

Practical Linear Algebra Data Science

From Core Concepts to Applications using Python

Mike X Cohen

 Practical Linear Algebra for Data Science

 by
 Mike
 X
 Cohen

 Copyright © 2022 O’Reilly Media. All rights reserved.

 Printed in the United States of America.

 Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

 	
 Editors:
 Jessica Haberman and Shira Evans

 	
 Production Editor:
 Jonathon Owen

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 Revision History for the Early Release

 	
 2022-02-08:
 First Release

 	
 2022-04-13:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098120610
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Practical Linear Algebra for Data Science, the cover image, and related
 trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not
 represent the publisher’s views. While the publisher and the
 author have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 author disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-12055-9

 [LSI]

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://learning.oreilly.com/library/view/practical-linear-algebra/9781098120603/.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on LinkedIn: https://www.linkedin.com/company/oreilly-media

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Introduction

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

What is linear algebra and why learn it?

Linear algebra has an interesting history in mathematics, dating back to the 17th century in the West and much earlier in China. Matrices—the spreadsheets of numbers at the heart of linear algebra—were used to provide a compact notation for storing sets of numbers like geometric coordinates (this was Descartes’ original use of matrices) and systems of equations (pioneered by Gauss). In the 20th century, matrices and vectors were used for multivariate mathematics including calculus, differential equations, physics, and economics.

But most people didn’t need to care about matrices until fairly recently. Here’s the thing: Computers are extremely efficient at working with matrices. And so, modern computing gave rise to modern linear algebra. Modern linear algebra is computational whereas traditional linear algebra is abstract. Modern linear algebra is best learned through code and applications in graphics, statistics, data science, A.I., and numerical simulations; whereas traditional linear algebra is learned through proofs and pondering infinite-dimensional vector spaces. Modern linear algebra provides the structural beams that support nearly every algorithm implemented on computers, whereas traditional linear algebra is often intellectual fodder for advanced mathematics university students.

Welcome to modern linear algebra.

Should you learn linear algebra? That depends on whether you want to understand algorithms and procedures, or simply apply methods that others have developed. I don’t mean to disparage the latter — there is nothing intrinsically wrong with using tools you don’t understand (I am writing this on a laptop that I can use but could not build from scratch). But given that you are reading a book with this title in the O’Reilly book collection, I guess you either (1) want to know how algorithms work or (2) want to develop or adapt computational methods. So yes, you should learn linear algebra, and you should learn the modern version of it.

About this book

The purpose of this book is to teach you modern linear algebra. But this is not about memorizing some key equations and slugging through abstract proofs; the purpose is to teach you how to think about matrices, vectors, and operations acting upon them. You will develop a geometric intuition for why linear algebra is the way it is. And you will understand how to implement linear algebra concepts in Python code, with a focus on applications in machine learning and data science.

Many traditional linear algebra textbooks avoid numerical examples in the interest of generalizations, expect you to derive difficult proofs on your own, and teach myriad concepts that have little or no relevance to application or implementation in computers. I do not write these as criticisms — abstract linear algebra is beautiful and elegant. But if your goal is to use linear algebra (and mathematics more generally) as a tool for understanding data, statistics, deep learning, image processing, etc., then traditional linear algebra textbooks may seem like a frustrating waste of time that leave you confused and concerned about your potential in a technical field.

This book is written with self-studying learners in mind. Perhaps you have a degree in math, engineering, or physics, but need to learn how to implement linear algebra in code. Or perhaps you didn’t study math at university and now realize how important linear algebra is for your studies or work. Either way, this book is a self-contained resource; it is not solely a supplement for a lecture-based course (though it could be used for that purpose).

If you were nodding your head in agreement while reading the past three paragraphs, then this book is definitely for you.

If you would like to take a deeper dive into linear algebra, with more proofs and explorations, then there are several excellent texts that you can consider, including my own Linear Algebra: Theory, Intuition, Code.1

Prerequisites

I have tried to write this book for enthusiastic learners with minimal formal background. That said, nothing is ever learned truly from from scratch.

Math

You need to be comfortable with high-school math. Just basic algebra and geometry; nothing fancy.

Absolutely zero calculus is required for this book (though differential calculus is important for applications where linear algebra is often used, such as deep learning and optimization).

But most importantly, you need to be comfortable thinking about math, looking at equations and graphics, and embracing the intellectual challenge that comes with studying math.

Attitude

Linear algebra is a branch of mathematics, ergo this is a mathematics book. Learning math, especially as an adult, requires some patience, dedication, and an assertive attitude. Get a cup of coffee, take a deep breath, put your phone in a different room, and dive in.

There will be a voice in the back of your head telling you that you are too old or too stupid to learn advanced mathematics. Sometimes that voice is louder and sometimes softer, but it’s always there. And it’s not just you — everyone has it. You cannot suppress or destroy that voice; don’t even bother trying. Just accept that a bit of insecurity and self-doubt is part of being human. Each time that voice speaks up is a challenge for you to prove it wrong.

Coding

This book is focused on linear algbera applications in code. I wrote this book for Python, because Python is currently the most widely used language in data science, machine learning, and related fields. If you prefer other languages like MATLAB, R, or Julia, then I hope you will find that it is relatively straightforward to translate the Python code.

I’ve tried to make the Python code as simple as possible, while still being relevant for applications. The next chapter provides a basic introduction to Python programming. Should you go through that chapter? That depends on your level of Python skills:

	Intermediate/advanced (>1 year coding experience)

	
Skip the next chapter entirely, or perhaps skim it to get a sense of the kind of code that will appear in the rest of the book.

	Some knowledge (<1 year experience)

	
Please work through the chapter in case there is material that is new or that you need to refresh. But you should be able to get through it rather briskly.

	Total beginner

	
Go through the chapter in detail. Please understand that this book is not a complete Python tutorial, so if you find yourself struggling with the code in later chapters, you might want to put the book down, work through a dedicated Python course or book, then come back to this book.

Mathematical proofs vs. intuition from coding

The purpose of studying math is, well, to understand math. How do you understand math? Let us count the ways:

	
Rigorous proofs. A proof in mathematics is a sequence of statements showing that a set of assumptions leads to a logical conclusion. Proofs are unquestionably important in pure mathematics.

	
Visualizations and examples. Clearly written explanations, diagrams, and numerical examples help you gain intuition for concepts and operations in linear algebra. Most examples are done in 2D or 3D for easy visualization, but the principles also apply to higher dimensions.

The difference between these is that formal mathematical proofs provide rigor but rarely intuition; whereas visualizations and examples provide lasting intuition through hands-on experience, but can risk inaccuracies based on specific examples that do not generalize.

Proofs of important claims are included, but I focus more on building intuition through explanations, visualizations, and code examples.

And this brings me to mathematical intuition from coding (what I sometimes call “soft proofs”). Here’s the idea: You assume that Python (and libraries such as numpy and scipy) correctly implements the low-level number-crunching, while you focus on the principles by exploring many numerical examples in code.

A quick example: We will “soft-prove” the commutivity principle of multiplication, which states that

 a
 ×
 b
 =
 b
 ×
 a

:

a = np.random.randn()
b = np.random.randn()
a*b - b*a

This code generates two random numbers and tests the hypothesis that swapping the order of multiplication has no impact on the result. The third line of would print out 0.0 if the commutivity principle is true. If you run this code multiple times and always get 0.0, then you have gained intuition for commutivity by seeing the same result in many different numerical examples.

To be clear: intuition-from-code is no substitute for a rigorous mathematical proof. The point is that “soft-proofs” allow you to understand mathematical concepts without having to worry about the details of abstract mathematical syntax and arguments. This is particularly advantageous to coders who lack an advanced mathematics background.

The bottom line is that you can learn a lot of math with a bit of coding.

Code, printed in the book and downloadable online

You can read this book without looking at code or solving code exercises. That’s fine, and you will certainly learn something. But don’t be disappointed if your knowledge is superficial and fleeting. If you really want to understand linear algebra, you need to solve problems. That’s why this book comes with code demonstrations and exercises for each mathematical concept.

Important code is printed directly in the book. I want you to read the text and equations, look at the graphs, and see the code at the same time. That will allow you to link concepts and equations to code.

But printing code in a book can take up a lot of space, and hand-copying code on your computer is tedious. Therefore, only the key code lines are printed in the pages, and embellished code is provided online. The online code contains more comments and additional code for making graphs look nicer, etc. The online code also contains solutions to the coding exercises (all of them, not only the odd-numbered problems!). You should definitely download the code and go through it while working through the book.

All the code can be obtained from the github site github.com/mikexcohen/LA4DataScience. You can clone this repository, or simply download the entire repository as a zip file (you do not need to register, log in, or pay, to download the code).

I wrote the code using Jupyter notebook in Google’s colab environment. I chose to use Jupyter because it’s a friendly and easy-to-use environment. That said, I encourage you to use whichever Python IDE you prefer. The online code is also provided as raw .py files for convenience.

Code exercises

Math is not a spectator sport. Most math books have countless paper-and-pencil problems to work through (and let’s be honest: no one does all of them). But this book is all about applied linear algebra, and no one applies linear algebra on paper! Instead, you apply linear algebra in code. Therefore, in lieu of hand-worked problems and tedious proofs “left as an exercise to the reader” (as math textbook authors love to write), this book has lots of code exercises.

The code exercises vary in difficulty. If you are new to Python and to linear algebra, you might find some exercises really challenging. If you get stuck, here’s a suggestion: Have a quick glance at my solution for inspiration, then put it away so you can’t see my code, and continue working on your own code.

When comparing your solution to mine, keep in mind that there are many ways to solve problems in Python. Ariving at the correct answer is important; the steps you take to get there are often a matter of personal coding style.

How to use this book (for teachers and self-learners)

There are three environments in which this book is useful.

	Self-learner

	
I have tried to make this book accessible to readers who want to learn linear algebra on their own, outside a formal classroom environment. No additional resources or online lectures are necessary, although of course there are myriad other books, websites, YouTube videos, and online courses that students might find helpful.

	Primary textbook in a data science class

	
This book can be used as a primary textbook in a course on the math underlying data science, machine-learning, A.I., and related topics. There are twelve content chapters (excluding this introduction and the Python appendix), and students could be expected to work though 2-3 chapters per week. Because the solutions to all exercises are readily available, instructors may wish to supplement the book exercises with additional problemsets or applications.

	Secondary textbook in a math-focused linear algebra course

	
This book could also be used as a supplement in a mathematics course with a strong focus on proofs. In this case, the lectures would focus on theory and rigorous proofs while this book could be referenced for translating the concepts into code with an eye towards applications in data science and machine-learning. As I wrote above, instructors may wish to provide supplementary exercises, considering the solutions to all book exercises are available online.

1 Apologies for the shameless self-promotion; I promise that’s the only time in this book I’ll subject you to such an indulgence.

Chapter 2. Vectors, part 1

Vectors provide the foundations upon which all of linear algebra (and therefore, the rest of this book) is built.

By the end of this chapter, you will know all about vectors: what they are, what they do, how to interpret them, and how to create and work with them in Python. You will understand the most important operations acting on vectors, including vector algebra and the dot product. Finally, you will learn about vector decompositions, which is one of the main goals of linear algebra.

Creating and visualizing vectors in numpy

In linear algebra, a vector is an ordered list of numbers. (In abstract linear algebra, vectors may contain other mathematical objects including functions; however, because this book is focused on applications, we will only consider vectors comprising numbers.)

Vectors have several important characteristics. The first two we will start with are:

	
Dimensionality: The number of numbers in the vector.

	
Orientation: Whether the vector is in column orientation (standing up tall) or row orientation (laying flat and wide).

Dimensionality is often indicated using a fancy-looking
 ℝ N
, where the
 ℝ
 indicates real-valued numbers (c.f.
 ℂ
 for complex-valued numbers) and the
 N
 indicates the dimensionality. For example, a vector with 2 elements is said to be a member of
 ℝ 2
. That special
 ℝ
 character is made using latex code, but you can also write R2 or R^2.

Here are a few examples of vectors; please determine their dimensionality and orientation before reading the subsequent paragraph.

Equation 2-1. Examples of column vectors and row vectors.

 𝐱
 =

 1

 4

 5

 6

 ,

 𝐲
 =

 .
 3

 -
 7

 ,

 𝐳
 =

 1

 4

 5

 6

Here are the answers: x is a 4-dimensional column vector, y is a 2D column vector, and z is a 4D row vector. You can also write, e.g.,

 𝐱
 ∈
 ℝ 4

, where the
 ∈
 symbol means “is a member of.”

Are x and z the same vector? Technically they are different, even though they have the same elements in the same order. See Box Does vector orientation matter? for more discussion.

You will learn, in this book and throughout your adventures integrating math and coding, that there are differences between math “on the chalkboard” vs. implemented in code. Some discrepancies are minor and inconsequential, while others cause confusion and errors. Let me now introduce you to a terminological difference between math and coding:

I wrote above that the dimensionality of a vector is the number of elements in that vector. However, in Python, the dimensionality of a vector or matrix is the number of geometric dimensions used to print out a numerical object. For example, all of the vectors shown above are considered “two-dimensional arrays” in Python, regardless of the number of elements contained in the vectors (which is the mathematical dimensionality). A list of numbers without a particular orientation is considered a 1D array in Python, regardless of the number of elements (that array will be printed out as a row, but, as you’ll see later, it is treated differently from row vectors). The mathematical dimensionality — the number of elements in the vector — is called the length or the shape of the vector in Python.

This inconsistent and sometimes conflicting terminology can be confusing. Indeed, terminology is often a sticky issue at the intersection of different disciplines (in this case, mathematics and computer science). But don’t worry, you’ll get the hang of it with some experience.

Does vector orientation matter?

Do you really need to worry about whether vectors are column- or row-oriented, or orientationless 1D arrays? Sometimes yes, sometimes no. When using vectors to store data, orientation usually doesn’t matter. But some operations in Python can give errors or unexpected results if the orientation is wrong. Therefore, vector orientation is important to understand, because spending 30 minutes debugging code only to realize that a row vector needs to be a column vector, is guaranteed to give you a headache.

When referring to vectors, it is common to use lower-case bolded Roman letters, like v for “vector v.” Some texts use italics (v) or print an arrow on top (
 v →
).

Linear algebra convention is to assume that vectors are in column orientation unless otherwise specified. Row vectors are written as
 𝐰 T
. The
 T
 indicates the transpose operation, which you’ll learn more about later; for now, suffice it to say that the transpose operation transforms a column vector into a row vector.

Vectors in Python can be represented using several data types. The list type may seem like the simplest way to represent a vector — and it is for for some applications. But many linear algebra operations won’t work on Python lists. Therefore, most of the time it’s best to create vectors as numpy arrays. The code below shows four ways of creating a vector.

asList = [1,2,3]
asArray = np.array([1,2,3]) # 1D array
rowVec = np.array([[1,2,3]]) # row
colVec = np.array([[1],[2],[3]]) # column

The variable asArray is an “orientationless” array, meaning it is neither a row nor a column vector, but simply a 1D list of numbers in numpy. Orientation in numpy is given by brackets: The outer-most brackets group all of the numbers together into one object. Then, each additional set of brackets indicates a row: A row vector (variable rowVec) has all numbers in one row, while a column vector (variable colVec) has multiple rows, with each row containing one number.

We can explore these orientations by examining the shapes of the variables (inspecting variable shapes is often very useful while coding):

print(f'asList: {np.shape(asList)}')
print(f'asArray: {asArray.shape}')
print(f'rowVec: {rowVec.shape}')
print(f'colVec: {colVec.shape}')

Here’s what the output looks like:

asList: (3,)
asArray: (3,)
rowVec: (1, 3)
colVec: (3, 1)

The output shows that the 1D array asArray is of size (3,), whereas the orientation-endowed vectors are 2D arrays, and are stored as size (1,3) or (3,1) depending on the orientation. Dimensions are always listed as (rows,columns).

Geometry of vectors

“Ordered list of numbers” is the algebraic interpretation of a vector; the geometric interpretation of a vector is a line that has a specific length (also called magnitude) and direction (also called angle; it is computed relative to the positive x-axis). The two points of a vector are called the tail (where it starts) and the head (where it ends); the head has an arrow-tip to disambiguate from the tail.

You may think that a vector encodes a geometric coordinate, but vectors and coordinates are actually different things. They are, however, concordant when the vector starts at the origin. This is called the “standard position,” and is illustrated in Figure 2-1.

Conceptualizing vectors either geometrically or algebraically facilitates intuition in different applications, but these are simply two sides of the same coin. For example, the geometric interpretation of a vector is useful in physics and engineering (e.g., representing physical forces), and the algebraic interpretation of a vector is useful in data science (e.g., storing sales data over time). Oftentimes, linear algebra concepts are learned geometrically in 2D graphs, and then are expanded to higher dimensions using algebra.

[image: A vector, repeated in space.]
Figure 2-1. All arrows express the same vector. A vector in standard position has its tail at the origin.

Operations on vectors

Vectors are like nouns; they are the characters in our linear algebra story. The fun in linear algebra comes from the verbs — the actions that breathe life into the characters. Those actions are called operations.

Some linear algebra operations are simple and intuitive and work exactly how you’d expect (e.g., addition), whereas others are more involved and require entire chapters to explain (e.g., singular value decomposition). Let’s begin with simple operations.

Adding two vectors

To add two vectors, simply add each corresponding element. Here is an example:

Equation 2-2. Adding two vectors.

 4

 5

 6

 +

 10

 20

 30

 =

 14

 25

 36

As you might have guessed, vector addition is defined only for two vectors that have the same dimensionality; it is not possible to add, e.g., a vector in
 ℝ 3
 with a vector in
 ℝ 5
.

Vector subtraction is also what you’d expect: subtract the two vectors element-wise.

Adding vectors is straightforward in Python:

v = np.array([4,5,6])
w = np.array([10,20,30])
u = np.array([0,3,6,9])
vPlusW = v+w
uPlusW = u+w # error! dimensions mismatched!

Does vector orientation matter for addition? Consider the following:

Equation 2-3. Can you add a row vector to a column vector?

 4

 5

 6

 +

 10

 20

 30

 =
 ?

You might think that there is no difference between this example and the one shown earlier — after all, both vectors have three elements. Let’s see what Python does.

v = np.array([[4,5,6]]) # row vector
w = np.array([[10,20,30]]).T # column vector
v+w

>> array([[14, 15, 16],
 [24, 25, 26],
 [34, 35, 36]])

The result may seem confusing and inconsistent with the definition of vector addition given earlier. In fact, Python is implementing an operation called broadcasting. You will learn more about broadcasting later in this chapter, but I encourage you to spend a moment pondering the result and thinking about how it arose from adding a row and a column vector. Regardless, this example shows that orientation is indeed important: Two vectors can be added together only if they have the same dimensionality and the same orientation.

Geometry of vector addition and subtraction

To add two vectors geometrically, place the vectors such that the tail of one vector is at the head of the other vector. The summed vector traverses from the tail of the first vector to the head of the second (Figure 2-2a). You can extend this procedure to sum any number of vectors: Simply stack all the vectors tail-to-head, and then the sum is the line that goes from the first tail to the final head.

[image: What does this do?]
Figure 2-2. The sum and difference of two vectors.

Subtracting vectors geometrically is slightly different but equally straightforward: Line up the two vectors such that their tails are at the same coordinate (this is easily accomplished by having both vectors in standard position); the difference vector is the line that goes from the head of the “negative” vector to the head of the “positive” vector (Figure 2-2b).

Do not underestimate the importance of the geometry of vector subtraction: It is the basis for orthogonal vector decomposition, which in turn is the basis for linear least-squares, which is one of the most important applications of linear algebra in science and engineering.

Vector-scalar multiplication

A “scalar” in linear algebra is a number on its own, not embedded in a vector or matrix. Scalars are typically indicated using lower-case Greek letters such as α or λ. Therefore, vector-scalar multiplication is indicated as, for example, βu.

Vector-scalar multiplication is very simple: multiply each vector element by the scalar. One numerical example will suffice for understanding:

Equation 2-4. Vector-scalar multiplication (or: scalar-vector multiplication).

 λ
 =
 4
 ,

 𝐰
 =

 9

 4

 1

 ,

 λ
 𝐰
 =

 36

 16

 4

The zeros vector

A vector of all zeros is called the “zeros vector,” is indicated using a bold-faced zero:
 0
, and is a special vector in linear algebra. In fact, using the zeros vector to solve a problem is often called the trivial solution and is excluded. Linear algebra is full of statements like “find a non-zeros vector that can solve…” or “find a non-trivial solution to…”

I wrote earlier that the data type of a variable storing a vector is sometimes important and sometimes unimportant. Vector-scalar multiplication is an example where data type matters.

s = 2
a = [3,4,5] # as list
b = np.array(a) # as np array
print(a*s)
print(b*s)

>> [3, 4, 5, 3, 4, 5]
>> [6 8 10]

The code creates a scalar (variable s) and a vector as a list (variable a), then converts that into a numpy array (variable b). The asterisk is overloaded in Python, meaning its behavior depends on the variable type: Scalar-multiplying a list prints the list s times (in this case, twice), which is definitely not the linear algebra operation of scalar-vector multiplication. When the vector is stored as a numpy array, however, the asterisk is interpreted as element-wise multiplication. (Here’s a small exercise for you: What happens if you set s=2.0, and why?1) Both of these operations (list repetition and vector-scalar multiplication) are used in real-world coding, so be mindful of the distinction.

Scalar-vector addition

Adding a scalar to a vector is formally not defined in linear algebra: They are two separate kinds of mathematical objects and cannot be combined. However, numerical processing programs like Python will allow adding scalars to vectors, and the operation is comparable to scalar-vector multiplication: the scalar is added to each vector element. The code below illustrates the idea.

s = 2
v = np.array([3,6])
s+v
>> [5 7]

The geometry of vector-scalar multiplication

Why are scalars called “scalars”? That comes from the geometric interpretation. Scalars scale vectors without changing their direction. There are four effects of vector-scalar multiplication that depend on whether the scalar is greater than 1, between 0 and 1, exactly 0, or negative. Figure 2-3 illustrates the concept.

[image: Scaling vectors]
Figure 2-3. The same vector (black arrow) multiplied by different scalars
 σ
 (gray line; shifted slightly for visibility).

I wrote earlier that scalars do not change the direction of the vector. But the figure shows that the vector direction flips when the scalar is negative (that is, its angle rotates by
 180 ∘
). That might seem a contradiction, but there is an interpretation of vectors as pointing along an infinitely long line that passes through the origin and goes to infinity in both directions (in the next chapter I’ll call this a “one-dimensional subspace”). In that sense, the “rotated” vector still points along the same infinite line and thus the negative scalar does not change the direction. This interpretation is important for matrix spaces, eigenvectors, and singular vectors, all of which are introduced in later chapters.

Vector-scalar multiplication in combination with vector addition leads directly to vector averaging. Averaging vectors is the same as averaging numbers: sum and divide by the number of numbers. So, to average two vectors, add them and then scalar-multiply by .5. In general, to average N vectors, sum them and scalar-multiply the result by 1/N.

Transpose

You already learned about the transpose operation: It converts column vectors into row vectors, and vice-versa. Let me here provide a slightly more formal definition that will generalize to transposing matrices (a topic in Chapter 5).

A matrix has rows and columns, therefore each matrix element has a (row,column) index. The transpose operation simply swaps those indices. Thus:

Equation 2-5. The transpose operation.

 𝐦 i,j T
 =
 𝐦 j,i

Vectors have either one row or one column, depending on their orientation. For example, a 6D row vector has i=1 and j indices from 1 to 6, whereas a 6D column vector has i indices from 1 to 6 and j=1. So swapping the i,j indices swaps the rows and columns.

Here’s an important rule: Transposing twice returns the vector to its original orientation. In other words,

 𝐯 TT
 =
 𝐯

. That may seem obvious and trivial, but it is the keystone of several important proofs in data science and machine learning, including creating symmetric covariance matrices as the data matrix times its transpose (which in turn is the reason why a principal components analysis is an orthogonal rotation of the data space… don’t worry, that sentence will make sense later in the book!).

Vector broadcasting in Python

Broadcasting is an operation that exists only in modern computer-based linear algebra; this is not a procedure you would find in a traditional linear algebra textbook.

Broadcasting essentially means to repeat an operation multiple times between one vector and each element of another vector. Consider the following series of equations:

 1

 1

 +

 10

 20

 2

 2

 +

 10

 20

 3

 3

 +

 10

 20

Notice the patterns in the vectors. We can implement this set of equations compactly by condensing those patterns into vectors [1,2,3] and [10,20], and then broadcasting the addition. Here’s how it looks in Python:

v = np.array([[1,2,3]]).T # col vector
w = np.array([[10,20]]) # row vector
v + w # addition with broadcasting

>> array([[11, 21],
 [12, 22],
 [13, 23]])

Here again you can see the importance of orientation in linear algebra operations: Try running the code above, changing v into a row vector and w into a column vector2.

Because broadcasting allows for efficient and compact computations, it is used often in numerical coding. You’ll see several examples of broadcasting in this book, including in the section on k-means clustering (Chapter 4).

Vector magnitude and unit vectors

The magnitude of a vector — also called the geometric length or the norm — is the distance from tail to head of a vector, and is computed using the standard Euclidean distance formula: the square root of the sum of squared vector elements. Vector magnitude is indicated using double-vertical bars around the vector:

 ∥
 𝐯
 ∥

.

Equation 2-6. The norm of a vector.

 ∥
 𝐯
 ∥

 =

 ∑ i=1 n
 v i 2

Some applications use squared magnitudes (written
 ∥𝐯∥ 2
), in which case the square root term drops out of the right-hand side of the equation.

Before showing the Python code, let me explain some more terminological discrepancies between “chalkboard” linear algebra and Python linear algebra. In mathematics, the dimensionality of a vector is the number of elements in that vector while the length is a geometric distance; in Python, the function len() (where len is short for length) returns the dimensionality of an array, while the function np.norm() returns the geometric length (magnitude). In this book, I will use the term magnitude (or geometric length) instead of length to avoid confusion.

v = np.array([1,2,3,7,8,9])
v_dim = np.len(v) # math dimensionality
v_mag = np.norm(v) # math magnitude, length, or norm

There are some applications where we want a vector that has a geometric length of one, which is called a unit vector. Example applications include orthogonal matrices, rotation matrices, eigenvectors, and singular vectors.

A unit vector is defined as

 ∥
 𝐯
 ∥
 =
 1

.

Needless to say, lots of vectors are not unit vectors. (I’m tempted to write “most vectors are not unit vectors,” but there is an infinite number of unit vectors and non-unit vectors, although the set of infinite non-unit vectors is larger than the set of infinite unit vectors.) Fortunately, any non-unit vector has an associated unit vector. That means that we can create a unit vector in the same direction as a non-unit vector. Creating an associated unit vector is easy; you simply scalar-multiply by the reciprocal of the vector norm:

Equation 2-7. Creating a unit vector.

 𝐯 ^
 =
 1 ∥𝐯∥
 𝐯

You can see the common convention for indicating unit vectors (
 𝐯 ^
) in the same direction as their parent vector
 𝐯
. Figure 2-4 illustrates these cases.

[image: Vector buddies]
Figure 2-4. A unit vector (gray arrow) can be crafted from a non-unit vector (black arrow); both vectors have the same angle but different magnitudes.

Actually, the claim that "any non-unit vector has an associated unit vector” is not entirely true. There is a vector that has non-unit length and yet has no associated unit vector. Can you guess which vector it is3?

I’m not showing Python code to create unit vectors here, because that’s one of the exercises at the end of this chapter.

The vector dot product

The dot product (also sometimes called the “inner product”) is one of the most important operations in all of linear algebra. It is the basic computational building-block from which many operations and algorithms are built, including convolution, correlation, the Fourier transform, matrix multiplication, signal filtering, and so on.

There are several ways to indicate the dot product between two vectors. I will mostly use the common notation

 𝐚 T
 𝐛

 for reasons that will become clear after learning about matrix multiplication. In other contexts you might see

 𝐚
 ·
 𝐛

 or

 〈
 𝐚
 ,
 𝐛
 〉

.

The dot product is a single number that provides information about the relationship between two vectors. Let’s first focus on the algorithm to compute the dot product, and then I’ll discuss how to interpret it.

To compute the dot product, you multiply the corresponding elements of the two vectors, and then sum over all the individual products. In other words: element-wise multiplication and sum. In the formula below, a and b are vectors, and ai indicates the ith element of a.

Equation 2-8. Dot product formula

 δ
 =
 ∑ i=1 n
 a i
 b i

You can tell from the formula that the dot product is valid only between two vectors of the same dimensionality. Here’s a numerical example:

Equation 2-9. Example dot product calculation

 1

 2

 3

 4

 ·

 5

 6

 7

 8

 =
 1
 ×
 5
 +
 2
 ×
 6
 +
 3
 ×
 7
 +
 4
 ×
 8

 =
 5
 +
 12
 +
 21
 +
 32

 =
 70

Irritations of indexing

Standard mathematical notation, and some math-oriented numerical processing programs like MATLAB and Julia, start indexing at 1 and stop at N; whereas some programming languages like Python and Java start indexing at 0 and stop at N-1. We need not debate the merits and limitations of each convention — though I do sometimes wonder how many bugs this inconsistency has introduced into human civilization — but it is important to be mindful of this difference when translating formulas into Python code.

There are multiple ways to implement the dot product in Python; the most straightforward way is to the use the np.dot() function.

v = np.array([1,2,3,4])
w = np.array([5,6,7,8])
np.dot(v,w)

Note about np.dot()

The function np.dot() does not actually implement the vector dot product; it implements matrix multiplication, which is a collection of dot products. This will make more sense after learning about the rules and mechanisms of matrix multiplication (Chapter 5). If you want to explore this now, you can modify the code above to endow both vectors with orientations (row vs. column). You will discover that the output is the dot product only when the first input is a row vector and the second input is a column vector.

Here is an interesting property of the dot product: Scalar-multiplying one vector scales the dot product by the same amount. We can explore this by expanding the code above:

s = 10
np.dot(s*v,w)

The dot product of v and w is 70, and the dot product using s*v (which, in math notation, would be written as

 σ
 𝐯 T
 𝐰

) is 700. Now try it with a negative scalar, e.g., s=-1. You’ll see that the dot product magnitude is preserved but the sign is reversed. Of course, when s=0 then the dot product is zero.

Now you know how to compute the dot product. What does the dot product mean and how do we interpret it?

The dot product can be interpreted as a measure of similarity or mapping between two vectors. Imagine that you collected height and weight data from 20 people, and you stored those data in two vectors. You would certainly expect those variables to be related to each other (taller people tend to weigh more), and therefore you could expect the dot product between those two vectors to be large. On the other hand, the magnitude of the dot product depends on the scale of the data, which means the dot product between data measured in grams and centimeters would be larger than the dot product between data measured in pounds and feet. This arbitrary scaling, however, can be eliminated with a normalization factor. In fact, the normalized dot product between two variables is called the Pearson correlation coefficient, and is one of the most important analyses in statistics and data science. More on this in Chapter 4!

The dot product is distributive

The distributive property of mathematics is that

 a
 (
 b
 +
 c
)
 =
 a
 b
 +
 a
 c

. Translated into vector and the vector dot product, it means that:

 𝐚 T

 (
 𝐚
 +
 𝐜
)

 =
 𝐚 T
 𝐛
 +
 𝐚 T
 𝐜

In words, you would say that the dot product of a vector sum equals the sum of the vector dot products.

The Python code below illustrates the distributivity property.

a = np.array([0,1,2])
b = np.array([3,5,8])
c = np.array([13,21,34])

two ways to compute the dot product
res1 = np.dot(a, b+c)
res2 = np.dot(a,b) + np.dot(a,c)

The two outcomes res1 and res2 are the same (with these vectors, the answer is 110). Notice how the mathematical formula is translated into Python code; translating formulas into code is an important skill in math-oriented coding.

Geometry of the dot product

There is also a geometric definition of the dot product, which is the product of the magnitudes of the two vectors, scaled by the cosine of the angle between them.

Equation 2-10. Geometric definition of the vector dot product.

 α
 =
 cos
 (
 θ 𝐯,𝐰
)
 ∥
 𝐯
 ∥
 ∥
 𝐰
 ∥

Equations Equation 2-10 and Equation 2-8 are mathematically equivalent but expressed in a different form. The proof of their equivalence is an interesting exercise in mathematical analysis, but would take about a page of text and relies on first proving other principles including the Law of Cosines. That proof is not relevant for this book and so is omitted.

Notice that vector magnitudes are strictly positive quantities (except for the zeros vector, which has

 ∥
 0
 ∥
 =
 0

), while the cosine of an angle can range between -1 and +1. This means that the sign of the dot product is determined entirely by the geometric relationship between the two vectors. Figure 2-5 shows five cases of the dot product sign, depending on the angle between the two vectors (in 2D for visualization, but the principle holds for higher dimensions).

[image: What does this do?]
Figure 2-5. The sign of the dot product between two vectors reveals the geometric relationship between those vectors.

Memorize this: Orthogonal vectors have a zero dot product.

Some math teachers insist that you shouldn’t memorize formulas and terms, and instead should understand procedures and proofs. But let’s be honest: memorization is an important and inescapable part of learning mathematics. Fortunately, linear algebra isn’t excessively memorization-heavy, but there are a few things you’ll simply need to commit to memory.

Here is one: Orthogonal vectors have a dot product of zero (that claim goes both ways — when the dot product is zero, then the two vectors are orthogonal). So, the following statements are equivalent: two vectors are orthogonal, two vectors have a dot product of zero, two vectors meet at a
 90 ∘
 angle. Repeat that equivalence until it’s permanently etched into your brain.

Other vector multiplications

The dot product is perhaps the most important, and most frequently used, way to multiply vectors. But there several other ways to multiply vectors.

Hadamard multiplication

This is just a fancy term for element-wise multiplication. To implement Hadamard multiplication, each corresponding element in the two vectors is multiplied. The product is a vector of the same dimensionality as the two multiplicands. For example:

 5

 4

 8

 2

 ⊙

 -

 1

 -

 0

 .
 5

 -
 1

 =

 -

 5

 -

 0

 -

 4

 -
 2

In Python, the asterisk indicates element-wise multiplication for two vectors or matrices.

a = np.array([5,4,8,2])
b = np.array([1,0,.5])
a*b

Try running that code in Python and… uh oh! Python will give an error. Find and fix the bug. What have you learned about Hadamard multiplication from that error? Check the footnote for the answer4.

Hadamard multiplication is a convenient way to organize multiple scalar multiplications. For example, imagine you have data on the number of widgets sold in different shops, and the price per widget at each shop. You could represent each variable as a vector, and then Hadamard-multiply those vectors to compute the widget revenue per shop (this is different from the total revenue across all shops, which would be computed as the dot product).

Outer product

The outer product is a way to create a matrix from a column vector and a row vector. Each row in the outer product matrix is the row vector scalar-multiplied by the corresponding element in the column vector. We could also say that each column in the product matrix is the column vector scalar-multiplied by the corresponding element in the row vector. In Chapter 6 I’ll call this a “rank-1 matrix,” but don’t worry about the term for now; instead, focus on the pattern illustrated in the example below.

 a

 b

 c

 d

 e

 =

 a
 d

 a
 e

 b
 d

 b
 e

 c
 d

 c
 e

Using letters in linear algebra

In middle school algebra, you learned that using letters as abstract placeholders for numbers allows you to understand math at a deeper level than arithmetic. Same concept in linear algebra: Teachers sometimes use letters inside matrices in place of numbers when that facilitates comprehension. You can think of the letters as variables.

The outer product is quite different from the dot product: It produces a matrix instead of a scalar, and the two vectors in an outer product can have different dimensionalities whereas the two vectors in a dot product must have the same dimensionality.

The outer product is indicated as

 𝐯
 𝐰 T

 (remember that we assume vectors are in column orientation, therefore the outer product involves multiplying a column by a row). Note the subtle but important difference between notation for the dot product (

 𝐯 T
 𝐰

) and the outer product (

 𝐯
 𝐰 T

). This might seem strange and confusing now, but I promise it will make perfect sense after learning about matrix multiplication in Chapter 5.

The outer product is similar to broadcasting, but they are not the same: Broadcasting is a general coding operation that is used for addition and multiplication; the outer product is a specific mathematical procedure for multiplying two vectors.

Numpy can compute the outer product via the function np.outer() or the function np.dot() if the two input vectors are in, respectively, column and row orientation.

Cross- and triple-products
There are a few other ways to multiply vectors such as the cross-product or triple product. Those methods are used in geometry and physics, but don’t come up often enough in tech-related applications to spend any time on in this book. I mention them here only so you have passing familiarity with the names.

Orthogonal vector decomposition

To “decompose” a vector or matrix means to break up that matrix into multiple simpler pieces. Decompositions are used to reveal information that is “hidden” in a matrix, to make the matrix easier to work with, or for data compression. It is no understatement to write that much of linear algebra (in the abstract and in practice) involves matrix decompositions. Matrix decompositions are a big deal.

Let me introduce the concept of a decomposition using two simple examples with scalars:

	
We can decompose the number 42.01 into two pieces: 42 and .01. Perhaps .01 is noise to be ignored, or perhaps the goal is to compress the data (the integer 42 requires less memory than the floating-point 42.01). Regardless of the motivation, the decomposition involves representing one mathematical object as the sum of simpler objects (42=42+.01).

	
We can decompose the number 42 into the product of prime numbers 2, 3, and 7. This decomposition is called prime factorization, and has many applications in numerical processing and cryptography. This example involves products instead of sums, but the point is the same: Decompose one mathematical object into smaller, simpler, pieces.

In this section, we will begin exploring a simple yet important decomposition, which is to break up a vector into two separate vectors, one of which is orthogonal to a reference vector while the other is parallel to that reference vector. Orthogonal vector decomposition directly leads to the Gram-Schmidt procedure and QR decomposition, which is used frequently when solving inverse problems in statistics.

Let’s begin with a picture so you can visualize the goal of the decomposition. Figure 2-6 illustrates the situation: We have two vectors
 𝐚
 and
 𝐛
 in standard position, and our goal is find the point on
 𝐚
 that is as close as possible to the head of
 𝐛
. We could also express this as an optimization problem: Project vector
 𝐛
 onto vector
 𝐚
 such that the projection distance is minimized. Note that that point on
 𝐚
 will be a scaled version of
 𝐚
, in other words,

 β
 𝐚

. So now our goal is to find the scalar
 β
. (The connection to orthogonal vector decomposition will soon be clear.)

[image: The picture.]
Figure 2-6. To project a point at the head of
 𝐛
 onto a vector
 𝐚
 with minimum distance, we need a formula to compute
 β
 such that the length of the projection vector

 (
 𝐛
 -
 β
 𝐚
)

 is minimized.

Note that the line from
 𝐛
 to

 β
 𝐚

 is defined using vector subtraction. We could give this line its own letter, e.g., vector
 𝐜
, but the subtraction is necessary for discovering the solution.

The key insight that leads to the solution to this problem is that the point on
 𝐚
 that is closest to the head of
 𝐛
 is found by drawing a line from
 𝐛
 that meets
 𝐚
 at a right angle. The intuition here is to imagine a triangle formed by the origin, the head of
 𝐛
, and

 β
 𝐚

; the length of the line from
 𝐛
 to

 β
 𝐚

 gets longer as the angle

 ∡
 β
 𝐚

 gets smaller than
 90 ∘
 or larger than
 90 ∘
.

Putting this together, we have deduced that

 (
 𝐛
 -
 β
 𝐚
)

 is orthogonal to

 β
 𝐚

, which is the same thing as saying that those vectors are perpendicular. And that means that the dot product between them must be zero. Let’s transform those words into an equation.

 𝐚 T

 (
 𝐛
 -
 β
 𝐚
)

 =
 0

From here, we can apply some algebra to solve for
 β
 (note the application of the distributive property of dot products):

Equation 2-11. Solving the orthogonal projection problem.

 𝐚 T
 𝐛
 -
 β
 𝐚 T
 𝐚

 =
 0

 β
 𝐚 T
 𝐚

 =
 𝐚 T
 𝐛

 β

 =
 𝐚 T 𝐛 𝐚 T 𝐚

This is quite beautiful: We began with a simple geometric picture, explored the implications of the geometry, expressed those implications as a formula, and then applied a bit of algebra. And the upshot is that we discovered a formula for projecting a point onto a line with minimum distance. This is called orthogonal projection, and is the basis for many applications in statistics and machine-learning, including the famous least-squares formula for solving linear models (you’ll see orthogonal projections in Chapters 9, 10, and 11).

I can imagine that you’re super-curious to see what the Python code would look like to implement this formula. But you’re going to have to write that code yourself in Exercise 7 at the end of this chapter. If you can’t wait until the end of the chapter, feel free to solve that exercise now, and then continue learning about the orthogonal decomposition.

You might be wondering how this is related to orthogonal vector decomposition, i.e., the title of this section. The minimum distance projection is the necessary grounding, and you’re now ready to learn the decomposition.

As usual, we start with the setup and the goal. We begin with two vectors, which I’ll call the “target vector” and the “reference vector.” Our goal is to decompose the target vector into two other vectors such that (1) those two vectors sum to the target vector, and (2) one vector is orthogonal to the reference vector while the other is parallel to the reference vector. The situation is illustrated in Figure 2-7.

Before starting with the math, let’s get our terms straight: I will call the target vector
 𝐭
 and the reference vector
 𝐫
. Then, the two vectors formed from the target vector will be called the perpendicular component, indicated as
 𝐭 ⊥𝐫
; and the parallel component, indicated as
 𝐭 ∥𝐫
.

[image: What does this do?]
Figure 2-7. Illustration of orthogonal vector decomposition: Decompose vector
 𝐭
 into the sum of two other vectors that are orthogonal and parallel to vector
 𝐫
.

We begin by defining the parallel component. What is a vector that is parallel to
 𝐫
? Well, any scaled version of
 𝐫
 is obviously parallel to
 𝐫
. So, we find
 𝐭 ∥𝐫
 simply by applying the orthogonal projection formula that we just discovered:

Equation 2-12. Computing the parallel component of t with respect to r.

 𝐭 ∥𝐫
 =
 𝐫

 𝐭 T 𝐫 𝐫 T 𝐫

Note the subtle difference to equation Equation 2-11: There we only computed the scalar
 β
; here we want to compute the scaled vector

 β
 𝐫

.

That’s the parallel component. How do we find the perpendicular component? That one is easier, because we already know that the two vector components must sum to the original target vector. Thus:

 𝐭

 =
 𝐭 ⊥𝐫
 +
 𝐭 ∥𝐫

 𝐭 ⊥𝐫

 =
 𝐭
 -
 𝐭 ∥𝐫

In other words, we subtract off the parallel component from the original vector, and the residual is our perpendicular component.

But is that perpendicular component really orthogonal to the reference vector? Yes it is! To prove it, you show that the dot product between the perpendicular component and the reference vector is zero:

 (𝐭 ⊥𝐫) T
 𝐫

 =
 0

 (𝐭-𝐫𝐭 T 𝐫 𝐫 T 𝐫) T
 𝐫

 =
 0

Working through the algebra of this proof is straightforward but tedious, so I’ve omitted it. Instead, you’ll work on building intuition using Python code in the exercises.

I hope you enjoyed learning about orthogonal vector decomposition. Note again the general principle: We break apart one mathematical object into a combination of other objects. The details of the decomposition depend on our constraints (in this case, orthogonal and parallel to a reference vector), which means that different constraints (that is, different goals of the analysis) can lead to different decompositions of the same vector.

Summary

The beauty of linear algebra is that even the most sophisticated and computationally intense operations on matrices are made up of simple operations, most of which can be understood with geometric intuition. Don’t underestimate the importance of studying simple operations on vectors, because what you learned in this chapter will form the basis for the rest of the book — and the rest of your career as an applied linear algebratician (which is what you really are if you do anything with data science, machine learning, AI, deep learning, image processing, computational vision, statistics, data analysis, blah blah blah).

Here are the most important take-home messages of this chapter:

	
A vector is an ordered list of numbers that are placed in a column or in a row. The number of elements in a vector is called its dimensionality, and a vector can be represented as a line in a geometric space with the number of axes equal to the dimensionality.

	
Several arithmetic operations (addition, subtraction, and Hadamard multiplication) on vectors work element-wise.

	
The dot product is a single number that encodes the relationship between two vectors of the same dimensionality, and is computed as element-wise multiplication and sum.

	
The dot product is zero for vectors that are orthogonal, which geometrically means that the vectors meet at a right angle.

	
Orthogonal vector decomposition involves breaking up a vector into the sum of two other vectors that are orthogonal and parallel to a reference vector. The formula for this decomposition can be re-derived from the geometry, but you should remember the phrase “mapping over magnitude” as the concept that that formula expresses.

Code exercises

I hope you don’t see these exercises as tedious work that you need to do. Instead, these exercises are opportunities to polish your math and coding skills, and to make sure that you really understand the material in this chapter.

I also want you to see these exercises as a springboard to continue exploring linear algebra using Python. Change the code to use different numbers, different dimensionalities, different orientations, etc. Write your own code to test other concepts mentioned in the chapter. Most importantly: Have fun and embrace the learning experience.

As a reminder: the solutions to all the exercises can be viewed or downloaded from github.com/mikexcohen/LA4DataScience

0) The online code repository is “missing” code to create Figure 2-2. (It’s not really missing — I moved it into the solution to this exercise.) So, your goal here is to write your own code to produce Figure 2-2.

1) Write an algorithm that computes the norm of a vector by translating Equation 2-6 into code. Confirm, using random vectors with different dimensionalities and orientations, that you get the same result as np.linalg.norm(). This exercise is designed to give you more experience with indexing numpy arrays and translating formulas into code; in practice, it’s often easier to use np.linalg.norm().

2) Create a Python function that will take a vector as input, and output a unit vector in the same direction. What happens when you input the zeros vector?

3) You know how to create unit vectors; what if you want to create a vector of any arbitrary magnitude? Write a python function that will take a vector and a desired magnitude as inputs, and will return a vector in the same direction but with a magnitude corresponding to the second input.

4) Write a for-loop to transpose a row vector into a column vector without using a built-in function or method such as np.transpose() or v.T. This exercise will help you create and index orientation-endowed vectors.

5) Here is an interesting fact: You can compute the squared norm of a vector as the dot product of that vector with itself. Look back to Equation 2-7 to convince yourself of this equivalence. Then confirm it using Python.

6) Write code to demonstrate that the dot product is commutative. Commutative means that

 a
 ×
 b
 =
 b
 ×
 a

, which, for the vector dot product, means that

 𝐚 T
 𝐛
 =
 𝐛 T
 𝐚

. After demonstrating this in code, use equation Equation 2-8 to understand why the dot product is commutative.

7) Write code to produce Figure 2-6. (Note that your solution doesn’t need to look exactly like the figure, as long as the key elements are present.)

8) Implement orthogonal vector decomposition. Start with two random-number vectors
 𝐭
 and
 𝐫
, and reproduce Figure 2-8 (note that your plot will look somewhat different due to random numbers. Next, confirm that the two components sum to
 𝐭
 and that
 𝐭 ⊥𝐫
 and
 𝐭 ∥𝐫
 are orthogonal.

[image: solution to exercise 8]
Figure 2-8. Exercise 8.

9) An important skill in coding is finding bugs. Let’s say there is a bug in your code such that the denominator in the projection scalar of Equation 2-12 is

 𝐭 T
 𝐭

 instead of

 𝐫 T
 𝐫

 (an easy mistake to make, speaking from personal experience while writing this chapter!). Implement this bug to check whether it really deviates from the accurate code. What can you do to check whether the result is correct or incorrect? (In coding, confirming code with known results is called “sanity-checking.”)

1 a*s throws an error, because list repetition can only be done using integers; it’s not possible to repeat a list 2.72 times!
2 Python still broadcasts, but the result is a 3x2 matrix instead of a 2x3 matrix.
3 The zeros vector has a length of 0 but no associated unit vector, because it has no direction and because it is impossible to scale the zeros vector to have non-zero length.
4 The error is that the two vectors have different dimensionalities, which shows that Hadamard multiplication is defined only for two vectors of equal dimensionality. You can fix the problem by removing one number from a or adding one number to b.

Chapter 3. Vectors, part 2

The previous chapter laid the groundwork for understanding vectors and basic operations acting on vectors. Now you will expand the horizons of your linear algebra knowledge by learning about a set of inter-related concepts including linear independence, subspaces, and bases. Each of these topics is crucially important for understanding operations on matrices.

Some of the topics here may seem abstract and disconnected from applications, but there is a very short path between, e.g., vector subspaces and fitting statistical models to data. The applications in data science come later, so please keep focusing on the fundamentals so that the advanced topics are easier to understand.

Vector sets

We can start the chapter with something easy: A collection of vectors is called a set. You can imagine putting a bunch of vectors into a bag to carry around. Vector sets are indicated using capital italics letters, like S or V. Mathematically, we can describe sets as the following:

 V
 =
 {
 𝐯 1
 ,
 .
 .
 .
 ,
 𝐯 𝐧
 }

Vector sets can contain a finite or an infinite number of vectors. Imagine, for example, a dataset of the number of covid-19 positive cases, hospitalizations, and deaths, from 100 countries; you could store the data from each country in a 3-element vector, and create a vector set containing 100 vectors.

Vector sets with an infinite number of vectors may sound like a uselessly abstract thing, but vector subspaces are infinite vector sets and have major implications for fitting statistical models to data.

Vector sets can also be empty, which is indicated as V={}. You’ll encounter empty vector sets when you learn about matrix spaces.

Linear weighted combination

A “linear weighted combination” is a way of mixing information from multiple variables, with some variables contributing more than others. This fundamental operation is also sometimes called “linear mixture” or “weighted combination” (the “linear” part is assumed). Sometimes, the term “coefficient” is used instead of “weight.”

Linear weighted combination simply means scalar-vector multiplication and addition: Take some set of vectors, multiply each vector by a scalar, and add them to produce a single vector.

Equation 3-1. Linear weighted combination.

 𝐰
 =
 λ 1
 𝐯 1
 +
 λ 2
 𝐯 2
 +
 .
 .
 .
 +
 λ n
 𝐯 n

It is assumed that all vectors
 𝐯 i
 have the same dimensionality, otherwise the addition is invalid. The
 λ
’s can be any real number, including zero.

Technically, you could rewrite Equation 3-1 for subtracting vectors, but because subtraction can be handled by setting a
 λ i
 to be negative, it’s easier to discuss linear weighted combinations in terms of summation.

Here’s an example to help make it more concrete:

Equation 3-2. Linear weighted combination.

 λ 1
 =
 1
 ,

 λ 2
 =
 2
 ,

 λ 3
 =
 -
 3
 ,

 𝐯 1
 =

 4

 5

 1

 ,

 𝐯 2
 =

 -
 4

 -

 0

 -
 4

 ,

 𝐯 3
 =

 1

 3

 2

 𝐰

 =

 λ 1
 𝐯 1
 +
 λ 2
 𝐯 2
 +
 λ 3
 𝐯 3

 =

 -
 7

 -
 4

 -
 13

Linear weighted combinations are easy to implement, as the code below demonstrates. In Python, the data type is important; test what happens when the vectors are lists instead of numpy arrays1.

l1 = 1
l2 = 2
l3 = -3
v1 = np.array([4,5,1])
v2 = np.array([-4,0,-4])
v3 = np.array([1,3,2])
l1*v1 + l2*v2 + l3*v3

Storing each vector and each coefficient as separate variables is tedious and does not scale up to larger problems. Therefore, in practice, linear weighted combinations are implemented via the compact and scalable matrix-vector multiplication method, which you’ll learn about in Chapter 5; for now, the focus is on the concept and coding implementation.

Linear weighted combinations have several applications. Three of those include:

	
The predicted data from a statistical model are created by taking the linear weighted combination of regressors (predictor variables) and coefficients (scalars) that are computed via the least-squares algorithm, which you’ll learn about in Chapters 10 and 11.

	
In dimension-reduction procedures such as principal components analysis, each component (sometimes called factor or mode) is derived as a linear weighted combination of the data channels, with the weights (the coefficients) selected to maximize the variance of the component (along with some other contraints that you’ll learn about in Chapter 12).

	
Artificial neural networks (the architecture and algorithm that underlies deep learning) involve two operations: Linear weighted combination of the input data, followed by a nonlinear transformation. The weights are learned by minimizing a cost function, which is typically the difference between the model prediction and the real-world target variable.

The concept of a linear weighted combination is the mechanism of creating vector subspaces and matrix spaces, and is central to linear independence. Indeed, linear weighted combination and the dot product are two of the most important elementary building blocks from which many advanced linear algebra computations are built.

Linear independence

A set of vectors is linearly dependent if at least one vector in the set can be expressed as a linear weighted combination of other vectors in that set. And thus, a set of vectors is linearly independent if no vector can be expressed as a linear weighted combination of other vectors in the set.

Below are two vector sets. Before reading the text below, try to determine whether each set is dependent or independent. (The term linear independence is sometimes shortened to independence when the linear part is implied.)

 V
 =

 1

 3

 ,

 2

 7

 S
 =

 1

 3

 ,

 2

 6

Vector set V is linearly indepedent: It is impossible to express one vector in the set as a linear multiple of the other vector in the set. That is to say, if we call the vectors in the set
 𝐯 1
 and
 𝐯 2
, then there is no possible scalar
 λ
 for which

 𝐯 1
 =
 λ
 𝐯 2

.

How about set S? This one is dependent, because we can use linear weighted combinations of some vectors in the set to obtain other vectors in the set. There is an infinite number of such combinations, two of which are

 𝐬 1
 =
 .
 5
 𝐬 2

 and

 𝐬 2
 =
 2
 𝐬 1

.

Let’s try another example. Again, the question is whether set T is linearly independent or linearly dependent.

 T
 =

 -

 8

 -
 4

 14

 -

 6

 ,

 4

 6

 0

 3

 ,

 14

 2

 4

 7

 ,

 13

 2

 9

 8

Wow, this one is a lot harder to figure out than the previous two examples. It turns out that this is a linearly dependent set (for example, the sum of the first three vectors equals twice the fourth vector). But I wouldn’t expect you to be able to figure that out just from visual inspection.

So how do you determine linear independence in practice? The way to determine linear independence is to create a matrix from the vector set, compute the rank of the matrix, and compare the rank to the smaller of the number of rows or columns. That sentence may not make sense to you now, because you haven’t yet learned about matrix rank. Therefore, focus your attention now on the concept that a set of vectors is linearly dependent if at least one vector in the set can be expressed as a linear weighted combination of the other vectors in the set; and a set of vectors is linearly independent if no vector can be expressed as a combination of other vectors.

Independent sets

Independence is a property of a set of vectors. That is, a set of vectors can be linearly independent or linearly dependent; independence is not a property of an individual vector within a set.

The math of linear independence

Now you understand the concept; I want to make sure you also understand the formal mathematical definition of linear dependence.

Equation 3-3. Linear dependence2.

 0
 =
 λ 1
 𝐯 1
 +
 λ 2
 𝐯 2
 +
 .
 .
 .
 +
 λ n
 𝐯 n
 ,

 λ
 ∈
 ℝ

This equation says that linear dependence means that we can define some linear weighted combination of the vectors in the set to produce the zeros vector. If you can find some
 λ
’s that make the equation true, then the set of vectors is linearly dependent. Conversely, if there is no possible way to linearly combine the vectors to produce the zeros vector, then the set is linearly independent.

That might initially be unintuitive. Why do we care about the zeros vector when the question is whether we can express at least one vector in the set as a weighted combination of other vectors in the set? Perhaps you’d prefer rewriting the definition of linear dependence as the following:

 λ 1
 𝐯 1
 =
 λ 2
 𝐯 2
 +
 .
 .
 .
 +
 λ n
 𝐯 n
 ,

 λ
 ∈
 ℝ

Why not start with that equation instead of putting the zeros vector on the left-hand-side? Setting the equation to zero helps reinforce the principle that the entire set is dependent or independent; no individual vector has the privileged position of being the “dependent vector” (see box Independent sets). In other words, when it comes to independence, vector sets are purely egalitarian.

But wait a minute. Careful inspection of Equation 3-3 reveals a trivial solution: set all
 λ
’s to zero, and the equation reads

 0
 =
 0

, regardless of the vectors in the set. But, as I wrote in Chapter 2, trivial solutions involving 0’s are often ignored in linear algebra. So we add the constraint that at least one

 λ
 ≠
 0

.

This constraint can be incorporated into the equation by dividing through by one of the scalars; keep in mind that
 𝐯 1
 and
 λ 1
 can refer to any vector in the set.

 0
 =
 𝐯 1
 +
 .
 .
 .
 +
 λ n λ 1
 𝐯 n
 ,

 λ
 ∈

 ℝ
 ,

 λ 1
 ≠
 0

Independence and the zeros vector

Simply put: Any vector set that includes the zeros vector is automatically a linearly dependent set. Here’s why: Any scalar multiple of the zeros vector is still the zeros vector, so the definition of linear dependence is always satisfied. You can see this in the equation below:

 λ 0
 0
 =
 0
 𝐯 1
 +
 0
 𝐯 2
 +
 0
 𝐯 n

As long as

 λ 0
 ≠
 0

, we have a nontrivial solution, and the set fits with the definition of linear dependence.

What about nonlinear independence?

“But Mike,” I imagine you protesting, “isn’t life, the universe, and everything nonlinear?” I suppose it would be an interesting exercise to count the total number of linear vs. nonlinear interactions in the universe and see which sum is larger. But linear algebra is all about, well, linear operations. If you can express one vector as a nonlinear (but not linear) combination of other vectors, then those vectors still form a linearly independent set. The reason for the linearity constraint is that we want to express transformations as matrix multiplication, which is a linear operation. That’s not to throw shade on nonlinear operations — in my imaginary conversation you have eloquently articulated that a purely linear universe would be rather dull and predictable. But we don’t need to explain the entire universe using linear algebra; we need linear algebra only for the linear parts.

Subspace and span

When I introduced linear weighted combinations, I gave examples with specific numerical values for the weights (e.g.,

 λ 1
 =
 1
 ,
 λ 3
 =
 -
 3

). A subspace is the same idea but using the infinity of possible ways to linearly combine the vectors in the set.

That is, for some (finite) set of vectors, the infinite number of ways to linearly combine them — using the same vectors but different numerical values for the weights — creates a vector subspace. And the mechanism of combining all possible linear weighted combinations is called the span of the vector set.

Let’s work through a few examples. We’ll start with a simple example of a vector set containing one vector.

 V
 =

 1

 3

The span of this vector set is the infinity of vectors that can be created as linear combinations of the vectors in the set. For a set with one vector, that simply means all possible scaled versions of that vector. Figure 3-1 shows the vector and the subspace it spans. Consider that any vector in the gray dashed line can be formed as some scaled version of the vector.

[image: span>spam]
Figure 3-1. A vector (black) and the subspace it spans (gray).

Our next example is a set of two vectors in
 ℝ 3
.

 V
 =

 1

 0

 2

 ,

 -
 1

 1

 2

The vectors are in
 ℝ 3
 so they are graphically represented in a 3D axis. But the subspace that they span is a 2D plane in that 3D space (Figure 3-2). That plane passes through the origin, because scaling both vectors by zero gives the zeros vector.

[image: span>spam]
Figure 3-2. Two vectors (black) and the subspace they span (gray).

The first example had one vector and its span was a 1D subspace, and the second example had two vectors and their span was a 2D subspace. There seems to be a pattern emerging — but looks can be deceiving. Consider the next example.

 V
 =

 1

 1

 1

 ,

 2

 2

 2

Two vectors in
 ℝ 3
, but the subspace that they span is still only a 1D subspace — a line (Figure 3-3). Why is that? It’s because one vector in the set is already in the span of the other vector. Thus, in terms of span, one of the two vectors is redundant.

[image: span>spam]
Figure 3-3. The 1D subspace (gray) spanned by two vectors (black).

So then, what is the relationship between the dimensionality of the spanned subspace and the number of vectors in the set? You might have guessed that it has something to do with linear independence.

The dimensionality of the subspace spanned by a set of vectors is the smallest number of vectors that forms a linearly independent set. If a vector set is linearly independent, then the dimensionality of the subspace spanned by the vectors in that set equals the number of vectors in that set. If the set is dependent, then the dimensionality of the subspace spanned by those vectors is necessarily less than the number of vectors in that set. Exactly how much smaller is another matter — to know the relationship between the number of vectors in a set and the dimensionality of their spanning subspace you need to understand matrix rank, which you’ll learn about in Chapter 6.

The formal definition of a vector subspace is a subset that is closed under addition and scalar multiplication, and includes the origin of the space. That means that any linear weighted combination of vectors in the subspace must also be in the same subspace, including setting all weights to zero to produce the zeros vector at the origin of the space. I don’t want you to get hung up on what it means to be “closed under addition and scalar multiplication;” just remember that a subspace is a space that is created from all possible linear combinations of a set of vectors.

What’s the difference between subspace and span?

Many students are confused about the difference between span and subspace. That’s understandable, because they are highly related concepts and often refer to the same thing. I will explain the difference between them below, but don’t stress about the subtleties — span and subspace so often refer to identical mathematical objects that using the terms interchangeably is usually correct.

I find that thinking of span as a verb and subspace as a noun helps understand their distinction: A set of vectors spans, and the result of their spanning is a subspace.

Now consider that a subspace can be a smaller portion of a larger space, as you saw in Figure 3-3.

Putting these together: span is the mechanism of creating a subspace. (On the other hand, when you use span as a noun, then span and subspace refer to the same infinite vector set.)

Basis

How far apart are Amsterdam and Tenerife? Approximately 2000. What does “2000” mean? That number makes sense only if we attach a basis unit. A basis is like a ruler for measuring a space.

In this example, the unit is mile. So our basis-measurement for Dutch-Spanish distance is 1 mile. We could, of course, use different measurement units, like nanometers or light-years, but I think we can agree that mile is a convenient basis for distance at that scale. What about the length that your fingernail grows in one day — should we still use miles? Technically we can, but I think we can agree that millimeter is a more convenient basis unit. To be clear: The amount that your fingernail has grown in the past 24 hours is the same, regardless of whether you measure it in nanometers, millimeters, or light-years. But different units are more or less convenient for different problems.

Back to linear algebra: A basis is a set of rulers that you use to describe the information in the matrix (e.g., data). Like with the examples above, you can describe the same data using different rulers, but some rulers are more convenient than others for solving certain problems.

The most common basis set is the Cartesian axis: the familiar XY plane that you’ve used since elementary school. We can write out the basis sets for the 2D and 3D Cartesian graphs as follows:

 S 2
 =

 1

 0

 ,

 0

 1

 S 3
 =

 1

 0

 0

 ,

 0

 1

 0

 ,

 0

 0

 1

Notice that the Cartesian basis sets comprise vectors that are mutually orthgonal and unit length. Those are great properties to have, and that’s why the Cartesian basis sets are so ubiquitous (indeed, they are called the standard basis set).

But those are not the only basis sets. The set below is a different basis set for
 ℝ 2
.

 T
 =

 3

 1

 ,

 -
 3

 -

 1

Basis set
 S 2
 and T both span the same subspace (all of
 ℝ 2
). Why would you prefer T over S? Imagine we want to describe data points p and q in Figure 3-4. We can describe those data points as their distance from the origin — that is, their coordinates — using basis S or basis T.

[image: Points and bases]
Figure 3-4. The same points (p and q) can be described by basis set S (black solid lines) or T (black dashed lines).

In basis S those two coordinates are p=(3,1) and q=(-6,2). In linear algebra, we say that the points are expressed as the linear combinations of the basis vectors. In this case, that combination is

 3
 𝐬 1
 +
 1
 𝐬 2

 for point p, and

 -
 6
 𝐬 1
 +
 2
 𝐬 2

 for point q.

Now let’s describe those points in basis T. As coordinates, we have p=(1,0) and q=(0,2). And in terms of the vectors, we have

 1
 𝐭 1
 +
 0
 𝐭 2

 for point p and

 0
 𝐭 1
 +
 2
 𝐭 2

 for point q (in other words, p=
 𝐭 1
 and q=

 2
 𝐭 2

). Again, the data points p and q are the same regardless of the basis set, but T provided a compact and orthogonal description.

Bases are extremely important in data science and machine learning. In fact, many problems in applied linear algebra can be conceptualized as finding the best set of basis vectors to describe some subspace. Consider the following terms: dimension-reduction, feature-extraction, principal components analysis, independent components analysis, factor analysis, singular value decomposition, linear discriminant analysis, image approximation, data compression. Believe it or not, all of those analyses are essentially ways of identifying optimal basis vectors for a specific problem.

Consider Figure 3-5: This is a dataset of two variables (each dot represents a data point). The figure actually shows three distinct bases: The “standard basis set” corresponding to the X=0 and Y=0 lines, and basis sets defined via a principal components analysis (left plot) and via an independent components analysis (right plot). Which of these basis sets provides “the best” way of describing the data? You might be tempted to say that the basis vectors computed from the independent components analysis are the best. The truth is more complicated (as it tends to be): No basis set is intrinsically better or worse; different basis sets can be more or less helpful for specific problems based on the goals of the analysis, the features of the data, constraints imposed by the analyses, and so on.

[image: Points and bases]
Figure 3-5. A 2D dataset using different basis vectors (black lines).

Definition of basis

Once you understand the concept of a basis and basis set, the formal definition is straightforward. In fact, basis is simply the combination of span and independence: A set of vectors forms a basis for some subspace if it (1) spans that subspace and (2) is an independent set of vectors.

The basis needs to span a subspace for it to be used as a basis for that subspace, because you cannot describe something that you cannot measure. Figure 3-6 shows an example of a point outside of a 1D subspace. A basis vector for that subspace cannot measure the point r. The black vector is still a valid basis vector for the subspace it spans, but it does not form a basis for any subspace beyond what it spans.

[image: You can only measure what you can measure.]
Figure 3-6. A basis set can measure only what is contained inside its span.

So a basis needs to span the space that it is used for. But why does a basis set require linear independence? The reason is that any given vector in the subspace must have a unique coordinate using that basis. Let’s imagine describing point p from Figure 3-4 using the following vector set.

 U
 =

 0

 1

 ,

 0

 2

 ,

 1

 0

U is a perfectly valid vector set, but it is definitely not a basis set. Why not3?

What linear weighted combination describes point p in set U? Well, the coefficients for the linear weighted combination of the three vectors in U could be (3,0,1) or (0,1.5,1) or… a bajillion other possibilities. That’s confusing, and so mathematicians decided that a vector must have unique coordinates within a basis set. Linear independence guarantees uniqueness.

To be clear, point p (or any other point) can be described using an infinite number of basis sets. So the measurement is not unique in terms of the plethora of possible basis sets. But within a basis set, a point has exactly one linear weighted combination. It’s the same thing with my distance analogy at the beginning of this section: We can measure the distance from Amsterdam to Tenerife using many different measurement units, but that distance has only one value per measurement unit: The distance is not simultaneously 3200 miles and 2000 miles, but it is simultaneously 3200 kilometers and 2000 miles (note for nerds: I’m approximating here, OK?).

Summary

Congratulations on finishing another chapter! (Well, almost finished: There are coding exercises to solve.) The point of this chapter was to bring your foundational knowledge about vectors to the next level. Below is a list of key points, but please remember that underlying all of these points is a very small number of elementary principles, primarily linear weighted combinations of vectors.

	
A vector set is simply a collection of vectors. There can be a finite or an infinite number of vectors in a set.

	
Linear weighted combination means to scalar-multiply and add vectors in a set. Linear weighted combination is one of the single most important concepts in linear algebra.

	
A set of vectors is linearly dependent if a vector in the set can be expressed as a linear weighted combination of other vectors in the set. And the set is linearly independent if there is no such linear weighted combination.

	
A subspace is the infinite set of all possible linear weighted combinations of a set of vectors.

	
A basis is a ruler for measuring a space. A vector set can be a basis for a subspace if it (1) spans that subspace and (2) is linearly independent. A major goal in data science is to discover the best basis set to describe datasets or solve problems.

Code exercises

0) Rewrite the code for linear weighted combination, but put the scalars in a list and the vectors as elements in a list (thus, you will have two lists, one of scalars and one of numpy arrays). Then use a for-loop to implement the linear weighted combination operation. Initialize the output vector using np.zeros(). Confirm that you get the same result as in the previous code.

1) Although the method of looping through lists in the previous exercise is not as efficient as matrix-vector multiplication, it is more scalable than without a for-loop. You can explore this by adding additional scalars and vectors as elements in the lists. What happens if the new added vector is in R4 instead of R3? And what happens if you have more scalars than vectors?

2) In this exercise, you will draw random points in subspaces. This will help reinforce the idea that subspaces comprise any linear weighted combination of the spanning vectors. Define a vector set containing one vector [1, 3]. Then create 100 numbers drawn randomly from a uniform distribution between -4 and +4. Those are your random scalars. Multiply the random scalars by the basis vector to create 100 random points in the subspace. Plot those points.

Next, repeat the procedure but using two vectors in
 ℝ 3
: [3, 5, 1] and [0, 2, 2]. Note that you need 100x2 random scalars for 100 points and two vectors. The resulting random dots will be on a plane. Figure 3-7 shows what the results will look like (it’s not clear from the figure that the points lie on a plane, but you’ll see this when you drag the plot around on your screen).

I recommend using the plotly library to draw the dots, so you can click-drag the 3D axis around. Here’s a hint for getting it to work:

import plotly.graph_objects as go
fig = go.Figure(data=[go.Scatter3d(
 x=points[:,0], y=points[:,1], z=points[:,2],
 mode='markers')])
fig.show()

Finally, repeat the
 ℝ 3
 case but setting the second vector to be 1/2 times the first.

[image: Lines and planes.]
Figure 3-7. Exercise 2.

1 As shown in Chapter 15, list-integer multiplication repeats the list instead of scalar-multiplying it.
2 This equation is simply an application of linear weighted combination!
3 Because it is a linearly dependent set.

About the Author

Mike X Cohen is an associate professor of neuroscience at the Donders Institute (Radboud University Medical Centre) in the Netherlands. He has over 20 years experience teaching scientific coding, data analysis, statistics, and related topics, and has authored several online courses and textbooks. He has a suspiciously dry sense of humor and enjoys anything purple.

OEBPS/Images/Figure_03_07.png
B)

10

AS

0

OEBPS/Images/Figure_03_03.png

OEBPS/Images/Figure_03_04.png
@ Pointp

67 Bl Pointp
m— B3sis S
== = BasisT

4_

21 1

N\\ I ”-.
-~ -
O_
2
4
6
-6 -4 -2 0 2 4 6

OEBPS/Images/Figure_03_05.png
PCA basis vectors ICA basis vectors

OEBPS/Images/Figure_03_06.png

OEBPS/Images/Figure_02_01.png
Vector v in various locations

'Standard pos."

OEBPS/Images/Figure_02_05.png
"Acute” "Obtuse” "Orthogonal” "Collinear” "Collinear”

0<90° 9>90° 9=90° 6=00 6=180°

L4 /

cos(6)>0 cos(0)<0 cos(6)=0 cos(6)=1 cos(6)=-1
o>0 a<O oa=0 oa=|al|b| o=-|al|b|

OEBPS/Images/Figure_02_04.png
S

OEBPS/Images/Figure_02_03.png
o= 1.00

o= 2.00

o= 0.33

o= 0.00

o=-0.67

OEBPS/Images/Figure_02_02.png
B)

Vectorsv, w,and v+w Vectors v, w, andv—w

Il v N v
. w . w
vV+w V-W

OEBPS/Images/Figure_02_08.png
I t
0.2 r
-_— . t|
LI] tJ_
0.0 ——
: L] —_— iy L] _— iy L] —_— oy
-024
—0.44 =
-06-4 !
—0.8 1
~1.01
04 06 08 10 12

0.0

0.2

OEBPS/Images/Figure_02_07.png

OEBPS/Images/Figure_02_06.png
_(b-a)

OEBPS/Images/cover.png
OREILLY"

Practical Linear
Algebra for
Data Science

From Core Concepts to Applications using Python

Early
Release

RAW &
UNEDITED

Mike X Cohen

OEBPS/Images/Figure_03_01.png

OEBPS/Images/Figure_03_02.png

