
usage of this feature are DSLs.3

















Extension Functions


When you need to add a new method to an existing class, and that class comes from a dependency whose source code you don’t own, what do you do?


In Java, if the class isn’t final, you can subclass it. Sometimes this isn’t ideal, because there’s one more
type to manage, which adds complexity to the project. If the class is final, you can define a static method
inside some utility class of your own, as shown in the following code:


class FileUtils {
    public static String getWordAtIndex(File file, int index) {
        /* Implementation hidden for brevity */
    }
}


In the previous example, we defined a function to get a word in a text file, at a given index. On the use site, you’d write String word = 
getWordAtIndex(file, 3), assuming you make the static import of 
FileUtils.getWordAtIndex.
That’s fine, we’ve been doing that for years in Java, and it works.


In Kotlin, there’s one more thing you can do. You have the ability to define a new method on a class,
even though it isn’t a real member-function of that class. So you’re not really extending the class, but
on the use site it feels like you added a method to the class. How is this possible? By defining an
extension function, as shown in the following code:


// declared inside FileUtils.kt
fun File.getWordAtIndex(index: Int): String {
    val context = this.readText()  // 'this' corresponds to the file
    return context.split(' ').getOrElse(index) { "" }
}


From inside the declaration of the extension function, this refers to the receiving type instance (here, a File).
You only have access to public and internal attributes and methods, so private and protected fields are
inaccessible—you’ll understand why shortly.


On the use site, you would write val word = file.getWordAtIndex(3). As you can see, we invoke the getWordAtIndex()
function on a File instance, as if the File class had the getWordAtIndex() member-function. That makes the use
site more expressive and readable. We didn’t have to come up with a name for a new utility class: we can declare
extension functions directly at the root of a source file.

Note

Let’s have a look at the decompiled version of getWordAtIndex:


public class FileUtilsKt {
    public static String getWordAtIndex(
            File file, int index
    ) {
        /* Implementation hidden for brevity */
    }
}


When compiled, the generated bytecode of our extension function is the equivalent of a static method which
takes a File as its first argument. The enclosing class, FileUtilsKt, is named after the name of the source
file (FileUtils.kt) with the “kt” suffix.


That explains why we can’t access private fields in an extension function: we are just adding a static method
that takes the receiving type as a parameter.




There’s more! For class attributes, you can declare extension properties. The idea is exactly the
same—you’re not really extending a class, but you can make new attributes accessible using the dot notation, as
shown in the following code:


// The Rectangle class has width and height properties
val Rectangle.area: Double
    get() = width * height


Notice that this time we used val (instead of fun) to declare the extension property. You would use it like so:
val area = rectangle.area.


Extension functions and extension properties allow you to extend classes’ capabilities, with a nice dot-notation
usage, while still preserving separation of concern. You’re not cluttering existing classes with specific code for
particular needs.
























Classes


Classes in Kotlin, at first, look a lot like they do in Java: the
class keyword, followed by the block that defines the class. One of
Kotlin’s killer features, though, is the syntax for the constructor
and the ability to declare properties within it. The following code shows the definition of a simple Point class along with a couple of uses:


class Point(val x: Int, var y: Int? = 3)

fun demo() {
    val pt1 = Point(4)
    assertEquals(3, pt1.y)
    pt1.y = 7
    val pt2 = Point(7, 7)
    assertEquals(pt2.y, pt1.y)
}










Class Initialization


Notice that in the preceding code, the constructor of Point is embedded in
the declaration of the class.  It is called the primary constructor.
Point’s primary constructor declares two
class properties, x and y, both of which are integers.  The first,
x, is read-only. The second, y, is mutable and nullable, and has a
default value of 3.


Note that the var and val keywords are very significant!  The
declaration class Point(x: Int, y: Int) is very different from the
preceding declaration because it does not declare any member properties.
Without the keywords, identifiers x and y are simply arguments to
the constructor.  For example, the following code will generate an
error:


class Point(x: Int, y: Int?)

fun demo() {
    val pt = Point(4)
    pt.y = 7 // error!  Variable expected
}


The Point class in this example has only one constructor, the one
defined in its declaration.  Classes are not limited to this single constructor,
though. In Kotlin, you can also define both secondary constructors and
initialization blocks, as shown in the following definition of the Segment
class:


class Segment(val start: Point, val end: Point) {
    val length: Double = sqrt(
            (end.x - start.x).toDouble().pow(2.0)
                    + (end.y - start.y).toDouble().pow(2.0))

    init {
        println("Point starting at $start with length $length")
    }

    constructor(x1: Int, y1: Int, x2: Int, y2: Int) :
            this(Point(x1, y1), Point(x2, y2)) {
        println("Secondary constructor")
    }
}


There are some other things that are of interest in this example.
First of all, note that a secondary constructor must delegate to the
primary constructor, the : this(...), in its declaration. The
constructor may have a block of code, but it is required to delegate,
explicitly, to the primary constructor, first.


Perhaps more interesting is the order of execution of the code in the
preceding declaration.  Suppose one were to create a new Segment, using
the secondary constructor.  In what order would the print statements
appear?


Well!  Let’s try it and see:


>>> val s = Segment(1, 2, 3, 4)

Point starting at Point(x=1, y=2) with length 2.8284271247461903
Secondary constructor


This is pretty interesting.  The init block is run before the code
block associated with secondary constructor! On the other hand, the
properties length and start have been initialized with their
constructor-supplied values. That means that the primary constructor
must have been run even before the init block.


In fact, Kotlin guarantees this ordering: the primary constructor (if
there is one) is run first.  After it finishes, init blocks are run
in declaration order (top to bottom).  If the new instance is being
created using a secondary constructor, the code block associated with
that constructor is the last thing to run.

















Properties


Kotlin variables, declared using val or var in a constructor, or at
the top level of a class, actually define a property. A property, in
Kotlin, is like the combination of a Java field and its getter (if
the property is read-only, defined with val), or its getter and setter (if
defined with var).


Kotlin supports customizing the accessor and mutator for a property
and has special syntax for doing so, as shown here in the definition of
the class Rectangle:


class Rectangle(val l: Int, val w: Int) {
    val area: Int
        get() = l * w
}


The property area is synthetic: it is computed from the values
for the length and width.  Because it wouldn’t make sense to assign
to area, it is a val, read-only, and does not have a set() method.


Use standard “dot” notation to access the value of a property:


val rect = Rectangle(3, 4)
assertEquals(12, rect.area)


In order to further explore custom property getters and setters,
consider a class that has a hash code that is used frequently
(perhaps instances are kept in a Map), and that is quite
expensive to calculate.  As a design decision, you decide to
cache the hash code, and to set it when the value of a class
property changes.  A first try might look something like this:


// This code doesn't work (we'll see why)
class ExpensiveToHash(_summary: String) {

    var summary: String = _summary
        set(value) {
            summary = value    // unbounded recursion!!
            hashCode = computeHash()
        }

    //  other declarations here...
    var hashCode: Long = computeHash()

    private fun computeHash(): Long = ...
}


The preceding code will fail because of unbounded recursion: the assignment to summary is a call to summary.set()! Attempting to set the value of the property
inside its own setter won’t work.
Kotlin uses the special identifier field to address this problem.
The following shows the corrected version of the code:


class ExpensiveToHash(_summary: String) {

    var summary: String = _summary
        set(value) {
            field = value
            hashCode = computeHash()
        }

    //  other declarations here...
    var hashCode: Long = computeHash()

    private fun computeHash(): Long = ...
}


The identifier field has a special meaning only within the custom
getter and setter, where it refers to the backing field that
contains the property’s state.


Notice, also, that the preceding code demonstrates the idiom for
initializing a property that has a custom getter/setter with a value
provided to the class constructor.  Defining properties in a
constructor parameter list is really handy shorthand.  If a few property
definitions in a constructor had custom getters and
setters, though, it could make the constructor really hard to read.


When a property with a custom getter and setter must be initialized
from the constructor, the property is defined, along with its custom
getter and setter, in the body of the class.  The property is
initialized with a parameter from the constructor (in this case,
_summary).  This illustrates, again, the importance of the keywords
val and var in a constructor’s parameter list.  The parameter
_summary is just a parameter, not a class property, because it is
declared without either keyword.

















lateinit Properties


There are times when a variable’s value is not available at the site
of its declaration.  An obvious example of this for Android
developers is a UI widget used in an Activity or Fragment.  It is not
until the onCreate or onCreateView method runs that the variable,
used throughout the activity to refer to the widget, can be
initialized. The button in this example, for instance:


class MyFragment: Fragment() {
    private var button: Button? = null // will provide actual value later
}


The variable must be initialized.  A standard technique, since we
can’t know the value, yet, is to make the variable nullable and
initialize it with null.


The first question you should ask yourself in this situation is
whether it is really necessary to define this variable at this
moment and at this location. Will the button reference really be
used in several methods or is it really only used in one or two
specific places? If the latter, you can eliminate the class global altogether.


However, the problem with using a nullable type is that whenever you use 
button in your code, you will have to check for nullability. For example: 
button?.setOnClickListener { .. }. A couple of variables like this and you’ll end up with a lot of annoying question marks! This can look particularly cluttered if you are used to Java and its simple dot notation.


Why, you might ask, does Kotlin prevent me from declaring the button
using a non-null type when you are sure that you will initialize it
before anything tries to access it? Isn’t there a way to relax the
compiler’s initialization rule just for this button?


It’s possible. You can do exactly that using the lateinit modifier,
as shown in the following code:


class MyFragment: Fragment() {
    private lateinit var button: Button // will initialize later
}


Because the variable is declared lateinit, Kotlin will let you
declare it without assigning it a value. The variable must be mutable,
a var, because, by definition, you will assign a value to it, later.
Great—problem solved, right?


We, the authors, thought exactly that when we started using Kotlin. Now,
we lean toward using lateinit only when absolutely necessary,
and using nullable values instead. Why?


When you use lateinit, you’re telling the compiler, “I don’t have a value to give you right now. But I’ll give you a value later, I promise.” If the Kotlin compiler could talk, it would answer, “Fine! You say you know what you’re doing. If something goes wrong, it’s on you.” By using the lateinit modifier, you disable Kotlin’s
null safety for your variable. If you forget to initialize the
variable or try to call some method on it before it’s initialized,
you’ll get an UninitializedPropertyAccessException, which is
essentially the same as getting a NullPointerException in Java.


Every single time we’ve used lateinit in our code, we’ve been burned
eventually. Our code might work in all of the cases we’d foreseen.
We’ve been certain that we didn’t miss anything… and we were wrong.


When you declare a variable lateinit you’re making
assumptions that the compiler cannot prove.  When you or other
developers refactor the code afterward, your careful design might get
broken. Tests might catch the error.  Or not.4 In our
experience, using lateinit always resulted in runtime crashes. How did
we fix that? By using a nullable type.


When you use a nullable type instead of lateinit, the Kotlin
compiler will force you to check for nullability in your code, exactly
in the places that it might be null.  Adding a few question marks is
definitely worth the trade-off for more robust code.

















Lazy Properties


It’s a common pattern in software engineering to put off creating and
initializing an object until it is actually needed. This pattern is
known as lazy initialization, and is especially common on Android,
since allocating a lot of objects during app startup can lead to
a longer startup time. Example 1-1 is a typical case of lazy
initialization in Java.


Example 1-1. Java lazy initialization


class Lightweight {
    private Heavyweight heavy;

    public Heavyweight getHeavy() {
        if (heavy == null) {
            heavy = new Heavyweight();
        }
        return heavy;
    }
}



The  field heavy is initialized with a new instance of the
class Heavyweight (which is, presumably, expensive to create) only when
its value is first requested with a call, for example, to lightweight.getHeavy().
Subsequent calls to getHeavy() will return the cached instance.


In Kotlin, lazy initialization is a part of the language. By using
the directive by lazy and providing an initialization block, the
rest of the lazy instantiation is implicit, as shown in
Example 1-2.


Example 1-2. Kotlin lazy initialization


class Lightweight {
    val heavy by lazy { // Initialization block
        Heavyweight()
    }
}



We will explain this syntax in greater detail in the next section.

Note

Notice that the code in Example 1-1 isn’t thread-safe.
Multiple threads calling Lightweight’s getHeavy() method simultaneously
might end up with different instances of Heavyweight.


By default, the code in Example 1-2 is thread-safe.  Calls to

Lightweight::getHeavy() will be synchronized so that only one thread at
a time is in the initialization block.


Fine-grained control of concurrent access to a lazy initialization block
can be managed using LazyThreadSafetyMode.




A Kotlin lazy value will not be initialized until a call is made at
runtime. The first time the property heavy is referenced, the initialization block will be run.

















Delegates


Lazy properties are an example of a more general Kotlin feature, called
delegation. A declaration uses the keyword by to define a
delegate that is responsible for getting and setting the value of the
property. In Java, one could accomplish something similar with, for example,
a setter that passed its argument on as a parameter to a call to a
method on some other object, the delegate.


Because Kotlin’s lazy initialization feature is an excellent example of the
power of idiomatic Kotlin, let’s take a minute to unpack it.


The first part of the declaration in Example 1-2 reads val
heavy. This is, we know, the declaration of a read-only variable,
heavy.  Next comes the keyword by, which introduces a delegate.
The keyword by says that the next identifier in the declaration is
an expression that will evaluate to the object that will be
responsible for the value of heavy.


The next thing in the declaration is the identifier lazy.  Kotlin is
expecting, an expression.  It turns out that lazy is just a
function!  It is a function that takes a single argument, a lambda,
and returns an object.  The object that it returns is a Lazy<T>
where T is the type returned by the lambda.


The implementation of a Lazy<T> is quite simple:
the first time it is called it runs the lambda and caches its value.
On subsequent calls it returns the cached value.


Lazy delegation is just one of many varieties of property
delegation. Using keyword by, you can also define observable properties (see the Kotlin documentation for delegated properties). Lazy
delegation is, though, the most common property delegation used in
Android code.

















Companion Objects


Perhaps you are wondering what Kotlin did with static variables. Have
no fear; Kotlin uses companion objects. A companion object is a singleton object always related to a Kotlin class.  Although it isn’t required, most often the
definition of a companion object is placed at the bottom of the
related class, as shown here:


class TimeExtensions {
    //  other code

    companion object {
        const val TAG = "TIME_EXTENSIONS"
    }
}


Companion objects can have names, extend classes, and inherit interfaces.
In this example, TimeExtension’s companion object is named StdTimeExtension
and inherits the interface Formatter:


interface Formatter {
    val yearMonthDate: String
}

class TimeExtensions {
    //  other code

    companion object StdTimeExtension : Formatter {
        const val TAG = "TIME_EXTENSIONS"
        override val yearMonthDate = "yyyy-MM-d"
    }
}


When referencing a member of a companion object from outside a class
that contains it, you must qualify the reference with the name of the
containing class:


val timeExtensionsTag = TimeExtensions.StdTimeExtension.TAG


A companion object is initialized when Kotlin loads the related
class.

















Data Classes


There is a category of classes so common that, in Java, they
have a name: they are called POJOs, or plain old Java objects. The idea
is that they are simple representations of structured data.  They are a
collection of data members (fields), most of which have getters and
setters, and just a few other methods: equals, hashCode, and
toString. These kinds of classes are so common that Kotlin has made
them part of the language. They are called data classes.


We can improve our definition of the Point class by making it a data class:


data class Point(var x: Int, var y: Int? = 3)


What’s the difference between this class, declared using the data
modifier, and the original, declared without it? Let’s try a simple experiment,
first using the original definition of Point (without the data modifier):


class Point(var x: Int, var y: Int? = 3)

fun main() {
    val p1 = Point(1)
    val p2 = Point(1)
    println("Points are equals: ${p1 == p2}")
}


The output from this small program will be "Points are equals: false".
The reason for this perhaps unexpected result is that Kotlin
compiles p1 == p2 as p1.equals(p2). Since our first definition of
the Point class did not override the equals method, this turns into
a call to the equals method in Point’s base class, Any.
Any’s implementation of equals returns true only when an object is compared to itself.


If we try the same thing with the new definition of Point as a data
class, the program will print "Points are equals: true".  The new
definition behaves as intended because a data class automatically
includes overrides for the methods equals, 
hashCode, and toString.
Each of these automatically generated methods depends on all of a class’s
properties.


For example, the data class version of Point contains an equals
method that is equivalent to this:


override fun equals(o: Any?): Boolean {
    // If it's not a Point, return false
    // Note that null is not a Point
    if (o !is Point) return false

    // If it's a Point, x and y should be the same
    return x == o.x && y == o.y
}


In addition to providing default implementations of equals and
hashCode, a data class also provides the copy method.
Here’s an example of its use:


data class Point(var x: Int, var y: Int? = 3)
val p = Point(1)          // x = 1, y = 3
val copy = p.copy(y = 2)  // x = 1, y = 2


Kotlin’s data classes are a perfect convenience for a frequently used idiom.


In the next section, we examine another special kind of class: enum classes.

















Enum Classes


Remember when developers were being advised that enums were too
expensive for Android? Fortunately, no one is even suggesting that
anymore: use enum classes to your heart’s desire!


Kotlin’s enum classes are very similar to Java’s enums.  They create a
class that cannot be subclassed and that has a fixed set of instances.
Also as in Java, enums cannot subclass other types but can implement
interfaces and can have constructors, properties, and methods.  Here
are a couple of simple examples:


enum class GymActivity {
    BARRE, PILATES, YOGA, FLOOR, SPIN, WEIGHTS
}

enum class LENGTH(val value: Int) {
    TEN(10), TWENTY(20), THIRTY(30), SIXTY(60);
}


Enums work very well with Kotlin’s when expression.  For example:


fun requiresEquipment(activity: GymActivity) = when (activity) {
    GymActivity.BARRE -> true
    GymActivity.PILATES -> true
    GymActivity.YOGA -> false
    GymActivity.FLOOR -> false
    GymActivity.SPIN -> true
    GymActivity.WEIGHTS -> true
}


When the when expression is used to assign a variable, or as an expression body of a function as in the previous example, it must be exhaustive.  An exhaustive when expression is
one that covers every possible value of its argument (in this case,

activity). A standard way of assuring that a when expression is
exhaustive is to include an else clause.  The else clause matches
any value of the argument that is not explicitly mentioned in its case list.


In the preceding example, to be exhaustive, the when expression must
accommodate every possible value of the function parameter activity.
The parameter is of type GymActivity and, therefore, must be one of
that enum’s instances. Because an enum has a known set of instances,
Kotlin can determine that all of the possible values are covered as
explicitly listed cases and permit the omission of the else clause.


Omitting the else clause like this has a really nice advantage: if
we add a new value to the GymActivity enum, our code suddenly won’t
compile.  The Kotlin compiler detects that the when expression is no
longer exhaustive.  Almost certainly, when you add a new case to an
enum, you want to be aware of all the places in your code that have to
adapt to the new value. An exhaustive when expression that does not
include an else case does exactly that.

Note

What happens if a when statement need not return a value (for
instance, a function in which the when statement’s value is not the
value of the function)?


If the when statement is not used as an expression, the Kotlin compiler
doesn’t force it to be exhaustive. You will, however, get a lint warning
(a yellow flag, in Android Studio) that tells you that it is recommended
that a when expression on enum be exhaustive.




There’s a trick that will force Kotlin to interpret any when
statement as an expression (and, therefore, to be exhaustive). The extension function defined in
Example 1-3 forces the when statement to return a
value, as we see in Example 1-4.  Because it must have a value,
Kotlin will insist that it be exhaustive.


Example 1-3. Forcing when to be exhaustive


val <T> T.exhaustive: T
    get() = this



Example 1-4. Checking for an exhaustive when


when (activity) {
    GymActivity.BARRE -> true
    GymActivity.PILATES -> true
}.exhaustive // error!  when expression is not exhaustive.



Enums are a way of creating a class that has a specified, static set of instances.  Kotlin provides an interesting
generalization of this capability, the sealed class.

















Sealed Classes


Consider the following code.  It defines a single type, Result,
with exactly two subtypes. Success contains a value; Failure contains an Exception:


interface Result
data class Success(val data: List<Int>) : Result
data class Failure(val error: Throwable?) : Result


Notice that there is no way to do this with an enum.  All of the values of an enum must be
instances of the same type.  Here, though, there are two distinct types that are subtypes of Result.


We can create a new instance of either of the two types:


fun getResult(): Result = try {
    Success(getDataOrExplode())
} catch (e: Exception) {
    Failure(e)
}


And, again, a when expression is a handy way to manage a Result:


fun processResult(result: Result): List<Int> = when (result) {
    is Success -> result.data
    is Failure -> listOf()
    else -> throw IllegalArgumentException("unknown result type")
}


We’ve had to add an else branch again, because the Kotlin compiler
doesn’t know that Success and Failure are the only Result
subclasses. Somewhere in your program, you might create another
subclass of result Result and add another possible case.  Hence the
else branch is required by the compiler.


Sealed classes do for types what enums do for instances.  They allow
you to announce to the compiler that there is a fixed, known set of
subtypes (Success and Failure in this case) for a certain base type
(Result, here). To make this declaration, use the keyword sealed
in the declaration, as shown in the following code:


sealed class Result
data class Success(val data: List<Int>) : Result()
data class Failure(val error: Throwable?) : Result()


Because Result is sealed, the Kotlin compiler knows that Success and Failure are the only
possible subclasses.  Once again, we can remove the else from a when 
expression:


fun processResult(result: Result): List<Int> = when (result) {
    is Success -> result.data
    is Failure -> listOf()
}
























Visibility Modifiers


In both Java and Kotlin, visibility modifiers determine the scope of a variable, class, or method. In Java, there are
three visibility modifiers:


	private

	
References are only visible to the class that they are defined within, and from the outer class if defined in an inner class.



	protected

	
References are visible to the class that they are defined within, or any subclasses of that class. In
addition, they are also visible from classes in the same package.



	public

	
References are visible anywhere.






Kotlin also has these three visibility modifiers. However, there are some subtle differences. While you can only use them with
class-member declarations in Java, you can use them with class-member and top-level declarations in Kotlin:


	private

	
The declaration’s visibility depends on where it is defined:



	
A class member declared as private is visible only in the class in which it is defined.



	
A top-level private declaration is visible only in the file in which it is defined.







	protected

	
Protected declarations are visible only in the class in which they are defined, and the subclasses thereof.



	public

	
References are visible anywhere, just like in Java.






In addition to these three different visibilities, Java has a fourth, package-private, making references only
visible from classes that are within the same package.
A declaration is package-private when it has no visibility modifiers. In other words, this is the default
visibility in Java.


Kotlin has no such concept.5 This might be surprising,
because Java developers often rely on package-private visibility to hide implementation details from other packages
within the same module. In Kotlin, packages aren’t used for visibility scoping at all—they’re just namespaces.
Therefore, the default visibility is different in Kotlin—it’s public.


The fact that Kotlin doesn’t have package-private visibility has quite a significant impact on how we design and
structure our code. To guarantee a complete encapsulation of declarations (classes, methods, top-level fields, etc.),
you can have all these declarations as private within the same file.


Sometimes it’s acceptable to have several closely related classes split into different files. However, those classes
won’t be able to access siblings from the same package unless they are public or internal. What’s internal?
It’s the fourth visibility modifier supported by Kotlin, which makes the reference visible anywhere within the containing
module.6 From a module standpoint, internal is
identical to public. However, internal is interesting when this module is intended as a library—for example, it’s a
dependency for other modules. Indeed, internal declarations aren’t visible from modules that import your library.
Therefore, internal is useful to hide declarations from the outside world.

Note

The internal modifier isn’t meant for visibility scoping inside the module, which is what package-private does in Java.
This isn’t possible in Kotlin. It is possible to restrict visibility a little more heavy-handedly using the
private modifier.



















Summary


Table 1-1 highlights some of the key differences between Java and Kotlin.


Table 1-1. Differences between Java and Kotlin features


	Feature
	Java
	Kotlin





	File contents

	A single file contains a single top-level class.

	A single file can hold any number of classes, variables, or functions.




	Variables

	Use final to make a variable immutable; variables are mutable by default. Defined at the class level.

	Use val to make a variable read-only, or var for read/write values. Defined at the class level, or may exist
independently outside of a class.




	Type inferencing

	Data types are required. Date date = new Date();

	Data types can be inferred, like val date = Date(), or explicitly defined, like val date: Date = Date().




	Boxing and unboxing types

	In Java, data primitives like int are recommended for more expensive operations, since they are less
expensive than boxed types like Integer. However, boxed types have lots of useful methods in Java’s wrapper classes.

	Kotlin doesn’t have primitive types out of the box. Everything is an object. When compiled for the JVM, the
generated bytecode performs automatic unboxing, when possible.




	Access modifiers

	Public and protected classes, functions, and variables can be extended and overridden.

	As a functional language, Kotlin encourages immutability whenever possible. Classes and functions are final by default.




	Access modifiers in multi-module projects

	Default access is package-private.

	There is no package-private, and default access is public. New internal access provides visibility in the same module.




	Functions

	All functions are methods.

	Kotlin has function types. Function data types look like, for example, (param: String) -> Boolean.




	Nullability

	Any non-primitive object can be null.

	Only explicitly nullable references, declared with the ? suffix on the type, can be set to null: val date: Date? = new Date().




	Statics versus constants

	The static keyword attaches a variable to a class definition, rather than an instance.

	There is no static keyword. Use a private const or a companion object.







Congratulations, you just finished a one-chapter covering Kotlin’s essentials.
Before we start talking about applying Kotlin to Android,
we need to discuss Kotlin’s built-in library: collections and data transformations.
Understanding the underlying functions of data transformations in
Kotlin will give you the necessary foundation needed to understand
Kotlin as a functional language.











1 Dmitry Jemerov and Svetlana Isakova. Kotlin in Action. Manning, 2017.
2 Kotlin officially calls this type inferencing, which uses a partial phase of the compiler (the frontend component) to do type checking of the written code while you write in the IDE. It’s a plug-in for IntelliJ! Fun fact: the entirety of IntelliJ and Kotlin is made of compiler plug-ins.
3 DSL stands for domain-specific language. An example of a DSL built in Kotlin is the Kotlin Gradle DSL.
4 You can check whether the latenit button property is initialized using this::button.isInitialized. Relying on developers to add this check in all the right places doesn’t solve the underlying issue.
5 At least, as of Kotlin 1.5.20. As we write these lines, Jetbrains is considering adding a package-private visibility modifier to the language.
6 A module is a set of Kotlin files compiled together.




Chapter 2. The Kotlin Collections Framework



In the preceding chapter we offered an overview of the syntax of
the Kotlin language.  As with any language, syntax is a
foundation but, really, no more than that.  When it comes to
getting actual work done, syntax alone won’t carry the
water.  To do that you need expressions and idioms that are
easy to assemble into useful code, and that are as easy for
other developers to understand and modify.


One important aspect of nearly every modern language is its
collections framework: ways of grouping objects, and
libraries of functions that manipulate them.


At the time it was introduced, Java’s collection framework
was state of the art. Today, more than 20 years later, the
basic data structures provided by newer languages have not
changed much.  All of the containers that we’re familiar with from the Java framework (or even the earliest versions of the C++
stdlib) are still there: Iterable, 
Collection, List,
Set, and Map (to use their Java names). In response to
broad acceptance of functional styles of programming,
however, collections frameworks for modern languages like
Swift and Scala usually provide a set of common,
higher-order functions that operate on the collections:
filter, map, flatmap, zip, and more. You will,
indeed, find these functions in the collections framework from the Kotlin Standard Library.


In this chapter, we will first visit the collections
themselves and a few interesting extensions that the
Kotlin language empowers. After that, we will dig into
some of the powerful higher-order functions that
operate on the collections.








Collection Basics


Kotlin’s collections framework embeds the data structures
from the Java Collections Framework as a subset.  It wraps the
basic Java classes with some new features and adds
functional transformations that operate on them.


Let’s start this deep dive into the collections library with
a quick look at some of the extensions to the data
structures themselves.










Java Interoperability


Because seamless interoperablity with Java is a central goal of the
Kotlin language, Kotlin collection data types are based on their
Java counterparts. Figure 2-1 illustrates the
relationship.



[image: Kotlin Collections]
Figure 2-1. The Kotlin collection type hierarchy and its relation to Java.




By making Kotlin  collection types subtypes of their Java analogs,
Kotlin preserves all of functionality of the Java Collections
Framework. For the most part, Kotlin extends, but does not alter the
Java framework.  It just adds the new, functional methods.


There is one significant exception:
mutability.

















Mutability


It is, perhaps, only logical that a language that embeds mutability in its syntax would also embed mutability in its
collection system.


Kotlin defines two distinct type hierarchies in its
collections framework, one for collections that are mutable
and one for collections that are not. This can be seen in Example 2-1.


Example 2-1. Mutable and Immutable Lists


val mutableList = mutableListOf(1, 2, 4, 5)
val immutableList = listOf(1, 2, 4, 5)
mutableList.add(4)    // compiles

// doesn't compile: ImmutableList has no `add` method.
immutableList.add(2)


Note

Mutable is the opposite of immutable. A mutable object
can be changed and an immutable one cannot. The distinction
is critical when trying to optimize code. Since they cannot
change, immutable objects can be shared safely among multiple
threads. A mutable object, however, must be made explicitly
thread-safe if it is to be shared. Thread safety requires
locking or copying, which may be expensive.




Unfortunately, Kotlin cannot guarantee the immutablity of
its immutable collections. Immutable collections simply do
not have mutator functions (add, remove, put, etc.).
Especially when a Kotlin collection is passed to Java code—where Kotlin’s immutability constraints are not enforced by
the type system—there can be no assurance that the contents
of the collection will not change.


Note that the mutability of a collection is not related to
the mutability of the object that the collection contains.
As a very simple example, consider the following code:


val deeplist = listOf(mutableListOf(1, 2), mutableListOf(3, 4))

// Does not compile: "Unresolved reference: add"
deeplist.add(listOf(3))

deeplist[1][1] = 5      // works
deeplist[1].add(6)      // works


The variable deeplist is a List<MutableList<Int>>.  It is
and always will be a list of two lists.  The contents of the
lists that deeplist contains, however, can grow, shrink, and change.


The creators of Kotlin are actively investigating all things
immutable. The prototype 
kotlinx.collections.immutable library is intended to be a set of truly immutable collections. To use them in
your own Android/Kotlin project, add the following
dependency to your build.gradle file:


implementation \
'org.jetbrains.kotlinx:kotlinx-collections-immutable:$IC_VERSION'


While the Kotlinx Immutable Collections Library uses
state-of-the-art algorithms and optimizes them so that they
are very fast compared to other JVM implementations 
of
immutable collections, these true immutable collections are
still an order of magnitude slower than their mutable
analogs. Currently, there’s nothing to be done about
it. However, many modern developers are willing to sacrifice
some performance for the safety that immutability brings,
especially in the context of 
concurrency.1

















Overloaded Operators


Kotlin supports a  disciplined ability to overload the meanings of certain infix operators, in particular, + and -. Kotlin’s collections framework makes good use of this capability. To demonstrate, let’s
look at a naive implementation of a function to convert
a List<Int> to a List<Double>:


fun naiveConversion(intList: List<Int>): List<Double> {
    var ints = intList
    var doubles = listOf<Double>()
    while (!ints.isEmpty()) {
        val item = ints[0]
        ints = ints - item
        doubles = doubles + item.toDouble()
    }
    return doubles
}


Don’t do this.  The only thing that this example does
efficiently is demonstrate the use of the two infix
operators + and -.  The former adds an element to a list
and the latter removes an element from it.


The operand to the
left of a + or - operator can define the behavior of that
operator. Containers, when they appear to the left of a +
or -, define two implementations for each of those two
operators: one when the right-hand operand is
another container and the other when it is not.


Adding a noncontainer object to a container creates a new container that
has all of the elements from the left-hand operand (the
container) with the new element (the right-hand operand)
added. Adding two containers together creates a new container
that has all of the elements from both.


Similarly, subtracting an object from a container creates a
new container with all but the first occurrence of the
left-hand operand. Subtracting one container from another
produces a new container that has the elements of the left-hand
operand, with all occurrences of all the elements in
the right-hand operand removed.

Note

The + and - operators preserve order when the underlying
container is ordered.  For instance:


(listOf(1, 2) + 3)
    .equals(listOf(1, 2, 3))    // true
(listOf(1, 2) + listOf(3, 4))
    .equals(listOf(1, 2, 3, 4)) // true



















Creating Containers


Kotlin does not have a way to express container literals.
There is no syntactic way, for instance, of making a List
of the numbers 8, 9, and 54.  Nor is there a way of making a
Set of the strings “Dudley” and “Mather.” Instead, there
are handy methods for creating containers that are nearly as
elegant. The code in Example 2-1 showed two simple examples of creating lists. There are also
...Of methods for creating mutable and immutable lists,
sets, and maps.


Creating literal maps requires knowing a clever trick.  The
mapOf function takes a list of Pairs as its argument.
Each of the pairs provides a key (the pair’s first value)
and a value (the pair’s second value). Recall that Kotlin
supports an extended set of infix operators.  Among these
operators is to, which creates a new Pair with its left
operand as the first element and its right operand as the
second element. Combine these two features and you can,
conveniently, build a Map like this:


val map = mapOf(1 to 2, 4 to 5)


The type of the content of a container is expressed using a
generic syntax very similar to Java’s. The type of the variable
map in the preceding code, for instance, is Map<Int, Int>, a container
that maps Int keys to their Int values.


The Kotlin compiler is quite clever about inferring the types of the
contents of containers created with their factory methods. Obviously
in this example:


val map = mutableMapOf("Earth" to 3, "Venus" to 4)


the type of map is MutableMap<String, Int>.  But what about this?


val list = listOf(1L, 3.14)


Kotlin will choose the nearest type in the type hierarchy
tree that is an ancestor of all of the elements of the
container (this type is called the upper bound type). In
this case it will choose Number, the nearest ancestor of
both Long and Double. The variable list has the
inferred type List<Number>.


We can add a String, though, as in the following:


val list = mutablelistOf(1L, 3.14, "e")


The only type that is an ancestor to all of the elements, a
Long, a Double, and a String, 
is the root of the Kotlin type hierarchy, Any. The type of the variable list is

MutableList<Any>.


Once again, though, recall from Chapter 1 that the type Any is not
the same as the type Any?. The following will not compile (assuming
the definition from the preceding example):


list.add(null)  // Error: Null cannot be a value of a non-null type Any


In order to allow the list to contain null, we’d have to specify its
type explicitly:


val list: MutableList<Any?> = mutablelistOf(1L, 3.14, "e")


We can create collections now. So, what do we do with them?
























Functional Programming


We operate on them! Nearly all of the operations that we
will discuss here are based on the paradigm of functional
programming. In order to understand their context and
motivation, let’s review the paradigm.


Object-oriented programming (OOP) and functional programming
(FP) are both paradigms for software design. Software
architects understood the promise of functional programming
soon after its invention in the late 1950s. Early functional
programs tended to be slow, though, and it’s only recently
that the functional style has been able to challenge a more
pragmatic imperative model for performance. As programs
get more complex and difficult to understand, as concurrency
becomes inevitable, and as compiler optimization improves,
functional programming is changing from a cute academic toy
into a useful tool that every developer should be able to
wield.


Functional programming encourages immutability.  Unlike
the functions in code, mathematical functions don’t change
things.  They don’t “return” anything.  They simply have a
value. Just as “4” and “2 + 2” are names for the same
number, a given function evaluated with given parameters is
simply a name (perhaps a verbose name!) for its value.
Because mathematical functions do not change, they are not
affected by time. This is immensely useful when working in
a concurrent environment.


Though different, FP and OOP paradigms can coexist. Java was,
certainly, designed as an OO language, and Kotlin, fully interoperable,
can duplicate Java algorithms nearly word for word. As we
proclaimed in the preceding chapter, though, the true power of Kotlin lies
in its extensible functional programming capabilities. It’s not
uncommon for folks to start out writing “Java in Kotlin.” As they
start to feel more comfortable, they tend to gravitate toward more
idiomatic Kotlin, and much of that involves applying the power of FP.










Functional Versus Procedural: A Simple Example


The following code shows a procedural way of working with a
collection:


fun forAll() {
    for (x in collection) { doSomething(x) }
}


In the example, a for loop iterates over a list.  It
selects an element from collection and assigns it to the
variable x. It then calls the method doSomething on the
element. It does this for each element in the list.


The only constraint on the collection is that there must be
a way to fetch each of its elements exactly once.  That
capability is precisely what is encapsulated by the type
Iterable<T>.


The functional paradigm is certainly less complicated: no extra variables and no special syntax. Just a single method call:


fun forAll() = collection.forEach(::doSomething)


The forEach method takes a function as its argument. That argument, doSomething in this case, is a function that
takes a single parameter of the type contained in

collection.  In other words, if collection is a
list of Strings, doSomething must be 
doSomething(s: String). If collection is a Set<Freeptootsie>, then

doSomething must be doSomething(ft: Freeptootsie). The
forEach method calls its argument (doSomething) with
each element in collection as its parameter.


This might seem like an insignificant difference. It is not. The
forEach method is a much better separation of concerns.


An Iterable<T> is stateful, ordered, and time dependent.
Anyone who has ever had to deal with a
ConcurrentModificationException knows it is entirely
possible that the state of an iterator may not match the
state of the collection over which it 
is iterating. While
Kotlin’s forEach operator is not completely immune to

ConcurrentModificationException, those exceptions occur in
code that is actually concurrent.


More importantly, the mechanism that a collection uses to
apply a passed function to each of its elements is entirely
the business of the collection itself. In particular, there is
no intrinsic contract about the order in which the function
will be evaluated on the collection’s elements.


A collection could, for instance, divide its elements into
groups. It could farm each of these groups out to a separate
processor and then reassemble the results. This approach is
particularly interesting at a time when the number of cores
in a processor is increasing rapidly. The Iterator<T>
contract cannot support this kind of parallel execution.

















Functional Android


Android has a quirky history with functional programming.
Because its virtual machine has nothing to do with Java’s,
improvements in the Java language have not necessarily been
available to Android developers. Some of the most important
changes in Java, including lambdas and method references,
were not supported in Android for quite a while after they
appeared in Java 8.


Although Java could compile these new features and DEX
(Android’s bytecode) could even represent them (though,
perhaps, not efficiently), the Android toolchain couldn’t
convert the representations of these features—the
compiled Java bytecode—into the DEX code that could be run
on an Android system.


The first attempt to fill the gap was a package called
RetroLambda. Other add-on library solutions followed,
sometimes with confusing rules (e.g., with the Android Gradle
Plugin [AGP] 3.0+, if you wanted to use the Java Streams API
you had to target, at a minimum, Android API 24).


All of these constraints are now gone with Kotlin on
Android.  Recent versions of the AGP will support functional
programming even on older versions of Android. You can now
use the full Kotlin collection package on any supported
platform.
























Kotlin Transformation Functions


In this section, you will see how Kotlin brings functional capabilities to collections to provide elegant
and safe ways of manipulating them. Just as in the previous
chapter we didn’t visit all of Kotlin’s syntax, we will
not in this chapter attempt to visit all of Kotlin’s
library functions. It isn’t necessary to memorize them all. It is
essential, though, for idiomatic and effective use of Kotlin,
to get comfortable with a few key transforms and to get a
feel for how they work.










The Boolean Functions


A convenient set of collection functions return a Boolean
to indicate whether the collection has—or does not have—a given attribute. The function any(), for instance,
will return true when a collection contains at least one
element. If used with a predicate, as in any { predicate(it) }, any will return true if the predicate evaluates true
for any element in the collection:


val nums = listOf(10, 20, 100, 5)
val isAny = nums.any()                 // true
val isAnyOdd = nums.any { it % 1 > 0 } // true
val isAnyBig = nums.any { it > 1000}   // false

Note

When a lambda takes only a single argument and the Kotlin
compiler can figure that out using type inferencing (it
usually can), you can omit the parameter declaration and use
the implicit parameter named it. The preceding example uses
this shortcut twice, in the definitions of the predicates to
the any method.




Another boolean function, all { predicate }, returns true only if
every element in the list matches the predicate:


val nums = listOf(10, 20, 100, 5)
val isAny = nums.all { it % 1 > 0 } // false


The opposite of any is none. Without a predicate, none() returns
true only if there are no elements in a collection. With a predicate,
none { predicate } returns true only if the predicate evaluates to
true for none of the elements in the collection.  For example:


val nums = listOf(10, 20, 100, 5)
val isAny = nums.none()              // false
val isAny4 = nums.none { it == 4 }   // true

















Filter Functions


The basic filter function will return a new collection
containing only the elements of the original
collection that match the given predicate. In this example,
for instance, the variable numbers will contain a list
with the single value 100:


val nums = listOf(10, 20, 100, 5)
val numbers = nums.filter { it > 20 }


The filterNot function is the reverse.  It returns elements that do
not match the predicate. In this example, for instance, the
variable numbers will contain three elements, 10, 20,
and 5: the elements of nums that are not greater than 20:


val nums = listOf(10, 20, 100, 5)
val numbers = nums.filterNot { it > 20 }


A beautifully convenient special case of filterNot is the function
filterNotNull. It removes all of the nulls from a collection:


val nums = listOf(null, 20, null, 5)
val numbers = nums.filterNotNull() // { 20, 5 }


In this example, the variable numbers will be a list containing two
elements, 20 and 5.

















Map


The map function applies its argument to each element
in a collection and returns a collection of the resulting values.
Note that it does not mutate the collection to which it is
applied; it returns a new, resulting, collection.


Here is the definition of the map function, for the Array type:


inline fun <T, R> Array<out T>.map(transform: (T) -> R): List<R>


Let’s unpack this.


Starting at the left, map is an inline function.  The “fun”
part should be clear by now.  But what about “inline.”


The keyword inline tells the Kotlin compiler to copy the
bytecode for a function directly into the binary whenever
the method is called, instead of generating a transfer to a single
compiled version. When the number of
instructions necessary to call a function is a substantial
percentage of the total number necessary to run it, an
inline function makes sense as a trade-off of space for
time. Sometimes, too, it can remove the overhead of the
extra object allocation that some lambda expressions
require.


Next, <T, R> are the two, free, type variables used in the function
definition.  We’ll get back to them.


Next is the description of the receiver, Array<out T>.
This map function is an extension function on the Array type: it
is a function on an array whose elements are of type T (or one of
T’s superclasses, e.g., Any).


Next is the map’s parameter. The parameter is a function named transform. Transform is a function transform: (T) -> R: it takes as its argument something of type T and returns something of type R.  Well!  That’s interesting! The array to which the function will be applied is full of objects of type T!  The function can be applied to the elements of the array.


Finally, there is map’s return.  It is a List<R>, a list
whose elements are of type R.  An R is what you get if you
apply transform to an elements of the array (a T ).


It all works out.  Calling map on an array with a function
that can be applied to the elements of the array will
return a new List that contains the results of the
application of the function to each of the elements in the
array.


Here’s an example that returns a list of starting dates for
employee records that have those starting dates stored as
strings:


data class Hire(
    val name: String,
    val position: String,
    val startDate: String
)

fun List<Hire>.getStartDates(): List<Date> {
    val formatter
        = SimpleDateFormat("yyyy-MM-d", Locale.getDefault())
    return map {
        try {
            formatter.parse(it.startDate)
        } catch (e: Exception) {
            Log.d(
                "getStartDates",
                "Unable to format first date. $e")
            Date()
        }
    }
}


Perhaps you’re wondering: “What happens if the transform function doesn’t
return a value?” Ah! But Kotlin functions always have a value!


For example:


val doubles: List<Double?> = listOf(1.0, 2.0, 3.0, null, 5.0)
val squares: List<Double?> = doubles.map { it?.pow(2) }


In this example, the variable squares will be the list [1.0,
4.0, 9.0, null, 25.0]. Because of the conditional operator, ?.,
in the transform function, the function’s value is the
square of its argument, if that argument is not null.  If
the argument is null, however, the function has the value
null.


There are several variations on the map function in the
Kotlin library.  One of them, mapNotNull, addresses situations like this:


val doubles: List<Double?> = listOf(1.0, 2.0, 3.0, null, 5.0)
val squares: List<Double?> = doubles.mapNotNull { it?.pow(2) }


The value of the variable squares in this example is [1.0,
4.0, 9.0, 25.0].


Another variant of map is mapIndexed. mapIndexed also
takes a function as its argument.  Unlike map, though,
mapIndexed’s functional argument takes an element of the
collection as its second parameter (not its first and only
parameter, as did map’s argument). mapIndexed’s
functional argument takes, as its first parameter, an Int.
The Int is the ordinal that gives the position  in the
collection of the element that is its second paramter: 0 for
the first element, 1 for the second, and so on.


There are mapping functions for most collection-like
objects. There are even similar functions for Maps
(though they are not subtypes of Collection): the functions
Map::mapKeys and Map::mapValues.

















flatMap


The thing that makes the flatMap function hard to understand
is that it may seem abstract and not particularly useful.
It turns out that, although it is abstract, it is quite
useful.


Let’s start with an analogy. Suppose you decide to reach
out to the members of your old high school debate team. You
don’t know how to get in touch anymore. You do remember,
though, that you have yearbooks for all four years you
were in the school and that each yearbook has a picture of
the debate team.


You decide to divide the process of contacting members into
two steps. First you will examine each photo of the
team and try to identify each person depicted there.
You will make a list of the people you identify. You will
then combine the four lists into a single list of all
debate-team members.


That’s flatmapping! It’s all about containers. Let’s
generalize.


Suppose you have some kind of container of something. It is a CON<T>. In the yearbook example, CON<T> was four
photographs, a Set<Photo>. Next you have a function that
maps T -> KON<R>. That is, it takes an element of CON and
turns it into a new kind of container, a KON, whose elements
are of type R. In the example, this was you identifying
each person in one of the photos, and producing a
list of names of people in the photo. KON is a paper list
and R is the name of a person.


The result of the flatMap function in the example is the
consolidated list of names.


The flatmap on CON<T> is the function:


fun <T, R> CON<T>.flatMap(transform: (T) -> KON<R>): KON<R>


Note, just for comparison, how flatMap is different from
map. The map function, for the container CON, using
the same transform function, has a signature like this:


fun <T, R> CON<T>.map(transform: (T) -> KON<R>): CON<KON<R>>


The flatMap function “flattens” away one of the
containers.


While we’re on the subject, let’s take a look at an example
of the use of flatMap that is very common:


val list: List<List<Int>> = listOf(listOf(1, 2, 3, 4), listOf(5, 6))
val flatList: List<Int> = list.flatMap { it }


The variable flatList will have the value [1, 2, 3, 4, 5, 6].


This example can be confusing. Unlike the previous example,
which converted a set of photographs to lists of names and then
consolidated those lists, in this common example the two
container types CON and KON are the same: they are List<Int>.
That can make it difficult to see what’s actually going on.


Just to prove that it works, though, let’s go through the
exercise of binding the quantities in this somewhat baffling
example to the types in the function description. The
function is applied to a List<List<Int>>, so T must be a
List<Int>. The transform function is the identity function.
In other words, it is (List<Int>) -> List<Int>: it returns
its parameter.  This means that KON<R> must also be a
List<Int> and R must be an Int. The flatMap function,
then, will return a KON<R>, a List<Int>.


It works.

















Grouping


In addition to filtering, the Kotlin Standard Library provides another
small set of transformation extension functions that group elements of
a collection. The signature for the groupBy function, for instance,
looks like this:


inline fun <T, K> Array<out T>
    .groupBy(keySelector: (T) -> K): Map<K, List<T>>


As is often the case, you can intuit this function’s
behavior just by looking at the type information.  groupBy
is a function that takes an Array of things (Array in
this case: there are equivalents for other container types).
For each of the things, it applies the keySelector method.
That method, somehow, labels the thing with a value of type
K. The return from the groupBy method is a map of each of those
labels to a list of the things to which the keySelector
assigned that label.


An example will help:


val numbers = listOf(1, 20, 18, 37, 2)
val groupedNumbers = numbers.groupBy {
    when {
        it < 20 -> "less than 20"
        else -> "greater than or equal to 20"
    }
}


The variable groupedNumbers now contains a Map<String, List<Int>>.
The map has two keys, “less than 20” and “greater than or equal to
20.” The value for the first key is the list [1, 18, 2].  The value
for the second is [20, 37].


Maps that are generated from grouping functions will
preserve  the order of the elements in the original
collection, in the lists that are the values of the keys of
the output map.

















Iterators Versus Sequences


Suppose you are going to paint your desk.  You decide that it will
look much nicer if it is a nice shade of brown instead of that
generic tan. You head down to the paint store and discover that there
are around 57 colors that might be just the thing.


What you do next? Do you buy samples of each of the colors to
take home? Almost certainly not! Instead, you buy samples of two or three that seem promising and try them. If they turn out not to be
all your heart desires, you go back to the store and buy three more.
Instead of buying samples of all the candidate colors and iterating over
them, you create a process that will let you get the next candidate
colors, given the ones you have already tried.


A sequence differs from an iterator in a similar way. An iterator is
a way of getting each element from an existing collection exactly
once. The collection exists. All the iterator needs to do is order
it.


A sequence, on the other hand, is not necessarily backed by a
collection. Sequences are backed by generators. A generator is a
function that will provide the next item in the sequence. In this
example, if you need more paint samples, you have a way of
getting them: you go back to the store and buy more. You don’t have
to buy them all and iterate over them. You just need to buy a couple
because you know how to get more. You can stop when you find the
right color, and with luck, that will happen before you pay for
samples of all of the possible colors.


In Kotlin, you might express your search for desk paint like this:


val deskColor = generateSequence("burnt umber") {
    buyAnotherPaintSample(it)
}.first { looksGreat(it) }

println("Start painting with ${deskColor}!")


This algorithm is efficient.  On average, desk painters using it
will buy only 28 paint samples instead of 57.


Because sequences are lazy—only generating the next element when it
is needed—they can be very, very useful in optimizing operations,
even on collections with fixed content. Suppose, for instance, that
you have a list of URLs, and you want to know which one is a link to a
page that contains an image of a cat. You might do it like this:


val catPage = listOf(
    "http://ragdollies.com",
    "http://dogs.com",
    "http://moredogs.com")
    .map { fetchPage(it) }
    .first { hasCat(it) }


That algorithm will download all of the pages. If you do the same thing
using a 
sequence:


val catPage = sequenceOf(
    "http://ragdollies.com",
    "http://dogs.com",
    "http://moredogs.com")
    .map { fetchPage(it) }
    .first { hasCat(it) }


only the first page will be downloaded. The sequence will provide the
first URL, the map function will fetch it, and the first function
will be satisfied. None of the other pages will be downloaded.


Be careful, though! Don’t ask for all of the elements of an infinite
collection! This code, for instance, will eventually produce an
OutOfMemory error:


val nums = generateSequence(1) { it + 1 }
    .map { it * 7 }                 // that's fine
    .filter { it mod 10000 = 0 }    // still ok
    .asList()                       // FAIL!
























An Example


Let’s make all this concrete with an example.


We just met several of the handy functions that Kotlin’s Standard
Library provides for manipulating collections. Using those
functions, you can create robust implementations of complex logic. To
illustrate that, we’ll take an example inspired by a real
application used in an aircraft engine factory.










The Problem


Bandalorium Inc. builds aircraft engines. Each engine part is
uniquely identifiable by its serial number. Each part goes
through a rigorous quality control process that records
numerical measurements for several of the part’s critical
attributes.


An attribute for an engine part is any measurable feature.
For example, the outside diameter of a tube might be an
attribute. The electrical resistance of some wire might be
another. A third might be a part’s ability to reflect a
certain color of light.  The only requirement is that
measuring the attribute must produce a single numerical
value.


One of the things that Bandalorium wants to track is the
precision of its production process. It needs to track
the measurements of the parts it produces and whether
they change over time.


The challenge, then, is:


Given a list of measurements for attributes of parts produced
during a certain interval (say, three months), create a CSV (comma-separated value) report similar to the one
shown in Figure 2-2.  As shown,
the report should be sorted by the time that the measurement
was taken.



[image: pawk 0202]
Figure 2-2. Example of CSV ouput.




If we might make a suggestion—now would be a great time to put
this book aside for a moment and consider how you would
approach this problem. Maybe just sketch enough high-level
code to feel confident that you can solve it.

















The Implementation


In Kotlin, we might represent an attribute like this:


data class Attr(val name: String, val tolerance: Tolerance)

enum class Tolerance {
    CRITICAL,
    IMPORTANT,
    REGULAR
}


The name is a unique identifier for the attribute. An
attribute’s tolerance indicates the significance of the
attribute to the quality of the final product: critical,
important, or just regular.


Each attribute probably has lots of other associated information.
There is, surely, a record of the units of measurement
(centimeters, joules, etc.), a description of its acceptable
values, and perhaps the procedure used to measure it. We
will ignore those features for this example.


A measurement of an attribute for a specific engine part includes the following:



	
The serial number of the part being measured



	
A timestamp giving the time at which the measurement was made



	
The measured value






A measurement, then, might be modeled in Kotlin like this:


data class Point(
    val serial: String,
    val date: LocalDateTime,
    val value: Double)


Finally, we need a way to connect a measurement to the
attribute it measures.  We model the relationship like this:


data class TimeSeries(val points: List<Point>, val attr: Attr)


The TimeSeries relates a list of measurements to the Attrs
that they measure.


First, we build the header of the CSV file: the column titles that comprise the first line (see Example 2-2). The first two columns are named date and serial. The other column names are
the distinct names of the attributes in the dataset.


Example 2-2. Making the header


fun createCsv(timeSeries: List<TimeSeries>): String {
    val distinctAttrs = timeSeries
        .distinctBy { it.attr } [image: 1]
        .map { it.attr }        [image: 2]
        .sortedBy { it.name }   [image: 3]

    val csvHeader = "date;serial;" +
        distinctAttrs.joinToString(";") { it.name } +
        "\n"

    /* Code removed for brevity */
}



	[image: 1]

	Use the distinctBy function to get a list of
TimeSeries instances that have distinct values for the attr attribute.


	[image: 2]

	We have a list of distinct TimeSeries from the previous step and we only want the attr, so we use the map function.


	[image: 3]

	Finally, we sort alphabetically using sortedBy. It wasn’t
required but why not?





Now that we have the list of distinct characteristics, formatting the
header is straightforward using the joinToString function. This
function transforms a list into a string by specifying a
string separator to insert between each element of the list. You can
even specify a prefix and/or a postfix if you need to.

Note

It is often useful to be able to find the types of the returns
from collection transformation functions. In
Example 2-2, for instance, if you activate type hints,
you’ll only get the inferred type of the whole chain (the type of
the variable distinctAttrs). There is a nice
IntelliJ/Android Studio feature that can help!


	
Click on distinctCharacs in the source code.



	
Hit Ctrl + Shift + P. You’ll see a drop-down window appear.
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Select the step you want and the inferred type will appear before your eyes!
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After building the header, we build the content of the CSV file. This is
the most technical and interesting part.


The rest of the CSV file that we are trying to reproduce
sorts the data by date. For each given date, it gives a
part’s serial number and then that part’s measurement for
each attribute of interest. That’s going to take
some thought because, in the model we’ve created, those
things are not directly related. A TimeSeries contains
only data for a single attribute and we will need data for
multiple attributes.


A common approach in this situation is to merge and flatten
the input data into a more convenient data structure, as shown in Example 2-3.


Example 2-3. Merge and flatten the data


fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    data class PointWithAttr(val point: Point, val attr: Attr)

    // First merge and flatten so we can work with a list of PointWithAttr
    val pointsWithAttrs = timeSeries.flatMap { ts ->
        ts.points.map { point -> PointWithAttr(point, ts.attr) }

   /* Code removed for brevity */
}



In this step, we associate each Point with its corresponding
Attr, in a single 
PointAndAttr object. This is much like
joining two tables in SQL.


The flatMap function transforms a list of TimeSeries
objects. Internally, the function applied by flatMap uses
the map function, series.points.map { ... }, to create a
list of PointAndAttrs for each point in the TimeSeries.
If we had used map instead of flatMap, we would have produced
a List<List<PointAndAttr>>. Remember, though, that flatMap
flattens out the top layer of the container, so the result
here is a 
List<PointAndAttr>.


Now that we have “spread” the attribute information into every Point,
creating the CSV file is fairly straightforward.


We’ll group the list of pointWithAttrs by date to create a
Map<LocalDate, List<PointWithAttr>. This map will contain
a list of pointWithAttrs for each date. Since the example
seems to have a secondary sort (by the part’s serial number), we’ll
have to group each of the lists in the previously grouped
Map by serial number. The rest is just string formatting, as shown in Example 2-4.


Example 2-4. Create data rows


fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    val rows = importantPointsWithAttrs.groupBy { it.point.date }  [image: 1]
    .toSortedMap()                                     [image: 2]
    .map { (date, ptsWithAttrs1) ->
        ptsWithAttrs1
            .groupBy { it.point.serial }             [image: 3]
            .map { (serial, ptsWithAttrs2) ->
                listOf(                                        [image: 4]
                    date.format(DateTimeFormatter.ISO_LOCAL_DATE),
                    serial
                ) + distinctAttrs.map { attr ->
                    val value = ptsWithAttrs2.firstOrNull { it.attr == attr }
                    value?.point?.value?.toString() ?: ""
                }
            }.joinToString(separator = "") {        [image: 5]
                it.joinToString(separator = ";", postfix = "\n")
            }
    }.joinToString(separator = "")


    return csvHeader + rows                               [image: 6]
}



	[image: 1]

	Group by date, using the groupBy function.


	[image: 2]

	Sort the map (by date). It’s not mandatory, but a sorted CSV is easier to read.


	[image: 3]

	Group by serial number.


	[image: 4]

	Build the list of values for each line.


	[image: 5]

	Format each line and assemble all those lines using the joinToString function.


	[image: 6]

	Finally, return the header and the rows as a single String.





Now, let’s suppose that you get an additional request to
report only on attributes that are CRITICAL or
IMPORTANT. You just have to use the filter function, as shown in Example 2-5.


Example 2-5. Filter critical and important samples


fun createCsv(timeSeries: List<TimeSeries>): String {
    /* Code removed for brevity */

    val pointsWithAttrs2 = timeSeries.filter {
        it.attr.tolerance == Tolerance.CRITICAL
                || it.attr.tolerance == Tolerance.IMPORTANT
    }.map { series ->
        series.points.map { point ->
            PointWithAttr(point, series.attr)
        }
    }.flatten()

    /* Code removed for brevity */

    return csvHeader + rows
}



That’s it!


To test that code, we can use a predefined input and check
that the output matches your expectations. We won’t show a full-blown
set of unit tests here—just an example of CSV output, as shown in Example 2-6.


Example 2-6. Demonstrate the application


fun main() {
    val dates = listOf<LocalDateTime>(
        LocalDateTime.parse("2020-07-27T15:15:00"),
        LocalDateTime.parse("2020-07-27T15:25:00"),
        LocalDateTime.parse("2020-07-27T15:35:00"),
        LocalDateTime.parse("2020-07-27T15:45:00")
    )
    val seriesExample = listOf(
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 15.1),
                Point("HC12", dates[2], 15.05),
                Point("HC13", dates[1], 15.11),
                Point("HC14", dates[0], 15.08)
            ),
            attr = Attr("AngleOfAttack", Tolerance.CRITICAL)
        ),
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 0.68),
                Point("HC12", dates[2], 0.7),
                Point("HC13", dates[1], 0.69),
                Point("HC14", dates[0], 0.71)
            ),
            attr = Attr("ChordLength", Tolerance.IMPORTANT)
        ),
        TimeSeries(
            points = listOf(
                Point("HC11", dates[3], 0x2196F3.toDouble()),
                Point("HC14", dates[0], 0x795548.toDouble())
            ),
            attr = Attr("PaintColor", Tolerance.REGULAR)
        )
    )
    val csv = createCsv(seriesExample)
    println(csv)
}



If you use the csv string as the content of a file with the “.csv”
extension, you can open it using your favorite spreadsheet
tool. Figure 2-3 shows what we got using FreeOffice.



[image: pawk 0202]
Figure 2-3. Final output.




Using functional programming to transform data, as in
this example, is particularly robust. Why? By combining
Kotlin’s null safety and functions from the Standard
Library, you can produce code which has either few or no
side effects. Throw in any list of PointWithAttr you can
imagine. If even one Point instance has a null value, the
code won’t even compile. Anytime the result of transformation
returns a result which can be null, the language forces you
to account for that scenario.  Here we did this in
step 4, with the firstOrNull function.


It’s always a thrill when your code compiles and does
exactly what you expect it to do on the first try. With
Kotlin’s null safety and functional programming, that
happens 
a lot.
























Summary


As a functional language, Kotlin employs great ideas
like mapping, zipping, and other functional transformations.
 It even allows you to create your own data transformations
with the power of higher-order functions and lambdas:



	
Kotlin collections include the entire Java collections API. In
addition, the library provides all the common functional transformations like
mapping, filtering, grouping, and more.



	
Kotlin supports inline functions for more performant
data transformations.



	
The Kotlin collections library supports sequences, a way of working with
collections that are defined by intention instead of extension.
Sequences are appropriate when getting the next element is
very expensive, or even on collections of unbounded size.






If you’ve ever used languages like Ruby, Scala, or Python,
perhaps some of this feels familiar to you. It should!
Kotlin’s design is based on many of the same principles
that drove the development of those languages.


Writing your Android code in a more functional way is as
easy as using data transformation operations offered with
the Kotlin Standard Library. Now that you are familiar
with Kotlin syntax and the spirit of functional programming
in Kotlin, the next chapter focuses on the Android OS
and other programming fundamentals. Android development
turned toward Kotlin as an official language back in 2017,
so Kotlin has heavily influenced Android’s evolution in recent years. It will continue to do so in the coming
years.










1 Roman Elizarov; email interview on Kotlin Collections Immutable Library. Oct. 8, 2020.




Chapter 3. Android Fundamentals



The first two chapters of this book were a whirlwind review
of the Kotlin language. This chapter will review the
environment in which we will use Kotlin: Android.


Android is an operating system, like Windows and MacOS.
Unlike those two systems, Android is a Linux-based OS, like
Ubuntu and Red Hat. Unlike Ubuntu and Red Hat, though, Android has
been very heavily optimized for mobile devices—battery-powered mobile devices, in particular.


The most significant of these optimizations concerns what it
means to be an application. In particular, as we will see,
Android apps have much more in common with web applications
than they do with familiar desktop applications.


But we’ll get to that in a moment. First, let’s look in a
little more detail at the Android environment. We’ll
look at the operating system as a stack—kind of a layer cake.








The Android Stack


Figure 3-1 shows one way of looking at Android: as a
stack of components. Each layer in the stack has a specific
task and provides specific services; each uses the
features of the layers beneath it.


Walking up from the bottom, the layers are:



	
Hardware



	
Kernel



	
System services



	
Android Runtime Environment



	
Applications
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Figure 3-1. The Android stack.












Hardware


Beneath the Android stack, of course, is hardware: a
piece of warm silicon. While the hardware is not part of the
Android stack, it is important to recognize that the hardware
for which Android was designed imposes some fairly tough
constraints on the system. By far, the most significant of
these constraints is power. Most common operating systems
just assume an infinite power supply. The Android systems
cannot.

















Kernel


The Android operating system depends on the Linux kernel. A
kernel is responsible for providing the basic services that
developers expect: a filesystem, threads and processes,
network access, interfaces to hardware devices, and so on.
Linux is free and open source and, thus, a popular choice
for hardware and device manufacturers.


Because it is based on Linux, Android bears some similarity
to the common Linux distributions: Debian, Centos,
etc. In the layers above the kernel, however, the similarity
diminishes. While most common Linux distributions are based
heavily on the GNU family of system software (and should,
properly, be called GNU/Linux), Android’s system software is
quite a bit different. It is, in general, not possible to
run common Linux applications directly on an Android system.

















System Services


The system services layer is big and complex. It includes a
wide variety of utilities, from code that runs as part of
the kernel (drivers or kernel modules), and long-running
applications that manage various housekeeping tasks
(daemons), to libraries that implement standard functions
like cryptography and media presentation.


This layer includes several system services that are unique
to Android. Among them are Binder, Android’s essential
interprocess communication system; ART, which has replaced
Dalvik as Android’s analog of the Java VM; and Zygote,
Android’s application container.

















Android Runtime Environment


The layer above the system services is the implementation of
the Android Runtime Environment. The Android Runtime Environment is
the collection of libraries that you use from your
application by including them with import statements:
android.view, android.os, and so on. They are the
services provided by the layers below, made available to your
application. They are interesting because they are
implemented using two languages: usually Java and C or C++.


The part of the implementation that your application imports
is likely to be written in Java. The Java code, however,
uses the Java Native Interface (JNI) to invoke native
code, usually written in C or C++. It is the native
code that actually interacts with the system services.

















Applications


Finally, at the top of the stack are Android applications.
Applications, in the Android universe, are actually part
of the stack. They are made up of individually addressable
components that other applications can “call.” The Dialer,
Camera, and Contacts programs are all examples of Android
applications that are used as services by other
applications.


This is the environment in which an Android application
executes. So let’s get back to looking at the anatomy of an
application itself.
























The Android Application Environment


Android applications are programs translated from a source
language (Java or Kotlin) into a transportable intermediate
language, DEX. The DEX code is installed on a device and
interpreted by the ART VM, when the application is run.


Nearly every developer is familiar with the standard
application environment. The operating system creates a
“process”—a sort of virtual computer that appears to
belong entirely to the application. The system runs the
application code in the process, where it appears to have
its own memory, its own processors, and so on, completely
independent of other applications that might be running on
the same device. The application runs until it, itself, decides to
stop.


That’s not how Android works. Android doesn’t really think
in terms of applications. For instance, Android apps don’t
contain the equivalent of Java’s public static void main
method, the method used to start typical Java applications.
Instead, Android apps are libraries of components. The
Android runtime, Zygote, manages processes, lifecycles, and
so on. It calls an application’s components only when it
needs them. This makes Android apps, as hinted earlier, very
similar to web applications: they are an assemblage of
components deployed into a container.


The other end of the lifecycle, terminating an application,
is perhaps even more interesting. On other operating
systems, abruptly stopping an application (kill -9 or “Force
Quit”) is something that happens rarely and only when the
application misbehaves. On Android, it is the most common
way for an application to be terminated. Nearly every
running app will eventually be terminated abruptly.


As with most web app frameworks, components are implemented
as subclasses of template base classes. Component subclasses
override the methods that are called by the framework in
order to provide application-specific behavior. Often, the
superclass has important work to do when one of these
template methods is called. In those cases, the overriding
method in the subclass must call the superclass method that
it overrides.


Android supports four types of components:



	
Activity



	
Service



	
Broadcast receiver



	
Content provider






Just as in a web app, the implementations of these
components must be registered in a manifest: an XML file.
Android’s manifest file is called, perhaps unsurprisingly,
AndroidManifest.xml. The Android container parses this
file as part of loading an application.  The application
components (not some overarching application) are the basic
units of the Android app. They are individually addressable
and may be published individually for use by other applications.


So, how does an application target an Android component? With
an Intent.










Intents and Intent Filters


In Android, components are started with Intents. An
Intent is a small packet that names the component that it
targets. It has some extra room in which it can indicate a
specific action that it would like the receiving component
to take and a few parameters to the request. One
can think of an intent as a function call: the name of the
class, the name of a particular function within that class,
and the parameters to the call. The intent is delivered by
the system to the target component. It is up to the
component to perform the requested service.


It is interesting to note that, in keeping with its
component-oriented architecture, Android doesn’t actually
have any way of starting an application. Instead, clients
start a component, perhaps the Activity that is registered as
main for an application whose icon a user just tapped on the
Launcher page. If the application that owns the activity is
not already running, it will be started as a side effect.


An intent can name its target explicitly, as shown here:


context.startActivity(
  Intent(context, MembersListActivity::class.java)))


This code fires an Intent at the Activity
MembersListActivity. Note that the call, startActivity
here, must agree with the type of the component being
started: an Activity in this case. There are other,
similar methods for firing intents at other kinds of
components (startService for a Service, and so on).


The Intent fired by this line of code is called an
explicit intent because it names a specific, unique class,
in a unique application (identified by a Context,
discussed in a moment), to which the Intent is to be
delivered.


Because they identify a unique, specific target, explicit
intents are faster and more secure than implicit ones. There
are places that the Android system, for reasons related to
security, requires the use of explicit intents. Even when they
are not required, explicit intents should be preferred whenever
possible.


Within an application, a component can always be reached
with an explicit intent. A component from another
application that is publicly visible can also always be
reached explicitly.  So why ever use an implicit intent?
Because implicit intents allow dynamic resolution of a
request.


Imagine that the email application you’ve had on your
phone for years allows editing messages with an external
editor. We now can guess that it does this by firing an
intent that might look something like this:


val intent = Intent(Intent.ACTION_EDIT))
intent.setDataAndType(textToEditUri, textMimeType);
startActivityForResult(intent, reqId);


The target specified in this intention is not explicit. The
Intent specifies neither a Context nor the
fully qualified name of a component within a context. The
intent is implicit and Android will allow any component at
all to register to handle it.


Components register for implicit intents using an
IntentFilter. In fact, the “Awesome Code Editor” that you
happen to have installed just 15 minutes ago
registers for exactly the intent shown in the preceding code, by including an
IntentFilter like this in its manifest:


<manifest ...>
  <application
    android:label="@string/awesome_code_editor">
    ...>
    <activity
      android:name=".EditorActivity"
      android:label="@string/editor">
      <intent-filter>
        <action
          android:name="android.intent.action.EDIT" />
        <category
          android:name="android.intent.category.TEXT" />
      </intent-filter>
    </activity>
  </application>
</manifest>


As you can see, the intent filter matches the intent that
the email application fires.


When Android installs the Awesome Code Editor application it
parses the application manifest and notices that the
EditorActivity claims to be able to handle an EDIT
action for the category android.intent.category.TEXT (see
more in the Android Developers documentation).
It remembers that fact.


The next time your email program requests an editor, Android
will include Awesome Code Editor in the list of editors it
offers for your use. You have just upgraded your email
program simply by installing another application. Talk about
awesome!

Note

Android gradually increased restrictions on the use of
implicit intents in recent releases. Because they can be
intercepted by any randomly installed application, despite
their power, implicit intents are not secure.  Recent
versions of Android have imposed strict
new constraints on their use. In particular, as of v30,
it is not possible to register for many implicit intents
in the manifest.



















Context


Because Android components are just subsystems run in a
larger container, they need some way of referring to the
container so that they can request services from it. From
within a component, the container is visible as a Context.
Contexts come in a couple of flavors: component
and application.  Let’s have a look at each of them.












Component context


We’ve already seen a call like this:


context.startActivity(
  Intent(context, MembersListActivity::class.java)))


This call uses a Context twice. First, starting an
Activity is a function that a component requests from the
framework, the Context. In this case, it called the Context method
startActivity. Next, in order to make the intent explicit,
the component must identify the unique package that contains
the component it wants to start. The Intent’s constructor uses
the context passed as its first argument to get a unique
name for the application to which the context belongs: this call
starts an Activity that belongs to this application.


The Context is an abstract class that provides access to
various resources, including:



	
Starting other components



	
Accessing system services



	
Accessing SharedPreferences, resources, and files






Two of the Android components, Activity and Service, are
themselves Contexts. In addition to being Contexts,
they are also components that the Android container expects
to manage. This can lead to problems, all of which are
variations on the code shown in Example 3-1.


Example 3-1. Do NOT do this!


class MainActivity : AppCompatActivity() {
  companion object {
    var context: Context? = null;
  }

  override fun onCreate() {
    if (context == null) {
      context = this  // NO!
    }
  }
  // ...
}



Our developer has decided that it would be really handy to
be able to say things like
MainActivity.context.startActivity(...) anywhere in their
application. In order to do that, they’ve stored a reference to
an Activity in a global variable, where it will be
accessible for the entire life of the application. What
could go wrong?


There are two things that could go wrong, one bad and the
other horrible. Bad is when the Android framework knows that the Activity is no longer needed, and
would like to free it up for garbage collection, but it cannot do so.
The reference in that companion object will prevent the
Activity from being released, for the entire lifetime of
the application. The Activity has been leaked.
Activitys are large objects and leaking
their memory is no small matter.


The second (far worse) thing, that could go wrong is that a
call to a method on the cached Activity could fail
catastrophically. As we will explain shortly, once the
framework decides that an Activity is no longer being used,
it discards it. It is done with it and will never use it
again. As a result, the object may be put into an inconsistent
state. Calling methods on it may lead to failures that are
both difficult to diagnose and reproduce.


While the problem in that bit of code is pretty easy to see,
there are variants that are much more subtle. The following code
may have a similar problem:


override fun onCreate(savedInstanceState: Bundle?) {
  super.onCreate(savedInstanceState)
  // ...
  NetController.refresh(this::update)
}


It is harder to see, but the callback this::update is a
reference to a method on this, the Activity that
contains this onCreate method. Once onCreate completes,
the 
NetController holds a reference to this Activity
that does not honor its lifecycle and can incur either of
the problems described earlier.

















Application context


There is another kind of context. When Android starts an
application, it usually creates a singleton instance of the
Application class. That instance is a Context and,
though it has a lifecycle, that lifecycle is essentially
congruent with the lifecycle of the application. Because it
is long-lived, it is quite safe to hold references to it
in other long-lived places. This code, similar to the
dangerous code shown earlier, is fairly safe because the context to
which it stores a reference is the ApplicationContext:


class SafeApp : Application() {
  companion object {
    var context: Context? = null;
  }

  override fun onCreate() {
    if (context == null) {
      context = this
    }
  }
  // ...
}


Be sure to remember that, in order for the Android system to
use the custom subclass of Application instead of its
default, the SafeApp class must be registered in the
manifest, like this:


<manifest ...>
  <application
    android:name=".SafeApp"
    ...>
    ...
  </application>
</manifest>


Now, when the framework creates the ApplicationContext it
will be an instance of SafeApp instead of the instance of
Application that it would have used otherwise.


There is another way to get the ApplicationContext as well.
Calling the method 
Context.getApplicationContext() on any context at all, including the 
ApplicationContext itself, will always return the long-lived application context. 
But here’s the bad news: the 
ApplicationContext is not a magic bullet. An 
ApplicationContext is not an Activity.
Its implementations of Context methods behave differently
from those of Activity. For instance, and probably most annoying,
you cannot launch Activity from an ApplicationContext.
There is a 
startActivity method on ApplicationContext,
but it simply generates an error message in all but a very
limited set of circumstances.





























Android Application Components: The Building Blocks


Finally, we can narrow our focus to the components
themselves, the essence of an application.


The lifecycles of Android application components are
managed by the Android framework, which creates and destroys
them according to its needs. Note that this absolutely
includes instantiation! Application code must never create
a new instance of a component.


Recall that there are four types of components:



	
Activity



	
Service



	
Broadcast receiver



	
Content provider






Remember, also, that the following descriptions are nothing more than
brief overviews, perhaps calling attention to potential
pitfalls or features of interest. The Android Developers documentation is extensive, complete, and authoritative.










The Activity and Its Friends


An Activity component manages a single page of an application’s UI.
It is Android’s analog of a web application servlet. It uses
Android’s rich library of “widgets” to draw a single,
interactive page. Widgets (buttons, text boxes, and the like)
are the basic UI elements, and they combine a screen
representation with the input collection that gives the
widgets behavior.  We’ll discuss them in detail shortly.


As mentioned previously, it is important to understand that
an Activity is not an application! Activities are
ephemeral and guaranteed to exist only while the page that
they manage is visible. When that page becomes invisible,
either because the application presents a different page or
because the user, for instance, takes a phone call, there is
no guarantee that Android will preserve either the
Activity instance or any of the state that it represents.


Figure 3-2 shows the
state machine that controls the lifecycle of an Activity.
The methods—shown as state transitions—come in pairs and are
the bookends of the four states that an Activity
may assume: destroyed, created, started, and
running. The methods are called strictly in order. After a
call to onStart, for instance, Android will make only one
of two possible calls: onResume, to enter the next state,
or onStop, to revert to the previous state.
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Figure 3-2. The Activity lifecycle.




The first pair of bookends are onCreate and onDestroy.
Between them, an Activity is said to be created. When
Android instantiates a new Activity, it calls its
onCreate method nearly immediately. Until it does so, the
Activity is in an inconsistent state and most of its
functions will not work. Note, in particular, that most of
an 
Activity’s functionality is, inconveniently, not
available from its constructor.


The onCreate method is the ideal place to do any
initialization that an Activity needs to do only once.
This almost always includes setting up the view hierarchy
(usually by inflating an XML layout), installing view
controllers or presenters, and wiring up text and touch
listeners.


Activitys, similarly, should not be used after the call
to their onDestroy method. The Activity is, again, in an
inconsistent state and the Android framework will make no
further use of it. (It will not, for instance, call
onCreate to revivify it.) Beware, though: the onDestroy
method is not necessarily the best place to perform
essential finalization! Android calls onDestroy only on a
best-effort basis. It is entirely possible that an
application will be terminated before all of an Activitys’.
onDestroy methods have completed.


An Activity can be destroyed from within its own program by
calling its finish() method.


The next pair of methods are onStart and onStop. The
former, onStart, will only ever be called on an Activity
that is in the created state. It moves the Activity to its
on-deck state, called started. A started Activity may
be partially visible behind a 
dialog or another app that
only incompletely fills the screen. In started state,  
an Activity should be completely painted but should not expect
user input. A 
well-written Activity will not run
animations or other resource-hogging tasks while it is in
the started state.


The onStop method will only be called on a started
Activity. It returns it to the created state.


The final pair of methods are onResume and onPause.
Between them, an Activity’s page is in focus on the device
and the target of user input. It is said to be running.
Again, these methods will only be called on an Activity
that is in the started or running state, respectively.


Along with onCreate, onResume and onPause are the most
important in the lifecycle of an Activity. They are where
the page comes to life, starting, say, data updates,
animations, and all of the other things that make a UI feel
responsive.

Tip

It is a good practice to respect the pairing of these methods: a beginning method and an end method. If you start something running in the beginning method of the pair, stop it in the end method of the same pair. Trying to start, say, network polling in onResume and stop it in onStop is a recipe for hard-to-find bugs.














Fragments


Fragments are an afterthought added to Android’s stable of
component-like features only at version 3 (Honeycomb,
2011). They can feel a bit “bolted on.” They were introduced
as a way of making it possible to share UI implementations
across screens with shapes and sizes so different that it
affects navigation: in particular, phones and tablets.


Fragments are not Contexts. Though they hold a
reference to an underlying 
Activity for most of their
lifecycle, Fragments are not registered in
the manifest. They are instantiated in application code and
cannot be started with Intents. They are also quite
complex. Compare Figure 3-3, the state
diagram for a Fragment, to that of an Activity!


A thorough discussion of how (or, for that matter, even whether)
to use Fragments is well outside the scope of this book.
Briefly, however, one might think of a Fragment as something
like an iframe on a web page: almost an Activity embedded in an 
Activity. They are complete, logical UI units that can be assembled in different ways to form a page.


As shown, Fragments have lifecycles that are
similar to (though more complex than) those of an
Activity. However, a Fragment is only useful when it is
attached to an Activity. This is the main reason that a
Fragment lifecycle is more complex: its state can
be affected by changes in the state of the Activity to
which it is attached.


Also, just as an Activity is programmatically accessible
in the inconsistent state before its onCreate method is
called, so a Fragment is programmatically accessible
before it is attached to an Activity. Fragments must be
used with great care before their onAttach and
onCreateView methods have been called.
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Figure 3-3. Fragment lifecycle.



















The back stack


Android supports a navigation paradigm sometimes called
card-deck navigation. Navigating to a new page stacks
that page on top of the previous page. When a user
presses a back button the current page is popped from
the stack to reveal the one that previously held the screen.
This paradigm is fairly intuitive for most human users: push
new cards on top; pop them off to get back to where you
were.


In Figure 3-4, the current Activity is the
one named SecondActivity. Pushing the back button will
cause the Activity named MainActivity to take the screen.


Note that, unlike a web browser, Android does not support
forward navigation. Once the user pushes the back button,
there is no simple navigational device that will allow them
to return to the popped page. Android uses this fact to
infer that it can destroy SecondActivity (in this case),
should it need the resources.



[image: pawk 0304]
Figure 3-4. The back stack stores an Activity’s pages in last in, first out (LIFO) order.




Fragments can also go on the back stack as part of a fragment
transaction, as shown in Figure 3-5.



[image: pawk 0305]
Figure 3-5. A Fragment transaction, on the back stack, will be reverted before the 
Activity that contains it is popped.




Adding a fragment to the back stack can be particularly useful
when combined with tagging, as shown in the following code:


// Add the new tab fragment
supportFragmentManager.beginTransaction()
    .replace(
        R.id.fragment_container,
        SomeFragment.newInstance())
    .addToBackStack(FRAGMENT_TAG)
    .commit()


This code creates a new instance of SomeFragment and adds
it to the back stack, tagged with the identifier
FRAGMENT_TAG (a string constant). As shown in the following code, you can
use supportFragmentManager to pop everything off the
back stack, all the way to the tag:


manager.popBackStack(
    FRAGMENT_TAG,
    FragmentManager.POP_BACK_STACK_INCLUSIVE)


When the back stack is empty, pushing the back button
returns the user to the Launcher.






















Services


A Service is an Android component that is, almost exactly,
an Activity with no UI. That may sound a bit odd, given
that an Activity’s sole reason for existence is that it
manages the UI!


Android was designed for hardware that is much different
from that which is common now. The first Android phone, the
HTC Dream, was announced in September of 2008. It had very
little physical memory (192 MB) and did not support virtual
memory at all. It could run no more than a handful of
applications simultaneously. Android’s designers needed a
way to know when an application was not doing useful work so
that they could reclaim its memory for other uses.


It’s easy to figure out when an Activity is not doing
useful work. It has only one job: to manage a visible page. If
applications were composed only of Activitys, it would be
easy to tell when one was no longer useful and could be
terminated. When none of an application’s Activitys are
visible, the application is not doing anything useful and can
be reclaimed.  It’s that simple.


The problem comes when an application needs to perform long-running tasks that are not attached to any UI: monitoring
location, synchronizing a dataset over the network, and so
on. While Android is definitely prejudiced toward “if the
user can’t see it, why do it?” it grudgingly acknowledges
the existence of long-running tasks and invented Services to handle them.


While Services still have their uses, much of the work
that they were designed to do, back on earlier versions of
Android with its more limited hardware, can now be done using
other techniques. Android’s WorkManager is a terrific way
to manage repeating tasks. There are also other, simpler and more
maintainable ways of running tasks in the background, on a
worker thread. Something as simple as a singleton class may
be sufficient.


Service components still exist, though, and still have
important roles to play.


There are, actually, two different kinds of Service:
bound and started. Despite the fact that the Service
base class is, confusingly, the template for both, the two
types are completely orthogonal. A single Service can be
either or both.


Both types of Service have onCreate and onDestroy
methods that behave exactly as they do for an Activity.
Since a Service has no UI, it does not need any of an

Activity’s other templated methods.


Services do have other templated methods, though.  Which of
them a specific Service implements depends on whether it
is started or bound.












Started Services


A started Service is initiated by sending it an Intent.
While it is possible to create a started service that
returns a value, doing so is inelegantly complex and
probably indicative of a design that could be improved. For
the most part, started services are fire-and-forget:
something like “put this in the database” or “send this out
to the net.”


To start a service, send it an intent. The intent must name
the service, probably explicitly by passing the current
context and the service class. If the service provides
multiple functions, of course, the intent may also indicate
which of them it is intended to invoke. It might also supply
parameters appropriate for the call.


The service receives the intent as the argument to a call
from the Android framework, to the method
Service.onStart. Note that this is not done in the “background”! The
onStart method runs on the main/UI thread. The onStart
method parses the Intent content and processes the
contained request appropriately.


A well-behaved started Service will call 
Service.stopSelf() whenever it completes its work.
 This call is similar to Activity.finish(): it lets the framework know that the Service instance is no longer performing useful work and can be reclaimed. Modern versions of Android actually pay
very little attention to whether a service has stopped
itself or not. Services are suspended and, possibly even
terminated, using less voluntary criteria (see the Android Developers documentation).

















Bound Services


A bound Service is Android’s IPC
mechanism. Bound services provide a communication channel between a
client and a server that is process agnostic: the two ends
may or may not be part of the same application. Bound services—or at least the communication channels
they provide—are at the very heart of Android. They are
the mechanism through which applications send tasks to
system services.


A bound service, itself, actually does very little. It is
just the factory for a Binder, a half-duplex IPC channel.
While a complete description of the Binder IPC channels and
their use is beyond the scope of this book, their structure will be
familiar to users of any of the other common IPC mechanisms.
Figure 3-6 illustrates the 
system.


Typically, a service provides a proxy that looks like a simple
function call. The proxy marshals an identifier for the
requested service (essentially, the function name) and its
parameters, by converting them to data that can be transmitted
over the connection: usually aggregates of very simple data types
like integers and strings. The marshaled data is communicated, in
this case via the Binder kernel module, to a stub provided
by the bound service that is the target of the connection.
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Figure 3-6. Binder IPC.




The stub unmarshals the data, converting it back into a function
call to the service implementation. Notice that the proxy function
and the service implementation function have the same signature:
they implement the same interface (IService, as shown in Figure 3-6).


Android makes extensive use of this mechanism in the implementation
of system services. Functions that are actually calls to remote
processes are a fundamental part of Android.


An instance of the class ServiceConnection represents a connection to a bound service. The following code demonstrates its use:


abstract class BoundService<T : Service> : ServiceConnection {
    abstract class LocalBinder<out T : Service> : Binder() {
        abstract val service: T?
    }

    private var service: T? = null

    protected abstract val intent: Intent?

    fun bind(ctxt: Context) {
        ctxt.bindService(intent, this, Context.BIND_AUTO_CREATE)
    }

    fun unbind(ctxt: Context) {
        service = null
        ctxt.unbindService(this)
    }

    override fun onServiceConnected(name: ComponentName, binder: IBinder) {
        service = (binder as? LocalBinder<T>)?.service
        Log.d("BS", "bound: ${service}")
    }

    override fun onServiceDisconnected(name: ComponentName) {
        service = null
    }
}


A subclass of BoundService provides the type of the
service that will be bound, and an Intent that
targets it.


The client side initiates a connection using the bind
call. In response, the framework initiates a connection to
the remote bound service object.  The remote framework calls
the bound service’s onBind method with the intent.  The
bound service creates and returns an implementation of
IBinder that is also an implementation of the interface
the client requested.  Note that this is often a
reference to the bound service itself. In other words, the Service is often not only the factory but
also the 
implementation.


The service side uses the implementation provided by the
bound service to create 
the remote-side stub. It then notifies
the client side that it’s ready. The client-side framework
creates the proxy and then finally calls the ServiceConnection’s

onServiceConnected method. The client now holds a live connection to the remote service. Profit!


As one might guess from the presence of an
onServiceDisconnected method, a client can lose the
connection to a bound service at any time.  Though the
notification is usually immediate, it is definitely possible for a
client call to a service to fail even before it receives
a disconnect notification.


Like a started service, bound service code does not run in the
background.  Unless explicitly made to do otherwise, bound
service code runs on the application’s main thread. This can
be confusing, though, because a bound service might run on the
main thread of a different application.


If the code in a service implementation must run on a
background thread, it is the service implementation that is
responsible for arranging that.  Client calls to a bound
service, while asynchronous, cannot control the thread on
which the service itself runs.


Services, like every other component, must be registered in
the application manifest:


<manifest xmlns:android="http://schemas.android.com/apk/res/android">
  <application...>
    <service android:name=".PollService"/>
  </application>
</manifest>






















Content Providers


A ContentProvider is a REST-like interface to data held by
an application. Because it is an API, not simply direct
access to data, a ContentProvider can exercise very
fine-grained control over what it publishes and to whom it
publishes it. External applications get access to a
ContentProvider using a Binder IPC interface, through
which the ContentProvider can obtain information about the
querying process, the permissions it holds, and the type of
access it requests.


Early Android applications often shared data simply by
putting it into publicly accessible files. Even then,
Android encouraged the use of ContentProviders instead.
More recent versions of Android, in the interests of
security, have made it difficult to share files directly,
making ContentProviders more relevant.

Note

While ContentProviders provide access to stored data, you
must have some kind  of data store from which to read and
write the data. Android Jetpack offers the Room persistence
library as an option. As described in its official
documentation, Room provides “an abstraction layer to allow
for more robust  access while harnessing the full power of
SQLite.”


For more information on how to save data in a local database using Room, check out the Android Developers documentation.




One particularly interesting capability of a
ContentProvider is that it can pass an open file to
another program. The requesting program need not have any
way to access the file directly using a file path. The
ContentProvider can construct the file it passes in any
way that it wants. By passing an open file, though, the

ContentProvider moves itself out of the loop. It gives the
requesting program direct access to the data.  Neither the
ContentProvider nor any other IPC mechanism remains
between the client and the data.  The client simply reads
the file just as if it had opened that file itself.


An application publishes a ContentProvider, as usual,
by declaring it in the application manifest:


<application...>
  <provider
   android:name="com.oreilly.kotlin.example.MemberProvider"
   android:authorities="com.oreilly.kotlin.example.members"
   android:readPermission="com.oreilly.kotlin.example.members.READ"/>
 </application>


This XML element says that the application contains the class
named 
com.oreilly.kotlin.example.MemberProvider, which has to be a subclass of 
android.content.ContentProvider. The
element declares that 
MemberProvider is the
authority for any requests for data from the URL
content://com.oreilly.kotlin​​.exam⁠⁠ple.members. Finally, the
declaration mandates that requesting applications must hold the
permission “com.oreilly.kotlin.example.members.READ” in
order to get any access at all and that even then they will get only
read access.


ContentProviders have exactly the API one would expect from
a REST interface:


	query()

	
This fetches data from a particular table.



	insert()

	
This inserts a new row within a content provider and returns the content URI.



	update()

	
This updates the fields of an existing row and returns the number of rows 
updated.



	delete()

	
This deletes existing rows and returns the number of rows deleted.



	getType()

	
This returns the MIME data type for the given Content URI.






The ContentProvider for MemberProvider would probably
implement only the first of these methods, because it is
read-only.

















Broadcast Receivers


The original concept for a BroadcastReceiver was as a kind
of data bus. Listeners could subscribe in order to get
notification of events that were of interest. As the system
has come of age, however, BroadcastReceivers have proved
to be too expensive and too prone to security problems to
be used pervasively.  They remain mostly a tool used by the system
to signal applications of important events.


Perhaps the most common use of a BroadcastReceiver is as a
way of starting an application, even if there has been no
user request to do so.


The Intent android.intent.action.BOOT_COMPLETED is broadcast by the Android system once the OS
is stable, after a system restart. An application could
register to receive this broadcast, like this:


<receiver android:name=".StartupReceiver">
    <intent-filter>
        <action android:name="android.intent.action.BOOT_COMPLETED"/>
    </intent-filter>
</receiver>


If an application does this, its StartupReceiver will be started, to
receive the 
BOOT_COMPLETED Intent broadcast when the OS is rebooted. As
noted earlier, a side effect of starting the
StartupReceiver is that the application that contains
the receiver is also started.


Applications have used this as a way of creating a daemon: an
app that is always 
running.  While a hack and fragile
(even in early Android, behavior changed from version to version),
this trick worked well enough that many, many applications used
it.  Even as Android version 26 introduced some fairly
radical changes in background process management
(BroadcastReceivers cannot be registered for implicit
broadcasts 
in their manifests; they must instead register them
dynamically using 
Context.registerReceiver),
developers continue to find ways to use it.

Note

There are exceptions to the Android 26 implicit intent rule. 
Receiving SMS messaging, changing locale, detecting USB devices, and 
a few other intents are permitted, and applications may register 
for them, in their manifests. ACTION_USB_ACCESSORY_ATTACHED, ACTION_CONNECTION_STATE_CHANGED, and our dear old friend ACTION_BOOT_COMPLETED are among the permitted intents. For more, check out the Android Developers documentation.




Activity, Service, ContentProvider, and BroadcastReceiver are the four components that are the essential
building blocks of an Android application. As Android has
grown and improved, it has introduced new abstractions that
obscure these basic mechanisms. A modern Android
application may use only one or two of these building
blocks directly, and many developers will never code a
ContentProvider or a BroadcastReceiver.


The essential lesson here, which bears
repeating, is that an Android app is not an “application”
in the traditional sense.  It is more like a web
application: a collection of components that provide
services to a framework when requested to do so.
























Android Application Architectures


So far, in this chapter we’ve discussed the Android system architecture. While understanding that architecture is essential for any serious Android developer, it is not sufficient for understanding how to write resilient, bug-free Android programs. As evidence of this, one need only look at the many tools and abstractions that have been
tried and abandoned over the years of Android’s existence. Time and experience, though, have honed the Android playbook and made the path to a robust, maintainable application much easier to follow.










MVC: The Foundation


The original pattern for applications with a UI was called Model–View–Controller (MVC). The innovation that the pattern introduced was a guarantee that the view—what was rendered on the screen—was always consistent. It did this by insisting on a unidirectional cycle for data flow.


It all starts with the user. They see something on the screen (the View: I told you it was a cycle!) and, in response to what they see, take some action. They touch the screen, type something, speak, whatever. They do something that will change the state of the application.


Their input is fielded by the Controller. The Controller has two responsibilities. First, it orders the user’s input. For any given user event—say, tapping the “stop” button—all other user events happen either before that tap or after it. No two events are ever processed at the same time.

Note

The implication that the Controller is single-threaded is one of the most important aspects of the original MVC pattern. Prior multithreaded strategies (including Java’s Abstract Window Toolkit [AWT]) often produced a nightmare of deadlocks as messages traveling in opposite directions—from the user and to the user—tried to seize the same locks in different orders.




The Controller’s second
responsibility is to translate user input into operations on
a Model.


The Model is the business logic of an application.  It
probably combines some kind of persistent data store and
perhaps a network connection with rules for combining and
interpreting the input from the Controller.  In the ideal
MVC architecture, it is the only component that holds the
current state of the application.


The Model, again, ideally is allowed to send only one
message to the View: “things have changed.”  When the View
receives such a message it does its job.  It requests the
application state from the Model, interprets it, and renders
it on the screen. What it renders is always a consistent
snapshot of the Model. At this point, the user can see the
new state and take new actions in response.  The cycle
continues.


While the MVC pattern was fairly revolutionary when it was
introduced, there is room for improvement.

















Widgets


As we mentioned earlier in the context of the Activity
component, a widget is a single class that combines a
View component with a Controller component.  After the preceding
discussion of the MVC pattern and its emphasis on
separating the two, it may seem odd to find classes like
Button, TextBox, and RadioButton that clearly combine the
two.


Widgets do not break MVC architecture.  There is still, in
each widget, distinct View and Controller code.  The
Controller portion of a widget never talks directly to the
View, and the View does not receive events from the
Controller. The sections are independent; they are just
bundled together into a single handy container.


Combining the two functions just seems fairly obvious.  What
is the use of the image of a button, that can be placed
anywhere on the screen, if it doesn’t respond to clicks?  It
just makes sense that the renderer for the UI components,
and the mechanism that handles input for it, be part of the
same component.

















The Local Model


With the advent of the Web, browsers, and the long delay
required for an entire MVC cycle, developers began to see
the need for keeping the state of the screen as a separate,
UI-Local Model.  Developers have, over time, referred to
this component using several names, depending on
other features of the design pattern in which it is being
used. To avoid confusion, we will refer to it, for the
rest of this chapter, as the Local Model.


The use of a Local Model gives rise to a new pattern that is
sort of a two-layer MVC—it has even been referred to as the
“Figure Eight” pattern. When the user takes an action, the
Controller updates the Local Model instead of the Model,
because a Model update may be a network connection away.
The Local Model is not business logic. It represents, as
simply as possible, the state of the View: which buttons are
on, which are off, what text is in which box, and the color and
length of the bars in the graph.


The Local Model does two things in response to an action.
First it notifies the View that things have changed so that
the View can rerender the screen from the new Local Model
state. In addition, though, with code that is analogous to
the simple MVC’s Controller, the Local Model forwards the state
changes to the Model. In response, the Model eventually
notifies—this time the Local Model—that there has been
an update and that the Local Model should sync itself.
This probably results in a second request that the View
update itself.
























Android Patterns


In Android, regardless of the pattern, an Activity object—or possibly its cousin, a Fragment—takes the role of
the View. This is more or less mandated by the structure of
the Activity object: it is the thing that owns the screen
and it is the thing that has access to the widgets that
comprise the view.  Over time, though, as is appropriate for
an MVC-based UI, Activity objects have gotten simpler and
simpler.  In a modern Android application, it is likely that
an Activity will do little more than inflate the view,
delegate events inbound from the user to the Local Model,
and observe Local Model state that is of interest, redrawing
itself in response to updates.










Model–View–Intent


One of the oldest versions of MVC adopted by the Android
community was called Model–View–Intent. The pattern
decouples the Activity from a Model by using Intents
and their payloads. While this structure produces excellent
component isolation, it can be quite slow and the code for
constructing the Intents quite bulky. Although it is still
used successfully, newer patterns have largely supplanted
it.

















Model–View–Presenter


A goal for all of these MVC-based patterns is to loosen
the coupling among the three components and to make
information flow unidirectionally. In a naive implementation,
though, the View and the Local Model each hold a reference
to the other.  Perhaps the View gets an instance of the
Local Model from some sort of factory and then registers
with it. Though subtle—and regardless of the
apparent direction in which information flows—holding
a reference to an object of a specific type is coupling.


Over the past few years, there have been several refinements
to the MVC pattern in an attempt to reduce this coupling.
While these refinements have often resulted in better code,
the distinctions among them, and the very names
used to identify them, have not always been clear.


One of the earliest refinements replaces the View and
Local Model references to each other with references to
interfaces. The pattern is often called Model–View–Presenter (MVP). In
implementations of this pattern, the Local Model holds a
reference, not to the View Activity, but simply to the
implementation of some interface.  The interface describes
the minimal set of operations that the Local Model can
expect from its peer. It has, essentially, no knowledge that
the View is a View: it sees only operations for updating
information.


The View proxies user input events to its Presenter. The
Presenter, as described earlier, responds to the events,
updating Local Model and Model state as necessary. It then
notifies the View that it needs to redraw itself. Because
the Presenter knows exactly what changes have taken place, it may be
able to request that the View update only affected sections,
instead of forcing a redraw of the entire screen.


The most important attribute of this architecture, however, is
that the Presenter (this architecture’s name for the Local
Model) can be unit tested. Tests need only mock the the
interface that the View provides to the Presenter to
completely isolate it from the View. Extremely thin views
and testable Presenters lead to much more robust

applications.


But it is possible to do even better than this.  The Local Model
might hold no references to the View at all!

















Model–View–ViewModel


Google, with its introduction of Jetpack, supports an
architecture called Model–View–ViewModel (MVVM).
Because it’s supported, internally, by the modern Android
framework, it is the most common and most discussed pattern
for modern Android apps.


In the MVVM pattern, as usual, either an Activity or a
Fragment takes the role of the View.  The View code will
be as simple as it is possible to make it, often contained
entirely within the Activity or Fragment subclass.
Perhaps some complex views will need separate classes for
image rendering or a RecyclerView. Even these, though,
will be instantiated and installed in the view, directly by
the Activity or Fragment.


The ViewModel is responsible for wiring together the
commands necessary to update the View and the backend
Model. The novel feature of this pattern is that a
single interface, Observable, is used to transmit changes
in the state of the Local Model to the View.


Instead of the multiple Presenter interfaces used in the
MVP pattern, the ViewModel represents viewable data
as a collection of Observables.  The View simply
registers as an observer for these observables and reacts to
notifications of  changes in the data they contain.


The Jetpack library calls these Observables LiveData. A
LiveData object is an observable data holder class with a
single generified interface that notifies subscribers of
changes in the underlying data.


Like MVP, MVVM makes mocking and unit testing easy. The
important new feature that MVVM introduces is lifecycle
awareness.


The keen reader will have noticed that the version
of the MVP pattern described earlier does exactly the
thing we warned against in Example 3-1: it stores the
reference to an Activity, an object with an Android-controlled
lifecycle, in a long-lived object!  Applications are left
to their own devices to make sure the reference
doesn’t outlive the target object.


The Jetpack-supported implementation of the MVVM pattern
dramatically reduces this problem. In its implementation, the
only references to the View are the subscriptions to the
LiveData observables. The LiveData objects identify
Fragment and 
Activity observers, and unregister them,
automatically when their lifecycle ends.


Applications built with JetPack’s version of MVVM can be
quite elegant. For a broad variety of applications, the View
will contain a single, simple, declarative method that draws
the screen. It will register that method as an observer
for ViewModel observables. The ViewModel translates
user input into calls to the backend Model and updates
its observables in response to notifications from the Model.
It’s that simple.
























Summary


Congratulations, you’ve successfully covered an intimidating
amount of information in a very short chapter!


Remember that much of this material is foundational. It is
not important that you master all of the information
presented here. In fact, it’s quite possible that you will
never touch, for instance, a ContentProvider or a BroadcastReceiver.
Use what is practical for you, and approach mastering items
only as they become useful.


Here are some key points to take with you:



	
An Android app is not an “application” in the traditional
sense. It is more like a web application: a collection of
components that provide services to a framework, when
requested to do so.



	
The Android OS is a very specialized Linux distribution. Each
application is treated as an individual “user” and has its own
private file storage.



	
Android has four kinds of components. They are: Activitys, Services,

ContentProviders, and BroadcastReceiver. Activitys, Services,
and the 
ContentProviders must be registered and possibly given permission within the
Android manifest:



	
Activitys are the UI of an Android application. They start their lifecycle at
onCreate, are live to user interaction after onResume, and may be interrupted
(onPause) at any time.



	
Fragments are complex beasts with lifecycles all their own.  They
can be used to organize independent UI containers, within a UI page.



	
Services can be started services and/or bound. API 26
started introducing restrictions for background use of services, so
the general rule is that if the user interacts with a task in any way, a
service ought to be made into a foreground service.



	
Unless a BroadcastReceiver is using implicit intent that is explicitly allowed by the system
with the action, it is probably necessary to register the broadcast receiver
dynamically from application code.







	
Use the Activity Context carefully.  Activities have a lifecycle
that is not under the control of your application.  A reference
to an Activity must respect the actual lifecycle of the Activity.



	
General software architectures in Android, like MVI, MVP, and MVVM,
are designed to keep Fragments and Activitys lean and encourage better
separation of concern and testing and while being “lifecycle-aware.”






Now that we’ve reviewed the ground rules and explored the
playing field, our journey to achieving structured coroutines
in Kotlin officially starts. In the following chapter, we
begin to apply this foundation to examining memory and
threading in Android. Understanding the details of Android’s
organization will reveal the issues that the coming
chapters set out to solve.













Chapter 4. Concurrency in Android



This chapter does not focus specifically on Kotlin. Instead,
it will introduce some of the issues that surround
concurrent programming and that the rest of the book
addresses. It will also introduce a few tools, already
available to Android developers, for managing concurrent
tasks.


Concurrent programming has a reputation as kind of a dark
art: something that is done by self-proclaimed wizards and that
novices touch at their peril. Certainly, writing correct
concurrent programs can be quite challenging. This is
particularly true because errors in concurrent programs
don’t always show up right away. It is nearly impossible to
test for concurrency bugs and they can be extremely difficult
to reproduce, even when they are known to exist.


A developer concerned about the hazards of concurrent
programming would do well to remember these three things:



	
Nearly everything you do, every day, except
programming, is concurrent. You get along quite nicely in a
concurrent environment. It is programming, where things
happen in order, that is odd.



	
If you are trying to understand the issues that
concurrent programming presents, you are on the right path.
Even an incomplete understanding of concurrency is better
than copying sample code and crossing your fingers.



	
Concurrent programming is just how Android works. Anything
other than the most trivial Android application will require
concurrent execution. Might as well get on with it and
figure out what it’s all about!






Before getting into specifics, let’s define some terms.


The first term is process. A process is
memory that an application can use, and one or more threads of
execution. The memory space belongs to the process—no other
processes can affect it.1 An application usually runs
as a single process.


That, of course, introduces the second term: thread. A thread is a sequence of instructions,
executed one at a time, in order.


And this leads us to the term that, to some extent,
drives the rest of this book: thread safe. A set of
instructions is thread-safe if, when multiple threads
execute it, no possible ordering of the instructions
executed by the threads can produce a result that could not
be obtained if each of the threads executed the code
completely, in some order, one at a time. That’s a little
hard to parse, but it just says that the code produces the
same results whether the multiple threads execute it all at
the same time or, serially, one at a time.  It means that
running the program produces predictable results.


So how does one make a program thread-safe? There are lots
and lots of ideas about this. We would like to propose one
that is clear, relatively easy to follow, and always
correct. Just follow one, fairly clear, fairly simple rule.
We’ll state the rule in a few pages. First, though, let’s discuss in more detail what thread safety means.








Thread Safety


We’ve already said that thread-safe code cannot produce a result, when executed by multiple threads
at the same time, that could not have been produced by some
ordering of the threads executing one at a time.
That definition, though, is not very useful in practice:
no one is going to test all possible execution orders.


Perhaps we can get a handle on the problem by looking at
some common ways that code can be thread-unsafe.


Thread-safety failures can be divided into a few categories.
Two of the most important are atomicity and visibility.










Atomicity


Nearly all developers understand problems of atomicity.
This code is not thread-safe:


fun unsafe() { globalVar++ }


Multiple threads
executing this code can interfere with each other. Each
thread executing this code might read the same value for
globalVar—say, 3. Each might increment that value to get
4, and then each might update globalVar to have the value
4. Even if 724 threads executed the code, globalVar might,
when all were through executing, have the value 4.


There is no possible way that each of those 724 threads could
execute that code serially and have globalVar end up as 4.
Because the result of executing the code concurrently can be
different from any possible result generated by serial
execution, this code is not thread-safe, according to our
definition.


To make the code thread-safe, we need to make the read,
increment, and write operations on the variable globalVar,
together, atomic. An atomic operation is one that cannot
be interrupted by another thread. If the read, increment,
and write operations are atomic, then no two threads can see
the same value of globalVar, and the program is guaranteed
to behave as expected.


Atomicity is easy to understand.

















Visibility


Our second category of thread-safety errors, visibility, is
much more difficult to apprehend. This code is also not
thread-safe:


var shouldStop = false

fun runner() {
    while (!shouldStop) { doSomething() }
}

fun stopper() { shouldStop = true }


A thread running the function runner may never stop, even
though another thread runs stopper. The thread running
runner may never notice that the value of

shouldStop has changed to true.


The reason for this is optimization. Both the hardware
(using registers, multilayer caches, etc.) and the compiler
(using hoisting, reordering, etc.) do their very best to
make your code run fast. In order to do this, the
instructions that the hardware actually executes may not
look much like the Kotlin source at all. In particular,
while you think that shouldStop is a single variable, the
hardware probably has at least two representations for it:
one in a register and one in main memory.


You definitely want that! You would not want the loops in
your code to depend on access to main memory instead of
using caches and registers. Fast memory optimizes your code
because it has access times that are several orders of
magnitude faster than main memory.


To make the example code work, though, you have to
explain to the compiler that it cannot keep the value of
shouldStop in local memory (a register or cache). If, as
proposed, there are multiple representations of shouldStop
in different kinds of hardware memory, the compiler must be
sure that the value kept in the fast, local representation
of shouldStop is pushed to memory that is visible to all threads.
This is called publishing the value.


@Synchronized is the way to do that. Synchronization
tells the compiler that it must make sure that any side
effects of the code executed within the synchronized block
are visible to all other threads, before the executing
thread leaves the block.


Synchronization, then, is not so much about hardware, or
tricky and complicated criteria for what must be protected
and what need not be. Synchronization is a contract between
the developer and the compiler. If you don’t synchronize
code, the compiler is free to make any optimization that it
can prove safe, based on serial execution. If there is other
code somewhere, running on a different thread, that makes
the compiler’s proof invalid, you must synchronize the code.


So, here’s the rule. If you want to write code that is
thread-safe, you just have to follow this one short, clear
rule. Paraphrasing from Java’s bible of parallel programming,
Java Concurrency in Practice:2 Whenever more than one thread accesses a given state variable, and one of them might write to it, they all must coordinate their access to it using synchronization.


Note, by the way, that that quote does not distinguish
between read access and write access for synchronization.
Unless it is guaranteed that nobody will mutate the
shared state, all access, read or write, must be synchronized.
























The Android Threading Model


As noted in Chapter 3, one of the implications of an MVC
architecture is a single-threaded UI (the View and Controller).
Although a multithreaded UI seems very tempting (surely
a thread for the View and a thread for the Controller would
work…), attempts to build them were abandoned back in the
1970s, when it became clear that they, inevitably, ended
in a snarl of deadlocks.


Since the general adoption of MVC, the standard UI design is
a queue serviced by a single thread (in Android, the Main-,
or UI-thread). As illustrated in Figure 4-1, 
events—both
those that originate with a user (clicks, taps, typing, etc.)
and those that originate in the model (animation, requests to
redraw/update the screen, etc.)—are enqueued and eventually
processed in order by the single UI thread.
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Figure 4-1. UI thread.




This is exactly how Android’s UI works.  An application’s
main thread (the application process’s original thread) becomes its UI
thread. As part of initialization, the thread enters a tight
loop. For the rest of the life of the application, it
removes tasks from the canonical UI queue one by one and executes them.  Because UI methods are always run on a
single thread, UI components make no attempt to be thread-safe.


That sounds great, right? A single-threaded UI and no
worries about thread safety. There’s a problem, though. To
understand it, we’ll have to switch out of our developer
hats and talk a bit about the experience of the end users of
Android devices.  In particular, we’ll need to look into
some details of video display.

Note

Threads are said to deadlock when each holds a resource
that the other requires: neither can make forward progress.
For instance, one thread might hold the widget that displays
a value and require the container that holds the value to
be displayed.  At the same time, another thread might hold
the container and require the widget.
Deadlocks can be avoided if all threads always seize resources
in the same order.



















Dropped Frames


We know, from long experience with motion pictures and TV,
that the human brain can be tricked into perceiving motion
as continuous, even when it is not.  A series of still
images shown rapidly, one after the other, can appear to the
observer to be smooth, uninterrupted motion. The rate at
which the images are displayed is known as the frame rate.
It is measured in frames per second (fps).


The standard frame rate for movies is 24 fps. That has worked
quite well for the entire Golden Age of Hollywood. Older
televisions used a frame rate of 30 fps. As you might
imagine, faster frame rates do an even better job
of tricking the brain than slow ones. Even if you
can’t exactly put your finger on what you are sensing, if
you watch a high frame rate video next to one with a lower
frame rate, you will likely notice a difference. The
faster one will feel “smoother.”


Many Android devices use a frame rate of 60 fps. This
translates to redrawing the screen once approximately every
16 milliseconds (ms). That means that the UI thread, the single thread
handling UI tasks, must have a new image available, ready to
be drawn on the screen every 16 ms. If producing the image
takes longer than that, and the new image is not ready when
the screen is redrawn, we say that the frame has been
dropped.


It will be another 16 ms before the screen is redrawn again
and a new frame becomes visible. Instead of 60 fps, a dropped frame lowers the frame rate to 30 fps, close to the threshold at which the human brain notices it. Just
a few dropped frames can give a UI a choppy feeling that is
sometimes called “jank.”


Consider the queue of tasks shown in Figure 4-2, at Android’s standard render
rate of 60 fps.
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Figure 4-2. Tasks queued for the UI thread.




The first task, handling character input from the user, takes
8 ms to execute. The next task, updating the view, is part
of an animation. In order to look smooth, the animation
needs to be updated at least 24 times per second. The third
task, though, handling a user click, takes 22 ms. The last
task in the diagram is the next frame of the animation. Figure 4-3 shows
what the UI thread sees.
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Figure 4-3. A dropped frame.




The first task completes in 8 ms. The animation draws a
frame to the display buffer in 4 ms. The UI thread then
starts to handle the click. A couple of milliseconds into
handling the click, the hardware redraw takes place and the
animation’s frame is now visible on the screen.


Unfortunately, 16 ms later, the task to handle the click is still
not complete. The task to draw the next frame of the
animation, which is queued behind it, has not been processed.
When the redraw happens, the contents of the display buffer
are exactly as they were during the previous redraw.  The
animation frame has been dropped.

Note

Computer displays are usually managed using one or more
display buffers. A display buffer is an area of memory in
which user code “draws” the things that will be visible on
the screen. Occasionally, at the refresh interval
(approximately 16 ms for a 60 fps display), user code is
briefly locked out of the buffer. The system uses the
contents of the buffer to render the screen and then
releases it back to the user code for further updates.




A few milliseconds later, when the click handling task is
complete, the animation task gets its chance to update the
display buffer. Even though the display buffer now contains
the next frame of the animation, the screen will not be
redrawn for several milliseconds. The frame rate for the
animation has been cut in half, to 30 fps, dangerously close
to visible flicker.


Some newer devices, like Google’s Pixel 4, have the ability
to refresh the screen at much higher frame rates. With a
frame rate that is, for instance, twice as high (120 fps), even if the
UI thread misses two frames in a row, it still only has to
wait an extra 8 ms for the next redraw. The interval between
the two renderings in this case is only around 24 ms; much
better than the 32 ms cost of dropping a frame at 60 fps.


Though increased frame rate may help, an Android developer
must be vigilant and make sure that an application drops as
few frames as possible. If an app is in the middle of an
expensive computation and that computation takes longer than
expected to complete, it will miss the redraw time slot and
drop the frame, and the application will feel janky.


This scenario is the reason why it is absolutely necessary
to deal with concurrency in Android applications. Put
simply, the UI is single-threaded and the UI thread must
never be occupied for more than a few milliseconds


The only possible solution for a nontrivial application is
to pass time-consuming work—database storage and
retrieval, network interactions, and long-running 
computations—to some other thread.

















Memory Leaks


We’ve already dealt with one complexity introduced by
concurrency: thread safety.  Android’s component-based
architecture adds a second, equally dangerous complexity:
memory leaks.


A memory leak occurs when the object can’t be freed
(garbage-collected) even though it’s no longer useful. At
worst, memory leaks could result in an 
OutOfMemoryError, and
an application crash. Even if things don’t get that bad,
though, running short on memory can force more frequent
garbage collections that again cause “jank.”


As discussed in Chapter 3, Android applications are
particularly susceptible to memory leaks because the
lifecycles of some of the most frequently used components—Activitys, Fragments, Services, and so on—are not under the
control of the application.  Instances of those components
can all too easily turn into dead weight.


This is particularly true in a multithreaded environment.
Consider offloading a task to a worker thread like this:


override fun onViewCreated(
    view: View,
    savedInstanceState: Bundle?
) {
    // DO NOT DO THIS!
    myButton.setOnClickListener {
        Thread {
            val status = doTimeConsumingThing()
            view.findViewById<TextView>(R.id.textview_second)
                .setText(status)
        }
            .start()
    }
}


The idea of moving the time-consuming work off the UI thread
is a noble one. Unfortunately, the preceding code has several
flaws. Can you spot them?


First, as mentioned earlier in this chapter, Android UI
components are not thread-safe and cannot be accessed or
modified from outside the UI thread. The call to setText
in this code, from a thread other than the UI thread, is incorrect.  Many Android UI components detect
unsafe uses like this, and throw exceptions if they occur.


One way to address this problem is to return results to the
UI thread using one of the Android toolkit methods for safe
thread dispatch, as shown here.  Note that this code still has
flaws!


override fun onViewCreated(
    view: View,
    savedInstanceState: Bundle?
) {
    // DO NOT DO THIS EITHER!
    myButton.setOnClickListener {
        Thread {
            val status = doTimeConsumingThing()
            view.post {
                view.findViewById<TextView>(R.id.textview_second)
                    .setText(status)
            }
        }
            .start()
    }
}


That fixes the first issue (the UI method, setText, is now called
from the Main thread) but the code is still not correct.
Though the vagaries of the language make it hard to see the
problem, it is that the thread, newly created in the
ClickListener, holds an implicit reference to an Android-managed object. Since doTimeConsumingThing is a
method on an Activity (or Fragment), the thread, newly
created in the click listener, holds an implicit reference
to that Activity, as shown in Figure 4-4.
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Figure 4-4. A leaked activity.




It might be more obvious if the call to
doTimeConsumingThing were written as
this.doTimeConsumingThing. If you think about it, though,
it is clear that there is no way to call the method
doTimeConsumingThing on some object (in this case, an
instance of an Activity) without holding a reference to that
object. Now the 
Activity instance cannot be garbage-collected as long as the Runnable running on the worker
thread holds a reference to it. If the thread runs for any
significant amount of time, Activity memory has leaked.


This issue is considerably more difficult to address than the last. One
approach assumes that tasks that are guaranteed to hold such
an implicit reference for only a very short period of time
(less than a second) may not cause a problem. The Android
OS itself occasionally creates such short-lived tasks.


ViewModels and LiveData ensure that your UI always renders the freshest data, and does it safely. Combined with Jetpack’s viewModelScope and coroutines—both to be introduced shortly—all these
things make it easier to control cancellation of background tasks that are no longer relevant, and ensure memory integrity and thread safety.  Without the libraries, we’d have to correctly address all of these concerns 
ourselves.

Note

Careful design using Jetpacks’ lifecycle-aware,
observable LiveData containers, as described in
Chapter 3, can help to eliminate both memory leaks and the
danger of using an Android component that has completed its
lifecycle.



















Tools for Managing Threads


There is, actually, a third flaw in the code we just discussed; a deep design flaw.


Threads are very expensive objects.  They are large, they
affect garbage collection, and switching context among them
is far from free. Creating and destroying threads, as
the code in the example does, is quite
wasteful, ill-advised, and likely to affect application
performance.


Spawning more threads in no way makes an application able to
accomplish more work: a CPU has only so much power. Threads
that are not executing are simply an expensive way of
representing work that is not yet complete.


Consider, for instance, what would happen if a user mashed
myButton, from the previous example. Even if the operations
that each of the generated threads performed were fast and thread-safe,
creating and destroying those threads would slow the app to
a crawl.


A best practice for applications is a thread policy: an
application-wide strategy based on the number of threads
that is actually useful, that controls how many threads are
running at any given time.  A smart application maintains
one or more pools of threads, each with a particular
purpose, and each fronted by a queue.  Client code, with
work to be done, enqueues tasks to be executed by the pool
threads and, if necessary, recovers the task results.


The next two sections introduce two threading primitives
available to Android developers, the Looper/Handler and
the Executor.










Looper/Handler


The Looper/Handler is a framework of cooperating classes: a
Looper, a MessageQueue and the Messages enqueued on
it, and one or more Handlers.


A Looper is simply a Java Thread that is initialized
by calling the methods 
Looper.prepare() and
Looper.start() from its run method, like this:


var looper = Thread {
    Looper.prepare()
    Looper.loop()
}
looper.start()


The second method, Looper.loop(), causes the thread to
enter a tight loop in which it checks its MessageQueue for
tasks, removes them one by one, and executes them.  If there
are no tasks to be executed, the thread sleeps until a new
task is enqueued.

Note

If you find yourself thinking that this sounds vaguely
familiar, you are right.  Android’s UI thread is simply a
Looper created from the application process’s main thread.




A Handler is the mechanism used to enqueue tasks on a
Looper’s queue, for processing.  You create a Handler
like this:


var handler = new Handler(someLooper);


The main thread’s Looper is always accessible using the
method Looper.getMainLooper.   Creating a Handler that
posts tasks to the UI thread, then, is as simple as this:


var handler = new Handler(Looper.getMainLooper);


In fact, this is exactly how the post() method, shown in the preceding example,  works.


Handlers are interesting because they handle both ends of
the Looper’s queue.  In order to see how this works,
let’s follow a single task through the Looper/Handler
framework.


There are several Handler methods for enqueuing a task.
Here are two of them:



	
post(task: Runnable)



	
send(task: Message)






These two methods define two slightly different ways of
enqueuing a task: sending messages and posting Runnables.
Actually, the Handler always enqueues a Message. For
convenience, though, the post...() group of methods attach a
Runnable to the Message for special handling.


In this example we use the method Handler.post(task:
Runnable) to enqueue our task. The Handler obtains a
Message object from a pool, attaches the Runnable, and
adds the Message to the end of the Looper’s
MessageQueue.


Our task is now awaiting execution. When it reaches the head
of the queue, the Looper picks it up and, interestingly,
hands it right back to the exact same Handler that
enqueued it.  The same Handler instance that enqueues a
task is always the instance that runs it.


This can seem a bit perplexing until you realize that the
Handler code that submitted the task might be running on
any application thread.  The Handler code that processes
the task, however, is always running on the Looper,
as shown in Figure 4-5.
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Figure 4-5. Looper/Handler.




The Handler method called by the Looper to handle a
task first checks to see if the Message contains a
Runnable.  If it does—and because we used one of the
post...() methods, our task does—the Handler
executes the Runnable.


If we’d used one of the send...() methods, the Handler would have passed the Message to its own overridable method, 
Handler.handleMessage(msg: Message).
A subclass of Handler would, in that method, use the
Message attribute what to decide which particular task
it should perform, and the attributes arg1, arg2, and
obj as task parameters.


The MessageQueue is, actually, a sorted queue.  Each
Message includes, as one of its attributes, the earliest time at
which it may be executed. In the preceding two methods, post
and send, simply use the current time (the message will be
processed “now,” immediately).


Two other methods, though, allow tasks to be enqueued to be
run at some time in the future:



	
postDelayed(runnable, delayMillis)



	
sendMessageDelayed(message, delayMillis)






Tasks created using these
methods will be sorted into the MessageQueue to be
executed at the indicated time.

Note

As noted, a Looper can only make a best effort at
running a task at the requested time. While it will never
run a delayed task before its time, if another task hogs
the thread the task may run late.




Looper/Handlers are a fantastically versatile and efficient
tool.  The Android system makes extensive use of them,
particularly the send...() calls, which do not do any
memory allocation.


Note that a Looper can submit tasks to itself.  Tasks
that execute and then reschedule themselves after a given interval
(using one of the ...Delayed() methods) are one of
the ways that Android creates animations.


Also note that because a Looper is single-threaded, a task that is
only run on one particular Looper need not be thread-safe.
There is no need for synchronization or ordering when a task, even
a task that is run asynchronously, is run only on a single thread.
As mentioned earlier, the entire Android UI framework,
which runs only on the UI Looper, depends on this assumption.

















Executors and ExecutorServices


Java introduced Executors and ExecutorServices in Java
5, as part of a new Concurrency Framework. The new framework
provided several higher-level concurrency  abstractions that
allowed developers to leave behind many of the details of
threads, locks, and synchronization.


An Executor is, as its name suggests, a utility that executes
tasks submitted to it.  Its contract is the single method
execute(Runnable).


Java provides several implementations of the interface, each
with a different execution strategy and purpose.  The
simplest of these is available using the method

Executors.newSingleThreadExecutor.


A single-threaded executor is very similar to the
Looper/Handler examined in the previous section: it is an
unbounded queue in front of a single thread.  New tasks are
enqueued onto the queue and then removed and executed in
order on the single thread that services the queue.


Looper/Handlers and single-threaded Executors each have their
own advantages. For instance, a Looper/Handler is heavily
optimized, to avoid object allocation.  On the other hand, a single-threaded
Executor will replace its thread if that thread is
aborted by a failing task.


A generalization of the single-threaded Executor is the
FixedThreadPoolExecutor: instead of a single thread, its
unbounded queue is serviced by a fixed number of threads.
Like the single-threaded Executor, a FixedThreadPoolExecutor will replace threads when tasks kill them.  A
FixedThreadPoolExecutor does not guarantee task order,
though, and will execute tasks simultaneously, hardware
permitting.


The single-threaded scheduled Executor is Java’s equivalent of the Looper/Handler. It’s similar to a
single-threaded Executor except that, like the
Looper/Handler, its queue is sorted by execution time.
Tasks are executed in time order, not submission order. As
with the Looper/Handler, of course, long-running tasks can
prevent subsequent tasks from being executed on time.


If none of these standard execution utilities meets your
needs, you can create a custom instance of
ThreadPoolExecutor, specifying details like the size and
ordering of its queue, number of threads in its thread pool
and how they are created, and what happens when the pool’s
queue is full.


There is one more type of Executor that deserves special
attention—the 
ForkJoinPool. Fork-join pools exist because
of the observation that sometimes a single problem can be
broken down into multiple subproblems which can be executed
concurrently.


A common example of this kind of problem is adding two
same-size arrays together.  The synchronous solution is to
iterate, i = 0 .. n - 1, where n is the size of the
array, and at each i to compute s[i] = a1[i] + a2[i].


There is a clever optimization that is possible, though, if
the task is divided into pieces.  In this case, the task can
be subdivided into n` subtasks, each of which computes s[i]
= a1[i] + a2[i] for some i.


Note that an execution service creating subtasks
it expects to process itself can enqueue the
subtasks on a thread-local queue.  Since the local queue is
used predominantly by the single thread, there is almost
never contention for the queue locks. Most of the time, the
queue belongs to the thread—it alone puts things on and
takes them off. This can be quite an optimization.


Consider a pool of these threads, each with its own
fast, local queue.  Suppose that one of the threads finishes all
of its work and is about to idle itself, while at the same
time another pool thread has a queue of 200 subtasks to
execute.  The idle thread steals the work.  It grabs the
lock for the busy thread’s queue, grabs half of the
subtasks, puts them in its own queue, and goes to work on
them.


The work-stealing trick is most useful when concurrent tasks
spawn their own subtasks. As we will see, it turns out that
Kotlin coroutines are exactly such tasks.
























Tools for Managing Jobs


Just as there can be economies of scale in the production of,
say, cars, there are important optimizations that require
the large-scale view of a system. Consider the use of the
radio on a mobile phone.


When an application needs to interact with a remote service,
the phone, normally in battery-saving mode, must power up
its radio, connect to a nearby tower, negotiate a connection,
and then transmit its message.  Because connection
negotiation is overhead, the phone holds the connection open
for a while. The assumption is that, when one network
interaction takes place, it is likely that others will
 follow.  When more than a minute or so goes by
without any use of the network, though, the phone goes back
to its quiescent, battery-saving state.


Given this behavior, imagine what happens when several
applications phone home, each at a different time. When the
first app sends its ping, the phone powers its radio up,
negotiates the connection, transmits a message for the app,
waits a bit, and then goes back to sleep. Just as it goes
back to sleep, though, the next application tries to use the
network.  The phone has to power back up, renegotiate a
connection, and so on.  If there are more than a handful of
applications doing this, the phone radio is at full power
essentially all the time.  It is also spending a lot of that
time renegotiating a network connection that it dropped
just a few seconds ago.


No single application can prevent this kind of problem. It
requires a system-wide view of battery and network use to
coordinate multiple apps (each with its own requirements)
and to optimize battery life.


Android 8.0 (API 26+) introduced limits on application
resource consumption. Included in these limitations are the
following:



	
An application is in the foreground only when it has a
visible activity or is running a foreground service. Bound
and started Services no longer prevent an application
from being killed.



	
Applications cannot use their manifest to register for
implicit broadcasts. There are also limitations on
sending broadcasts.






These constraints can make it difficult for an application
to perform “background” tasks: synching with a remote,
recording location, and so on. In most cases, the
constraints can be mitigated using the JobScheduler or
Jetpack’s WorkManager.


Whenever medium to large tasks have to be scheduled more
than a few minutes in the future, it is a best practice to use one of these tools.  Size matters: refreshing an animation every few milliseconds, or scheduling another location check
in a couple of seconds, is probably a fine thing to do
with a thread-level scheduler. Refreshing a database from its
upstream every 10 minutes is definitely something that
should be done using the JobScheduler.










JobScheduler


The JobScheduler is Android’s tool for scheduling tasks—possibly repeating tasks—in the future.  It is quite
adaptable and, in addition to optimizing battery life,
provides access to details of system state that applications
used to have to infer from heuristics.


A JobScheduler job is, actually, a bound service.
An application declares a special service in its manifest to
make it visible to the Android system.  It then schedules
tasks for the service using JobInfo.


When the JobInfo’s conditions are met, Android binds the
task service, much as we described in “Bound Services”. Once the task has been bound,
Android instructs the service to run and passes any relevant parameters.


The first step in creating a JobScheduler task is registering
it in the application manifest.  That is done as shown here:


<service
    android:name=".RecurringTask"
    android:permission="android.permission.BIND_JOB_SERVICE"/>


The important thing in this declaration is the permission.
Unless the service is declared with exactly the
android.permission.BIND_JOB_SERVICE permission, the
JobScheduler will not be able to find it.


Note that the task service is not visible to other
applications.  This is not a problem.  The JobScheduler is
part of the Android system and can see things that normal
applications cannot.


The next step in setting up a JobScheduler task is
scheduling it, as shown here, in the method schedulePeriodically:


const val TASK_ID = 8954
const val SYNC_INTERVAL = 30L
const val PARAM_TASK_TYPE = "task"
const val SAMPLE_TASK = 22158

class RecurringTask() : JobService() {
    companion object {
        fun schedulePeriodically(context: Context) {
            val extras = PersistableBundle()
            extras.putInt(PARAM_TASK_TYPE, SAMPLE_TASK)

            (context.getSystemService(Context.JOB_SCHEDULER_SERVICE)
                as JobScheduler)
                .schedule(
                    JobInfo.Builder(
                        TASK_ID,
                        ComponentName(
                            context,
                            RecurringTask::class.java
                        )
                    )
                        .setPeriodic(SYNC_INTERVAL)
                        .setRequiresStorageNotLow(true)
                        .setRequiresCharging(true)
                        .setExtras(extras)
                        .build()
                )
        }
    }

    override fun onStartJob(params: JobParameters?): Boolean {
        // do stuff
        return true;
    }

    override fun onStopJob(params: JobParameters?): Boolean {
        // stop doing stuff
        return true;
    }
}


This particular task will be run every SYNC_INTERVAL seconds
but only if there is sufficient space on the device and if
it is currently attached to an external power source. These
are only two of the wide variety of attributes available for
scheduling a task. The granularity and flexibility of
scheduling is, perhaps, the JobScheduler’s most appealing
quality.


Note that JobInfo identifies the task class to be run in
much the same way that we identified the target for an
Intent back in Chapter 3.


The system will call the  task’s onStartJob method based
on the criteria set in the JobInfo when the task is
eligible to run.  This is why the JobScheduler exists.
Because it knows the schedules and requirements for all
scheduled tasks, it can optimize scheduling, globally, to
minimize the impact, especially on the battery.


Beware! The onStartJob method is run on the main (UI)
thread. If, as is very likely, the scheduled task is
something that will take more than a few milliseconds, it
must be scheduled on a background thread, using one of the
techniques described 
previously.


If onStartJob returns true, the system will allow the
application to run until either it calls jobFinished or
the conditions described in the JobInfo are no longer
satisfied. If, for instance, the phone running the
RecurringTask in the previous example was unplugged from its
power source, the system would immediately call the running
task’s onStopJob() method to notify it that it should
stop.


When a JobScheduler task receives a call to onStopJob()
it must stop. The documentation suggests that the task has a
little bit of time to tidy up and terminate cleanly.
Unfortunately, it is quite vague about exactly how much time
is a “little bit.”  It is quite dire, though, in its warning
that “You are solely responsible for the behavior of your
application upon receipt of this message; your app will
likely start to misbehave if you ignore it.”


If onStopJob() returns false, the task will not be scheduled
again, even if the criteria in its JobInfo are met: the
job has been cancelled.  A recurring task should always return
true.

















WorkManager


The WorkManager is an Android Jetpack library that wraps the
JobScheduler. It allows a single codebase to make optimal
use of modern versions of Android—those that support the
JobScheduler—and still work on legacy versions of
Android that do not.


While the services provided by the WorkManager, as well as
its API, are similar to those provided by the JobScheduler
that it wraps, they are one more step away from the details
of implementation, and one abstraction more concise.


Where the JobScheduler encodes the difference between a task
that repeats periodically and one that runs once
in the Boolean return from the onStopJob method, the
WorkManager makes it explicit; there are two types of
tasks: a OneTimeWorkRequest and a PeriodicWorkRequest.


Enqueuing a work request always returns a token, a WorkRequest
that can be used to cancel the task, when it is no longer
necessary.


The WorkManager also supports the construction of complex
task chains: “run this and that in parallel, and run the other
when both are done.” These task chains might even
remind you of the chains we used to transform collections in Chapter 2.


The WorkManager is the most fluent and concise way to both
guarantee that the necessary tasks are run (even when your
application is not visible on the device screen) and to do so
in a way that optimizes battery use.
























Summary


In this chapter we introduced Android’s threading
model, and some concepts and tools to help you use it effectively. To summarize:



	
A thread-safe program is one that behaves, no matter how concurrent
threads execute it, in a way that could be reproduced if the same
threads executed it 
serially.



	
In the Android threading model, the UI thread is responsible for the following:



	
Drawing the view



	
Dispatching events resulting from user interaction with the UI







	
Android programs use multiple threads in order to ensure that
the UI thread is free to redraw the screen without dropping frames.



	
Java and Android provide several language-level threading primitives:



	
A Looper/Handler is a queue of tasks serviced by a single, dedicated thread.



	
Executors and ExecutionServices are Java constructs for implementing an application-wide thread-management policy.







	
Android offers the architectural components JobScheduler and WorkManager to schedule tasks efficiently.






The following chapters will turn to more complex topics in
Android and concurrency. In them we will explore how Kotlin
makes managing concurrent processes clearer and easier and
less error-prone.










1 It is possible for processes to share some memory (as with Binder), but they do so in very controlled ways.
2 Goetz et al., 2006. Java Concurrency in Practice. Boston: Addison-Wesley.




Chapter 5. Thread Safety



With the introduction of the java.util.concurrent package in Java 5, threads became commonly used to improve the performance of complex applications. In graphical (or headed) applications, they improve responsiveness by reducing the load on the main thread that processes information to render views—programmed components the user can see and
interact with on-screen. When a thread is created within a program that has a concept of a main or UI thread, it’s referred to as a background thread. These background threads often receive and process user interaction events, like gestures and text input; or other forms of data retrieval, like reading from a server; or local stores, like a database or filesystem. On the server side, backend applications using threads have better throughput by leveraging the multiple cores of modern CPUs.


However, using threads has its own risks, as you will see in this chapter. Thread safety can be seen as a
set of techniques and good practices to circumvent those risks. Those techniques include synchronization, mutexes, and blocking versus nonblocking. Higher-level concepts like thread confinement are also important.


The goal of this chapter is to introduce you to some important thread-safety concepts that will be used in the following
chapters. However, we won’t cover thread safety extensively. For example, we won’t explain object publication
or provide details about the Java memory model. These are advanced topics that we encourage you to learn after
you understand the concepts explained in this chapter.








An Example of a Thread Issue


To understand what thread safety is, we’ll pick a simple example of a thread-safety issue. When a program runs several threads concurrently, each thread has the potential to do things at the same time as other running threads. But it doesn’t necessarily mean this will happen. When it does happen, you need to prevent one thread from accessing an object that is being mutated by another thread, because it could read an inconsistent state of the object. The same goes for simultaneous mutations. Ensuring that only one thread at a time can access a block of code is called
mutual exclusion. Take the following, for example:


class A {
    var aList: MutableList<Int> = ArrayList()
    private set

    fun add() {
        val last = aList.last()  // equivalent of aList[aList.size - 1]
        aList.add(last + 1)
    }

    init {
        aList.add(1)
    }
}


The add() method takes the last element of the list, adds 1, and appends the result into the list. What would be the
expected behavior if two threads attempted to simultaneously execute add()?


When the first thread references the last element, the other thread might have had time to execute the entire
aList.add(last + 1) line.1 In this case, the first thread reads 2 for the last element and will append 3 to the list.
The resulting list would be [1, 2, 3]. Another scenario is possible. If the second thread didn’t have time to
append a new value, then the two threads will read the same value for the last element. Assuming that the rest of the
execution runs without hiccups, we get the result [1, 2, 2]. One more hazard may happen: if the two threads
try to append the new element to the list at exactly the same time, an 
ArrayIndexOutOfBoundsException will be thrown.


Depending on the interleaving of the threads, the result may be different. There’s no guarantee that we’ll get a result
at all. Those are symptoms of a class or function that’s not thread-safe, which may not behave correctly when accessed from
multiple threads.


So, what could we do to fix this potential misbehavior? We have three options:


	
Don’t share state across threads.



	
Share immutable state across threads.



	
Change our implementation so that multiple threads can use our class and get predictable results.







There are multiple strategies for approaching some kind of thread safety, each with its own strengths and caveats, so
it is important for a developer to be able to evaluate their options and choose one that best fits the needs of a
threading issue.


The first option is relatively obvious. When threads can work on completely independent datasets, there’s no risk of accessing
the same memory addresses.


The second option is making use of immutable objects and collections. Immutability is a very effective way to design robust
systems. If a thread can’t mutate an object, there’s simply no risk of reading inconsistent state from another thread.
In our example, we could make the list immutable, but then threads wouldn’t be able to append elements to it.
This doesn’t mean that this principle can’t be applied here. In fact, it can—but we’ll come back to it later in this chapter.
We have to mention that there’s a potential downside with using immutability. In essence, it requires more memory
because of object copying. For example, whenever a thread needs to work with another thread’s state, a copy of
the state object is performed. When done repeatedly and at a high pace, immutability can increase the memory footprint—which may be an issue (especially on Android).


The third option could be described like so: “Any thread which executes the add method happens before any subsequent add
accesses from other threads.” In other words, add accesses happen serially, with no interleaving. If your implementation enforces the aforementioned statement, then there won’t be thread-safety issues—the class is said to be thread-safe. In the world of concurrency, the previous statement is called an invariant.

















Invariants


To properly make a class or a group of classes thread-safe, we have to define invariants. An invariant is an assertion
that should always be true. No matter how threads are scheduled, the invariant shall not be violated. In the case of our example, it could be expressed like this (from the standpoint of a thread):


When I’m executing the add method, I’m taking the last element of the list and when I’m appending it to the list, I’m sure
that the inserted element is greater than the previous one by a difference of 1.



Mathematically, we could write:
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We’ve seen from the beginning that our class wasn’t thread-safe. Now we can say so because when executed in a
multithreaded environment, the invariant is sometimes violated or our program just crashes.


So, what can we do to enforce our invariants? Actually, this is a complex matter, but we’ll cover some of the most common
techniques:



	
Mutexes



	
Thread-safe collections














Mutexes


Mutexes allow you to prevent concurrent access of a state—which can be a block of code or just an object. This mutual
exclusion is also called synchronization. An Object called a mutex or lock guarantees
that when taken from a thread, no other thread can enter the section guarded by this lock. When a thread attempts to
acquire a lock held by another thread, it’s blocked—it cannot proceed with its execution until the lock is released.
This mechanism is relatively easy to use, which is why it’s often the go-to response of developers when facing this
situation. Unfortunately, this is also like opening a Pandora’s box to problems like deadlocks, race conditions, etc.
These problems that can arise from improper synchronization are so numerous that drawing a complete picture is way beyond the scope of this book. However, later in the book we will discuss some of them, like deadlocks in communicating
sequential 
processes.

















Thread-Safe Collections


Thread-safe collections are collections that can be accessed by multiple threads while keeping their state consistent.
The Collections.synchronizedList is a useful way to make a List thread-safe. It returns a List that wraps access
to the List passed as a parameter, and regulates concurrent access with an internal lock.


At first sight, it looks interesting. So you could be tempted to use it:


class A {
    var list =
        Collections.synchronizedList<Int>(object : ArrayList<Int?>() {
            init {
                add(1)
            }
        })

    fun add() {
        val last = list.last()
        list.add(last + 1)
    }
}


For the record, here is the equivalent in Java:


class A {
    List<Integer> list = Collections.synchronizedList(
        new ArrayList<Integer>() {{
           add(1);
        }}
    );

    void add() {
        Integer last = list.get(list.size() - 1);
        list.add(last + 1);
    }
}


There’s a problem with both implementations. Can you spot it?

Note

We could also have declared the list as:


var list: List<Int> = CopyOnWriteArrayList(listOf(1))


which, in Java, is the equivalent of:


List<Integer> list = new CopyOnWriteArrayList<>(Arrays.asList(1));


CopyOnWriteArrayList is a thread-safe implementation of ArrayList in which all mutative operations like add and set
are implemented by making a fresh copy of the underlying array. Thread A can safely iterate through the list. If in
the meantime, thread B adds an element to the list, a fresh copy will be created and only visible from thread B. This in itself doesn’t make the class thread-safe—it is because add and set are guarded by a lock. This data structure is
useful when we are iterating over it more often than we are modifying it, as copying the entire underlying array can be
too costly.  Note that there is also a CopyOnWriteArraySet, which is simply a Set implementation rather than a List

implementation.




We’ve indeed fixed the concurrent access issue, although our class still doesn’t conform to our invariant. In a test
environment, we created two threads and started them. Each thread executes the add() method once, on the same instance
of our class. The first time we ran our test, after the two threads finished their job, the resulting list was
[1, 2, 3]. Curiously, we ran this same test multiple times, and the result was sometimes [1, 2, 2]. This is due
to the exact same reason shown earlier: when a thread executes the first line inside add(), the other
thread can execute the whole add() method before the first thread proceeds with the rest of its execution. See how
pernicious a synchronization issue can be: it looks good, but our program is broken. And we can easily have it wrong,
even on a trivial example.


A proper solution is:


class A {
    val list: MutableList<Int> = mutableListOf(1)

    @Synchronized
    fun add() {
        val last = list.last()
        list.add(last + 1)
    }
}


It ay help to see the Java equivalent:


public class A {
    private List<Integer> list = new ArrayList<Integer>() {{
        add(1);
    }};

    synchronized void add() {
        Integer last = list.get(list.size() - 1);
        list.add(last + 1);
    }
}


As you can see, we actually didn’t need to synchronize the list. Instead, the add() method should have been synchronized.
Now when the add() method is first executed by a thread, the other one blocks when it tries to execute add(),
until the first thread leaves the add() method. No two threads execute add() at the same time. The invariant is then
honored.


This example demonstrates that a class can internally use thread-safe collections while not being thread-safe. A class
or code is said to be thread-safe when its 
invariants are never violated. Those invariants, and how the class should
be used according to their creators, define a policy that should be clearly expressed in the javadoc.

Note

This is Java’s built-in mechanism to enforce mutual exclusion. A synchronized block is made of a lock and a block of code.
In Java, every Object can be used as a lock. A synchronized method is a synchronized block whose lock is the instance of
the class instance. When a thread enters a synchronized block, it acquires the lock. And when a thread leaves the block,
it releases the lock.


Also note that the add method could have been declared as using a synchronized statement:


void add() {
    synchronized(this) {
        val last = list.last()
        list.add(last + 1)
    }
}


A thread cannot enter a synchronized block whose lock is already acquired by another thread. As a consequence, when a
thread enters a synchronized method it prevents other threads from executing any synchronized method or any block of code
guarded by this (also called intrinsic lock).


























Thread Confinement


Another way to ensure thread safety is to ensure that only one thread owns the state. If the state isn’t visible to other
threads, there’s simply no risk of having concurrency issues. For example, a public variable of a class (where usage is intended to be thread-confined to the main thread) is a potential source of bugs since a developer (unaware of this thread policy) could use the variable in another thread.


The immediate benefit of thread confinement is simplicity. For example, if we follow the convention that every class of
type View should only be used from the main thread, then we can save ourselves from synchronizing our code all over
the place. But this comes at a price. The correctness of the client code is now on the shoulders of the developer who
uses our code.
In Android, as we’ve seen in the previous chapter, manipulating views should only be done from the UI thread. This is a form of thread
confinement—as long as you don’t break the rules, you shouldn’t have issues involving concurrent access to UI-related
objects.


Another noteworthy form of thread confinement is ThreadLocal. A ThreadLocal instance can be seen as a provider to some
object. This provider ensures that the given instance of the object is per-thread unique. In other words, each thread
owns its own instance of the value. An example of usage is:


private val myConnection =
        object : ThreadLocal<Connection>() {
            override fun initialValue(): Connection? {
                return DriverManager.getConnection(connectionStr)
            }
        }


Often used in conjunction with JDBC connections, which aren’t thread-safe, 
ThreadLocal ensures that each thread will use
its own JDBC connection.

















Thread Contention


Synchronization between threads is hard because a lot of problems can happen. We just saw potential thread-safety issues.
There is another hazard that can affect performance: thread contention, which we encourage all programmers to familiarize
themselves with. Consider this example:


class WorkerPool {
    private val workLock = Any() // In Java, we would have used `new Object()`

    fun work() {
        synchronized(workLock) {
            try {
                Thread.sleep(1000) // simulate CPU-intensive task
            } catch (e: Exception) {
                e.printStackTrace()
            }
        }
    }

    // other methods which may use the intrinsic lock
}


So, we have a WorkerPool, which controls the work done by worker threads in such a way that only one worker at a time
can do the real work inside the work method. This is the kind of situation you may encounter when the actual work
involves the use of non-thread-safe objects and the developer decided to solve this using this locking policy. A dedicated
lock was created for the work method, instead of synchronizing on this, because other methods can now be called
by workers without mutual exclusion. This is also the reason why the lock is named after the related method.


If several worker threads are started and call this work method, they will contend for the same lock. Eventually,
depending on the interleaving of the threads, a worker is blocked because another one acquired the lock. This isn’t a
problem if the time spent waiting for the lock is significantly less than the rest of the execution time. If this
isn’t the case, then we have a thread contention. Threads spend most of their time waiting for each other. Then the
operating system may preemptively stall some threads so that other threads in the wait
state can resume their execution, which makes the situation even worse because context switches between threads aren’t
free. It can result in a performance impact when they occur frequently.


As a developer, you should always avoid thread contention as it can rapidly degrade throughput and have consequences
beyond the affected threads, since the rate of context switches is likely to increase, which in itself impacts performance  overall.


One of the most effective ways to avoid such a situation is to avoid blocking calls, which we explain in the next
section.

















Blocking Call Versus Nonblocking Call


So far, we know that a thread can be blocked when attempting to obtain a lock held by another thread. The function that
led the thread to be blocked is then a blocking call. Even if the lock might be acquired immediately, the fact that
the call may potentially block makes it a blocking call. But this is just a particular case. There are actually two
other ways of blocking a thread. The first one is by running CPU-intensive computations—this is also called a CPU-bound
task. The second one is by waiting for a hardware response. For example, it happens when a network request causes the
calling thread to wait for the response from a remote server—we then talk about an IO-bound task.2


Everything else that makes the call return quickly is considered nonblocking.


When you’re about to make a blocking call, you should avoid doing it from the main thread (also called the UI thread, on
Android).3 This is because this thread
runs the event loop that processes touch events, and all UI-related tasks like animations. If the main thread gets blocked
repeatedly and for durations exceeding a few milliseconds, the responsiveness is impacted and this is the cause of
Android’s application not responding (ANR) errors.


Nonblocking calls is one building block of a responsive app. You need now to recognize patterns which leverage this
technique. Work queues is one of them, and we’ll encounter various forms of them throughout this book.

Note

Most often, the terms synchronous and asynchronous are respectively used as synonyms for blocking and nonblocking.
While they are conceptually close concepts, the usage of, for instance, asynchronous instead of nonblocking depends on the context.
Asynchronous calls usually involve the idea of a callback, while this is not necessarily the case for nonblocking.



















Work Queues


Communication between threads and, in particular, work submission from one thread to another is widely used in Android.
It’s an implementation of the producer-consumer design pattern. Applied to threads, the producer is in this context a
thread which generates data that needs to be further processed by a consumer thread. Instead of having the producer
directly interacting with the consumer through shared mutable state, a queue is used in between to enqueue the work
generated by the producer. It decouples the producer from the consumer—but this isn’t the only benefit, as we’ll see.
Often, the Queue works in a FIFO (first in, first out) manner.4


Semantically it can help to think of a Queue like a queue of moviegoers. As the first viewer arrives,
they are put at the front of the queue. Each additional viewer is added behind the last. When the doors open
and viewers are allowed to enter, the first person in line is let in first, then the next, and so on, until the
entire Queue is empty.


The producer puts an object at the head of the queue, and the consumer pops an object at the tail of the queue.
The put method might be a blocking call, but if it can be proven that most of the time it effectively doesn’t block (and when it
does, it’s for a short time), then we have a very efficient way to offload work from the producer to the consumer in a
nonblocking way (from the standpoint of the producer), as shown in Figure 5-1.


In practice, enqueued objects are often Runnable instances submitted by a background thread and processed by the main
thread. Also, this isn’t limited to one producer and one consumer. Multiple producers can submit work to the queue,
concurrently with multiple consumers taking work out of the queue. This implies that the queue must be thread-safe.5



[image: pawk 0501]
Figure 5-1. Producer-consumer.



Note

Don’t confuse a Queue with a Stack, which uses LIFO (last in, first out) instead of FIFO.


Semantically, let’s imagine a Stack as a stack of pancakes.  When the kitchen makes more pancakes, they go on the top of the stack.
When the diner eats pancakes, they also take them from the top of the stack.



















Back Pressure


Imagine now that our producer is much faster than our consumer. The work objects then accumulate in the queue. If the queue
happens to be unbounded, we risk exhausting memory resources and potentially an unrecoverable exception: the application
may crash.  While not only is this experience jarring and unpleasant for the user, but in an unhandled error like this,
you’re almost assuredly going to lose whatever stateful information was present. Unless you’ve taken great care to be
aware of—and react to—this circumstance, you may experience a sudden termination without an opportunity to perform
any cleanup you might do normally.  In Android, when a Bitmap instance is no longer being used,
the recycle method can be used to mark each underlying memory allocation as unreachable and eligible for garbage
collection.  In an untidy system exit, you might not have an opportunity to do that and may risk leaking that data.


In this case, a wise choice is to use a bounded queue. But what should happen when the queue is full and a producer
attempts to put an object?


We’ll circle back to it with coroutines, but since we’re only talking about threads for now, the answer is: it should
block the producer thread until the consumer takes at least one object out of the queue. Although this blocking should
be part of the design and anticipate whatever circumstance or logic branch might deliver the user to this point in the
program. While blocking a thread seems harmful, a blocked producer allows the consumer to catch up and free up enough
space into the queue so that the producer is released.


This mechanism is known as back pressure—the ability of a data consumer that can’t keep up with incoming data to
slow down the data producer. It’s a very powerful way to design robust systems. Example 5-1 shows a implementation of back pressure.


Example 5-1. Back pressure example


fun main() {
    val workQueue = LinkedBlockingQueue<Int>(5)  // queue of size 5

    val producer = thread {
        while (true) {
            /* Inserts one element at the tail of the queue,
             * waiting if necessary for space to become available. */
            workQueue.put(1)
            println("Producer added a new element to the queue")
        }
    }

    val consumer = thread {
        while (true) {
            // We have a slow consumer - it sleeps at each iteration
            Thread.sleep(1000)
            workQueue.take()
            println("Consumer took an element out of the queue")
        }
    }
}



Since Java 7, a family of queues for this
purpose is BlockingQueue—it’s an interface, and implementations range from a single-ended queue with
LinkedBlockingQueue to a double-ended queue with LinkedBlockingDequeue (other implementations exist). The output of Example 5-1 is:


Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Producer added a new element to the queue
Consumer took an element out of the queue
Producer added a new element to the queue
Consumer took an element out of the queue
Producer added a new element to the queue
...


You can see that the producer quickly filled the queue with five elements. Then, on the sixth attempt to add a new element,
it’s blocked because the queue is full. One 
second later, the consumer takes an element out of the queue, releasing the
producer which can now add a new element. At this point, the queue is full. The producer tries to add new elements but
is blocked again. Again, one second later, the consumer takes one element—and so on.


It’s important to note that the insertion of an element into a BlockingQueue isn’t necessarily blocking. If you use
the put method, then it blocks when the queue is full. Since put might block, we say that this is a blocking call.
However, there’s another method available to add a new element: offer, which attempts to immediately add the new
element and returns a Boolean—whether or not the operation succeeded. Since the offer method does not block the underlying
thread and only returns false when the queue is full, we say that offer is nonblocking.


Had we used offer instead of put in Example 5-1, the producer would never be blocked, and the output
would be filled with Producer added a new element to the queue. There would be no back pressure at all—don’t do this!


The offer method can be useful in situations where losing work is affordable, or if blocking the producer thread isn’t
suitable. The same reasoning applies when taking an object out of the queue, with take and poll, which are respectively
blocking and nonblocking.


Conversely, if the consumer is faster than the producer, then the queue eventually becomes empty. In the case of a
BlockingQueue, using the take method on a consumer site will block until the producer adds new elements in the queue.
So in this case, the consumer is slowed down to match the rate of the producer.

















Summary



	
A class or code is said to be thread-safe when its invariants are never violated. So, thread safety always refers to a
policy that should be clearly defined in the class javadoc.



	
A class can use internally thread-safe data structures while not being thread-safe.



	
Avoid or reduce thread contention as much as possible. Thread contention is often the consequence of a poor locking
strategy. An efficient way to reduce this risk is to do nonblocking calls whenever possible.



	
Work queues is a pattern you will often encounter in Android and other platforms like backend services. It simplifies
how a producer (like UI thread) offloads tasks to consumers (your background threads). Consumers process the tasks
whenever they can. When the task completes, a consumer can use another work queue to send back to the original producer
the result of its work.



	
A bounded BlockingQueue blocks a put operation when it’s full. So a too-fast producer eventually gets blocked,
which gives consumers the opportunity to catch up. This is an implementation of back pressure, which has one major
downside: the thread of the producer might get blocked. Is it possible to have back pressure without blocking the producer
thread? Yes—we’ll see that in 
Chapter 9.














1 Actually, interleaving of threads can happen between lines of bytecode, not just between lines of normal Java.
2 IO operations aren’t necessarily blocking. Nonblocking IO exists, though it’s much more complicated to reason about. Android Link is helpful enough to warn you when you perform an HTTP request on the main thread, but other IO tasks—like reading a file or querying a database—do not do this. This may even be a deliberate and accepted practice if done under extremely thoughtful and careful supervision; while possible, this should be a rare exception to the standard.
3 Even for worker threads, executing a long-running task like working with 8-megapixel images, those blocking calls possibly block task packets the UI is waiting on.
4 Although not all work queues use this data structure arrangement. Some of them are more sophisticated, like Android’s MessageQueue.
5 Even with one producer and one consumer, the queue must be thread-safe.




Chapter 6. Handling Concurrency Using Callbacks



The idiomatic way of handling concurrency in Kotlin is by using coroutines. However, for some time this has been done in Java using threads and callbacks. So why do we need coroutines?


To answer this question, we will revisit a typical Kotlin implementation on Android and discuss the pitfalls of using
threads. Knowing the weak points of the traditional approach is the key to understanding the motivation behind the
design of coroutines.


In Android applications, long-running tasks shouldn’t be done on the UI thread, as you’ve seen in the previous chapter.
If you block the main thread—the UI thread—your app might not have the resources it needs to draw the screen or
update it appropriately.  In fact, lint will complain if you attempt to do an obvious IO call (e.g., make an HTTP
connection) while on the UI thread.


An Android application runs smoothly when the main thread completes all its tasks in less than frame time, which is 16 ms
on most devices. This is a rather short amount of time, and all blocking calls, like network requests (blocking IO), should
be performed on a background thread.1


When you delegate a task to another thread, you typically call a function which starts the asynchronous job. In some
cases this is “fire-and-forget,” but you’re usually waiting for a result—and you need to act on it. This is
done by providing a function which will be called once the job finishes. This function is called a callback.
A callback often accepts arguments, so the background thread commonly calls the callback with the result of the job.
Doing computation that calls an arbitrary or injected function when complete is known as the callback pattern.


Using callbacks is quite efficient, though it has some limitations and drawbacks. To illustrate this, we’ll
implement a simple yet realistic example in Kotlin. Coroutines address all issues with callbacks, but before jumping
right into coroutines, it’s important to understand which problem they aim to solve.








Example-of-Purchase Feature


Suppose you’re working on a paid feature of an Android application. After a user registers, you check the list of purchases this user has already made, then act on it. To get the list of purchases, let’s use an object called
BillingClient. Note that we’re not talking about the actual BillingClient provided by the Android framework,
com.android.billingclient.api.BillingClient. We’re using our own, much simpler version of the basic concept, as shown in the following code:


interface BillingClient {
    fun interface BillingCallback {
        fun onInitDone(provider: PurchasesProvider?)
    }

    /* Implementations should be nonblocking */
    fun init(callback: BillingCallback)
}


A typical task flow would be:


	
Initialize a connection to the BillingClient. Wait for it to be ready—your callback provides a
PurchasesProvider, or null in case of error. For now, we won’t handle errors.



	
Use the returned PurchasesProvider to asynchronously fetch the user’s list of purchases.  Your  program  will 
wait  for  the  response,  which  will  contain  the  list  of purchases and perhaps some additional metadata.



	
React to this new information; you might show a list of purchases with UI to provide even more details, or request
status, cancel an item in an order, etc.







For further references, we’ll call the preceding flow our logic.


As you can see, this is just an interface with a single method, taking a BillingCallback as input. The
BillingCallback is declared inside the BillingClient interface because this callback is only used inside
BillingClient. When an interface is declared inside a class or interface, it tells you about the relationship between
the class and the interface: the author intended that the class shouldn’t depend on another entity to provide the
interface. This avoids the risk of breaking the compatibility between the class and the interface. The two are coupled,
and if you ship a 
BillingClient, you also ship a BillingCallback.
Notice that we’re using Kotlin 1.4’s new fun interface instead of a classic interface. This will allow for a concise
syntax when we’ll provide implementations.
Also, the documentation of the init method says that implementations should be nonblocking. If you haven’t read the
previous chapter, it means that whatever thread calls this method, it isn’t blocked waiting for the method to return.


Similarly, our PurchasesProvider is shown in the following code:


interface PurchasesProvider {
    fun interface PurchaseFetchCallback {
        fun onPurchaseFetchDone(purchases: List<String>)
    }

    fun fetchPurchases(user: String, callback: PurchaseFetchCallback)
}


For now, let’s assume that we provide those abstractions and their implementations. Even though a real application would
use framework-provided classes, the important part of this example is the business logic, not the implementations of
BillingClient and PurchasesProvider.


As an Android developer, we hope that you’re familiar with the core concepts of Android Jetpack’s ViewModel, but don’t
worry if this isn’t the case, because the details of ViewModel operation aren’t the focus of this discussion. Even without ViewModel, you’ve probably got some version of MVC or MVP or MVVM, all of which largely follow the same pattern.  The
view does presentation work, the model does logical work, and the controller or view-model is the glue that connects
them and serves as the network that allows the two to communicate. The important part is the implementation of the
logic inside the view-model. Everything else is context or framework code—but still important nevertheless. Figure 6-1 shows the target architecture.



[image: pawk 0601]
Figure 6-1. MVVM architecture.




Suppose now that you’ve structured your application following the single-activity architecture.2 The view should be a fragment that displays the purchases of the current user. The
lifecycle of the fragment should be taken into account in the design. At any moment, the device could be rotated, and
the fragment re-created. The user could go back, and the fragment could be put into the back stack, if not destroyed.


This is where LiveData, a lifecycle-aware component, comes into play. Every time the fragment is created, it requests
an instance of PurchaseViewModel. We will explain in more detail how it works later.

















Creating the App


In this section, we’ll show you a typical implementation inside an Android application. If you’re already familiar with
this, you might jump directly to the next section, where we discuss the implementation of the logic.










View-Model


So the business logic is implemented inside a ViewModel (see Example 6-1).
The view-model requires a BillingClient instance to be constructor-injected3 by some other component, as you’ll see
shortly. BillingClient is a dependency of the ViewModel, and  PurchaseProvider is a dependency of BillingClient.


The view that interacts with this ViewModel triggers the getUserPurchases method (which we haven’t implemented yet)
in the getter of the purchasesLiveData property. You may have noticed that the type of the purchasesLiveData property is
LiveData while the private backing property, _purchases, is a MutableLiveData. This is because the ViewModel
should be the sole component to change the value of the LiveData. So the exposed type to clients of this ViewModel
is only LiveData, as shown in Example 6-1.


Example 6-1. PurchasesViewModel


class PurchasesViewModel internal constructor(
    private val billingClient: BillingClient,
    private val user: String
) : ViewModel() {
    private var _purchases = MutableLiveData<UserPurchases>()

    private fun getUserPurchases(user: String) {
        // TODO: implement
    }

    val purchasesLiveData: LiveData<UserPurchases>
        get() {
            getUserPurchases(user)
            return _purchases
        }

    interface BillingClient { /* removed for brevity*/ }

    interface PurchasesProvider { /* removed for brevity*/ }
}



We’re almost done—now all we’re missing is the view.

















View


In our architecture, the view is a Fragment. As you can see in the following code, the view depends on the
view-model. This shows how we can use the view-model from inside the view:


class PurchasesFragment : Fragment() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        /* Create a ViewModel the first time this Fragment is created.
         * Re-created Fragment receives the same ViewModel instance after
         * device rotation. */
        val factory: ViewModelProvider.Factory = PurchaseViewModelFactory() [image: 1]
        val model by viewModels<PurchasesViewModel> { factory }             [image: 2]
        model.purchasesLiveData.observe(this) { (_, purchases) ->           [image: 3]
            // update UI
            println(purchases)
        }
    }
}


Every time the fragment is created, it subscribes to updates of UserPurchases by following three steps:


	[image: 1]

	Create a factory for the ViewModel (remember, the ViewModel has dependencies, and it’s certainly not the responsibility of the Fragment to supply them). Strictly speaking, this factory shouldn’t be created inside the fragment, as the factory is now tightly coupled with your fragment—a PurchasesFragment always uses a PurchaseViewModelFactory. In a test environment, where you should test the view independently, this would be a problem.
So this factory should be injected inside the Fragment through either a dependency injection framework or manual
injection. For the sake of simplicity, we’ve decided to create it here inside the fragment.
For the record, ViewModel factory is shown in Example 6-2.


	[image: 2]

	An instance of PurchasesViewModel is obtained from the viewModels function. This is the recommended way to get a
ViewModel instance.


	[image: 3]

	Finally, a LiveData instance is retrieved from the ViewModel, and is observed by an Observable instance using
the method of the same name (“observe”). In this example, the observer is only a lambda function which prints the list
of purchases into the console. In a production application you would typically trigger an update of all the related
views inside the fragment.





A ViewModel also has its own lifecycle, which depends on whether the ViewModel 
is bound to  a  fragment  or  an  activity.  In  this  example,  it  is  bound  to  a  fragment.  
You can tell that by the use of by viewModels<..>. If instead we had used by 
activityViewModels<..>, the view-model would have been bound to the activity.


When bound to the fragment, the ViewModel survives device rotations but is destroyed when it isn’t used anymore (e.g.,
when all fragments that were bound to it are destroyed, except for device rotation).
If the ViewModel had been bound to the activity, it would outlive the
activity on device rotation but would be destroyed in every other scenario where the activity is destroyed.

Warning

As a ViewModel is retained through configuration change, which destroys and re-creates the containing activity, it
should never reference a view, Lifecycle instance, or any class instance that may hold a reference to the activity
context. It can, however, reference the Application context.




If you look at the actual code of the BillingClient, you can see that creating a BillingClient.Builder requires
that you supply a context.
It can be an activity context, because internally the builder calls context.getApplicationContext() and this is the
only context reference kept by the BillingClient. An ApplicationContext remains the same during the whole
Application lifetime. Therefore, you won’t create a memory leak by referencing the ApplicationContext somewhere in
your app. This is the reason why it is safe to reference BillingClient inside a ViewModel.


As shown in Example 6-2, the dependencies of the ViewModel are created inside 
PurchaseViewModelFactory.


Example 6-2. PurchaseViewModelFactory


class PurchaseViewModelFactory : ViewModelProvider.Factory {
    private val provider: PurchasesProvider = PurchasesProviderImpl()
    private val billingClient: BillingClient = BillingClientImpl(provider)
    private val user = "user" // Get in from registration service

    override fun <T : ViewModel?> create(modelClass: Class<T>): T {
        if (modelClass.isAssignableFrom(PurchasesViewModel::class.java)) {
            return PurchasesViewModel(billingClient, user) as T
        }
        throw IllegalArgumentException("Unknown ViewModel class")
    }
}



BillingClientImpl is the real implementation of the previously shown BillingClient interface (see
Example 6-3 and Example 6-4).


Example 6-3. BillingClientImpl


class BillingClientImpl(private val purchasesProvider: PurchasesProvider) : BillingClient {
    private val executor =
        Executors.newSingleThreadExecutor()

    override fun init(callback: BillingCallback) {
        /* perform asynchronous work here */
        executor.submit {
            try {
                Thread.sleep(1000)
                callback.onInitDone(purchasesProvider)
            } catch (e: InterruptedException) {
                e.printStackTrace()
            }
        }
    }
}



Example 6-4. PurchasesProviderImpl


class PurchasesProviderImpl : PurchasesProvider {
    private val executor =
        Executors.newSingleThreadExecutor()

    override fun fetchPurchases(
        user: String,
        callback: PurchaseFetchCallback
    ) {
        /* perform asynchronous work */
        executor.submit {
            try {
                // Simulate blocking IO
                Thread.sleep(1000)
                callback.onPurchaseFetchDone(
                    listOf("Purchase1", "Purchase2")
                )
            } catch (e: InterruptedException) {
                e.printStackTrace()
            }
        }
    }
}



To conform to the application design we established, the init and fetchPurchases methods should be nonblocking. This can be achieved with a background thread. 
For efficiency reasons (see the upcoming section), you may not want to create 
a new thread every time you connect to the BillingClient. Instead you can use a thread pool, which can be created using ThreadPoolExecutor instances directly, 
or many common configurations are available via the factory methods of 
java.util.concurrent.Executors. Using  Executors.newSingleThreadExecutor(), you have a single dedicated thread at your disposal which can be reused for each asynchronous call. You might think that PurchasesProviderImpl and 
BillingClientImpl should share the same thread pool. It’s up to you—though for brevity we didn’t do it here. For a production app, you may have multiple 
ThreadPoolExecutors that service different parts of your app.


If you look at how callbacks are used in those implementations, you can see that they’re called right after
Thread.sleep() (which simulates a blocking IO call). Unless explicitly posted to the main thread (generally through
an instance of the Handler class, or through a LiveData instance’s postValue method), callbacks are invoked within the
context of the background thread. This is critical, and it’s very important to be aware of how to communicate between
thread contexts, as you’ll see in the next section.

Warning

Be aware of which thread runs the provided callback, as it depends on the implementation. Sometimes the
callback is asynchronously run on the calling thread, whereas it can be synchronously executed on the background thread.



















Implement the Logic


Now that all the necessary components are set in place, the logic can be implemented. The steps are shown in Example 6-5.


Example 6-5. Logic


private fun getUserPurchases(user: String) {
   billingClient.init { provider ->                   [image: 1]
       // this is called from a background thread
       provider?.fetchPurchases(user) { purchases ->  [image: 2]
           _purchases.postValue(UserPurchases(user, purchases))
       }
   }
}



	[image: 1]

	Call billingClient.init and supply a callback which will be called whenever the client’s initialization process
finishes. If the client supplies a non-null 
PurchasesProvider  instance, proceed with the next step.


	[image: 2]

	At this point you have the PurchasesProvider instance ready for use. Call fetchPurchases, providing the
current user as the first parameter, and the callback that should be executed once the provider has done its job. Look
carefully at the content of the callback:





_purchases.postValue(UserPurchases(user, purchases))


On a MutableLiveData instance, you use either the setValue or the postValue method. The difference between the
two is that you’re only allowed to use setValue 
if you’re calling it from the main thread. When this isn’t the case,
using  postValue adds the new value into a queue that the MutableLiveData will process on the next frame of the main
thread. This is an implementation of the work queue pattern (see “Work Queues”), and a thread-safe way to assign a new value
to a 
MutableLiveData.

















Discussion


So this is it. It works—or at least it fulfills the specifications. We invite you to step back a little and look at the big picture. What’s the structure of getUserPurchases? It’s made of a function call, which is provided another function, which itself calls a function, which is provided another function…. It’s like Russian nesting dolls. It’s already a little hard to follow, and adding exception handling can quickly turn it into “nesting hell” (see Figure 6-2). In order to keep our example logic simple and easy to follow, we’ve omitted corner cases where some API calls fail; for example, networking issues or authorization errors make some IO background work brittle and prone to failure, and production code should be able to
handle this.



[image: pawk 0602]
Figure 6-2. Callback usage.




The code that specifies what happens upon a response of the BillingClient (callback 2) is included in the code of
the first callback. If you decide to inline all this code, like we did in Example 6-5, you have
several levels of indentations, which rapidly grow as the problem to solve becomes more complex. On the other hand, if
you decide to encapsulate the first callback into its own function, you will indeed reduce the indentation level of
getUserPurchases and its apparent complexity.  At the same time, you would increase the number of directions to follow
to fully understand the business logic.


This is the first drawback of code using callbacks. It rapidly becomes complex, and may become hard to maintain if not
administered with caution and thoughtful design. Some would consider that even with careful precautions this path is
dangerous. As developers, we strive to create a system that we and our coworkers can 
handle.

Note

Using CompletableFuture or another similar library like RxJava, you can rewrite getUserPurchases like this:


private void getUserPurchases(String user) {
    billingClient.initAsync()
    .thenCompose { provider ->
        fetchPurchasesAsync(provider, user)
    }
    .thenAccept { purchases ->
        this.purchases.postValue(...)
    }
}


It’s a bit cleaner, with no nested indentations, and even handles exceptions properly. However, you can see that it
relies on the combinators thenCompose and thenAccept, which operate on CompletableFuture<T>. While our simple example
uses only two combinators, a lot of them exist, each one for a specific purpose. Some would consider the learning curve
of another, unfamiliar pattern and API to be a weakness of this pattern.














Structured concurrency


Imagine now that some API calls are quite expensive computationally. For example, a user of your app navigates to a view which triggers some of those API calls, but as the content isn’t loading instantly they lose patience and tap back, and
start a new series of operations in another part of the app. In this situation, you don’t want your expensive API calls to continue running, as they may put unnecessary load on your backend servers, or even on the application itself. Further, what happens if a UI that should be updated when a callback fires no longer exists?  A NullPointerException is probably your best case, and a memory leak your worst. Instead, let’s cancel the procedure initialized inside the view-model. How would you do that? You would have to listen to a particular lifecycle event of the fragment lifecycle termination events: onStop, onPause, or onDestroy. In this specific case, you’d probably want to do that inside onStop, which would be fired just before resources are reclaimed. onPause would fire each time the application in the background in favor of an incoming call or when switching between apps, and onDestroy happens a little later than we need. When the onStop event fires, you should notify the view-model that it should stop any background processing. This requires a thread-safe way of interrupting threads. A volatile isCancelled Boolean would be checked inside the callbacks to decide whether they should proceed or not. So it’s definitely possible, but cumbersome and fragile.


What if this cancellation was done automatically? Imagine that the background processing was tied to the lifecycle of
the view-model. The moment that the view-model is destroyed, all background processing gets cancelled. It’s not a fairy
tale—it even has a name: structured concurrency.

















Memory leaks


Automatically cancelling dangling background threads has another benefit: the less risk of a memory leak. A
callback might hold a reference on a component which either has a lifecycle or is a child of a component that has one. If this component is eligible for garbage collection, while a reference of that component exists in some running thread, the memory can’t be reclaimed, and you have a memory leak. Using LiveData like in the previous example is safe even if you don’t cancel background tasks. Nevertheless, more generally speaking, it’s never good to leave tasks running for nothing.


Cancellation isn’t the only possible thing that can go wrong. There are other pitfalls to using threads as primitives for
asynchronous computations (which we’ll refer to as the threading model), and we’ll cover them in the next section.





























Limitations of the Threading Model


In an Android application, processes and tasks are always competing for memory. With only one main thread, or UI thread,
the clever Android developer must find ways to manipulate and handle threading efficiently.


When using a single thread, asynchronous tasks offloaded to that thread execute serially—one task after another. If one of
the tasks takes forever to execute, the remaining work cannot be processed until that task completes, as shown in Figure 6-3.



[image: Blocking Work]
Figure 6-3. Tasks execute serially inside a thread.




In situations where a background task might take a long time to execute, you need more than one background thread.
The ThreadPoolExecutor primitive lets you spin up a number of threads and toss onto it blocks of work to execute, as shown in Figure 6-4.



[image: ThreadPoolExecutor]
Figure 6-4. A ThreadPoolExecutor handles all the heavy lifting of spinning up the threads, load-balancing work across those threads, and even killing those threads.




However, having more threads isn’t always a good thing. Here are some caveats:



	
CPUs can only execute a certain number of threads in parallel.



	
Threads themselves are expensive in terms of memory—each thread costs you at least 64 Kb of RAM.



	
When a CPU core switches execution from one thread to another, a thread context switch happens.4 Those switches aren’t free. While it’s not a problem when you have a few threads, the impact of thread context switches can be noticeable if you keep adding more threads. You could reach a point were your code is actually slower than if you were using fewer threads.





















Summary



	
You can implement asynchronous logic using callbacks. You might also want to check out some other related framework
APIs like Handler and HandlerThread. Using callbacks can lead to complex nested function calls, or to situations
where the flow of the logic is split in several classes and may become hard to follow. If this becomes problematic, one
solution is to rely on CompletableFutures, or a similar API; the third-party framework RxJava has this kind of
functionality, but requires learning yet another set of APIs that can quickly become coupled to your business logic and
change the way you write your application code.



	
Most often, asynchronous logic is about retrieving and manipulating data which is then rendered as view instances on-screen. To this purpose, Android Jetpack’s ViewModel offers lifecycle-aware components which help you produce more
organized and maintainable code.



	
When a component reaches the end of its lifecycle, chances are that some related background tasks should now be
cancelled; otherwise, they just consume memory and increase the risk of memory leaks, or even an application crash.
Structured concurrency is the ideal solution to this, which we’ll cover in the next chapter.



	
Using threads as concurrency primitives has its limitations. You need to make sure you are not creating too many of
them because of their memory cost, and performance could suffer due to too many thread-context switches.






Coroutines are meant to address the limitations of the threading model.
The next four chapters—which focus on coroutines, structured concurrency, channels, and flows—are the “peak”
of the book and highlight how Kotlin gives Android developers a true advantage in gaining control over asynchronous computations.










1 Nonblocking IO using java.nio.channels.SocketChannel can be done on the UI thread without blocking it. However, most of the time when dealing with IO, you will be using blocking APIs like java.io.InputStream.
2 A single activity and multiple fragments.
3 Developing to interfaces, and not to actual implementations, improves the testability and portability of your code. Inside a test environment, you’re able to swap the actual implementations of the dependencies with custom-mocked ones. By portability, let’s assume you have an interface called AnalyticsManager that provides some methods that you’ll implement to notify your analytics service. Considering that a robust analytics SaaS with dashboards and heavy data visualization and authorization is a heavy lift by itself, most app developers are going to leverage a third-party library to handle that part of their flow. If, for example, you change from one provider to another, as long as you’ve composed your interactions to match the AnalyticsManager interface, your client code never gets touched, or changes, or potentially introduces a new bug; all that’s updated is the business logic of the AnalyticsManager implementation.
4 Thread switching involves saving and loading CPU registers and memory maps.




Chapter 7. Coroutines Concepts



In the previous chapter, you learned of the pitfalls of the threading model. As an alternative to the threading model, the Kotlin language has a library called 
kotlinx.coroutines which aims at
fixing the previously mentioned limitations. Coroutine-enabled primitives allow developers to write sequential,
asynchronous code at a low cost.
The design of coroutines comprises suspending functions, structured concurrency, and other specific
considerations like coroutine context and coroutine scope. The subjects are closely related to one another. We’ll cover each one
of these considerations in a way that is incremental and digestible.








What Exactly Is a Coroutine?


The official Kotlin documentation qualifies coroutines as “lightweight threads” in an effort to leverage an existing and
well-known paradigm. You may conceptualize coroutines as blocks of code that can be dispatched to threads
that are nonblocking.


Coroutines are indeed lightweight, but it is important to note that coroutines aren’t threads themselves.
In fact, many coroutines can run on a single thread, although each has a lifecycle of its own.
Rather, you’ll see in this section that they really are just state machines, with each state corresponding to a
block of code that some thread will eventually execute.

Note

You might be surprised to find that the concept of coroutines goes all the way back to the early 1960s with the
creation of Cobol’s compiler, which used the idea of suspending and launching functions in assembly language.
Coroutines can also be spotted in the languages Go, Perl, and Python.




The coroutine library offers some facilities to manage those threads out of the box. However, you can configure
the coroutine builder to manage your threads yourself if you need to.










Your First Coroutine


Throughout this section, we’ll introduce a lot of new vocabulary and concepts from the kotlinx.coroutines
package. To make this learning smooth, we chose to start with a simple coroutine usage, and explain
how this works along the way.


The following example, as well as the others in this chapter, uses semantics declared in the kotlinx.coroutines package:


fun main() = runBlocking {
    val job: Job = launch {
        var i = 0
        while (true) {
            println("$i I'm working")
            i++
            delay(10)
        }
    }

    delay(30)
    job.cancel()
}


The method runBlocking runs a new coroutine and blocks the current thread until the coroutine work has completed.
This coroutine builder is typically used in main functions and testing as it serves as a bridge to regular blocking code.


Inside the code block, we create a coroutine with the launch function. Since it creates a coroutine, it’s
a coroutine builder—you’ll see later that other coroutine builders exist. The method launch returns a reference to
a Job, which represents the lifecycle of the coroutine launched.


Inside the coroutine, there’s a while-loop that executes indefinitely. Below the job coroutine, you may
notice that the job is cancelled later on. To demonstrate what this means, we can run our program and the output is as follows:


0 I'm working
1 I'm working
2 I'm working


It appears that the coroutine ran like clockwork. In tandem, the code continues to execute in the main thread, giving
us a total of three printed lines within a 30 ms window given to us by the delay call, as shown in Figure 7-1.



[image: First coroutine]
Figure 7-1. First coroutine.




The delay function looks suspiciously like Thread.sleep in its usage. The major difference is that delay is nonblocking
while Thread.sleep(...) is blocking. To demonstrate what we mean, let’s examine our code again, but replace the
delay call in our coroutine with Thread.sleep:


fun main() = runBlocking {
    val job: Job = launch {
        while (true) {
            println("I'm working")
            Thread.sleep(10L)
        }
    }

    delay(30)
    job.cancel()
}


Observe what happens when we run the code again. We get the following output:


I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
I'm working
.....


The output seems to run infinitely now. When the coroutine executes, the Thread.sleep(10L) call blocks the
main thread until the coroutine started by launch completes. As the coroutine started with launch makes the main
thread either sleep or print, the coroutine never completes, so execution never leaves the coroutine,1 as shown in Figure 7-2.



[image: Never ending program]
Figure 7-2. Never-ending program.




It’s important to remember the following:



	
The launch coroutine builder is “fire-and-forget” work—in other words, there is no result to return.



	
Once called, it immediately returns a Job instance, and starts a new coroutine. A Job represents the coroutine itself, like a handle on its lifecycle. The coroutine can be cancelled by calling the cancel method on its Job instance.



	
A coroutine that is started with launch will not return a result, but rather, a reference to the background job.






If, on the other hand, you need to get a result from an asynchronous computation, then you should use the async coroutine
builder.

















The async Coroutine Builder


The async coroutine builder can be compared to Java’s Future/Promise model to support asynchronous programming:


class WorkingClass() {
    public CompletableFuture<SomeOtherResult> doBothAsync() {
        somethingAsync().thenAcceptBoth(somethingElseAsync()) {
            one, two ->
            // combine results of both calls here
        };
    }
}


Instead of making a blocking call to get the data, an asynchronous function immediately returns a wrapper
around the result. Depending on the library you use, this wrapper is called Future, CompletableFuture,
Promise, etc. This wrapper is like a handle from which you can check if the result is available or not.
If you wish, you can block a thread until the result is available with the Future.get() method.


Just like a Future, the async coroutine builder returns a wrapper around a result; and the type of this wrapper
is Deferred<T> (the generic type is the type of the result), as shown in the following code:


fun main() = runBlocking {
    val slow: Deferred<Int> = async {
        var result = 0
        delay(1000)   // simulate some slow background work
        for (i in 1..10) {
            result += i
        }
        println("Call complete for slow: $result")
        result
    }

    val quick: Deferred<Int> = async {
        delay(100)   // simulate some quick background work
        println("Call complete for quick: 5")
        5
    }

    val result: Int = quick.await() + slow.await()
    println(result)
}


The data types quick and slow are a future result as an implementation of Deferred<Int>, otherwise known as a
Job with a result. By calling the method await on each Deferred<Int> instance, the program waits for the result
of each coroutine.


This time, we’ve launched two coroutines using the async coroutine builder. The code itself can give us a good
guess at what might happen, but let’s run it anyway to see the following output:


Call complete for quick: 5
Call complete for slow: 55
60


The preceding program delays the slow async job delays it by 1,000 ms while the quick async job by 100 ms—the result waits for both
to complete before printing out the result.


It’s important to remember the following:



	
The async coroutine builder is intended for parallel decomposition of work—that is, you explicitly specify
that some tasks will run concurrently.



	
Once called, an async immediately returns a Deferred instance. Deferred is a specialized Job, with a few extra
methods like await. It’s a Job with a return value.



	
Very similarly to Futures and Promises, you invoke the await method on the Deferred instance to get the
returned value.2






You may have noticed by now that the examples provided with the coroutine builders launch and async are wrapped with a runBlocking call. We mentioned earlier that runBlocking runs a new coroutine and blocks the current thread until the coroutine work has completed. To better understand the role of runBlocking, we must first give a sneak preview on structured concurrency, a concept which will be explored in detail in the next chapter.
























A Quick Detour About Structured Concurrency


Coroutines aren’t just yet another fancy way to launch background tasks. The coroutines library is built
around the structured concurrency paradigm. Before going further in your discovery of coroutines, you
should understand what it is, and the problems the coroutine library aims to solve.


Making development easier is a worthwhile goal. In the case of structured concurrency, it’s almost a happy
side effect of a response to a more general problem. Consider the simplest construct every developer is
familiar with: a function.


Functions are predictable in the sense that they are executed from top to bottom. If we put aside the possibility
that exceptions can be thrown from inside the function,3 we know that prior to a function returning a value, execution order is
serial: each statement executes prior to the next. What if inside the function, your program creates
and starts another thread? It’s perfectly legal, but now you have two flows of execution, as shown in Figure 7-3.



[image: Two Flows]
Figure 7-3. Two flows.




Calling this function doesn’t only produce one result; it has the side effect of creating a parallel flow of execution. This can be problematic for the following reasons:


	Exceptions aren’t propagated

	
If an exception is thrown inside the thread, and it isn’t handled, then the JVM calls the thread’s UncaughtExceptionHandler, which is a simple interface:


interface UncaughtExceptionHandler {
    fun uncaughtException(t: Thread, e: Throwable)
}


You can provide a handler using the Thread.setUncaughtExceptionHandler method on your thread instance. By default, when you create a thread, it doesn’t have a specific UncaughtExceptionHandler. When an exception isn’t caught, and you haven’t set a specific one, the default handler is invoked.


In the Android framework, it’s important to note that the default UncaughtExceptionHandler will cause your app to crash by killing the app’s native process. Android designers made this choice because it’s generally better for an Android application to fail-fast, as the system shouldn’t make decisions on behalf of the developer when it comes to unhandled exceptions. The stacktrace is then relevant to the real
problem—while recovering from it might produce inconsistent behaviors and problems that are less transparent, because the root cause can be much earlier in the call stack.


In our example, there’s nothing in place to inform our function if something bad happens in the background thread. Sometimes this is just fine because errors can be directly handled from the background thread, but you may have logic that is more complex and requires the calling code to monitor issues to react differently and specifically.

Tip

There is a mechanism involved before the default 
handler is invoked. Every thread can belong to a 
ThreadGroup which can handle exceptions. Each thread group can also have a parent thread group. Within the Android framework, two groups are statically created: “system,” and a child of the system group known as “main.” The “main” group always delegates exception handling to the “system” group parent, which then delegates to 
Thread.getDefaultUncaughtExceptionHandler() if it isn’t null. Otherwise, the “system” group prints the exception name and stacktrace to System.err.





	Execution flow is hard to control

	
Since a thread can be created and started from anywhere, imagine that your background thread instantiates and starts three new threads to delegate some of its work, or performs tasks in reaction to computation performed in the parent thread’s context, as shown in Figure 7-4.



[image: Multiple Flows]
Figure 7-4. Multiple flows.




How do you make sure the function returns only when all background processing is done? This can be error-prone: you need to make sure that you wait for all child threads to finish their work.4 When using a Future-based implementation (for example, CompletableFutures), even omitting a Future.get invocation might cause the flow of execution to terminate prematurely.


Later, and while the background thread and all of its children are still running, all this work might have to be cancelled (the user exited the UI, an error was thrown, etc.). In this case, there’s no automatic mechanism to cancel the entire task hierarchy.


When working with threads, it’s really easy to forget about a background task. Structured concurrency is nothing but a concept meant to address this issue.






In the next section, we’ll detail this concept and explain how it relates to coroutines.

















The Parent-Child Relationship in Structured Concurrency


Until now, we’ve spoken about threads, which were represented by arrows in the previous illustrations.
Let’s imagine a higher level of abstraction where some parent entity could create multiple children, as shown in
Figure 7-5.



[image: Parent-Child]
Figure 7-5. Parent-child.




Those children can run concurrently with each other as well as the parent. If the parent fails or is cancelled, then all
its children are also cancelled.5 Here is the first rule of structured concurrency:


	Cancellation always propagates downward.



Tip

How the failure of one child affects other children of the same level is a parameterization of the parent.




Just as a parent entity could fail or be cancelled, this can happen to any of the children.
In the case of cancellation of one of the children, referencing the first rule, we know that the parent will not be cancelled
(cancellation propagates downward, not upward). In case of failure, what happens next depends
on the problem you’re trying to solve. The failure of one child should or should not lead to
the cancellation of the other children, as shown in Figure 7-6. Those two possibilities characterize
the parent-child failure relationship, and is a parameterization of the parent.



[image: Cancellation policy]
Figure 7-6. Cancellation policy.



Tip

The parent always waits for all its children to complete.




Other rules could be added around exception propagation, but they would be implementation specific,
and it’s time to introduce some concrete examples.


Structured  concurrency  is  available  in  Kotlin  coroutines  with  CoroutineScopes  and  CoroutineContexts. 
Both  CoroutineScopes  and  CoroutineContexts  play  the  role  of  the parent in previous illustrations, while Coroutines, on play the role of the children.


In the following section, we’ll cover CoroutineScope and CoroutineContext in more detail.

















CoroutineScope and CoroutineContext


We’re about to dive into the details of the kotlinx.coroutine library. There will be a lot of new concepts in the upcoming section. While those concepts are important if you want to master coroutines, you don’t have to understand everything right now to get started and be productive with coroutines. There will be a lot of examples following this section and in the next chapter, which will give you a good sense of how coroutines work. Therefore, you might find it
easier to come back to this section after you’ve practiced a bit.


Now that you have an idea of what structured concurrency is, let’s revisit the whole runBlocking thing again.
Why not just call launch or async outside a runBlocking call?


The following code will not compile:


fun main() {
   launch {
       println("I'm working")       // will not compile
   }
}


The compiler reports: “Unresolved reference: launch.”
This is because coroutine builders are extension functions of CoroutineScope.


A CoroutineScope controls the lifecycle of a coroutine within a well-defined scope or lifecycle.
It’s an object that plays the role of the parent in structured concurrency—its purpose is to manage
and monitor the coroutines you create inside it. You might be surprised to find that in the previous
example with the async coroutine builder, a CoroutineScope had already been provided to launch
a new coroutine. That 
CoroutineScope was provided by the runBlocking block.
How? This is the simplified signature of runBlocking:


fun <T> runBlocking(
    // function arguments removed for brevity
    block: suspend CoroutineScope.() -> T): T { // impl
}


The last argument is a function with a receiver of type CoroutineScope.  Consequently, when you supply a
function for the block argument, there is a CoroutineScope at your disposal which can invoke extension functions
of CoroutineScope. As you can see in Figure 7-7, Android Studio is able to pick up the implicit
type-referencing in Kotlin so that if you enable “type hints,” you are able to see the type parameter.



[image: Type hint in Android Studio]
Figure 7-7. Type hint in Android Studio.




Besides providing a CoroutineScope, what is the purpose of runBlocking? runBlocking blocks the current thread until
its completion. It can be invoked from regular blocking code as a bridge to code containing suspending functions (we’ll cover suspending functions later in this chapter).


To be able to create coroutines, we have to bridge our code to the “regular” function main in our code.
However, the following sample won’t compile, as we’re trying to start a coroutine from regular code:


fun main() = launch {
    println("I'm a coroutine")
}


This is because the launch coroutine builder is actually an extension function of 
CoroutineScope:


fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    // other params removed for brevity,
    block: suspend CoroutineScope.() -> Unit
): Job { /* implementation */ }


Since regular code doesn’t provide a CoroutineScope instance, you cannot directly invoke coroutine builders from there.


So what’s this CoroutineContext? To answer this question, you need to understand the details of CoroutineScope.


If you look at the source code, a CoroutineScope is an interface:


interface CoroutineScope {
    val coroutineContext: CoroutineContext
}


In other words, a CoroutineScope is a container for a CoroutineContext.


The purpose of a CoroutineScope is to encapsulate concurrent tasks (coroutines and other scopes) by applying
structured concurrency. Scopes and coroutines form a tree-like architecture with a scope at its root, as shown
in Figure 7-8.



[image: Tree-like structure]
Figure 7-8. Tree-like relationship (coroutines are represented as rectangles).




A CoroutineContext, which we’ll refer to as a context for future reference, is a broader concept. It’s an immutable
union set of context elements. For future reference, we’ll use the term “element” to designate context element.


That’s the theory. In practice, you’ll most often use a special context element to control which thread, or which
thread pool, will execute your coroutine(s). For example, imagine that you have to run CPU-heavy computations inside a
launch, while not blocking the main thread. This is where the coroutine library is really handy because thread pools
for most common usages are available out of the box. In the case of CPU-bound tasks, you don’t have to define your own
thread pool. All you have to do is use the special Dispatchers.Default context element like so:


fun main() = runBlocking<Unit> {
    launch(Dispatchers.Default) {
        println("I'm executing in ${Thread.currentThread().name}")
    }
}


The output is now:


I'm executing in DefaultDispatcher-worker-2 @coroutine#2


Dispatchers.Main is a context element. As you’ll see later, different context elements can be combined
using operators to tweak the behavior of coroutines even more.


As its name suggests, the purpose of a Dispatcher is to dispatch coroutines on a specific thread or
thread pool. By default, there are four Dispatchers available out of the box—Main, Default, IO, and Unconfined:


	Dispatchers.Main

	
This uses the main thread, or the UI thread, of the platform you’re using.



	Dispatchers.Default

	
This is meant for CPU-bound tasks, and is backed by a thread pool of four threads by default.



	Dispatchers.IO

	
This is meant for IO-bound tasks, and is backed by a thread pool of 64 threads by default.



	Dispatchers.Unconfined

	
This isn’t something you should use or even need as you’re learning coroutines. It’s primarily
used in the internals of the coroutines library.






By just changing the dispatcher, you can control which thread or thread pool your coroutine will be executed on.
The context element Dispatcher.Default is a subclass of CoroutineDispatcher, but other context elements
also exist.


By providing a dispatcher context, you can easily designate where logic flow executes. Thus, it is the developer’s
responsibility to supply the context to the coroutine builder.


In coroutine framework parlance, a coroutine always runs inside a context. This context is provided by a coroutine scope and is different from the context you supply. To avoid confusion, we’ll call the context of the coroutine the coroutine context, and we’ll call the context you supply to the coroutine builder the supplied context.


The difference is subtle—remember the Job object? A Job instance is a handle on the lifecycle of the
coroutine—it’s part of the coroutine context too. Every coroutine has a Job instance that represents it,
and this job is part of the coroutine context.


It’s time to unveil how those contexts are created. Look at Example 7-1, which differs slightly from the previous example.


Example 7-1. Dispatchers example


fun main() = runBlocking<Unit>(Dispatchers.Main) {
    launch(Dispatchers.Default) {
        val threadName = Thread.currentThread().name
        println("I'm executing in $threadName")
    }
}



This block of code creates two coroutines with their own respective Job instance: runBlocking starts the first
coroutine, and the other one is started by launch.


The coroutine created by runBlocking has its own context. Since this is the root coroutine started inside
the scope, we call this context the scope context. The scope context encompasses the coroutine context, as shown in
Figure 7-9.



[image: Contexts]
Figure 7-9. Contexts.




You’ve seen that launch is an extension function of CoroutineScope (which holds a context), and that it can receive a context as its first parameter. So there are two contexts at our disposal in this function, as shown in Example 7-1: one from the receiver type (the scope context), and the other one from the context parameter (the supplied context).


What does launch do in its implementation before calling our provided function? It merges the two contexts so that the
elements from the context parameter take precedence over the other elements from the scope. From this
merge operation we obtain the parent context. At this point, the Job of the coroutine isn’t created yet.


At last, a new Job instance is created as a child of the Job from the parent context.
This new Job is then added to the parent context, replacing the Job instance of the parent context
to obtain the coroutine context.


These relationships and interactions are represented in Figure 7-10, in which a
 context is represented by a rectangle containing other context elements.



[image: Contexts]
Figure 7-10. Representation of a Context.




Figure 7-10 represents a context that contains a Job instance, and a dispatcher which is Dispatchers.Main. With that representation in mind, Figure 7-11 shows how we would represent the context of Example 7-1.



[image: Context detail]
Figure 7-11. Context detail.




Everything you provide in the supplied context to the launch method takes precedence over the scope context. This results in a parent context, which inherits elements from the scope context which were not provided in the supplied context (a Job, in this case). Then a new Job instance is created (with a dot in the upper-right corner), as a child of the parent Job which is also, in this case, the Job of the scope context. The resulting coroutine context is made of elements from the parent context except for Job (which is a child Job of the Job in the parent context).


This coroutine context is the context in which the lambda we provide to launch will be executed.


Structured concurrency is possible because the Job in the coroutine context is a child of the Job from the parent context. If the scope is cancelled for any reason, every child coroutine started is then automatically cancelled.6


More importantly, the coroutine context inherits context elements from the scope context, which are not overridden by the context supplied as a parameter to launch; the async method behaves identically in this regard.

















Suspending Functions


We’ve examined how to launch a coroutine with the coroutine builders launch and async, and touched on what it means
for something to be blocking or nonblocking.
At its core, Kotlin coroutines offer something different that will really reveal how powerful coroutines can be:
suspending functions.


Imagine that you invoke two tasks serially. The first task completes before the second can proceed with its execution.



[image: Contexts]





When task A executes, the underlying thread cannot proceed with executing other tasks—task A is then said to be a
blocking call.


However, task A spending a reasonable amount of time waiting for a longer-running job (e.g., an HTTP request) ends up
blocking the underlying thread, rendering the waiting task B useless.


So task B waits for task A to complete. The frugal developer may see this scenario as a waste of thread resources,
since the thread could (and should) proceed with executing another task while task A is waiting for the result of
its network call.


Using suspending functions, we can split tasks into chunks which can suspend. In the case of our example, task A can be
suspended when it performs its remote call, leaving the underlying thread free to proceed with another task (or just a part
of it). When task A gets the result of its remote call, it can be resumed at a later point in time, as shown in Figure 7-12.



[image: Contexts]
Figure 7-12. The time saved is represented at the end.




As you can see, the two tasks complete sooner than in the previous scenario. This interleaving of bits of tasks
leaves the underlying thread always busy executing a task. Therefore, a suspending mechanism requires fewer threads
to produce the same overall throughput, and this is quite important, when each thread has its own stack which costs a
minimum of 64 Kb of memory. Typically, a thread occupies 1 MB of RAM.


Using a suspending mechanism, we can be more frugal by using more of the same resources.

















Suspending Functions Under the Hood


So far, we’ve introduced a new concept: the fact that a task can suspend. A task can “pause” its execution without
blocking the underlying thread. While this might sound like magic to you, it’s important to understand that it all comes
down to lower-level constructs, which we’ll explain in this section.


A task, or more precisely, a coroutine, can suspend if it makes use of at least one suspending function.
A suspending function is easily recognizable as it’s declared with the suspend modifier.


When the Kotlin compiler encounters a suspending function, it compiles to a regular function with an additional
parameter of type Continuation<T>, which is just an interface, as shown in Example 7-2:


Example 7-2. Interface Continuation<T>


public interface Continuation<in T> {
    /**
     * The context of the coroutine that corresponds to this continuation.
     */
    public val context: CoroutineContext

    /**
     * Resumes the execution of the corresponding coroutine passing a successful
     * or failed [result] as the return value of the last suspension point.
     */
    public fun resumeWith(result: Result<T>)
}



Assuming that you define this suspending function as follows:


suspend fun backgroundWork(): Int {
    // some background work on another thread, which returns an Int
}


At compile time, this function is transformed into a regular function (without the suspend modifier), with an
additional Continuation argument:


fun backgroundWork(callback: Continuation<Int>): Int {
    // some background work on another thread, which returns an Int
}

Note

Suspending functions are compiled to regular functions taking an additional Continuation object argument. This is an
implementation of Continuation Passing Style (CPS), a style of programming where control flow is passed on in the form of a Continuation object.




This Continuation object holds all the code that should be executed in the body of the backgroundWork function.


What does the Kotlin compiler actually generate for this Continuation object?


For efficiency reasons, the Kotlin compiler generates a state machine.7 A state-machine implementation
is all about allocating as few objects as possible, because coroutines being lightweight, thousands of them might be
running.


Inside this state machine, each state corresponds to a suspension point inside the body of the suspending function.
Let’s look at an example. Imagine that in an Android project, we use the presenter layer to execute some long-running
processes surrounding IO and graphics processing, where the following code block has two suspension points with the
self-managed coroutine launched from the viewModelScope:8


suspend fun renderImage() {
    val path: String = getPath()
    val image = fetchImage(path)    // first suspension point (fetchImage is a suspending function)
    val clipped = clipImage(image)  // second suspension point (clipImage is a suspending function)
    postProcess(clipped)
}

/** Here is an example of usage of the [renderImage] suspending function */
fun onStart() {
    viewModelScope.launch(Dispatchers.IO) {
        renderImage()
    }
}


The compiler generates an anonymous class which implements the Continuation interface. To give you a sense of what is
actually generated, we’ll provide pseudocode of what is generated for the renderImage suspending function.
The class has a state field holding the current state of the state machine. It also has fields for each variable that are shared between states:


object : Continuation<Unit>  {
   // state
   private var state = 0

   // fields
   private var path: String? = null
   private var image: Image? = null

   fun resumeWith(result: Any) {
      when (state) {
         0 -> {
            path = getPath()
            state = 1
            // Pass this state machine as Continuation.
            val firstResult = fetchImage(path, this)
            if (firstResult == COROUTINE_SUSPENDED) return
            // If we didn't get COROUTINE_SUSPENDED, we received an
            // actual Image instance, execution shall proceed to
            // the next state.
            resumeWith(firstResult)
         }
         1 -> {
            image = result as Image
            state = 2
            val secondResult = clipImage(image, this)
            if (secondResult == COROUTINE_SUSPENDED) return
               resumeWith(secondResult)
            }
         2 -> {
            val clipped = result as Image
            postProcess(clipped)
         }
         else -> throw IllegalStateException()
      }
   }
}


This state machine is initialized with state = 0. Consequently, when the coroutine started with launch invokes the
renderImage suspending function, the execution “jumps” to the first case (0). We retrieve a path, set the next state to
1, then invoke fetchImage—which is the first suspending function in the body of renderImage.


At this stage, there are two possible scenarios:


	
fetchImage requires some time to return an Image instance, and immediately returns the COROUTINE_SUSPENDED value. By returning this specific value, fetchImage basically says: “I need more time to return
an actual value, so give me your state-machine object, and I’ll use it when I have a result.” When fetchImage finally has an Image instance, it invokes 
stateMachine.resumeWith(image). Since at this point state equals 1, the execution “jumps” to the second case of the when statement.



	
fetchImage immediately returns an Image instance. In this case, execution proceeds with the next state (via resumeWith(image)).







The rest of the execution follows the same pattern, until the code of the last state invokes the postProcess function.

Note

This explanation is not the exact state of the state machine generated in the bytecode, but rather, pseudocode of
its representative logic to convey the main idea. For everyday use, it’s less important to know the implementation details of the actual finite state machine generated in the Kotlin bytecode than it is to understand what happens under the hood.


Conceptually, when you invoke a suspending function, a callback (Continuation) is created along with generated
structures so that the rest of the code after the suspending function will be called only when the suspending function
returns.
With less time spent on boilerplate code, you can focus on business logic and high-level concepts.




So far, we’ve analyzed how the Kotlin compiler restructures our code under the hood, in such a way that we don’t have to
write callbacks on our own. Of course, you don’t have to be fully aware of finite state-machine code generation to use
suspending functions. However, the concept is important to grasp! For this purpose, nothing is better than practicing!

















Using Coroutines and Suspending Functions: 
A Practical Example


Imagine that in an Android application you wish to load a user’s profile with an id. When navigating to the profile,
it might make sense to fetch the user’s data based on the id in a method named fetchAndLoadProfile.


You can use coroutines for that, using what you learned in the previous section. 
For  now,  assume  that  somewhere  in  your  app  (typically  a  controller  in  MVC  architecture, or a ViewModel in MVVM) you have a CoroutineScope which has the 
Dispatchers.Main dispatcher in its CoroutineContext. In this case, we say that this scope dispatches coroutines on the main thread, which is identical to default behavior. In the next chapters we will give you detailed explanations and examples of 
coroutine scopes, and how you can access and create them yourself if you need to.


The fact that scope defaults to the main thread isn’t limiting in any way, since you can create coroutines with any
CoroutineDispatcher you want inside this scope. This implementation of fetchAndLoadProfile illustrates this:


fun fetchAndLoadProfile(id: String) {
    scope.launch {                                          [image: 1]
        val profileDeferred = async(Dispatchers.Default) {  [image: 2]
            fetchProfile(id)
        }
        val profile = profileDeferred.await()               [image: 3]
        loadProfile(profile)                                [image: 4]
    }
}


This is done in four steps:


	[image: 1]

	Start with a launch. You want the fetchAndLoadProfile to return immediately so that you can proceed serially on the
main thread. Since the scope defaults to the main thread, a launch without additional context inherits the scope’s
context, so it runs on the main thread.


	[image: 2]

	Using async and Dispatchers.Default, you call fetchProfile, which is a blocking call. As a reminder, using
Dispatchers.Default results in having fetchProfile executed on a thread pool. You immediately get a
Deferred<Profile>, which you name profileDeferred. At this point, ongoing background work is being done on one
of the threads of the thread pool. This is the signature of fetchProfile:
fun fetchProfile(id: String): Profile { // impl }.
It’s a blocking call which might perform a database query on a remote server.


	[image: 3]

	You cannot use profileDeferred right away to load the profile—you need 
to wait for the result of the background
query. You do this by  using 
profileDeferred.await(), which will generate and return a Profile instance.


	[image: 4]

	Finally, you can invoke loadProfile using the obtained profile. As the outer launch inherits its context from the
parent scope, loadProfile is invoked on the main thread. We’re assuming that this is expected, as most UI-related
operations have to be done on the main thread.





Whenever you invoke fetchAndLoadProfile, background processing is done off the UI thread to retrieve a profile. As soon
as the profile is available, the UI is updated. You can invoke fetchAndLoadProfile from whatever thread you want—it
won’t change the fact that loadProfile is eventually called on the UI thread.


Not bad, but we can do better.


Notice how this code reads from top to bottom, without indirection or callbacks. You could argue that the
“profileDeferred” naming and the await calls feel clunky. This could be even more apparent when you fetch a profile,
wait for it, then load it. This is where suspending functions come into play.


Suspending functions are at the heart of the coroutine framework.

Tip

Conceptually, a suspending function is a function which may not return immediately. If it doesn’t
return right away, it suspends the coroutine that called this suspending function while computation
occurs. This inner computation should not block the calling thread. Later, the coroutine is resumed
when the inner computation 
completes.


A suspending function can only be called from inside a coroutine or from another suspending function.




By “suspend the coroutine,” we mean that the coroutine execution is stopped. Here is an example:


suspend fun backgroundWork(): Int {
    // some background work on another thread, which returns an Int
}


First off, a suspending function isn’t a regular function; it has its own suspend keyword.
It can have a return type, but notice that in this case it doesn’t return a Deferred<Int>—only bare
Int.


Second, it can only be invoked from a coroutine, or another suspending function.


Back to our previous example: fetching and waiting for a profile was done with an async block.
Conceptually, this is exactly the purpose of a suspending function. We’ll borrow the same name as the
blocking fetchProfile function and rewrite it like this:


suspend fun fetchProfile(id: String): Profile {
    // for now, we’re not showing the implementation
}


The two major differences with the original async block are the suspend modifier and the return type.


This allows you to simplify fetchAndLoadProfile:


fun fetchAndLoadProfile(id: String) {
    scope.launch {
        val profile = fetchProfile(id)   // suspends
        loadProfile(profile)
    }
}


Now that fetchProfile is a suspending function, the coroutine started by launch is suspended when invoking fetchProfile.
Suspended means that the execution of the coroutine is stopped, and that the next line does not execute.
It will remain suspended until the profile is retrieved, at which point the coroutine started
by launch resumes. The next line (loadProfile) is then executed.


Notice how this reads like procedural code. Imagine how you would implement complex, asynchronous logic where each
step requires a result from the previous one. You would call suspending functions like this, one after another, in a
classic procedural style. Code that is easy to understand is more maintainable. This is one of the most immediately
helpful aspects of suspending functions.


As a bonus, IntelliJ IDEA and Android Studio help you in spotting suspending calls in one glimpse. In Figure 7-13,
you can see a symbol in the margin indicating a suspending call.



[image: suspend call]
Figure 7-13. Suspending call.




When you see this symbol in the margin, you know that a coroutine can temporarily suspend at this line.

















Don’t Be Mistaken About the suspend Modifier


However impressive it looks, adding the suspend modifier to a regular function doesn’t magically turn it into a
nonblocking function.
There’s more to it. Here is an example with the suspending fetchProfile function:


suspend fun fetchProfile(id: String) = withContext(Dispatchers.Default) {
   // same implementation as the original fetchProfile, which returns a Profile instance
}


fetchProfile(...) uses the withContext function from the coroutines framework, which accepts a CoroutineContext
as parameter.
In this case, we provide Dispatchers.Default as the context.
Almost every single time you use withContext, you’ll only provide a Dispatcher.


The thread that will execute the body of withContext is determined by the provided Dispatcher. For example, using
Dispatchers.Default, it would be one of the threads of the thread pool dedicated for CPU-bound tasks. In the case of
Dispatchers.Main, it would be the main thread.


Why and how does fetchProfile suspend?
This is an implementation detail of withContext and of the coroutine framework in general.


The most important concept to remember is simple: a coroutine calling a suspending function might suspend its
execution. In coroutine parlance, we say that it reaches a suspension point.


Why did we say that it might suspend? Imagine that inside your implementation of fetchProfile,
you check whether you have the associated profile in the cache.
If you have the data in the cache, you may immediately return it.  Then there’s no need to suspend the
execution of the outer coroutine.9


There are several ways to create a suspending function. Using withContext is only one of them, although
probably the most common.

















Summary



	
Coroutines are always launched from a CoroutineScope. In structured concurrency parlance, the CoroutineScope is
the parent, and coroutines themselves are children of that scope. A CoroutineScope can be a child of an existing
CoroutineScope. See the next chapter on how to get a CoroutineScope or make one.



	
A CoroutineScope can be seen as a root coroutine. In fact, anything that has a Job can technically be considered
a coroutine. The only difference is the intended usage. A scope is meant to encompass its child coroutines.
As you’ve seen in the beginning of this chapter, a cancellation of a scope results in the cancellation of all of its
child coroutines.



	
launch is a coroutine builder which returns a Job instance. It is meant for “fire-and-forget.”



	
async is a coroutine builder which can return values, very much like Promise and Future. It returns an instance
of Deferred<T>, which is a specialized Job.



	
A Job is a handle on the lifecycle of a coroutine.



	
The context of a newly created coroutine started with launch or async, the coroutine context, inherits from the
scope context and from the context passed in as a parameter (the supplied context)—the latter taking precedence
over the former. One context element is always freshly created: the Job of the coroutine. For example:


launch(Dispatchers.Main) {
   async {
      // inherits the context of the parent, so is dispatched on
      // the main thread
   }
}



	
A suspending function denotes a function which might not return immediately. Using withContext and the appropriate
Dispatcher, any blocking function can be turned into a nonblocking suspending function.



	
A coroutine is typically made of several calls to suspending functions. Every time a suspending function is invoked, a
suspension point is reached. The execution of the coroutine is stopped at each of those suspension points, until it
is resumed.10






A final word on this chapter: scope and context are new notions and are just parts of the coroutine machinery.
Other topics like exception handling and cooperative cancellation will be covered in the next chapter.










1 In this scenario, job.cancel() has no effect on the coroutine started by launch. We’ll touch on that in the next chapter (a coroutine must be cooperative with cancellation to be cancellable).
2 This suspends the calling coroutine until the value is retrieved, or an exception is thrown if the coroutine started with async is cancelled or failed with an exception. More on that later in this chapter.
3 We assume that exceptions are handled and don’t interfere with the execution flow.
4 The join() method of a thread causes the calling thread to go into a waiting state. It remains in a waiting state until the original thread terminates.
5 A failure of an entity corresponds to any abnormal event the entity cannot recover from. This is typically implemented using unhandled or thrown exceptions.
6 You may have noticed that nothing prevents you from passing a Job instance inside the “provided context.” What happens then? Following the logic explained, this Job instance becomes the parent of the Job of the coroutine context (e.g., the newly created coroutine). So the scope is no longer the parent of the coroutine; the parent-child relationship is broken. This is the reason why doing this is strongly discouraged, except in specific scenarios which will be explained in the next chapter.
7 Actually, when a suspending function only invokes a single suspending function as a tail call, a state machine isn’t required.
8 viewModelScope is coming from the AndroidX implementation of ViewModel. A viewModelScope is scoped to the ViewModel lifetime. More on that in the next chapter.
9 We’ll show you how to do this in Chapter 8.
10 The coroutine mechanism resumes a coroutine when the suspending function which caused it to suspend exits.




Chapter 8. Structured Concurrency with Coroutines



In the previous chapter, we introduced a new asynchronous programming 
paradigm—coroutines. When using coroutines,
it’s important to know how to use suspending functions appropriately; we’ll cover that topic in this chapter. As most programs have to deal with
exception handling and cancellation, we’ll also cover these topics—and you’ll see that, in this regard, coroutines have
their own set of rules you should be aware of.


The first section of this chapter covers the idiomatic usage of suspending functions. We’ll take the
example of a hiking app to compare two implementations: one based on threads and the other one based on suspending functions
and coroutines. You’ll see how this comparison highlights the power of coroutines in some situations.


As is common for most mobile apps, the hiking example requires a cancellation mechanism.  We’ll cover all you need to
know about cancellation with coroutines. In order to prepare for most situations, we’ll then cover parallel decomposition
and supervison. Using these concepts, you’ll be able to implement
complex concurrent logic if you need to.


Finally, this chapter ends with an explanation of exception handling with coroutines.








Suspending Functions


Imagine that you’re developing an application to help users plot, plan, track, draw, and share information about hiking.
Your users should be able to navigate to any of the hikes they’ve already completed or that are in progress. Before going out
for a given hike, some basic statistics are useful, like:



	
Total distance



	
The length of the last hike in both time and distance



	
The current weather along the trail they chose



	
Favorite hikes






Such an application would require various interactions between the client and server(s) for meteorological
data and user information. How might we choose to store data for such an application?


We may choose to store this data locally for later use, or on remote servers (which is referred to as
persistence strategies). Longer-running tasks, especially networking or IO tasks, can take shape with
background jobs like reading from a database, a local file, or a protobuf; or querying
a remote server. At its core, reading data from a host device will always be faster than reading the same data from the
network.


So, the retrieved data may come at variable rates, depending on the nature of the query. Our worker logic must be
resilient and flexible enough to support and survive this situation, and tough enough to handle circumstances
beyond our control or even awareness.










Set the Scene


You need to build out a feature that allows users to retrieve their favorite hikes along with the current weather for each
of those hikes.


We’ve already gone ahead and provided some library code of the application described in the beginning of the chapter.
The following is a set of classes and functions already made available to you:


data class Hike(
   val name: String,
   val miles: Float,
   val ascentInFeet: Int)

class Weather // Implementation removed for brevity

data class HikeData(val hike: Hike, val weather: Weather?)


Weather isn’t a Kotlin data class, because we need a name for a type for the weather attribute for HikeData (if
 we had declared Weather as a data class without providing attributes, the code wouldn’t compile).


A Hike, in this example, is only:


	
A name



	
A total number of miles



	
The total ascent in feet







A HikeData pairs a Hike object with a nullable Weather instance (if we couldn’t get the weather data for some
reason).


We are also provided with the methods to fetch the list of a Hike given a user id along with weather data for a hike:


fun fetchHikesForUser(userId: String): List<Hike> {
    // implementation removed for brevity
}

fun fetchWeather(hike: Hike): Weather {
    // implementation removed for brevity
}


Those two functions might be long-running operations—like querying a database or an API. In order to avoid blocking
the UI thread while fetching the list of hikes or the current weather, we’ll leverage suspending functions.


We believe that the best way to understand how to use suspending functions is to compare the following:



	
A “traditional” approach using threads and Handler



	
An implementation using suspending functions with coroutines






First we’ll show you how the traditional approach has its limitations in some situations, and that it’s not easy to overcome them. Then we’ll show you how using suspending functions and coroutines changes the way we implement asynchronous
logic and how we can solve all the problems we had with the traditional approach.


Let’s start with the thread-based implementation.

















Traditional Approach Using java.util.concurrent.ExecutorService


fetchHikesForUser and fetchWeather functions should be invoked from a background thread. In Android, that might be
done in any number of ways. Java has the traditional Thread library of course, and the Executors framework. The Android
standard library has the (now legacy) AsyncTask, HandlerThread, as well as the 
ThreadPoolExecutor class.


Among all those possibilities, we want to take the best implementation in terms of expressiveness, readability, and
control. For those reasons, we decided to leverage the Executors framework.


Inside a ViewModel, suppose you use one of the factory methods for ExecutorService from the Executors class
to get back a ThreadPoolExecutor for performing asynchronous work using the traditional thread-based model.


In the following, we’ve chosen a work-stealing pool. Compared to a simple-thread pool with a blocking queue, a work-stealing pool can reduce contention while keeping a targeted number of threads active. The idea behind this is that enough work queues are maintained so that an overwhelmed worker1 might have one of its tasks “stolen” by another worker which is less loaded:


class HikesViewModel : ViewModel() {
    private val ioThreadPool: ExecutorService =
        Executors.newWorkStealingPool(10)

    fun fetchHikesAsync(userId: String) {
        ioThreadPool.submit {
            val hikes = fetchHikesForUser(userId)
            onHikesFetched(hikes)
        }
    }

    private fun onHikesFetched(hikes: List<Hike>) {
        // Continue with the rest of the view-model logic
        // Beware, this code is executed from a background thread
    }
}


When performing IO operations, having 10 threads is reasonable, even on Android devices. In the case of
Executors.newWorkStealingPool, the actual number of threads grows and shrinks dynamically, depending on the load.
Do note, however, that a work-stealing pool makes no guarantees about the order in which submitted tasks are executed.

Note

We could also have leveraged the Android primitive ThreadPoolExecutor class. More specifically, we could have
created our thread pool this way:


private val ioThreadPool: ExecutorService =
    ThreadPoolExecutor(
        4,   // Initial pool size
        10,  // Maximum pool size
        1L,
        TimeUnit.SECONDS,
        LinkedBlockingQueue()
    )


The usage is then exactly the same. Even if there are subtle differences with the work-stealing pool we initially
created, what’s important to notice here is how you can submit tasks to the thread pool.




Using a thread pool just for fetchHikesForUser could be overkill—especially if you don’t invoke
fetchHikesForUser for different users concurrently.
Consider the rest of the implementation that uses an ExecutorService for more sophisticated concurrent work, as shown
in the following code:


class HikesViewModel : ViewModel() {
    // other attributes
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()

    fun fetchHikesAsync(userId: String) { // content hidden }

    private fun onHikesFetched(hikes: List<Hike>) {
        hikes.forEach { hike  ->
            ioThreadPool.submit {
                val weather = fetchWeather(hike)         [image: 1]
                val hikeData = HikeData(hike, weather)   [image: 2]
                hikeDataList.add(hikeData)               [image: 3]
                hikeLiveData.postValue(hikeDataList)     [image: 4]
            }
        }
    }
}


For each Hike, a new task is submitted. This new task:


	[image: 1]

	Fetches weather information


	[image: 2]

	Stores Hike and Weather objects inside a HikeData container


	[image: 3]

	Adds the HikeData instance to an internal list


	[image: 4]

	Notifies the view that the HikeData list has changed, which will pass the newly updated state of that list data





We explicitly left a common mistake in the preceding code.  Can you spot it?
Although it runs fine as is, imagine that we add a public method to add a new hike:


fun addHike(hike: Hike) {
    hikeDataList.add(HikeData(hike, null))
    // then fetch Weather and notify view using hikeLiveData
}


In step 3 in the onHikesFetched method, we added a new element to

hikeDataList from one of the background threads of ioThreadPool.
What could go wrong with such a harmless method?


You could try to invoke addHike from the main thread while hikeDataList is being modified by a background thread.


Nothing enforces the thread from which the public addHike is going to be called. In Kotlin on the JVM, a mutable list
is backed by an ArrayList. However, an ArrayList isn’t thread-safe. Actually, this isn’t the only
mistake we’ve made. hikeDataList isn’t correctly published—there’s no guarantee that in step 4 the background
thread sees an updated value for hikeDataList. There is no happens before2
enforcement here from the Java memory model—the background thread might not see an up-to-date state of hikeDataList,
even if the main thread put a new element in the list 
beforehand.


Consequently, the iterator within the onHikesFetched chain will throw a ConcurrentModificationException when it
realizes the collection has been “magically” modified. Populating hikeDataList from a background thread isn’t safe in
this case (see Figure 8-1).



[image: AddHike ConcurrenctModificationException]
Figure 8-1. addHike adds to the existing hikeDataList that is already being modified in the background thread.




Falling into this pattern, even when safe, increases the likelihood that habit overtakes sensibility
and that during the same day or week or month, this mistake repeats in a less safe circumstance.
Consider other team members with edit access to the same codebase and you can see that we quickly lose control.


Thread safety matters anytime multiple threads are attempting to access the same resource at the same time, and it’s hard
to get right. This is why defaulting to the main thread3
is considered a good practice.


So how would you do this? Are you able to get the background thread to tell the main thread “add this element to
this list whenever you can, then notify the view with the updated list of HikeData”? For this purpose, you can use
the handy HandlerThread and Handler classes.

















A Reminder About HandlerThread


A HandlerThread is a thread to which a “message loop” is attached. It’s an
implementation of the producer-consumer design pattern, where the HandlerThread is the consumer. A Handler sits
between the actual message queue and other threads that can send new messages. Internally,
the loop that consumes the message queue is created using the Looper class (also called “looper”). A HandlerThread
completes when you invoke its quit or quickSafely method. Paraphrasing Android’s documentation, the quit method causes
the handler thread’s looper to terminate without processing any more messages in the message queue. The quitSafely
method causes the handler thread’s looper to terminate as soon as all remaining messages in the message queue, that are
already due to be delivered, have been handled.


Be really careful about remembering to stop a HandlerThread. For example, imagine you start a HandlerThread within
the lifecycle of an activity (say, in an onCreate method of a fragment). If you rotate the device, the activity
is destroyed and then re-created. A new HandlerThread instance is then created and started while the old one is still
running, leading to a serious memory leak (see Figure 8-2)!



[image: HandlerThread]
Figure 8-2. A HandlerThread consumes tasks coming from the MessageQueue.




On Android, the main thread is a HandlerThread. Because creating a Handler to post messages to the main thread
is very common, a static method on the Looper class exists to get the reference on the main thread’s Looper instance. Using a Handler, you can post a Runnable to be executed on the thread that the Looper instance associated with the Handler is attached to. The Java signature is:


public final boolean post(@NonNull Runnable r) { ... }


Since a Runnable only has one abstract method, run, it can be nice and syntactically sweetened  in Kotlin using a
lambda, as shown in the following code:


// Direct translation in Kotlin (though not idiomatic)
handler.post(object: Runnable {
      override fun run() {
         // content of run
      }
   }
)

// ..which can be nicely simplified into:
handler.post {
    // content of `run` method
}


In practice, you just create it like this:


val handler: Handler = Handler(Looper.getMainLooper())


Then you can can utilize the loop handler in the previous example, as shown in the following code:


class HikesViewModel : ViewModel() {
    private val ioThreadPool: ExecutorService = Executors.newWorkStealingPool(10)
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()
    private val handler: Handler = Handler(Looper.getMainLooper())

    private fun onHikesFetched(hikes: List<Hike>) {
        hikes.forEach { hike  ->
            ioThreadPool.submit {
                val weather = fetchWeather(hike)
                val hikeData = HikeData(hike, weather)

                // Here we post a Runnable
                handler.post {
                    hikeDataList.add(hikeData)           [image: 1]
                    hikeLiveData.value = hikeDataList    [image: 2]
                }
            }
        }
    }

    // other methods removed for brevity
}


This time, we post a Runnable to the main thread, in which:


	[image: 1]

	A new HideData instance is added to hikeDataList.


	[image: 2]

	hikeLiveData is given the hikeDataList as an updated value. Notice that we 
can use the highly readable and intuitive assignment operator here: 
hikeLiveData.value = ..,
which is nicer than 
hikeLiveData.postValue(..). This is because the Runnable will be
executed from the main thread—postValue is only useful when updating the value of a LiveData from a background thread.





Doing this, all accessors of hikeDataList are thread-confined to the main thread (see Figure 8-3),
eliminating all possible concurrency hazards.



[image: Thread-confined]
Figure 8-3. The main thread can only access hikeDataList.




That’s it for the “traditional” approach. Other libraries like RxJava/RxKotlin and Arrow could have been used to perform
essentially the same thing. The logic is made of several steps. You start the first one, giving it a callback containing the
set of instructions to run when the background job is done. Each step is connected to the next by the code
inside the callbacks. We’ve discussed it in Chapter 6, and we hope that we’ve illuminated
some potential pitfalls and given you the tools to avoid them.


Interestingly, callback complexity doesn’t seem to be an issue in this example—everything is done with two methods,
a Handler and a ExecutorService. However, an insidious situation arises in the following scenario:


A user navigates to a list of hikes, then fetchHikesAsync is called on the ViewModel. The user just installed the
application on a new device; thus the history isn’t in cache, so the app has to access remote APIs to fetch
fresh data from some remote service.


Let’s assume that the wireless network is slow, but not so slow as to cause IO timeout errors. The view keeps showing
that the list is updating, and the user might think that there is in fact a suppressed error, and retry the fetch
(which might be available using some refresh UI like a SwipeRefreshLayout, an explicit refresh button, or even
just using  navigation to reenter the UI and presume a fetch will be called implicitly).


Unfortunately, nothing in our implementation anticipates this. When fetchHikesAsync is called, a workflow is
launched and cannot be stopped. Imagining the worst case, every time a user navigates back and reenters in the hike
list view, a new workflow is launched. This is clearly poor design.


A cancellation mechanism might be one possible solution. We might implement a cancellation mechanism by ensuring that
every new call of fetchHikesAsync cancels any previous in-flight or pending call. Alternatively, you could discard
new calls of fetchHikesAsync while a previous call is still running. Implementing that in this context requires
thoughtfulness and deliberation.


A cancellation mechanism isn’t as fire-and-forget as we might find in other flows, because you have to ensure that
every background thread effectively stops their 
execution.


As you know from the previous chapter, coroutines and suspending functions can be a great fit here, and in similar
circumstances. We chose this hiking app example because we have a great opportunity to use suspending functions.

















Using Suspending Functions and Coroutines


As a reminder, we’ll now implement the exact same logic; but this time we’ll be using suspending functions and coroutines.


You declare a suspending function when the function may not return immediately. Therefore, any blocking function
is eligible to be rewritten as a suspending function.


The fetchHikesForUser function is a good example because it blocks the calling thread until it returns a list of Hike
 instances. Therefore, it can be expressed as a suspending function, as shown in the following code:


suspend fun hikesForUser(userId: String): List<Hike> {
    return withContext(Dispatchers.IO) {
        fetchHikesForUser(userId)
    }
}


We had to pick another name for the suspending function. In this example, blocking calls are prefixed with “fetch”
by convention.


Similarly, as shown in Example 8-1, you can declare the equivalent for fetchWeather.


Example 8-1. fetchWeather as suspending function


suspend fun weatherForHike(hike: Hike): Weather {
    return withContext(Dispatchers.IO) {
        fetchWeather(hike)
    }
}



Those suspending functions are wrappers around their blocking counterpart. When invoked from inside a coroutine, the
Dispatcher supplied to the withContext function determines which thread pool the blocking call is executed on. Here,
Dispatchers.IO is a perfect fit and is very similar to the work-stealing pool seen earlier.

Note

Once you’ve wrapped blocking calls in suspending blocks like the suspending weatherForHike function, you’re now ready
to use those suspending functions inside coroutines—as you’ll see shortly.


Actually, there’s a convention with suspending functions to make everyone’s life simpler: a suspending function never blocks the calling thread. In the case of weatherForHike, this is indeed the case, since regardless of which thread invokes weatherForHike from within a coroutine, the withContext(Dispatchers.IO) statement causes the execution to jump to another thread.4




Everything we’ve done using the callback pattern can now fit in a single public update method, which reads like
procedural code. This is possible thanks to the suspending functions, as shown in Example 8-2.


Example 8-2. Using suspending functions in the view-model


class HikesViewModel : ViewModel() {
    private val hikeDataList = mutableListOf<HikeData>()
    private val hikeLiveData = MutableLiveData<List<HikeData>>()

    fun update() {
        viewModelScope.launch {                                 [image: 1]
            /* Step 1: get the list of hikes */
            val hikes = hikesForUser("userId")                  [image: 2]

            /* Step 2: for each hike, get the weather, wrap into a
             * container, update hikeDataList, then notify view
             * listeners by updating the corresponding LiveData */
            hikes.forEach { hike ->                             [image: 3]
                launch {
                    val weather = weatherForHike(hike)          [image: 4]
                    val hikeData = HikeData(hike, weather)
                    hikeDataList.add(hikeData)
                    hikeLiveData.value = hikeDataList
                }
            }
        }
    }
}



We’re going to provide the details of Example 8-2 step by step:


	[image: 1]

	When update is called, it immediately starts a coroutine, using the launch coroutine builder. As you know, a
coroutine is never launched out of the blue. As we’ve seen in Chapter 7, a coroutine must always be
started within a CoroutineScope. Here, we’re using viewModelScope.


Where does this scope come from? The Android Jetpack team from Google know that using Kotlin and coroutines
requires a CoroutineScope. To ease 
your life, they maintain Android KTX,
which is a set of Kotlin extensions on the Android platform and other APIs. The goal is to use Kotlin idioms while still
integrating nicely with the Android framework. They leverage extension functions, lambdas, parameter default values,
and coroutines.
Android KTX is made of several libraries. In this example, we used lifecycle-viewmodel-ktx.
To use it in your app, you should add the following to your dependencies listed in your 
build.gradle (use a newer version if available):
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0".


	[image: 2]

	The line val hikes = hikesForUser("userId") is the first suspension point. The coroutine started by launch is
stopped until hikesForUser returns.


	[image: 3]

	You’ve got your list of Hike instances. Now you can concurrently fetch the weather data for each of them. We can use
a loop and start a new coroutine for each hike using launch.


	[image: 4]

	val weather = weatherForHike(hike) is another suspension point. Each of the coroutines started in the for loop will
reach this suspension point.





Let’s have a closer look at the coroutine started for each Hike instance in the following code:


launch {
    val weather = weatherForHike(hike)
    val hikeData = HikeData(hike, weather)
    hikeDataList.add(hikeData)
    hikeLiveData.value = hikeDataList
}


Since the parent scope (viewModelScope) defaults to the main thread, every single line inside the launch block is
executed on the main thread, except the content of 
the suspending function weatherForHike, which uses Dispatchers.IO (see Example 8-1).
The assignment of weather is done on the main thread. Therefore, the usages of hikeDataList are confined to the main
thread—there are no thread-safety issues. As for hikeLiveData, you can use
the setter of its value (and since we’re in Kotlin, that means the assignment operator), instead of postValue, since
we know we’re calling this from the main thread.

Warning

When using a coroutine scope, you should always be conscious 
of how it manages your coroutines, especially knowing what 
Dispatcher the scope uses. The following code shows how it’s declared in the source code of the library:


val ViewModel.viewModelScope: CoroutineScope
  get() {
    val scope: CoroutineScope? = this.getTag(JOB_KEY)
    if (scope != null) {
       return scope
    }
    return setTagIfAbsent(
       JOB_KEY,
       CloseableCoroutineScope(
          SupervisorJob() +  Dispatchers.Main.immediate))
  }



As you can see in this example, viewModelScope is declared as an extension property on the ViewModel class. Even if the ViewModel class has absolutely no notion of CoroutineScope, declaring it in this manner enables the syntax in our example. Then,
an internal store is consulted to check whether a scope has already been created or not. If not, a new one is created using CloseableCoroutineScope(..).5 For instance, don’t pay attention to SupervisorJob—we’ll explain its role later when we discuss cancellation. What’s particularly relevant here is Dispatchers.Main.immediate, a variation of Dispatcher.Main, which executes coroutines immediately when they are launched from the main thread. Consequently, this scope defaults to the main thread.  This is a critical piece of information that you’ll need to
know moving forward from here.



















Summary of Suspending Functions Versus Traditional Threading


Thanks to suspending functions, asynchronous logic can be written like procedural code. Since the Kotlin compiler generates all the necessary callbacks and boilerplate code under the hood, the code you write using a cancellation mechanism can be much more concise.6 For example, a coroutine scope that uses Dispatchers.Main doesn’t need Handlers or
other communication primitives to pass data to and from a background thread to the main thread, as is still
the case with purely multithreaded environments (without coroutines).
Actually, all the problems we had in the thread-based approach are now nicely solved using coroutines—and that
includes the cancellation mechanism.


Code using coroutines and suspending functions can also be more readable, as there can be far fewer implicit or
indirect instructions (like nested calls, or SAM instances, as described in Chapter 6). Moreover,
IntelliJ and Android Studio make those suspending calls stand out with a special icon in the margin.


In this section, we only scratched the surface of cancellation. The following section covers all you need to know about cancellation with coroutines.
























Cancellation


Handling task cancellation is a critical part of an Android application.
When a user navigates for the first time to the view displaying the list of hikes along with statistics and weather, a
decent number of coroutines are started from the view-model. If for some reason the user decides to leave the view,
then the tasks launched by the view-model are probably running for nothing. Unless of course the user later navigates
back to the view, but it’s dangerous to assume that. To avoid wasting resources, a good practice in this scenario is to
cancel all ongoing tasks related to views no longer needed. This is a good example of cancellation you might implement
yourself, as part of your application design.
There’s another kind of cancellation: the one that happens when something bad happens.
So we’ll distinguish the two types here:


	Designed cancellation

	
For example, a task that’s cancelled after a user taps a “Cancel” button in a
custom or arbitrary  UI.



	Failure cancellation

	
For example, a cancellation that’s caused by exceptions, either intentionally (thrown) or unexpectedly (unhandled).






Keep those two types of cancellation in mind, as you’ll see that the coroutine framework handles them differently.










Coroutine Lifecycle


To understand how cancellation works, you need to be aware that a coroutine has a lifecycle, which is shown in
Figure 8-4.



[image: Lifecyle]
Figure 8-4. Coroutine lifecycle.




When a coroutine is created, for example, with the launch {..} function with no additional context or arguments, it’s
created in the Active state. That means it starts immediately when launch is called. This is also called eagerly
started. In some situations, you might want to start a coroutine lazily, which means it won’t do anything until you
manually start it. To do this, launch and async can both take a named argument “start,” of type CoroutineStart.
The default value is CoroutineStart.DEFAULT (eager start), but you can use CoroutineStart.LAZY, as in the following code:


val job = scope.launch(start = CoroutineStart.LAZY) { ... }
// some work
job.start()


Don’t forget to call job.start()! Because when started lazily, a coroutine needs to be explicitly started.7 You don’t have to do this by default, as a coroutine
is created in the Active state.


When a coroutine is done with its work, it remains in the Completing state until all of its children reach the
Completed state (see Chapter 7). Only then does it reach the 
Completed state. As usual, let’s crack open the source code and take a look at the 
following:


viewModelScope.launch {
    launch {
        fetchData()   // might take some time
    }
    launch {
        fetchOtherData()
    }
}


This viewModelScope.launch completes its work almost instantly: it only starts two child coroutines and does nothing
else on its own. It quickly reaches the Completing state and moves to the Completed state only when the child
coroutines complete.












Coroutine cancellation


While in Active or Completing state, if an exception is thrown or the logic calls 
cancel(), the coroutine transitions to Cancelling state. If required, this is when you perform necessary cleanup. The coroutine remains in this Cancelling state until the cleanup job is done with its work. Only then will the coroutine transition to the 
Cancelled state.

















Job holds the state


Internally, all those states of the lifecycle are held by the Job of the coroutine. The Job doesn’t have a property
named “state” (whose values would range from “NEW” to “COMPLETED”). Instead, the state is represented by three Booleans
(flags): 
isActive, isCancelled, and isCompleted. Each state is represented by a combination of those flags, as you can see in Table 8-1.


Table 8-1. Job states


	State
	isActive
	isCompleted
	isCancelled





	New (optional initial state)

	false

	false

	false




	Active (default initial state)

	true

	false

	false




	Completing (transient state)

	true

	false

	false




	Cancelling (transient state)

	false

	false

	true




	Cancelled (final state)

	false

	true

	true




	Completed (final state)

	false

	true

	false







As you can see, there is no way to distinguish the Completing state from the Active state using only those Booleans.
Anyway, in most cases what you will really care about is the value of a particular flag, rather than the state itself.
For example, if you check for isActive, you’re actually checking for Active and Completing states at the same time.
More on that in the next section.






















Cancelling a Coroutine


Let’s take a look at the following example, where we have a coroutine which simply prints on the console "job: I'm working.." twice per second. The parent coroutine waits a little before cancelling this coroutine:


val startTime = System.currentTimeMillis()
val job = launch(Dispatchers.Default) {
    var nextPrintTime = startTime
    while (true) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}
delay(1200)
println("main: I'm going to cancel this job")
job.cancel()
println("main: Done")


You can see that the instance of Job returned by launch has a cancel() method. As its name suggests, it cancels
the running coroutine. By the way, a Deferred instance—which is returned by the async coroutine builder—also
has this cancel() method since a Deferred instance is a specialized Job.


Back to our example: you might expect this little piece of code to print “job: I’m working..” three times. Actually,
the output is:


job: I'm working..
job: I'm working..
job: I'm working..
main: I'm going to cancel this job
main: Done
job: I'm working..
job: I'm working..


So the child coroutine is still running despite the cancellation from the parent. This is because the child coroutine
isn’t cooperative with cancellation. There are several ways to change that. The first one is by periodically checking for the cancellation status of the coroutine, using isActive, as shown in the following code:


val job = launch(Dispatchers.Default) {
    var nextPrintTime = startTime
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}


You can call isActive this way because it’s an extension property on CoroutineScope, as shown in the following code:


/**
 * Returns true when the current Job is still active (has not
 * completed and was not cancelled yet).
 */
val CoroutineScope.isActive: Boolean (source)


Now that the code is cooperative with cancellation, the result is:


job: I'm working..
job: I'm working..
job: I'm working..
main: I'm going to cancel this job
main: Done


Using isActive is simply reading a Boolean value. Determining whether the job should be stopped, and both the setup and execution of that logic, is your r[.keep-together]
esponsibility.


In lieu of isActive, ensureActive can be used. The difference between isActive and ensureActive
is that the latter immediately throws a 
CancellationException if the job is no longer active.


So ensureActive is a drop-in replacement of the following code:


if (!isActive) {
    throw CancellationException()
}


Similarly to Thread.yield(), there is a third possibility: yield(), which is a 
suspending function. In addition to
checking the cancellation status of the job, the underlying thread is released and is made available for other coroutines.
This is especially useful when performing CPU-intensive computations inside a coroutine using 
Dispatchers.Default
(or similar). Placing yield() at strategic places, you can avoid exhausting the thread pool. In other words, you probably
don’t want a coroutine to be too selfish, and keep a core busy with specific contextual responsibilities for an 
extended
period of time, if those resources could be better served in another process. To be more cooperative, a greedy CPU-bound
coroutine should yield() from time to time, giving other coroutines the opportunity to run.


Those ways of interrupting a coroutine are perfect when the cancellation is happening inside your code. What if you
just delegated some work to a third-party library, like an HTTP client?

















Cancelling a Task Delegated to a Third-Party Library


OkHttp is a widely deployed HTTP client on Android. If you’re not familiar with this library, the following is a snippet taken from the
official documentation, to perform an synchronous GET:


fun run() {
    val request = Request.Builder()
        .url("https://publicobject.com/helloworld.txt")
        .build()

    client.newCall(request).execute().use { response ->
      if (!response.isSuccessful)
          throw IOException("Unexpected code $response")

      for ((name, value) in response.headers) {
        println("$name: $value")
      }

      println(response.body?.string())
    }
}


This example is pretty straightforward. client.newCall(request) returns an instance of Call. You enqueue an instance
of Callback while your code proceeds unfazed. Is this cancellable? Yes. A Call can be manually cancelled using 
call.cancel().


When using coroutines, the preceding example is the kind of code you might write inside a coroutine. It would be ideal if
this cancellation was done automatically upon cancellation of the coroutine inside of which the HTTP request is done.
Otherwise, the following shows what you would have to write:


if (!isActive) {
    call.cancel()
    return
}


The obvious caveat is that it pollutes your code—not to mention that you could forget to add this check, or have it at
the wrong place. There must be a better solution to this.


Thankfully, the coroutine framework comes with functions specifically designed to turn a function that
expects a callback into a suspending function. They come in several flavors including suspendCancellableCoroutine.
The latter is designed to craft a suspending function which is cooperative with cancellation.


The following code shows how to create a suspending function as an extension function of Call, which is cancellable and suspends
until you get the response of your HTTP request, or an exception occurs:


suspend fun Call.await() = suspendCancellableCoroutine<ResponseBody?> {
    continuation ->

    continuation.invokeOnCancellation {
        cancel()
    }

    enqueue(object : Callback {
        override fun onResponse(call: Call, response: Response) {
            continuation.resume(response.body)
        }

        override fun onFailure(call: Call, e: IOException) {
            continuation.resumeWithException(e)
        }
    })
}


If you’ve never seen code like this, it’s natural to be afraid of its off-putting complexity. The great news is that this function is fully generic—it only needs to be written once. You can have
it inside a “util” package of your project if you want, or in your parallelism package; or just remember the basics
and use some version of it when performing conversions like that.


Before showing the benefits of such a utility method, we owe you a detailed 
explanation.


In Chapter 7, we explained how the Kotlin compiler generates a Continuation instance
for each suspending function. The suspendCancellableCoroutine function gives you the opportunity to use this instance
of Continuation. It accepts a lambda with CancellableContinuation as receiver, as shown in the following code:


public suspend inline fun <T> suspendCancellableCoroutine(
    crossinline block: (CancellableContinuation<T>) -> Unit
): T


A CancellableContinuation is a Continuation that is cancellable. We can register a callback that will be invoked
upon cancellation, using invokeOnCancellation { .. }. In this case, all we want is to cancel the Call. Since we’re
inside an extension function of Call, we add the following code:


continuation.invokeOnCancellation {
    cancel()   // Call.cancel()
}


After we’ve specified what should happen upon cancellation of the suspending 
function,  we  perform  the  actual  HTTP  request  by  invoking  Call.enqueue(),  giving 
a Callback instance. A suspending function “resumes” or “stops suspending” when 
the corresponding Continuation is resumed, with either resume or 
resumeWithException.


When you get the result of your HTTP request, either onResponse or onFailure will be called on the Callback
instance you provided. If onResponse is called, this is the “happy path.” You got a response and you should now
resume the continuation with a result of your choice. As shown in Figure 8-5, we chose the body of the HTTP response.
Meanwhile, on the “sad path,” onFailure is called, and OkHttp API gives you an instance of an IOException.



[image: Happy Path/Sad Path]
Figure 8-5. (1) First, a device will send an HTTP request to the server. (2) The type of the response being returned will determine what happens next. (3) If the request is a success, then onResponse is called. Otherwise, onFailure is executed.




It is important to resume the continuation with this exception, using

resumeWithException. This way, the coroutine framework knows about the failure of this suspending function and will
propagate this event all the way up the coroutine hierarchy.


Now, for the best part: a showcase of how to use it inside a coroutine, as shown in the following:


fun main() = runBlocking {
    val job = launch {                                        [image: 1]
        val response = performHttpRequest()                   [image: 2]
        println("Got response ${response?.string()}")
    }
    delay(200)                                                [image: 3]
    job.cancelAndJoin()                                       [image: 4]
    println("Done")
}

val okHttpClient = OkHttpClient()
val request = Request.Builder().url(
    "http://publicobject.com/helloworld.txt"
).build()

suspend fun performHttpRequest(): ResponseBody? {
     return withContext(Dispatchers.IO) {
         val call = okHttpClient.newCall(request)
         call.await()
     }
}


	[image: 1]

	We start off by launching a coroutine with launch.


	[image: 2]

	Inside the coroutine returned by launch, we invoke a suspending function performHttpRequest, which uses Dispatchers.IO.
This suspending function creates a new Call instance and then invokes our suspending await() on it. At this point, an
HTTP request is performed.


	[image: 3]

	Concurrently, and while step 2 is done on some thread of Dispatchers.IO, our main thread proceeds execution
of the main method, and immediately encounters delay(200). The coroutine running on the main thread is suspended for 
200 ms.


	[image: 4]

	After 200 ms have passed, we invoke job.cancelAndJoin(), which is a convenience method for job.cancel(), then job.join().
Consequently, if the HTTP request takes longer than 200 ms, the coroutine started by launch is still in the Active state.
The suspending performHttpRequest hasn’t returned yet. Calling job.cancel() cancels the coroutine. Thanks to
structured concurrency, the coroutine knows about all of its children. The cancellation is propagated all the way down
the hierarchy. The Continuation of performHttpRequest gets cancelled, and so does the HTTP request. If the HTTP
request takes less than 200 ms, 
job.cancelAndJoin() has no effect.





No matter how deep in the coroutine hierarchy the HTTP request is performed, if our predefined Call.await() is used,
the cancellation of the Call is triggered if a parent coroutine is cancelled.

















Coroutines That Are Cooperative with Cancellation


You’ve just seen the various techniques to make a coroutine cancellable. Actually, the coroutine framework has a
convention: a well-behaved cancellable coroutine throws a CancellationException when it’s cancelled. Why? Let’s look
at this suspending function in the following code:


suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}


It is indeed cancellable thanks to the isActive check. Imagine that you need to do some cleanup when this function
is cancelled. You know when this function is cancelled when isActive == false, so you can add a cleanup block at the
end, as shown in the following:


suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (isActive) {
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }

    // cleanup
    if (!isActive) { .. }
}


Sometimes you’ll need to have the cleanup logic outside the cancelled function; 
for example, when this function comes
from an external dependency. So you need 
to find a way to notify the call stack that this function is cancelled.
Exceptions are perfect for this. This is why the coroutine framework follows this convention of throwing 
a CancellationException. Actually, all suspending functions from the 
kotlinx.coroutines package are cancellable and
throw CancellationException when cancelled. 
withContext is one of them, so you could react to wasteCpu cancellation
higher in the call stack, as shown in the following code:


fun main() = runBlocking {
    val job = launch {
        try {
            wasteCpu()
        } catch (e: CancellationException) {
            // handle cancellation
        }
    }
    delay(200)
    job.cancelAndJoin()
    println("Done")
}


If you run this code, you’ll find that a CancellationException is caught. Even though we never explicitly threw a
CancellationException from inside wasteCpu(), withContext did it for us.

Note

By throwing CancellationException only  in case of cancellation, the coroutine framework is able to differentiate a
simple cancellation from a failure of a coroutine. In the latter case, an exception will be raised that isn’t a subtype
of CancellationException.


If you wish to investigate coroutine cancellation, you can name your coroutines and enable debugging of coroutines inside the IDE by adding the VM option 
-Dkotlinx.coroutines.debug. To name a coroutine, simply add a CoroutineName context element like so: val job = launch(CoroutineName("wasteCpu")) {..}.
This way, when catching a 
CancellationException, the stacktrace is much more explicit and begins with the following line:


kotlinx.coroutines.JobCancellationException: StandaloneCoroutine was cancelled; job="wasteCpu#2":StandaloneCoroutine{Cancelling}@53bd815b




In the previous example, if you swap wasteCpu() with performHttpRequest()—the suspending function we made earlier
with suspendCancellableCoroutine—you will also find that a CancellationException is caught. So a suspending
function made with suspendCancellableCoroutine also throws a CancellationException when cancelled.

















delay Is Cancellable


Remember delay()? Its signature is shown in the following code:


public suspend fun delay(timeMillis: Long) {
    if (timeMillis <= 0) return // don't delay
    return suspendCancellableCoroutine sc@ { .. }
}


suspendCancellableCoroutine again! So this means that anywhere you use delay, you’re giving a coroutine or suspending
function the opportunity to cancel. Building on this, we could rewrite wasteCpu() as in the following:


private suspend fun wasteCpu() = withContext(Dispatchers.Default) {
    var nextPrintTime = System.currentTimeMillis()
    while (true) {       [image: 1]
        delay(10)        [image: 2]
        if (System.currentTimeMillis() >= nextPrintTime) {
            println("job: I'm working..")
            nextPrintTime += 500
        }
    }
}


Notice that:


	[image: 1]

	We removed the isActive check.


	[image: 2]

	Then we added a simple delay, with a small enough sleep time (so the behavior is similar to the previous implementation).





This new version of wasCpu turns out to be cancellable just like the original, and throws CancellationException
when cancelled. This is because this suspending function spends most of its time in the delay function.

Tip

To summarize this section, you should strive to make your suspending functions cancellable. A suspending function can
be made of several suspending functions. All of them should be cancellable. For example, if you need to perform a CPU-heavy computation, then you should use yield() or ensureActive() at strategic places. For example:


suspend fun compute() = withContext(Dispatchers.Default) {
     blockingCall()  // a regular blocking call, hopefully not blocking too long
     yield()  // give the opportunity to cancel
     anotherBlockingCall()   // because why not
}



















Handling Cancellation


In the previous section, you learned that it is possible to react to cancellation using a try/catch statement. However,
imagine that inside the code handling the cancellation, you need to call some other suspending functions.
You could be tempted to implement the strategy shown in the following code:


launch {
    try {
        suspendCall()
    } catch (e: CancellationException) {
       // handle cancellation
       anotherSuspendCall()
   }
}


Sadly, the preceding code doesn’t compile. Why? Because a cancelled coroutine isn’t allowed to suspend. This is another
rule from the coroutine framework. The solution is to use withContext(NonCancellable), as shown in the following code:


launch {
    try {
        suspendCall()
    } catch (e: CancellationException) {
       // handle cancellation
       withContext(NonCancellable) {
            anotherSuspendCall()
       }
   }
}


NonCancellable is specifically designed for withContext to make sure the supplied block of code won’t be cancelled.8

















Causes of Cancellation


As we’ve seen before, there are two kinds of cancellation: by design and by failure. Initially, we said that a failure is encountered when an exception is thrown. It was a bit of an overstatement. You’ve just
seen that, when voluntarily cancelling a coroutine, a CancellationException is thrown. This is in fact what distinguishes
the two kinds of cancellation.


When cancelling a coroutine Job.cancel (by design), the coroutine terminates without affecting its parent. If the
parent also has other child coroutines, they also aren’t affected by this cancellation. The following code illustrates
this:


fun main() = runBlocking {
    val job = launch {
        val child1 = launch {
            delay(Long.MAX_VALUE)
        }
        val child2 = launch {
            child1.join()
            println("Child 1 is cancelled")

            delay(100)
            println("Child 2 is still alive!")
        }

        println("Cancelling child 1..")
        child1.cancel()
        child2.join()
        println("Parent is not cancelled")
    }
    job.join()
}


The output of this program is:


Cancelling child 1..
Child 1 is cancelled
Child 2 is still alive!
Parent is not cancelled


child1 delays forever while child2 waits for child1 to proceed. The parent quickly cancels child1, and we can see
that child1 is indeed cancelled since child2 continues its execution. Finally, the output “Parent is not cancelled” is
proof that the parent wasn’t affected by this cancellation (nor was child2, by the way).


On the other hand, in the case of a failure (if an exception different from 
CancellationException was thrown), the
default behavior is that the parent gets cancelled with that exception. If the parent also has other child coroutines,
they are also cancelled. Let’s try to illustrate this. Spoiler alert—don’t do what we show in the following:


fun main() = runBlocking {
    val scope = CoroutineScope(coroutineContext + Job())    [image: 1]

    val job = scope.launch {                                [image: 2]
        launch {
            try {
                delay(Long.MAX_VALUE)                       [image: 3]
            } finally {
                println("Child 1 was cancelled")
            }
        }

        launch {
            delay(1000)                                     [image: 4]
            throw IOException()
        }
    }
    job.join()                                              [image: 5]
}


What we’re trying to create is a circumstance in which a child fails after some time, and we want to check that it
causes the parent to fail. Then we need to confirm that all other child coroutines of that parent should be cancelled
too, assuming that’s the cancellation policy we passed.


At first glance, this code looks OK:


	[image: 1]

	We’re creating the parent scope.


	[image: 2]

	We’re starting a new coroutine inside this scope.


	[image: 3]

	The first child waits indefinitely. If this child gets cancelled, it should print “Child 1 was cancelled” since a
CancellationException would have been thrown from the delay(Long.MAX_VALUE).


	[image: 4]

	Another child throws an IOException after a delay of 1 second.


	[image: 5]

	Wait for the coroutine started in step 2. If you don’t do this, the execution of runBlocking terminates and the program
stops.





Running this program, you indeed see “Child 1 was cancelled,” though the program crashes right after with an uncaught IOException. Even if you surround job.join() with a try/catch block, you’ll still get the crash.


What we’re missing here is the origination of the exception. It was thrown from inside a launch, which propagates exceptions upward through the coroutine hierarchy until it reaches the parent scope. This behavior cannot be overridden. Once that scope sees the exception, it cancels itself and all its children, then propagates the exception to its parent, which is the scope of runBlocking.


It’s important to realize that trying to catch the exception isn’t going to change the fact that the root coroutine of
runBlocking is going to be cancelled with that exception.


In some cases, you might consider this as an acceptable scenario: any unhandled exception leads to a program crash.
However, in other scenarios you might prefer to prevent the failure of scope to propagate to the main coroutine.
To this purpose, you need to register a CoroutineExceptionHandler (CEH):


fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, exception ->
        println("Caught original $exception")
    }
    val scope = CoroutineScope(coroutineContext + ceh + Job())

    val job = scope.launch {
         // same as in the previous code sample
    }
}


A CoroutineExceptionHandler is conceptually very similar to Thread.UncaughtExceptionHandler—except it’s intended for coroutines. It’s a Context element, which should be added to the context of a scope or a coroutine. The scope
should create its own Job instance, as a CEH only takes effect when installed at the top of a coroutine hierarchy. In the preceding example, we added the CEH to the context of the scope. We could very well have added it to the context of the first launch, like so:


fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, exception ->
        println("Caught original $exception")
    }

    // The CEH can also be part of the scope
    val scope = CoroutineScope(coroutineContext + Job())

    val job = scope.launch(ceh) {
        // same as in the previous code sample
    }
}


Running this sample with the exception handler, the output of the program now is:


Child 1 was cancelled
Caught original java.io.IOException


The program no longer crashes. From inside the CEH implementation, you could retry the previously failed operations.


This example demonstrates that by default, the failure of a coroutine causes its parent to cancel itself along with
all the other children of that parent. What if this behavior doesn’t match your application design? Sometimes the
failure of a coroutine is acceptable and doesn’t require the cancellation of all other coroutines started inside the
same scope. This is called supervision in the coroutine framework.
























Supervision


Consider the real-world example of loading a fragment’s layout. Each child View might require some background
processing to be fully constructed. Assuming you’re using a scope which defaults to the main thread, and child coroutines
for the background tasks, the failure of one of those tasks shouldn’t cause the failure of the parent scope. Otherwise,
the whole fragment would become unresponsive to the user.


To implement this cancellation strategy, you can use SupervisorJob, which is a Job for which the failure or cancellation
of a child doesn’t affect other children; nor does it affect the scope itself. A SupervisorJob is typically used as a
drop-in replacement for Job when building a CoroutineScope. The resulting scope is then called a “supervisor scope.”
Such a scope propagates cancellation downward only, as shown in the following code:


fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, e -> println("Handled $e") }
    val supervisor = SupervisorJob()
    val scope = CoroutineScope(coroutineContext + ceh + supervisor)
    with(scope) {
        val firstChild = launch {
            println("First child is failing")
            throw AssertionError("First child is cancelled")
        }

        val secondChild = launch {
            firstChild.join()

            delay(10) // playing nice with hypothetical cancellation
            println("First child is cancelled: ${firstChild.isCancelled}, but second one is still active")
        }

        // wait until the second child completes
        secondChild.join()
    }
}


The output of this sample is:


First child is failing
Handled java.lang.AssertionError: First child is cancelled
First child is cancelled: true, but second one is still active


Notice that we’ve installed a CEH in the context of the scope. Why? The first child throws an exception that is never caught. Even if a supervisor scope isn’t affected by the failure of a child, it still propagates unhandled exceptions—which, as you know, might cause the program to crash. This is precisely the purpose of a CEH: to handle uncaught exceptions. Interestingly enough, the CEH could also have been installed into the context of the first launch, with the same result, as shown in the following:


fun main() = runBlocking {
    val ceh = CoroutineExceptionHandler { _, e -> println("Handled $e") }
    val supervisor = SupervisorJob()
    val scope = CoroutineScope(coroutineContext + supervisor)
    with(scope) {
        val firstChild = launch(ceh) {
            println("First child is failing")
            throw AssertionError("First child is cancelled")
        }

        val secondChild = launch {
            firstChild.join()

            delay(10)
            println("First child is cancelled: ${firstChild.isCancelled}, but second one is still active")
        }

        // wait until the second child completes
        secondChild.join()
    }
}


A CEH is intended to be installed at the top of a coroutine hierarchy, as this is the place where uncaught exceptions
can be handled.


In this example, the CEH is installed on a direct child of the coroutine scope. You can install it on a nested coroutine, as in
the following:


val firstChild = launch {
    println("First child is failing")
    launch(ceh) {
       throw AssertionError("First child is cancelled")
    }
}


In this case, the CEH isn’t accounted for, and the program might crash.

















supervisorScope Builder


Similarly to coroutineScope builder—which inherits the current context and creates a new Job—supervisorScope
creates a SupervisorJob. Just like coroutineScope, it waits for all children to complete. One crucial difference
with coroutineScope is that it only propagates cancellation downward, and cancels all children only if it has failed
itself. Another difference with coroutineScope is how exceptions are handled. We’ll delve into that in the next section.

















Parallel Decomposition


Imagine that a suspending function has to run multiple tasks in parallel before returning its result. Take, for example,
the suspending function weatherForHike from our hiking app at the beginning of this chapter. Fetching the weather could involve
multiple APIs, depending on the nature of the data. Wind data and temperature could be fetched separately, from separate
data sources.


Assuming you have suspending functions fetchWind and fetchTemperatures, you could implement weatherForHike as follows:


private suspend fun weatherForHike(hike: Hike): Weather =
        withContext(Dispatchers.IO) {
   val deferredWind = async { fetchWind(hike) }
   val deferredTemp = async { fetchTemperatures(hike) }
   val wind = deferredWind.await()
   val temperatures = deferredTemp.await()
   Weather(wind, temperatures) // assuming Weather can be built that way
}


async can also be used in this example because withContext provides a CoroutineScope—its last
argument is a suspending lambda with CoroutineScope as the receiver. Without withContext, this sample wouldn’t compile,
because there wouldn’t be any scope provided for async.


withContext is particularly useful when you need to change the dispatcher inside your suspending function.
What if you don’t need to change your dispatcher? The suspending weatherForHike could very well be called from a
coroutine which is already dispatched to the IO dispatcher. Then, using withContext(Dispatchers.IO) would be redundant.
In such situations, you could use coroutineScope instead of or in conjunction with withContext. It’s a CoroutineScope
builder, which you use as in the following:


private suspend fun weatherForHike(hike: Hike): Weather = coroutineScope {
    // Wind and temperature fetch are performed concurrently
    val deferredWind = async(Dispatchers.IO) {
        fetchWind(hike)
    }
    val deferredTemp = async(Dispatchers.IO) {
        fetchTemperatures(hike)
    }
   val wind = deferredWind.await()
   val temperatures = deferredTemp.await()
   Weather(wind, temperatures) // assuming Weather can be built that way
}


Here, coroutineScope replaces withContext. What does this coroutineScope do? First of all, have a look at its signature:


public suspend fun <R> coroutineScope(block: suspend CoroutineScope.() -> R): R


From the official documentation, this function creates a CoroutineScope and calls the specified suspend block with
this scope. The provided scope inherits its

coroutineContext from the outer scope, but overrides the context’s Job.


This function is designed for parallel decomposition of work. When any child coroutine in this scope fails, this scope
fails and all the rest of the children are cancelled (for a different behavior, use supervisorScope). This function
returns as soon as the given block and all its child coroutines are completed.

















Automatic Cancellation


Applied to our example, if fetchWind fails, the scope provided by coroutineScope fails and
fetchTemperatures is subsequently cancelled. If fetchTemperatures involves allocating heavy objects, you can see
the benefit of the cancellation.


coroutineScope really shines when you need to perform several tasks concurrently.

















Exception Handling


Exception handling is an important part of your application design. Sometimes you will just catch exceptions immediately
after they’re raised, while other times you’ll let them bubble up the hierarchy until the dedicated component handles it.
To that extent, the language construct try/catch is probably what you’ve used so far. However, in the coroutine
framework, there’s a catch (pun intended). We could have started this chapter with it, but we needed to introduce you
to supervision and 
CoroutineExceptionHandler first.










Unhandled Versus Exposed Exceptions


When it comes to exception propagation, uncaught exceptions can be treated by the coroutine machinery as on of the following:


	Unhandled to the client code

	
Unhandled exceptions can only be handled by a CoroutineExceptionHandler.



	Exposed to the client code

	
Exposed exceptions are the ones the client code can handle using try/catch.






In this matter, we can distinguish two categories of coroutine builders based on how they treat uncaught exceptions:



	
Unhandled (launch is one of them)



	
Exposed (async is one of them)






First of all, do note that we’re talking about uncaught exceptions. If you catch an exception before it is handled by
a coroutine builder, everything works as usual—you catch it, so the coroutine machinery isn’t aware of it. The following
shows an example with launch and try/catch:


scope.launch {
    try {
        regularFunctionWhichCanThrowException()
    } catch (e: Exception) {
        // handle exception
    }
}


This example works as you would expect, if regularFunctionWhichCanThrowException is, as its name suggests, a regular
function which does not involve, directly or indirectly, other coroutine builders—in which case, special rules can apply
(as we’ll see later in this chapter).


The same idea applies to the async builder, as shown in the following:


fun main() = runBlocking {

    val itemCntDeferred = async {
        try {
            getItemCount()
        } catch (e: Exception) {
            // Something went wrong. Suppose you don't care and consider it should return 0.
            0
        }
    }

    val count = itemCntDeferred.await()
    println("Item count: $count")
}

fun getItemCount(): Int {
    throw Exception()
    1
}


The output of this program is, as you can easily guess:


Item count: 0


Alternatively, instead of try/catch, you could use runCatching. It allows for a nicer syntax if you consider that
the happy path is when no exception is thrown:


scope.launch {
     val result = runCatching {
           regularFunctionWhichCanThrowException()
     }

     if (result.isSuccess) {
         // no exception was thrown
     } else {
         // exception was thrown
     }
}


Under the hood, runCatching is nothing but a try/catch, returning a Result object, which offers some sugar methods
like getOrNull() and exceptionOrNull(), as in the following:


/**
 * Calls the specified function [block] with `this` value as its receiver
 * and returns its encapsulated result if invocation was successful,
 * catching and encapsulating any thrown exception as a failure.
 */
public inline fun <T, R> T.runCatching(block: T.() -> R): Result<R> {
    return try {
        Result.success(block())
    } catch (e: Throwable) {
        Result.failure(e)
    }
}


Some extension functions are defined on the Result and available out of the box, like getOrDefault which returns
the encapsulated value of the Result instance if Result.isSuccess is true or a provided default value otherwise.

















Exposed Exceptions


As we stated before, you can catch exposed exceptions using built-in language support: try/catch. The following code shows where we have created our own scope inside of which two concurrent tasks, task1 and task2, are started in a supervisorScope. task2 immediately fails:


fun main() = runBlocking {

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        supervisorScope {
            val task1 = launch {
                // simulate a background task
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                // try to fetch some count, but it fails
                throw Exception()
                1
            }

            try {
                task2.await()
            } catch (e: Exception) {
                println("Caught exception $e")
            }
            task1.join()
        }
    }

    job.join()
    println("Program ends")
}


The output of this program is:


Caught exception java.lang.Exception
Done background task
Program ends


This example demonstrates that inside a supervisorScope, async exposes uncaught exceptions in the await call.
If you don’t surround the await call with a try/catch block, then the scope of supervisorScope fails and cancels
task1, then exposes to its parent the exception that caused its failure.
So this means that even when using a supervisorScope, unhandled exceptions in a scope lead to the cancellation of the
entire coroutine hierarchy beneath that scope—and the exception is propagated up. By handling the exception the way we did in this
example, task 2 fails while task 1 isn’t affected.


Interestingly enough, if you don’t invoke task2.await(), the program executes as if no exception was ever—thrown`task2`
silently fails.


Now we’ll use the exact same example, but with a coroutineScope instead of 
supervisorScope:


fun main() = runBlocking {

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        coroutineScope {
            val task1 = launch {
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                throw Exception()
                1
            }

            try {
                task2.await()
            } catch (e: Exception) {
                println("Caught exception $e")
            }
            task1.join()
        }
    }

    job.join()
    println("Program ends")
}


The output of this program is:


Caught exception java.lang.Exception


Then the program crashes on Android due to java.lang.Exception—we’ll explain this shortly.


From this you can learn that inside a coroutineScope, async exposes uncaught exceptions but also notifies its
parent. If you don’t call task2.await(), the program still crashes because coroutineScope fails and exposes to
its parent the exception that caused its failure. Then, scope.launch treats this exception as unhandled.

















Unhandled Exceptions


The coroutine framework treats unhandled exceptions in a specific way: it tries to use a CEH if the coroutine context
has one. If not, it delegates to the global handler. This handler calls a customizable set of CEH and calls the
standard mechanism of unhandled exceptions: Thread.uncaughtExceptionHandler. By default on Android, the previously
mentioned set of handlers is only made of a single CEH which prints the stacktrace of the unhandled exception.
However, it is possible to register a custom handler which will be called in addition to the one that prints the
stacktrace. So you should remember that if you don’t handle an exception, the Thread.uncaughtExceptionHandler will
be invoked.


The default UncaughtExceptionHandler on Android makes your application crash, while on the JVM,9 the default handler prints the stacktrace to the console. Consequently, if you execute this program not on Android
but on the JVM, the output is:10


Caught exception java.lang.Exception
(stacktrace of java.lang.Exception)
Program ends


Back to Android. How could you handle this exception? Since coroutineScope 
exposes exceptions, you could wrap coroutineScope inside a try/catch statement. Alternatively, if you don’t handle it correctly, the preceding coroutineScope,
scope.launch, treats this exception as unhandled. Then your last chance to handle this exception is to register a CEH. There are at least two reasons you would do that: first, to stop the exception’s propagation and avoid a program crash; and second, to notify your crash analytics and rethrow the exception—potentially making the application crash.
In any case, we’re not advocating for silently catching exceptions. If you do want to use CEH, there are a couple of
things you should know. A CEH only works when registered to:



	
launch (not async) when launch is a root coroutine builder11



	
A scope



	
supervisorScopes direct child






In our example, the CEH should be registered either on scope.launch or on the scope itself. The following code shows this on the root coroutine:


fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job())

    val job = scope.launch(ceh) {
        coroutineScope {
            val task1 = launch {
                delay(1000)
                println("Done background task")
            }

            val task2 = async {
                throw Exception()
                1
            }

            task1.join()
        }
    }

    job.join()
    println("Program ends")
}


The output of this program is:


Caught exception java.lang.Exception
CEH handle java.lang.Exception
Program ends


Here is the same example, this time with the CEH registered on the scope:


fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job() + ceh)

    val job = scope.launch {
       // same as previous example
    }
}


Finally, we illustrate the use of a CEH on a supervisorScope direct child:


fun main() = runBlocking {

    val ceh = CoroutineExceptionHandler { _, t ->
        println("CEH handle $t")
    }

    val scope = CoroutineScope(Job())

    val job = scope.launch {
        supervisorScope {
            val task1 = launch {
                // simulate a background task
                delay(1000)
                println("Done background task")
            }

            val task2 = launch(ceh) {
                // try to fetch some count, but it fails
                throw Exception()
            }

            task1.join()
            task2.join()
        }
    }

    job.join()
    println("Program ends")
}


Notice that the coroutine builder on which the CEH is registered is a launch. It wouldn’t have been taken into account
with an async, which exposes uncaught exceptions, which can be handled with try/catch.
























Summary



	
When a function might not return immediately, it’s a good candidate to be implemented as a suspending function. However,
the suspend modifier doesn’t magically turn a blocking call into a nonblocking one. Use withContext along with
the appropriate Dispatcher, and/or call other suspending functions.



	
A coroutine can be deliberately cancelled using Job.cancel() for launch, or Deferred.cancel() for async.
If you need to call some suspending functions inside your cleanup code, make sure you wrap your cleanup logic inside a
withContext(NonCancellable) { .. } block. The cancelled coroutine will remain in the cancelling state until the cleanup
exits. After the cleanup is done, the aforementioned coroutine goes to the cancelled state.



	
A coroutine always waits for its children to complete before completing itself. So cancelling a coroutine also cancels
all of its children.



	
Your coroutines should be cooperative with cancellation. All suspending functions from the kotlinx.coroutines
package are cancellable. This notably includes withContext. If you’re implementing your own suspending function, make
sure it is cancellable by checking isActive or calling ensureActive() or yield() at appropriate steps.



	
There are two categories of coroutine scope: the scopes using Job and the ones using SupervisorJob (also
called supervisor scopes). They differ in how cancellation is performed and in exception handling. If the failure of a child
should also cancel other children, use a regular scope. Otherwise, use a supervisor scope.



	
launch and async differ in how they treat uncaught exceptions. async exposes exceptions, which can be caught
by wrapping the await call in a try/catch. On the other hand, launch treats uncaught exceptions as unhandled,
which can be handled using a CEH.



	
A CEH is optional. It should only be used when you really need to do something with unhandled exceptions. Unhandled
exceptions typically should make your application crash. Or, at least, recovering from some exceptions might leave your
application in an undetermined state. Nevertheless, if you decide to use a CEH, then it should be installed at the top
of the coroutine hierarchy—typically into the topmost scope. It can also be installed on a supervisorScope direct child.



	
If a coroutine fails because of an uncaught exception, it gets cancelled along with all of its children and the
exceptions propagate up.





















Closing Thoughts


You learned how to write your own suspending functions, and how to use them inside coroutines. Your coroutines live within
scopes. In order to implement the desired cancellation policy, you know how to choose between 
coroutineScope and

supervisorScope. The scopes you create are children of other scopes higher in the hierarchy.
In Android, those “root” scopes are library-provided—you don’t create them yourself. A good example is the
viewModelScope available in any ViewModel instance.


Coroutines are a perfect fit for one-time or repetitive tasks. However, we often have to work with asynchronous streams
of data. Channels and Flows are designed for that, and will be covered in the next two chapters.










1 When performing CPU-bound tasks, a worker is bound to a CPU core.
2 See Java Concurrency in Practice (Addison-Wesley), Brian Goetz et al., 16.2.2.
3 We mentioned this in Chapter 5. In this case, it means that we add a new element to hikeDataList from the main thread.
4 Unless the Dispatchers.IO suffers from thread starvation, which is highly unlikely.
5 It’s just a subclass of the regular CoroutineScope, which invokes coroutineContext.cancel() inside its close() method.
6 Notice that the material on the suspending functions approach is relatively shorter (three and a half pages compared to seven pages for the traditional approach)—probably because suspending functions is an easier (and easier-to-explain) solution.
7 When started lazily, a coroutine is in the New state. Only after invoking job.start() does the coroutine move to the Active state. Calling job.join() also starts the coroutine.
8 NonCancellable is actually a special implementation of Job which is always in Active state. So suspending functions that use ensureActive() under this context are never cancelled.
9 By JVM, we mean on a desktop application, or on the server side.
10 “Program ends” is printed because the unhandled exception makes scope fail, not the scope from  runBlocking.
11 A root coroutine builder is a scope’s direct child. In the previous example, at the line val job = scope.launch {..}, launch is a root coroutine builder.




Chapter 9. Channels



In the previous chapter, you learned how to create coroutines, cancel them, and deal with exceptions. So you know
that if task B requires the result of task A, you can implement them as two suspending functions called sequentially.
What if task A produces a stream of values?
async and suspending functions don’t fit this use case. This is what Channels1 are meant for—making coroutines
communicate. In this chapter you’ll learn in detail what channels are and how to use them.


Using nothing but channels and coroutines, we can design complex asynchronous logic using communicating sequential
processes (CSP). What is CSP? Kotlin was inspired by several existing programming languages, such as Java, C#,
JavaScript, Scala, and Groovy. Notably, Go (the language) inspired coroutines with its 
“goroutines.”


In computer science, CSP is a concurrent programming language which was first described by Tony Hoare in 1978. It has
evolved ever since, and the term CSP is now essentially used to describe a programming style. If you’re familiar with
the Actor model, CSP is quite similar—although there are some differences. If you’ve never heard of CSP, don’t
worry—we’ll briefly explain the idea behind it with practical examples. For now, you can think of CSP as a
programming style.


As usual, we’ll start with a bit of theory, then implement a real-life problem. In the end, we’ll discuss the benefits
and trade-offs of CSP, using coroutines.








Channels Overview


Going back to our introductory example, imagine that one task asynchronously produces a list of three Item instances (the
producer), and another task acts on each of those items (the consumer). Since the producer doesn’t return immediately,
you could implement it like the following getItems suspending function:


suspend fun getItems(): List<Item> {
     val items = mutableListOf<Item>()
     items.add(makeItem())
     items.add(makeItem())
     items.add(makeItem())
     return items
}

suspend fun makeItem(): Item {
    delay(10) // simulate some asynchronism
    return Item()
}


As for the consumer, which consumes each of those items, you could simply implement it like so:


fun consumeItems(items: List<Item>) {
     for (item in items) println("Do something with $item")
}


Putting it all together:


fun main() = runBlocking {
     val items = getItems()
     consumeItems(items)
}


As you would expect, “Do something with ..” is printed three times. However, in this case, we’re most interested in the
order of execution. Let’s take a closer look at what’s really happening, as shown in Figure 9-1.


In Figure 9-1, item consumption only begins after all items have been produced. Producing items might
take quite some time, and waiting for all of them to be produced isn’t acceptable in some situations. Instead, we could
act on each asynchronously produced item, as shown in Figure 9-2.



[image: Execution schema]
Figure 9-1. Process all at once.





[image: Process one after another]
Figure 9-2. Process one after another.




To achieve this, we can’t implement getItems as a suspending function like before. A coroutine should act as a
producer of Item instances, and send them to the main coroutine.
It’s a typical producer-consumer problem.


In Chapter 5, we explained how BlockingQueues can be used to implement work queues—or, in
this case, a data queue. As a reminder, a BlockingQueue has blocking methods put and take to respectively insert
and take an object from the queue. When the queue is used as the only means of communication between two threads
(a producer and a consumer), it offers the great benefit of avoiding a shared mutable state. Moreover, if the queue is
bounded (has a size limit), a too-fast producer will eventually get blocked in a put call if consumers are too slow.
This is known as back pressure: a blocked producer gives the consumers the opportunity to catch up, thus releasing
the producer.


Using a BlockingQueue as a communication primitive between coroutines wouldn’t be a great idea, since a coroutine
shouldn’t involve blocking calls. Instead, coroutines can suspend. A Channel can be seen just like that: a queue with
suspending functions send and receive, as shown in Figure 9-3. A Channel also has nonsuspending counterparts: trySend and tryReceive. These two methods are also nonblocking. trySend tries to immediately add an element to the channel, and returns a wrapper class around the result. That
wrapper class, ChannelResult<T>, also indicates the success or the failure of the operation.
tryReceive tries to immediately retrieve an element from the channel, and returns a ChannelResult<T> instance.



[image: A channel can send and receive]
Figure 9-3. Channel.




Like queues, Channels come in several flavors. We’ll cover each of those Channel variants with basic examples.










Rendezvous Channel


“Rendezvous” is a French word that means “appointment” or “a date”—it depends on the context (we don’t mean CoroutineContext here). A rendezvous channel does not have any buffer at all. An element is transferred from sender to receiver only when send and receive invocations meet in time (rendezvous), so send suspends until another coroutine invokes receive, and receive suspends until another coroutine invokes send.


As another way to put it, a rendezvous channel involves a back-and-forth communication between producers (coroutines
calling send) and consumers (coroutines calling receive). There can’t be two consecutive sends without a
receive in the middle.


By default, when you create a channel using Channel<T>(), you get a rendezvous channel.


We can use a rendezvous channel to correctly implement our previous example:

fun main() = runBlocking {
    val channel = Channel<Item>()
    launch {                        [image: 1]
        channel.send(Item(1))       [image: 3]
        channel.send(Item(2))       [image: 4]
        println("Done sending")
    }

    println(channel.receive())      [image: 2]
    println(channel.receive())      [image: 5]

    println("Done!")
}

data class Item(val number: Int)


The output of this program is:


Item(number=1)
Item(number=2)
Done!
Done sending

In this example, the main coroutine starts a child coroutine with launch, at [image: 1], then reaches [image: 2] and suspends until some
coroutine sends an Item instance in the channel. Shortly after, the child coroutine sends the first item at [image: 3],
then reaches and suspends at the second send call at [image: 4] until some coroutine is ready to receive an item.
Subsequently, the main coroutine (which is suspended at [image: 2]) is resumed and receives the first item from the channel
and prints it. Then the main coroutine reaches [image: 5] and immediately receives the second item since the child coroutine
was already suspended in a send call. Immediately after, the child coroutine continues its execution (prints
“Done sending”).












Iterating over a Channel


A Channel can be iterated over, using a regular for loop. Note that since
channels aren’t regular collections,2 you can’t use
forEach or other similar functions from the Kotlin Standard Library. Here, channel iteration is a specific language-level
feature that can only be done using the for-loop syntax:


for (x in channel) {
   // do something with x every time some coroutine sends an element in
   // the channel
}


Implicitly, x is equal to channel.receive() at each iteration.
Consequently, a coroutine iterating over a channel could do so indefinitely, unless it contains conditional logic to
break the loop. Fortunately, there’s a standard mechanism to break the loop: closing the channel. Here is an example:


fun main() = runBlocking {
    val channel = Channel<Item>()
    launch {
        channel.send(Item(1))
        channel.send(Item(2))
        println("Done sending")
        channel.close()
    }

    for (x in channel) {
        println(x)
    }
    println("Done!")
}


This program has similar output, with a small difference:


Item(number=1)
Item(number=2)
Done sending
Done!


This time, “Done sending” appears before “Done!” This is because the main coroutine only leaves the channel iteration
when channel is closed. And that happens when the child coroutine is done sending all elements.


Internally, closing a channel sends a special token into the channel to indicate that no other elements will be sent.
As items in the channel are consumed serially (one after another), all items sent to the rendezvous channel before the
close special token are guaranteed to be sent to the receiver.

Warning

Beware—trying to call receive from an already-closed channel will throw a ClosedReceiveChannelException. However, trying
to iterate on such a channel doesn’t throw any exception:


fun main() = runBlocking {
    val channel = Channel<Int>()
    channel.close()

    for (x in channel) {
        println(x)
    }
    println("Done!")
}


The output is: Done!



















Other flavors of Channel


In the previous example, the Channel appears to be created using a class constructor. If you look at the source code,
you can see that it’s actually a public function named with a capital C, to give the illusion that you’re using a class
constructor:


public fun <E> Channel(capacity: Int = RENDEZVOUS): Channel<E> =
    when (capacity) {
        RENDEZVOUS -> RendezvousChannel()
        UNLIMITED -> LinkedListChannel()
        CONFLATED -> ConflatedChannel()
        BUFFERED -> ArrayChannel(CHANNEL_DEFAULT_CAPACITY)
        else -> ArrayChannel(capacity)
    }


You can see that this Channel function has a capacity parameter that defaults to 
RENDEZVOUS. For the record, if
you step into the RENDEZVOUS declaration, you can see that it’s equal to 0. For each capacity value there is a corresponding channel implementation. There are four different flavors of channels: rendezvous, unlimited, conflated, and
buffered. Don’t pay too much attention to the concrete implementations (like 
RendezvousChannel()), because those
classes are internal and may change in the future. On the other hand, the values RENDEZVOUS, UNLIMITED, CONFLATED,
and 
BUFFERED are part of the public API.


We’ll cover each of those channel types in the next sections.






















Unlimited Channel


An unlimited channel has a buffer that is only limited by the amount of available memory. Senders to this channel never suspend,
while receivers only suspend when the channel is empty. Coroutines exchanging data via an unlimited channel don’t need
to meet in time.


At this point, you might be thinking that such a channel should have concurrent modification issues when senders and
receivers are executed from different threads. After all, coroutines are dispatched on threads, so a channel might very
well be used from different threads.
Let’s check the Channel’s robustness ourselves! In the following example, we send Ints from a coroutine dispatched
on Dispatchers.Default while another coroutine reads the same channel from the main thread, and if the Channels aren’t
thread-safe, we will notice:


fun main() = runBlocking {
    val channel = Channel<Int>(UNLIMITED)
    val childJob = launch(Dispatchers.Default) {
        println("Child executing from ${Thread.currentThread().name}")
        var i = 0
        while (isActive) {
            channel.send(i++)
        }
        println("Child is done sending")
    }

    println("Parent executing from ${Thread.currentThread().name}")
    for (x in channel) {
        println(x)

        if (x == 1000_000) {
            childJob.cancel()
            break
        }
    }

    println("Done!")
}


The output of this program is:


Parent executing from main
Child executing from DefaultDispatcher-worker-2
0
1
..
1000000
Done!
Child is done sending


You can run this sample as much as you want, and it always completes without concurrent issues. That’s because a Channel
internally uses a lock-free algorithm.3

Note

Channels are thread-safe. Several threads can concurrently invoke send and receive methods in a thread-safe way.



















Conflated Channel


This channel has a buffer of size 1, and only keeps the last sent element. To create a conflated channel, you invoke
Channel<T>(Channel.CONFLATED). For example:


fun main() = runBlocking {
    val channel = Channel<String>(Channel.CONFLATED)

    val job = launch {
        channel.send("one")
        channel.send("two")
    }

    job.join()
    val elem = channel.receive()
    println("Last value was: $elem")
}


The output of this program is:


Last value was: two


The first sent element is “one.” When “two” is sent, it replaces “one” in the channel. We wait until the coroutine-sending elements complete, using job.join(). Then we read the value two from the channel.

















Buffered Channel


A buffered channel is a Channel with a fixed capacity—an integer greater than 0. Senders to this channel don’t
suspend unless the buffer is full, and receivers from this channel don’t suspend unless the buffer is empty. To create
a buffered channel of Int with a buffer of size 2, you would invoke Channel<Int>(2). Here is an example of usage:


fun main() = runBlocking<Unit> {
    val channel = Channel<Int>(2)

    launch {
        for (i in 0..4) {
            println("Send $i")
            channel.send(i)
        }
    }

    launch {
        for (i in channel) {
            println("Received $i")
        }
    }
}


The output of this program is:


Send 0
Send 1
Send 2
Received 0
Received 1
Received 2
Send 3
Send 4
Received 3
Received 4


In this example, we’ve defined a Channel with a fixed capacity of 2. A coroutine attempts to send five integers, while
another coroutine consumes elements from the channel. The sender coroutine manages to send 0 and 1 in one go, then
attempts to send 3. The println("Send $i") is executed for the value 3 but the sender coroutine gets suspended in the
send call. The same reasoning applies for the consumer coroutine: two elements are received consecutively with an
additional print before 
suspending.

















Channel Producers


Until now, you’ve seen that a Channel can be used for both sending and receiving elements. Sometimes you might want
to be more explicit about how a channel should be used for either sending or receiving. When you’re implementing a
Channel that is meant to be read only by other coroutines, you can use the produce builder:


fun CoroutineScope.produceValues(): ReceiveChannel<String> = produce {
    send("one")
    send("two")
}


As you can see, produce returns a ReceiveChannel—which only has methods relevant to receiving operations (receive
is among them). An instance of ReceiveChannel cannot be used to send elements.

Tip

Also, we’ve defined produceValues() as an extension function of CoroutineScope. Calling produceValues will start
a new coroutine that sends elements into a channel. There’s a convention in Kotlin: every function that starts
coroutines should be defined as an extension function of CoroutineScope. If you follow this convention, you can easily
distinguish in your code which functions are starting new coroutines from suspending functions.




The main code that makes use of produceValues could be:


fun main() = runBlocking {
    val receiveChannel = produceValues()

    for (e in receiveChannel) {
        println(e)
    }
}


Conversely, a SendChannel only has methods relevant to sending operations. Actually, looking at the source code, a
Channel is an interface deriving from both ReceiveChannel and SendChannel:


public interface Channel<E> : SendChannel<E>, ReceiveChannel<E> {
    // code removed for brevity
}


Here is how you can use a SendChannel:


fun CoroutineScope.collectImages(imagesOutput: SendChannel<Image>) {
    launch(Dispatchers.IO) {
        val image = readImage()
        imagesOutput.send(image)
    }
}
























Communicating Sequential Processes


Enough of the theory, let’s get started and see how channels can be used to implement a real-life problem.
Imagine that your Android application has to display “shapes” in a canvas. Depending on the inputs of the user, your
application has to display an arbitrary number of shapes. We’re purposely using generic terms—a shape could be a
point of interest on a map, an item in a game, anything that may require some background work like API calls, file
reads, database queries, etc. In our example, the main thread, which already handles user input, will simulate requests for
new shapes to be rendered. You can already foresee that it’s a producer-consumer problem: the main thread makes requests,
while some background task handles them and returns the results to the main thread.


Our implementation should:



	
Be thread-safe



	
Reduce the risk of overwhelming the device memory



	
Have no thread contention (we won’t use locks)














Model and Architecture


A Shape is made of a Location and some useful ShapeData:


data class Shape(val location: Location, val data: ShapeData)
data class Location(val x: Int, val y: Int)
class ShapeData


Given a Location, we need to fetch the corresponding ShapeData to build a Shape. So in this example, Locations
are the input, and Shapes the output. For brevity, we’ll use the words “location” for Location and “shape” for
Shape.


In our implementation, we’ll distinguish two main components:


	view-model

	
This holds most of the application logic related to shapes. As the user interacts with the UI, the
view gives the view-model a list of locations.



	shapeCollector

	
This is responsible for fetching shapes given a list of locations.






Figure 9-4 illustrates the bidirectional relationship between the view-model and the shape collector.



[image: High-level architecture]
Figure 9-4. High-level architecture.




The ShapeCollector follows a simple process:


               fetchData
Location ---------------------> ShapeData


As an additional prerequisite, our ShapeCollector should maintain an internal “registry” of locations being processed.
Upon receiving a location to process, the ShapeCollector shouldn’t attempt to download it if it’s already being processed.

















A First Implementation


We can start with this first naïve implementation of the ShapeCollector, which is far from being complete, but you’ll get
the idea:


class ShapeCollector {
    private val locationsBeingProcessed = mutableListOf<Location>()

    fun processLocation(location: Location) {
        if (locationsBeingProcessed.add(location)) {
             // fetch data, then send back a Shape instance to
             // the view-model
        }
    }
}


If we were programming with threads, we would have several threads sharing an instance of  ShapeCollector, executing
processLocation concurrently. Using this approach, however, leads to sharing mutable states. In the previous snippet,
locationsBeingProcessed is one example.


As you learned in Chapter 5, making mistakes using locks is surprisingly easy.
Using coroutines, we don’t have to share mutable state. How? Using coroutines and channels, we can share by communicating
instead of communicate by sharing.


The key idea is to encapsulate mutable states inside coroutines. In the case of the list of Locations being processed,
it can be done with:


launch {
    val locationsBeingProcessed = mutableListOf<Location>()     [image: 1]

    for (location in locations) {                               [image: 2]
        // same code from previous figure
    }
}


	[image: 1]

	In the preceding example, only the coroutine that started with launch can touch the mutable state, which is
locationsBeingProcessed.


	[image: 2]

	However, we now have a problem. How do we provide the locations? We have to somehow provide this iterable
to the coroutine. So we’ll use a Channel, and use it as input of a function we’ll declare. Since we’re launching a
coroutine inside a function, we declare this function as an extension function of CoroutineScope:





private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>
) = launch {
     // code removed for brevity
}


As this coroutine will be receiving Locations from the view-model, we declare the Channel as a ReceiveChannel.
By the way, you’ve seen in the previous section that a Channel can be iterated over, just like a list.
So now, we can fetch the corresponding ShapeData for each Location instance received from the channel. As you’ll want
to do this in parallel, you might be tempted to write something like so:


private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>
) = launch {
     val locationsBeingProcessed = mutableListOf<Location>()

     for (loc in locations) {
         if (!locationsBeingProcessed.contains(loc) {
              launch(Dispatchers.IO) {
                   // fetch the corresponding `ShapeData`
              }
         }
    }
}


Beware, as there’s a catch in this code. You see, for each received location, we start a new coroutine. Potentially, this
code might start a lot of coroutines if the locations channel debits a lot of items. For this reason, this situation
is also called unlimited 
concurrency. When we introduced coroutines, we said that they are lightweight. It’s true, but the work they do might very well consume significant
resources. In this case, launch(Dispatchers.IO) in itself has an insignificant overhead, while fetching the
ShapeData could require a REST API call on a server with limited bandwidth.


So we’ll have to find a way to limit concurrency—we don’t want to start an unlimited number of coroutines. When facing
this situation with threads, a common practice is to use a thread pool coupled with a work queue (see Chapter 5). Instead of a thread pool, we’ll create a coroutine pool, which we’ll name worker pool. Each coroutine from this worker pool will perform the actual fetch of ShapeData for a given location. To communicate
with this worker pool, collectShapes should use an additional channel to which it can send locations to the
worker pool, as shown in Figure 9-5.



[image: Limit Concurrency]
Figure 9-5. Limit concurrency.



Warning

When you use Channels, be careful not to have unlimited concurrency. Imagine that you have to instantiate a lot of Bitmap instances. The underlying memory buffer which stores pixel data takes a 
nonnegligible amount of space in memory. When working with a lot of images, allocating a fresh instance of Bitmap every time you need to create an image causes significant pressure on the system (which has to allocate
memory in RAM while the garbage collector cleans up all the previously created instances that aren’t referenced anymore). A canonical solution to this problem is Bitmap pooling, which is only a particular case of the more general pattern of object pooling. Instead of creating a fresh instance of Bitmap, you can pick one from the pool (and reuse
the underlying buffer when possible).




This is how you would modify collectShapes to take an additional channel 
parameter:


private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>,
     locationsToProcess: SendChannel<Location>,
) = launch {
     val locationsBeingProcessed = mutableListOf<Location>()

     for (loc in locations) {
         if (!locationsBeingProcessed.contains(loc) {
              launch(Dispatchers.IO) {
                   locationsToProcess.send(loc)
              }
         }
    }
}


Notice how collectShapes now sends a location to the locationsToProcess channel, only if the location isn’t in the
list of locations currently being processed.


As for the worker implementation, it simply reads from the channel we just created—except that from the worker
perspective, it’s a ReceiveChannel. Using the same 
pattern:


private fun CoroutineScope.worker(
        locationsToProcess: ReceiveChannel<Location>,
) = launch(Dispatchers.IO) {
        for (loc in locationsToProcess) {
             // fetch the ShapeData, see later
        }
}


For now, we are not focusing on how to fetch a ShapeData. The most important notion to understand here is the
for loop.
Thanks to the iteration on the 
locationsToProcess channel, each individual worker coroutine will receive its own
location without interfering with the others. No matter how many workers we’ll start, a location sent from
collectShapes to the locationsToProcess channel will only be received by one worker. You’ll see that each worker
will be created with the same channel instance when we wire all those things up. In message-oriented software, this
pattern, which implies delivery of a message to multiple destinations, is called 
fan-out.


Looking back at the missing implementation inside the for loop, this is what we’ll do:


	
Fetch the ShapeData (which from now on we’ll simply refer to as “data”).



	
Create a Shape from the location and the data.



	
Send the shape to some channel, which other components in our application will use to get the shapes from ShapeCollector. Obviously, we haven’t created such a channel yet.



	
Notify the collectShapes coroutine that the given location has been processed, by sending it back to its sender.
Again, such a channel has to be created.







Do note that this isn’t the only possible implementation. You could imagine other ways and adapt to your needs. After
all, this is what this chapter is all about: to give you examples and inspiration for your next developments.


Back on our horse, Example 9-1 shows the final implementation of the worker 
coroutine.


Example 9-1. Worker coroutine


private fun CoroutineScope.worker(
    locationsToProcess: ReceiveChannel<Location>,
    locationsProcessed: SendChannel<Location>,
    shapesOutput: SendChannel<Shape>
) = launch(Dispatchers.IO) {
    for (loc in locationsToProcess) {
        try {
            val data = getShapeData(loc)
            val shape = Shape(loc, data)
            shapesOutput.send(shape)
        } finally {
            locationsProcessed.send(loc)
        }
    }
}



Just like the collectShapes was adapted earlier to take one channel as an argument, this time we’re adding two more
channels: locationsProcessed and shapesOutput.


Inside the for loop, we first get a ShapeData instance for a location. For the sake of this simple example, Example 9-2 shows our implementation.


Example 9-2. Getting shape data


private suspend fun getShapeData(
    location: Location
): ShapeData = withContext(Dispatchers.IO) {
        /* Simulate some remote API delay */
        delay(10)
        ShapeData()
}



Since the getShapeData method might not return immediately, we implement it as a suspend function. Imagining that
the downstream code involves a remote API, we use Dispatchers.IO.


The collectShapes coroutine has to be adapted again, since it has to accept one more channel—the one from which the
workers send back locations they’re done processing. You’re starting to get used to it—it’ll be a ReceiveChannel
from the 
collectShapes perspective. Now collectShapes accepts two ReceiveChannels and one 
SendChannel.


Let’s try it:


private fun CoroutineScope.collectShapes(
     locations: ReceiveChannel<Location>,
     locationsToProcess: SendChannel<Location>,
     locationsProcessed: ReceiveChannel<Location>
): Job = launch {
     ...
     for (loc in locations) {
          // same implementation, hidden for brevity
     }
     // but.. how do we iterate over locationsProcessed?
}


Now we have a problem. How can you receive elements from multiple 
ReceiveChannels at the same time? If we add another
for loop right below the locations channel iteration, it wouldn’t work as intended as the first iteration only ends when
the locations channel is closed.


For that purpose, you can use the select expression.

















The select Expression


The select expression waits for the result of multiple suspending functions simultaneously, which are specified using
clauses in the body of this select invocation. The caller is suspended until one of the clauses is either selected
or fails.


In our case, it works like so:


select<Unit> {
    locations.onReceive { loc ->
        // do action 1
    }
    locationsProcessed.onReceive { loc ->
        // do action 2
    }
}


If the select expression could talk, it would say: “Whenever the locations channel receives an element, I’ll do
action 1. Or, if the locationsProcessed channel receives something, I’ll do action 2. I can’t do both actions at the
same time. By the way, I’m returning Unit.”


The “I can’t do both actions at the same time” is important. You might wonder what would happen if action 1 takes
half an hour—or worse, if it never completes. We’ll describe a similar situation in “Deadlock in CSP”. However, the
implementation that follows is guaranteed never to block for a long time in each action.


Since select is an expression, it returns a result. The result type is inferred by the return type of the lambdas we
provide for each case of the select—pretty much like the when expression. In this particular example, we don’t
want any result, so the return type is Unit. As select returns after either the locations or locationsProcessed
channel receives an element, it doesn’t iterate over channels like our previous for loop. Consequently, we have to
wrap it inside a while(true). The complete implementation of collectShapes is shown in Example 9-3.


Example 9-3. Collecting shapes


private fun CoroutineScope.collectShapes(
    locations: ReceiveChannel<Location>,
    locationsToProcess: SendChannel<Location>,
    locationsProcessed: ReceiveChannel<Location>
) = launch(Dispatchers.Default) {

    val locationsBeingProcessed = mutableListOf<Location>()

    while (true) {
        select<Unit> {
            locationsProcessed.onReceive {                     [image: 1]
                locationsBeingProcessed.remove(it)
            }
            locations.onReceive {                              [image: 2]
                if (!locationsBeingProcessed.any { loc ->
                    loc == it }) {
                    /* Add it to the list of locations being processed */
                    locationsBeingProcessed.add(it)

                    /* Now download the shape at location */
                    locationsToProcess.send(it)
                }
            }
        }
    }
}



	[image: 1]

	When the locationsProcessed channel receives a location, we know that this location has been processed by a worker. It
should now be removed from the list of locations being processed.


	[image: 2]

	When the locations channel receives a location, we have to first check whether we’ve already been processing the same
location or not. If not, we’ll add the 
location to the locationsBeingProcessed list, and then send it to the

locationsToProcess channel.




















Putting It All Together


The final architecture of the ShapeCollector takes shape, as shown in Figure 9-6.



[image: Final Architecture]
Figure 9-6. Final architecture.




Remember that all the channels we used to implement the collectShapes and worker methods have to be created
somewhere. To respect encapsulation, a good place to do that is in a start method, as shown in Example 9-4.


Example 9-4. Shape collector


class ShapeCollector(private val workerCount: Int) {
    fun CoroutineScope.start(
        locations: ReceiveChannel<Location>,
        shapesOutput: SendChannel<Shape>
    ) {
        val locationsToProcess = Channel<Location>()
        val locationsProcessed = Channel<Location>(capacity = 1)

        repeat(workerCount) {
             worker(locationsToProcess, locationsProcessed, shapesOutput)
        }
        collectShapes(locations, locationsToProcess, locationsProcessed)
    }

    private fun CoroutineScope.collectShapes // already implemented

    private fun CoroutineScope.worker        // already implemented

    private suspend fun getShapeData         // already implemented
}



This start method is responsible for starting the whole shape collection machinery. The two channels that are exclusively used inside the ShapeCollector are created: 
locationsToProcess and locationsProcessed. We are not explicitly creating 
ReceiveChannel or SendChannel instances here. We’re creating them as Channel instances because they’ll further be used either as ReceiveChannel or SendChannel. Then the worker pool is created and started, by calling the worker method as many times as 
workerCount was set. It’s achieved using the repeat function from the standard library.


Finally, we call collectShapes once. Overall, we started workerCount + 1 coroutines in this start method.


You might have noticed that locationsProcessed is created with a capacity of 1. This is intended, and is an important detail. We’ll explain why in the next section.

















Fan-Out and Fan-In


You just saw an example of multiple coroutines receiving from the same channel. Indeed, all worker coroutines
receive from the same locationsToProcess channel.
A Location instance sent to the locationsToProcess channel will be processed by only one worker, without any risk of
concurrent issues. This particular interaction between coroutines is known as fan-out, as shown in Figure 9-7.
From the standpoint of the coroutine started with the collectShapes function, locations are fanned-out to the worker pool.



[image: Fan-Out and Fan-In]
Figure 9-7. Fan-out and fan-in.




Fan-out is achieved by launching several coroutines which all iterate over the same instance of ReceiveChannel (see the
 worker implementation in Example 9-1). If one of the workers fails, the other ones will continue to receive
from the channel—making the system resilient to some extent.


Inversely, when several coroutines send elements to the same SendChannel instance, we’re talking about fan-in.
Again, you’ve got a good example since all workers send Shape instances to shapesOutput.

















Performance Test


Alright! Time to test the performance of our ShapeCollector. The following snippet has a main function, which calls
the functions consumeShapes and sendLocations. Those functions start a coroutine that, respectively, consumes
Shape instances from the ShapeCollector and sends Location instances. Overall, this code is close to what you’d
write in a real view-model, as shown in Example 9-5.


Example 9-5. Shape collector


fun main() = runBlocking<Unit> {
    val shapes = Channel<Shape>()                [image: 1]
    val locations = Channel<Location>()

    with(ShapeCollector(4)) {                    [image: 2]
        start(locations, shapes)
        consumeShapes(shapes)
    }

    sendLocations(locations)
}

var count = 0

fun CoroutineScope.consumeShapes(
    shapesInput: ReceiveChannel<Shape>
) = launch {
    for (shape in shapesInput) {
        // increment a counter of shapes
        count++                                  [image: 3]
    }
}

fun CoroutineScope.sendLocations(
    locationsOutput: SendChannel<Location>
) = launch {
    withTimeoutOrNull(3000) {                    [image: 4]
        while (true) {
            /* Simulate fetching some shape location */
            val location = Location(Random.nextInt(), Random.nextInt())
            locationsOutput.send(location)
        }
    }
    println("Received $count shapes")
}



	[image: 1]

	We set up the channels according to the needs of the ShapeCollector—see Figure 9-4.


	[image: 2]

	We create a ShapeCollector with four workers.


	[image: 3]

	The consumeShapes function only increments a counter. That counter is declared globally—which is fine because
the coroutine started with consumeShapes is the only one to modify count.


	[image: 4]

	In the sendLocations functions, we set up a timeout of three seconds. 
withTimeoutOrNull is a suspending function that suspends until the provided time is out. Consequently, the coroutine started with sendLocations only prints the received count after three seconds.





If you recall the implementation of getShapeData in Example 9-2, we added delay(10) to simulate a suspending call of 10 ms long. Running four workers for three seconds, we would ideally receive 3,000 / 10 × 4 = 1,200 shapes, if our implementation had zero overhead. On our test machine, we got 1,170 shapes—that’s an efficiency of 98%.


Playing a little bit with more workers (64), with delay(5) in each worker, we got 122,518 shapes in 10 seconds (the
ideal number being 128,000)—that’s an efficiency of 96%.


Overall, the throughput of ShapeCollector is quite decent, event with a sendLocations function that continuously
sends Location instances without any pause between two sends.

















Back Pressure


What happens if our workers are too slow? This could very well happen if a remote HTTP call takes time to
respond, or a backend server is overwhelmed—we don’t know.
To simulate this, we can dramatically increase the delay inside getShapeData (see Example 9-2). Using
delay(500), we got only 20 shapes in three seconds, with four workers. The throughput decreased, but this isn’t the
interesting part. As always with producer-consumer problems, issues can arise when consumers slow down—as producers
might accumulate data and the system may ultimately run out of memory.
You can add println() logs inside the producer coroutine and run the program again:


fun CoroutineScope.sendLocations(locationsOutput: SendChannel<Location>) = launch {
    withTimeoutOrNull(3000) {
        while (true) {
            /* Simulate fetching some shape location */
            val location = Location(Random.nextInt(), Random.nextInt())
            println("Sending a new location")
            locationsOutput.send(location)      // suspending call
        }
    }
    println("Received $count shapes")
}


Now, “Sending a new location” is printed only about 25 times in the console.


So the producer is being slowed down. How?


Because locationsOutput.send(location) is a suspending call. When workers are slow, the collectShapes function (see
Example 9-3) of the ShapeCollector class quickly becomes suspended at the line locationsToProcess.send(it).
Indeed, locationsToProcess is a rendezvous channel. Consequently, when the coroutine started with collectShapes
reaches that line, it’s suspended until a worker is ready to receive the location from locationsToProcess. When the
previously mentioned coroutine is suspended, it can no longer receive from the locations channel—which corresponds
to locationsOutput in the previous example. This is the reason why the coroutine that started with sendLocation is in
turn suspended. When workers finally do their job, collectShapes can resume, and so does the producer coroutine.

















Similarities with the Actor Model


In CSP, you create coroutines that encapsulate mutable state. Instead of communicating by sharing their state, they share by communicating (using Channels).
The coroutine started with the collectShapes function (see Example 9-3) uses three channels to communicate
with other coroutines—one SendChannel and two ReceiveChannels, as shown in Figure 9-8.


In CSP parlance, collectShapes and its three channels is a process. A process is a computational entity that communicates with other actors
using asynchronous message passing (channels). It can do only one thing at a time—reading, writing to channels, or processing.


In the Actor model, an actor is quite similar. One noticeable difference is that an actor only has one channel—called a mailbox. If an actor needs to be responsive and nonblocking, it must delegate its long-running processing to child actors.
This similarity is the reason why CSP is sometimes referred to as an Actor model implementation.



[image: Process]
Figure 9-8. Process in CSP.



















Execution Is Sequential Inside a Process


We’ve just seen that a process is made of a single coroutine and channels. The very nature of a coroutine is for it to be
executed on some thread. So unless this coroutine starts other child coroutines (which run concurrently, and in some cases in parallel), all lines of that coroutine are executed sequentially. That
includes receiving from channels, sending objects to other channels, and mutating some private state. Consequently, the
actors implemented in this chapter could either receive from a channel or send to another channel, but not do both at
the same time. Under load, this kind of actor can be efficient because it doesn’t involve blocking calls, only
suspending functions. When a coroutine is suspended, the overall efficiency isn’t necessarily affected, because the thread
executing the suspended coroutine can then execute another coroutine which has something to do. This way, threads can
be used to their full potential, never contending to some lock.

















Final Thoughts


This mechanism using CSP style has very little internal overhead. Thanks to Channels and coroutines, our implementation
is lock-free. Therefore, there’s no thread contention—the ShapeCollector is less likely to impact other threads of
your application. Similarly, there’s a chance that the Dispatchers we use in the ShapeCollector might also be used
in other features in our application. By leveraging lock-free implementations, a coroutine suspended while receiving from
a channel won’t prevent the underlying thread from executing other coroutines. In other words, we can do more with the
same resources.


Moreover, this architecture provides built-in back pressure. If some ShapeData instances suddenly take more time to
fetch, producers of ShapeLocation instances will be slowed down so that locations don’t accumulate—which reduces the
risk of running out of memory. This back pressure comes for free—you didn’t explicitly write code for such a feature.


The example given in this chapter is generic enough to be taken as is and adapted to fit your needs. In the event that you
need to significantly deviate from our example, then we owe you a deeper explanation. For example, why did we set a
capacity of 1 for the locationsProcessed channel in Example 9-4? The answer is admittedly
nontrivial. If we had created a regular rendezvous channel, our ShapeCollector would have suffered from a
deadlock—which brings us to the next section.
























Deadlock in CSP


Deadlocks are most commonly encountered when working with threads. When thread A holds lock 1 and attempts to seize
lock 2, while thread B holds lock 2 and attempts to seize lock 1, you have a deadlock. The two threads
indefinitely wait for each other and neither progresses. Deadlocks can have disastrous consequences when they happen in
critical components of an application. An efficient way to avoid such a situation is to ensure that a deadlock cannot
happen under any imaginable circumstances. Even when conditions are highly unlikely to be met, you can trust Murphy’s Law
to strike some day.


However, deadlocks can also happen in CSP architecture. We can do a little experiment to illustrate this. Instead of
setting a capacity of 1 to the channel locationsProcessed in Example 9-4, let’s use a channel with
no buffer (a rendezvous channel) and run the performance test sample in Example 9-5.
The result printed in the console is:


Received 4 shapes


For the record, we should have received 20 shapes. So, what’s going on?

Note

Fair warning: the following explanation goes into every necessary detail, and is quite long. We encourage you
to take the time to read it carefully until the end. It’s the ultimate challenge to test your understanding of channels.


You might also skip it entirely and jump to “TL;DR”.




Let’s have a closer look at the internals of our ShapeCollector class and follow each step as though we were a live
debugger. Imagine that you’ve just started the performance test sample in Example 9-5, and the first Location
instance is sent to the locations channel. That location goes through the collectShapes method with its select expression. At that moment, locationsProcessed has nothing to provide, so the select expression goes through the second case:
locations.onReceive{..}. If you look at what’s done inside this second case, you can see that a location is sent to the
locationsToProcess channel—which is a receive channel for each worker. Consequently, the coroutine started by the
collectShapes method (which we’ll refer to as the collectShapes coroutine) is suspended at the
locationsToProcess.send(it) invocation until a worker handshakes the locationsToProcess rendezvous channel.
This happens fairly quickly, since at that time all workers are idle.


When a worker receives the first Location instance, the collectShapes coroutine is resumed and is able to receive
other locations. As in our worker implementation, we’ve added some delay to simulate a background processing, you can
consider workers slow compared to other coroutines—which are the collectShapes coroutine and the producer coroutine
started with the sendLocations method in the test sample (which we’ll refer to as the sendLocations coroutine).
Therefore, another location is received by the collectShapes coroutine while the worker that which took the first
location is still busy processing it. Similarly, a second worker quickly handles the second location, and a third
location is received by the collectShapes coroutine, etc.


The execution continues until all four workers are busy, while a fifth location is received by the collectShapes
coroutine. Following the same logic as before, the 
collectShapes coroutine is suspended until a worker is ready to
take the Location instance. Unfortunately, all workers are busy. So the collectShapes coroutine isn’t able to take
incoming locations anymore. Since the collectShapes and 
sendLocations coroutines communicate through a rendezvous
channel, the 
sendLocations coroutine is in turn suspended until collectShapes is ready to take more locations.


Time goes by until a worker makes itself available to receive the fifth location. 
Eventually, a worker
(probably the first worker) is done processing its Location instance. Then it sends the result to the shapesOutput channel and it tries 
to send back the processed location to the collectShapes coroutine, using the

locationsProcessed channel. Remember that this is our mechanism to notify 
the collectShapes coroutine when a location
has been processed. However, the 
collectShapes coroutine is suspended at the locationsToProcess.send(it) invocation.
So 
collectShapes can’t receive from the locationsProcessed channel. There’s no issue to this situation: this is a
deadlock,4 as shown in Figure 9-9.


Eventually, the first four locations processed by the workers are processed and four Shape instances are sent to the
shapesOutput channel. The delay in each worker is only of 10 ms, so all workers have time to complete before the three-second
timeout. Hence the result:


Received 4 shapes



[image: Deadlock in CSP]
Figure 9-9. Deadlock in CSP.




If the locationsProcessed channel had a capacity of at least 1, the first available worker would have been able to
send back its Location instance and then receive from the locationsToProcess channel—releasing the collectShapes
coroutine. Subsequently, in the select expression of the collectShapes coroutine, the locationsToProcess channel
is always checked before the locations channel. This ensures that when the collectShapes coroutine is eventually
suspended at the locationsToProcess.send(it) invocation, the buffer of the locationsProcessed channel is guaranteed
to be empty—so a worker can send a location without being suspended. If you’re curious, try to revert the two cases
locationsProcessed.onReceive {..} and locations.onReceive {..} while having a capacity of 1 for the
locationsProcessed channel. The result will be: “Received 5 shapes.”

















TL;DR


Not only is the capacity of 1 for the locationsProcessed channel extremely important, the order in which channels are read in the select expression of the 
collectShapes coroutine also matters.5 What should you remember from this? Deadlocks are possible in CSP. Even more important, understanding what caused the deadlock is an excellent exercise to test your understanding of how channels work.


If we look back at the structure of the ShapeCollector, we can represent the structure as a cyclic graph, as shown in
Figure 9-10.



[image: Cyclic Graph]
Figure 9-10. Cyclic graph.




This new representation emphasizes an important property of the structure: it’s cyclic. Location instances travel
back and forth between the collectShapes coroutine and workers.


Cycles in CSP are actually the cause of deadlocks. Without cycles, there’s no possibility of deadlock. Sometimes,
however, you’ll have no choice but to have those cycles. In this case, we gave you the key ideas to reason about CSP,
so you can find solutions by yourself.

















Limitations of Channels


Up until now, we’ve held off on discussing the limitations of channels, so we’ll describe some of those limitations now.
Using notions from this chapter, creating a stream of Int values is typically done as shown in Example 9-6.


Example 9-6. Producing numbers


fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    send(1)
    send(2)
    // send other numbers
}



On the receiving side, you can consume those numbers like so:


fun main() = runBlocking {
    val channel = numbers()
    for (x in channel) {
        println(x)
    }
}


Pretty straightforward. Now, what if you need to apply a transformation for each of those numbers? Imagine that your
transformation function was:


suspend fun transform(n: Int) = withContext(Dispatchers.Default) {
    delay(10) // simulate some heavy CPU computations
    n + 1
}


You could modify the numbers function like so:


fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    send(transform(1))
    send(transform(2))
}


It works, but it’s not elegant. A much nicer solution would look like this:


fun main() = runBlocking {
    /* Warning - this doesn't compile */
    val channel = numbers().map {
        transform(it)
    }
    for (x in channel) {
        println(x)
    }
}


Actually, as of Kotlin 1.4, this code doesn’t compile. In the early days of channels, we had “channel operators” such
as map. However, those operators have been deprecated in Kotlin 1.3, and removed in Kotlin 1.4.


Why? Channels are communication primitives between coroutines. They are specifically designed to distribute values so that
every value is received by only one receiver. It’s not possible to use channels to broadcast values to multiple receivers.
The designers of coroutines have created Flows specifically for asynchronous data streams on which we can use
transformation operators; we’ll see how in the next chapter.


So, channels are not a convenient solution to implement pipelines of data 
transformations.

















Channels Are Hot


Let’s have a look at the source code of the produce channel builder. Two lines are interesting, as shown in the following:


public fun <E> CoroutineScope.produce(                           [image: 1]
    context: CoroutineContext = EmptyCoroutineContext,
    capacity: Int = 0,
    @BuilderInference block: suspend ProducerScope<E>.() -> Unit
): ReceiveChannel<E> {
    val channel = Channel<E>(capacity)
    val newContext = newCoroutineContext(context)
    val coroutine = ProducerCoroutine(newContext, channel)
    coroutine.start(CoroutineStart.DEFAULT, coroutine, block)    [image: 2]
    return coroutine
}


	[image: 1]

	produce is an extension function on CoroutineScope. Remember the convention? It indicates that this function
starts a new coroutine.


	[image: 2]

	We can confirm that with the coroutine.start() invocation. Don’t pay too much attention to how this
coroutine is started—it’s an internal implementation.





Consequently, when you invoke the produce channel builder, a new coroutine is started and immediately starts producing
elements and sending them to the returned channel even if no coroutine is consuming those elements.


This is the reason why channels are said to be hot: a coroutine is actively running to produce or consume data. If you
know RxJava, this is the same concept as hot observables: they emit values independently of individual subscriptions.
Consider this simple stream:


fun CoroutineScope.numbers(): ReceiveChannel<Int> = produce {
    use(openConnectionToDatabase()) {
        send(1)
        send(2)
    }
}


Also, imagine that no other coroutines are consuming this stream. As this function returns a rendezvous channel, the
started coroutine will suspend on the first send. So you might say: “OK, we’re fine—no background processing is done
until we provide a consumer to this stream.” It’s true, but if you forget to consume the stream, the database connection
will remain open—notice that we used the use function from the standard library, which is the equivalent of the
try-with-resources statement in Java. While it might not be harmful as is, this piece of logic could be part of a retry loop, in
which case a significant amount of resources would leak.


To sum up, channels are intercoroutine communication primitives. They work really well in a CSP-like architecture.
However, we don’t have handy operators such as map or filter to transform them. We can’t broadcast
values to multiple receivers. Moreover, their hot nature can cause memory leaks in some situations.


Flows have been created to address those channels’ limitations. We’ll cover flows in the next chapter.

















Summary



	
Channels are communication primitives that provide a way to transfer streams of values between coroutines.



	
While channels are conceptually close to Java’s BlockingQueue, the fundamental difference is that send and receive
methods of a channel are suspending functions, not blocking calls.



	
Using channels and coroutines, you can share by communicating instead of the traditional
communicate by sharing. The goal is to avoid shared mutable-state and thread-safety issues.



	
You can implement complex logic using CSP style, leveraging back pressure. This results in potentially excellent
performance since the nonblocking nature of suspending functions reduces thread contention to its bare minimum.



	
Beware that deadlock in CSP is possible, if your architecture has cycles (a coroutine sends objects to another
coroutine, while also receiving objects from the same coroutine). You can fix those deadlocks by, for example, tweaking the order
in which the select expression treats each cases, or by adjusting the capacity of some channels.



	
Channels should be considered low-level primitives. Deadlocks in CSP are one example of misuse of channels.
The next chapter will introduce flows—higher-level primitives that exchange streams of data between coroutines.
It doesn’t mean that you shouldn’t use channels—there are still situations where channels are necessary (the
ShapeCollector in this chapter is an example). However, you’ll see that in many situations, flows are a better choice.
In any case, it’s important to know about channels because (as you’ll see) flows sometimes use channels under the hood.














1 We’ll sometimes refer to Channels as channels in the rest of this chapter.
2 Specifically, Channel doesn’t implement Iterable.
3 If you want to learn how such an algorithm works, we recommend that you read Section 15.4, “NonBlocking Algorithms,” in Java Concurrency in Practice, by Brian Goetz et al. There is also this interesting YouTube video, Lock-Free Algorithms for Kotlin Coroutines (Part 1) from Roman Elizarov, lead designer of Kotlin coroutines.
4 While there’s no lock or mutex involved here, the situation is very similar to a deadlock involving threads. This is why we use the same terminology.
5 Actually, our implementation, which uses a capacity of 1 for locationsProcessed, isn’t the only possible implementation that works without deadlocks. There’s at least one solution that uses locationsProcessed as a rendezvous channel. We leave this as an exercise for the reader.




Chapter 10. Flows



Up to now, we’ve covered coroutines, suspending functions, and how to deal with streams using Channels.
We’ve seen from the previous chapter that working with Channels implies starting coroutines to send and/or
receive from those Channels. The aforementioned coroutines are then hot entities that are sometimes
hard to debug, or can leak resources if they aren’t cancelled when they should be.


Flows, like Channels, are meant to handle asynchronous streams of data, but at a higher level of abstraction and with
better library tooling. Conceptually, Flows are similar to Sequences, except that each step of a Flow can be
asynchronous. It is also easy to integrate flows in structured concurrency, to avoid leaking resources.


However, Flows1 aren’t meant to
replace Channels. Channels are building blocks for flows. Channels are still appropriate in some architectures
such as in CSP (see Chapter 9). Nevertheless, you’ll see that flows suit most needs in asynchronous data

processing.


In this chapter, we’ll introduce you to cold and hot flows. You’ll see how cold flows can be a better choice when
you want to make sure never to leak any resources. On the other hand, hot flows serve a different purpose such as
when you need a “publish-subscribe” relationship between entities in your app. For example, you can implement an
event bus using hot flows.


The best way to understand flows is to see how they are used in real-life applications. So this chapter will also go
through a series of typical use cases.








An Introduction to Flows


Lets reimplement Example 9-6, using a Flow:


fun numbers(): Flow<Int> = flow {
    emit(1)
    emit(2)
    // emit other values
}


Several aspects are important to notice:


	
Instead of returning a Channel instance, we’re returning a Flow instance.



	
Inside the flow, we use the emit suspending function instead of send.



	
The numbers function, which returns a Flow instance, isn’t a suspending function. Invoking the numbers function
doesn’t start anything by itself—it just immediately returns a Flow instance.







To sum up, you define in the flow block the emission of values. When invoked, the numbers function quickly returns a
Flow instance without running anything in the background.


On the consuming site:


fun main() = runBlocking {
    val flow = numbers()      [image: 1]
    flow.collect {            [image: 2]
        println(it)
    }
}


	[image: 1]

	We get an instance of Flow, using the numbers function.


	[image: 2]

	Once we get a flow, instead of looping over it (like we would with a channel), we use the collect function which,
in flows parlance, is called a terminal operator. We’ll extend on flows operators and terminal operators in
“Operators”.
For now, we can summarize the purpose of the collect terminal operator: it consumes the flow; foor example, iterate over the flow and execute the given lambda on each element of the flow.





That’s it—you’ve seen the basic usage of a flow. As we mentioned earlier, we’ll now take a more realistic example, so
you’ll see the real interest of Flows.










A More Realistic Example


Imagine that you need to get tokens from a remote database,2
then query additional data for each of those tokens. You need to do that only once in a while, so you decide not to
maintain an active connection to the database (which could be expensive). So you create a connection only when fetching
the data, and close it when you’re done.


Your implementation should first establish the connection to the database. Then you get a token using a
suspending function getToken. This getToken function performs a request to the database and returns a token. Then
you asynchronously get optional data associated with this token. In our example, this is done by invoking the
suspending function getData, which takes a token as a parameter.
Once you get the result of getData, you wrap both the token and the result in one TokenData class instance, defined as:


data class TokenData(val token: String, val opt: String? = null)


To sum up, you need to produce a stream of TokenData objects. This stream requires first establishing a database connection, then performing asynchronous queries for retrieving tokens and getting associated data. You choose how many tokens you need. After you’ve  processed all the tokens, you disconnect and release underlying database connection resources. Figure 10-1 shows how to  implement such a flow.



[image: Implementing the flow for retrieving token data]
Figure 10-1. Data flow.




You can find the corresponding source code in GitHub.

Note

In this chapter, we sometimes use images instead of code blocks because the screenshots from our IDE show suspension
points (in the margin) and type hints, which are really helpful.




Several aspects of this implementation are particularly important to notice:



	
Creating a connection to the database and closing it on completion is completely transparent to the client code that
consumes the flow. Client code only sees a flow of TokenData.



	
All operations inside the flow are sequential. For example, once we get the first token (say, “token1”), the flow
invokes getData("token1") and suspends until it gets the result (say, “data1”). Then the flow emits the first
TokenData("token1," "data1"). Only after that does the execution proceed with “token2,” etc.



	
Invoking the getDataFlow function does nothing on its own. It simply returns a flow. The code inside the flow
executes only when a coroutine collects the flow, as shown in Example 10-1.


Example 10-1. Collecting a flow


fun main() = runBlocking<Unit> {
    val flow = getDataFlow(3) // Nothing runs at initialization

    // A coroutine collects the flow
    launch {
        flow.collect { data ->
            println(data)
        }
    }
}




	
If the coroutine that collects the flow gets cancelled or reaches the end of the flow, the code inside the onCompletion
block executes. This guarantees that we properly release the connection to the database.






As we already mentioned, collect is a terminal operator that consumes all elements of the flow. In this
example, collect invokes a function on each collected element of the flow (e.g., println(data) is
invoked three times). We’ll cover other terminal operators in “Examples of Cold Flow Usage”.

Note

Until now, you’ve seen examples of flows that don’t run any code until a coroutine collects them. In flows parlance,
they are cold flows.



















Operators


If you need to perform transformations on a flow, much like you would do on collections, the coroutines library provides
functions such as map, filter, debounce, buffer, onCompletion, etc. Those functions are called flow operators
or intermediate operators, because they operate on a flow and return another flow. A regular operator shouldn’t be confused
with a terminal operator, as you’ll see later.


In the following, we have an example usage of the map operator:


fun main() = runBlocking<Unit> {
    val numbers: Flow<Int> = // implementation hidden for brevity

    val newFlow: Flow<String> = numbers().map {
        transform(it)
    }
}

suspend fun transform(i :Int): String = withContext(Dispatchers.Default) {
    delay(10) // simulate real work
    "${i + 1}"
}


The interesting bit here is that map turns a Flow<Int> into a Flow<String>. The type of the resulting flow is
determined by the return type of the lambda passed to the operator.

Note

The map flow operator is conceptually really close to the map extension function on collections. There’s a noticeable
difference, though: the lambda passed to the map flow operator can be a suspending function.




We’ll cover most of the common operators in a series of use cases in the next section.

















Terminal Operators


A terminal operator can be easily distinguished from other regular operators since it’s a suspending function
that starts the collection of the flow. You’ve previously seen collect.


Other terminal operators are available, like toList, collectLatest, first, etc. Here is a brief description of
those terminal operators:



	
toList collects the given flow and returns a List containing all collected 
elements.



	
collectLatest  collects the given flow with a provided action. The difference from collect is that when the
original flow emits a new value, the action block for the previous value is cancelled.



	
first returns the first element emitted by the flow and then cancels the flow’s collection. It throws a
NoSuchElementException if the flow was empty. There’s also a variant, firstOrNull, which returns null if the flow
was empty.




























Examples of Cold Flow Usage


As it turns out, picking one single example making use of all possible operators isn’t the best path to follow. Instead,
we’ll provide different use cases, which will illustrate the usage of several flow operators.










Use Case #1: Interface with a Callback-Based API


Suppose that you’re developing a chat application. Your users can send messages to one another. A message has a
date, a reference to the author of the message, and content as plain text.


Here is a Message:


data class Message(
    val user: String,
    val date: LocalDateTime,
    val content: String
)


Unsurprisingly, we’ll represent the stream of messages as a flow of the Message instance. Every time a user posts
a message into the app, the flow will transmit that message. For now, assume that you can invoke a function
getMessageFlow, which returns an instance of Flow<Message>. With the Kotlin Flows library, you are able to create
your own custom flows. However, it makes the most sense to start by exploring how the flow API can be used
in common use cases:


fun getMessageFlow(): Flow<Message> {
    // we'll implement it later
}


Now, suppose that you want to translate all messages from a given user in a different language, on the fly. Moreover,
you’d like to perform the translation on a background thread.


To do that, you start by getting the flow of messages, by invoking getMessageFlow(). Then you apply operators to the
original flow, as shown in the following:


fun getMessagesFromUser(user: String, language: String): Flow<Message> {
    return getMessageFlow()
        .filter { it.user == user }           [image: 1]
        .map { it.translate(language) }       [image: 2]
        .flowOn(Dispatchers.Default)          [image: 3]
}


	[image: 1]

	The first operator, filter, operates on the original flow and returns another flow of messages which all originate
from the same user passed as a parameter.


	[image: 2]

	The second operator, map, operates on the flow returned by filter and returns a flow of translated messages.
From the filter operator standpoint, the original flow (returned by getMessageFlow()) is the upstream
flow, while the downstream flow is represented by all operators happening after filter. The same
reasoning applies for all intermediate operators—they have their own relative upstream and downstream flow, as
illustrated in Figure 10-2.


	[image: 3]

	Finally, the flowOn operator changes the context of the flow it is operating on. 
It changes the coroutine context of the upstream flow, while not affecting the downstream flow. Consequently, steps 1 and 2 are done using the dispatcher

Dispatchers.Default.





In other words, the upstream flow’s operators (which are filter and map) are now encapsulated: their
execution context will always be Dispatchers.Default. It doesn’t matter in which context the resulting flow
will be collected; the previously mentioned operators will be executed using Dispatchers.Default.


This is a very important property of flows, called context preservation. Imagine that you’re collecting the flow on the UI thread of your 
application—typically, you would do that using the viewModelScope of a ViewModel. It would be embarrassing if the context of execution of one of the flow’s operators leaked downstream and affected the thread in which the flow was ultimately collected. Thankfully, this will never happen. For example, if you collect a flow on the UI thread, all values are emitted by a coroutine that uses Dispatchers.Main. All the necessary context switches are automatically managed for you.



[image: pawk 1002]
Figure 10-2. Upstream and downstream flows.




Under the hood, flowOn starts a new coroutine when it detects that the context is about to change. This new
coroutine interacts with the rest of the flow through a channel that is internally managed.

Note

In flow parlance, an intermediate operator like map operates on the upstream flow and returns another flow. From the
map operator standpoint, the returned flow is the downstream flow.


The map operator accepts a suspending function as a transformation block. So if you wanted to only perform
message translation using Dispatchers.Default (and not message filtering), you could remove the flowOn operator
and declare the translate function like so:


private suspend fun Message.translate(
    language: String
): Message  = withContext(Dispatchers.Default) {
    // this is a dummy implementation
    copy(content = "translated content")
}


See how easy it is to offload parts of data transformation to other threads, while still having a big picture
of the data flow?




As you can see, the Flow API allows for a declarative way to express data transformation. When you invoke
getMessagesFromUser("Amanda," "en-us"), nothing is actually running. All those transformations involve
intermediate operators, which will be triggered when the flow will be collected.


On the consuming site, if you need to act on each received message, you can use the collect function like so:


fun main() = runBlocking {
    getMessagesFromUser("Amanda", "en-us").collect {
        println("Received message from ${it.user}: ${it.content}")
    }
}


Now that we’ve shown how to transform the flow and consume it, we can provide an implementation for the flow itself: the getMessageFlow function. The signature of this function is to return a flow of Messages. In that particular
situation, we can reasonably assume that the message machinery is actually a service that runs in its own thread.
We’ll name this service MessageFactory.


Like most services of that kind, the message factory has a publish/subscribe mechanism—we can register or unregister
observers for new incoming messages, as shown in the following:


abstract class MessageFactory : Thread() {
    /* The internal list of observers must be thread-safe */
    private val observers = Collections.synchronizedList(
        mutableListOf<MessageObserver>())
    private var isActive = true

    override fun run() = runBlocking {
        while(isActive) {
            val message = fetchMessage()
            for (observer in observers) {
                observer.onMessage(message)
            }
            delay(1000)
        }
    }

    abstract fun fetchMessage(): Message

    fun registerObserver(observer: MessageObserver) {
        observers.add(observer)
    }

    fun unregisterObserver(observer: MessageObserver) {
        observers.removeAll { it == observer }
    }

    fun cancel() {
        isActive = false
        observers.forEach {
            it.onCancelled()
        }
        observers.clear()
    }

    interface MessageObserver {
        fun onMessage(msg: Message)
        fun onCancelled()
        fun onError(cause: Throwable)
    }
}


This implementation polls for new messages every second and notifies observers. Now the question is: how do we
turn a hot3 entity such as this MessageFactory into a flow? MessageFactory is also said to be callback-based,
because it holds references to MessageObserver instances and calls methods on those instances when new messages
are retrieved. To bridge the flow world with the “callback” world, you can use the callbackFlow flow builder.
Example 10-2 shows how you can use it.


Example 10-2. Making a flow from a callback-based API


fun getMessageFlow(factory: MessageFactory) = callbackFlow<Message> {
    val observer = object : MessageFactory.MessageObserver {
        override fun onMessage(msg: Message) {
            trySend(msg)
        }

        override fun onCancelled() {
            channel.close()
        }

        override fun onError(cause: Throwable) {
            cancel(CancellationException("Message factory error", cause))
        }
    }

    factory.registerObserver(observer)
    awaitClose {
        factory.unregisterObserver(observer)
    }
}



The callbackFlow builder creates a cold flow which doesn’t perform anything until you invoke a terminal
operator. Let’s break it down. First off, it’s a parameterized function which returns a Flow of the given type.
It’s always done in three steps:


callbackFlow {
    /*
    1. Instantiate the "callback." In this case, it's an observer.
    2. Register that callback using the available api.
    3. Listen for close event using `awaitClose`, and provide a
       relevant action to take in this case. Most probably,
       you'll have to unregister the callback.
    */
}


It’s worth having a look at the signature of callbackFlow:


public inline fun <T> callbackFlow(
    @BuilderInference noinline block: suspend ProducerScope<T>.() -> Unit
): Flow<T>


Don’t be impressed by this. One key piece of information is that callbackFlow takes a suspending function
with ProducerScope receiver as the argument. This means that inside the curly braces of the block following callbackFlow,
you have a ProducerScope instance as an implicit this.


Here is the signature of ProducerScope:


public interface ProducerScope<in E> : CoroutineScope, SendChannel<E>


So a ProducerScope is a SendChannel. And that’s what you should remember: callbackFlow provides you with an
instance of SendChannel, which you can use inside your implementation. You send the object instances you get from your callback to this channel. This is what we do in step 1 of Example 10-2.

















Use Case #2: Concurrently Transform a Stream of Values


Sometimes you have to apply a transformation on a collection or stream of objects, to get a new collection
of transformed objects. When those transformations should be done asynchronously, things start getting a
bit complicated. Not with flows!


Imagine that you have a list of Location instances. Each location can be resolved to a Content instance,
using the transform function:


suspend fun transform(loc: Location): Content = withContext(Dispatchers.IO) {
    // Actual implementation doesn't matter
}


So you are receiving Location instances, and you have to transform them on the fly using the transform
function. However, processing one Location instance might take quite some time. So you don’t want that
processing of a location to delay the transformation of the next incoming locations. In other words,
transformations should be done in parallel, as shown in Figure 10-3.



[image: Merge flows]
Figure 10-3. Merge flows.




In the preceding schema, we’ve limited the concurrency to four; in other words, at most, four locations can be transformed
simultaneously at a given point in time.


Figure 10-4 shows how you would implement this behavior using flows.



[image: pawk 1004]
Figure 10-4. Implementing merging flows.




You can find the corresponding source code in GitHub.


To understand what’s going on here, you should realize that locations.map{..} returns a flow of a flow (e.g., the type is
Flow<Flow<Content>>). Indeed, inside the map{..} operator, a new flow is created upon emission of a location by the
upstream flow (which is locationsFlow).
Each of those created flows is of type Flow<Content> and individually performs location transformation.


The last statement, flattenMerge, merges all those created flows inside a new resulting Flow<Content> (which we
assign to contentFlow). Also, flattenMerge has a 
“concurrency” parameter. Indeed, it would probably be
inappropriate to concurrently create and collect a flow every time we receive a location. With a concurrency level of 4,
we ensure that no more than four flows will be collected at a given point in time. This is handy in the case of CPU-bound tasks,
when you know that your CPU won’t be able to transform more than four locations in parallel (assuming the CPU has four cores).
In other words, flattenMerge’s concurrency level refers to how many operations/transformations will be done in
parallel at most at a given point in time.


Thanks to the suspending nature of flows, you get back pressure for free. New locations are collected from
locationsFlow only when the machinery is available to process them. A similar mechanism could be implemented without
flows or coroutines, using a thread pool and a blocking queue. However, that would require considerably more lines of code.

Note

As of this writing, the flattenMerge operator is marked as @FlowPreview in the source code, which means
that this declaration is in a preview state and can be changed in a backward-incompatible manner with a
best-effort migration.


We hope that by the time we finish writing this book, the flow-merging API will be stabilized. Otherwise, a similar
operator might replace flattenMerge.



















What Happens in Case of Error?


If one of the transform functions raises an exception, the entire flow will be cancelled, and the exception will be
propagated downstream. While this good default behavior, you might want to handle some exceptions right inside the
flow itself.


We’ll show how to do that in “Error Handling”.

















Final Thoughts



	
Do you realize that we’ve just created a worker pool that concurrently transforms an incoming stream of
objects, using only five lines of code?



	
You’re guaranteed that the flow machinery is thread-safe. No more headaches figuring out the proper
synchronization strategy to pass object references from a thread pool to a collecting thread.



	
You can easily tweak the concurrency level, which, in this case, means the maximum number of parallel transformations.





















Use Case #3: Create a Custom Operator


Even if a lot of flow operators are available out of the box, sometimes you’ll have to make your own. Thankfully,
flows are composable, and it’s not that difficult to implement custom reactive logic.


For example, by the time we write those lines, there’s no Flows operator equivalent of the Project Reactor’s bufferTimeout.


So, what is bufferTimeout supposed to do? Imagine that you have an upstream flow of elements, but you want
to process those elements by batches and at a fixed maximum rate. The flow returned by bufferTimeout should buffer
elements and emit a list (batch) of elements when either:



	
The buffer is full.



	
A predefined maximum amount of time has elapsed (timeout).






Before going through the implementation, let’s talk about the key idea. The flow returned by bufferTimeout
should internally consume the upstream flow and buffer elements. When the buffer is full, or a timeout has
elapsed, the flow should emit the content of the buffer (a list). You can imagine that internally we’ll start
a coroutine that receives two types of events:



	
“An element has just been received from the upstream flow. Should we just add it to the buffer or also send
the whole buffer?”



	
“Timeout! Send the content of the buffer right now.”






In Chapter 9 (CSP section), we’ve discussed a similar situation. The select expression is
perfect for dealing with multiple events coming from several channels.


Now we’re going to implement our bufferTimeout flow operator:



[image: pawk 10in01]





You can find the corresponding source code in GitHub.


Here is the explanation:



	
First of all, the signature of the operator tells us a lot. It’s declared as an extension function of Flow<T>,
so you can use it like this: upstreamFlow.bufferTimeout(10, 100). As for the return type, it’s Flow<List<T>>.
Remember that you want to process elements by batches, so the flow returned by bufferTimeout should return
elements as List<T>.



	
Line 17: we’re using a flow{} builder. As a reminder, the builder provides you an instance of FlowCollector,
and the block of code is an extension function with FlowCollector as the receiver type. In other words, you can
invoke emit from inside the block of code.



	
Line 21: we’re using coroutineScope{} because we’ll start new coroutines, which is only possible within a
CoroutineScope.



	
Line 22: from our coroutine standpoint,4 received
elements should come from a ReceiveChannel. So another inner coroutine should be started to consume the
upstream flow and send them over a channel. This is exactly the purpose of the produceIn flow operator.



	
Line 23: we need to generate “timeout” events. A library function already exists exactly for that purpose:
ticker. It creates a channel that produces the first item after the given initial delay, and subsequent
items with the given delay between them. As specified in the documentation, ticker starts a new coroutine
eagerly, and we’re fully responsible for cancelling it.



	
Line 34: we’re using whileSelect, which really is just syntax sugar for looping in a select expression
while clauses return true. Inside the whileSelect{} block you can see the logic of adding an element
to the buffer only if it’s not full, and emitting the whole buffer otherwise.



	
Line  46:  when  the  upstream  flow  collection  completes,  the  coroutine  started  with produceIn will still attempt to read from that flow, and a 
ClosedReceiveChannelException  will  be  raised.  So  we  catch  that  exception, and
we know that we should emit the content of the buffer.



	
Lines 48 and 49: channels are hot entities—they should be cancelled when they’re not supposed to be used anymore. As for
the ticker, it should be cancelled too.





















Usage


Figure 10-5 shows an example of how bufferTimeout can be used.



[image: `bufferTimeout` usage]
Figure 10-5. bufferTimeout usage.




You can find the corresponding source code in GitHub.


The output is:


139 ms: [1, 2, 3, 4]
172 ms: [5, 6, 7, 8]
223 ms: [9, 10, 11, 12, 13]
272 ms: [14, 15, 16, 17]
322 ms: [18, 19, 20, 21, 22]
...
1022 ms: [86, 87, 88, 89, 90]
1072 ms: [91, 92, 93, 94, 95]
1117 ms: [96, 97, 98, 99, 100]


As you can see, the upstream flow is emitting numbers from 1 to 100, with a delay of 10 ms between each emission.
We set a timeout of 50 ms, and each emitted list can contain at most five numbers.
























Error Handling


Error handling is fundamental in reactive programming. If you’re familiar with RxJava, you probably handle
exceptions using the onError callback of the subscribe method:


// RxJava sample
someObservable().subscribe(
    { value -> /* Do something useful */ },
    { error -> println("Error: $error") }
)


Using flows, you can handle errors using a combination of techniques, involving:



	
The classic try/catch block.



	
The catch operator—we’ll cover this new operator right after we discuss the try/catch block.














The try/catch Block


If we define a dummy upstream flow made of only three Ints, and purposely throw an exception inside the collect{}
block, we can catch the exception by wrapping the whole chain in a try/catch block:
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You can find the corresponding source code in GitHub.


The output is:


Received 1
Received 2
Caught java.lang.RuntimeException


It is important to note that try/catch also works when the exception is raised from inside the upstream flow.
For example, we get the exact same result if we change the definition of the upstream flow to:
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You can find the corresponding source code in GitHub.


However, if you try to intercept an exception in the flow itself, you’re likely to get unexpected results.
Here is an example:


// Warning: DON'T DO THIS, this flow swallows downstream exceptions
val upstream: Flow<Int> = flow {
    for (i in 1..3) {
        try {
            emit(i)
        } catch (e: Throwable) {
            println("Intercept downstream exception $e")
        }
    }
}

fun main() = runBlocking {
    try {
        upstream.collect { value ->
            println("Received $value")
            check(value <= 2) {
                "Collected $value while we expect values below 2"
            }
        }
    } catch (e: Throwable) {
        println("Caught $e")
    }
}


In this example, we’re using the flow builder to define upstream, and we wrapped the emit invocation
inside a try/catch statement. Even if it seems useless because emit isn’t throwing exceptions, it could
make sense with nontrivial emission logic nevertheless. At the consuming site, in the main function, we collect
that flow and we check that we don’t get values strictly greater than 2. Otherwise, the catch block should
print Caught java.lang.IllegalStateException Collected x while we expect values below 2.


We expect the following output:


Received 1
Received 2
Caught java.lang.IllegalStateException: Collected 3 while we expect values below 2


However, this is what we actually get:


Received 1
Received 2
Received 3
Intercept downstream exception java.lang.IllegalStateException: Collected 3 while we expect values below 2


Despite the exception raised by check(value <= 2) {..}, that exception gets caught not
by the try/catch statement of the main function, but by the try/catch statement of the flow.

Warning

A try/catch statement inside a flow builder might catch downstream exceptions—which
includes exceptions raised during the collection of the flow.



















Separation of Concern Is Important


A flow implementation shouldn’t have a side effect on the code that collects that flow. Likewise, the code that
collects a flow shouldn’t be aware of the implementation details of the upstream flow. A flow should always be
transparent to exceptions: it should propagate exceptions coming from a collector. In other words, a flow should
never swallow downstream exceptions.


Throughout this book, we’ll refer to exception transparency to designate a flow that is transparent to
exceptions.

















Exception Transparency Violation


The previous example was an example of exception transparency violation. Trying to emit values from inside a
try/catch block is another violation. Here is an example (again, don’t do this!):


val violatesExceptionTransparency: Flow<Int> = flow {
    for (i in 1..3) {
        try {
            emit(i)
        } catch (e: Throwable) {
            emit(-1)
        }
    }
}

fun main() = runBlocking {
    try {
        violatesExceptionTransparency.collect { value ->
            check(value <= 2) { "Collected $value" }
        }
    } catch (e: Throwable) {
        println("Caught $e")
    }
}


The output is:


Caught java.lang.IllegalStateException: Flow exception transparency is
violated:
Previous 'emit' call has thrown exception java.lang.IllegalStateException: Collected 3, but then emission attempt of value '-1' has been detected.
Emissions from 'catch' blocks are prohibited in order to avoid unspecified behaviour, 'Flow.catch' operator can be used instead.
For a more detailed explanation, please refer to Flow documentation.


The  try/catch  block  should  only  be  used  to  surround  the  collector,  to  handle  exceptions raised from the collector
itself, or (possibly, although it’s not ideal) to handle exceptions raised from the flow.


To handle exceptions inside the flow, you should use the catch operator.

















The catch Operator


The catch operator allows for a declarative style of catching exceptions, as shown in Figure 10-6. It catches all upstream exceptions. By all
exceptions, we mean that it even catches Throwables. Since it only catches upstream exceptions, the catch operator
doesn’t have the exception issue of the try/catch block.
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Figure 10-6. Declarative style.




You can find the corresponding source code in GitHub.


The output is:


Received 1
Received 2
Caught java.lang.RuntimeException


The flow raises a RuntimeException if it’s passed a value greater than 2. Right after, in the
catch operator, we print in the console. However, the collector never get the value 3. So the catch operator
automatically cancels the flow.












Exception transparency


From inside this operator, you can only catch upstream exceptions. When we say upstream, we mean relative to the catch operator. To show what we mean, we’ll pick an example where the collector throws an exception before the flow internally throws another exception. The collector should be able to catch the raised exception (the exception shouldn’t be caught by the flow):
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You can find the corresponding source code in GitHub.


In this example, the collector throws a RuntimeException if it collects a value greater than 2. The collection
logic is wrapped in a try/catch statement because we don’t want our program to crash and log the exception.
The flow internally raises a NumberformatException if the value is negative. The catch operator acts as a
safeguard (logs the exception and cancels the flow).


The output is:


Received 0
Collector stopped collecting the flow


Note that the flow didn’t intercept the exception raised inside the collector, because it was caught in the catch
clause of the try/catch. The flow never got to raise a 
NumberformatException, because the
collector prematurely cancelled the 
collection.

















Another example


In “Use Case #2: Concurrently Transform a Stream of Values”, we held off on talking about error handling. Suppose the transform function might raise
exceptions, among which is NumberFormatException. You can selectively handle NumberFormatException using the
catch operator:


fun main() = runBlocking {
    // Defining the Flow of Content - nothing is executing yet
    val contentFlow = locationsFlow.map { loc ->
        flow {
            emit(transform(loc))
        }.catch { cause: Throwable ->
            if (cause is NumberFormatException) {   [image: 1]
                println("Handling $cause")
            } else {
                throw cause                         [image: 2]
            }
        }
    }.flattenMerge(4)

    // We now collect the entire flow using the toList terminal operator
    val contents = contentFlow.toList()
}


	[image: 1]

	As the catch operator catches Throwables, we need to check the type of the error. If the error is a
NumberFormatException, then we handle it inside the if statement. You can add other checks there for different error
types.


	[image: 2]

	Otherwise, you don’t know the error’s type. In most cases, it’s preferable not to swallow the error and rethrow.




















You can use emit from inside catch


Sometimes it will make sense to emit a particular value when you catch an exception from inside the flow:
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You can find the corresponding source code in GitHub.


The output is:


Received 1
Received 3
Received 0


Emitting values from inside catch is especially useful to materialize exceptions.






















Materialize Your Exceptions


Materializing exceptions5 is the process of catching exceptions and emitting special values or objects that represent those exceptions. The goal is to avoid throwing exceptions from inside the flow, because code
execution then goes to whatever place that collects that flow. It doesn’t matter whether collection code handles
exceptions thrown by the flow or not. If the flow throws exceptions, the collection code needs to be aware of
those exceptions and catch them in order to avoid undefined behavior. Consequently, the flow has a
side effect on the collection code, and this is a violation of the exception transparency principle.

Note

The collection code shouldn’t be aware of implementation details of the flow. For example, if the flow is a Flow<Number>,
you should only expect to get Number values (or subtypes)—not exceptions.




Let’s take another example. Imagine you’re fetching images, given their URLs. You have an incoming flow of URLs:


// We don't use realistic URLs, for brevity
val urlFlow = flowOf("url-1", "url-2", "url-retry")


You also have this function already available:


suspend fun fetchImage(url: String): Image {
    // Simulate some remote call
    delay(10)

    // Simulate an exception thrown by the server or API
    if (url.contains("retry")) {
        throw IOException("Server returned HTTP response code 503")
    }

    return Image(url)
}

data class Image(val url: String)


This fetchImage function may throw IOExceptions. In order to craft a “flow of images” using the
urlFlow and the fetchImage function, you should materialize 
IOExceptions. Regarding the fetchImage function, it either succeeds or fails—you either get an Image instance, or an exception
is thrown. You can represent these outcomes by a Result type, with Success and Error subclasses:6


sealed class Result
data class Success(val image: Image) : Result()
data class Error(val url: String) : Result()


In the case of a success, we wrap the actual result—the Image instance. In the case of failure, we felt it was
appropriate to wrap the URL for which image retrieval failed. However, you’re free to wrap all data that
might be useful for the collection code, such as the exception itself.


Now you can encapsulate fetchImage usage, by creating a fetchResult function which returns Result instances:


suspend fun fetchResult(url: String): Result {
    println("Fetching $url..")
    return try {
        val image = fetchImage(url)
        Success(image)
    } catch (e: IOException) {
        Error(url)
    }
}


Finally, you can implement a resultFlow and collect it safely:


fun main() = runBlocking {
    val urlFlow = flowOf("url-1", "url-2", "url-retry")

    val resultFlow = urlFlow
        .map { url -> fetchResult(url) }

    val results = resultFlow.toList()
    println("Results: $results")
}


The output is:


Fetching url-1..
Fetching url-2..
Fetching url-retry..
Results: [Success(image=Image(url=url-1)), Success(image=Image(url=url-2)), Error(url=url-retry)]












A bonus


Imagine that you’d like to automatically retry fetching an image in the event of  an error. You can implement a custom
flow operator that retries an action while the predicate returns true:


fun <T, R : Any> Flow<T>.mapWithRetry(
    action: suspend (T) -> R,
    predicate: suspend (R, attempt: Int) -> Boolean
) = map { data ->
    var attempt = 0L
    var shallRetry: Boolean
    var lastValue: R? = null
    do {
        val tr = action(data)
        shallRetry = predicate(tr, ++attempt)
        if (!shallRetry) lastValue = tr
    } while (shallRetry)
    return@map lastValue
}


If you’d like to retry, three times (at most) before returning an error, you can use this
operator like so:


fun main() = runBlocking {
    val urlFlow = flowOf("url-1", "url-2", "url-retry")

    val resultFlowWithRetry = urlFlow
        .mapWithRetry(
            { url -> fetchResult(url) },
            { value, attempt -> value is Error && attempt < 3L }
        )

    val results = resultFlowWithRetry.toList()
    println("Results: $results")
}


The output is:


Fetching url-1..
Fetching url-2..
Fetching url-retry..
Fetching url-retry..
Fetching url-retry..
Results: [Success(image=Image(url=url-1)), Success(image=Image(url=url-2)), Error(url=url-retry)]





























Hot Flows with SharedFlow


Previous implementations of flow were cold: nothing runs until you start collecting the flow.
This is made possible because for each emitted value, only one collector would get the value. Therefore,
there’s no need to run anything until the collector is ready to collect the values.


However, what if you need to share emitted values among several collectors? For example, say an event like a file download completes in your app. You might want to directly notify various components, such as some view-models, repositories,
or even some views. Your file downloader might not have to be aware of the existence of other parts of your app.
A good separation of concerns starts with a loose coupling of classes, and the event bus is one architecture pattern
that helps in this 
situation.


The principle is simple: the downloader emits an event (an instance of a class, optionally holding some state) by giving
it to the event bus, and all subscribers subsequently receive that event. A SharedFlow can act just like that, as
shown in Figure 10-7.



[image: SharedFlow]
Figure 10-7. SharedFlow.




A SharedFlow broadcasts events to all its subscribers.
Actually, SharedFlow really is a toolbox that can be used in many situations—not just to implement an event bus.
Before giving examples of usage, we’ll show how to create a SharedFlow and how you can tune it.










Create a SharedFlow


In its simplest usage, you invoke MutableSharedFlow() with no parameter. As its name suggests, you can mutate its
state, by sending values to it. A common pattern when creating a SharedFlow is to create a private mutable version and
a public nonmutable one using asSharedFlow(), as shown in the following:


private val _sharedFlow = MutableSharedFlow<Data>()
val sharedFlow: SharedFlow<Data> = _sharedFlow.asSharedFlow()


This pattern is useful when you ensure that subscribers will only be able to read the flow (e.g., not send values).
You might be surprised to find that 
MutableSharedFlow 
is not a class. It’s actually a function that accepts parameters,
which we’ll cover later 
in this chapter. For now, we’re only showing the default no-arg version of 
MutableSharedFlow.

















Register a Subscriber


A subscriber registers when it starts collecting the SharedFlow—preferably the public nonmutable version:


scope.launch {
   sharedFlow.collect { data ->
      println(data)
   }
}


A subscriber can only live in a scope, because the collect terminal operator is a suspending function. This is good
for structured concurrency: if the scope is cancelled, so is the subscriber.

















Send Values to the SharedFlow


A MutableSharedFlow exposes two methods to emit values—emit and tryEmit:


	emit

	
This suspends under some conditions (discussed shortly).



	tryEmit

	
This never suspends. It tries to emit the value immediately.






Why are there two methods to emit values? This is because, by default, when a 
MutableSharedFlow emits a value using
emit, it suspends until all subscribers start processing the value. We will give an example of emit usage in
the next section.


However, sometimes this isn’t what you want to do. You’ll find situations where you have to emit values from
nonsuspending code (see “Using SharedFlow as an Event Bus”). So here comes tryEmit, which tries to emit a value immediately
and returns true if it succeeded, and false otherwise. We’ll provide more details on the nuances of emit and
tryEmit in upcoming sections.

















Using SharedFlow to Stream Data


Suppose you are developing a news app. One of the features of your app is that it fetches news from an API or a local
database and displays this news (or newsfeed). Ideally, you should rely on a local database to avoid using the API
when possible. In this example, we’ll use the API as the only source of news, although you can easily extend on our
example to add local persistence.












The architecture


In our architecture, a view-model relies on a repository to get the newsfeed. When the view-model receives news, it
notifies the view. The repository is responsible for querying the remote API at regular intervals, and provides a
means for view-models to get the newsfeed (see Figure 10-8).



[image: App architecure]
Figure 10-8. App architecture.



















The implementation


To keep it simple, the following News data class represents news:


data class News(val content: String)


The repository reaches the API through a NewsDao. In our example, the data access object (DAO) is manually constructor-injected. In a real application, we recommend that you use a dependency injection (DI) framework such as Hilt or Dagger:


interface NewsDao {
    suspend fun fetchNewsFromApi(): List<News>
}


We now have enough material to implement the repository:


class NewsRepository(private val dao: NewsDao) {
    private val _newsFeed = MutableSharedFlow<News>()    [image: 1]
    val newsFeed = _newsFeed.asSharedFlow()              [image: 2]

    private val scope = CoroutineScope(Job() + Dispatchers.IO)

    init {
        scope.launch {                                   [image: 3]
            while (true) {
                val news = dao.fetchNewsFromApi()
                news.forEach { _newsFeed.emit(it) }      [image: 4]

                delay(3000)
            }
        }
    }

    fun stop() = scope.cancel()
}


	[image: 1]

	We create our private mutable shared flow. It will only be used inside the repository.


	[image: 2]

	We create the public nonmutable version of the shared flow.


	[image: 3]

	As soon as the repository instance is created, we start fetching news from the API.


	[image: 4]

	Every time we get a list of News instances, we emit those values using our MutableSharedFlow.





All that’s left is to implement a view-model that will subscribe to the repository’s shared flow:


class NewsViewsModel(private val repository: NewsRepository) : ViewModel() {
    private val newsList = mutableListOf<News>()

    private val _newsLiveData = MutableLiveData<List<News>>(newsList)
    val newsLiveData: LiveData<List<News>> = _newsLiveData

    init {
        viewModelScope.launch {
            repository.newsFeed.collect {
                println("NewsViewsModel receives $it")
                newsList.add(it)
                _newsLiveData.value = newsList
            }
        }
    }
}


By invoking repository.newsFeed.collect { .. }, the view-model subscribes to the shared flow. Every time the repository
emits a News instance to the shared flow, the view-model receives the news and adds it to its LiveData to update the
view.


Notice how the flow collection happens inside a coroutine started with viewModelScope.launch. This implies that if the view-model reaches its end-of-life, the flow collection will automatically be cancelled, and that’s a good thing.

Tip

In our example, we manually constructor-inject an object (in this case, the repository). A DI framework would
definitely help to avoid boilerplate code. As demonstrating DI frameworks isn’t the primary focus of this chapter, we
chose to go for a manual repository injection into the view-model.



















Test of our implementation


In order to test the previous code, we need to mock the NewsDao. Our DAO will just send two dummy News instances and increment
a counter:


val dao = object : NewsDao {
    private var index = 0

    override suspend fun fetchNewsFromApi(): List<News> {
        delay(100)  // simulate network delay
        return listOf(
            News("news content ${++index}"),
            News("news content ${++index}")
        )
    }
}


When we run our code using the preceding DAO, this is what we see in the console:


NewsViewsModel receives News(content=news content 1)
NewsViewsModel receives News(content=news content 2)
NewsViewsModel receives News(content=news content 3)
...


There is nothing surprising here: our view-model simply receives the news sent by the repository. Things become interesting when
there’s not one but several view-models that  subscribe  to  the  shared  flow.  We’ve  gone  ahead  and  created  another 
view-model which also logs in the console. We created the other view-model 250 ms after the launch of the program.
This is the output we get:


NewsViewsModel receives News(content=news content 1)
NewsViewsModel receives News(content=news content 2)
NewsViewsModel receives News(content=news content 3)
AnotherViewModel receives News(content=news content 3)
NewsViewsModel receives News(content=news content 4)
AnotherViewModel receives News(content=news content 4)
NewsViewsModel receives News(content=news content 5)
AnotherViewModel receives News(content=news content 5)
NewsViewsModel receives News(content=news content 6)
AnotherViewModel receives News(content=news content 6)
...


You can see that the other view-model missed the first two news entries. This is because, at the time the shared flow emits
the first two news entries, the first view-model is the only subscriber. The second view-model comes after and only receives
subsequent news.

















Replay values


What if you need the second view-model to get previous news? A shared flow can optionally cache values so that new
subscribers receive the last n cached values. In our case, if we want the shared flow to replay the last two news entries,
all we have to do is to update the line in the repository:


private val _newsFeed = MutableSharedFlow<News>(replay = 2)


With that change, the two view-models receive all news. Replaying data is actually useful in other common situations.
Imagine the user leaves the fragment that displays the list of news. Potentially, the associated view-model might also
get destroyed, if its lifecycle is bound to the fragment (that wouldn’t be the case if you chose to bound the view-model
to the activity). Later on, the user comes back to the news fragment. What happens then? The view-model is re-created and
immediately gets the last two news entries while waiting for fresh news. Replaying only two news entries might then be insufficient.
Therefore, you might want to increase the replay count to, 
say, 15.


Let’s recap. A SharedFlow can optionally replay values for new subscribers. The number of values to replay is
configurable, using the replay parameter of the MutableSharedFlow function.

















Suspend or not?


There’s one last thing about this replay feature that you should be aware of. A shared flow with replay > 0 internally uses
a cache that works similarly to a Channel. For example, if you create a shared flow with replay = 3, the first
three emit calls won’t suspend. In this case, emit and tryEmit do exactly the same thing: they add a new value to
the cache, as shown in Figure 10-9.



[image: Replay cache not full]
Figure 10-9. Replay cache not full.




When you submit a fourth value to the shared flow, then it depends on whether you use emit or tryEmit, as shown in
Figure 10-10. By default, when the replay cache is full, emit suspends until all subscribers start
processing the oldest value in the cache. As for tryEmit, it returns false since it can’t add the value to the cache.
If you don’t keep track of that fourth value yourself, this value is lost.



[image: Replay cache full]
Figure 10-10. Replay cache full.




That behavior (when the replay cache is full) can be changed. You can also opt to discard either the oldest value in the
cache or the value that is being added to the cache. In both cases, emit does not suspend and tryEmit returns true.
Therefore, there are three possible behaviors on buffer overflow: suspend, drop oldest, and drop latest.


You apply the desired behavior while creating the shared flow, by using the 
onBufferOverflow parameter, as shown in
the following:


MutableSharedFlow(replay = 3, onBufferOverflow = BufferOverflow.DROP_OLDEST)


BufferOverflow is an enum with three possible values: SUSPEND, DROP_OLDEST, and DROP_LATEST.
If you don’t specify a value for onBufferOverflow, SUSPEND is the default strategy.

















Buffer values


In addition to being able to replay values, a shared flow can buffer values without replaying them, allowing slow
subscribers to lag behind other, faster subscribers. The size of the buffer is customizable, as shown in
the following:


MutableSharedFlow(extraBufferCapacity = 2)


By default, extraBufferCapacity equals zero. When you set a strictly positive value, emit doesn’t suspend while
there is buffer space remaining—unless you explicitly change the buffer overflow strategy.


You might be wondering in what situations extraBufferCapacity can be useful. 
One immediate consequence of
creating a shared flow with, for example, 
extraBufferCapacity = 1 and  
onBufferOverflow = BufferOverflow.DROP_OLDEST,
is that you’re guaranteed that tryEmit will always successfully insert a value into the shared flow. It’s sometimes
really convenient to insert values in a shared flow from nonsuspending code. A good example of such a use case is when
using a shared flow as an event bus.






















Using SharedFlow as an Event Bus


You need an event bus when all the following conditions are met:



	
You need to broadcast an event across one or several subscribers.



	
The event should be processed only once.



	
If a component isn’t registered as a subscriber at the time you emit the event, the event is lost for that component.






Notice the difference with LiveData, which keeps in memory the last emitted value and replays it every time the fragment
is re-created. With an event bus, the fragment would only receive the event once. For example, if the fragment is
re-created (the user rotates the device), the event won’t be processed again.


An event bus is particularly useful when you want, for example, to display a message as a Toast or Snackbar. It makes sense to
display the message only once. To achieve this, a repository can expose a shared flow as shown in the following code. In order to make the exposed flow accessible for view-models, or even fragments, you can use
a DI framework such as Hilt or Dagger:


class MessageRepository {
    private val _messageFlow = MutableSharedFlow<String>(
        extraBufferCapacity = 1,
        onBufferOverflow = BufferOverflow.DROP_OLDEST
    )
    val messageEventBus = _messageFlow.asSharedFlow()

    private fun someTask() {
        // Notify subscribers to display a message
        _messageFlow.tryEmit("This is important")
    }
}


We’ve set extraBufferCapacity to 1 and onBufferOverflow to DROP_OLDEST so that _messageFlow.tryEmit always
emits successfully. Why do we care about tryEmit? In our example, we use _messageFlow from a nonsuspending function.
Therefore, we can’t use emit inside someTask.


If you use _messageFlow from inside a coroutine, you can use emit. The behavior would be exactly the same, since
emit wouldn’t suspend because of the presence of the buffer and the buffer overflow policy.


An event bus is appropriate for dispatching one-time events that some components might miss if they’re not ready to
receive those events. For example, say you fire a “recording-stopped” event while the user hasn’t navigated to the
fragment displaying recordings yet. The result is that the event is lost. However, your application can be designed to
update the state of the fragment anytime the fragment resumes. Consequently, receiving “recording-stopped” is only
useful when the fragment is in the resumed state, as this should trigger a state update. This is just an example of when
losing events is totally acceptable and part of your application’s design.


Sometimes, however, this isn’t what you want to achieve. Take, for example, a service that can perform downloads.
If the service fires a “download-finished” event, you don’t want your UI to miss that. When the user navigates to the
view displaying the status of the download, the view should render the updated state of the download.


You will face situations where sharing a state is required. This situation is so common that a type of shared flow was
specifically created for it: StateFlow.

















StateFlow: A Specialized SharedFlow


When sharing a state, a state flow:



	
Shares only one value: the current state.



	
Replays the state. Indeed, subscribers should get the last state even if they subscribe afterward.



	
Emits an initial value—much like LiveData has an initial value.



	
Emits new values only when the state changes.






As you’ve learned previously, this behavior can be achieved using a shared flow:


val shared = MutableSharedFlow(
    replay = 1,
    onBufferOverflow = BufferOverflow.DROP_OLDEST
)
shared.tryEmit(initialValue) // emit the initial value
val state = shared.distinctUntilChanged() // get StateFlow-like behavior


StateFlow7 is a shorthand for the preceding code. In practice, all you have to write is:


val state = MutableStateFlow(initialValue)

















An Example of StateFlow Usage


Imagine that you have a download service that can emit three possible download states: download started,
downloading, and download finished, as shown in Figure 10-11.



[image: Download state]
Figure 10-11. Download state.




Exposing a flow from an Android service can be done in several ways. If you need high decoupling for, say, testability
purposes, a DI-injected “repository” object can expose the flow. The repository is then injected in all components that
need to subscribe. Or the service can statically expose the flow in a companion object. This 
induces tight coupling
between all components that use the flow. However, it might be acceptable in a small app or for demo purpose, such as
in the following example:


class DownloadService : Service() {
    companion object {
        private val _downloadState =
            MutableStateFlow<ServiceStatus>(Stopped)
        val downloadState = _downloadState.asStateFlow()
    }
    // Rest of the code hidden for brevity
}

sealed class ServiceStatus
object Started : ServiceStatus()
data class Downloading(val progress: Int) : ServiceStatus()
object Stopped : ServiceStatus()


Internally, the service can update its state by using, for example, 
_downloadState.tryEmit(Stopped).
When declared inside a companion object, the state flow can be easily accessed from a view-model, and exposed as a
LiveData using asLiveData():


class DownloadViewModel : ViewModel() {
    val downloadServiceStatus = DownloadService.downloadState.asLiveData()
}


Subsequently, a view can subscribe to the LiveData:


class DownloadFragment : Fragment() {
    private val viewModel: DownloadViewModel by viewModels()

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)

        viewModel.downloadServiceStatus.observe(this) {   [image: 1]
            it?.also {
                onDownloadServiceStatus(it)
            }
        }
    }

    private fun onDownloadServiceStatus(
        status: ServiceStatus
    ): Nothing = when (status) {                          [image: 2]
        Started -> TODO("Show download is about to start")
        Stopped -> TODO("Show download stopped")
        is Downloading -> TODO("Show progress")
    }
}


	[image: 1]

	We subscribe to the LiveData. If we receive a nonnull value, then we invoke onDownloadServiceStatus method.


	[image: 2]

	We are purposely using when as an expression so that the Kotlin compiler guarantees that all possible types of
ServiceStatus are taken into account.





You might be wondering why we used a state flow, and why we haven’t used a LiveData in the first place—eliminating
the need of asLiveData() in the view-model.


The reason is simple. LiveData is Android-specific. It’s a lifecycle-aware component which is meaningful when used
within Android views. You might design your application with Kotlin multiplatform code in mind. When targeting Android and
iOS, only multiplatform code can be shared as common code. The coroutine library is multiplatform. LiveData isn’t.


However, even when not considering Kotlin multiplatform, the Flows API makes more sense since it provides greater
flexibility with all its flows operators.
























Summary



	
The Flows API allows for asynchronous data stream transformation. A lot of operators are already available out of the
box and cover most use cases.



	
Thanks to the composable nature of flow operators, you can fairly easily design your own, if you need to.



	
Some parts of the flow can be offloaded to a background thread or thread pool, and yet keep a high-level view of
data transformation.



	
A shared flow broadcasts values to all its subscribers. You can enable buffering and/or replay of values. Shared flows
really are a toolbox. You can use them as an event bus for one-time events, or in more complex interactions between

components.



	
When a component shares its state, a special kind of shared flow is appropriate for use: state flow. It replays the
last state for new subscribers and only notifies subscribers when the state changes.














1 We’ll refer to Flows as flows in the rest of this chapter.
2 A token is generally encrypted registration data which the client application stores in memory so that further database access doesn’t require explicit authentication.
3 As opposed to cold, a hot entity lives on its own until explicitly stopped.
4 The coroutine started with coroutineScope{}.
5 Materialize comes from the Rx operator of the same name. See the Rx documentation for more insight.
6 These subclasses are an algebraic data type.
7 Actually, StateFlow is a SharedFlow under the hood.




Chapter 11. Performance Considerations with 
Android Profiling Tools



Using proficient concurrency in Android leads to better performance in your application. This is why we have made Kotlin
concurrency in Android the primary focus of this book. In order to provide a solution for performance bottlenecks, you have to be able to
spot them in the first place. Have no worry: this chapter looks at popular Android tooling commonly used to
check for potential problems in performance.


Out in the wild, Android faces real-life challenges that affect performance and battery life. For example,
not everyone has unlimited data in their mobile plans, or reliable connectivity. The reality is that
Android apps must compete with one another for limited resources. Performance should be a serious consideration
for any Android application. Android development doesn’t stop at creating an app. Effective development
also ensures a smooth and seamless user experience. Even if you have a deep understanding of Android development,
your application may have issues such as:



	
Decrease in performance



	
Slow startup/slow response to user interactions



	
Battery drain



	
Wasteful use of resources, and clogged memory



	
UI bugs that don’t force a crash or generate an exception, but nevertheless affect user experience






This list of sudden, strange behaviors in an app is by no means exhaustive. As previous chapters showed, managing multithreading can become complex when there are also interacting Android components to keep track of. Even if you have a solid understanding of multithreading, it’s hard to say how an application really works until we
analyze performance with profiling tools. To answer these kinds of ambiguities, there are several useful tools for profiling various aspects of Android. Four of them can be retrieved and used right in Android Studio, as diagrammed in Figure 11-1.



[image: Android Studio profilers]
Figure 11-1. Android Studio profilers and LeakCanary are useful for identifying performance bottlenecks.




In this chapter, we look at profiling tools in Android Studio’s Android Profiler and a popular open source library called
LeakCanary. We explore each one by profiling a real-life application for potential performance bottlenecks. Remember
the hiking application described in previous chapters? Surprise! It was inspired by TrekMe. TrekMe is an Android
trail-trekking app, an open source Android project where users download interactive topographical hiking routes to use
offline later while on hikes. TrekMe started as a Java project, but its codebase is currently 80%+ Kotlin. Here are some
important features of TrekMe that users of the application can enjoy:



	
Download topographical maps for offline use.



	
Get the device’s live position even when there’s no network, while the app tries its best to preserve battery life.



	
Track hikes in great detail without draining the device’s battery when you need it most.



	
Access other useful information without needing an internet connection (save for creating the map).






We encourage you to explore TrekMe so you can follow along with this chapter. You can retrieve the source
code from GitHub. Once you’ve cloned the project, open it with Android Studio. Finally, run an instance of an emulator from the Android Virtual Device (AVD) Manager that you intend to run TrekMe on.


Performance considerations are crucial. It;s not uncommon to find performance lag in any application, but such a
“fishing expedition” must be approached with care. It’s up to the developer to decide on the most relevant
tooling, and which optimizations outweigh in benefits the cost of their creation. Profiling your app allows you to
investigate application performance objectively. To give some examples of the kinds of surprises you might
encounter, we’ll look at TrekMe with Android Profiler.








Android Profiler


Android Profiler analyzes an application’s session to generate real-time feeds for CPU usage and memory
usage, as well as network and energy profiling. Figure 11-2 shows Android Studio with
the TrekMe application runtime showing in the bottom half of the console.



[image: Android Profiler]
Figure 11-2. A profiling session records profiling data. The active session attaches to the running app in the emulator (not pictured).




Android profiling can be instantiated in three ways:


	
If your application is not running, click the Profile app icon in the upper-right corner to instantiate the app
and the profiler at once. This action builds and compiles a new running instance of the application. Android Studio will
then open a new session giving you a stream of your data in real time.



	
If your application is already running, click the + icon and select the running emulator.



	
You can also import a previously saved profiling session with the + icon. From there, you can load the
previously saved .hprof file.







You can record and store data in each session. In Figure 11-3, we show a screenshot of saved profiling
sessions with different kinds of data that can be recorded with Android Profiler.



[image: pawk 1103]
Figure 11-3. Save heap dumps, or different kinds of CPU traces.




Both method traces  and heap dumps can be saved as separate entries within a running session. Method traces show a
stacktrace of methods and functions that can be recorded in CPU profiling. Meanwhile, a heap dump refers to the data
collected from garbage collection, allowing us to analyze what objects are taking up unnecessary space in memory.


Android Profiler records one application session at a time. However, you can save multiple recordings and switch between them
to compare the data. A bright dot 
indicates the recording of an active session.
In Figure 11-3, there are three recorded sessions. The last recorded session has a saved heap
dump, which refers to a log of stored memory in the JVM at the time of the snapshot. We’ll cover this in more detail in “Memory Profiler”. The first
recorded session saved different kinds of CPU recordings. This will be discussed in “CPU Profiler”.

Note

Android Studio caches sessions only for the lifetime of the Android Studio instance. If Android Studio is restarted,
the recorded sessions will not save.




The following sections show in more detail how Android Profiler evaluates device resources in the virtual machine
at runtime. There are four profilers we’ll use: Network Profiler, CPU Profiler, Energy Profiler, and Memory Profiler.
All of these profilers record streams of data during an application’s runtime, which can be accessed in greater detail in
their own special views.


By design, TrekMe encourages users to download detailed topographical maps directly to their devices while they’re at home and can do so easily. Creating new topographical maps in TrekMe is the feature that consumes the most resources in this process. The maps can then be rendered when the user is hiking, even if mobile coverage is unreliable.
TrekMe’s map creation feature allows you to select an official map generator like the Instituto Geografico Nacional
(IGN) or U.S. Geological Survey (USGS) or some other map provider, as shown in Figure 11-4. TrekMe will then
load the selected service’s map in square tiles, one by one.



[image: pawk 1104]
Figure 11-4. TrekMe allows you to create and download a map from different services.




For the remainder of this chapter, we’ll profile TrekMe while creating a map via IGN to study the time it takes to load a
map, and to ensure that it is optimal. With Android profiling, we can explore questions like:



	
Are we making fast network calls?



	
Is the data we get in our response returned in the most efficient format?



	
What parts of the application are the most CPU-intensive?



	
Which Android actions drain the most battery?



	
What objects are eating up the most memory in heap?



	
What consumes the most memory?






In the next section, we answer the first two questions with Network Profiler.
We explore the remainder of these questions in later sections.










Network Profiler


When a network call is made, the radio in the Android device powers up to allow for network communication. This radio
then stays powered on for a short time to ensure there are no additional requests to listen for. On some phones,
using the network every two minutes keeps the device at full power forever. Too many network calls can be expensive
for Android resources, so it is important to analyze and optimize network use in an application.


Network Profiler generates connection breakdowns used by  HttpURLConnection or OkHttp libraries. It can give
you information like network request/response time, headers, cookies, data formats, the call stack, and more. When you
record a session, Network Profiler generates interactive visual data while you continue to interact with the application.


When we create a map using IGN, TrekMe renders the map on the screen in square tiles, one by one. Sometimes, though, the
tile rendering seems to take a long time. Figure 11-5 shows the profiler capturing incoming/outgoing
network requests, and shows the connections that are available while creating a map on TrekMe via IGN:


You can highlight a selected range of the timeline to drill into these connections further, which will expand a
new view of the Network Profiler workspace, allowing you to access the Connection View and Thread View tabs to
analyze these network calls further.



[image: pawk 1105]
Figure 11-5. Network Profiler timeline records IGN Spain map creation on TrekMe. In the upper-left corner of the chat, the long line under the label MainActivity represents an active Activity session while the short, thick line above the MainActivity label with a dot at the left represents user touch events.














Viewing network calls with Connection View and Thread View


Connection View shows the data that was sent/received. You can see this in Figure 11-6 in the highlighted portion of the timeline. Perhaps what is most notable is
Connection View’s ability to sort resource files by size, status, and time. Clicking
the header of each section will organize the ordering of the desired filter. The timeline section represents the
timing of the request/response bars split into two colors. The lighter portion represents the duration of the request,
while the darker portion represents the duration of the response.



[image: Connection View]
Figure 11-6. Connection View shows a list of individual network calls.




Connection View looks similar to the timeline in Thread View, but they’re not quite the same. Thread View
shows the network calls being made within the designated initiating threads, which can show multiple network calls
running in parallel time. The screenshot shown in Figure 11-7 is the complement of the previous image, using the same data set.



[image: pawk 1107]
Figure 11-7. Thread View shows a list of network calls made within each thread.




Seeing how worker threads divide labor in real time can help to reveal areas for improvement. TrekMe’s pooled threads are
responsible for automatically breaking up, as needed, the work of downloading all these images.


Both images show roughly 23 seconds of network calls, with response times showing a similar trend. Compared to the
requests, responses appear to take up a disproportionate amount of the time it takes to complete an entire network call. There
could be several reasons for this: for example, the server connection might be weaker if a device attempts to pull
this data from a distant country. Perhaps there are inefficiencies with the query call in the backend. Regardless
of the reason, we can say that our network calls may not be fastest. However, the presence of fast request
times and slow response times indicates external factors that are out of the device’s control.


We now turn to our second question: are we using the most efficient data format? Let’s look at the connection type
in the Connection View tab as pictured in Figure 11-6. If you don’t need transparency in your images, avoid using PNG files since the file format doesn’t compress as well as
JPEG or WebP. In our case, the network calls return a JPEG-formatted payload. We want files that provide consistent and good image quality to enable users to zoom in to the details of those images as much as they need to. Using a JPEG file also takes up less memory than a
PNG file would.


We can get more granular detail on each network call and its payload by selecting any item: this opens
a new view within Network Profiler on the right side, showing tabs for Overview, Response, Request,
and Callstack. In the next section, we’ll be able to look into the specifics of a single network call and
locate where the network call is made in the code.

















Network call, expanded: Overview | Response | Request | Callstack


Android developers are used to working with other platforms in order to achieve feature parity and
more. Suppose a network call starts returning the wrong kind of information for a network request. The API team is in need
of specifics for the network request and response you’re getting on the client side. How can you send them
over the necessary request parameters and content headers they need to investigate on their side?


Network Profiler gives us the ability to inspect network responses and requests on the right-side panel in Connection View or Thread View, as shown in Figure 11-8.


The Overview tab details notable highlights captured in the request and response:


	Request

	
The path and potential query parameters



	Status

	
The HTTP status code returned within the resulting response



	Method

	
The type of method used



	Content type

	
The media type of the resource



	Size

	
The size of the resource returned in the resulting response







[image: pawk 1108]
Figure 11-8. Network Profiler allows you to inspect response and request information.




The Request and Response tabs show a breakdown of headers, parameters, body data, etc. In Figure 11-9, we
show the exact network call as in the previous image, except with the Response tab selected.


As you can see in the network response, TrekMe uses a basic HTTP API. Other types of API data formats return
HTML, JSON, and other resources. When applicable, the Request and Response tabs offer body data as a
formatted or raw representation. In our case, the resource media returns JPEGs.



[image: pawk 1109]
Figure 11-9. Network Profiler captures network calls to render map.




Finally, the Call Stack tab, shows the stacktrace for the relevant calls made to execute a network connection, as
pictured in Figure 11-10. The calls that are not faded represent the method calls within the call stack coming from your own code. You can
right-click the calls indicated to be able to jump to the source code with ease.


Network Profiler is useful for more than just analytics. As you can see for yourself, you’re able to process a lot of information quickly. From caching repetitive calls to confirming API contracts, Network Profiler is a tool worth keeping in your 
toolbox.



[image: pawk 1110]
Figure 11-10. Call Stack tab.




Poor networking is not the only culprit when it comes to slow rendering times. The task of creating a
brand new topographical map is heavy in itself, but as we have determined from a networking stance,
no further action is required to improve 
loading times or data format. However, we would be remiss to chalk
up slow loading times to slow response time alone. After TrekMe receives the network data, it must then process
the data to render the UI. For this reason, we should check for potential inefficiencies in drawing the map out after
the network calls. CPU Profiler is able to provide insight for this. In the next section, we will examine, using CPU Profiler, the processing consumption of the rendering of the IGN Spain map.






















CPU Profiler


While Network Profiler is able to give information about network calls, it is not able to paint a full picture about where
the time goes. We have a call stack for our network calls, but we don’t know how long certain methods actually run. This is where CPU Profiler comes in. CPU Profiler helps identify greedy consumption of resources by analyzing how much time has passed  on function execution and tracks which thread a call executes on. Why does this matter? If TrekMe consumes too
much processing, the application slow downs, impacting the user experience. The more CPU power that is used, the more quickly the battery drains.


CPU Profiler allows you to examine CPU recordings and livestream data by examining the call stack by the thread,
as shown in Figure 11-11.


In the following sections, we break down the CPU timeline, Thread activity timeline, and Analysis panels. Because
TrekMe seems to spend a lot of time offloading work to background threads, we will select one to look into more closely.



[image: Introduction to the CPU Profiler]
Figure 11-11. CPU Profiler shows the call stack and recorded times for methods 
executed.














CPU timeline


The CPU timeline organizes regional call stacks into recorded threads in the Threads pane. The graph in Figure 11-12 shows spikes of CPU usage, where the number is a percentage of available CPU. If you have made a trace
recording, you should be able to highlight the CPU timeline to see more information.



[image: CPU timeline]
Figure 11-12. CPU timeline.




Android Studio allows you to drag-and-click over a recorded sample from the CPU timeline to show the Call Chart.
Clicking on Record brings you to a separate trace CPU recording screen (covered in greater
detail in Record Traces). To create the more granular call charts we explore in the next section, it helps to
highlight smaller portions of the recorded CPU trace.

















Thread activity timeline


The Thread activity timeline accompanies the CPU timeline showing every running thread in the app. If a section
was trace-recorded, you should be able to select a thread to view the call stack captured within the selected
time range. In Figure 11-13, 31 threads have been created and used within the application. These
threads have been created either by your code, the Android OS, or a third-party library.



[image: Thread activity timeline]
Figure 11-13. Thread activity timeline.




The lightest-colored blocks represent a running or active thread. There’s not a lot to see on the Main thread, but
remember, this image captures a CPU trace of the network request downloading the map images. In this case, we expect
background threads to do the necessary work to download the network data. It seems we have the main thread waiting on
one of the DefaultDispatcher threads for half the time.  Double-clicking on an individual thread expands the
call stack.


Below the Thread activity timeline is the Call Chart (see Figure 11-14).



[image: Call Chart]
Figure 11-14. The Call Chart shows a top-down representation of captured methods.




The Call Chart shows a call stack
of the segmented range of time for CPU usage. The top boxes represent the encapsulating parent method, while the methods
below are child methods that were called. The parent method waits on the child methods to 
finish executing, so this is a good
place to see which of TrekMe’s methods could be executing for a long time, like the method TileStreamProviderHttp.


If you’re reading the printed book, be aware that the bars are color coded. Android OS methods are orange,
methods you’ve written are green, and third-party libraries are blue. Within this coroutine, the longest amount of
execution time is with 
TileStreamProviderHttp.getTileStream(...). This is expected, given that this call makes
individual network requests per tile.

















Analysis panel


The Analysis panel presents a layered tab view. The top of the pane highlights the active set of thread(s).
Beneath the tabbed menu sits a search bar above the stacktrace. You can use the search bar to filter trace data
related to a particular call. Below that is a set of tabs intended to render visual data from method tracing in three
views: Top Down, Bottom Up, and Flame Chart.


Top Down renders a graphical representation of method traces from the top to the bottom of the chart. Any
call made within a method renders as a child underneath the original method. Shown in Figure 11-15, the method
getTileStream used in TrekMe waits for a series of calls for internet connection and reading from a data stream.


The Top Down view shows how CPU time breaks down in three ways:


	Self

	
The method execution time itself



	Children

	
The time it takes to execute callee methods



	Total

	
Combined time of self and children
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Figure 11-15. Top Down view.




In the case of getTileStream, the majority of the time is spent on the network calls themselves: in particular, the
connection request and getInputStream to receive incoming data from the network. For the IGN Spain server, these times
can vary when accessed in another country and at different times of the day. Because it is the client consuming server data,
TrekMe has no control over how the server performs.


Contrary to Top Down, Bottom Up (shown in Figure 11-16) shows an inverse representation of leaf elements of the call stack. In comparison,
such a view renders a substantial number of methods, which can be useful in identifying methods that are consuming the most CPU time.


The final tab provides a Flame Chart view. A Flame Chart provides an aggregated visual of operations from the bottom up. It provides an inverted call chart to
better see which functions/methods are consuming more CPU time.



[image: Bottom up]
Figure 11-16. Bottom Up view.




To summarize, CPU profiling can render three different kinds of views, depending on the kind of deep dive you wish to pursue:



	
Top Down graphical representation shows each method call’s CPU time along with the time of its callees.



	
Bottom Up inverts the Top Down representation and is most useful to sort methods consuming the most or the least amount of time.



	
The Flame Chart inverts and aggregates the call stack horizontally with other callees of the same level to show which
ones consume the most CPU time first.






Not only are there three different ways to render data, but there are different kinds of call stacks you can record. In
the upcoming sections, we cover different kinds of method tracing in CPU Profiler. As you’re starting to get the
picture of what kind of information CPU Profiler tries to capture, we’ll turn to method tracing with CPU Profiler
and record a segment of TrekMe creating a new map.

















Method tracing


CPU Profiler allows you to record a trace to analyze and render its status, duration, type, and more. Tracing relates to
recording device activity over a short period of time. Method tracing doesn’t occur until the recording button
is clicked twice: once to start the recording, and another time to end the recording. There are four configurations for
samples and traces, as shown in Figure 11-17.
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Figure 11-17. Configurations are available for Android developers for samples and traces.




Sample Java Methods captures the application call stack, or a Call Chart (also seen in previous sections). The Call Chart renders under
the Thread activity timeline, which shows which threads are active at a particular time. These traces store individual
sessions to the right pane for comparison with others’ saved sessions.


By choosing the Sample Java Methods configuration, you can examine TrekMe’s call stack by hovering the mouse pointer over
particular methods, as shown in Figure 11-18.



[image: Sample Java Methods]
Figure 11-18. Sample Java Methods.



Warning

Don’t let your recording run too long. Once a recording reaches its size limit, the trace stops
collecting data even if the current session continues to record.




Unlike Sample Java Methods, Trace Java Methods strings together a series of timestamps recorded for the start
and end of a method call. Should you wish, you can monitor Sample C/C+ Functions to gain insight into how the app
is interacting with the Android OS. Recording sample traces for native threads is available for Android API 26 and up.


The terms “method” and “function” tend to be used in everyday conversation interchangeably when talking about method-tracing analysis. At this point, you might be wondering why Java methods and C/C++ functions differentiate enough to
matter in CPU profiling.


In the CPU-recording configurations, Android Profiler uses “method” to refer to Java-based code, while “function”
references threads. The difference between the two is the order of method execution preserved via a call stack
while threads are created and scheduled by the Android OS itself.


Finally, there is Trace System Calls in the configurations shown in Figure 11-17.  System Trace
is a powerful CPU-recording configuration made available for Android developers. It gives back graphical
information on frame-rendering data.


Trace System Calls records analytics on CPU Cores to see how scheduling occurs across the board. This configuration
becomes more meaningful for detecting CPU bottlenecks across the CPU Cores. These kinds of bottlenecks can jump out
in places where the RenderThread chokes, especially for red-colored frames. Unlike other configurations, Trace System Calls
shows thread states and the CPU core it currently runs on, as shown in Figure 11-19.


One of the key features in a system trace is having access to the RenderThread. RenderThread can show where
performance bottlenecks might be occurring when rendering the UI. In the case of Figure 11-19, we can see
that much of the idle time occurs around the actual drawing of the tiles themselves.


The Android system tries to redraw the screen depending on the refresh rate on the screen (between 8 ms and 16 ms). Work
packets taking longer than the frame rate can cause dropped frames, indicated by red slots in Frames. Frames drop when
some task does not return before the screen redraws itself. In the case of this system trace recording,
it appears that we indeed have some dropped frames indicated by the numbers labeling boxes inside the Frame subsection under the Display section.


TrekMe saves each frame into a JPEG file and loads the image into a bitmap for decoding. However, in Figure 11-19, we see that in the RenderThread, the length of DrawFrame doesn’t quite match up with the draw rate
intervals. A bit farther below that, some of that idle time is tied to various long-running decodeBitmap methods
in the pooled threads.



[image: System Trace]
Figure 11-19. System Trace reveals dropped frames where times are labeled within Frames.




From here, there are some options that could potentially be considered for faster drawing; that is, caching network
responses for images, or even prefetching. For users in need of a few megabytes of data, prefetching is a nice-to-have in the case a device has access to at least a 3G network. The problem with that is that it may not be the best option to render
those bitmaps before we know what must be rendered. Another option is potentially encoding the data into
a more compressed format for easier decoding. Whatever the
decision, it’s up to the developer to evaluate the trade-offs and the effort of implementing certain optimizations.

Note

The concept of prefetching refers to predicting what kind of data would come in a future request, and grabbing that
data preemptively while there’s an active radio connection. Each radio request has overhead in terms of the time it takes
to wake up the radio and the battery drainage that occurs to keep the radio awake, so Android developers can take
advantage of making additional calls while the radio is already awake.



















Recording a sample method trace


Now that you are more familiar with what the recording configurations offer, we turn to Sample Method Trace on TrekMe.
CPU recordings are separated from the CPU Profiler timeline. To begin, click the Record button at the top of
the screen to analyze CPU activity while interacting with TrekMe.


Ending the recording renders a tabbed right pane of execution times for sample or trace calls. You can also highlight
multiple threads at once for analysis. The average Android developer may not use all these tabs all the time;
still, it’s good to be cognizant of what tools are at your disposal.


In TrekMe, there’s a predefined set of iterable tiles to download. A number of coroutines concurrently read the
iterable and perform a network request per tile. Each coroutine decodes a bitmap right after the network request
succeeded. These coroutines are sent to some dispatcher such as Dispatchers.IO, and the rendering happens when the
result is sent back to the UI thread. The UI thread is never blocked waiting for bitmap decoding, or waiting for a
network request.


The shrunken CPU timeline in Figure 11-20, at first glance, appears to be nothing more than a reference to the previous screen view.
However, you can interact with this data to drill down further by highlighting a chunk of time via the range selector,
as shown in Figure 11-21.



[image: Analysis Panel]
Figure 11-20. CPU Profiler separates the recorded trace.





[image: Range Selector]
Figure 11-21. The range selector helps to manage sections of highlighted ranges.




In Figure 11-22, we look at one of the longer-running methods, getTileStream. Below the timeline, the left panel allows you to organize threads and interactions via drag-and-drop functionality.
Being able to group threads together also means you can highlight groups of stacktraces. You can expand a thread in a recorded
trace by double-clicking the thread twice to show a drop-down visual of a call stack.


Selecting an item also opens an additional pane to the right. This is the Analysis Panel, which allows you to
examine stacktrace and execution time in more granular detail. Tracking CPU usage is important, but perhaps you’d
like to be able to analyze how an application interacts with Android hardware components. In the next section, we
look into Android Studio’s Energy Profiler.



[image: Call Stack]
Figure 11-22. You can search for a specific method via the search function.




Excessive networking calls on Android devices are also power-hungry. The longer the device radio stays awake for
network communication, the more CPU consumption and battery drainage there is. By this logic, it would be fair to assume
that networking accounts for most energy consumption. We can confirm this by using Energy 
Profiler.






















Energy Profiler


Energy Profiler is best used for determining heavy energy consumption. When an application makes a network
request, the application turns on the mobile radio hardware component. CPU consumption accelerates as the Android device
communicates with the network, draining battery at a faster rate.


TrekMe prescales bitmaps to ensure consistent memory and energy usage when the user is zooming in and out. When the
user is creating and downloading a map, the details of the map are, by default, downloaded with the highest-resolution detail.
The event pane shows higher levels of consumption when downloading large chunks of data.


A drag-and-click can select a range of the timeline to show details for events for the Android OS. In
Figure 11-23, we can see a pop-up rendering of a breakdown of the energy graph. The first half of the pop-up
legend contains the categories CPU, Network, and Location, which relay to each category provided
in the stacked graph. It is a good sign to see that CPU and networking usage is light despite the relatively heavy job
of making a network call to request large pieces of data and draw them on the screen.



[image: Energy Profiler system event pane]
Figure 11-23. System event pane.




The second half of the pop-up legend describes the kinds of system events captured from the device. Energy Profiler works
to capture certain kinds of system events and their energy consumption on a device:



	
Alarms and Jobs are system events designed to wake up a device at a specified time. As a best practice, Android now
recommends using WorkManager or JobScheduler whenever possible, especially for background tasks.



	
Location requests use Android GPS Sensor, which can consume a large amount of battery. It’s a good practice to make
sure accuracy and frequency are gauged 
correctly.






Although Figure 11-23 shows only one location request, there are other types of system events
that contain their own unique set of states. A request event may possess the state of Active, as pictured in Figure 11-23,
Requested, or Request Removed. Likewise, if Energy Profiler captures a Wake Lock type of system event, the timeline would be able to show
state(s) for the duration of the wake lock event such as Acquired, Held, Released, and so on.


Selecting a particular system event opens a right pane in Energy Profiler to see more details. From here, you can jump
directly to the source code for that particular location request. In TrekMe, GoogleLocationProvider is a class that
polls for user location every second. This isn’t necessarily an issue—the polling is intended to enable the device
to constantly update your location. This proves the power of this profiling tool: you can get precise
information without looking at the source code. Requests are made one at a time, removing existing requests in
order to make a new one when a new image block has been downloaded.


In comparison to location polling, we can expect decreased energy consumption when a user is zooming in on a rendered
map. There are no requests made for downloading large chunks of data. We do expect some energy consumption for keeping
track of the user’s location, which also uses  GoogleLocationProvider.


In Figure 11-24, we can see the excessive and rapid touch events indicated by the circular dots above the
stacked overlay graph. Because TrekMe has downloaded all the information it needed, no network calls are made at this
time. However, we do notice how CPU usage spikes back up to high levels. To avoid overwhelming the system, it is a good
practice to limit touch events to avoid spinning off duplicate zoom-drawing functions.



[image: TrekMe energy profiler]
Figure 11-24. TrekMe opens and zooms in on an existing map.




So far, we’ve covered evaluating performance by looking at processing power. But examining battery/CPU usage does
not always diagnose performance problems. Sometimes, slow behavior can be attributed to clogged memory. In the next
section, we explore the relationship between CPU and memory and use Memory Profiler on TrekMe’s GPX recording feature.

















Memory Profiler


In TrekMe, you can navigate to GPX Record in the pullout drawer. GPX stands for GPS Exchange Format and is
a set of data used with XML schema for GPS formatting in software applications. Hikers can click the play icon
under Control. The app then tracks and records the movements of the hikers and their devices, which can be saved
as a GPX file to be rendered as a line drawing later on to indicate the path traveled. Figure 11-25 shows
TrekMe’s GPX recording feature.



[image: pawk 1126]
Figure 11-25. TrekMe’s GPX recording feature uses GpxRecordingService to track the GPS coordinates of a user on a hike.




We know that using location in the system can be heavy for CPU processing. But sometimes, slowdowns can be attributed
to memory problems. CPU processing uses RAM as its capacity for workspace, so when RAM fills up, the Android system
must execute a heap dump. When memory usage is severely restricted, the ability to execute many tasks at once becomes
limited. The more time it takes to execute fewer application operations, the slower Android gets. RAM is shared across
all applications: if too many applications are consuming too much memory, it can slow the performance of the device
or, worse, cause OutOfMemoryException crashes.


Memory Profiler allows you to see how much memory is consumed out of the memory allocated for your application to run.
With Memory Profiler, you can manually trigger a heap dump in a running session to generate analysis to determine
which objects are held in the heap and how many there are.


As shown in Figure 11-26, Memory Profiler offers powerful features:



	
Triggering garbage collection



	
Capturing a Java heap dump



	
Allocation tracking



	
An interactive timeline of the fragments and activities available in the Android application



	
User-input events



	
Memory count to divide memory into categories







[image: Memory Profiler]
Figure 11-26. Allocation Tracking offers a Full Italicized Text configuration, which captures all object allocations in memory, while a Sampled configuration records objects at regular 
intervals.



Note

Like recording samples and traces in CPU Profiler, capturing Java heap dumps saves the results within the session panel
in Android Profiler for comparison for the life of your Android Studio instance.




Initiating too much garbage collection (GC) can affect performance: for example, executing a ton of GC can slow
the device down, depending on how frequent and how large generational object allocation is in memory. At a minimum,
Android developers should try to run memory profiling of every application to ensure that nothing is being
held in the heap past its use, otherwise known as “memory leaks.” Detecting memory leaks can be life-saving,
especially for Android users depending on longer battery life. What you are about  to see is a variation of a common
memory management mistake developers often make while working with services: leaving a service accidentally running.


TrekMe uses a foreground service to gain stats of the user’s hike, which is a natural choice for tracking the user’s location.
Services, like other Android components, run in the UI thread of the application. However, persisting services tend to
drain battery and system resources. Hence, it is important to limit the use of foreground services so as not to
impair overall device performance and to kill them off as soon as possible if the app must use one.


We can run a couple of GPX recordings against Memory Profiler and trigger the heap dump to see which
objects held in heap consume the most memory, as shown in Figure 11-27.



[image: pawk 1128]
Figure 11-27. You can use the CTRL + F function to search for “GpxRecordingService” to narrow your results.




A heap dump shows you a list of classes, which can be organized by heap allocations, native size, shallow size, or retained size.
Shallow size is a reference to the total Java memory used. Native size is a reference to the total memory used in
native memory. Retained size is made of both shallow size and retained size (in bytes).


Within a recorded heap dump, you can organize your allocation record by app heap, image heap, or zygote heap.
The zygote heap refers to the memory that is allocated for a zygote process, which might include common framework code
and resources. The image heap stores memory allocation from the OS itself and contains references to classes used in
an image containing our application for a system boot. For our use case, we’re more concerned with the app heap, which
is the primary heap the app allocates memory to.


In Memory Profiler, triggering a heap dump will render a list of objects still held in memory after GC. This list can
give you:



	
Every object instance of a selected object displayed in the Instance View pane, with the option to “Jump to Source” in the code



	
The ability to examine instance data by right-clicking an object in References and selecting Go to Instance






Remember, a memory leak occurs when caching holds references to objects that are no longer needed. In
Figure 11-28, we search for “Location” with the same heap dump to locate our service and
be able to view total memory allocation. LocationService appears to have separate allocations when it should
only have one running at a time.



[image: pawk 1129]
Figure 11-28. A suspicious number of LocationService instances appears to be held in memory.




It appears that every time we press Record, a new LocationService in TrekMe is instantiated and then held
in memory even after the service dies. You can start-and-stop a service, but if you are holding a reference to that
service in a background thread, even if it is dead, the instance continues to be held in the heap even after GC occurs.


Let’s just run a couple more recordings in TrekMe to confirm the behavior we suspect. We can right-click one of these
instances to “Jump to Source” and see. In RecordingViewModel.kt, we see the following code:


fun startRecording() {
    val intent = Intent(app, LocationServices::class.java)
    app.startService(intent)
}


We want to check whether these services are indeed stopping before starting a new one. A started service stays alive as
long as possible: until a stopService call is made outside the service or stopSelf is called within the service.
This makes the use of persistent services expensive, as Android considers running services always in use, meaning that
the memory a service uses up in RAM will never be made available.


When a GPX recording stops, LocationService propagates a series of events, pinging the GPS location, which is then recorded and saved as a set of data. When a GPX
file has just been written, the service subscribes to the main thread to send a status. Because LocationService extends Android Service,
we can call Service::stopSelf to stop the service:


@Subscribe(threadMode = ThreadMode.MAIN)
fun onGpxFileWriteEvent(
   event: GpxFileWriteEvent
) {
    mStarted = false
    sendStatus()
    stopSelf()    // <--- fix will stop the service and release the reference at GC
}


We can use Memory Profiler and check the heap dump to ensure we hold reference to only one service in memory. Actually,
since GPX recordings are done through LocationService, it makes sense to stop the service when the user stops recording.
This way, the service can be deallocated from memory on GC: otherwise, the heap continues to hold an instance of
LocationService past its life.


Memory Profiler can help you detect possible memory leaks through the process of sifting through the heap dump. You can also filter a heap dump by checking the
Activities/Fragments Leaks box in the heap dump configurations in Memory Profiler. Hunting for memory leaks can be…a manual process, and even then, hunting for memory leaks yourself is only one way of catching them. Luckily, we have

LeakCanary, a popular memory leak detection library that can attach to your app in debug mode and idly watch for memory
leaks to occur.
























Detecting Memory Leaks with LeakCanary


LeakCanary automatically detects at runtime explicit and implicit memory leaks that might be
hard to detect manually. This is a great benefit, since Memory Profiler requires manually
triggering a heap dump and checking for retained memory. When crash analytics are unable to detect crashes coming from
an OutOfMemoryException, LeakCanary serves as a viable alternative to keep an eye on issues detected at runtime, and
offers better coverage in discovering memory leaks.


Memory leaks commonly come from bugs related to the lifecycle of objects being held past their use. LeakCanary is able
to detect various mistakes such as:



	
Creating a new Fragment instance without destroying the existing version first



	
Injecting an Android Activity or Context reference implicitly or explicitly into a non-Android component



	
Registering a listener, broadcast receiver, or RxJava subscription and not remembering to dispose of the listener/subscriber
at the end of the parent lifecycle






For this example, we have installed LeakCanary in TrekMe. LeakCanary is used organically in development until a heap dump
with potential leaks has been retained. You can install LeakCanary by adding the following dependency to Gradle:


debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.*'


Once installed in your application, LeakCanary automatically detects leaks when an Activity or Fragment has been
destroyed, clears the ViewModel, and more.  It does this by detecting retained objects passed through some
ObjectWatcher. LeakCanary then dumps the heap, analyzes the heap, and categorizes those leaks for easy consumption.
After installing LeakCanary, you can use the application like normal. Should LeakCanary
detect retained instances in a heap dump that occurs, it sends a notification to the system tray.


In the case of TrekMe, it appears LeakCanary has detected a memory leak within a RecyclerView instance of
MapImportFragment, as shown in Figure 11-29.
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Figure 11-29. LeakCanary shows a RecyclerView leaking in its stacktrace.




The error message is telling us that a RecyclerView instance is “leaking.” LeakCanary indicates that this view instance
holds a reference on a Context instance which wraps the activity. Something prevents the RecyclerView instance from
being garbage-collected—either an implicit or explicit reference to the RecyclerView instance passed to the
component outliving the activity.


We’re not sure what we’re dealing with quite yet, so we start by looking at the MapImportFragment.kt class holding
the RecyclerView mentioned in Figure 11-29. Tracing back to the UI element recyclerViewMapImport referenced from
the layout file, we bring your attention to something curious:


class MapImportFragment: Fragment() {

    private val viewModel: MapImportViewModel by viewModels()

    /* removed for brevity */

    override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
        /* removed for brevity */
        recyclerViewMapImport.addOnItemTouchListener(
            RecyclerItemClickListener(
                this.context,                            [image: 1]
                recyclerViewMapImport,
                object: RecyclerItemClickListener.onItemClickListener {
                    override fun onItemClick(view: View, position: Int) {
                        binding.fab.activate()
                        single.fab(position)
                    }
            })
        )
    }

    /* removed for brevity */

    private fun FloatingActionButton.activate() {
        /* removed for brevity */
        fab.setOnClickListener {
            itemSelected?.let { item ->
                val inputStream = context.contentResolver.
                    openInputStream(item.url)
                inputStream?.let {
                    viewModel.unarchiveAsync(it, item)   [image: 2]
                }
            }
        }
    }
}


	[image: 1]

	In the MapImportFragment, we attach a custom click listener to every ViewHolder in the RecyclerView.


	[image: 2]

	The Context then is used to get a ContentResolver and create an InputStream to feed as an argument for
MapImportViewModel::unarchiveAsync.





When a user clicks on a particular item in the RecyclerView, the Kotlin extension function FloatingActionButton::activate
is called. Remember, a common cause for a memory leak is when we accidentally inject an Activity or a Context
into a non-Android component.


If you look closely at the FloatingActionButton::activate implementation, you can see that we create an implicit
reference to the enclosing class, which is the MapImportFragment instance.


How is an implicit reference created? We add a click listener to a button. The listener holds a reference to the parent
Context (returned by the getContext() method of the fragment). To be able to access the Context from inside the listener, the Kotlin compiler creates an
implicit reference to the enclosing class.


Following the code to the MapImportViewModel method, we see the InputStream passed down to be able to call another
private method in the ViewModel:


class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings
) : ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(inputStream: InputStream, item: ItemData) {
        viewModelScope.launch {
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
    }
}


A ViewModel object has a lifecycle of its own and is intended to outlive the lifecycle of the view it is tied to until
the Fragment is detached. Rather than using an InputStream as an argument, it is better to use an application context,
which is available throughout the life of the application and which can be injected via constructor parameter injection in
MapImportViewModel.1
We can then create the InputStream right in MapImportViewModel::unarchiveAsync:


class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings,
    private val app: Application
): ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(item: ItemData) {
        viewModelScope.launch {
            val inputStream = app.contentResolve.
                openInputStream(item.uri) ?: return@launch
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
    }
}


Of course, turning on LeakCanary can be disrupting for development if an existing application has many memory leaks.
In this case, the temptation might be to turn off LeakCanary to prevent disruption to current work.
Should you choose to put LeakCanary on your application, it is best to do it only when you and your team have the capacity
to “face the music.”

















Summary


There is no doubt that Android benchmarking and profiling tools are powerful. To ensure that your application is getting the
most out of analytics, it’s best to choose one or two tools as appropriate. It can be easy to get lost in the world of optimizations,
but it’s important to remember that the largest wins come from making optimizations with the least effort and the
largest impact. Likewise, it’s important to take current priorities and team workload into consideration.


Approach Android optimizations like a nutritionist, encouraging incremental, habitual changes instead of “crash dieting.” Android profiling is intended to show you what’s really
happening under the hood, but it’s important to remember that the average Android developer must prioritize which
issues must be addressed in a world where their time and manpower may be limited.


The hope is that you feel more equipped to handle any potential bugs that may come your way, and that this chapter gives
you confidence to start exploring some of these tools on your own applications to see how things are working under the hood:



	
Android Profiler is a powerful way to analyze application performance, from networking and CPU to memory and
energy analytics. Android Studio caches recorded sessions along with heap dumps and method traces for the lifespan
of an Android Studio instance so that you can compare them with other saved sessions.



	
Network Profiler can help solve Android problems specific to API debugging. It can provide information
useful to both the client device and the server where the data comes from, and can help us ensure optimal data formatting
within a network call.



	
CPU Profiler can give insight as to where most of the time is being spent executing methods, and is particularly
useful for finding bottlenecks in performance. You can record different kinds of CPU traces to be able to drill
down into specific threads and call stacks.



	
Energy Profiler looks at whether CPU processes, networking calls, or GPS locations in an application could be
draining a device’s battery.



	
Memory Profiler looks at how much memory is allocated in the heap. This can help give insight about areas of code
that could use improvements in memory.



	
LeakCanary is a popular open source library created by Square. It can be helpful to use LeakCanary to
detect memory leaks that are harder to detect at runtime.














1 The @ViewModelInject annotation is special to Hilt, which is a dependency injection framework. However, constructor parameter injection can also be achieved with manual DI or with DI frameworks like Dagger and Koin.




Chapter 12. Trimming Down Resource Consumption with Performance Optimizations



In the previous chapter, you became familiar with ways to examine what’s going on “under the hood” using popular
Android profiling tools. This final chapter highlights a medley of performance optimization considerations. There’s
no one-size-fits-all approach, so it is helpful to become aware of potential performance pitfalls (and solutions). However,
performance issues can sometimes  be the result of many compounding problems that individually may not seem noteworthy.


Performance considerations allow you to examine concerns that may impact your application’s ability to scale. If you
can use any of these strategies as “low-hanging fruit” in your code base, it’s well worth going for the biggest win
with the smallest amount of effort. Not every section of this chapter will be suitable for every project you work on,
but they are still useful considerations to be aware of when writing any Android application. These topics range from
view system performance optimizations to network data format, caching, and more.


We are aware that the View system is to be replaced by Jetpack Compose: however, the View system is not going anywhere
for years, even with Jetpack. The first half of this chapter is dedicated to view topics every project could benefit from:
potential optimizations for the Android View system. The way you set up view hierarchies can end up having a substantial
impact on performance if you are not careful. For this reason, we look at two easy ways to optimize view performance:
reducing view hierarchy complexity with ConstraintLayout, and creating drawable resources for animation/customized
backgrounds.








Achieving Flatter View Hierarchy with ConstraintLayout


As a general rule, you want to keep your view hierarchies in Android as flat as possible. Deeply nested
hierarchies affect performance, both when a view first inflates and when the user interacts with the screen. When
view hierarchies are deeply nested, it can take longer to send instructions back up to the root ViewGroup containing
all your elements and traverse back down to make changes to particular views.


In addition to the profiling tools mentioned in Chapter 11, Android Studio offers Layout Inspector, which
analyzes your application at runtime and creates a 3D rendering of the view elements stacked on the screen. You can
open Layout Inspector by clicking the bottom corner tab of Android Studio, as shown in Figure 12-1.



[image: Layout Inspector]
Figure 12-1. Layout Inspector allows you to rotate the 3D rendering for devices running API 29+.




When child components are drawn, they are drawn on top of the parent View, stacking one on top of the other. Layout
Inspector does provide a Component Tree pane to the left so that you are able to drill down the elements and inspect
their properties. To better understand what happens when users interact with Android UI widgets, Figure 12-2 shows
a bird’s-eye view of the very same layout hierarchy provided in the Component Tree.


Even for a relatively simple layout, a view hierarchy can grow in complexity pretty quickly. Managing many nested layouts can
come with additional costs such as increased difficulty managing touch events, slower GPU rendering, and difficulty
guaranteeing the same spacing/size of views across different-sized screens.



[image: Layout Inspector]
Figure 12-2. The elements of a running activity stretched out in their entirety.




On top of the visual changes your app might call for, the Android OS could also be affecting view properties on
its own. Changes on view properties, called by either you or the OS, could trigger a re-layout of your view hierarchy.
Whether this happens or not depends on how views are implemented (by yourself or by an external dependency), how often layout
components trigger dimension resizing, and where they are located in the view hierarchy.


Not only must we worry about hierarchy complexity, but we also must be mindful of avoiding certain types of views that could
end up costing our application twice the number of traversals necessary to send instructions to the Android OS. Some older
layout types in Android are prone to “double taxation” when relative positioning is enabled:


	RelativeLayout

	
Without fail, this always traverses its child elements at least twice: once for layout calculations for each position and size and once to finalize positioning.



	LinearLayout

	
This sets its orientation to horizontal or sets android:setMeasureWithLargestChildEnabled="true"
while in vertical orientation; both cases make two passes for each child element.



	GridLayout

	
This can end up making double traversals if the layout uses weight distribution or sets
android:layout_gravity to any valid value.






The cost of double taxation can become far more severe when any one of these cases is located closer to the root
of the tree, and can even cause exponential traversals. The deeper the view hierarchy is, the longer it takes for input
events to be processed and for views to be updated accordingly.


As a good practice, it’s best to lower the negative impact of view re-layout on app responsiveness. To keep hierarchies
flatter and more robust, Android advocates using ConstraintLayout. ConstraintLayout helps create a responsive UI
for complex layouts with a flat-view hierarchy.


There are a few rules of ConstraintLayout to remember:



	
Every view must have at least one horizontal and one vertical constraint.



	
The Start/End of a view may only chain itself to the Start/End of other views.



	
The Top/Bottom of a view may only chain itself to the Top/Bottom of other views.






Android Studio’s design preview shows how the parent ties the view to the designated end of the screen, as shown in
Figure 12-3.
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Figure 12-3. In this particular ConstraintLayout, the spinner button constrains all parent sides to the center of the screen. The text elements in the upper-left corner are only constrained to the top and left sides of the parent.




When highlighted, the zigzagged lines appear on a view to indicate where a side is constrained to. A zigzag
indicates a constraint one way to a view while a squiggly line indicates that the two views constrain to each other.


This book does not cover additional useful features of ConstraintLayout, like barriers, guidelines, groups, and
creating constraints. The best way to get to know ConstraintLayout is to experiment with the
elements yourself in Split View within the design panel, as shown in Figure 12-4.



[image: Split View]
Figure 12-4. The Split View of the design panel shows half code and half design for layout files.




Using ConstraintLayout, especially when ViewGroup elements might be deeply nested or inefficient, is an easy way to
address potential performance bottlenecks at runtime for any Android application. In the next section, we shift focus
on performance optimizations from views themselves to view animations.

















Reducing Programmatic Draws with Drawables


Another potential performance issue for any Android project is programmatic draws at runtime. Once in a while,
Android developers run into a view element which does not have access to certain properties in a layout file. Suppose
you wanted to render a view with rounded corners only on the top two corners. One way to approach this is with a
programmatic draw via a Kotlin extension function:


fun View.roundCorners(resources: Resources, outline: OutLine?) {
    val adjusted = TypedValue.applyDimension(
        TypedValue.COMPLEX_UNIT_SP,
        25,
        resources?.displayMetrics
    )
    val newHeight =
        view.height.plus(cornerRadiusAdjusted).toInt()
    this.run { outline?.setRoundRect(0, 0, width, newHeight, adjusted)}
}


This is fine and valid; however, too many programmatic draws can end up choking the RenderThread and subsequently
block the UI thread from being able to process further events until runtime drawings complete. Furthermore, the cost of
altering views programmatically becomes higher if a particular view needs to resize to meet constraints. Resizing a view
element at runtime means you won’t be able to use the LayoutInflater to adjust how the elements fit with the new
dimensions of the original altered view.


You can offload overhead that would otherwise occur by using drawables, which are stored in the /drawables folder in your
resource assets. The following code shows how a Drawable XML file achieves the same goal of rounding the top two corners of
a view element:


<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
    android:shape = "rectangle">
    <corners android:topLeftRadius="25dp" android:topRightRadius="25dp"/>
    <stroke android:width="1dp" android:color="#FFF"/>
    <solid android:color="#FFF"/>
</shape>


You can then add the name of the file as a Drawable type to the background attribute in the View’s layout file the name of the Drawable file:


android:background="@drawable/rounded_top_corners_background"


In the previous section, we briefly touched on the initial stages of how user interaction sends instructions
to the Android OS. To understand where animations come in, we will now dive a little further into the full process of
how Android renders the UI. Let’s consider the case where a user in TrekMe presses the “Create a Map” button.


The stages we cover in the remainder of this section show how the OS processes user events with a screen and how it is
able to execute draw instructions from software to hardware. We explain all the phases the Android OS performs in a draw
up to where animations occur in the Sync stage, as shown in Figure 12-5.



[image: How Android UI renders]
Figure 12-5. Animation occurs at the Sync stage, after traversal is performed.




VSync represents the time given between frame draws on the screen. In an app, when a user touches a view element
on the screen, input handling occurs. In the Input stage, the Android OS makes a call to invalidate all the parent
view element nodes up the tree by copying a set of instructions to keep track of dirtied state. Invalidation
does not redraw the view itself, but rather, indicates to the system later on which marked view must be redrawn later.
This is done by propagating the copied information up the view hierarchy so that it can all be executed on the way back
down at a later stage. Figure 12-6 shows what invalidation looks like after user input occurs when someone touches a button: traversing up the node, then copying a set of DisplayList instructions up each parent view. Even though the arrow points down the elements, indicating child elements, the traversal and the copying of getDisplayList() actually goes up to the root before going back down.



[image: DisplayList]
Figure 12-6. The DisplayList object is a set of compact instructions used to instruct which views need to be redrawn on the Canvas. These instructions are copied up every parent view element to the root hierarchy during invalidation and then executed during traversal.




The Android UI system then schedules the next stage, known as traversal, which contains its own subset of rendering stages:


	Measure

	
This calculates MeasureSpecs and passes it to the child element for measuring. It does this recursively, all the way down to the leaf nodes.



	Layout

	
This sets the view position and sizing of a child layout.



	Draw

	
This renders the views using a set of instructions given by a set of DisplayList instructions.






In the next stage, Sync, the Android OS syncs the DisplayList info between the CPU and GPU. When the CPU
starts talking to the GPU in Android, the JNI takes its set of instructions in the Java Native layer within the UI
thread and sends a synthetic copy, along with some other information, to the GPU from the RenderThread. The
RenderThread is responsible for animations and offloading work from the UI thread (instead of having to send
the work to the GPU). From there, the CPU and GPU communicate with each other to determine what instructions ought
to be executed and then combined visually to render on the screen. Finally, we reach the Execute stage, where
the OS finally executes DisplayList operations in optimized fashion (like drawing similar operations together at once).
“Drawn Out: How Android Renders” is an excellent talk that provides more detail on Android rendering at the system level.1


As of Android Oreo, animations, such as circular reveals, ripples, and vector drawable animations, live only in the
RenderThread, meaning that these kinds of animations are nonblocking for the UI thread. You can create these
animations with custom drawables. Consider the case where we wish to animate a shadowed ripple in the View background
whenever a user presses some kind of  ViewGroup. You can combine a set of drawables to make this happen, starting with
RippleDrawable type Drawable to create the ripple animation itself:


<?xml version="1.0" encoding="utf-8"?>
<ripple xmlns:android="http://schemas.android.com/apk/res/android"
        android:color="@color/primary">
    <item android:id="@android:id/mask">
        <shape android:shape="rectangle">
            <solid android:color="@color/ripple_mask" />
        </shape>
    </item>
</ripple>


RippleDrawable, whose equivalent on XML is ripple, requires a color attribute for ripple effects.
To apply this animation to a background, we can use another drawable file:


<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
        android:shape="rectangle">
    <solid android:color="@color/background_pressed" />
</shape>


We can use DrawableStates, a set of framework-provided states that can be specified on a
Drawable. In this case, we use DrawableStates on a selector to determine the animation as well as whether the
animation occurs on press or not. Finally, we create a Drawable used to render different states. Each state
is represented by a child drawable. In this case, we apply the ripple drawable animation
only when the view has been pressed:


<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android"
    android:enterFadeDuration="@android:integer/config_shortAnimTime"
    android:exitFadeDuration="@android:integer/config_shortAnimTime">
    <item
        android:state_pressed="true" android:state_enabled="true"
        android:drawable="@drawable/background_pressed_ripple"/>
    <item
        android:state_pressed="false"
        android:drawable="@android:color/transparent"/>
</selector>

Note

As mentioned in the beginning of the chapter, the view system build around Jetpack Compose is completely different from
the view system in Android, with its own sets of UI management, graphics, runtime/compile time behavior, and more.
If Jetpack Compose is done with programmatic draws, would that mean using Jetpack Compose is not efficient for
drawing?  While XML currently renders faster than Compose rendering itself, optimizations are underway for
closing the gap on render time. However, you should  keep in mind the major advantage Compose holds is the ability to update, or recompose, Composable views quickly and far more efficiently than the current Android view framework.




We’re done talking about view performance optimizations, and we’ll move on to more performance optimization tips around
various parts of an Android application for the remainder of the chapter.

















Minimizing Asset Payload in Network Calls


In Android, it’s important to use minimal payload to avoid slower loads, battery drainage, and using too much data.
In the previous chapter, we started looking at network payload data formats. Both images and serialized data formats are
the usual suspects for causing the most bloat, so it’s important to check your payload’s data format.


If you don’t need transparency for the images you work with in your Android project, it’s better to work with
JPG/JPEG since this format intrinsically doesn’t support transparency and compresses better than PNG. When it comes
to blowing up bitmaps for thumbnails, it probably makes sense to render the image in much lower resolution.


In the industry, JSON is commonly used as the data payload in networking. Unfortunately, JSON and XML payloads are horrible
for compression since the data format accounts for spaces, quotes, returns, acmes, and more. Binary serialization
formats like protocol buffers, an accessible data format in Android which might serve as a cheaper alternative. You can define the data structs, which Protobuf is able to compress much smaller than XML and JSON data. Check out Google Developers for more on protocol buffers.

















Bitmap Pooling and Caching


TrekMe uses Bitmap pooling to avoid allocating too many Bitmap objects. Bitmap pooling reuses an existing instance,
when possible. Where does this “existing instance” come from? After a Bitmap is no longer visible, instead of
making it available for garbage collection (by just not keeping a reference on it), you can put the no-longer-used
Bitmap into a “bitmap pool.” Such a pool is just a container for available bitmaps for later use. For example, TrekMe
uses a simple in-memory dequeue as a bitmap pool. To load an image into an existing bitmap, you have to specify which

bitmap instance you want to use. You can do that using the inBitmap parameter2 of 
BitMapFactory.Options:


// we get an instance of bitmap from the pool
 BitmapFactory.Options().inBitmap = pool.get()


It’s worth noting that image-loading libraries like Glide can save you from having to handle bitmap craziness
yourself. Using these libraries results in bitmap caching for free in your applications. In cases where network calls
are slow, fetching a fresh instance of a Bitmap could be costly. This is when fetching from a bitmap cache can
save a lot of time and resources. If a user revisits a screen, the screen is able to load almost immediately instead
of having to make another network request. We can distinguish two kinds of caches: in-memory and filesystem
caches. In-memory caches provide the fastest object retrieval, at the cost of using more memory. Filesystem caches
are typically slower, but they do have a low memory footprint. Some applications rely on in-memory LRU
cache,3 while others use filesystem-based cache or a mix of the two approaches.


As an example, if you perform HTTP requests in your application, you can use OkHttp to expose a nice API to use
a filesystem cache. OkHttp (which is also included as a transitive dependency of the popular library, Retrofit) is a
popular client library widely used in Android for networking. Adding caching is relatively easy:


val cacheSize = 10 * 1024 * 1024
val cache = Cache(rootDir, cacheSize)

val client = OkHttpClient.Builder()
                .cache(cache)
                .build()


With OkHttp client building, it is easy to create configurations with custom interceptors to better suit the use case
of an application. For example, interceptors can force the cache to refresh at a designated interval. Caching is a
great tool for a device working with limited resources in its environment. For this reason, Android developers ought
to use cache to keep track of calculated computations.

Tip

A nice open source library that supports both in-memory and filesystem cache is
Dropbox Store.



















Reducing Unnecessary Work


For your application to consume resources frugally, you want to avoid leaving in code that is doing
unnecessary work. Even senior developers commonly make these kinds of mistakes, causing extra work and memory to be
allocated unnecessarily. For 
example, custom views in Android require particular attention. Let’s consider a custom
view with a circular shape. For a custom view implementation, you can subclass any kind of View and override the
onDraw method. Here is one possible implementation of CircleView:


// Warning: this is an example of what NOT to do!
class CircleView @JvmOverloads constructor(
    context: Context,
) : View(context) {

    override fun onDraw(canvas: Canvas) {
       super.onDraw(canvas)
       canvas.save()
       // Never initialize object allocation here!
       val paint: Paint = Paint().apply {
           color = Color.parseColor("#55448AFF")
           isAntiAlias = true
       }
       canvas.drawCircle(100f, 100f, 50f, paint)
       canvas.restore()
   }
}


The onDraw method is invoked every time the view needs to be redrawn. That can happen quite frequently, especially
if the view is animated or moved. Therefore, you should never instantiate new objects in onDraw. Such mistakes result in
unnecessarily allocating a lot of objects, which puts high pressure on the garbage collector. In the previous example,
a new Paint instance is created every time the rendering layer draws CircleView. You should never do that.


Instead, it is better to instantiate the Paint object once as a class attribute:


class CircleView @JvmOverloads constructor(
    context: Context,
) : View(context) {

    private var paint: Paint = Paint().apply {
        color = Color.parseColor("#55448AFF")
        isAntiAlias = true
    }
        set(value) {
            field = value
            invalidate()
        }

    override fun onDraw(canvas: Canvas) {
       super.onDraw(canvas)
       canvas.save()
       canvas.drawCircle(100f, 100f, 50f, paint)
       canvas.restore()
   }
}


Now the paint object is allocated only once. For the purposes of this existing class, sometimes the paint value
would be set to different colors. However, if the assignment is not dynamic, you can take it a step further by evaluating
the paint value lazily.


You want to keep your inject balanced and your dependencies light whenever possible. For repositories, services,
and other singleton dependencies (dependencies that are single objects in memory, like object), it makes sense to
make use of lazy delegation so that there is a singleton instance rather than copies of the same object sitting in the heap.


Consider the code we examined earlier in “Detecting Memory Leaks with LeakCanary”:


class MapImportViewModel @ViewModelInject constructor(
    private val settings: Settings,
    private val app: Application
): ViewModel() {
    /* removed for brevity */

    fun unarchiveAsync(item: ItemData) {
        viewModelScope.launch {
            val inputStream = app.contentResolve.
                openInputStream(item.uri) ?: return@launch
            val rootFolder = settings.getAppDir() ?: return@launch
            val outputFolder = File(rootFolder, "imported")
            /* removed for brevity */
        }
    }
}


In this class, the settings dependency is injected using Hilt—you can tell that by the @ViewModelInject.
At the time we wrote this example, we were using Hilt 2.30.1-alpha and only dependencies available in the
activity scope could be injected into the ViewModel. In other words, a newly created MapImportViewModel is always
injected into the same Settings instance, as long as the activity isn’t re-created. So the bottom line is: a dependency
injection framework such as Hilt can assist you in scoping the lifecycle of your dependencies. In TrekMe, Settings is
scoped in the application. Therefore, Settings is technically a singleton.

Note

Hilt is a dependency injection (DI) framework that provides a standard way to use DI in your application. The framework
also has the benefit of managing lifecycles automatically, and has extensions available for use with Jetpack
components like ViewModels and WorkManager.




The avoidance of unnecessary work expands into every scope of Android development. When drawing objects to render on the UI, it
makes sense to recycle already-drawn pixels. Likewise, since we know that making network calls in Android drains the battery,
it’s good to examine how many calls are made and how frequently they’re called. Perhaps you have a shopping cart in
your application. It may make good business sense to make updates to the remote server so that a user can access their
cart cross-platform. On the other hand, it may also be worth exploring updating a user’s cart in local storage (save
for a periodic network update). Of course, these kinds of business decisions exist outside the scope of this book,
but technical consideration can always help to make for more thoughtful features.

















Using Static Functions


When a method or a property isn’t tied to any class instance (e.g., doesn’t alter an object state), it sometimes makes
sense to use static functions/properties. We’ll show different scenarios where using static functions is more
appropriate than using 
inheritance.


Kotlin makes it very easy to use static functions. A companion object within a class declaration holds static constants, properties, and functions that can be referenced anywhere in the project. For example, an Android service can expose a static property isStarted, which can only be modified by the service itself, as shown in Example 12-1.


Example 12-1. GpxRecordingService.isStarted


class GpxRecordingService {

    /* Removed for brevity */

    companion object {
        var isStarted: Boolean = false
            private set(value) {
                EventBus.getDefault().post(GpxRecordServiceStatus(value))
                field = value
            }
    }
}



In Example 12-1, GpxRecordingService can internally change the value of 
isStarted. While doing
so, an event is sent through the event bus, notifying all registered components. Moreover, the status of the
GpxRecordingService is accessible from anywhere in the app as a read-only GpxRecordingService.isStarted property.
But remember to avoid accidentally saving an Activity, Fragment, View, or Context to a static member: that could end in
a hefty memory leak!

















Minification and Obfuscation with R8 and ProGuard


It is a common practice to minify, or shrink, release builds for production so that unused code and resources can be
removed. Minifying your code allows you to ship smaller APKs to Google PlayStore more securely. Minification shrinks
your code by removing unused methods. Minifying your code also gives you the power of obfuscation as an additional
security feature. Obfuscation garbles the names of classes/fields/methods and removes debugging attributes in order to
discourage reverse 
engineering.


For Android users, R8 is now the default minification tool provided by the Android Gradle plug-in 5.4.1+. ProGuard,
R8’s stricter and more powerful predecessor, had a heavier focus on optimizing heavy reflection like the ones found in Gson. In comparison,
the newer minification tool R8 does not support this feature. However, R8 is successful in achieving smaller compression
and optimization for Kotlin.


Configurations can be done through proguardFile (you will see an example at the end of the section). R8 reads
the rules provided for the proguardFile and executes shrinking and obfuscation accordingly. You can then assign a
proguardFile to a certain flavor and build type in build.gradle:


buildTypes {
    release {
        minifyEnabled true
        shrinkResources true
        proguardFile getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
    }
}


It’s common practice to shrink your APK to upload to the PlayStore. However, it’s important to be watchful and prevent unintentionally shrinking/obfuscating code
that might need to be used by a third-party library at runtime. Kotlin uses metadata in Java classes for Kotlin
constructs. However, when R8 shrinks Kotlin classes, it is unable to keep state with the Kotlin metadata. In a best-case
scenario, shrinking/obfuscating such classes might cause wonky behavior; in a worst-case scenario, it might cause inexplicable
crashes.


To demonstrate a scenario where ProGuard accidentally obfuscates too much application code, we observe some wonky
behavior on the popular open source library, Retrofit. Perhaps your application works perfectly fine in debugging mode, but in release mode, a networking call inexplicably returns a NullPointerException. Unfortunately, 
Kotlin Gson models
go blank even while annotating properties/fields with Retrofit’s @SerializedName, thanks to Kotlin reflection. As a result, you must add a rule in your proguard file to prevent the Kotlin model class from obfuscating. Oftentimes, you may end up having to include your model classes by adding them directly in your proguardFile. Here is an example of adding model domain classes to a 
proguardFile so that release builds don’t accidentally obfuscate the aforementioned classes:


# Retrofit 2.X
-dontwarn retrofit2.**
-keep class retrofit2.** { *; }
# Kotlin source code whitelisted here
-keep class com.some.kotlin.network.model.** { *; }
-keepattributes Signature
-keepattributes Exceptions
-keepclasseswithmembers class * {
    @retrofit2.http.* <methods>;
}


A good piece of advice is: always test the release build!

















Summary


This chapter covered the following important performance optimization tips:



	
In the Android view framework, deeply nested view hierarchies take longer to draw and traverse than flatter hierarchies. Consider using
ConstraintLayout, where you can flatten nested views.



	
In the Android view framework, it is better to move programmatic draws and animations to drawable resources to offload the work on the RenderThread
at runtime.



	
Using JSON and XML formats for network data payload is horrible for compression. Use protocol buffers for much
smaller data compression.



	
Avoid unnecessary work whenever possible: make sure you’re not ringing off unnecessary network calls for constant
updates, and try to recycle drawn objects.



	
Optimizations in performance and memory can come from taking an honest look at the code you write. Are you unintentionally
creating objects within a loop that could be created once outside a loop? What expensive operations could be reduced
to less-intensive operations?



	
You can use a ProGuard file to make your application as small as possible and add custom rules for shrinking,
obfuscating, and optimizing your app.






Let’s face it: Android can be a challenge to keep up with. It’s OK to take information in stride as it becomes
relevant for you. Such a strategy guarantees learning opportunities that stay with you for a long time. No matter
where you’re at in your journey, one of your best resources for both Kotlin and Android (besides this book) is the
open source community. Both Android and Kotlin are living, breathing communities from which you can ascertain the
newest and most relevant information. To keep yourself current, you can turn to additional resources like Twitter,
Slack, and KEEP. You may well also find
that you can return to this book to revisit popular, evergreen problems that show up in Android from time to time.
We hope you enjoyed this book.










1 Chet Haase and Romain Guy. “Drawn Out: How Android Renders.” Google I/O ’18, 2017.
2 The instance of Bitmap that you supply must be a mutable bitmap.
3 LRU stands for Least Recently Used. As you can’t cache objects indefinitely, caching is always related to an eviction strategy to maintain the cache at a target or acceptable size. In an LRU cache, the “oldest” objects are evicted first.
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> suspend fun main() {
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- flow.bufferTimeout( maxSize: 10, maxDelayMillis: 50) .collect { it: List<int>

val time = Systen.currentTineMillis() - startTime
println("Stime ms: $it")





OEBPS/Images/pawk_1127.png
CTTT ] e a— 0600 N






OEBPS/Images/pawk_1006.png
Event SharedFlow






OEBPS/Images/pawk_1003.png





OEBPS/Images/pawk_1124.png





OEBPS/Images/pawk_1125.png





OEBPS/Images/pawk_1004.png
fun main() = runBlocking { this: CoroutineScope
// Defining the Flow of Content - nothing is executing yet
val contentFlow : FlowsContent> = locationsFlow.map { loc :Location ->
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. B (e )

// We now collect the entire flow using the toList terminal operator
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» fun main() :Unit = runBlocking { this: CoroutineScope

try {
4 upstream.collect { value :Int ->
if (value > 2) {
throw RuntimeException()
}
printin("Received $value")
}

} catch (e: Throwable) {
println("Caught Se")
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if (value > 2) throw RuntimeException()
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» fun main() = runBlocking { this: CoroutineScope
try {
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}

} catch (e: Throwable) {
printin("Caught $e")
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val encapsulateError :Flow<int> = upstream
.onEach { it:Int
if (it > 2) throw RuntimeException()
}
.catch { e :Throwable ->
println("Caught $e")

» fun main() = runBlocking { this: CoroutineScope
N encapsulateError.collect { it:int
println("Received $it")
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~onEach { itnt
if (it < 0) throw NumberFornatException("Values should be greater than 0")
¥
Lcatch { e:Thiowable ->
println(“Caught $e"

}

> fun main() = runBlocking { this: CoroutineScope
try {

¥ encapsulateError. collect { itint

if (it > 2) throw RuntimeException()
printin("Received $it*)

} catch (e: RuntimeException) {
println(“Collector stopped collecting the Flow')
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val upstrean :Flowsint> = fLow0f( ..elements: 1, 3, -1)

val encapsulateError :Flowsint> = upstrean
~onEach { it int
if (it < 0) throw NumberFormatException("Values should be greater than 8")
}
.catch { e :Throwable ->
$ emit( value: 0)

> fun main() = runBlocking { this: Coroutinescope
4 encapsulateError.collect { itint
println("Received $it")
}
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