

 inside front cover

 [image:]

 An example of a CI/CD pipeline for cloud-native applications

 [image:]

 Pipeline as Code

 Continuous Delivery with Jenkins, Kubernetes, and Terraform

 Mohamed Labouardy

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Karen Miller

 	
 Technical development editor:

 	
 Christopher Haupt

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Sharon Wilkey

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Werner Dijkerman

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297540

 brief contents

 Part 1. Getting started with Jenkins

 1 What’s CI/CD?

 2 Pipeline as code with Jenkins

 Part 2. Operating a self-healing Jenkins cluster

 3 Defining Jenkins architecture

 4 Baking machine images with Packer

 5 Discovering Jenkins as code with Terraform

 6 Deploying HA Jenkins on multiple cloud providers

 Part 3. Hands-on CI/CD pipelines

 7 Defining a pipeline as code for microservices

 8 Running automated tests with Jenkins

 9 Building Docker images within a CI pipeline

 10 Cloud-native applications on Docker Swarm

 11 Dockerized microservices on K8s

 12 Lambda-based serverless functions

 Part 4. Managing, scaling, and monitoring Jenkins

 13 Collecting continuous delivery metrics

 14 Jenkins administration and best practices

 contents

 front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Getting started with Jenkins

 1 What’s CI/CD?

 1.1 Going cloud native

 Monolithic

 Microservices

 Cloud native

 Serverless

 1.2 Defining continuous integration

 1.3 Defining continuous deployment

 1.4 Defining continuous delivery

 1.5 Embracing CI/CD practices

 1.6 Using essential CI/CD tools

 Choosing a CI/CD tool

 Introducing Jenkins

 2 Pipeline as code with Jenkins

 2.1 Introducing the Jenkinsfile

 Blue Ocean plugin

 Scripted pipeline

 Declarative pipeline

 2.2 Understanding multibranch pipelines

 2.3 Exploring the GitFlow branch model

 2.4 Test-driven development with Jenkins

 The Jenkins Replay button

 Command-line pipeline linter

 IDE integrations

 Part 2. Operating a self-healing Jenkins cluster

 3 Defining Jenkins architecture

 3.1 Understanding master-worker architecture

 3.2 Managing Jenkins workers

 SSH

 Command line

 JNLP

 Windows service

 3.3 Architecting Jenkins for scale in AWS

 Preparing the AWS environment

 Configuring the AWS CLI

 Creating and managing the IAM user

 4 Baking machine images with Packer

 4.1 Immutable infrastructure

 4.2 Introducing Packer

 How does it work?

 Installation and configuration

 Baking a machine image

 4.3 Baking the Jenkins master AMI

 Configuring Jenkins upon startup

 Discovering Jenkins plugins

 4.4 Baking the Jenkins worker AMI

 5 Discovering Jenkins as code with Terraform

 5.1 Introducing infrastructure as code

 Terraform usage

 5.2 Provisioning an AWS VPC

 AWS VPC

 VPC subnets

 VPC route tables

 VPC bastion host

 5.3 Setting up a self-healing Jenkins master

 5.4 Running Jenkins with native SSL/HTTPS

 5.5 Dynamically autoscaling the Jenkins worker pool

 Launch configuration

 Auto Scaling group

 Autoscaling scaling policies

 Workers CPU utilization load

 6 Deploying HA Jenkins on multiple cloud providers

 6.1 Google Cloud Platform

 Building Jenkins VM images

 Configuring a GCP network with Terraform

 Deploying Jenkins on Google Compute Engine

 Launching automanaged workers on GCP

 6.2 Microsoft Azure

 Building golden Jenkins VM images in Azure

 Deploying a private virtual network

 Deploying a Jenkins master virtual machine

 Applying autoscaling to Jenkins workers

 6.3 DigitalOcean

 Creating Jenkins DigitalOcean Snapshots

 Deploying a Jenkins master Droplet

 Building Jenkins worker Droplets

 Part 3. Hands-on CI/CD pipelines

 7 Defining a pipeline as code for microservices

 7.1 Introducing microservices-based applications

 7.2 Defining multibranch pipeline jobs

 7.3 Git and GitHub integration

 7.4 Discovering Jenkins jobs’ XML configuration

 7.5 Configuring SSH authentication with Jenkins

 7.6 Triggering Jenkins builds with GitHub webhooks

 8 Running automated tests with Jenkins

 8.1 Running unit tests inside Docker containers

 8.2 Automating code linter integration with Jenkins

 8.3 Generating code coverage reports

 8.4 Injecting security in the CI pipeline

 8.5 Running parallel tests with Jenkins

 8.6 Improving quality with code analysis

 8.7 Running mocked database tests

 8.8 Generating HTML coverage reports

 8.9 Automating UI testing with Headless Chrome

 8.10 Integrating SonarQube Scanner with Jenkins

 9 Building Docker images within a CI pipeline

 9.1 Building Docker images

 Using the Docker DSL

 Docker build arguments

 9.2 Deploying a Docker private registry

 Nexus Repository OSS

 Amazon Elastic Container Registry

 Azure Container Registry

 Google Container Registry

 9.3 Tagging Docker images the right way

 9.4 Scanning Docker images for vulnerabilities

 9.5 Writing a Jenkins declarative pipeline

 9.6 Managing pull requests with Jenkins

 10 Cloud-native applications on Docker Swarm

 10.1 Running a distributed Docker Swarm cluster

 10.2 Defining a continuous deployment process

 10.3 Integrating Jenkins with Slack notifications

 10.4 Handling code promotion with Jenkins

 10.5 Implementing the Jenkins delivery pipeline

 11 Dockerized microservices on K8s

 11.1 Setting up a Kubernetes cluster

 11.2 Automating continuous deployment flow with Jenkins

 Migrating Docker Compose to K8s manifests with Kompose

 11.3 Walking through continuous delivery steps

 11.4 Packaging Kubernetes applications with Helm

 11.5 Running post-deployment smoke tests

 11.6 Discovering Jenkins X

 12 Lambda-based serverless functions

 12.1 Deploying a Lambda-based application

 12.2 Creating deployment packages

 Mono-repo strategy

 Multi-repo strategy

 12.3 Updating Lambda function code

 12.4 Hosting a static website on S3

 12.5 Maintaining multiple Lambda environments

 12.6 Configuring email notification in Jenkins

 Part 4. Managing, scaling, and monitoring Jenkins

 13 Collecting continuous delivery metrics

 13.1 Monitoring Jenkins cluster health

 13.2 Centralized logging for Jenkins logs with ELK

 Streaming logs with Filebeat

 Streaming logs with the Logstash plugin

 13.3 Creating alerts based on metrics

 14 Jenkins administration and best practices

 14.1 Exploring Jenkins security and RBAC authorization

 Matrix authorization strategy

 Role-based authorization strategy

 14.2 Configuring GitHub OAuth for Jenkins

 14.3 Keeping track of Jenkins users’ actions

 14.4 Extending Jenkins with shared libraries

 14.5 Backing up and restoring Jenkins

 14.6 Setting up cron jobs with Jenkins

 14.7 Running Jenkins locally as a Docker container

 index

 front matter

 preface

 Ten years ago, I wrote my first makefile to automate the testing, building, and deployment of a C++ application. Three years later, while working as a consultant, I came across Jenkins and Docker and discovered how to take my automation skills to the next level with CI/CD principles.

 The beauty of CI/CD is that it’s simply a rigorous way of recording what you’re already doing. It doesn’t fundamentally change how you do something, but it encourages you to record each step in the development process, enabling you and your team to reproduce the entire workflow later at scale. Over the next few months, I started writing blog posts, doing talks, and contributing to CI/CD-related tools.

 However, setting up a CI/CD workflow has always been a very manual process for me. It was done via defining a series of individual jobs for the various pipeline tasks through a graphical interface. Each job was configured via web forms—filling in text boxes, selecting entries from drop-down lists, and so forth. And then the series of jobs were strung together, each triggering the next, into a pipeline. This made the troubleshooting experience a nightmare and reverting to the last known configuration in case of failure a tedious operation.

 A few years later, the pipeline-as-code practice emerged as part of a larger “as code” movement that includes infrastructure as code. I could finally configure builds, tests, and deployment in code that is trackable and stored in a centralized Git repository. All the previous pains were alleviated.

 I became a fan and believer of pipeline as code, as I transitioned from being a software engineer, tech leader, and senior DevOps manager to now co-leading my first startup as CTO. Pipeline as code became an important part of each project I was part of.

 I had the chance to work on different types of architecture—from monolithic, to microservices, to serverless applications—having built and maintained CI/CD pipelines for large-scale applications. Along the way, I accumulated tips and best practices to follow while going through the journey of continuous everything.

 The idea of sharing that experience is what triggered this book. Implementing pipeline as code is challenging for many teams, as they require the use of many tools and processes that all work together. The learning curve takes a lot of time and effort, leading people to wonder whether it’s worth it. This book is a handbook experience on how to build a CI/CD pipeline from scratch, using the most widely adopted CI solution: Jenkins. I hope the result will help you embrace the new paradigm of building CI/CD pipelines.

 acknowledgments

 First and foremost, I want to thank my wife, Mounia. You’ve always supported me, always patiently listened while I struggled to get this done, and always made me believe I could finish this. I love you.

 Next, I’d like to acknowledge my editor at Manning, Karen Miller. Thank you for working with me, and thank you more for being patient when things got rough during the pandemic. Your commitment to the quality of this book has made it better for everyone who reads it. Thanks as well to all the other folks at Manning who worked with me on the production and promotion of the book: Deirdre Hiam, my project editor, Sharon Wilkey, my copyeditor, Keri Hales, my proofreader, and Mihaela Batinić, my reviewing editor. It was truly a team effort.

 Finally, I’d like to thank my family, including my parents and brothers, for finding the inner strength to listen to me talk about the book at every gathering.

 To all the reviewers: Alain Lompo, Alex Koutmos, Andrea Carlo Granata, Andres Damian Sacco, Björn Neuhaus, Clifford Thurber, Conor Redmond, Giridharan Kesavan, Gustavo Filipe Ramos Gomes, Iain Campbell, Jerome Meyer, John Guthrie, Kosmas Chatzimichalis, Maciej Drożdżowski, Matthias Busch, Michal Rutka, Michele Adduci, Miguel Montalvo, Naga Pavan Kumar Tikkisetty, Ryan Huber, Satej Kumar Sahu, Simeon Leyzerzon, Simon Seyag, Steve Atchue, Tahir Awan, Theo Despoudis, Ubaldo Pescatore, Vishal Singh, and Werner Dijkerman, your suggestions helped make this a better book.

 about this book

 Pipeline as Code was designed to be a hands-on experience through practical examples. It will teach you the ins and outs of Jenkins and be your best companion to build a solid CI/CD pipeline for cloud-native applications.

 Who should read this book

 Pipeline as Code is designed for all levels of DevOps and cloud practitioners who want to improve their CI/CD skills.

 How this book is organized

 The book has four parts that cover 14 chapters.

 Part 1 takes you through basic CI/CD principles and discusses how Jenkins can help implement them:

 	
 Chapter 1 gives an overview of continuous integration, deployment, and delivery practices. It also discusses how Jenkins can help you in embracing those DevOps practices.

 	
 Chapter 2 introduces the pipeline-as-code approach and how it can be achieved with Jenkins. It also covers the differences between declarative and scripted Jenkins pipelines.

 Part 2 covers how to deploy a self-healing Jenkins cluster on the cloud by using an infrastructure-as-code approach:

 	
 Chapter 3 goes deep into Jenkins distributed builds architecture, with a full example on AWS.

 	
 Chapter 4 introduces the immutable infrastructure approach with HashiCorp Packer, including how to bake a Jenkins machine image with all the needed dependencies to run a Jenkins cluster out of the box.

 	
 Chapter 5 demonstrates how to deploy a secure and scalable Jenkins cluster on AWS with HashiCorp Terraform.

 	
 Chapter 6 describes in deep detail the process of deploying a Jenkins cluster on different cloud providers, including GCP, Azure, and DigitalOcean.

 Part 3 focuses on building CI/CD pipelines from scratch for cloud-native applications, including Dockerized microservices running in Swarm or Kubernetes and Serverless applications:

 	
 Chapter 7 defines the foundation for building a CI workflow for a containerized microservices. It covers how to define a multibranch pipeline on Jenkins and how to trigger the pipeline upon a push event.

 	
 Chapter 8 demonstrates how to run automated tests inside Docker containers. Various tests are described, including UI testing with headless Chrome, code coverage, static code analysis with SonarQube, and security analysis.

 	
 Chapter 9 covers building Docker images within CI pipelines, managing their versions, and scanning for security vulnerabilities. It also discusses how to automate reviews of GitHub pull requests with Jenkins.

 	
 Chapter 10 walks through the deployment process of Dockerized applications to Docker Swarm with Jenkins. It demonstrates how to maintain multiple runtime environments and how to achieve continuous deployment and delivery.

 	
 Chapter 11 goes deep into automating the deployment of applications on Kubernetes with Jenkins pipelines, including how to package and version Helm charts and run post-deployment tests. It also demonstrates the usage of Jenkins X and how it compares to Jenkins.

 	
 Chapter 12 covers how to build CI/CD pipelines for a serverless-based application and how to manage multiple Lambda deployment environments.

 Part 4 covers maintaining, scaling, and monitoring a Jenkins cluster running in production with ease:

 	
 Chapter 13 explores how to build interactive dashboards to continuously monitor Jenkins for anomalies and performance issues using Prometheus, Grafana, and Slack. It also covers how to stream Jenkins logs to a centralized logged platform based on the ELK stack.

 	
 Chapter 14 covers how to secure Jenkins jobs with a granular RBAC mechanism. It also explores how to back up, restore, and migrate Jenkins jobs and plugins.

 About the code

 This book is a hands-on experience that provides many examples of code. These appear throughout the text and as separate code listings. Code appears in a fixed-width font just like this, so you’ll know when you see it.

 All of the source code used in the book is available on the Manning website (https://www.manning.com/books/pipeline-as-code), or in my GitHub repository (https://github.com/mlabouardy/pipeline-as-code-with-jenkins). This repository is a labor of love, and I appreciate the work done by all who catch bugs, make performance improvements, and help with documentation. Everything is ideal for contributions!

 liveBook discussion forum

 Purchase of Pipeline as Code includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/pipeline-as-code/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Other online resources

 Need additional help?

 	
 Check out my blog (https://labouardy.com/), where I regularly share the latest news about Jenkins and the best practices to follow while building CI/CD workflows.

 	
 A weekly DevOps newsletter (https://devopsbulletin.com) can help you stay up-to-date with the latest wonders in the pipeline-as-code space.

 	
 The Jenkins tag at StackOverflow (https://stackoverflow.com/questions/tagged/jenkins) is a great place to both ask questions and help others.

 about the author

 	
 [image:]

 	
 Mohamed Labouardy is CTO and cofounder of Crew.work, and a DevSecOps evangelist. He is the founder of Komiser.io, and an author of multiple books about serverless and distributed applications. He enjoys contributing to open source projects and is a regular conference speaker. You can also find him on Twitter (@mlabouardy).

 about the cover illustration

 The figure on the cover of Pipeline as Code is captioned “Bohémien de prague,” or a Bohemian from Prague. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

 Part 1. Getting started with Jenkins

 This first part of this book takes you through the DevOps essential concepts. You’ll learn about CI/CD practices and how they allow you to integrate small pieces of code at one time and ease technical debt. After that, I’ll introduce the new approach of building CI/CD pipelines, pipeline as code, and how it can be implemented with Jenkins. Finally, I’ll lay the groundwork for a well-designed CI/CD workflow by introducing the GitFlow branching model.

 1 What’s CI/CD?

 This chapter covers

 	The path organizations have taken to evolve from monolith to cloud-native applications

 	The challenges of implementing CI/CD practices for cloud-native architectures

 	An overview of continuous integration, deployment, and delivery

 	How CI/CD tools like Jenkins can bring business value to organizations that undertake the journey of continuous everything

 Software development and operations have experienced several paradigm shifts recently. These shifts have presented the industry with innovative approaches for building and deploying applications. More importantly, two significant paradigm shifts have consolidated capabilities for developing, deploying, and managing scalable applications: cloud-native architecture and DevOps.

 Cloud-native architecture emerged with cloud adoption, with cloud providers like Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure taking ownership of the infrastructure. Open source tools like Kubernetes, Docker, and Istio offer horizontal scaling ability, letting developers build and run modern scalable applications without worrying about the underlying infrastructure. As a result, operational overhead is reduced, and the development velocity of applications is increased.

 DevOps bridged the divide between developers and ops teams, and brought back harmony through collaboration, automated tools, and iterative and Agile development and deployment.

 With these two significant, powerful approaches combined, organizations now have the capability to create scalable, robust, and reliable applications with a high level of collaboration and information sharing among small teams. However, to build, test, and safely deploy cloud-native applications, two essential DevOps practices must be implemented in a cloud-native manner: continuous integration (CI) and continuous deployment/delivery (CD).

 The first part of this book takes you through the evolution of cloud-native applications. You’ll learn about the main principles of CI/CD and how automation invented the way those principles are implemented through the pipeline-as-code approach. This first chapter lays the foundation. It introduces basic principles of DevOps and cloud-native approaches, in addition to selecting the tools for implementing CI/CD pipelines.

 1.1 Going cloud native

 Before exploring the essential characteristics of cloud-native applications and how CI/CD practices contribute to standardizing feedback loops for developers and enabling fast product iterations, we will cover the changes the software development model went through and the challenges associated with each model, starting with the monolithic approach.

 1.1.1 Monolithic

 In the past, organizations used to build their software in a monolithic way: all functionalities were packaged in a single artifact and deployed in a single server running one process. This architecture comes with many drawbacks and limitations:

 	
 Development velocity—Adding new features on top of an existing application is next to impossible. Application modules are tightly coupled and, most of the time, not documented. As a result, adding new features is often slow, expensive, and requires extra synchronization when working with multiple developers within distributed teams on a large codebase. Moreover, the release cycle can take months, if not several years, because of the application’s large codebase. This delay puts companies at risk of being surpassed by new competitors and ultimately undercuts the company’s profits.

 	
 Maintainability—Modules in a monolithic architecture are frequently tightly coupled, which makes them hard to maintain and test. Plus, upgrading to new technology is limited to the framework used to develop the application (no polyglot programming).

 	
 Scaling and resiliency—Applications are designed with no scalability in mind, and the application may face downtime if traffic increases. The monolithic application works as a single unit and is developed in a single programming language using a single tech stack. As a result, to achieve partial horizontal scaling, the whole application needs to be scaled (inefficient usage of server resources).

 	
 Cost-effectiveness—The application is expensive to maintain in the long run (for example, finding an experienced COBOL developer is time-consuming and expensive).

 In the late 2000s, many web giants (including Facebook, Netflix, Twitter, and Amazon) came onto the tech scene with innovative ideas, aggressive strategies, and a “move fast” approach that led to the exponential growth of their platforms. These companies introduced a new architecture pattern that is known today as microservices. So, what exactly is microservices architecture?

 1.1.2 Microservices

 James Lewis and Martin Fowler defined microservices architecture as follows in 2014:

 In short, the microservice architectural style is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API. These services are built around business capabilities and independently deployable by fully automated deployment machinery. There is a bare minimum of centralized management of these services, which may be written in different programming languages and use different data storage technologies.

 This architecture uses the same technique of “divide and conquer” to tackle the complexity of an application. An application is split into smaller, independent, and composable services/fragments, each responsible for a specific functionality or task of the application (organized around business capabilities).

 Those microservices communicate using an application programming interface (API), typically over HTTP or HTTP/2 (for example, gRPC, RESTful APIs, Google Protocol Buffers, or Apache Thrift), or through message brokers (such as Apache ActiveMQ or Kafka). Each microservice can be implemented in a different programming language running on a different OS platform.

 In contrast to microservices, the monolithic architecture means the code’s components are designed to work together as one cohesive unit, sharing the same server resources (memory, CPU, disk, and so forth). Figure 1.1 illustrates the differences between monolith and microservices architectures.

 [image:]

 Figure 1.1 Comparing monolith and microservices architectures

 Microservices architecture is an extension of service-oriented architecture (SOA). Both architectures rely on services as the main component, but they vary greatly in terms of service characteristics:

 	
 Granularity—Service components within a microservices architecture are generally single-purpose services that do one thing. In SOA, service components can range in size, anywhere from small application services to very large enterprise services.

 	
 Sharing—SOA enhances component sharing, whereas microservices architecture tries to minimize sharing through bounded context (loosely coupled services or modules) with minimal dependencies.

 	
 Communication—Microservices rely on lightweight protocols such as HTTP/REST and simple messaging, while SOA architectures rely on enterprise service bus (ESB) for communication; early versions of SOA used object-oriented protocols to communicate with each other, such as Distributed Component Object Model (DCOM) and object request brokers (ORBs). Later versions used messaging services such as Java Message Service (JMS) or Advanced Message Queuing Protocol (AMQP).

 	
 Deployment—SOA services are deployed to application servers (IBM WebSphere Application Server, WildFly, Apache Tomcat) and virtual machines. On the other hand, microservices are deployed in containers. This makes microservices more flexible and lighter than SOA.

 Note For more details about microservices architecture, I recommend reading Microservices in Action by Morgan Bruce and Paulo A. Perreira (Manning, 2018). It covers what makes a microservice, how it can be composed by an individual or a dedicated team, the constant back-and-forth comparison between a monolithic application, and things to consider when deploying your microservices.

 The advantages of microservices convinced some big enterprise players such as Amazon, Netflix, and Uber to adopt the methodology. Following their footsteps, other companies are working in the same direction: evolving from monolithic to flexible microservice-based architecture.

 But what makes it so special? Compared to more monolithic design structures, microservices architecture comes with the following benefits:

 	
 Scalability—Applications built as microservices can be broken into multiple components so that each component can be deployed and scaled independently without service interruption. Also, for stateless microservices, usage of Docker or Kubernetes can offer horizontal scaling within seconds.

 	
 Fault tolerance—If one microservice fails, the others will continue to work because of loosely coupled components. A single microservice can be easily replaced by a new one without affecting the whole system. As a result, modernization in microservices architecture can be incremental, while modernization in monolithic architecture can cause service outages.

 	
 Development velocity—Microservices can be written in different languages (polyglot programming) and use different databases or OS environments. If one microservice is, for example, CPU intensive, it could be implemented in highly productive languages such as Golang or C++, while other components could be implemented in lightweight programming languages such as JavaScript or Python. So companies can easily hire more developers and scale development. Also, because microservices are autonomous, developers have the freedom to independently develop and deploy services without bumping into each other’s code (avoiding synchronization hell within the organization) and having to wait for one team to finish a chunk of work before starting theirs. As a result, team productivity increases, and vendor or technology stack lock-in reduces.

 	
 Continuous everything—Microservices architecture combined with Agile software development enable continuous delivery. The software release cycle in microservice applications becomes much smaller, and many features can be released per day through CI/CD pipelines with open source CI tools like Jenkins.

 To summarize, microservices make solving big problems easier, increase productivity, offer flexibility in choosing technologies, and are great for cross-functional teams. At the same time, running microservices in a distributed cloud environment can be a tough challenge for organizations. Here are some of the potential pain areas associated with microservices designs:

 	
 Complexity—Increased complexity over a monolithic application due to the number of services involved. As a result, enormous effort, synchronization, and automation are required to handle interservice communication, monitoring, testing, and deployment.

 	
 Operational overhead—Deploying a microservice-based application can be complex. It needs a lot of coordination among multiple services. Each service must be isolated with its own runtime environment and resources. Hence, traditional deployment solutions like virtualization can’t be used and must be replaced with containerization solutions like Docker.

 	
 Synchronization—Microservices require cultural changes in organizations seeking to adopt them. Having multiple development teams working on different services requires a huge effort to ensure that communication, coordination, and automated processes are in place. Cultures like Agile and DevOps practices are mandatory to take on microservice-based applications.

 Note While Docker comes with no learning curve, it can quickly become a nightmare when handling deploying microservices among a cluster of machines or nodes.

 Most of these drawbacks were addressed with the consumption of cloud computing services offered by AWS and with the rise of open source tools—particularly Kubernetes. It brought a completely new approach to managing infrastructure and enabled applications to be architected in a distributed manner. As a result, a new software architecture style arose in 2014: cloud-native applications.

 1.1.3 Cloud native

 The Cloud Native Computing Foundation (CNCF), a Linux Foundation project founded in 2015 to help advance container technology, defines cloud native as follows:

 Cloud-native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach. These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.

 Cloud native is a paradigm for building applications as microservices and running them on containerized and dynamically orchestrated platforms that fully exploit the advantage of the cloud computing model. These applications are developed using the language and framework best suited for the functionality. They’re designed as loosely coupled systems, optimized for cloud scale and performance, use managed services, and take advantage of continuous delivery to achieve reliability and faster time to market.

 The overall objective is to improve the speed, scalability, and finally, profit margin. Figure 1.2 illustrates an example of a cloud-native application.

 [image:]

 Figure 1.2 Overview of a cloud-native application

 Cloud-native applications are packaged in lightweight containers and efficiently deployed as microservices. They use a lightweight API to expose their functionality, and binary and nonbinary protocols to communicate with each other internally. A step further, the applications are managed on elastic cloud infrastructure through Agile DevOps processes having continuous delivery workflows.

 Note Docker has become the standard for container technology. It has revolutionized the way we think about developing microservices, and enables us to easily deploy microservices locally, on premises, or in the cloud.

 Kubernetes (https://kubernetes.io/) is one of the preferred platforms for running workloads that function as cloud-native applications. It’s an open source container orchestration platform originally developed at Google. It ensures high-end automated deployment, scaling, and management of containerized applications. This new paradigm of building and deploying applications comes with many benefits:

 	
 No operational overhead—Developers can focus on developing features and adding business value instead of dealing with infrastructure provisioning and management.

 	
 Security compliance—Simplified security monitoring is required because the various parts of an application are isolated. A security problem could happen in one container without affecting other areas of the application.

 	
 Autoscaling—Containers can be deployed into a fleet of servers in different availability zones or even multiple isolated data centers (regions). As a result, cloud-native apps can take advantage of the elasticity of the cloud by scaling resources in or out during a use spike without the need to procure and provision physical servers. Also, by adopting cloud services, the business can go global in minutes with lower adaptation costs and increased revenue and without worrying about scalability.

 	
 Development speed—The application architecture is easy to understand since each container represents a small piece of functionality, and is easy for developers to modify, so they can help a new team member become productive quickly. Also, adopting cloud-native technologies and practices enables companies to create software in-house, allowing business people to closely partner with IT people, keep up with competitors, and deliver better services to their customers.

 	
 Resiliency—Cloud-native microservices allow for failure at a granular level. They do this by providing adequate isolation between each service and offer multiple design patterns that might improve the components’ availability and resilience such as Circuit Breaker (https://martinfowler.com/bliki/CircuitBreaker.html), Throttling (www.redhat.com/architect/pros-and-cons-throttling), and Retry patterns. Companies like Netflix used it to develop a new approach called chaos engineering to build a resilient streaming platform.

 Figure 1.3 shows the differences between monolithic, microservices, and cloud-native architectures.

 [image:]

 Figure 1.3 Monolith, microservices, and cloud-native architectures

 To summarize, cloud-native architecture allows you to dynamically scale and support large numbers of users, events, and requests on distributed applications. A real-world example of the adoption of cloud-native architecture is the serverless model.

 1.1.4 Serverless

 The serverless computing model was kicked off with AWS Lambda in 2014. In this architecture, developers can write cost-efficient applications without provisioning or maintaining a complex infrastructure.

 Cloud providers deploy customers’ code to fully managed, ephemeral, time-boxed containers that live only during the invocation of the functions. Therefore, businesses can grow without customers having to worry about horizontal scaling or maintaining complex infrastructure.

 Note Serverless doesn’t mean “no ops.” You’re just outsourcing sysadmin with serverless services. You will still deal with monitoring, deployment, and security.

 An application built based on serverless architecture may end up looking like fig- ure 1.4.

 [image:]

 Figure 1.4 An example of a serverless application

 Instead of maintaining a dedicated container or instance to host your static web application, you can combine an Amazon Simple Storage Service (S3) bucket to benefit from scalability at a cheaper cost. The HTTP requests coming from the website go through Amazon API Gateway HTTP endpoints that trigger the right AWS Lambda function to handle the application logic and persist data to a fully managed database service such as DynamoDB. For particular use cases, going serverless can make sense for several reasons:

 	
 Less operational overhead—The infrastructure is managed by the cloud provider, and this reduces the overhead and increases developer velocity. OS updates are taken care of, and patching is done by the function-as-a-service (FaaS) provider. This results in decreased time to market and faster software releases and eliminates the need for a system administrator.

 	
 Horizontal autoscaling—Function becomes the unit of scale that leads to small, loosely coupled, stateless components that, in the long run, lead to scalable applications. Plus, the scaling mechanism is shifted to the cloud provider, which decides how to use its infrastructure effectively to serve the client’s requests.

 	
 Cost optimization—You pay for only the compute time and resources that you consume. As a result, you don’t pay for idle resources, which significantly reduces infrastructure costs.

 	
 Polyglot—Another benefit is the ability to choose a different language runtime depending on the use case. One part of the application can be written in Java, while another in Python; it doesn’t really matter as long as the job gets done.

 Note A big concern while going serverless is vendor lock-in. Although you should favor development speed and efficiency above all, it’s important to choose a vendor based on your use case.

 Cloud-native architectures, in general, are gaining massive adoption, but the learning curve for many teams is steep. Plus, the shift to cloud-native architecture can be a double-edged sword for many organizations, and one of the challenges when moving to a fully cloud-native approach can be CI/CD.

 But what do these practices mean? And how can they be applied when you’re building cloud-native applications?

 1.2 Defining continuous integration

 Continuous integration (CI) is the practice of having a shared and centralized code repository, and directing all changes and features through a complex pipeline before integrating them into the central repository (such as GitHub, Bitbucket, or GitLab). A classic CI pipeline is as follows:

 	
 Triggers a build whenever a code commit occurs

 	
 Runs the unit tests and all pre-integration tests (quality and security tests)

 	
 Builds the artifact (for example, Docker image, zip file, machine learning training model)

 	
 Runs acceptance tests and pushes the result to an artifact-management repository (such as a Docker Registry, Amazon S3 bucket, Sonatype’s Nexus, or JFrog Artifactory)

 Figure 1.5 shows an example of a CI pipeline for a containerized application.

 [image:]

 Figure 1.5 Basic CI workflow for cloud-native applications

 Basically, CI automatically monitors the commits that each developer makes and launches automated tests. Automated testing is an integral part of CI/CD pipelines. Without automated tests, CI/CD pipelines will lack quality checks, which are important in order for the application to be released.

 You can implement various types of testing to ensure that your software meets all the initial requirements. Here are the most famous ones:

 	
 Unit tests—These test each piece of the source code. They consist of testing individual functions and methods. You could also output your test coverage and validate that you’re meeting your code coverage requirements.

 	
 Quality tests—Check that the code is well formatted, follows best practices, and has no serious coding errors. This is also called static code analysis, as it helps to produce high-quality code by looking for patterns in code that might generate bugs.

 	
 Security tests—Inspect source code to uncover common security vulnerabilities and common security flaws (for example, leaked usernames and passwords).

 	
 UI tests—Simulate user behavior through the system to ensure that the application works correctly in all supported browsers (including Google Chrome, Mozilla Firefox, and Microsoft Internet Explorer) and platforms (such as Windows, Linux, and macOS) and that it delivers the functionality promised in user stories.

 	
 Integration tests—Check that services or components used by the application work well together and no defects exist. For example, an integration test might test an application’s interaction with the database.

 Manually executing all these tests can be time-consuming and counterproductive. Therefore, you should always use a testing framework that suits your application requirements to perform those tests on a scale in a repeatable and reliable way.

 Note Chapter 8 covers how to run automated tests with Jenkins and Headless Chrome, as well as how to integrate SonarQube for code analysis.

 Once tests are successful, the application will be compiled and packaged, and a releasable artifact will be generated and versioned in a remote repository.

 1.3 Defining continuous deployment

 Continuous deployment (CD) is an extension of continuous integration. Every change that passes all stages of your continuous integration pipeline is released automatically to your staging/preproduction environment.

 In such a process, there’s no need to decide what will be deployed and when. The pipeline will automatically deploy whatever build components/packages successfully exit the pipeline. Figure 1.6 illustrates a typical CI/CD pipeline for microservices running in Kubernetes.

 [image:]

 Figure 1.6 Basic CI/CD workflow for cloud-native applications

 This CI workflow has four steps, and the CD pipeline is the deployment to Kubernetes (step 5). However, a pure continuous deployment approach is not always appropriate for everyone.

 For example, many clients would not appreciate new versions falling into their laps several times a week, and prefer a more predictable and transparent release cycle. Commercial and marketing considerations might also play a role in when a new release should actually be deployed.

 While continuous deployment may not be right for every company, continuous delivery is an absolute requirement of DevOps practices. Only when you continuously deliver your code can you have true confidence that your changes will be serving value to your customers within minutes of pushing the “go” button, and that you can actually push that button any time the business is ready for it.

 1.4 Defining continuous delivery

 Continuous delivery (CD) is similar to continuous deployment but requires human intervention or a business decision before deploying the release to production. Figure 1.7 shows how the CI/CD practices relate to each other.

 [image:]

 Figure 1.7 The continuous deployment maturity model

 Note A Monitor and Optimize stage can occur in a sophisticated CI/CD workflow. This step consists of collecting and analyzing metrics and feedback to eliminate risks and waste and to optimize the release time.

 1.5 Embracing CI/CD practices

 CI/CD and continuous delivery can bring more agility to cloud-native applications through daily builds, which leads to the following:

 	
 Detecting anomalies at an earlier stage (reducing the risk) and minimizing technical debt through unit and functional tests. According to Atlassian (www.atlassian.com/software-development/practices), 75% of development teams face issues with bugs, defects, or delays when it’s time to release.

 	
 Building features your users actually want. This often results in better user interaction and quicker feedback regarding released features, which can help the product team focus on the most demanded features and build a high-quality product.

 	
 Having a production-ready package available. This is an excellent way to accelerate the time to market.

 	
 Increasing product quality and reliability through quality and stress tests, and tracking with better visibility into project status and health.

 	
 Driving innovation from feedback while building high-quality products through each iteration.

 However, the journey from a manual to a highly automated deployment process can take several months. Therefore, companies need to be iterative in adopting CI/CD, as illustrated in figure 1.8.

 [image:]

 Figure 1.8 Introducing CI/CD to an organization

 You should always prioritize the steps in CI/CD. First and foremost, automate the process for compiling the source code. Ideally, you will develop new features and fix multiple bugs per day. Manually, this process takes a few minutes to a couple of hours. Also, you should prioritize functional testing before UI testing, as it often changes and thus requires frequent pipeline changes. So make sure to break your CI/CD steps into smaller segments and automate in patches to make the best use of your resources.

 Another concern is that the complexity of CI/CD will be increasing, from handling singular applications to dozens of microservices (multiple pipelines). Therefore, adapting your CI/CD tools and processes is mandatory to keep pace.

 Moreover, you need to have a clear road map of your product with a proven track record of development success. Your end customers should be able to consume constant product changes. Therefore, using CI/CD requires a high degree of discipline, dedication to quality, and a learning curve (new skill sets). If you can’t handle that, stop thinking about CI/CD immediately.

 As a result, moving to CI/CD should not be an isolated decision, made alone by the DevOps team. A successful rollout of CI/CD must be a decision for your whole organization and should be made only when your entire organization agrees to it.

 Although you need to keep some concerns in mind, the benefits of CI/CD almost always outweigh the challenges. To realize the full promise of cloud-native applications, you must implement CI/CD practices that are best suited to your unique business goals.

 In this book, we will go through some real-world use cases for building CI/CD pipelines for most adopted cloud-native architectures, such as Dockerized microservices with both Docker Swarm and Kubernetes, as well as Lambda-based serverless applications. We will also cover how to manage and scale a CI tool with less maintenance hassle to help you increase deployment speed. But first, what makes a modern CI tool, and which one are we going to use?

 Note While monoliths may not be trendy, many companies still have monolith flagship products and can still benefit tremendously from a well-architected CI/CD solution. So most of the examples in the book can also be applied to modernizing monolithic applications.

 1.6 Using essential CI/CD tools

 A lot of excellent CI tools are out there. Some have been here for a long time, and others are relatively new. It’s a bit redundant to say that a modern CI tool must be fast, user-friendly, and flexible, since those are the features we already expect out of the box. CI tools can be divided into the following three main categories:

 	
 Cloud-managed solutions like AWS CodePipeline (https://aws.amazon.com/codepipeline/), Google Cloud Build (https://cloud.google.com/build), and Microsoft Azure Pipelines (https://azure.microsoft.com/services/devops/pipelines/).

 	
 Open source solutions such as Jenkins (www.jenkins.io), Spinnaker (https://spinnaker.io/), or GoCD (www.gocd.org).

 	
 Software-as-a-service (SaaS) solutions like Travis CI (https://travis-ci.org/), CircleCI (https://circleci.com/), and TeamCity (www.jetbrains.com/teamcity/).

 1.6.1 Choosing a CI/CD tool

 Figure 1.9 shows the most popular CI/CD tools on the market today. These tools are the mature ones, with the essential capabilities for your project.

 [image:]

 Figure 1.9 Top CI/CD tools in 2021

 Plenty of excellent CI tools are available, so you need to pick the best one based on the following factors:

 	
 Team experience and skills—While many tools use configuration YAML files to declare the CI/CD pipeline, they might require some sysadmin skills to set up and provision the needed infrastructure to run the CI/CD platform. Also, maintaining the underlying infrastructure might cause a lot of headaches and become a bottleneck for your company’s growth once your project codebase becomes bigger (scaling capabilities), as you need to maintain distributed CI/CD complex pipelines across multiple nodes or servers.

 	
 Target platform—Consider the operating system your application or project is running on (some CI tools don’t support macOS and ARM architecture), and the use of a self-hosted infrastructure or a cloud provider.

 	
 Programming language and architecture—Most CI tools support the top cutting-edge languages including Java, Ruby, Python, PHP, and JavaScript. However, some tools like TeamCity offer better integration and support for Java and .NET projects. Similarly, Bamboo, as a creation of Atlassian, has native support for Jira and Bitbucket. Additionally, the deployment solution can be a factor in choosing the right CI tool for your project. Tools like Drone (www.drone.io) and GitLab CI (https://docs.gitlab.com/ee/ci/) offer native Docker support with an integrated Docker registry.

 1.6.2 Introducing Jenkins

 Although no single tool can satisfy the needs of every project, in this book, we will rely heavily on Jenkins. It’s considered one of the most popular CI tools on the market today, with over one million users. It was written in Java, making it a cross-platform (Windows, Linux, and macOS) continuous integration tool.

 Originally a part of the Hudson project, the community and codebase split following trademark conflicts with Oracle after it acquired Sun Microsystems. Hudson was originally released in 2005, while the first release as Jenkins was made in 2011.

 Note Hosted SaaS platforms can be beneficial if you’re willing to pay a bit of extra money for someone else to maintain and update the solution. Businesses tend to choose this option when they need a UI superior to what Jenkins offers and when they lack infrastructure skills. But a major benefit of self-hosting solutions like Jenkins is that you have more control and flexibility over your own data security and job pipelines.

 A rich set of plugins enables Jenkins to support any type of language or technology such as Docker, Maven, Git, Mercurial, and AWS. Being an open source project makes it customizable and easy for developers to extend by creating custom plugins. Here are some of Jenkins key features:

 	
 Extensible with a huge community-contributed plugin resource (more than 1,400 plugins).

 	
 A free and open source tool as well as a paid enterprise edition offered by CloudBees (www.cloudbees.com/jenkins) with speedy customer support.

 	
 Has an active community that helps developers reduce the time to build a working CI/CD workflow.

 	
 Can be deployed on premises or in the cloud with an easy configuration through the user interface or the command line.

 	
 Supports distributed builds with master-worker architecture with a built-in parallelism mechanism.

 	
 A powerful and flexible tool with complete control over workflow that can serve every CI/CD need.

 	
 Works on many platforms and has the support for a wide variety of tools and frameworks.

 	
 Supports containers as build agents for teams planning to use Docker.

 	
 Seamless integration with GitHub, GitLab, Bitbucket, and most of the source code management (SCM) systems and Apache Subversion (SVN).

 	
 Flexible user management, user roles assignment, sorting users into groups, different ways of user authentication (including LDAP, GitHub OAuth, and Active Directory).

 	
 The CI process can be defined using the Groovy language in files within the repository itself or through text fields in the Jenkins web UI, thanks to the Jenkins pipeline workflow.

 Note If you like to test a small application for one particular platform, you won’t need the complexity of running a Jenkins server.

 Another key feature of Jenkins is pipeline as code. We’re going to use this approach to create Jenkins jobs. The cool part of using this approach is that our entire Jenkins jobs configuration can be created, updated, and version-controlled along with the rest of the application source code.

 It is helpful to note that Jenkins must be hosted on a server, so it often needs the attention of someone with infrastructure skills. You can’t just set it up and then expect it to run itself; the system requires frequent updates and maintenance. The main barrier to entry for most teams is the initial setup, procrastination, or failed previous attempts to set it up. People tend to know it’s good, but many teams neglect it for more urgent coding work. Perhaps someone on your team tried to deploy Jenkins at some point but did not successfully maintain it. Maybe the wasted effort gave your boss a bad impression about it.

 The reasons people do not implement Jenkins are usually very practical. That’s why, throughout this book, we will be using the magical power of infrastructure as code with open source tools like Terraform and Packer to set up our entire CI infrastructure out of thin air on most popular public cloud providers such as AWS, GCP, and Microsoft Azure.

 Another problem we will tackle in this book is how to write tests. Writing tests is something most developers want to do, but often don’t find the time to do. Understandably, coding the actual application is usually a higher priority for the business. Also, tests break, meaning when the functionality under test changes, it needs to be updated. If functionality is not updated, it stops delivering value. We will cover how to run various types of tests within CI/CD pipelines and how to integrate external code analysis tools.

 To sum up, implementing CI/CD for cloud-native architecture requires a cultural and mindset shift, especially from management. Managers have to allow time for this “unproductive stuff” to be done.

 Still, the brief sacrifice of time translates into long-term benefits for the whole company. With Jenkins, your code becomes easier to maintain, and fewer bugs sneak into production. Your team becomes more integrated, and builds take less time. Your business can ship faster and keep up with the changing needs of your customers (by shipping code faster, organizations can quickly respond to changes and keep products on the market).

 CI/CD is not an expense but an investment. And the return on investment (ROI) for implementation can be counted in time saved, errors avoided, and higher-quality products delivered more easily to your clients.

 Summary

 	
 Cloud-native architectures are changing the landscape, forcing organizations to think about new models and new delivery methods.

 	
 Continuous integration, delivery, and deployment are practices designed to help increase the velocity of development and the release of well-tested, usable products.

 	
 Choosing the right CI/CD tool is critical to the long-term success of cloud-native applications and should be based on platform complexity, integration, learning curve, pricing, and work-time efficiency.

 	
 Jenkins can leverage the team’s current workflow to best exploit the automation features and create a solid CI/CD pipeline.

 2 Pipeline as code with Jenkins

 This chapter covers

 	How pipeline as code works with Jenkins

 	An overview of Jenkinsfile structure and syntax

 	Introduction to Blue Ocean, the new Jenkins user experience

 	Declarative versus scripted Jenkins pipelines

 	Integration of a GitFlow model within Jenkins projects

 	Tips for productivity and efficiency while writing Jenkinsfiles for complex CI/CD pipelines

 There’s no doubt that cloud computing has had a major impact on the way companies build, scale, and maintain technology products. The ability to click a few buttons to provision machines, databases, and other infrastructure has led to an increase in developer productivity we’ve never seen before.

 While it was easy to spin up simple cloud architectures, mistakes can easily be made while provisioning complex ones. Human error will always be present, especially when you can launch cloud infrastructure by clicking buttons on the cloud provider’s web console.

 The only way to avoid these kinds of errors is through automation, and infrastructure as code (IaC) is helping engineers automatically launch cloud environments quickly and without mistakes. The growth of DevOps and the adoption of its practices have led to more tooling that can implement the IaC paradigm to a larger degree.

 In the past, setting up CI/CD workflow has been a manual process. It was commonly done via defining a series of individual jobs for the various pipeline tasks. Each job was configured via web forms—filling in text boxes, selecting entries from drop-down lists, and so forth. And then the series of jobs were strung together, each triggering the next, into a pipeline.

 Jenkins somewhat lagged in this area until the release of Jenkins 2. Although widely used and a primary workflow tool for creating CI/CD pipelines, this way of creating and connecting Jenkins jobs to form a pipeline was challenging. It did not meet the definition of IaC. Job configurations were stored only as Extensible Markup Language (XML) files within the Jenkins configuration area. This meant that the files were not easily readable or directly modifiable. And the Jenkins application itself provided the user’s primary view and access to them.

 Note Jenkins 2 is the name we are generally applying to newer versions that support the pipeline-as-code functionality, as well as other features.

 Because it’s an important part of each project, the pipeline configuration should be managed as code and rolled out automatically. This also allows us to manage the pipeline itself, applying the same standards that apply to application code. That’s where pipeline as code comes into play.

 2.1 Introducing the Jenkinsfile

 Pipeline as code (PaC) describes a set of features that allow Jenkins users to define pipelined job processes with code, stored and versioned in a source repository. These features allow Jenkins to discover, manage, and run jobs for multiple source repositories and branches—eliminating the need for manual job creation and management.

 PaC helps you automate the CI/CD workflows in a repeatable, consistent manner, which has many benefits:

 	
 Speed—You can quickly and easily write a CI/CD workflow for sandbox, staging, and production environments, which can help you deliver your product on time.

 	
 Consistency—PaC completely standardizes the setup of CI/CD, so there’s a reduced possibility of any human errors or deviations.

 	
 Risk management—Because the pipeline can be version-controlled, PaC allows every change to your CI/CD workflow to be documented, logged, tracked, and tested just like application code. Hence, you can revert to a working version in case of failure.

 	
 Efficiency—It minimizes the introduction of human errors and helps your application’s deployment run more smoothly.

 The bottom line is simple: adopting the PaC paradigm will create a culture that generates better software, and will save you a lot of money, time, and headaches trying to implement complex CI/CD workflows through UIs and web forms. So how does PaC work with Jenkins?

 To use PaC with Jenkins, projects must contain a file named Jenkinsfile in the code repository top-level folder. This template file contains a set of instructions, or steps, called stages that will be executed on Jenkins every time the development team pushes a new feature to the code repository. Because Jenkinsfile is living along with the source code, we can always pull, edit, and push the Jenkinsfile within source control, just as we would for any other file. We can also do things like code reviews on the pipeline script.

 Jenkinsfile uses a domain-specific language (DSL) based on the Groovy programming language to define the entire CI/CD workflow. Figure 2.1 is an example of a classic CI/CD workflow.

 [image:]

 Figure 2.1 CI/CD workflow

 Those phases can be described in a Jenkinsfile by using the stage keyword. A stage is a block that contains a series of steps. It can be used to visualize the pipeline process. The following listing is an example of a simple Jenkinsfile for figure 2.1.

 Listing 2.1 Jenkinsfile stages

 node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 }

 stage('Quality Test'){.
 echo "Running quality tests"
 }

 stage('Unit Test'){
 echo "Running unit tests"
 }

 stage('Security Test').
 echo "Running security checks"
 }

 stage('Build'){.
 echo "Building artifact"
 }

 stage('Push'){.
 echo "Storing artifact"
 }

 stage('Deploy').
 echo "Deploying artifact"
 }

 stage('Acceptance Tests'){
 echo "Running post-integrations tests"
 }
 } catch(err){
 echo "Handling errors".
 } finally.
 echo "Cleaning up"
 }
}

 We’ll dive deep into the syntax in the next chapter, but for now, let’s focus on what the stages are doing:

 	
 Checkout—Pulls the latest changes from the source code repository, which can be GitHub, Bitbucket, Mercurial, or any SCM.

 	
 Quality tests—Contains instructions on how to execute static code analysis to measure code quality, and identify bugs, vulnerabilities, and code smell. It can be automated by integrating external tools like SonarQube to fix code-quality violations and reduce technical debt.

 	
 Unit tests—In this stage, unit tests are executed. If tests are successful, a code coverage report will be generated that can be consumed by Jenkins plugins to show a visual overview of the project’s health and keep track of the code coverage metrics as your project grows. Code coverage can be an indication of how much your application code is executed during your tests, and can give some indication as to how well your team is applying good testing practices such test-driven development (TDD) or behavior-driven development (BDD).

 	
 Security tests—Responsible for identifying project dependencies and checks if any known, publicly disclosed vulnerabilities exist. A security report will be published with the total number of findings grouped by severity (critical, high, medium, or low). A well-known open source Jenkins plugin is OWASP Dependency-Check (http://mng.bz/MvR7).

 	
 Build—In this phase, the needed dependencies will be installed, the source code will be compiled, and an artifact will be built (Docker image, zip file, Maven JAR, and so forth).

 	
 Push—The artifact built in the previous stage will be versioned and stored in a remote repository.

 	
 Deploy—In this stage, the artifact will be deployed to a sandbox/testing environment for quality assurance or to production after the user has approved the deployment.

 	
 Acceptance tests—After the changes are deployed, a series of smoke and validation tests will be executed against the deployed application to verify that the application is running as expected. The tests can be simple health checks with cURL commands or sophisticated API calls.

 If any of these stages throws an exception or error, the pipeline build’s status will be set to fail. This default behavior can be overridden by using try-catch blocks. The finally block can be used to clean up the Jenkins workspace (temporary files or build packages) or to execute post-script commands such as sending Slack notifications to alert the development team about the build status.

 Note Don’t worry if you don’t completely understand the steps of the Jenkinsfile in listing 2.1. You will get an in-depth explanation of how to implement each stage in chapters 7, 8, and 9.

 One of the things that makes Jenkins a leader when it comes to CI tools is the ecosystem behind it. You can customize your Jenkins instance with free open source plugins. A must-have plugin is Pipeline Stage View (https://plugins.jenkins.io/pipeline-rest-api), shown in figure 2.2. It allows you to have a visualization of your pipeline stages. This plugin is handy when you have complex build pipelines and want to track the progress of each stage.

 The pipeline output is organized as a matrix, with each row representing a run of the job, and each column mapped to a defined stage in the pipeline. When you run some builds, the stage view will appear with Checkout, Quality Test, Unit Test, Security Test, Build, Push, and Deploy columns, and one row per build showing the status of those stages. When hovering over a stage cell, you can click the Logs button to see log messages printed in that stage.

 Note Part 3 of this book covers how to create a Jenkins job and define a pipeline like the one in figure 2.2.

 [image:]

 Figure 2.2 Jenkins Pipeline Stage View

 You can take this UI further and install the Blue Ocean plugin (https://plugins.jenkins.io/blueocean/) to have a fast and intuitive comprehension of the CI/CD stages, as shown in figure 2.3. This plugin requires Jenkins version 2.7 or later.

 [image:]

 Figure 2.3 Blue Ocean plugin’s detailed view of the pipeline

 Note Chapter 5 covers how to install and configure the Jenkins Blue Ocean plugin.

 2.1.1 Blue Ocean plugin

 You can also troubleshoot pipeline failure by clicking the stage in red to easily identify the problem without going through thousands of output logs.

 One of the big concerns while choosing Jenkins is the user interface, which many users consider outdated, unintuitive, and hard to navigate when you have many projects. That’s why the Jenkins core team launched Blue Ocean in April 2017 for a new, modern Jenkins user experience.

 Blue Ocean is a new user experience for Jenkins, based on a modern design that allows users to graphically create, personalize, visualize, and diagnose CD pipelines. It comes bundled with the Jenkins Pipeline plugin or as a separate plugin (www.jenkins.io/doc/book/blueocean/getting-started/).

 Note The Jenkins Classic UI exists side-by-side at its usual place at JENKINS_ URL/jenkins. The Blue Ocean plugin is available by appending /blue to the end of the Jenkins server URL.

 Anyone in your team can create a CI/CD pipeline with just several clicks. Blue Ocean has seamless integration with Git and GitHub. It prompts you for credentials to access your repositories on the Git server in order to create pipelines based on those repositories (figure 2.4).

 [image:]

 Figure 2.4 New pipeline in Blue Ocean mode

 You can also create a complete CI/CD pipeline from start to finish by using the intuitive and visual pipeline editor (figure 2.5). It’s a great way to write pipeline prototypes and debug pipeline stages before generating a working Jenkinsfile.

 [image:]

 Figure 2.5 Defining stages with pipeline editor

 Any pipeline created with the visual editor can also be edited in your favorite text editor, bringing all the benefits of PaC. Figure 2.6 shows an example of the pipeline script generated by pressing Ctrl-S for Windows users and Command-S for macOS users.

 [image:]

 Figure 2.6 Jenkinsfile generated from the pipeline edito.

 You can now copy the content and paste it in a new file called Jenkinsfile in your code repository, alongside the source code. Alternatively, you can upload the file directly from the Blue Ocean editor by supplying an appropriate description and the target Git branch (figure 2.7).

 [image:]

 Figure 2.7 Committing the Jenkinsfile to the Git repositor.

 Once the file is committed, the pipeline will be triggered, and the stages defined in the pipeline will be executed.

 Keep in mind that Blue Ocean doesn’t support all features of Jenkins such as administration, nodes management, or credential settings. However, you can always switch back to the classic Jenkins UI by clicking the exit icon at the top right of the Blue Ocean navigation bar.

 Note This is just a sneak peek of Blue Ocean’s main features. In chapter 7, we will dig deeper into each feature.

 Now that you’re familiar with how a Jenkinsfile works, let’s see how to write your own pipeline as code with Jenkins. Jenkins 2 allows two styles of structure and syntax for building out workflows. These are referred to as scripted and declarative pipelines.

 2.1.2 Scripted pipeline

 A scripted pipeline is a traditional way of writing pipeline code. In this pipeline, the Jenkinsfile is written on the Jenkins UI instance. The pipeline steps are wrapped in a node block (denoted by the opening and closing braces). Here, a node refers to a Jenkins agent (formerly referred to as a slave instance).

 The node gets mapped to the Jenkins cluster by using a label. A label is simply an identifier that has been added when configuring the node in Jenkins via the Manage Nodes section, as shown in figure 2.8.

 [image:]

 Figure 2.8 Assigning labels to Jenkins workers

 Note The next chapter covers how the Jenkins distributed mode works and how node agents can be used to offload work from Jenkins.

 The steps inside the node block can include and make use of any valid Groovy code. The pipeline can be defined by creating a new pipeline project and typing the code in the Pipeline Editor section, as shown in figure 2.9.

 [image:]

 Figure 2.9 Using an inline Jenkinsfile with Pipeline scripts

 Although this simple node block is technically valid syntax, Jenkins pipelines generally have a further level of granularity—stages. A stage is a way to divide the pipeline into logical functional units. It also serves to group steps and Groovy code together to create targeted functionality. Figure 2.10 shows an example of the preceding pipeline using stages.

 [image:]

 Figure 2.10 Using the stage keyword to define logical units

 The pipeline has two stages:

 	
 Checkout—For cloning the project GitHub repository

 	
 Build—For building the project Docker image

 How much of the pipeline’s logic goes into a particular stage is up to the developer. However, the general practice is to create stages that mimic the separate pieces of a traditional pipeline.

 The scripted pipeline uses stricter Groovy-based syntaxes because it was the first pipeline to be built on the Groovy foundation. Since this Groovy script was not typically desirable to all users, the declarative pipeline was introduced to offer a simpler and more optioned Groovy syntax.

 Note Chapter 14 covers how to write a shared Jenkins library with custom Groovy scripts for code modularity.

 2.1.3 Declarative pipeline

 A declarative pipeline is a relatively new feature (introduced in Pipeline 2.5, https://plugins.jenkins.io/workflow-aggregator) that supports the PaC approach. It makes the pipeline code easier to read and write for new Jenkins users.

 This code is written in a Jenkinsfile that can be checked into a version-control system (VCS) such as SVN or an SCM system such as GitHub, GitLab, Bitbucket, or others. Figure 2.11 is an example of a Jenkinsfile located at the root folder of a GitHub repository.

 [image:]

 Figure 2.11 A Jenkinsfile stored in a source-control repository

 In declarative syntax, you cannot use Groovy code such as variables, loops, or conditions. You are restricted to the structured sections/blocks and the DSL (Jenkins domain-specific language) steps.

 Figure 2.12 shows the differences between scripted and declarative pipelines. Declarative pipelines are restricted and have well-defined structures (for example, all DSL statements must be enclosed in a steps directive).

 [image:]

 Figure 2.12 Differences between scripted and declarative pipelines

 Declarative pipelines provide a more restrictive syntax, as each pipeline must use these predefined block attributes or sections:

 	
 agent

 	
 environment

 	
 post

 	
 stages

 	
 steps

 The agent section defines the worker or machine where the pipeline will be executed. This section must be defined at the top level inside the pipeline block or overridden at the stage level. The agent can be any of the following:

 	
 Jenkins worker or node (refer to chapter 3 for distributed builds on Jenkins)

 	
 Docker container based on a Docker image or a custom Dockerfile (covered in chapter 9)

 	
 Pod deployed on a Kubernetes cluster (covered in chapter 14)

 For example, you can define the pipeline to run on a custom Docker container, as shown in the following listing.

 Listing 2.2 Declarative pipeline agents definition

 pipeline{
 agent {
 node {
 label 'workers'
 }

 dockerfile {
 filename 'Dockerfile'
 label 'workers'
 }

 kubernetes {
 label 'workers'
 yaml """
 kind: Pod
 metadata:
 name: jenkins-worker
 spec:
 containers:
 - name: nodejs
 image: node:lts
 tty: true
 """
 }
 }
}

 Note Refer to the official documentation for more information about the agent syntax: www.jenkins.io/doc/book/pipeline/syntax/.

 The environment section contains a set of environment variables needed to run the pipeline steps. The variables can be defined as sequences of key-value pairs. These will be available for all steps if the environment block is defined at the pipeline top level; otherwise, the variables can be stage-specific. You can also reference credential variables by using a helper method credentials(), which takes as a parameter the ID of the target credential, as shown in the following listing.

 Listing 2.3 Environment variables definition

 pipeline{
 environment {
 REGISTRY_CREDENTIALS= credentials('DOCKER_REGISTRY')
 REGISTRY_URL = 'https://registry.domain.com'
 }

 stages {
 stage('Push'){
 steps{
 sh 'docker login $REGISTRY_URL --username $REGISTRY_CREDENTIALS_USR --password $REGISTRY_CREDENTIALS_PSW'
 }
 }
 }
}

 The Docker registry username and password are accessible automatically by referencing the REGISTRY_CREDENTIALS_USR and REGISTRY_CREDENTIALS_PSW environment variables. Those credentials are then passed to the docker login command to authenticate with the Docker Registry before pushing a Docker image.

 The post section contains commands or scripts that will be run upon the completion of a pipeline or stage run, depending on the location of this section within the pipeline. However, conventionally the post section should be placed at the end of the pipeline. Examples of commands that can be used within the post section are those that provide Slack notifications, clean up the job workspace, and execute post-scripts based on the build status. The pipeline build status can be fetched by using either the currentBuild.result variable or the post-condition blocks always, success, unstable, failure, and so forth.

 The following listing is an example Slack notification. The instructions wrapped by the always directive will run no matter the status of the build and will not interfere with the final status.

 Listing 2.4 Post build actions in a declarative pipeline

 pipeline{
 post {
 always {
 echo 'Cleaning up workspace'
 }
 success {
 slackSend (color: 'GREEN', message: \
 "${env.JOB_NAME} Successful build")
 }
 failure {
 slackSend (color: 'RED', message: "${env.JOB_NAME} Failed build")
 }
 }
}

 This code references the env.JOB_NAME variable, which contains the Jenkins job name.

 Note Chapter 10 has a dedicated section on how to implement Slack notifications with Jenkins.

 The stages section is the core of the pipeline. This section defines what is to be done at a high level. It contains a sequence of more stage directives for each discrete part of the CI/CD workflow.

 Finally, the steps section contains a series of more steps to be executed in a given stage directive. The following listing defines a Test stage with instructions to run unit tests and generate code coverage reports.

 Listing 2.5 Running automated tests within a pipeline

 pipeline{
 agent any
 stages {
 stage('Test'){
 steps {
 sh 'npm run test'
 sh 'npm run coverage'
 }
 }
 }
}

 These are the most used directives and sections while writing a declarative pipeline. Additional directives will be covered throughout this book. For an overview of all available blocks, refer to Pipeline Syntax documentation (www.jenkins.io/doc/book/pipe line/syntax/#stages).

 Both declarative and scripted styles can be used to build CI/CD pipelines in either the web UI or with a Jenkinsfile. However, it’s generally considered a best practice to create a Jenkinsfile and check it into the source-control repository to have a single source of truth and be able to track all changes (auditing) that your pipeline went through.

 Note In chapters 7 through 11, you will learn how to write a scripted pipeline from scratch for various application architectures and how to convert a Jenkinsfile from a scripted to a declarative format.

 2.2 Understanding multibranch pipelines

 When you’re building your application, you must separate your deployment environments to test new changes without impacting your production. Therefore, having multiple environments for your application makes sense. To be able to achieve that, you need to structure your code repository to use multiple branches, with each branch representing an environment. For instance, the master branch corresponds to the current production code.

 While it’s easier nowadays to replicate multiple infrastructure environments with the adoption of cloud computing and IaC tools, you still need to configure your CI tools for each target branch.

 Fortunately, when using a Jenkinsfile, your pipeline definition lives with the code source of the application going through the pipeline. Jenkins will automatically scan through each branch in the application code repository and check whether the branch has a Jenkinsfile. If it does, Jenkins will automatically create and configure a subproject within the multibranch pipeline project to run the pipeline for that branch. This eliminates the need for manual pipeline creation and management.

 Figure 2.13 shows the jobs in a multibranch pipeline project after executing against the Jenkinsfiles and source repositories. Jenkins automatically scans the designated repository and creates appropriate projects for each branch in the repository that contains a Jenkinsfile.

 [image:]

 Figure 2.13 Jenkins automatically creates a job for each branch with a Jenkinsfile.

 In figure 2.13, Jenkins will trigger a build whenever a new code change occurs on any of the develop, preprod, or master branches. In addition, each branch might have different pipeline stages. For example, you might perform a complete CI/CD pipeline for the master branch and only a CI pipeline for the develop branch (see figure 2.14). You can do this with the help of a multibranch pipeline project.

 [image:]

 Figure 2.14 Each Git branch can have its own Jenkinsfile stages.

 A multibranch pipeline can also be used to validate pull requests before merging them to target branches. You can configure Jenkins to launch pre-integration tests against the application’s code and block the pull request merge if the tests failed, as in figure 2.15.

 [image:]

 Figure 2.15 Jenkins build status in GitHub pull request

 Note Chapter 9 covers using multibranch pipelines to validate pull/change requests.

 Now that you’re familiar with the basics of the Jenkins multibranch pipeline, you must follow Git branching guidelines to have a common vision and methodology within the development team. So which Git branching strategies should you use for your development cycle?

 2.3 Exploring the GitFlow branch model

 A couple of Git branching strategies exist. The most interesting and used one is GitFlow. It consists of the following essential branches:

 	
 Master—A branch that corresponds to the current production code. You can’t commit directly except for hotfixes. Git tags can be used to tag all commits in the master branch with a version number (for instance, you can use the semantic versioning convention detailed at https://semver.org/).

 	
 Preprod—A release branch, a mirror of production. It can be used to test all new features developed on the develop branch before merging them to the master branch.

 	
 Develop—A development integration branch containing the latest integrated development code.

 	
 Feature/X—An individual feature branch being developed. Each new feature resides in its own branch, and it’s generally created from the latest develop branch.

 	
 Hotfix/X—When you need to solve something in production code, you can use the hotfix branch and open a pull request for the master branch. This branch is based on the master branch.

 Note A complete example demonstrating the use of GitFlow with the Jenkins multibranch pipeline project is given in chapters 7 through 11.

 The overall flow of GitFlow within Jenkins can be summarized as follows:

 	
 A develop branch is created from the master branch.

 	
 A preprod branch is created from the develop branch.

 	
 A developer creates a new feature branch based on the development branch. When a feature is completed, a pull request is created.

 	
 Jenkins automatically runs pre-integration tests in this individual feature. If the tests are successful, Jenkins marks the commits as successful. The development team will then review the changes and merge the pull request of the new feature branch to the develop branch and delete the feature branch.

 	
 A build will be triggered on the develop branch, and the changes will be deployed to the sandbox/development environment.

 	
 A pull request is created to merge the develop branch into the preprod branch.

 	
 When the develop branch is merged to the preprod branch, the pipeline will be triggered to deploy the new features to the staging environment upon the completion of the pipeline.

 	
 Once the release is being validated, the preprod branch will be merged to master, and changes will be deployed to the production environment after user approval.

 	
 If an issue in production is detected, a hot branch is created from the master branch. Once the hotfix is complete, it will be merged to both the develop and master branches.

 Note You can use the GitFlow wrapper around the Git command line (available on multiple operating systems) to create a project blueprint with all needed branches.

 Figure 2.16 summarizes how GitFlow works.

 [image:]

 Figure 2.16 Overview of GitFlow branches

 GitFlow does not solve all problems with branching. But it offers you a more logical branch structure and a great workflow organization model when working within a big team. In addition, many feature branches are developed concurrently, which makes parallel development easy. For smaller projects (and smaller teams), GitFlow can be overkill. Hence, in upcoming chapters, we will usually use three main branches:

 	
 Master branch, to store the official release history and the source code of an application running in a production environment

 	
 Preprod branch, to store new integrated features running in the staging environment and ready to be merged to the master branch

 	
 Develop branch, for the latest delivered development changes and mirror of the application running in a sandbox environment

 2.4 Test-driven development with Jenkins

 Using Jenkinsfiles has one potential downside: it can be more challenging to discover problems up-front when you are working in the external file and not in the environment of the Jenkins server. One approach to dealing with this is developing the code within the Jenkins server as a pipeline project first. Then, you can convert it to a Jenkinsfile afterward.

 You can also use Blue Ocean mode as a playground, as seen earlier in this chapter, to set up a Jenkinsfile from scratch with a modern and intuitive pipeline editor. Another approach to test a new pipeline is a declarative pipeline linter application that you can run against Jenkinsfiles, outside Jenkins, to detect problems early.

 2.4.1 The Jenkins Replay button

 Sometimes, when working on Jenkins jobs, you might find yourself stuck in this cycle of committing the Jenkinsfile, pushing it, and running the job over and over again. It can be a time-consuming and tedious workflow, especially if your build time is inherently long. Plus, your Git history will get filled with junk commits (unnecessary debugging commits).

 What if you could work on your Jenkinsfile in a “sandbox” and test the Jenkinsfile live on the system? A neat little feature allows you to modify the Jenkins file and rerun the job. You can do it over and over until you are happy with the results and then commit the working Jenkinsfile without breaking anything.

 Now, this is a little easier. If you have a Pipeline build that did not proceed exactly as you expected, you can use the Replay button in the build’s sidebar, shown in fig- ure 2.17.

 [image:]

 Figure 2.17 Rerunning the build with a Replay button

 It is somewhat similar to the Rebuild button but allows you to edit the Jenkinsfile content just before running the job. Therefore, you can use the built-in Jenkinsfile block in the UI (figure 2.18), to test your pipelines out there before committing them to source control like GitHub.

 [image:]

 Figure 2.18 Updating the Jenkinsfile before replaying the pipeline

 You can change your pipeline’s code and click the Run button and rerun the job. Once you are satisfied with the changes, you update the Jenkinsfile with the applied changes and commit them to your SCM.

 The Replay button feature allows for quick modifications and execution of an existing pipeline without changing the pipeline configuration or creating a new commit. It’s ideal for rapid iteration and prototyping of a pipeline.

 2.4.2 Command-line pipeline linter

 For advanced users, you can use the Jenkins RESTful API to validate the Jenkinsfile syntax by issuing an HTTP/HTTPS POST request with the parameters shown in figure 2.19.

 Note To get the API endpoint working on a Jenkins server with cross-site request forgery (CSRF) protection enabled, you need to request a crumb issuer and include it in the Authorization header in the issued HTTP request. To generate this crumb, you need to request the following URL: JENKINS_ URL/jenkins/crumbIssuer/api/json.

 Figure 2.19 is an example of how to use the Jenkins Linter API to validate Jenkinsfile syntax. We’re using Postman in this example, and the Jenkinsfile form data has been loaded from the developer machine.

 [image:]

 Figure 2.19 Example of using Jenkins Linter API

 The API response will return both errors and warnings, which can save time during the development and allows you to follow best practices while writing a Jenkinsfile.

 Specifying the real password is still supported, but it is not recommended because of the risk of revealing the password, and the human tendency to reuse the same password in different places. Another way of validating the Jenkinsfile is to run the following command from the terminal session (cURL is available for most operating systems):

 curl -X POST -L --user USERNAME:TOKEN JENKINS_URL/pipeline-model-converter/validat.
-F "jenkinsfile=<Jenkinsfile"

 Note Chapter 7 covers another way of creating a Jenkins API token from the Jenkins web dashboard.

 The Jenkins command-line interface (CLI), www.jenkins.io/doc/book/managing/cli/, can also be used with the declarative-lint option to lint a declarative pipeline from the command line before actually running it. You can issue this command to lint a Jenkinsfile via the CLI with SSH:

 ssh -p $JENKINS_SSHD_PORT $JENKINS_HOSTNAME declarative-linter < Jenkinsfile

 Replace the JENKINS_HOSTNAME and JENKINS_SSHD_PORT variables based on the URL and port where you are running Jenkins. You can also use localhost as a URL if you are running Jenkins on your machine.

 2.4.3 IDE integrations

 The Jenkins CLI or API does a great job of reducing the turnaround times when writing a Jenkinsfile, but its usage has its own inconveniences. You need tools like SSH to make a connection to your Jenkins server, and you need to remember the correct command to validate your Jenkinsfile.

 Fortunately, you can install extensions on your favorite integrated development environment (IDE) to automate the validation process. For instance, on Visual Studio Code (VSCode), you can install Jenkins Validation Linter from the marketplace. This extension, shown in figure 2.20, validates Jenkinsfiles by sending them to the Pipeline Linter endpoint of a Jenkins server.

 Note Similar extensions and packages are available to validate a Jenkinsfile for Eclipse, Atom, and Sublime Text.

 [image:]

 Figure 2.20 Jenkins Pipeline Linter extension for VSCode

 Once the extension is installed, you must provide Jenkins server settings, including the server URL (with the following format: JENKINS_URL/pipeline_model_converter/validate) and credentials (Jenkins username and password, or token if CSRF protection is enabled) by clicking Preferences from the top navigation bar, and selecting Settings, as shown in figure 2.21.

 [image:]

 Figure 2.21 Jenkins Pipeline Linter configuration

 Once settings are configured, you can type the Validate Jenkinsfile command on the command palette search bar (keyword shortcut ⇧⌘P), as shown in figure 2.22.

 [image:]

 Figure 2.22 VSCode command palette

 The linter will report the pipeline validation results in the terminal, as shown in fig-ure 2.23.

 [image:]

 Figure 2.23 Example of Jenkins Linter’s output

 Note In chapter 8, you will learn how to write unit tests for CI pipelines and use the Jenkins Pipeline Unit (https://github.com/jenkinsci/JenkinsPipelineUnit) testing framework to mock the pipeline executor locally.

 Summary

 	
 Infrastructure as code influenced CI/CD tools to embrace the pipeline-as-code concepts.

 	
 A Jenkinsfile uses Groovy syntax and utilizes shared Jenkins libraries to customize a CI/CD workflow.

 	
 Declarative pipelines encourage a declarative programming model. Scripted pipelines follow a more imperative programming model.

 	
 The Blue Ocean editor can facilitate a quick and easy setup of a new Jenkins pipeline with minimal hassle.

 	
 A feature branch workflow facilitates pull requests and more efficient collaboration.

 	
 GitFlow offers a dedicated channel for hotfixes to production without interrupting the rest of the workflow or waiting for the next release cycle.

 	
 The Jenkins UI, Replay button, and code linters can be used to test new pipelines before committing them to source control, enabling you to avoid a bunch of unnecessary debugging commits.

 5 Discovering Jenkins as code with Terraform

 This chapter covers

 	Introducing infrastructure as code (IaC)

 	Using HashiCorp Terraform, which enables IaC

 	Deploying Jenkins in a secure private network

 	Scaling Jenkins workers dynamically with AWS Auto Scaling

 In the previous chapter, we used HashiCorp Packer to create custom Jenkins machine images; in this chapter, we will use those images (figure 5.1) to deploy the machines. To do that, we will write declarative definitions of the Jenkins infrastructure we want to exist and use an automation tool to deploy the resources on the given infrastructure-as-a service (IaaS) provider.

 In the past, managing IT infrastructure was a hard job. System administrators had to manually manage and configure all of the hardware and software that was needed for the applications to run. However, in recent years, things have changed dramatically. Trends like cloud computing revolutionized—and improved—the way organizations design, develop, and maintain their IT infrastructure. One of the critical components of this trend is called infrastructure as code.

 [image:]

 Figure 5.1 Jenkins custom machine images

 5.1 Introducing infrastructure as code

 Infrastructure as code (IaC) allows you to manage your infrastructure by using configuration files. This decreases costs, reduces risks, and deploys faster resources on the cloud. Another benefit is that your infrastructure becomes testable, repeatable, self-healing, idempotent, and, most importantly, easy to understand, because your infrastructure code will essentially be your documentation.

 Several IaC tools are available, each with its own implementation (figure 5.2). Some tools are focused on specific clouds, including AWS CloudFormation (https://aws.amazon.com/cloudformation/), Azure Resource Manager (https://azure.microsoft.com/features/resource-manager/), OpenStack Heat (https://wiki.openstack.org/wiki/Heat), and Google Cloud Deployment Manager (https://cloud.google.com/deployment-manager). Others are attempting to bridge all cloud providers and mask their semantic differences to provide a cloud-agnostic implementation. This category includes HashiCorp Terraform, HashiCorp Vagrant, Chef Provisioning, and Pulumi.

 [image:]

 Figure 5.2 Infrastructure-as-code tools

 In this book, we will focus exclusively on using HashiCorp Terraform to deploy Jenkins components. Terraform provides a flexible abstraction of resources and providers, is platform-agnostic, and supports multiple IaaS providers such as AWS, Microsoft Azure, Google Cloud Platform, and DigitalOcean. Moreover, Terraform is open source and comes with a simple and unified syntax with no steep learning curve for new users and easy-to-access online resources for any infrastructure deployment use case.

 Note Configuration management tools like Ansible and Puppet were built to install and manage configuration on existing servers. Terraform focuses on bootstrapping and initialization of servers and other infrastructure resources.

 Over the next few sections, you will learn how to use Terraform to deploy a Jenkins cluster on AWS.

 5.1.1 Terraform usage

 Terraform uses a push approach: the developer or ops engineer describes the desired infrastructure in a template file, and Terraform directly interacts with the cloud provider through its API. For example, if the target cloud provider is AWS, Terraform uses the Terraform AWS provider plugin (https://registry.terraform.io/providers/hashicorp/aws/latest), which, under the hood, uses the AWS official SDK to create/update or destroy resources.

 To maintain the desired state of the infrastructure and detect changes, Terraform generates a JSON file named terraform.tfstate that stores the state of your managed infrastructure and configuration. Terraform uses a diffing technique to detect the changes before any operation. Therefore, individuals and teams can safely and predictably change the infrastructure.

 Terraform itself is a CLI tool, which can be downloaded from its official release page (www.terraform.io/downloads.html), as shown in figure 5.3, by installing the binary for your operating system and architecture. It supports all major operating systems. Windows, macOS, and any Linux distribution are supported in both 32-bit and 64-bit versions.

 [image:]

 Figure 5.3 Terraform download page

 Once you download the zip archive, unzip it to any convenient folder. Make sure that this folder is available in your PATH environment variable. To check whether Terraform is properly installed, issue this command:

 terraform --version

 Note At the time of writing this book, the latest stable version of HashiCorp Terraform is 1.0.0.

 If you get output similar to Terraform vX.Y.Z, congrats! You have a working Terraform installation. We’re ready to write our Terraform template files.

 5.2 Provisioning an AWS VPC

 As discussed in chapter 3, our Jenkins cluster will be deployed inside a VPC within private subnets; see figure 5.4. We can deploy the cluster in the default VPC created by AWS. However, to have full control of the network topology, we will create a VPC from scratch to isolate the Jenkins cluster from the application workloads we’re going to deploy in advanced chapters. The following schema summarizes the target VPC architecture:

 Note To understand Amazon VPC terminology (subnets, security groups, route tables, and so forth), refer to chapter 3.

 [image:]

 Figure 5.4 AWS virtual private cloud architecture

 In essence, this VPC will be divided into subnets. Some subnets will be public, with access to the internet; and some will be private. Then, we define routing rules between subnets to allow traffic to go through either an internet gateway or NAT gateway. We will also deploy a bastion host to be able to SSH to Jenkins private instances without exposing them to the public.

 5.2.1 AWS VPC

 Terraform uses a DSL called HashiCorp Configuration Language (HCL), a declarative language to describe infrastructure resources. These resources are described in a simple text file with a .tf extension.

 Instead of writing one big template file, we will use a modular development approach and split our Jenkins cluster deployment into multiple template files. Each file is responsible for deploying a component or an AWS resource of the target infrastructure. First, create a terraform.tf file with the following content:

 provider "aws" {
 region = var.region
 shared_credentials_file = var.shared_credentials_file
 profile = var.aws_profile
}

 Note Through the rest of the chapters, Terraform will store the state locally, which isn’t ideal for team collaboration, as the state might contain sensitive information (if you plan to use SCM for versioning). I recommend using a remote backend such as Amazon S3 to store the state.

 For Terraform to interact with an IaaS, it needs to have a provider configured. In the preceding code block, we defined AWS as a provider and configured the needed credentials to interact with the AWS API to create AWS resources afterward. The AWS provider supports multiple methods of authentication:

 	
 Static credentials by providing access_key and secret_key attributes inline in the aws provider block.

 	
 Environment variables via AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS _KEY variables.

 	
 A shared credentials file located by default at ~/.aws/credentials on Linux and macOS, and %USERPROFILE%\.aws\credentials for Windows users. By default, Terraform will check these locations, but you can optionally specify a different location in the configuration by providing the shared_credentials_file attribute. Also, if you have multiple profiles defined in the credentials file, you can specify the profile to use through the AWS_PROFILE environment variable by setting the profile attribute.

 	
 An EC2 IAM instance profile if you’re using Terraform from an EC2 instance. Terraform will fetch the temporary access tokens from the instance’s metadata. This is a preferred approach over the preceding strategies when running in an EC2 instance, as you can avoid hardcoding credentials.

 Next, we will declare an AWS VPC resource in a vpc.tf file. The following code snippet uses the CIDR block 10.0.0.0/16 for the VPC, but you can choose a different CIDR block:

 resource "aws_vpc" "default" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true

 tags {
 Name = var.vpc_name
 Author = var.author
 }
}

 Note All available AWS resources can be found in the Terraform AWS documentation at www.terraform.io/docs/providers/aws/index.html.

 Note the use of variables instead of hardcoded values to create reusable resources (portability) and give users the flexibility to override them during runtime. We’ll define the list of variables in the variables.tf file, shown in the following listing.

 Listing 5.1 Terraform variables file

 variable "region" {
 description = "AWS region"
 type = string
}

variable "cidr_block" {
 description = "VPC CIDR block"
 default = "10.0.0.0/16"
}

 Terraform variables are created with a variable block. They have a name and an optional type, default value, and description arguments. Table 5.1 provides the full list of variables.

 Table 5.1 VPC’s Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 region

 	
 String

 	
 None

 	
 The name of the region, such as eu-central-1, in which to deploy the VPC.

 	
 shared_credentials_file

 	
 String

 	
 ~/.aws/credentials

 	
 The path to the shared credentials file. If this is not set and a profile is specified, ~/.aws/credentials will be used.

 	
 aws_profile

 	
 String

 	
 profile

 	
 The AWS profile name as set in the shared credentials file.

 	
 cidr_block

 	
 String

 	
 10.0.0.0/16

 	
 The CIDR block for the VPC. The allowed block size is between a /16 netmask (65,536 IP addresses) and /28 netmask (16 IP addresses).

 	
 vpc_name

 	
 String

 	
 management

 	
 Ensure that your VPC is using appropriate naming for tagging to manage it more efficiently and adhere to AWS resource tagging best practices.

 	
 author

 	
 String

 	
 None

 	
 Name of the owner of the VPC. It’s optional, but it’s recommended to tag your AWS resources to track the monthly costs by owner or environment.

 Before running Terraform, we need to install the AWS plugin for Terraform. You can do this by executing the following command:

 terraform init

 This installs the AWS provider plugin and initializes a new configuration:

 [image:]

 Note To be able to use Terraform for the examples in this chapter, add the VPCFullAccess policy to the IAM user associated with Terraform.

 Use the following command to generate an execution plan of changes that will be applied (for a dry run):

 terraform plan --var-file="variables.tfvars"

 You can specify individual variables on the command line with the -var option when running terraform plan. However, because we have a lot of variables to set, it is more convenient and handy to use a variable definitions file called variables.tfvars.

 This file contains dynamic variables declared in the variables.tf file such as for the AWS region and credentials file. Any variable for which you define a value needs to exist in variables.tf, as shown in the following listing.

 Listing 5.2 Terraform dynamic variables

 region="YOUR AWS REGION"
shared_credentials_file="PATH TO .aws/credentials FILE"
aws_profile="AWS PROFILE"
author="AUTHOR NAME"

 Note If you named the variable definition files terraform.tfvars or terraform .tfvars.json, they will be loaded automatically by Terraform.

 You can also load variables from environment variables. Terraform will parse any environment variables that are prefixed with TF_VAR. For example, if Terraform finds an environment variable named TF_VAR_aws_profile, it will use its value as the string value of the aws_profile variable.

 The terraform plan command will display the target plan, which is particularly useful to validate the changes in advance and avoid unwanted changes. The output should look like this:

 [image:]

 Note I highly recommend encrypting the state and plan files because they can potentially store secrets.

 We can see that one resource will be created. Now we are comfortable that Terraform is going to do the right thing! We can apply the changes with the following command:

 terraform apply --var-file="variables.tfvars"

 Type yes to apply the actions, and Terraform will create the AWS VPC resource:

 [image:]

 On the AWS VPC dashboard, you should see an additional VPC called management with the 10.0.0.0/16 CIDR block created, as shown in figure 5.5.

 [image:]

 Figure 5.5 AWS VPC dashboard

 Awesome—we have a custom VPC!

 5.2.2 VPC subnets

 Creating a VPC is not enough; to be able to place Jenkins instances in this isolated network, we also need a subnet. This subnet belongs to a previously created VPC, so we have to pass a VPC ID when we create it. We don’t have to hardcode it, though. Terraform, via interpolation syntax, allows us to reference any other resource via its ID.

 Create a subnets.tf file with two public subnets and two private subnets in different availability zones for resiliency, as shown in the following listing. Each subnet has its own CIDR block that is a subset of the VPC CIDR block.

 Listing 5.3 VPC subnets

 resource "aws_subnet" "public_subnets" {
 vpc_id = aws_vpc.management.id
 cidr_block = "10.0.${count.index * 2 + 1}.0/24" ❶
 availability_zone = element(var.availability_zones, count.index) ❶
 map_public_ip_on_launch = true ❷

 count = var.public_subnets_count

 tags = {
 Name = "public_10.0.${count.index * 2 +
 1}.0_${element(var.availability_zones, count.index)}" ❸
 Author = var.author
 }
}

resource "aws_subnet" "private_subnets" {
 vpc_id = aws_vpc.management.id
 cidr_block = "10.0.${count.index * 2}.0/24"
 availability_zone = element(var.availability_zones, count.index)
 map_public_ip_on_launch = false

 count = var.private_subnets_count

 tags = {
 Name = "private_10.0.${count.index * 2}.0_${element(var.availability_zones, count.index)}"
 Author = var.author
 }
}

 ❶ The count.index variable has the distinct index number (starting with 0) and is used to construct a unique CIDR block within the 10.0.0.0/16 range

 ❷ Specify true to indicate that instances launched into the subnet should be assigned a public IP address

 ❸ Gives a unique name to the subnet; for example, public_10.0.0.0_eu-central-1

 The code uses interpolation with a count attribute to give us a parameterized subnet. With this, we can calculate the subnet CIDR block with expressions such as 10.0.${count.index*2+1}.0/24. You can also use the cidrsubnet(prefix, newbits, netnum) method to calculate the subnet address within a VPC CIDR block. (Refer to the documentation at http://mng.bz/WBj0 for more details.)

 Set the default number of subnets to 2 and define the availability zones where the subnets will be located as variables in the variables.tf file. (You can use the aws ec2 describe-availability-zones command to view the availability zones within your AWS region.) Table 5.2 provides the complete list of Terraform variables.

 Table 5.2 Subnet Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 availability_zones

 	
 List

 	
 None

 	
 Availability zone for spinning up the VPC subnet

 	
 public_subnets_count

 	
 Number

 	
 2

 	
 The number of public subnets to create

 	
 private_subnets_count

 	
 Number

 	
 2

 	
 The number of private subnets to create

 Run the terraform plan command to generate an action plan. This validates the configuration that will apply to the current infrastructure:

 [image:]

 If you are comfortable with the deployment plan, apply the configuration with the terraform apply command. The subnets should be created inside the VPC, as shown in figure 5.6.

 [image:]

 Figure 5.6 VPC’s public and private subnets

 After you’ve created the VPC and subnets, you need to create private and public route tables to define the traffic-routing mechanism in VPC subnets.

 5.2.3 VPC route tables

 As stated earlier, the typical configuration for a VPC divides it into public and private subnets. To let instances deployed in private subnets have access to the internet without being exposed to the public, we will create private and public route tables for fine-grained traffic control.

 Create a public_rt.tf file, define an internet gateway resource, and attach it to the VPC created earlier:

 resource "aws_internet_gateway" "igw" {
 vpc_id = aws_vpc.management.id

 tags = {
 Name = "igw_${var.vpc_name}"
 Author = var.author
 }
}

 Within public_rt.tf, define a public route table and a route that points all traffic (0.0.0.0/0) to the internet gateway:

 resource "aws_route_table" "public_rt" {
 vpc_id = aws_vpc.management.id

 route {
 cidr_block = "0.0.0.0/0"
 gateway_id = aws_internet_gateway.igw.id
 }

 tags = {
 Name = "public_rt_${var.vpc_name}"
 Author = var.author
 }
}

 So far, the public route table is not associated with any subnet. You need to associate it with public subnets in your VPC so that traffic coming from those subnets is routed to the internet gateway:

 resource "aws_route_table_association" "public" {
 count = var.public_subnets_count
 subnet_id = element(aws_subnet.public_subnets.*.id, count.index)
 route_table_id = aws_route_table.public_rt.id
}

 Note I recommend generating an execution plan before deploying resources with Terraform to avoid any surprises when Terraform manipulates infrastructure.

 Once you’ve applied Terraform changes with terraform apply, head over to the VPC dashboard and jump to the Route Tables section. You should see the public route table, as shown in figure 5.7.

 [image:]

 Figure 5.7 VPC’s public route table

 With the public route table created, go ahead and create the private route table.

 Create a private_rt.tf file and define a NAT gateway resource inside a public subnet to enable Jenkins instances that will be deployed in private subnets later to connect to the internet. Then, associate an Elastic IP address with the NAT gateway, shown in the following listing.

 Listing 5.4 VPC NAT gateway

 resource "aws_eip" "nat" {
 vpc = true

 tags = {
 Name = "eip-nat_${var.vpc_name}"
 Author = var.author
 }
}

resource "aws_nat_gateway" "nat" {
 allocation_id = aws_eip.nat.id
 subnet_id = element(aws_subnet.public_subnets.*.id, 0)

 tags = {
 Name = "nat_${var.vpc_name}"
 Author = var.author
 }
}

 Within the same file, create a private route table with a route that forwards all traffic (0.0.0.0/0) to the ID of the NAT gateway that you created, as shown in the following listing.

 Listing 5.5 Private route table

 resource "aws_route_table" "private_rt" {
 vpc_id = aws_vpc.management.id

 route {
 cidr_block = "0.0.0.0/0"
 nat_gateway_id = aws_nat_gateway.nat.id
 }
 tags = {
 Name = "private_rt_${var.vpc_name}"
 Author = var.author
 }
}

 Note If you prefer to manage a NAT instance, you can replace the current route that points to the NAT gateway with a route to the NAT instance.

 Finally, assign private subnets to the private route table with the following code block:

 resource "aws_route_table_association" "private" {
 count = var.private_subnets_count
 subnet_id = element(aws_subnet.private_subnets.*.id, count.index)
 route_table_id = aws_route_table.private_rt.id
}

 The Elastic IP address is a static public IPv4 address, so it may be useful to mask the failure of a NAT gateway by rapidly remapping the address to another NAT gateway.

 Use terraform apply to apply the infrastructure changes. A private route table should be created, as shown in figure 5.8.

 [image:]

 Figure 5.8 VPC’s private route table

 An additional route table rule should be created to point internet-bound traffic to the NAT gateway. This enables Jenkins instances in the private subnets to have access to the internet.

 Our Jenkins cluster will be deployed inside private subnets. Hence, instances won’t be publicly accessible from the internet (because the cluster doesn’t have a public IP). To securely access Jenkins instances, we will deploy a bastion host.

 Note You can skip this solution if you set up a remote access virtual private network (VPN) like OpenVPN Access Server. Refer to the official guide at https://openvpn.net/aws-video-tutorials/byol/ for instructions.

 5.2.4 VPC bastion host

 A bastion host, also called a jump box, provides secure access to EC2 instances located in private subnets via a single controlled point of entry. A bastion host is a special-purpose machine, deployed in a public subnet, and has access to private instances within private subnets.

 These instances are accessed with the help of SSH or RDP protocols. After a connection is established with the bastion host, it allows using SSH or RDP to log in to other instances. In this way, it behaves like a jump box.

 In a new bastion.tf file, define an EC2 instance resource within a public subnet to reach it from the outside internet:

 resource "aws_instance" "bastion" {
 ami = data.aws_ami.bastion.id
 instance_type = var.bastion_instance_type
 key_name = aws_key_pair.management.id
 vpc_security_group_ids = [aws_security_group.bastion_host.id]
 subnet_id = element(aws_subnet.public_subnets, 0).id
 associate_public_ip_address = true

 tags = {
 Name = "bastion"
 Author = var.author
 }
}

 The EC2 instance uses an Amazon 2 Linux machine image. We use the aws_ami data source to get the AMI ID from the AWS marketplace. The most_recent attribute is enabled to use the recent AMI if more than one result is returned:

 data "aws_ami" "bastion" {
 most_recent = true
 owners = ["amazon"]

 filter {
 name = "name"
 values = ["amzn2-ami-hvm-*-x86_64-ebs"]
 }
}

 Note If you want to add an extra layer of security for the bastion host, you can bake your own machine image with HashiCorp Packer by using the same procedure described in chapter 4.

 While creating the EC2, we attached an SSH key pair to be able to access via SSH to the bastion host with the private key. The key pair uses our public SSH key located under the .ssh folder in the working directory. You can also generate a new one with the ssh-keygen command. The following is the Terraform snippet code; the aws_key_pair resource takes as a parameter the SSH public-key file location:

 resource "aws_key_pair" "management" {
 key_name = "management"
 public_key = file(var.public_key)
}

 By default, SSH access to newly created EC2 instances is disabled. To allow SSH access to the bastion hosts, we will associate a security group to the running instance. The security group will allow inbound (ingress) traffic on port 22 (SSH) from anywhere (0.0.0.0/0). The CIDR source block can be replaced with your own public IP address/32 or network address to enhance security and prevent security breaches:

 resource "aws_security_group" "bastion_host" {
 name = "bastion_sg_${var.vpc_name}"
 description = "Allow SSH from anywhere"
 vpc_id = aws_vpc.management.id

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "bastion_sg_${var.vpc_name}"
 Author = var.author
 }
}

 You can use a website such as icanhazip.com to retrieve your machine’s public IP address with the following code block:

 data "http" "ip" {
 url = "http://ipv4.icanhazip.com"
}

 If you want to use this in a network ingress rule, you can reference the IP address with the data.http.ip.body attribute.

 Once we have our networking setup ready, declare the new Terraform variables in variables.tf. Refer to chapter5/variables.tf for the complete list of variables.

 Then, apply the changes with terraform apply. A public EC2 instance should be deployed inside the VPC in a public subnet, as shown in figure 5.9.

 [image:]

 Figure 5.9 Bastion host deployed in a public subnet

 We can copy the instance’s public IP address directly from the EC2 console. Alternatively, we can use the Terraform outputs feature to display the IP address in the terminal session by defining an outputs.tf file with the following content:

 output "bastion" {
 value = ${aws_instance.bastion.public_ip}
}

 To get the instance’s IPv4 public IP, you can reissue the terraform apply or terraform output command:

 [image:]

 With this Terraform code, we have our bastion host ready and can use it to set up an SSH tunnel to access private instances:

 ssh -L TARGET_PORT:TARGET_INSTANCE_PRIVATE_IP:22 ec2-user@BASTION_IP

 Note You can take this further and deploy an Auto Scaling group (min=1 and max=1) to ensure that a bastion host instance is always available. Also for cost optimization, you can use Spot instances instead of on-demand instances.

 After creating these files, the directory structure should look as follows:

 terraform.tf
vpc.tf
subnets.tf
private_rt.tf
public_rt.tf
bastion.tf
variables.tf
variables.tfvars
outputs.tf

 The files can be called anything. We’ve named them based on the AWS resources declared on each, and for convenience and identification. Remember all files that end in .tf will be loaded by Terraform.

 5.3 Setting up a self-healing Jenkins master

 Now that our VPC has been created, we can deploy a dedicated EC2 instance to host the Jenkins master component within a private subnet, by defining an aws_instance resource in the jenkins_master.tf file with the following attributes. The instance is backed by an EBS volume (SSD) of 30 GB, which makes it suitable for a broad range of workloads:

 resource "aws_instance" "jenkins_master" {
 ami = data.aws_ami.jenkins-master.id
 instance_type = var.jenkins_master_instance_type
 key_name = aws_key_pair.management.id
 vpc_security_group_ids = [aws_security_group.jenkins_master_sg.id]
 subnet_id = element(aws_subnet.private_subnets, 0)

 root_block_device {
 volume_type = "gp3"
 volume_size = 30
 delete_on_termination = false
 }

 tags = {
 Name = "jenkins_master"
 Author = var.author
 }
}

 The 30 GB storage value can change based on the number and size of the projects you will continuously build, because Jenkins settings and build logs are stored on the master by default.

 Note A proper tagging policy for Jenkins instances is pivotal in cloud cost optimization. It leverages the use of filters within AWS bills and enforces tracking and cost allocation.

 The EC2 instance uses the Jenkins master AMI baked by Packer in chapter 4, referenced by the aws_ami data resource:

 data "aws_ami" "jenkins-master" {
 most_recent = true
 owners = ["self"]

 filter {
 name = "name"
 values = ["jenkins-master-*"]
 }
}

 We’ll attach a security group to the instance to allow SSH from the bastion host only and inbound traffic on port 8080 (Jenkins web dashboard) from VPC CIDR block; see the following listing.

 Listing 5.6 Jenkins security group

 resource "aws_security_group" "jenkins_master_sg" {
 name = "jenkins_master_sg"
 description = "Allow traffic on port 8080 and enable SSH"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "22"
 to_port = "22"
 protocol = "tcp"
 security_groups = [aws_security_group.bastion_host.id]
 }

 ingress {
 from_port = "8080"
 to_port = "8080"
 protocol = "tcp"
 cidr_blocks = [var.cidr_block]
 }

 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "jenkins_master_sg"
 Author = var.author
 }
}

 Next, define the instance type used to deploy the EC2 instance as a variable. For the sake of simplicity, t2.large (8 GB of memory and 2vCPU) should be enough, as we won’t be allocating executors/workers on the master. Hence, the Jenkins master won’t be overloaded by build jobs.

 However, the amount of memory Jenkins needs depends on your project build needs and tools required by the same builds. Each build node connection will take two to three threads, which equals about 2 MB or more of memory. You will also need to factor in CPU overhead for Jenkins if a lot of users will be accessing the Jenkins user interface.

 That’s why we will deploy Jenkins workers later, to delegate builds to workers and keep the bulk of the work off the master itself. Therefore, a general-purpose instance to host a Jenkins master can provide a balance between compute and memory resources.

 Note For more information, see the EC2 general-purpose instance documentation: https://aws.amazon.com/ec2/pricing/on-demand/.

 The t2.large instance type may be a good option (though this instance type is not part of the AWS Free Tier, so you should terminate it or turn it off when you’re done experimenting). Declare it as a variable in the variables.tfvars file:

 variable "jenkins_master_instance_type" {
 type = string
 description = "Jenkins master EC2 instance type"
 default = "t2.large"
}

 Note I encourage you to benchmark your project builds on several Amazon EC2 instance types to select the most appropriate configuration.

 Generate an execution plan with this command:

 terraform plan --var-file=variables.tfvars

 You should see output similar to the following (the full terraform plan has been cropped for brevity):

 [image:]

 Since the execution plan looks good, enter yes, and you’ll see your Jenkins master EC2 instance being deployed. Once the provisioning process is completed, the instance should be available on the EC2 dashboard, as shown in figure 5.10.

 [image:]

 Figure 5.10 Jenkins master EC2 instance

 While this instance is private (it has no public IP address), we can set up an SSH tunnel by using the bastion host and executing the following commands (obviously, with different values):

 ssh -L 4000:10.0.0.71:22 ec2-user@35.180.122.81
ssh ec2-user@localhost -p 4000

 You can check that Jenkins is running by issuing the service jenkins status command. Figure 5.11 shows the output.

 [image:]

 Figure 5.11 SSH tunnel connection

 To access the Jenkins dashboard, we will create a public load balancer in front of the EC2 instance. This Elastic load balancer will accept HTTP traffic on port 80 and forward it to the EC2 instance on port 8080. Also, it automatically checks the health of the registered EC2 instance on port 8080. If the Elastic Load Balancing (ELB) finds the instance unhealthy, it stops sending traffic to the Jenkins instance. Within jenkins_ master.tf, declare the load balancer resource:

 resource "aws_elb" "jenkins_elb" {
 subnets = \
 [for subnet in aws_subnet.public_subnets : subnet.id]
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_jenkins_sg.id]
 instances = [aws_instance.jenkins_master.id]

 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"
 }

 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8080"
 interval = 5
 }
 tags = {
 Name = "jenkins_elb"
 Author = var.author
 }
}

 The load balancer will accept incoming HTTP traffic from anywhere (you should lock the incoming traffic to the specific IP address range from which you expect traffic) by assigning the following security group configuration. Later, we will add an HTTPS listener to use an SSL protocol to establish secure connections over the HTTP layer. Define the load balancer’s security group within jenkins_master.tf; here is the resource code block:

 resource "aws_security_group" "elb_jenkins_sg" {
 name = "elb_jenkins_sg"
 description = "Allow http traffic"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "80"
 to_port = "80"
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }

 tags = {
 Name = "elb_jenkins_sg"
 Author = var.author
 }
}

 Next, update the Jenkins master security group to allow traffic on port 8080 from the load balancer security group ID only:

 ingress {
 from_port = "8080"
 to_port = "8080"
 protocol = "tcp"
 security_groups = [aws_security_group.elb_jenkins_sg.id]
}

 Output the load balancer DNS URL by defining a new output section in the outputs.tf file:

 output "jenkins-master-elb" {
 value = aws_elb.jenkins_elb.dns_name
}

 After you apply the changes with Terraform, the Jenkins master load balancer URL should be displayed in your terminal session:

 [image:]

 Point your favorite browser to the URL, and you should have access to the Jenkins web dashboard. You can see the Welcome to Jenkins! message on the home page (figure 5.12).

 [image:]

 Figure 5.12 Jenkins web dashboard

 Awesome! You have a running Jenkins server behind an Elastic Load Balancer.

 If your goal is to architect for high availability, you need to maintain a redundant Jenkins master in separate availability zones. However, because the Jenkins master configuration is stored in the $JENKINS_HOME directory instead of a centralized database, you need to use an external plugin such as the High Availability Management plugin from CloudBees (https://docs.cloudbees.com/plugins/ci/cloudbees-ha) or set up the $JENKINS_HOME directory on a shared network drive, so it could be accessible by multiple Jenkins master instances.

 Note In chapter 14, we will go through how to use a solution like Amazon Elastic File System (EFS) to mount a volume to share the $JENKINS_HOME folder across multiple instances.

 5.4 Running Jenkins with native SSL/HTTPS

 Having secure access to the Jenkins dashboard is a plus. That’s why we will use a free SSL provided by AWS to serve the content with HTTPS at your custom domain name and provide encrypted network connections; see figure 5.13.

 Note If you're running Jenkins locally, you can generate a self-signed certificate and deploy a reverse proxy like NGINX. If you opt to go with a different cloud provider, you can generate a certificate issued by a certificate authority (CA) for free with Let’s Encrypt.

 [image:]

 Figure 5.13 Free SSL certificates from AWS Certificate Manager

 You can easily get an SSL certificate with AWS Certificate Manager (ACM). This service makes it easy to provision, manage, and deploy SSL/TLS certificates on AWS-managed resources.

 Head to the ACM dashboard and click the Request a Certificate button to create a new SSL certificate. Select Request a Public Certificate and add your domain name. You might also want to secure your subdomains by adding an asterisk. Once AWS validates that you own those domain names, the status will change from Pending Validation to Issued. Copy the SSL Amazon Resource Name (ARN).

 Update the load balancer resource to enable the HTTPS listener on port 443. Set the ACM SSL ARN on the HTTPS listener. The load balancer uses the certificate to terminate the connection and then decrypt requests from clients before sending them to the Jenkins instance:

 listener {
 instance_port = 8080 ❶
 instance_protocol = "http" ❶
 lb_port = 443 ❶
 lb_protocol = "https" ❶
 ssl_certificate_id = var.ssl_arn ❶
}

 ❶ Exposes an HTTPS listener and forwards incoming requests on port 443 to port 8080 of the EC2 instance.

 Add an ingress rule to the load balancer security group to allow incoming HTTPS traffic:

 ingress {
 from_port = "443" ❶
 to_port = "443" ❶
 protocol = "tcp" ❶
 cidr_blocks = ["0.0.0.0/0"] ❶
}

 ❶ Allows inbound traffic on port 443 from anywhere (0.0.0.0/0)

 Then create an A record in the Route 53 service (https://aws.amazon.com/route53/) pointing to the load balancer fully qualified domain name (FQDN). The Terraform code for the DNS record will look like this:

 resource "aws_route53_record" "jenkins_master" {
 zone_id = var.hosted_zone_id
 name = "jenkins.${var.domain_name}" ❶
 type = "A" ❶

 alias { ❶
 name = aws_elb.jenkins_elb.dns_name ❶
 zone_id = aws_elb.jenkins_elb.zone_id ❶
 evaluate_target_health = true
 }
}

 ❶ Sets up an alias record (jenkins.domain.com) that points to the Jenkins load balancer FQDN

 Note If you don’t have a hosted zone in Amazon Route 53, you can skip to the next section and stick with the load balancer FQDN.

 This resource block will create an A record, which maps the jenkins.domain.com URL to an AWS alias to the load balancer FQDN.

 Finally, define the referenced Terraform variables in the variables.tf file. Table 5.3 lists the variables to define in addition to the variables defined earlier in this chapter.

 Table 5.3 DNS Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 hosted_zone_id

 	
 String

 	
 None

 	
 The ID of the hosted zone to contain the A record

 	
 domain_name

 	
 String

 	
 None

 	
 The domain name to use, such as domain.com

 	
 ssl_arn

 	
 String

 	
 None

 	
 ARN of SSL certificate you have created in AWS ACM

 Define an output section to display the Jenkins public DNS URL by referencing the Route 53 A record resource:

 output "jenkins-dns" {
 value = "https://${aws_route53_record.jenkins_master.name}" ❶
}

 ❶ Concatenates the alias record name with the https:// keyword to construct the Jenkins HTTPS URL

 Issue the terraform apply command for changes to take effect. It should deploy the needed resources and display the Jenkins dashboard URL:

 [image:]

 The Jenkins load balancer now should be listening on both the HTTP (80) and HTTPS (433) ports, as shown in figure 5.14.

 [image:]

 Figure 5.14 Allowing HTTPS and HTTP on ELB

 Point your browser to the subdomain name created with Terraform. The Jenkins web dashboard should be served through HTTPS, as shown in figure 5.15.

 [image:]

 Figure 5.15 The Jenkins dashboard is now served through HTTPS. If you’re using Chrome, you should see a green lock in the URL bar.

 So far, we have deployed a private standalone Jenkins master instance behind a public load balancer, as shown in figure 5.16.

 [image:]

 Figure 5.16 Jenkins standalone setup on AWS

 In the next section, we will deploy additional Jenkins workers to offload the load from the Jenkins master.

 Note Maintaining a regular backup of your Jenkins EBS volume is crucial to ensuring that the Jenkins instance can be restored in the event of data corruption or loss. Refer to the official documentation for instructions: http://mng.bz/807P.

 5.5 Dynamically autoscaling the Jenkins worker pool

 Running a single Jenkins instance is a good start, but in the real world, a single instance is a single point of failure. If that instance crashes or becomes overwhelmed by too many builds, developers can no longer deliver their releases. The solution is to run a cluster of Jenkins workers and adjust the size of the cluster up or down based on resource utilization.

 5.5.1 Launch configuration

 You can certainly deploy Jenkins workers as separate EC2 instances (rerunning the previous steps). However, we want the instances to be deployed and replaced automatically for autorecovery. That’s why we will rely on a standard AWS feature called Auto Scaling groups.

 Note For more details on how the AWS EC2 autoscaling feature works, refer to chapter 3 about architecting Jenkins for scale.

 The first step in creating an ASG is to create a launch configuration, which describes how to configure each Jenkins worker instance. Declare an aws_launch_configuration resource in the jenkins_workers.tf file:

 resource "aws_launch_configuration" "jenkins_workers_launch_conf" {
 name = "jenkins_workers_config"
 image_id = data.aws_ami.jenkins-worker.id ❶
 instance_type = var.jenkins_worker_instance_type ❶
 key_name = aws_key_pair.management.id ❶
 security_groups = [aws_security_group.jenkins_workers_sg.id] ❶
 user_data = data.template_file.user_data_jenkins_worker.rendered ❷

 root_block_device {
 volume_type = "gp2" ❸
 volume_size = 30 ❸
 delete_on_termination = false ❸
 }

 lifecycle {
 create_before_destroy = true
 }
}

 ❶ Configures a blueprint with the baked Jenkins worker AMI and key name that should be used for the instances, and assigns a security group

 ❷ The user data to provide when launching the instance. It will autojoin the running instance to the Jenkins cluster.

 ❸ Customizes details about the root block device of the instance

 Note You should benchmark performance for your projects to determine the appropriate instance type you need, as well as the amount of disk space.

 Similarly to the Jenkins master, the workers will be deployed across private subnets and will use the Jenkins worker AMI built with Packer in chapter 4.

 data "aws_ami" "jenkins-worker" {
 most_recent = true
 owners = ["self"] ❶

 filter {
 name = "name"
 values = ["jenkins-worker*"] ❶
 }
}

 ❶ The data source resource is used to get the ID of the baked Jenkins worker AMI.

 To be able to set up the Jenkins cluster, the master needs to set up a bidirectional connection with the workers. Hence, we need to allow SSH from the Jenkins master security group ID (allowing SSH from the bastion host can be helpful for future debugging and troubleshooting):

 resource "aws_security_group" "jenkins_workers_sg" {
 name = "jenkins_workers_sg"
 description = "Allow traffic on port 22 from Jenkins master SG"
 vpc_id = aws_vpc.management.id

 ingress {
 from_port = "22" ❶
 to_port = "22" ❶
 protocol = "tcp" ❶
 security_groups = [aws_security_group.jenkins_master_sg.id, ❶
aws_security_group.bastion_host.id] ❶
 }

 egress {
 from_port = "0" ❷
 to_port = "0" ❷
 protocol = "-1" ❷
 cidr_blocks = ["0.0.0.0/0"] ❷
 }

 tags = {
 Name = "jenkins_workers_sg"
 Author = var.author
 }
}

 ❶ Allows inbound traffic on port 22 (SSH) from the Jenkins master and bastion host security groups

 ❷ Allows outbound traffic from anywhere for all protocols (–1)

 Finally, we define user-data, a script that will be executed at boot time on each Jenkins worker instance. The script takes as a parameter the Jenkins admin credentials, Jenkins SSH credential ID, as well as the Jenkins IP address.

 The SSH credential ID refers to the credential we created with the Groovy script at initialization time in chapter 4; the credential contains the private SSH key located in the .ssh folder in the working directory. The private SSH key will be used by the Jenkins master to add the Jenkins workers via SSH:

 data "template_file" "user_data_jenkins_worker" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://${aws_instance.jenkins_master.private_ip}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}

 The scripts/join-cluster.tpl script will fetch the running instance’s private IP address from the EC2 metadata (available at 169.254.169.254/latest/meta-data). The script will then issue an HTTP request to Jenkins with the Groovy script in the following listing to add the instance to the cluster.

 Listing 5.7 Autojoining Jenkins workers

 #!/bin/bash
JENKINS_URL="${jenkins_url}" ❶
JENKINS_USERNAME="${jenkins_username}" ❶
JENKINS_PASSWORD="${jenkins_password}" ❶
TOKEN=$(curl -u $JENKINS_USERNAME:$JENKINS_PASSWORD ❷
''$JENKINS_URL'/crumbIssuer/api/xml?xpath= \ ❷
concat(//crumbRequestField,":",//crumb)') ❷
INSTANCE_NAME=$(curl -s 169.254.169.254/latest/meta-data/local-hostname) ❸
INSTANCE_IP=$(curl -s 169.254.169.254/latest/meta-data/local-ipv4) ❸
JENKINS_CREDENTIALS_ID="${jenkins_credentials_id}"

curl -v -u $JENKINS_USERNAME:$JENKINS_PASSWORD -H "$TOKEN" -d 'script= ❹
import hudson.model.Node.Mode ❹
import hudson.slaves.* ❹
import jenkins.model.Jenkins ❹
import hudson.plugins.sshslaves.SSHLauncher ❹
DumbSlave dumb = new DumbSlave("'$INSTANCE_NAME'", ❹
"'$INSTANCE_NAME'", ❹
"/home/ec2-user", ❹
"3", ❹
Mode.NORMAL, ❹
"workers", ❹
new SSHLauncher("'$INSTANCE_IP'", 22, "'$JENKINS_CREDENTIALS_ID'"), ❹
RetentionStrategy.INSTANCE) ❹
Jenkins.instance.addNode(dumb) ❹
' $JENKINS_URL/script ❹

 ❶ Replaces the variables with the given values in the user_data_jenkins_worker Terraform resource

 ❷ Fetches a valid token from the Jenkins master server

 ❸ Fetches the instance private IP address and hostname from the EC2 metadata

 ❹ Issues a GET request on the Jenkins server with a Groovy script in the request payload. The script will add the current instance as a Jenkins agent.

 This configuration allows three executors to be run in parallel in each worker. If you plan to use only the master as a job scheduler, you can configure its number of executors setting to 0 to ensure that project builds will happen on only the worker machines. The resource block also defines a workspace directory on the worker instance that the worker agent can use to run build jobs. This configuration uses /home/ec2-user as a workspace. Nothing mission-critical is stored in this directory; everything important is transferred back to the master instance after the build is done, so you usually don’t need to be concerned with backing up this directory.

 We have also defined a label called workers, so each worker instance will join the Jenkins cluster under that label. Hence, you can configure your build jobs to run on only workers’ machines.

 Next, define the Jenkins master credentials and worker instance type as variables in the variable.tf file. Table 5.4 lists the variables.

 Table 5.4 Jenkins workers’ Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 jenkins_username

 	
 String

 	
 None

 	
 Jenkins admin username

 	
 jenkins_password

 	
 String

 	
 None

 	
 Jenkins admin password

 	
 jenkins_credentials_id

 	
 String

 	
 None

 	
 Jenkins worker SSH-based credential ID

 	
 jenkins_worker_instance_type

 	
 String

 	
 t2.medium

 	
 Jenkins worker EC2 instance type

 Note You can significantly reduce your Jenkins workers’ costs (up to 90% cost savings) by using Amazon EC2 Spot instances (http://aws.amazon.com/ec2/spot), or by subscribing to Amazon Savings Plans (https://aws.amazon.com/savingsplans/).

 Finally, issue terraform apply to deploy the Jenkins workers.

 5.5.2 Auto Scaling group

 Now that the Jenkins workers’ blueprint is defined in a launch configuration, we can deploy an Auto Scaling group to deploy similar Jenkins workers based on the launch configuration.

 Create the ASG by using the aws_autoscaling_group resource within the jenkins_workers.tf file:

 resource "aws_autoscaling_group" "jenkins_workers" {
 name = "jenkins_workers_asg"
 launch_configuration = aws_launch_configuration.jenkins_workers_launch_conf.name
 vpc_zone_identifier = \
 [for subnet in aws_subnet.private_subnets : subnet.id] ❶
 min_size = 2 ❶
 max_size = 10 ❶
 depends_on = [aws_instance.jenkins_master, aws_elb.jenkins_elb]
 lifecycle {
 create_before_destroy = true
 }
 tag {
 key = "Name"
 value = "jenkins_worker"
 propagate_at_launch = true
 }
 tag {
 key = "Author"
 value = var.author
 propagate_at_launch = true
 }
}

 ❶ Deploys an ASG of two EC2 instances (minimum) in different subnets for resiliency

 This ASG will run 2 to 10 workers (defaulting to 2 for the initial launch), each tagged with the name jenkins_worker. The ASG uses a reference to fill in the launch configuration name.

 Note The keyword depends_on is used to ensure that the Jenkins master instance is running before deploying workers, as the workers need the Jenkins master IP to join the cluster successfully.

 The launch configuration is immutable, so you can’t modify it after it was created (for example, to upgrade the Jenkins worker instance type or change the base AMI). Therefore, you will need to destroy the launch configuration and create a new one instead; that’s why the create_before_destroy life cycle setting is used.

 To create the autoscaling group, run terraform apply on your terminal session:

 [image:]

 The provisioning process should take a few seconds. When you refresh your EC2 console, you’ll see the output in figure 5.17 in the dashboard.

 [image:]

 Figure 5.17 Jenkins workers deploying inside an ASG

 Note Chapter 14 covers another approach: we’ll deploy the worker nodes in Docker containers to use EC2 instances efficiently (with multiple builds to run independently on the same server) as well as to run in a “clean” build environment every time.

 Great! We have two Jenkins workers running inside an ASG.

 5.5.3 Autoscaling scaling policies

 So far, the number of workers is static and fixed. To scale the number of workers dynamically, we will define scaling policies based on CPU utilization. This gives you extra capacity to handle the build of additional jobs without maintaining an excessive number of idle Jenkins workers and paying extra money.

 Create a cloudwatch.tf file and define an AWS CloudWatch metric alarm based on CPU utilization. The CloudWatch alarm will trigger a scale-out event to add a new Jenkins worker instance if the average CPU utilization is over 80% for a period of 2 minutes, as shown in the following listing.

 Listing 5.8 CloudWatch scale-out alarm

 resource "aws_cloudwatch_metric_alarm" "high-cpu-jenkins-workers-alarm" {
 alarm_name = "high-cpu-jenkins-workers-alarm"
 comparison_operator = "GreaterThanOrEqualToThreshold"
 evaluation_periods = "2"
 metric_name = "CPUUtilization"
 namespace = "AWS/EC2"
 period = "120"
 statistic = "Average"
 threshold = "80"

 dimensions = {
 AutoScalingGroupName = aws_autoscaling_group.jenkins_workers.name
 }

 alarm_description = "This metric monitors workers cpu utilization"
 alarm_actions = [aws_autoscaling_policy.scale-out.arn]
}

resource "aws_autoscaling_policy" "scale-out" {
 name = "scale-out-jenkins-workers"
 scaling_adjustment = 1
 adjustment_type = "ChangeInCapacity"
 cooldown = 300
 autoscaling_group_name = aws_autoscaling_group.jenkins_workers.name
}

 Note It’s up to you what to monitor, but the metrics most useful for knowing when you should scale up and add another Jenkins worker or scale down by terminating a worker are probably CPU utilization, memory utilization, and network utilization.

 Similarly, we define another CloudWatch alarm to trigger a scale-in event to remove a Jenkins worker if the average CPU utilization is less than 20% for a period of 2 minutes; see the following listing.

 Listing 5.9 CloudWatch scale-in alarm

 resource "aws_cloudwatch_metric_alarm" "low-cpu-jenkins-workers-alarm" {
 alarm_name = "low-cpu-jenkins-workers-alarm"
 comparison_operator = "LessThanOrEqualToThreshold"
 evaluation_periods = "2"
 metric_name = "CPUUtilization"
 namespace = "AWS/EC2"
 period = "120"
 statistic = "Average"
 threshold = "20"

 dimensions = {
 AutoScalingGroupName = aws_autoscaling_group.jenkins_workers.name
 }

 alarm_description = "This metric monitors ec2 cpu utilization"
 alarm_actions = [aws_autoscaling_policy.scale-in.arn]
}

resource "aws_autoscaling_policy" "scale-in" {
 name = "scale-in-jenkins-workers"
 scaling_adjustment = -1
 adjustment_type = "ChangeInCapacity"
 cooldown = 300
 autoscaling_group_name = aws_autoscaling_group.jenkins_workers.name
}

 The cooldown period is set to 300 seconds to ensure that the ASG doesn’t launch or terminate additional Jenkins workers before the previous scaling activity takes effect.

 Note When a scale-in event occurs, the ASG will terminate a Jenkins worker based on the termination policy. Refer to chapter 3 for more information.

 If you run the terraform apply command, you’ll see that Terraform wants to create two CloudWatch alarms (the output has been cropped for brevity):

 [image:]

 You can access Amazon EC2 Auto Scaling (figure 5.18) by signing into the AWS Management Console, choosing EC2 from the console home page, and then choosing Auto Scaling Groups from the navigation pane.

 [image:]

 Figure 5.18 Auto Scaling group scaling policies

 Next, we will run the Stress tool to test the scaling policies of the workers’ ASG.

 5.5.4 Workers CPU utilization load

 SSH to one of the Jenkins workers by setting up an SSH tunnel from a bastion host. Install the Stress tool with the Yum package manager:

 sudo yum update
sudo yum install -y stress

 To run the Stress tool, enter the following command. It will generate a thread to max out two CPU cores (which is all we need, as we’re using t2.large instances):

 stress --cpu 2

 This gives you a chance to see what will happen to the autoscaling policies when real jobs are being built on Jenkins and CloudWatch alarms start triggering.

 You can use the top command to monitor the CPU utilization of the process created by the Stress tool or use CloudWatch metrics on the EC2 instance. The CPU utilization will hit 100% for an amount of time, as shown in figure 5.19.

 Note CloudWatch basic monitoring refreshes every 5 minutes, and our autoscaling policies require a metric to be met for 2 consecutive minutes, so we had to run stress tests for at least 5 minutes to ensure that our policies had enough time to be triggered.

 [image:]

 Figure 5.19 Jenkins worker CPU utilization usage

 CloudWatch aggregates metric data points based on the statistic of CPU utilization associated with the CloudWatch alarm. When the alarm is breached, the scale-out policy is triggered, as shown in figure 5.20.

 [image:]

 Figure 5.20 CloudWatch scale-out alarm triggered

 When the metric value gets to 80%, the desired capacity of the group increases by one instance to two instances; see figure 5.21.

 [image:]

 Figure 5.21 Scale-out policy invoked

 After the new instance is running, the user-data script will be executed, and the worker will join the cluster, as you can see in figure 5.22.

 [image:]

 Figure 5.22 The new worker has joined the cluster automatically.

 If the metric value gets to 20%, the desired capacity of the group decreases by one instance; see figure 5.23.

 [image:]

 Figure 5.23 Terminating an unused worker because of a scale-in event

 As a result, the terminated worker won’t be reachable and will be marked offline on the Jenkins web dashboard (figure 5.24).

 [image:]

 Figure 5.24 The terminated Jenkins worker is unreachable.

 Note When you’re done experimenting with Terraform, it’s a good idea to remove all the resources you created so AWS doesn’t charge you for them. Run the terraform destroy command to delete the existing AWS infrastructure.

 In this chapter, you learned how to deploy a highly available, secure, and resilient Jenkins cluster on AWS by using the IaC tool Terraform and how to use the baked Packer images to deploy workers to scale. Figure 5.25 summarizes the deployed architecture.

 [image:]

 Figure 5.25 Jenkins distributed builds on AW.

 Terraform is a vendor-agnostic tool that can manage infrastructure for multiple resource providers. Therefore, in the upcoming chapter, you’ll learn to deploy the preceding architecture on other cloud providers such as Microsoft Azure and Google Cloud Platform by using the same configuration files.

 Summary

 	
 Infrastructure as code is an approach to defining infrastructure and network components through descriptive or high-level code.

 	
 Terraform is an IaC tool that works with any cloud, be it private, on premises, or a public provider. Terraform allows safe and convenient management of infrastructure resources.

 	
 The Jenkins master should be hosted on an instance that has enough CPU and network bandwidth to handle concurrent users.

 	
 Jenkins workers should be immutable, able to be thrown away quickly and brought up or added into the cluster with as little manual interaction as possible. This can be achieved by leveraging AWS Auto Scaling groups.

 	
 Architect Jenkins for high availability and fault tolerance by spreading Jenkins workers across multiple availability zones.

 Part 2. Operating a self-healing Jenkins cluster

 You’ve read through part 1 and now feel comfortable with some of the core concepts and principles of pipeline as code. It’s time to get your hands dirty and deploy a Jenkins cluster from scratch with infrastructure-as-code tools on the cloud, including Amazon Web Services, Google Cloud Platform, Microsoft Azure, and DigitalOcean.

 Along the way, you’ll discover how to scale Jenkins workers dynamically and how to architect Jenkins for scale with distributed build mode. We’ll then look at Jenkins essential plugins and how to provision a preconfigured Jenkins cluster with all needed dependencies and configurations using Packer and Groovy scripts.

 3 Defining Jenkins architecture

 This chapter covers

 	Understanding how Jenkins distributed builds work

 	Understanding the roles of Jenkins master and worker nodes

 	Architecting Jenkins in the cloud for scale

 	Configuring multiple Jenkins masters

 	Preparing an AWS environment and CLI configuration

 In a distributed microservices architecture, you may have multiple services to build, test, and deploy regularly. Hence, having multiple build machines makes sense. While you can always run Jenkins in a standalone mode, running all builds on a central machine may not be the best option and will result in having a single point of failure (a single Jenkins server cannot handle the entire load for larger and heavier projects). Fortunately, Jenkins can also be configured to run distributed builds across a fleet of machines/nodes by setting up a master/worker cluster, as shown in figure 3.1.

 [image:]

 Figure 3.1 Distributed master-worker architecture

 Jenkins uses a master-worker architecture to manage distributed builds. Each component has a specific role:

 	
 Jenkins master—Responsible for scheduling build jobs and distributing builds to the workers for the actual execution. It also monitors the workers’ states, and collects and aggregates the build results in the web dashboard.

 	
 Jenkins worker—Also known as a slave or build agent, this is a Java executable that runs on a remote machine, listens for requests coming from the Jenkins master, and executes build jobs. You can have as many workers as you want (up to 100+ nodes). Workers can be added and removed on the fly. Therefore, the workload will be distributed to them automatically, and the workers will take the load off the master Jenkins server.

 Note In 2016, the Jenkins community decided to start removing offensive terminology within the project. The slave term was deprecated in Jenkins 2.0 and replaced by agent.

 To sum up, Jenkins can be deployed in a standalone mode. However, when you want to run multiple build jobs regularly in different environments to meet the requirements of the build environment for different projects, then a single Jenkins server cannot simply handle the workload. That’s why in this book, we will be focusing on master-worker architecture.

 3.1 Understanding master-worker architecture

 In a master-worker architecture, the web dashboard is running on the Jenkins master instance. The master’s role is to handle scheduling build jobs, dispatching and delegating builds to the workers for the actual execution, monitoring the workers’ state (online or offline), and recording and presenting the build results. Even in a distributed architecture, a master instance of Jenkins can also execute build jobs directly.

 Jenkins workers can be added and configured on the Jenkins dashboard or through a Jenkins RESTful API. The worker’s role is to execute build jobs assigned by the master. You can configure a project to always run on a particular node by assigning labels to nodes. Labels are a powerful feature; they are virtual group names. You can assign multiple labels to a worker node while configuring it. Labels can also be used to restrict the build job to run on a worker node associated with a specific label name—for instance, to restrict a job to be built on a CPU-optimized instance.

 To add a worker, you can click Manage Jenkins in the admin page menu, and then click Manage Nodes and Add New Node. Fill in the configuration information, including a name for the node, the workspace name, and the IP address of the node. Then, enter a label like workers (you can assign multiple labels in the Labels entry box by separating them with spaces). Figure 3.2 shows how to add a new worker to Jenkins.

 [image:]

 Figure 3.2 Using labels for Jenkins jobs assignments

 By assigning the workers label to the node, you can reference it easily in your Jenkinsfile. In a declarative pipeline, you can restrict the pipeline to run on nodes with the workers label by setting up the agent directive as follows:

 pipeline{
 agent{
 label 'workers'
 }
 stages{
 stage('Checkout'){}
 }
}

 The scripted pipeline, however, uses the node block wrapper with the label name as a parameter to define the execution environment for the pipeline:

 node('workers'){
 stage('Checkout'){}
}

 If more build jobs are requested for the same node, Jenkins will automatically create a job queue. By default, each node can execute one job; however, you can increase the node’s capacity for running jobs by setting the field labeled # of Executors. In the previous example, the node is configured with three executors, which means up to three jobs can be executed at once. If four jobs are started, the first three will execute, and the fourth will be added to the build queue. Once nodes become available, Jenkins will execute the remaining jobs in the order they were requested.

 To be able to add a worker to the Jenkins cluster, the workers and master need to establish bidirectional communication through TCP/IP. Another requirement is that Java should be installed on the worker machine. Because Java is a platform-agnostic programming language, a Jenkins cluster might consist of workers that run on a variety of OS platforms such as Windows, Linux, or macOS. This architecture comes with multiple benefits, such as having a heterogeneous build farm that supports all of the environments that you might need to run builds/tests with a different OS or CPU architecture.

 In the example in figure 3.3, using a worker to represent each of your required environments results in having several environments and configurations to test, build, and deploy your projects. The delegation behavior of build jobs depends on the configuration of each project; some projects may choose to “stick” to a particular machine for a build using labels, while others may choose to roam freely among available workers.

 [image:]

 Figure 3.3 You can set up multiple workers running different operating systems by using SSH or Java Network Launch Protocol (JNLP)

 3.2 Managing Jenkins workers

 Several strategies are available when it comes to managing Jenkins workers, depending on your target operating systems and other architectural considerations. These strategies affect the way you configure your workers, so we need to consider each separately.

 3.2.1 SSH

 If you are working in a UNIX environment, the most convenient way to start a Jenkins worker is undoubtedly to use Secure Shell (SSH). Jenkins has its own built-in SSH client, and almost all UNIX environments support SSH (usually sshd) out of the box.

 The worker needs to be reachable from the master server, and you will have to supply the hostname, login, and password. You can also provide a path to the SSH private key file on the master instance to use public/private key authentication, as shown in figure 3.4.

 [image:]

 Figure 3.4 Launching a Jenkins worker via SSH

 Note In chapter 5, we will use the SSH launch method to set up a Jenkins cluster.

 3.2.2 Command line

 You can add a worker by having Jenkins execute a command from the master, as shown in figure 3.5. Use this approach when the master is capable of remotely executing a process on another machine. However, the remoting mode has been deprecated since Jenkins 2.54 (so it might not a valid option in the newest version of Jenkins).

 [image:]

 Figure 3.5 Launching a Jenkins worker via the command line

 3.2.3 JNLP

 Another option is to start an agent from the worker machine itself by using Java Web Start (JWS). This approach is useful if the master cannot reach the worker—for example, if the worker machine is running on the other side of a firewall. It works no matter what operating system your worker is running on. However, it is more suitable for managing Windows workers.

 This approach does suffer from a few major drawbacks: the worker machine cannot be started or restarted automatically by Jenkins. If the worker goes down, the master instance cannot restart it. When you do this on a Windows machine, you need to start the Jenkins worker manually at least once. This requires opening a browser on the machine, opening the worker node page on the Jenkins master, and launching the worker using a very visible JNLP icon. However, once you have launched the worker, you can install it as a Windows service.

 3.2.4 Windows service

 Jenkins can also manage a remote Windows worker as a Windows service, using the Windows DCOM Server Process Launcher service, which is installed out of the box on Windows. When you choose this option, you need to provide a Windows hostname, username, and password, as you can see in figure 3.6.

 [image:]

 Figure 3.6 Starting a Windows worker

 This launching mode is convenient, as it does not require you to physically connect to the Windows machine to set it up. However, it does have limitations—in particular, you cannot run any applications requiring a graphical interface.

 Once the workers are added to the Jenkins cluster, the master will proactively monitor their statuses and take a worker offline if it considers the worker incapable of safely executing a build job. You can fine-tune exactly what Jenkins monitors on the Manage Nodes page, shown in figure 3.7.

 [image:]

 Figure 3.7 Defining node-monitoring thresholds

 Jenkins monitors the available disk space of $JENKINS_HOME on each worker, as well as the disk space of the temporary directory and swap space. It also keeps tabs on the system clock difference between the master and workers. Finally, it monitors the round-trip network response time from the master to the worker. If any of these criteria is below a certain threshold, the worker will be marked offline.

 Finally, it’s worth mentioning that by default Jenkins uses the workers as much as possible. Whenever a build can be executed by a specific worker, Jenkins will use it.

 To control how Jenkins is scheduling builds on available workers, you can configure the Usage field, shown in figure 3.8, to use the Only Build Jobs with Label Expressions Matching This Node option to restrict jobs to a worker that matches its name and/or label. This can become handy if you want to reserve a worker for a certain kind of Jenkins job. Furthermore, if you set the # of Executors field’s value to 1, you can ensure that only one job will be executed at any given time. As a result, no other builds will interfere.

 [image:]

 Figure 3.8 Configuring Jenkins worker usage

 3.3 Architecting Jenkins for scale in AWS

 So far, we have covered how Jenkins distributed builds work. This section covers how to architect Jenkins for scale on AWS. Therefore, you will need an AWS account to follow the examples. With a new AWS account, the Free Tiers should cover all the examples at no cost to you. For more information on the AWS Free Tier, and a step-by-step guide on how to create a new AWS account, visit https://aws.amazon.com/free/.

 Note Although this section focuses on AWS, this content can also be used to help set up a Jenkins cluster in other cloud providers. Chapter 6 provides a step-by-step guide.

 The simple architecture you can deploy is a standalone or single-node setup. You simply need to deploy a Jenkins server on an Amazon Elastic Compute Cloud (EC2) instance from the AWS Marketplace (https://aws.amazon.com/marketplace), shown in figure 3.9.

 [image:]

 Figure 3.9 Jenkins Amazon Machine Image available on AWS Marketplace

 The AWS Marketplace contains preconfigured Amazon Machine Images (AMIs) from popular categories such as security, networking, storage, machine learning, business intelligence, database, and DevOps. You can quickly launch a Jenkins server with just a few clicks, by selecting the Jenkins Long-Term Support (LTS) release and the machine instance type (based on resource requirements).

 You can also install Jenkins on a base machine image by using a package manager (for example, APT or Yum). Jenkins installers are available for several Linux distributions as well as Windows and macOS. Otherwise, you can set up a Jenkins playground with a Jenkins official Docker image.

 Note Chapter 4 covers how to create your own Jenkins machine image from scratch with HashiCorp Packer.

 Once you have installed Jenkins on an EC2 instance, you will need to configure the security group attached to the instance to allow traffic on port 8080. This is the port where the Jenkins dashboard is exposed to.

 A security group acts as a firewall that controls the traffic allowed to reach the EC2 instances (figure 3.10). To control traffic, we create rules in the security group. For this case, the following security rules need to be added.

 	
 Allow inbound (ingress) traffic on port 8080 (Jenkins dashboard port number).

 	
 (Optional) Allow inbound SSH traffic from your computer’s public address so that you can connect to your Jenkins instance for debugging or maintenance.

 	
 By default, a security group includes an outbound rule that allows all outbound (egress) traffic.

 [image:]

 Figure 3.10 The Jenkins standalone architecture on AWS consists of an EC2 instance behind a security group.

 You might set up a network access-control list (ACL) with rules similar to your security group to add an additional layer of security to your instance. The security group acts as a firewall for your Amazon EC2 instance, controlling both inbound and outbound traffic at the instance level. ACL acts as a firewall for associated subnets, controlling both inbound and outbound traffic at the subnet level.

 Note While you can scale the Jenkins master vertically to absorb the loading pike of build jobs, there is a limit to how much an instance can be scaled.

 While this architecture works for smaller projects, it can’t scale for larger and complex projects. Therefore, we will deploy a Jenkins cluster to share the load across multiple workers. Instead of scheduling builds jobs on a Jenkins master instance, they will be assigned to Jenkins workers. As a result, additional EC2 instances (figure 3.11) will be deployed as build servers or Jenkins agents.

 [image:]

 Figure 3.11 Jenkins distributed architecture on AWS

 This architecture is much better. However, distributed builds are generally used to absorb extra load (for example, in build activity) by dynamically adding extra machines as required. Hence, the number of workers shouldn’t be fixed in advance. We want to add or remove workers based on the number of jobs waiting in the queue or the CPU utilization of the worker’s cluster. That’s why, instead of deploying workers independently, we will deploy them inside an AWS Auto Scaling group (ASG); see https://aws.amazon.com/autoscaling/ .

 The ASG feature comes with EC2 and allows you to deploy a group of EC2 instances that are treated as a logical grouping for the purpose of automatic scaling. In addition, Amazon EC2 Auto Scaling helps to ensure that you have the correct number of instances by specifying the minimum and maximum number of instances at any given time.

 To create and terminate Jenkins workers on demand based on build jobs, we can create scaling policies. A scaling policy is a set of instructions for adjusting the size of instances in the ASG in response to an Amazon CloudWatch alarm (docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail).

 An Amazon CloudWatch alarm will monitor the CPU usage of the EC2 instances, for example. Then it will trigger a scale-out or scale-in event to add or remove a worker to the Jenkins cluster automatically. For instance, if the average CPU utilization of the Jenkins workers is over 80%, a scale-out event will be triggered, and a new worker will be deployed and added to the Jenkins cluster. Similarly, if the average CPU utilization of the Jenkins workers is less than 20%, a scale-in event will be triggered, and unused workers will be removed (providing infrastructure cost optimization).

 Note When creating an alarm on the Auto Scaling group, the alarm uses aggregated metrics across all Jenkins worker instances (average CPU utilization). This way, it won’t add instances just because one worker is too busy.

 When the CPU utilization is less than 20%, the scale-in policy takes effect, and the ASG terminates on the available instances. If you did not assign a specific termination policy to the ASG, it uses the default termination policy. This means the ASG selects the instance to terminate based on the following factors:

 	
 The instance that is closed to the next billing hour.

 	
 Longest/oldest running EC2 instance.

 	
 Oldest launch configuration. The launch configuration is the blueprint or template that describes what a Jenkins worker instance should look like.

 However, you can use Amazon EC2 termination protection to protect a Jenkins worker from being accidentally terminated. Refer to the official guide for instructions: http://mng.bz/ePwz.

 We can also configure the scaling policies based on memory utilization. However, memory utilization is one of the metrics not available by default in CloudWatch. Since AWS does not have access to the instance at the OS level, only metrics that can be monitored through the hypervisor layer (such as CPU and network utilization) are recorded.

 We have various ways to solve this problem. The most used one is to install a metrics collector agent on the EC2 instances. For more details on how to fetch the memory utilization, check out chapter 13.

 Note To be able to add workers automatically, the worker machine will run a shell script at boot time and use the Jenkins RESTful API to autoregister to the cluster with the machine’s private IP address (known as cluster discovery). Chapters 4 and 5 explain this part in depth.

 Figure 3.12 illustrates how to dynamically scale Jenkins workers by using CloudWatch scaling policies.

 [image:]

 Figure 3.12 Jenkins workers belong to an AWS autoscaling group and will be scaled dynamically based on the average CPU utilization of the group.

 We can also use custom metrics such as the number of jobs waiting in the build queue to trigger scaling policies. To get this information, you can use an open source solution such as Prometheus (https://prometheus.io/docs/introduction/overview/) to export Jenkins cluster metrics and make a Lambda function to consume/scrape those metrics. From the Lambda function, you can trigger scale-out or scale-in events on the Jenkins worker autoscaling group by using the AWS API/SDK.

 Note Chapter 13 covers how to monitor a Jenkins cluster’s health and how to use the Prometheus exporter plugin on Jenkins to expose server-side metrics.

 Figure 3.13 demonstrates how to scale Jenkins workers dynamically based on a custom metric.

 [image:]

 Figure 3.13 You can scale Jenkins workers dynamically based on the number of jobs waiting in the build queue by integrating Prometheus and AWS Lambda.

 So far, the architecture is promising. However, it’s not secure and resilient. To secure our Jenkins cluster, we will deploy the architecture inside a virtual private cloud (VPC) and within a private subnet precisely. In reality, by default, any EC2 instance is deployed in the AWS default VPC. But we will create a nondefault VPC that suits our specific requirements, using specific Classless Inter-Domain Routing (CIDR) block range and subnet sizes.

 Amazon VPC (https://aws.amazon.com/vpc) lets you provision a logically isolated section of the AWS cloud where you can launch AWS resources in a virtual network that you can define. You have complete control over your virtual networking environment, including a selection of your own IP address range, creation of subnets, and configuration of route tables and network gateways.

 An important point to note here is that a VPC is still a part of the AWS cloud. It is not physically separate hosting provided by AWS; it is a logically isolated part of the EC2 infrastructure. This isolation is done at the network layer and is similar to a traditional datacenter’s network isolation; it’s just that we, as end users, are shielded from the complexities of it. Figure 3.14 shows the network topology of AWS VPC.

 [image:]

 Figure 3.14 The virtual private cloud consists of private and public subnets.

 We will create an AWS VPC with multiple subnets. A subnet is nothing more than a range of valid IP addresses. For resiliency, these subnets will be deployed in different availability zones in the selected AWS region.

 Next, we deploy an internet gateway (IGW) and attach it to the VPC. The IGW will be used primarily to provide internet connectivity to Jenkins instances (this might be needed if your build jobs running in Jenkins workers require downloading external packages from the internet). Plus, the IGW maps the instance’s private IP address with an associated public or Elastic IP address (http://mng.bz/p9QG) and then routes traffic outside the subnet to the internet. Finally, we create a public route table with rules to direct network traffic from public subnets to the IGW, as shown in table 3.1.

 Table 3.1 Public route table

 	
 Destination

 	
 Target

 	
 Remark

 	
 10.0.0.0/16

 	
 local

 	
 Allow traffic to flow with this particular subnet (10.0.0.0/16)

 	
 0.0.0.0/0

 	
 IGW ID

 	
 Allow subnet traffic to flow through the internet.

 But what about instances in the private subnets? That’s where a Network Address Translation (NAT) instance or gateway comes into play. The NAT gateway/instance will be created inside a public subnet and will forward the outbound traffic and not allow any traffic from the internet to reach the private subnets. This means instances will have access to the internet without being exposed to the public (no public IP address is given). Once the NAT gateway is deployed, we need to add an entry to the private subnets route table to point to the NAT gateway; see table 3.2.

 Table 3.2 Private route table

 	
 Destination

 	
 Target

 	
 Remark

 	
 10.0.0.0/16

 	
 local

 	
 Allow traffic to flow with this particular subnet (10.0.0.0/16)

 	
 0.0.0.0/0

 	
 NAT ID

 	
 Allow subnet traffic to flow through the NAT gateway/instance

 Because Jenkins instances will be deployed into private subnets that are isolated from the internet, we cannot SSH directly to them from local desktops. A basic solution is to deploy a special instance that acts as a proxy you can use to SSH into your Jenkins instances. This special instance is called a bastion host, or jump box. This instance will be deployed in your public subnet and will basically route only SSH traffic from your local network over the Jenkins instances by setting up a secure SSH tunnel/bridge.

 Note An advanced solution is to deploy OpenVPN to establish a secure TLS VPN session to securely access your private Jenkins instances. Refer to “Setting Up OpenVPN Access Server in Amazon VPC” at http://mng.bz/OQVn for instructions.

 Once the VPC is configured, we can go ahead and deploy a dedicated EC2 instance running the Jenkins server on a private subnet. Alongside, an ASG of Jenkins workers will be deployed across multiple private subnets. We configure scaling policies with CloudWatch alarms to dynamically scale Jenkins workers based on the build activity. Figure 3.15 summarizes the current deployment architecture.

 [image:]

 Figure 3.15 This Jenkins cluster deployed in private subnets consists of an ASG of workers and an EC2 instance holding the Jenkins dashboard.

 We can take this architecture further, and configure a public-facing Elastic load balancer in front of the Jenkins instance to access the Jenkins web dashboard. This way, your Jenkins instance does not have to be directly exposed to the internet.

 Note It’s possible to have multiple Jenkins instances even though Jenkins core doesn’t support multiple masters by default. Then, use the load balancer to fetch requests and distribute them among multiple Jenkins masters.

 The load balancer will listen on both the HTTP (80) and HTTPS (443) ports and send incoming requests to the instance on port 8080. That way, it uses an encrypted connection to communicate with the Jenkins instance. Table 3.3 summarizes the port configurations.

 Table 3.3 Load balancer listener configuration

 	
 Load balancer protocol

 	
 Load balancer port

 	
 Instance protocol

 	
 Instance port

 	
 HTTP

 	
 80

 	
 HTTP

 	
 8080

 	
 HTTPS

 	
 443

 	
 HTTP

 	
 8080

 If you specify the HTTPS listener, you will need to select a private Secure Sockets Layer (SSL) certificate. The load balancer uses the certificate to terminate the connection and then decrypt requests from clients before sending them to the Jenkins instance. You can get a free SSL certificate with AWS Certificate Manager (ACM); you can also import your own certificate.

 The load balancer has a publicly resolvable DNS name, so it can route requests from clients over the internet to a Jenkins instance that is registered with the load balancer. Also, it will be useful while setting up a GitHub webhook for continuously triggering Jenkins builds upon push events.

 Note If you plan to stick with a private Jenkins instance, chapter 7 explains how to set up a GitHub webhook for a Jenkins instance running behind a firewall.

 Finally, if you would like to use a friendly DNS name to access your load balancer, instead of the default DNS name automatically assigned to your load balancer, you can create a custom domain name and associate it with the DNS name for your load balancer. The DNS configuration can be done on Amazon Route 53 (https://aws.amazon .com/route53/). Figure 3.16 shows the final architecture diagram.

 [image:]

 Figure 3.16 Jenkins cluster deployment on a custom VPC

 Adding workers to a Jenkins cluster is the typical way to scale Jenkins. However, you can set up multiple Jenkins masters with a proxy (typically, HAProxy or NGINX) to actively monitor the primary master and reroute requests to backup masters if the active master goes down. The Jenkins architecture for master instances will look like figure 3.17.

 [image:]

 Figure 3.17 The Jenkins master HA setup uses Amazon Elastic File System to persist the Jenkins home directory.

 As you can see, the first tier is the reverse proxy. Whenever an incoming request for the build occurs, it will first reach the proxy. Then, the proxy will decide the instance to which the request can be routed. Here, one of the masters will be in the active state to serve requests, and the other one will be passive. Whenever a problem exists with the active master and it goes down, the other master will become active, and requests will resume. (We also can deploy Jenkins masters inside an ASG to ensure that a minimum number of masters is always available for backup). These requests will then be served by the master that has become active.

 The second tier is Amazon Elastic File System, or EFS (https://aws.amazon.com/efs/), which is used as a storage solution to persist the Jenkins home directory $JENKINS_HOME so both Jenkins masters can access and store Jenkins jobs. This storage solution can be mounted on multiple Jenkins instances concurrently. Amazon EFS, like any Network File System (NFS) server, supports full filesystem access semantics such as strong consistency and file locking.

 EFS can also be used if you plan to deploy Jenkins on a Kubernetes cluster or Docker-based orchestration platforms like AWS ECS or Fargate. As the Jenkins master container can be launched on any node in the cluster, EFS can be used to persist the Jenkins data directory to preserve its state.

 Note Chapter 14 covers how to mount EFS in the $JENKINS_HOME directory to ensure that 100% of data is shared and can’t be lost in case of failure.

 Now that the Jenkins architecture is clear, next we will prepare our AWS environment, and then install and configure the tools needed for upcoming chapters.

 3.3.1 Preparing the AWS environment

 This section will walk you through installing and configuring the AWS command line. The command-line interface (CLI) is a solid and mandatory tool that we’ll use in upcoming chapters. It will save us substantial time by automating the deployment and configuration of a Jenkins cluster on AWS with HashiCorp Terraform and Packer as well as defining CI/CD steps for cloud-native applications.

 3.3.2 Configuring the AWS CLI

 The AWS CLI (https://aws.amazon.com/cli/) is a powerful tool for managing your AWS services and resources from a terminal session. It was built on top of the AWS API, and hence everything that can be done through the AWS Management Console (https://console.aws.amazon.com/console/home) can be done with the CLI; this makes it a handy tool that can be used to automate and control your AWS infrastructure through scripts. Later chapters provide information on the use of the CLI with Jenkins to manage cloud-native applications in AWS.

 Let’s go through the installation process for the AWS CLI; you can find information on its configuration and testing in the AWS Management Console section. To get started, refer to the official documentation and follow the instructions to install the AWS CLI based on your operating system (http://mng.bz/Yw8N).

 Once the AWS CLI is installed, you need to add the AWS CLI binary path to the PATH environment variable as follows.

 	
 For Windows, press the Windows key and type Environment Variables. In the Environment Variables window, highlight the PATH variable in the System Variables section. Edit it and add a path by placing a semicolon right after the last path, and then enter the complete path to the folder where the CLI binary is installed.

 	
 For Linux, Mac, or any UNIX system, open your shell’s profile script (.bash_profile, .profile, or .bash_login) and add the following line to the end of the file:

 export PATH=~/.local/bin:$PATH

 Finally, load the profile into your current session.

 source ~/.bash_profile

 Verify that the CLI is correctly installed by opening a new terminal session and typing the following command:

 aws --version

 You should be able to see the AWS CLI version; in my case, 2.0.0 is installed. Let’s test it out and list Amazon S3 buckets in the Frankfurt region as an example.

 aws s3 ls --region eu-central-1

 The previous command displays the following output.

 [image:]

 When using the CLI, you’ll generally need your AWS credentials to authenticate with AWS services. You can configure AWS credentials in multiple ways.

 	
 Environment credentials—Use the AWS_ACCESS_KEY_ID and AWS_SECRET_KEY variables. They can be useful for scripting or temporarily setting a named profile as the default.

 Note If you set the environment variables at the terminal prompt, the values are saved for only the duration of the current session. To make the environment variable settings persistent across all terminal sessions, store them under /etc/profile or in ~/.bash_profile for the current user.

 	
 Shared Credentials file—The AWS CLI stores the credentials in a local file named credentials under the .aws folder in your home directory. You can specify a nondefault location for the credentials file by setting the AWS_SHARED_CREDENTIALS_FILE environment variable to another local path.

 	
 IAM roles—If you’re using the CLI in an EC2 instance, this removes the need to manage credential files in production. Each Amazon EC2 instance contains metadata that the AWS CLI can directly query for temporary credentials.

 In the next section, I will show you how to create a new user for the AWS CLI with the AWS Identity and Access Management (IAM) service.

 3.3.3 Creating and managing the IAM user

 IAM (https://aws.amazon.com/iam/) is a service that allows you to manage users, groups, and their level of access to AWS services. It’s strongly recommended that you do not use the AWS root account for any task except billing tasks, as it has the ultimate authority to create and delete IAM users, change billing, close the account, and perform all other actions on your AWS account. Therefore, we will create a new IAM user and grant it the permissions it needs to access the right AWS resources following the principle of least privilege.

 Note The principle of least privilege (PoLP) works by giving a given user only the minimum levels of access—or permissions—needed to perform the required task.

 Sign in to AWS Management Console by using your AWS email address and password. Then, open the IAM console from the Security, Identity & Compliance section or type IAM in the search bar; figure 3.18 shows the console.

 [image:]

 Figure 3.18 AWS Management Console

 From the navigation pane, choose Users. Click the Add User button. Then set a name for the user and select Programmatic Access (also select AWS Management Console access if you want the same user to have access to the console), as shown in figure 3.19.

 [image:]

 Figure 3.19 Creating a new IAM user

 In the Set Permissions section, assign the AmazonS3FullAccess policy to the user, as shown in figure 3.20.

 [image:]

 Figure 3.20 Attaching IAM policies to the user

 Note It’s better to be granular and specify only permissions that are needed to get the job done (leave privilege access). Start with a minimum set of permissions and add more permissions only if necessary.

 On the final page, you should see the user’s AWS credentials (figure 3.21). Make sure you save the access keys in a safe location, as you won’t be able to see them again.

 [image:]

 Figure 3.21 AWS credentials generation

 Note You can create IAM users to represent users, applications, or services. In the next chapter, we will create dedicated IAM users for HashiCorp Terraform and Packer tools.

 Next, configure the AWS CLI by using the aws configure command. The CLI will store credentials specified in the preceding command in a local file under ~/.aws/ credentials (or in %UserProfile%\.aws\credentials on Windows) with the following content (substitute eu-central-1 with your AWS region):

 [default]
region=eu-central-1
aws_access_key_id=ACCESS KEY ID
aws_secret_access_key=SECRET ACCESS KEY

 Note You can override the region in which your AWS resources are located by using the AWS_DEFAULT_REGION environment variable of the --region command-line option.

 That should be it; try out the following command and, if you have an S3 bucket, you should be able to see the credentials listed. Otherwise, the command will return no results:

 aws s3 ls

 Now that the AWS environment is set up, let’s get down to business and deploy a Jenkins cluster on AWS.

 Summary

 	
 Deploying Jenkins in distributed builds mode allows for decoupling orchestration, build executions, and better performance.

 	
 Jenkins is a crucial component of the DevOps chain, and its downtime may have adverse effects on the DevOps environment. To overcome these, you need a high-availability setup for Jenkins.

 	
 AWS CloudWatch provides a rich set of metrics to monitor the health of EC2 instances. The metrics collected can be used to set up alarms and trigger scaling policies upon alarm firing such as scaling Jenkins workers.

 	
 Delegating the workload of building projects to worker nodes is referred to as distributed builds.

 	
 You can configure a build to run on a particular worker machine by using Jenkins labels.

 	
 It’s highly recommended to launch your Jenkins deployment within a private subnet in a VPC for security purposes.

 	
 By assigning labels to nodes, you can specify the resources you want to use for specific jobs, and set up graceful queuing for your tests.

 4 Baking machine images with Packer

 This chapter covers

 	Overview of immutable infrastructure

 	Baking Jenkins machine images with Packer

 	Discovering Jenkins essentials plugins

 	Executing Jenkins Groovy scripts

 	Using Packer provisioners to automate Jenkins settings

 In the previous chapter, you learned how Jenkins distributed mode architecture works. In this one, we will get our hands dirty and deploy a Jenkins cluster on AWS. As a quick reminder, you learned that the Jenkins cluster is divided into two main components: master and worker. Before diving into the implementation of the distributed builds architecture, we will deploy the standalone mode, shown in figure 4.1, to cover some basics.

 To deploy this architecture, we need to provision a server (for example, an EC2 instance in AWS). Then we’ll install and configure Jenkins on the machine. While this manual process works, it’s not efficient when we want to deploy Jenkins to scale. Plus, updating or upgrading Jenkins can be lengthy and painful, and things can easily go wrong—breaking your CI/CD pipelines and impacting your product release as a result.

 [image:]

 Figure 4.1 Jenkins standalonearchitecture on AWS

 So instead of installing Jenkins after infrastructure creation (EC2 instance deployment) and applying updates on an existing Jenkins instance (in case of upgrades or maintenance), all changes must be packaged in a new machine image. A new Jenkins instance should be deployed based on the new image, and then the old server will be destroyed. This process creates what is known as an immutable infrastructure.

 4.1 Immutable infrastructure

 Immutable infrastructure is all about immutable components that are re-created and replaced instead of updated after infrastructure creation. This immutable infrastructure reduces the number of places where things can go wrong. This helps reduce inconsistency and improves reliability in the deployment process.

 When an update is necessary for immutable infrastructure, new servers are provisioned with a preconfigured image, and old servers are destroyed. We create a new machine image that is built for deployment and use it for creating new servers. In immutable infrastructure, we are moving the configuration setup after the server creation process to the build process. As all deployments are done by new images, we can keep the history of previous releases in case of reverting to an old build. This allows us to reduce deployment time and the chance of configuration failure, and to scale deployments. Figure 4.2 illustrates the differences between immutable and mutable infrastructures.

 Notice that the new Instance B, generated from a “golden” machine image, is provisioned upon the destruction of Instance A in the immutable pattern. Note, too, that there is no Jenkins downtime during instance replacement with well-architected immutable patterns that have multiple instances in service at a given time. By contrast, in the mutable pattern, Instance A isn’t replaced. The same instance is modified manually or by using a script or tool, with the Jenkins updated from v1.0 to v2.0.

 [image:]

 Figure 4.2 Updating via mutable and immutable infrastructures

 In this era of cloud computing, many companies are adopting immutable infrastructure to simplify configuration management and improve reliability by using infrastructure as code. With immutable infrastructure, instead of making changes on a running server, we create a new server. Creating immutable infrastructure is hard and needs a sophisticated process for building and testing. The best way to implement immutable infrastructure is to use a well-tested and tried tool.

 Multiple tools and frameworks allow you to build immutable infrastructure. The most famous ones are HashiCorp Packer, HashiCorp Vagrant, and Docker. In this book, we will keep our focus on machine images by using Packer. The goal is to illustrate the workflow for building immutable infrastructure and show how it can be fully automated using Packer. However, the same workflow can be applied while using other alternatives.

 4.2 Introducing Packer

 HashiCorp Packer (www.packer.io) is a lightweight and easy-to-use open source tool that automates the creation of any type of machine image for multiple platforms. Packer is not a replacement for configuration management tools like Ansible, Puppet, or Chef. Packer works with these tools to install and configure software and dependencies while creating images.

 Packer uses a configuration file to create a machine image. Then it uses builders to spin up an instance on the target platform, and runs provisioners to configure applications or services. Once setup is done, it shuts down the instance and saves the new baked machine instance with any needed post-processing.

 Using Packer has many advantages. Here are a few:

 	
 Fast infrastructure deployment—Machine images allow us to more quickly launch provisioned and configured machines.

 	
 Scalable—Packer installs and configures all needed software and dependencies for a machine during the image-creation process. The same image can be used to spawn any number of instances without doing extra configuration. (The same image can be used to deploy multiple Jenkins workers, for instance.)

 	
 Multiprovider support—Packer can be used to create images for multiple cloud providers like AWS, GCP, and Microsoft Azure.

 Figure 4.3 illustrates a typical machine image build process with Packer.

 [image:]

 Figure 4.3 Building Jenkins machine images with Packer

 The drawback of using Packer is managing existing images: you need to manage them yourself by using tags or versions and keep deleting old, unused images (in AWS, you’re charged for the storage of the bits that make up your machine image, or AMI).

 4.2.1 How does it work?

 Figure 4.4 illustrates the process Packer uses to bake machine images.

 [image:]

 Figure 4.4 Packer baking workflow

 Here are the steps in the process:

 	
 Boot a temporary instance using the base image defined in the template file.

 	
 Provision the instance by using configuration management tools like Ansible, Chef, or Puppet, or with a simple automated script to configure the instance into the desired state.

 	
 Create a new machine image from the temporary running instance and shut down the temporary instance after the image is baked.

 Once a new machine image is created, booting a new server from this new image will give the same configuration that was already done on the temporary instance. This helps provide a smooth deployment process. This also helps scale our services fast.

 The Packer configuration, also known as a template file, can be written in JSON or YAML format. It consists of the following three main components:

 	
 User variables—This section is used to parameterize the Packer template file so we can keep secret, environment variables and other parameters out of the template. The section helps with the portability of the template file and helps in separating out the part that can be modified in our template. Variables can be passed through command lines, environment variables, HashiCorp Vault (www.vaultproject.io), or files. The section is a key-value mapping with the variable name assigned to a default value.

 	
 Builders—This section contains a list of builders that Packer uses to generate a machine image. Builders are responsible for creating an instance and generating machine images from them. A builder maps to a single machine image. This section contains information including the type (which is the name of the builder), access keys, and credentials required to connect to the platform (AWS, for instance).

 	
 Provisioners—This section, which is optional, contains a list of provisioners that Packer uses to install and configure software within a running instance before creating a machine image. The type specifies the name of a provisioner such as Shell, Chef, or Ansible.

 NOTE For a full list of supported builders, refer to the official documentation at www.packer.io/docs/builders/. For a full list of supported provisioners, see www.packer.io/docs/provisioners/.

 Packer helps bake configuration into the machine image during image creation time. This helps in creating identical servers in case things go wrong.

 4.2.2 Installation and configuration

 Packer is written in Go, which is a compiled language. Hence, installing Packer is straightforward; you just need to download the appropriate binary for your system and architecture from www.packer.io/downloads/. Figure 4.5 shows the download page.

 [image:]

 Figure 4.5 Packer download page

 NOTE Make sure the directory where you installed the Packer binary is on the PATH variable.

 After installing Packer, verify that the installation is working by opening a new terminal session and checking that Packer is available by issuing the following command:

 [image:]

 NOTE At the time of writing this book, the latest stable version of Packer is 1.7.2.

 If you get an error that Packer could not be found, your PATH environment variable was not set up properly. Otherwise, Packer is installed, and you’re ready to go!

 4.2.3 Baking a machine image

 With Packer installed, let’s dive right into it and build our first image. Our first machine image will be an Amazon EC2 AMI with Jenkins pre-installed. To create this AMI, we need to write a Packer configuration file.

 NOTE The following Packer template file has been cropped for brevity. The full template is available in the GitHub repository under the chapter4 folder: http://mng.bz/GO8q.

 Create a template.json file and fill it with the following content.

 Listing 4.1 Packer template for standalone Jenkins serve.

 {
 "variables" : { .
 "region" : "AWS REGION",
 "aws_profile": "AWS PROFILE",
 "source_ami" : "AMAZON LINUX AMI ID",
 "instance_type": "EC2 INSTANCE TYPE"
 },
 "builders" : [.
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-master-2.204.1",
 "ami_description" : "Amazon Linux Image with Jenkins Server",
],
 "provisioners" : [{
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 This template file consists of three main sections:

 	
 variables

 	
 builders

 	
 provisioners

 Instead of hardcoding values in the template file, we are using variables that can be overridden at the Packer runtime. In our example, we have defined the variables in table 4.1.

 Substitute the value of source_ami with the appropriate Amazon Linux AMI ID. The Amazon Linux AMI ID can be found by heading to AWS Management Console and navigating to the EC2 dashboard. Click Launch EC2 Instance. On the Choose AMI tab, type Amazon Linux AMI in the search bar, shown in figure 4.6.

 Table 4.1 Packer variables

 	
 Variable

 	
 Description

 	
 region

 	
 The name of the AWS region, such as eu-central-1, in which to launch the EC2 instance to create the AMI. While you can always copy an AMI from one region to another, for simplicity the AMI location will be the same as the region where the Jenkins EC2 instance will be deployed to.

 	
 aws_profile

 	
 The AWS profile used. Check chapter 3 for details about AWS CLI configuration. You can also provide AWS credentials through environment variables or with EC2 metadata if you plan to run Packer inside an EC2 instance. If you plan to use AWS access and secrets keys, keep them out of the template and provide them only during runtime by using the -var flag.

 	
 instance_type

 	
 The EC2 instance type to use while building the AMI, such as a t2.micro. A list of supported instance types can be found at https://aws.amazon.com/ec2/instance-types/.

 	
 source_ami

 	
 The base AMI to use to boot the temporary EC2 instance. In the previous example, we’re using the official Amazon Linux image. You may need to change the source AMI ID based on what images exist when this template is run and the AWS region you’re using.

 [image:]

 Figure 4.6 Amazon Linux image identifier

 You can also find the ID programmatically with Packer by using thesource_ami_ filter attribute in the Packer template file. This attribute will automatically populate the source_ami attribute based on the defined filters. For instance, the following snippet selects the most recent Amazon Linux AMI (the full template file can be copied from chapter4/standalone/template-with-filter.json).

 "builders" : [
 {
 "ami_name" : "jenkins-master-2.204.1",
 "ami_description" : "Amazon Linux Image with Jenkins Server",
 "source_ami_filter": {
 "filters": {
 "virtualization-type": "hvm",
 "name": "Amazon Linux AMI-*",
 "root-device-type": "ebs"
 },
 "owners": ["amazon"],
 "most_recent": true
 }
 }
]

 If multiple AMIs meet all of the filtering criteria provided in source_ami_filter, the most_recent attribute will select the newest Amazon Linux image.

 Because the target machine image is an Amazon Machine Image, we are using the amazon-ebs builder. This is the Amazon EC2 AMI builder that ships with Packer. This builder builds an EBS-backed AMI by launching a source AMI, provisioning on top of that, and repackaging it into a new AMI. Multiple builders are available based on the target platform. Separate builders are available for EC2, VMware, VirtualBox, and others. Packer comes with many builders by default and can also be extended to add new builders.

 The ami_name attribute in the builder section is the name of the resulting AMI that will appear when managing AMIs in the AWS console. The name must be unique. To help make this unique, I have added it as a prefix to the version of the installed Jenkins server, but you can also use the current timestamp with the following format:

 "ami_name" : "jenkins-master-2.204.1-{{timestamp}}"

 {{timestamp}} will be replaced by the Packer template engine to generate the current UNIX timestamp in Coordinated Universal Time (UTC).

 The provisioners stage is responsible for installing and configuring all needed dependencies. Packer fully supports multiple modern configuration management tools such as Ansible, Chef, and Puppet. Bash scripts are also supported. To simplify the baking process for the Jenkins AMI, we have defined a bash script called setup.sh with the following content.

 Listing 4.2 Bash script to install Jenkins LTS

 #!/bin/bash
yum remove -y java
yum install -y java-1.8.0-openjdk
wget -O /etc/yum.repos.d/jenkins.repo
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key
yum install -y jenkins
chkconfig jenkins on
service jenkins start

 The script is self-explanatory: it installs the Java Development Kit (JDK), which is mandatory to run Jenkins, and then it installs the latest stable version of Jenkins. Here we install the Jenkins LTS release. Although it might lag behind in terms of new features, it provides more stability than weekly releases. The weekly Jenkins releases deliver bug fixes and new features rapidly to users and plugin developers who need them. But for more conservative users, it’s preferable to stick to a release line that changes less often and receives only important bug fixes.

 Once the Jenkins package is installed with the Yum package manager, the script configures Jenkins to start automatically if the machine has been restarted with the chkconfig command.

 Now that our template file is defined, we can execute the following command to verify the syntax of the template file:

 packer validate template.json

 The command will return a zero exit status to indicate that the template.json syntax is valid.

 Before we take this template and build an image from it, we need to assign the AmazonEC2FullAccess policy to the IAM user created in chapter 3 for Packer to be able to deploy an EC2 instance and create a machine image out of it.

 Head back to AWS Console, navigate to the IAM dashboard, and jump to the Users section. Then, select the Packer user and attach the policy in listing 4.3, as shown in figure 4.7.

 [image:]

 Figure 4.7 Attaching the EC2 policy to an IAM user

 NOTE A preferred approach is to provide the minimal set of permissions necessary for Packer to work. The following listing is an IAM policy with the minimal set permissions necessary for the Amazon plugin to work.

 Listing 4.3 AWS IAM policy for Packer

 {
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action" : [
 "ec2:AttachVolume",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:CopyImage",
 "ec2:CreateImage",
 "ec2:CreateKeypair",
 "ec2:CreateSecurityGroup",
 "ec2:CreateSnapshot",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteKeyPair",
 "ec2:DeleteSecurityGroup",
 "ec2:DeleteSnapshot",
 "ec2:DeleteVolume",
 "ec2:DeregisterImage",
 "ec2:DescribeImageAttribute",
 "ec2:DescribeImages",
 "ec2:DescribeInstances",
 "ec2:DescribeInstanceStatus",
 "ec2:DescribeRegions",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSnapshots",
 "ec2:DescribeSubnets",
 "ec2:DescribeTags",
 "ec2:DescribeVolumes",
 "ec2:DetachVolume",
 "ec2:GetPasswordData",
 "ec2:ModifyImageAttribute",
 "ec2:ModifyInstanceAttribute",
 "ec2:ModifySnapshotAttribute",
 "ec2:RegisterImage",
 "ec2:RunInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource" : "*"
 }]
 }

 With a properly configured IAM user, it is time to build your first image. This is done by calling the packer build command with the template file as an argument:

 packer build template.json

 Packer will deploy an EC2 instance based on the configuration specified in the template file, and then execute the bash script on the deployed instance. The output should look similar to the following. Note that this process typically takes a few minutes.

 [image:]

 At the end of running the packer build command, Packer outputs the artifacts that were created as part of the build. Artifacts are the results of a build and typically represent the AMI ID. (Your ID will surely be different from the preceding one.) In this example, we have only a single artifact: the AMI was created in the Frankfurt region (eu-central-1).

 You can use the same template file to create Jenkins machine images for different platforms, all from the same specification. This is a nice feature that allows you to create machine images of different types of providers without repetitive coding. For example, we can modify the template to add Google Compute Cloud and Microsoft Azure builders to it, as shown in the following listing. The full template is available on the GitHub repository (chapter4/standalone/template-multiple-builders.json).

 Listing 4.4 Jenkins multiplatform machine image builds

 {
 "builders": [
 {
 "type": "amazon-ebs",
 "profile": "{{user `aws_profile`}}",
 "region": "{{user `region`}}",
 "instance_type": "{{user `instance_type`}}",
 "source_ami": "{{user `source_ami`}}",
 "ssh_username": "ec2-user",
 "ami_name": "jenkins-master-2.204.1",
 "ami_description": "Amazon Linux Image with Jenkins Server",
 },
 {
 "type": "azure-arm",
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-master-v22041",
 "os_type": "Linux",
 "image_publisher": "OpenLogic",
 "image_offer": "CentOS",
 "image_sku": "8.0",
 "location": "{{user `location`}}",
 "vm_size": "Standard_B1ms"
 },
 {
 "type": "googlecompute",
 "image_name": "jenkins-master-v22041",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
]
}

 Packer will create multiple Jenkins images for multiple platforms in parallel, all configured from a single template. In this example, Packer can make an Amazon Machine Image, Azure image, and Google Compute Engine image in parallel, provisioned with the same script, resulting in a near-identical Jenkins image.

 NOTE For a step-by-step guide on how to bake machine images for Azure virtual machines and Google Compute Engine instances, refer to chapter 6.

 Once the AMI is created, the temporary EC2 instance will be terminated by Packer, and the baked AMI will be available in the AMIs section under Images on the EC2 dashboard, as shown in figure 4.8.

 [image:]

 Figure 4.8 A new baked image is available on the Images section.

 Now that our Jenkins AMI has been created, let’s test it out and see if Jenkins has been properly installed. Jump to Instances and click the Launch Instance button. Then, select the AMI built by Packer from the My AMIs section, as shown in figure 4.9.

 [image:]

 Figure 4.9 The new AMI can be selected from the My AMIs section.

 For the instance type, select a general-purpose instance such as t2.micro, which is Free Tier eligible. We will cover Jenkins resource requirements in the next chapter.

 For now, leave all the other values at their default settings. Navigate to the Add Tags section and type a name for your EC2 instance in the value box. This name, more correctly known as a tag, will appear in the console when the instance launches. This makes it easy to keep track of the running Jenkins instance.

 Configure the security group (firewall that controls traffic to the instance) to allow traffic on port 8080 from anywhere. Port 8080 is the default port to which the Jenkins web dashboard is exposed.

 NOTE The instance will be deployed inside the default VPC. In chapter 5, we will deploy the Jenkins cluster on a custom VPC from scratch and go through advanced network configurations.

 [image:]

 Figure 4.10 Allowing traffic on port 8080

 The EC2 instance security group rules should look similar to figure 4.10.

 Make sure to allow inbound traffic on port 22 in order to authorize SSH traffic from your computer’s public IPv4 address. It’s mandatory; otherwise, you won’t be able to unlock the Jenkins dashboard later.

 Finally, verify the configuration details in the Review section and select an SSH key pair, or create a new one if it’s the first time you’re launching an EC2 instance. This configuration will allow you to connect to your instance via SSH.

 Once the instance is running, point your browser to the instance’s public IP address and specify port 8080. The Jenkins setup wizard should pop up on the screen, as shown in figure 4.11. Congrats—you have successfully deployed a Jenkins instance from a custom AMI built with Packer.

 [image:]

 Figure 4.11 Jenkins setup wizard

 You will be asked to unlock Jenkins by using an initial password. You can find this password inside the file /var/lib/jenkins/secrets/initialAdminPassword. (The following sections cover how to create a custom admin account for Jenkins.)

 So far, we have deployed Jenkins in standalone mode. Figure 4.12 summarizes the currently deployed architecture.

 [image:]

 Figure 4.12 Jenkins standalone mode in AWS

 NOTE Make sure to terminate the instance when you no longer need it, to stop incurring charges for that instance.

 Next, you will learn how to use Groovy scripts to customize and configure Jenkins settings while baking the Jenkins master AMI. Furthermore, we will create another image for Jenkins workers to deploy Jenkins at scale.

 4.3 Baking the Jenkins master AMI

 We can use the AMI built in the previous section, but the ending Jenkins instance will still have many settings requiring manual configuration, including Jenkins admin credentials, needed plugins to set up CI/CD pipelines, and security checks. While you can configure those manually, the purpose of this book is to avoid operational overhead as much as possible. We want to automate the tedious tasks while deploying a highly available and fault-tolerant Jenkins cluster on your favorite cloud provider with few commands by using automation tools like HashiCorp Packer and Terraform.

 NOTE When I say high availability, I am referring to a Jenkins cluster that can operate continuously without failure.

 To fully automate a Jenkins master instance, we will use Jenkins post-initialization scripts. We will leverage the power of Groovy scripts and place them in the $JENKINS_HOME/init.groovy.d directory. This directory will be consumed by Jenkins upon startup. Therefore, it can be used to preconfigure Jenkins to the target desired state.

 4.3.1 Configuring Jenkins upon startup

 These scripts are written in Groovy and are executed inside the same Java Virtual Machine (JVM) as Jenkins, allowing full access to the domain model of Jenkins (we can access classes in Jenkins and all its plugins).

 NOTE Another alternative to Groovy scripts is the Jenkins Configuration as Code (JCasC) plugin. For more details, refer to the official guide on GitHub: http://mng.bz/zEJa.

 The basic-security.groovy script in listing 4.5 creates a Jenkins user with full admin access. (You need to replace the USERNAME and PASSWORD attributes with your own values.) Furthermore, by default, the anonymous read access is disabled by default, which means Jenkins requires authentication to access the web dashboard. However, you can enable anonymous read access by adding the strategy.setAllowAnonymousRead(true) instruction before theinstance.save() statement.

 Listing 4.5 basic-security.groovy script

 #!groovy

import jenkins.model.*
import hudson.security.*

def instance = Jenkins.getInstance() ❶
def hudsonRealm = new HudsonPrivateSecurityRealm(false)
hudsonRealm.createAccount('USERNAME','PASSWORD') ❷
instance.setSecurityRealm(hudsonRealm)

def strategy = new FullControlOnceLoggedInAuthorizationStrategy()
instance.setAuthorizationStrategy(strategy) ❸
instance.save()

 ❶ Gets an instance of the Jenkins model

 ❷ Creates a new user account by registering a password to the user

 ❸ Gives full access to logged-in users

 In addition to user management, we will also set some basic configurations for hardening Jenkins to protect against CSRF attacks. With CSRF protection enabled, all issued tokens should include a web session to prevent external attackers from obtaining web sessions. However, if your automation script uses a CSRF token for authentication, you can install the Strict Crumb Issuer plugin (available in the list of plugins installed while baking the Jenkins image) to exclude the web session ID from the validation criteria. We will enable CSRF protection with the csrf-protection.groovy script in the following listing.

 Listing 4.6 csrf-protection.groovy script

 #!groovy

import hudson.security.csrf.DefaultCrumbIssuer
import jenkins.model.Jenkins

def instance = Jenkins.getInstance()
instance.setCrumbIssuer(new DefaultCrumbIssuer(true)) ❶
instance.save()

 ❶ Enables CSRF protection by setting up a crumb issuer

 This option is enabled by default in new installations, starting with Jenkins 2.x. You can also enable CSRF by updating JENKINS_JAVA_OPTIONS. Add the following argument:

 JENKINS_JAVA_OPTIONS="-Dhudson.security.csrf.DefaultCrumbIssuer=true"

 NOTE If you’re using the Jenkins linter feature to validate Jenkinsfiles against a Jenkins server protected from CSRF, you need to use an API token that doesn’t require a CSRF token (crumb) since Jenkins 2.96.

 Jenkins has a built-in CLI that allows users and administrators to access Jenkins from a script or a shell environment. The use of the CLI is not recommended for security reasons (to prevent remote access). Hence, we will disable it through the disable-cli.groovy script in the following listing.

 Listing 4.7 disable-cli.groovy script

 #!groovy

import jenkins.model.Jenkins

Jenkins jenkins = Jenkins.getInstance() ❶
jenkins.CLI.get().setEnabled(false) ❶
jenkins.save()

 ❶ Gets an instance of Jenkins and disabled CLI access

 We will also disable the JNLP and old unencrypted protocols (JNLP-connect, JNLP2-connect, JNLP3-connect, and CLI-connect) to get rid of the warning messages in the web dashboard. The script disable-jnlp.groovy is in the following listing.

 Listing 4.8 disable-jnlp.groovy script

 #!groovy

import jenkins.model.Jenkins
import jenkins.security.s2m.*

Jenkins jenkins = Jenkins.getInstance()
jenkins.setSlaveAgentPort(-1) ❶
HashSet<String> newProtocols = new HashSet<>(jenkins.getAgentProtocols()); ❷
newProtocols.removeAll(Arrays.asList(❷
 "JNLP3-connect", "JNLP2-connect", "JNLP-connect", "CLI-connect" ❷
)); ❷
jenkins.setAgentProtocols(newProtocols); ❷
jenkins.save()

 ❶ Sets 0 to indicate random available TCP port, -1 to disable this service

 ❷ Initializes HashSet structure with available agent protocols, removes old unencrypted protocols from the structure, and saves the new list

 Adding credentials to a new, local Jenkins server for development or troubleshooting can be a daunting task. However, with Groovy scripts and the right setup, developers can automate adding the required credentials into the new Jenkins server.

 The Groovy script in listing 4.9 creates SSH credentials based on the AWS key pair we will use to deploy Jenkins worker instances. The SSH credentials object is created by using the BasicSSHUserPrivateKey constructor, which takes as parameters the credentials scope, username, SSH private key, and passphrase. The use of these SSH credentials will be illustrated in chapter 5.

 Listing 4.9 node-agent.groovy script

 import jenkins.model.*
import com.cloudbees.plugins.credentials.*
import com.cloudbees.plugins.credentials.common.*
import com.cloudbees.plugins.credentials.domains.*
import com.cloudbees.plugins.credentials.impl.*
import com.cloudbees.jenkins.plugins.sshcredentials.impl.*
import hudson.plugins.sshslaves.*;

domain = Domain.global()
store = Jenkins.instance
.getExtensionList('com.cloudbees.plugins.credentials \
 .SystemCredentialsProvider')[0].getStore()

slavesPrivateKey = new BasicSSHUserPrivateKey(CredentialsScope.GLOBAL, ❶
 "Jenkins-workers", ❶
 "Ec2-user", ❶
 new BasicSSHUserPrivateKey.UsersPrivateKeySource(), ❶
 "", "") ❶
store.addCredentials(domain, slavesPrivateKey) ❶

 ❶ Creates a Jenkins credential of type “SSH Username with private key.” The constructor takes the username, private key, passphrase, and description as arguments.

 NOTE Now every time the Jenkins server is restarted, the scripts will run and apply configuration for you. You don’t need to worry about executing these settings manually every time the server restarts.

 You can use Groovy init scripts to customize Jenkins and enforce the desired state. Although writing Groovy scripts requires knowing Jenkins internals and API, you’ve seen how to configure the common tasks and settings with Groovy scripts upon Jenkins initialization. We still need to install plugins to extend Jenkins functionalities in order to be able to build CI/CD pipelines.

 4.3.2 Discovering Jenkins plugins

 Plugins can be easily installed from the Jenkins dashboard. However, the purpose of this section is to build a fully automated Jenkins AMI, because if you want to install many plugins, this manual process can be fairly long and boring. Therefore, we will use a script provided by the Jenkins community to install plugins, including their dependencies. The scripts take, as a parameter, a file containing the list of Jenkins plugins to be installed.

 Table 4.2 lists some of the most useful plugins that help developers save time, as well as making their lives easier. The full list is in the GitHub repository at chapter4/distributed/master/config/plugins.txt.

 Table 4.2 Essential Jenkins plugins

 	
 Plugin

 	
 Description

 	
 blueocean

 	
 Provides the new Jenkins user experience with sophisticated visualizations of CI/CD pipelines and a bundled pipeline editor that makes automating CI/CD workflows approachable by guiding the user through an intuitive and visual process to create a pipeline. Refer to chapter 2 to explore the key features of Blue Ocean mode.

 	
 git

 	
 Provides access to any Git server with support for fundamental Git operations within Jenkins pipelines. It can pull, fetch, check out, branch, list, merge, tag, and push Git repositories.

 	
 ssh-agent

 	
 Allows you to provide SSH credentials to builds via ssh-agent in Jenkins. The ssh-agent is a helper program to hold private keys used for public-key authentication.

 	
 ssh-credentials

 	
 Allows you to store SSH credentials in Jenkins. It is used to launch Jenkins workers via SSH and execute Docker commands on a Kubernetes cluster remotely over SSH.

 	
 slack

 	
 Provides Jenkins notification integration with Slack. It can be used to send Slack notifications with Jenkins job build status upon the completion of a CI/CD pipeline. This plugin does require some straightforward setup on the Slack side in order to connect and post messages.

 	
 credentials-binding

 	
 Allows credentials to be bound to environment variables for use from miscellaneous build steps. It gives you an easy way to package up all of a job’s secret files and passwords, and access them using environment variables during the build.

 	
 github-pullrequest

 	
 Fundamental for integrating Jenkins with GitHub repositories, it supports GitHub pull requests, branches, and custom webhooks. GitHub will trigger a new hook each time a pull request is opened, and once Jenkins receives the hook, it will run the associated job.

 	
 job-dsl

 	
 Allows jobs to be defined in a programmatic form in a human-readable file. It can be used to create complex pipelines for Jenkins freestyle jobs.

 	
 jira

 	
 Does pretty much what it says on the tin. It allows developers to integrate Jira (www.atlassian.com/software/jira) into Jenkins to update Jira open issues within CI/CD pipelines. It also associates build and deployment information with relevant Jira tickets and exposes key information about the pipeline across Jira boards.

 	
 htmlpublisher

 	
 Useful for publishing HTML reports that your builds generate at build time. It can be used to generate code coverage HTML reports and track the percentage of tests covering your application source code in a user-friendly way.

 	
 email-ext

 	
 Can be used to send email notifications. It’s highly customizable: you can configure notifications triggers, content, and recipients. Plus, it supports both plaintext and HTML for the email body.

 	
 sonar

 	
 Allows easy integration of SonarQube (www.sonarqube.org), the open source platform for continuous inspection of code quality and code security.

 	
 embeddable-build-status

 	
 Generates badges for all your Jenkins jobs that display, in real time, their build status. You can add these badges to your Git repository README.md file.

 NOTE These are just some of the plugins we will use, and upcoming chapters offer dozens more to explore.

 More than a thousand plugins are available to support almost every solution, tool, and process for building, deploying, and automating your projects within Jenkins pipelines. The Jenkins Plugins Index, shown in figure 4.13, has over more than 1,800 plugins at https://plugins.jenkins.io/, free for download and use.

 [image:]

 Figure 4.13 Jenkins plugins

 NOTE Before installing a Jenkins plugin, make sure to review the changelog in the plugin’s description page, as not all plugins may be safe to use. Also, always pick the latest stable version available.

 Now you are more familiar with the essential Jenkins plugins. Let’s go ahead and install them.

 The script in listing 4.10 will go through the file containing a list of Jenkins plugins line by line, and then issue a cURL command to download the plugin from the Jenkins Plugins Index. Finally, the script will copy the downloaded plugin file to the /var/lib/jenkins/plugins folder. The listing illustrates the main function, and the full script can be downloaded from the GitHub repository at chapter4/distributed/master/ config/install-plugins.sh.

 Listing 4.10 install-plugins.sh script

 #!/bin/bash
installPlugin() {
 if [-f ${plugin_dir}/${1}.hpi -o -f ${plugin_dir}/${1}.jpi]; then
 if ["$2" == "1"]; then
 return 1
 fi
 echo "Skipped: $1 (already installed)"
 return 0
 else
 echo "Installing: $1"
 curl -L --silent --output ${plugin_dir}/${1}.hpi https://updates.jenkins-ci.org/latest/${1}.hpi
 return 0
 fi
}

 The .hpi extension stood for Hudson plugin (remember, Jenkins was a fork of the Hudson project). With the move away from Hudson to Jenkins, this became Jenkins plugin and hence the .jpi format. Since the Jenkins v1.5 release, all .hpi plugin files are renamed automatically to .jpi at boot time.

 By now, we have configured and automated all tasks needed to set up a running Jenkins server out of the box. Therefore, there’s no need for the setup wizard at Jenkins startup (see figure 4.11). As a result, we will disable it by writing a Groovy init script. Create a skip-jenkins-setup.groovy script with the following content.

 Listing 4.11 skip-jenkins-setup.groovy script

 #!groovy

import jenkins.model.*
import hudson.util.*;
import jenkins.install.*;

def instance = Jenkins.getInstance()
instance.setInstallState(InstallState.INITIAL_SETUP_COMPLETED)

 Finally, we will update the Packer template file used in the first section to copy the Groovy scripts described previously to the temporary instance by using the file provisioner (www.packer.io/docs/provisioners/file/). Next, we use a shell provisioner to move these files to the init.groovy.d folder. The template.json file should look similar to the following listing.

 Listing 4.12 Jenkins master template file

 {
 "variables" : {...}, ❶
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-master-2.204.1", ❷
 "ami_description" : "Amazon Linux Image with Jenkins Server"
 }
],
 "provisioners" : [
 {
 "type" : "file", ❸
 "source" : "./scripts", ❸
 "destination" : "/tmp/" ❸
 },
 {
 "type" : "file", ❹
 "source" : "./config", ❹
 "destination" : "/tmp/" ❹
 },
 {
 "type" : "file", ❺
 "source" : "{{user `ssh_key`}}", ❺
 "destination" : "/tmp/id_rsa" ❺
 },
 {
 "type" : "shell", ❻
 "script" : "./setup.sh", ❻
 "execute_command" : "sudo -E -S sh '{{ .Path }}'" ❻
 }
]
}

 ❶ List of variables should be declared here such as: aws_profile, region, instance_type, and source_ami

 ❷ Name of the baked machine image. The version number (2.204.1) should be replaced based on the current version you have installed.

 ❸ Copies the Groovy scripts folder from the local machine to /tmp in the host machine

 ❹ Copies the configuration files from the local machine to /tmp in the host machine

 ❺ Copies the user private SSH key to the /tmp folder

 ❻ Executes the setup.sh shell script to copy the files from the /tmp folder to the right folder and installs Jenkins and its dependencies

 NOTE The variables section has been omitted for brevity. The full template file can be found on GitHub at chapter4/distributed/master/template.json.

 The SSH key can be generated with ssh-keygen. The command will provide a series of prompts. Feel free to use the defaults. However, from a security perspective, it’s a good idea to enter a passphrase. Table 4.3 provides a complete list of Packer variables.

 Table 4.3 Jenkins master Packer variables

 	
 Variable

 	
 Description

 	
 region

 	
 AWS region where the Jenkins master machine image will be created, such as eu-central-1 (aka Frankfurt).

 	
 aws_profile

 	
 The profile to use in the shared credentials file for AWS. See Amazon’s documentation on specifying profiles for more details: https://docs.aws.amazon.com/sdk-for-go/v1/developer-guide/configuring-sdk.html.

 	
 instance_type

 	
 The EC2 instance type to use while baking the target AMI, such ast2.micro, which is Free Tier eligible.

 	
 source_ami

 	
 The source AMI that the temporary instance will be based on. We’re using the official Amazon Linux image. The ID should be updated according to the AWS region you’re using. Refer to figure 4.6 for an example.

 	
 ssh_key

 	
 Private SSH key location (~/.ssh/id_rsa), the same key you will use to SSH to Jenkins worker instances. A Groovy script will be executed at boot time to add the private key as a credential on the Jenkins master to set up the initial connection with Jenkins workers over SSH.

 Once files are uploaded to the temporary instance built by Packer, a setup.sh script will be executed to install the Jenkins LTS version. Next, the script installs the Git client (to clone GitHub repositories in advanced chapters). Then, it copies the workers’ private SSH key to the /var/lib/jenkins/.ssh folder and set permissions. Finally, it moves Groovy scripts to the initialization folder, installs essentials plugins by executing the install-plugins.sh script, and starts the Jenkins server.

 It’s worth mentioning that scripts files were uploaded to the /tmp folder; Packer can upload files only to locations that the provisioning user (ec2-user) has permission to access. The following listing contains the content of setup.sh.

 Listing 4.13 setup.sh script (install Jenkins)

 #!/bin/bash
yum remove -y java
yum install -y java-1.8.0-openjdk ❶
wget -O /etc/yum.repos.d/jenkins.repo ❶
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo ❶
rpm --import https://jenkins-ci.org/redhat-stable/jenkins-ci.org.key ❶
yum install -y jenkins ❶
chkconfig jenkins on ❶

yum install -y git ❷
mkdir /var/lib/jenkins/.ssh ❸
touch /var/lib/jenkins/.ssh/known_hosts ❸
chown -R jenkins:jenkins /var/lib/jenkins/.ssh ❸
chmod 700 /var/lib/jenkins/.ssh ❸
mv /tmp/id_rsa /var/lib/jenkins/.ssh/id_rsa ❸
chmod 600 /var/lib/jenkins/.ssh/id_rsa ❸
chown -R jenkins:jenkins /var/lib/jenkins/.ssh/id_rsa ❸

mkdir -p /var/lib/jenkins/init.groovy.d ❹
mv /tmp/*.groovy /var/lib/jenkins/init.groovy.d/ ❹
mv /tmp/jenkins /etc/sysconfig/jenkins
chmod +x /tmp/install-plugins.sh ❺
bash /tmp/install-plugins.sh ❺
service jenkins start ❻

 ❶ Installs JDK (minimum v1.8.0), which is required for Jenkins to be up and running

 ❷ Installs Git client, which will be needed to clone project GitHub repositories in upcoming chapters

 ❸ Copies the private SSH key used to deploy Jenkins workers/agents to JENKINS_HOME

 ❹ Moves the Groovy scripts to init.groovy.d

 ❺ Installs needed dependencies by running install-plugins.sh

 ❻ Starts the Jenkins service

 The template directory structure should look like the following. The scripts directory holds initial configuration and seeding scripts. The config folder contains the list of essential plugins to install, as well as the shell script to install plugins from the Jenkins Plugin Index:

 ├── config
│ ├── install-plugins.sh
│ ├── jenkins
│ └── plugins.txt
├── scripts
│ ├── basic-security.groovy
│ ├── csrf-protection.groovy
│ └── disable-cli.groovy
│ ├── disable-jnlp.groovy
│ ├── node-agent.groovy
│ └── skip-jenkins-setup.groovy
├── setup.sh
└── template.json

 NOTE Jenkins captures launch configuration parameters in the /etc/sysconfig/jenkins file. If you want to add Java arguments, it’s the file you’re looking for.

 Prior to building the AMI, it’s a good idea to validate the syntactical correctness of the template file by issuing the packer validate command.Template validated successfully is the expected output if the template is valid.

 Now that the template is validated, we will bake the AMI with the packer buildcommand:

 packer build template.json

 The process can take several minutes. Output similar to this is expected.

 [image:]

 If the script succeeds, Packer should show a message containing the AMI ID, and the Jenkins master AMI will be available in the EC2 dashboard, as shown in figure 4.14.

 [image:]

 Figure 4.14 Jenkins master AMI

 NOTE The AMI name should be unique. Therefore, you might need to delete the existing image from your AWS account if it exists already.

 Finally, we can spin up an EC2 instance based on the baked AMI. Once the instance is running, point your browser to the instance’s public IP address on port 8080. After a while, you’ll see the screen in figure 4.15.

 [image:]

 Figure 4.15 Jenkins web dashboard

 This time, the setup wizard should disappear and many functionalities should be added. Sign in using the admin credentials defined in the basic-security.groovy script from listing 4.5. After login, you can verify that Jenkins credentials are created by going to the Credentials item on the left; see figure 4.16. So far, only the Jenkins worker SSH credential has been created (see listing 4.9), but you can customize the Groovy script to create additional credentials for external services like GitHub, Nexus, or SonarQube.

 [image:]

 Figure 4.16 Jenkins credentials

 Moreover, the essential plugins were also installed. Jump to Manage Jenkins from the home page and then navigate to Plugins. You should see a list of plugins installed by default on the Installed tab, as shown in figure 4.17.

 [image:]

 Figure 4.17 Jenkins installed plugins

 Now that we have defined a Jenkins configuration as code, we can spawn it as many times as possible, on different machines, with the same result. And we’ve had no tiresome manual walks through the GUI.

 4.4 Baking the Jenkins worker AMI

 The Jenkins worker AMI baking process should be straightforward; see the following listing. The only requirement for an instance to be a Jenkins worker or build agent is to have a JDK. Modern Jenkins versions require a Java 8 runtime environment.

 Listing 4.14 Jenkins worker template file

 {
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "jenkins-worker",
 "ami_description" : "Jenkins worker's AMI",

],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 The variables in table 4.4 should be provided during build time within the template file or with the -var flag.

 Tabe 4.4 Jenkins worker Packer variables

 	
 Variable

 	
 Description

 	
 region

 	
 AWS region where the Jenkins worker machine image will be created. Similar to the Jenkins master AWS region value.

 	
 aws_profile

 	
 The profile to use in the shared credentials file for AWS. See Amazon's documentation on specifying profiles for more details: http://mng.bz/01Yx.

 	
 instance_type

 	
 The EC2 instance type to use while baking the target AMI, such ast2.micro, which is Free Tier eligible.

 	
 source_ami

 	
 The source AMI that the temporary instance will be based on. We’re using the official Amazon Linux image. The ID should be updated according to the AWS region you’re using.

 Packer will use the shell provisioner to install the JDK, as well as any tool that you may require to run your builds (Git or Docker, for example). You can take this script further and create a user called jenkins with a home directory to store Jenkins job workspaces, as shown in the following listing.

 Listing 4.15 setup.sh scrip.

 #!/bin/bash
yum remove -y java
yum update -y
yum install -y git docker java-1.8.0-openjdk
usermod -aG docker ec2-user
systemctl enable docker

 NOTE Docker is necessary, as we are going to define CI/CD pipelines for Dockerized microservices in upcoming chapters.

 Issue the packer build command to bake the Jenkins worker AMI. Once the image-baking process is finished, the worker’s AMI will be available on the EC2 dashboard, as shown in figure 4.18.

 [image:]

 Figure 4.18 Jenkins worker AMI

 NOTE After running the preceding examples, your AWS account now has an AMI associated with it. AMIs are stored in S3 by Amazon, so unless you want to be charged about $0.01 per month, you’ll probably want to remove these images if they’re not needed.

 Now that our Jenkins cluster AMIs are ready to use, we will use them in the next chapter to deploy our cluster on AWS with the IaC tool HashiCorp Terraform. Figure 4.19 illustrates how Terraform will be integrated.

 [image:]

 Figure 4.19 Packer will provision a temporary instance from a template file, and provision the instance with all needed configs and dependencies. From there, Terraform will deploy EC2 instances based on the baked image.

 If you plan to embrace the immutable infrastructure approach for upgrading Jenkins or installing additional plugins, triggering the provisioning process with Packer can get challenging. That’s why you should opt for automation and set up a pipeline with Jenkins to automate the baking workflow for AMI. A basic workflow will use GitHub to store Packer template files and trigger a build on Jenkins upon the push event. The job will validate the template changes, start the baking process (1), and create an EC2 instance (2) based on the new baked AMI. Figure 4.20 summarizes the entire workflow.

 [image:]

 Figure 4.20 Automating the AMIs with Jenkins

 NOTE Chapter 7 covers how to set up GitHub webhooks to continuously trigger Jenkins build jobs when a push or merge event occurs.

 Summary

 	
 HashiCorp Packer leverages the power of immutable infrastructure to bake custom machine images with all needed dependencies.

 	
 Setting up Jenkins is a complex process, as both Jenkins and its plugins require tuning and configuration, with dozens of parameters to set within the web UI Manage Jenkins section.

 	
 Configuration scripts in the init.groovy directory are executed in alphabetical order during Jenkins boot time. This is ideal for setting up seeding and configuration job interfaces.

 	
 Jenkins provides thousands of plugins to support building, deploying, and automating any project.

 	
 The weekly Jenkins releases deliver bug fixes and new features rapidly to users and plugin developers who need them. However, the Long-Term Support release is preferred for its stability.

 6 Deploying HA Jenkins on multiple cloud providers

 This chapter covers

 	Automating the build process of Jenkins VMs with Packer

 	Deploying a Jenkins cluster on Azure, GCP, and DigitalOcean

 	Reducing the cost of deploying Jenkins workers by creating them on demand

 	Using the same Packer template to create identical Jenkins machine images in different cloud providers

 You’ve already seen how to accomplish fault tolerance by deploying the Jenkins cluster in AWS. The chapter will try to achieve the same required speed and automation on the infrastructure level by using the same tools and processes to automate the creation of a cluster on different cloud providers such as Microsoft Azure, Google Cloud Platform, and DigitalOcean—ranging from infrastructure-as-a-service (IaaS) to platform-as-a-service (PaaS) providers.

 You might notice that some parts of this chapter are similar, or even the same as, those you read in the previous chapter. The reason for the partial repetition is to achieve the goal of this book, which is to illustrate the use of Jenkins with cloud-native applications—and because not everyone is adopting AWS as their main cloud provider, I want to make this book useful for others and for those who skipped chapter 5 and jumped right here.

 Note Using the providers detailed in this chapter carries some benefits and drawbacks. No matter which provider you choose, you'll always encounter issues at some point along the way.

 6.1 Google Cloud Platform

 We all know that AWS doesn’t have the most user-friendly web console. Google Cloud Platform (GCP) has managed to outperform AWS by offering a better user experience. GCP consists of a variety of services ranging from computing, to network, to extract-transform-load (ETL) pipelines that are 25% cheaper than its rival (AWS) because of lower-increment billing (10 minutes instead of 1 hour).

 Plus, GCP has more expertise when it comes to big data, with services like BigQuery (https://cloud.google.com/bigquery), Cloud Bigtable (https://cloud.google.com/bigtable), and Dataflow (https://cloud.google.com/dataflow). In addition, you can run container workloads on Kubernetes and deploy machine learning (ML) models with TensorFlow; both Kubernetes and TensorFlow originated from Google. However, GCP still lacks features compared to AWS, which is the oldest and most mature cloud vendor on the market.

 Why use Jenkins with GCP, then? You can have seamless integration with Kubernetes; with services like Google Kubernetes Engine (GKE), you can run ephemeral Jenkins workers, ensuring that each build runs on a clean environment. Native support for Docker containers is another reason, with services like Container Registry to store and manage Docker images built within CI/CD pipelines. In addition, you can have integrated security and compliance with detailed reports on vulnerability impacts and available fixes of build artifacts. Finally, you pay per usage when you use GCP virtual machines (VMs) to speed up your Jenkins builds.

 With that being said, let’s head over and deploy a Jenkins cluster with Terraform and Packer on GCP. To get started, sign up for a free account with a Gmail address (https://console.cloud.google.com/). You will automatically get a 12-month free trial with a $300 credit. You need to provide your credit card details, but you won’t be charged extra until after your trial period ends or you have exhausted the $300 credit.

 Note The estimated cost to deploy a Jenkins cluster is $0.00. This cost assumes that you’re within the GCP Free Tier limits and that you terminate all resources within 1 hour of deploying the infrastructure.

 6.1.1 Building Jenkins VM images

 For Packer to build a custom image, it needs to interact with GCP. Therefore, we need to create a dedicated service account for Packer to be authorized to access resources in Google APIs.

 Head to the GCP console and navigate to the IAM & Admin dashboard, shown in figure 6.1. In the Service Accounts section, create a new service account with Packer as a name, and click the Create button.

 [image:]

 Figure 6.1 Creating a Packer service account

 Assign the Project Owner role to the service account (or at least select Compute Engine Instance Admin and Service Account User roles) and click the Continue button, as shown in figure 6.2.

 [image:]

 Figure 6.2 Setting Packer service account permissions

 Each service account is associated with a key (JSON or P12 format), which is managed by GCP. This key is used for service-to-service authentication. Download the JSON key by clicking the Create Key button. The service account file is created and downloaded on the computer. Copy this JSON file and place it in a secure folder. Ensure that the Google Compute Engine API is enabled on your GCP project.

 Note If you’re unfamiliar with Packer, refer to chapter 4 for a step-by-step guide on installation and configuration.

 Next update the Packer template file for the Jenkins worker provided in chapter 4’s listing 4.16 with the following content, or copy and paste the content from the GitHub repository at chapter6/gcp/packer/worker/setup.sh.

 Listing 6.1 Jenkins worker template fil.

 {
 "variables" : {
 "service_account" : "SERVICE ACCOUNT JSON FILE PATH", ❶
 "project": "GCP PROJECT ID", ❶
 "zone": "GCP ZONE ID" ❶
 },
 "builders" : [
 {
 "type": "googlecompute",
 "image_name" : "jenkins-worker",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
],
 "provisioners" : [
 {
 "type" : "shell", ❷
 "script" : "./setup.sh", ❷
 "execute_command" : "sudo -E -S sh '{{ .Path }}'" ❷
 }
]
}

 ❶ Defines variables that will be provided at runtime. The values can be fetched from the GCP dashboard.

 ❷ Runs the shell script in privileged mode to install the Git client, Docker, and needed dependencies

 Note The JSON account file is not required if you’re running the baking process from a Google Compute Engine (GCE) instance with a properly configured GCE service account. Packer will fetch the credentials from the metadata server.

 Listing 6.1 uses the googlecompute builder to create a machine image on top of the CentOS base image. Then it uses the shell script provided in chapter 4’s listing 4.13 to provision the temporary machine to install all needed dependencies—Git, JDK, and Docker.

 The power of Packer comes from leveraging template files to create identical virtual machine images independently of the target platform. Therefore, we can use the same template file to build an identical Jenkins image for AWS, GCP, or Azure.

 Note The scripted shell is explained in depth in chapter 4. All source code is available on the GitHub repository in the chapter6 folder.

 The template file in listing 6.1 uses a set of variables such as the service account key file created earlier, the name of the zone where the builder machine will be provisioned, and the Google Cloud project ID that will own the image. The service_ account variable can be implicit if you specify the path to the JSON file with the GOOGLE_APPLICATION_CREDENTIALS environment variable.

 Packer will deploy a temporary instance from CentOS 8. A list of available images can be found on the Images dashboard, as you can see in figure 6.3.

 [image:]

 Figure 6.3 CentOS base image from GCE images

 Note You can also use the gcloud compute images list command to list available images in a specific GCP location.

 After supplying all the necessary variables, issue a packer build command. The output should be similar to the following output, which has been cropped for the sake of brevity:

 [image:]

 Once the baking process is done, the Jenkins worker image should be available on the Google Compute Engine (GCE) console, as you can see in figure 6.4.

 [image:]

 Figure 6.4 Jenkins worker custom image

 Next, to build the Jenkins master machine image, we will use the same blueprint provided in chapter 4’s listing 4.12. The only difference is the use of googlecompute in the builders section. The full template file, shown in the following listing, can be downloaded from chapter6/gcp/packer/master/setup.sh.

 Listing 6.2 Jenkins master template fil.

 {
 "variables" : {
 "service_account" : "SERVICE ACCOUNT JSON PATH",
 "project": "PROJECT ID",
 "zone": "ZONE ID",
 "ssh_key" : "PRIVATE SSH KEY PATH"
 },
 "builders" : [
 {
 "type": "googlecompute",
 "image_name" : "jenkins-master-v22041",
 "account_file": "{{user `service_account`}}",
 "project_id": "{{user `project`}}",
 "source_image_family": "centos-8",
 "ssh_username": "packer",
 "zone": "{{user `zone`}}"
 }
],
 "provisioners" : [
 ...
]
}

 Note This code listing already exists in the GitHub repository. You do not need to type it. It is shown for illustration purposes only.

 Before we take this template and build an image from it, let’s validate the template by running the following command:

 packer validate template.json

 With a properly validated template, it is time to build the Jenkins images. This is done by calling the packer build command with the template file as an argument. The output should look similar to the following. Note that this process typically takes a few minutes:

 [image:]

 When Packer is done building the image, head over to the GCP console, The newly created image will be in the Images section, as shown in figure 6.5.

 [image:]

 Figure 6.5 Jenkins master custom image

 So far, you have learned how to automate the build process for the Jenkins machines images on GCP. In the next section, we will use Terraform to deploy VM instances based on those images. But first, we will deploy a private network on which our Jenkins cluster will be isolated.

 6.1.2 Configuring a GCP network with Terraform

 At the end of this section, you will have an isolated VPN running in different zones, as shown in figure 6.6.

 [image:]

 Figure 6.6 The Google VPN architecture consists of multiple subnetworks deployed in different zones. To access private instances, a bastion host can be used.

 The VPC will be spun up in a single GCP region. It will be subdivided into subnets, each subnet contained within a single zone. Within a public subnet, a Google compute instance will be deployed with a role of a bastion host to give remote access to instances deployed in private subnets.

 On the IAM console, shown in figure 6.7, create a dedicated service account for Terraform with Project Owner permission and download the JSON private key. This file contains credentials that will be needed for Terraform to manage the resources on your GCP project.

 [image:]

 Figure 6.7 Terraform service account

 Create a terraform.tf file, declare google as a provider, and configure it to use the service account created in the previous step; see the following listing.

 Listing 6.3 Declaring Google as a provider

 provider "google" {
 credentials = file(var.credentials_path)
 project = var.project
 region = var.region
}

 Create a network.tf file and define a regional VPC network, as shown in the following listing. (If you plan to deploy Jenkins instances across multiple GCP regions, you need to change the routing mode to global.)

 Listing 6.4 Defining a GCP network named management

 resource "google_compute_network" "management" {
 name = var.network_name
 auto_create_subnetworks = false
 routing_mode = "REGIONAL"
}

 Within the same file, declare two public and two private subnets, as shown in the next listing. Each subnet has its own CIDR block that is a subset of the network CIDR block (10.0.0.0/16).

 Listing 6.5 Defining public and private subnetworks

 resource "google_compute_subnetwork" "public_subnets" {
 count = var.public_subnets_count
 name = "public-10-0-${count.index * 2 + 1}-0"
 ip_cidr_range = "10.0.${count.index * 2 + 1}.0/24" ❶
 region = var.region
 network = google_compute_network.management.self_link
}

resource "google_compute_subnetwork" "private_subnets" {
 count = var.private_subnets_count
 name = "private-10-0-${count.index * 2}-0"
 ip_cidr_range = "10.0.${count.index * 2}.0/24" ❶
 region = var.region
 network = google_compute_network.management.self_link
 private_ip_google_access = true
}

 ❶ Defines a unique CIDR range within the 10.0.0.0/16 block using the count.index variable

 Before applying the changes with terraform apply, declare variables used to parameterize and customize the deployment in variables.tf. Table 6.1 lists the variables.

 Table 6.1 GCP Terraform variables

 	
 Name

 	
 Type

 	
 Value

 	
 Description

 	
 credentials_path

 	
 String

 	
 None

 	
 The path to the service account key file in JSON format. This can be specified using the GOOGLE_CREDENTIALS environment variable.

 	
 project

 	
 String

 	
 None

 	
 The default project to manage resources in. If another project is specified on a resource, it will take precedence. This can also be specified using the GOOGLE_PROJECT environment variable.

 	
 region

 	
 String

 	
 None

 	
 The default region to manage resources in. If another region is specified on a regional resource, it will take precedence. Alternatively, this can be specified using the GOOGLE_REGION environment variable.

 	
 network_name

 	
 String

 	
 management

 	
 Name of the virtual network. The name must be 1–63 characters long and match the regular expression [a-z]([-a-z0-9]*[a-z0-9])?

 	
 public_subnets_count

 	
 Number

 	
 2

 	
 The number of public subnetworks. By default, we will create two public subnets in different zones for resiliency.

 	
 private_subnets_count

 	
 Number

 	
 2

 	
 The number of private subnetworks. By default, we will create two private subnets in different zones for resiliency.

 We can now run Terraform to deploy the infrastructure. First, initialize Terraform to download the latest version of the Google Cloud provider plugin:

 terraform init

 The command output is given here:

 [image:]

 Run a plan step to validate the configuration syntax and show a preview of what will be created:

 terraform plan --var-file=variables.tfvars

 Note To set lots of variables, it is more convenient to specify their values in a variable definitions file (with a filename ending in either .tfvars or .tfvars .json) and then specify that file on the command line with the -var-file flag.

 Now execute the terraform apply command to apply those changes:

 terraform apply --var-file=variables.tfvars

 You will see output similar to the following (cropped for brevity):

 [image:]

 It should take only a few moments to provision the private network. When it is finished, you should see something like figure 6.8.

 [image:]

 Figure 6.8 VPC network and its public and private subnets

 To be able to SSH into private Jenkins instances, we will deploy a bastion host. Create bastion.tf and define a VM instance in a public subnet with a static IPv4 public IP address. To SSH into the bastion instance using Terminal (as opposed to the GCP console), you must generate and upload a public SSH key (located by default under ~/.ssh/id_rsa.pub, or generate a new one with ssh-keygen). The metadata attribute defined in the following listing references the public SSH key.

 Listing 6.6 Bastion host resource

 resource "google_compute_address" "static" {
 name = "ipv4-address"
}
resource "google_compute_instance" "bastion" {
 project = var.project
 name = "bastion"
 machine_type = var.bastion_machine_type
 zone = var.zone
 tags = ["bastion"]
 boot_disk {
 initialize_params {
 image = var.machine_image
 }
 }
 network_interface {
 subnetwork = google_compute_subnetwork.public_subnets[0].self_lin.

 access_config {
 nat_ip = google_compute_address.static.address
 }
 }
 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

 Within the same file, create a firewall rule to allow SSH from anywhere on the bastion host, as shown in the following listing. (It’s recommended to enable ingress from only the IP address you wish to allow access from..

 Listing 6.7 Bastion host firewall rules

 resource "google_compute_firewall" "allow_ssl_to_bastion" {
 project = var.project
 name = "allow-ssl-to-bastion"
 network = google_compute_network.management.self_link

 allow {
 protocol = "tcp" ❶
 ports = ["22"] ❶
 } ❶

 source_ranges = ["0.0.0.0/0"] ❶

 source_tags = ["bastion"]
}

 ❶ Allows inbound traffic on port 22 (SSH) from anywhere

 Finally, create an outputs.tf file and use the Terraform output variable to act as helper to expose the public IP address of the bastion virtual machine:

 output "bastion" {
 value = "${google_compute_instance.bastion.network_interface
 .0.access_config.0.nat_ip }" ❶
}

 ❶ Outputs the bastion instance’s public IP address

 After the terraform apply command has finished, you should see output similar to this:

 [image:]

 On the GCE console, a new VM instance should be deployed, as in figure 6.9.

 [image:]

 Figure 6.9 Bastion VM instance

 With the jump box deployed, we can now access private instances in the VPC network.

 6.1.3 Deploying Jenkins on Google Compute Engine

 Now that the VPC is created, we will deploy a VM instance based on the Jenkins master image within a private subnet and expose a public load balancer to access the Jenkins web dashboard on port 8080, as described in figure 6.10.

 [image:]

 Figure 6.10 Jenkins master VM inside VPC

 Create a jenkins_master.tf file and define a private compute instance with the attributes in the following listing.

 Listing 6.8 Jenkins master compute instance

 resource "google_compute_instance" "jenkins_master" {
 project = var.project
 name = "jenkins-master"
 machine_type = var.jenkins_master_machine_type
 zone = var.zone

 tags = ["jenkins-ssh", "jenkins-web"] ❶

 depends_on = [google_compute_instance.bastion]

 boot_disk {
 initialize_params {
 image = var.jenkins_master_machine_image
 }
 }

 network_interface {
 subnetwork = google_compute_subnetwork.private_subnets[0].self_lin.
 }

 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

 ❶ Attaches jenkins-ssh and jenkins-web networks to the VM instance. The groups allow inbound traffic on port 22 and 8080 (Jenkins dashboard), respectively.

 The compute instance uses the following firewall, which allows SSH from the bastion host only and inbound traffic on port 8080 from anywhere. (I recommend restricting the traffic to your network CIDR block.)

 Listing 6.9 Jenkins master firewall and traffic control

 resource "google_compute_firewall" "allow_ssh_to_jenkins" {
 project = var.project
 name = "allow-ssh-to-jenkins"
 network = google_compute_network.management.self_link

 allow {
 protocol = "tcp" ❶
 ports = ["22"] ❶
 }

 source_tags = ["bastion", "jenkins-ssh"]
}

resource "google_compute_firewall" "allow_access_to_ui" {
 project = var.project
 name = "allow-access-to-jenkins-web"
 network = google_compute_network.management.self_link

 allow {
 protocol = "tcp" ❷
 ports = ["8080"] ❷
 }

 source_ranges = ["0.0.0.0/0"]

 source_tags = ["jenkins-web"]
}

 ❶ Allows inbound traffic on port 22 (SSH)

 ❷ Allows inbound traffic on port 8080, where the Jenkins dashboard is exposed

 Use terraform apply to deploy the Jenkins compute instance. Once the deployment is completed, a new VM will be deployed, as you can see in figure 6.11.

 [image:]

 Figure 6.11 Jenkins master VM instance

 The instance is deployed inside a private subnetwork. To be able to access the Jenkins web dashboard, we need to deploy a public load balancer in front of the VM instance.

 Load balancing on GCP is different than on other cloud providers. The primary difference is that GCP uses forwarding rules instead of routing instances. These forwarding rules are combined with backend services, target pools, and health checks to construct a functional load balancer across an instance group.

 First we define a target pool resource that defines the instances that should receive the incoming traffic, as shown in the next listing. In our case, the target pool will consist of the Jenkins master VM instance.

 Listing 6.10 Jenkins master target pool

 resource "google_compute_target_pool" "jenkins-master-target-pool" {
 name = "jenkins-master-target-pool"
 session_affinity = "NONE"
 region = var.region

 instances = [
 Google_compute_instance.jenkins_master.self_link ❶
]

 health_checks = [
 google_compute_http_health_check.jenkins_master_health_check.name
]
}

 ❶ Defines Jenkins master VM instance as a target of the network load balancer

 The cloud load balancer forwards traffic to the Jenkins master only if it’s up and ready to receive the traffic. That’s why we define a health-check resource to send health-check requests to the Jenkins master at a specific frequency on port 8080; see the following listing.

 Listing 6.11 Jenkins master health check

 resource "google_compute_http_health_check" "jenkins_master_health_check" {
 name = "jenkins-master-health-check"
 request_path = "/" ❶
 port = "8080" ❶
 timeout_sec = 4 ❶
 check_interval_sec = 5 ❶
}

 ❶ Defines a template for how the Jenkins master should be checked for health, via HTTP

 Finally, in the next listing, we define a forwarding rule to direct traffic to the target pool defined earlier.

 Listing 6.12 Load balancer forwarding rule

 resource "google_compute_forwarding_rule" "jenkins_master_forwarding_rule" {
 name = "jenkins-master-forwarding-rule"
 region = var.region
 load_balancing_scheme = "EXTERNAL" ❶
 target = google_compute_target_pool.jenkins-master-target-pool.self_link ❶
 port_range = "8080" ❶
 ip_protocol = "TCP" ❶
}

 ❶ If the incoming packet matches the given IP address, IP protocol, and port range tuple, it will be forwarded to the Jenkins master target pool.

 Use terraform apply to deploy the public load balancer. On the Network Services dashboard, you should have the configuration shown in figure 6.12.

 [image:]

 Figure 6.12 Public load balancer with Jenkins VM as a backend

 As a backend, the load balancer uses Jenkins master instance and forwards incoming traffic on port 8080 to the backend on the same port. Also, it sets up an HTTP health check on port 8080.

 To display the IP address of the load balancer, create an output section in the outputs.tf file:

 output "jenkins" {
 value = google_compute_forwarding_rule \
.jenkins_master_forwarding_rule.ip_address
}

 Issue the terraform output command on the console, and the Jenkins load balancer IP address should be displayed:

 [image:]

 You can now point your browser to the IP address on port 8080 and see the Jenkins welcome screen. If you see a screen like the one in figure 6.13, you’ve successfully deployed Jenkins on GCP!

 [image:]

 Figure 6.13 Public load balancer IP address to access the Jenkins dashboard

 Note The forwarding rule may take several minutes to be provisioned. While it’s being created, you might see 404 and 500 errors in the browser.

 6.1.4 Launching automanaged workers on GCP

 Arguably one of the most powerful features of Jenkins is its ability to dispatch build jobs across many workers. It is quite easy to set up a farm of build machines, either to share the load across multiple machines or to run build jobs in different environments. This is an effective strategy that can potentially increase the capacity of your CI infrastructure dramatically.

 Demand for Jenkins workers can also fluctuate over time. If you are working with product release cycles, you may need to run a much higher number of workers toward the end of the cycle. Therefore, to avoid paying for extra resources while Jenkins workers are idle, we will deploy Jenkins workers inside an instance group and set up autoscaling policies to trigger scale-out or scale-in events that add or remove Jenkins workers, respectively, based on metrics such as CPU utilization.

 Note In chapter 13, we will cover how to use an open source solution like Prometheus to export Jenkins custom metrics, including its integration with the scaling process of Jenkins workers.

 Figure 6.14 summarizes the architecture we’re going to deploy in this section.

 [image:]

 Figure 6.14 Jenkins cluster deployment on Google Cloud

 First, create a jenkins_workers.tf file and define the instance template that will be used as a blueprint to define the Jenkins workers configurations; see the following listing.

 Listing 6.13 Jenkins worker template configuration

 resource "google_compute_instance_template" "jenkins-worker-template" {
 name_prefix = "jenkins-worker"
 description = "Jenkins workers instances template"
 region = var.region

 tags = ["jenkins-worker"]
 machine_type = var.jenkins_worker_machine_type
 metadata_startup_script = data.template_file.jenkins_worker_startup_script.rendered ❶
 disk {
 source_image = var.jenkins_worker_machine_image
 disk_size_gb = 50
 }
 network_interface {
 network = google_compute_network.management.self_lin.
 subnetwork = google_compute_subnetwork.private_subnets[0].self_lin.
 }

 metadata = {
 ssh-keys = "${var.ssh_user}:${file(var.ssh_public_key)}"
 }
}

 ❶ A shell script that will be executed the first time the VM instance is launched. The script will autojoin the instance as a Jenkins agent.

 We will deploy the instances inside a private subnetwork and will execute the startup script in the following listing to make the running virtual machine join the cluster. This script is similar to the shell script provided in chapter 5’s listing 5.7.

 Listing 6.14 Jenkins worker startup script

 data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}"

 vars = {
 jenkins_url = "http://${google_compute_forwarding_rule.
jenkins_master_forwarding_rule.ip_address}:8080" ❶
 jenkins_username = var.jenkins_username ❶
 jenkins_password = var.jenkins_password ❶
 jenkins_credentials_id = var.jenkins_credentials_id ❶
 }
}

 ❶ The join-cluster.tpl template file takes as parameters the Jenkins credentials and URL. The values will be interpolated at runtime.

 We will be using the Google Cloud metadata server to fetch the instance name and private IP address. The metadata server request’s output is in JSON format, so we’ll use the jq utility to parse the JSON and grab the target attributes.

 INSTANCE_NAME=$(curl -s metadata.google.internal/0.1/meta-data/hostname)
INSTANCE_IP=$(curl -s metadata.google.internal/0.1/meta-data/networ.
| jq -r '.networkInterface[0].ip')

 Next, we will define a firewall rule to allow SSH on Jenkins workers from the Jenkins master and bastion host, as shown in the following listing.

 Listing 6.15 Jenkins master firewall and traffic control

 resource "google_compute_firewall" "allow_ssh_to_worker" {
 project = var.project
 name = "allow-ssh-to-worker"
 network = google_compute_network.management.self_link
 allow {
 protocol = "tcp" ❶
 ports = ["22"] ❶
 }
 source_tags = ["bastion", "jenkins-ssh", "jenkins-worker"]
}

 ❶ Allows inbound traffic on port 22 (SSH)

 Then, we define an instance group based on the template file with a target size of two workers by default; see the next listing.

 Listing 6.16 Jenkins worker instance group

 resource "google_compute_instance_group_manager" "jenkins-workers-group" {
 provider = google-beta
 name = "jenkins-workers"
 base_instance_name = "jenkins-worker"
 zone = var.zone

 version {
 instance_template = google_compute_instance_template
.jenkins-worker-template.self_link ❶
 }

 target_pools = [google_compute_target_pool
.jenkins-workers-pool.id]
 target_size = 2 ❶
}

resource "google_compute_target_pool" "jenkins-workers-pool" {
 provider = google-beta
 name = "jenkins-workers-pool"
}

 ❶ Creates and manages pools of homogeneous VM instances (two instances) from a common instance template (jenkins-worker-template)

 Once the new resources are deployed with terraform apply, two worker instances should be running, as shown in figure 6.15.

 [image:]

 Figure 6.15 Jenkins worker instance groups

 However, the number of workers is static and fixed, for now. To be able to scale Jenkins workers for heavy build jobs, we will deploy an autoscaler based on CPU utilization. Define the following resource to trigger a scale-out event if the CPU utilization is over 80%. Within jenkins_workers.tf, add the code in the following listing.

 Listing 6.17 Jenkins worker autoscaler

 resource "google_compute_autoscaler" "jenkins-workers-autoscaler" {
 name = "jenkins-workers-autoscaler"
 zone = var.zone
 target = google_compute_instance_group_manager.jenkins-workers-group.id

 autoscaling_policy {
 max_replicas = 6 ❶
 min_replicas = 2 ❶
 cooldown_period = 60 ❶

 cpu_utilization {
 target = 0.8 ❶
 }
 }
}

 ❶ Scales Jenkins worker instances in managed instance groups according to the autoscaling policy. The policy is based on the CPU utilization of the instances.

 Once the changes are deployed with Terraform, the autoscaling policy will be configured on the Jenkins worker instance group, as you can see in figure 6.16.

 [image:]

 Figure 6.16 Instance group scaling based on CPU utilization

 As a result, the workers will automatically join the cluster after the startup script is executed (figure 6.17). Awesome! You are running a Jenkins cluster on GCP.

 [image:]

 Figure 6.17 Jenkins worker VM instances joined the cluster.

 6.2 Microsoft Azure

 Both Microsoft Azure and AWS follow a similar approach by offering a variety of cloud-based services under one hood. However, organizations that use Microsoft software typically have an Enterprise Agreement that provides discounts on that software. These organizations can typically obtain significant incentives for using Azure.

 If you plan to use Azure, you can deploy the Jenkins solution template from the Azure Marketplace. However, if you’re looking to have full control over Jenkins, follow this section to learn how to build a Jenkins cluster from scratch and scale your Jenkins workers on demand based on Azure virtual machines.

 Note While Azure and Google Cloud have seen a fairly significant amount of growth, AWS is still the leader. This is mainly due to AWS being the first to invest in and shape the cloud computing industry. Google Cloud and Azure have some catching up to do.

 Before getting started, if you’re new to Azure, you may sign up for an Azure free account (https://portal.azure.com/) to start exploring with a free $200 credit.

 6.2.1 Building golden Jenkins VM images in Azure

 During the build process, Packer creates temporary Azure resources as it builds the source VM. Therefore, it needs to be authorized to interact with the Azure API.

 Create an Azure service principal (SP) with permissions to create and manage resources with the following commands. An SP represents an application accessing your Azure resources. It is identified by a client ID (aka application ID) and can use a password or a certificate for authentication.

 To create an SP, copy these commands:

 $sp = New-AzADServicePrincipal -DisplayName "PackerServicePrincipal"
$BSTR = [System.Runtime
.InteropServices.Marshal]::SecureStringToBSTR($sp.Secret)
$plainPassword = [System.Runtime
.InteropServices.Marshal]::PtrToStringAuto($BSTR)
New-AzRoleAssignment -RoleDefinitionName
 Contributor -ServicePrincipalName $sp.ApplicationId

 You can execute the commands on Azure PowerShell, as shown in figure 6.18.

 [image:]

 Figure 6.18 Creating Azure credentials

 Then output the password and application ID by executing the following commands:

 $plainPassword
$sp.ApplicationId

 Save the application ID and password for later.

 To authenticate to Azure, you also need to obtain your Azure tenant and subscription IDs, which can be fetched with Get-AzSubscription or from Azure Active Directory (AD). AD, shown in figure 6.19, is an identity management service that controls access and security to Azure resources with the right roles and permissions.

 [image:]

 Figure 6.19 Packer registration on Azure Active Directory

 Note the client ID and key. This will be used as credentials in Packer to provision resources in Azure.

 To build the Jenkins worker image, create a template.json file. In the template, you define builders and provisioners that carry out the actual build process. Packer has a builder for Azure called azure-arm that allows you to define Azure images. Add the following content to template.json or download the full template from chapter6/azure/packer/worker/template.json.

 Listing 6.18 Jenkins worker template with Azure builder

 {
 "variables" : {
 "subscription_id" : "YOUR SUBSCRIPTION ID", ❶
 "client_id": "YOUR CLIENT ID", ❶
 "client_secret": "YOUR CLIENT SECRET", ❶
 "tenant_id": "YOUR TENANT ID", ❶
 "resource_group": "RESOURCE GROUP NAME", ❶
 "location": "LOCATION NAME" ❶
 },
 "builders" : [
 {
 "type": "azure-arm",
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-worker",
 "os_type": "Linux",
 "image_publisher": "OpenLogic", ❷
 "image_offer": "CentOS", ❷
 "image_sku": "8.0", ❷
 "location": "{{user `location`}}", ❷
 "vm_size": "Standard_B1s" ❷
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 ❶ List of runtime variables to make the Packer template portable and reusable

 ❷ Packer will provision an instance of type Standard_B1s (1 RAM and 1vCPU) based on the CentOS 8.0 machine image.

 If you’re running Packer in a virtual machine, you can assign a managed identity to the virtual machine. No configuration properties are required to be set.

 The template in listing 6.18 deploys a temporary instance based on CentOS 8.0 and provisions the instance with a shell script to install needed dependencies. The choice of CentOS is not arbitrary. Both Amazon Linux Image and CentOS have similarities, especially the support of the Yum package manager. To use the same scripts provided in previous chapters and keep consistent and identical Jenkins images, we’ll use CentOS.

 Bake the image with the packer build command. Here’s an example of the output:

 [image:]

 It takes a few minutes for Packer to build the VM, run the provisioners, and bake the Jenkins worker image. Once completed, the image is created in the resource group set in the resource_group variable, as shown in figure 6.20.

 [image:]

 Figure 6.20 Jenkins worker machine image

 A similar workflow will be applied to build the Jenkins master image. The following is the template.json file (the complete template is available at chapter6/azure/packer/master/template.json).

 Listing 6.19 Jenkins worker template with Azure builder

 {
 "variables" : {...}, ❶
 "builders" : [
 {
 "type": "azure-arm",
 "subscription_id": "{{user `subscription_id`}}",
 "client_id": "{{user `client_id`}}",
 "client_secret": "{{user `client_secret`}}",
 "tenant_id": "{{user `tenant_id`}}",
 "managed_image_resource_group_name": "{{user `resource_group`}}",
 "managed_image_name": "jenkins-master-v22041",
 "os_type": "Linux",
 "image_publisher": "OpenLogic",
 "image_offer": "CentOS",
 "image_sku": "8.0",
 "location": "{{user `location`}}",
 "vm_size": "Standard_B1ms"
 }
],
 "provisioners" : [
 ...
]
}

 ❶ List of variables has been omitted for brevity; the complete list is in listing 6.18.

 Once the template is defined, bake the image with Packer. The baking process should take a few minutes to create the image. Once the image has been created, it should be available on the Images dashboard from the Azure portal, as shown in figure 6.21.

 [image:]

 Figure 6.21 Jenkins master machine image

 With both Jenkins master and worker images available, you can now create a Jenkins cluster from your custom images with Terraform.

 6.2.2 Deploying a private virtual network

 Before deploying the Jenkins cluster, we need to set up a private network with the architecture shown in figure 6.22 to secure access to the cluster.

 [image:]

 Figure 6.22 VPN on Azure

 Note To enable Terraform to provision resources into Azure, create an Azure Active Directory service principal by following the same steps described in section 6.2.1.

 Create a terraform.tf file and declare azurerm as a provider, as shown in the following listing. The provider section tells Terraform to use an Azure provider. To get values for subscription_id, client_id, client_secret, and tenant_id, see section 6.2.1.

 Listing 6.20 Defining an Azure provider

 provider "azurerm" {
 version = "=1.44.0"

 subscription_id = var.subscription_id
 client_id = var.client_id
 client_secret = var.client_secret
 tenant_id = var.tenant_id
}

 Run terraform init to download the latest version of the Azure plugin and build the .terraform directory:

 [image:]

 Next, create a virtual_network.tf file on which you define a virtual network called management in the 10.0.0.0/16 address space with public and private subnets and an additional subnet called AzureBastionSubnet reserved for a bastion host, as shown in the following listing.

 Listing 6.21 Azure virtual network definition

 data "azurerm_resource_group" "management" {
 name = var.resource_group
}

resource "azurerm_virtual_network" "management" {
 name = "management"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 address_space = [var.base_cidr_block]
 dns_servers = ["10.0.0.4", "10.0.0.5"] ❶

 dynamic "subnet" {
 for_each = [for s in var.subnets: { ❷
 name = s.name ❷
 prefix = cidrsubnet(var.base_cidr_block, 8, s.number) ❷
 }] ❷

 content { ❷
 name = subnet.value.name ❷
 address_prefix = subnet.value.prefix ❷
 } ❷
 }

 subnet {
 name = "AzureBastionSubnet" ❸
 address_prefix = cidrsubnet(var.base_cidr_block, 11, 224) ❸
 }

 tags = {
 environment = "management"
 }
}

 ❶ List of IP addresses of DNS servers

 ❷ Defines a list of subnets within the 10.0.0.0/16 space

 ❸ Defines a dedicated subnet where the Bastion host will be deployed

 Note We can tag our resources in Azure with a key-value pair. It’s useful for cost optimization. So we will add the environment tag with value management to all the resources we create.

 Before applying the changes, declare the variables used to parameterize and customize the Terraform deployment in variables.tf. Table 6.2 lists the variables.

 Table 6.2 Azure Terraform variables

 	
 Name

 	
 Type

 	
 Value

 	
 Description

 	
 subscription_id

 	
 String

 	
 None

 	
 The subscription ID to be used. This can also be sourced from the ARM_SUBSCRIPTION_ID environment variable.

 	
 client_id

 	
 String

 	
 None

 	
 The client ID to be used. This can also be sourced from the ARM_CLIENT_ID environment variable.

 	
 client_secret

 	
 String

 	
 None

 	
 The client secret to be used. This can also be sourced from the ARM_CLIENT_SECRET environment variable.

 	
 tenant_id

 	
 String

 	
 None

 	
 The Tenant/Directory ID to be used. This can also be sourced from the ARM_TENANT_ID environment variable

 	
 resource_group

 	
 String

 	
 None

 	
 The name of the resource group in which to create the virtual network.

 	
 location

 	
 String

 	
 None

 	
 The location/region where the virtual network is created. Changing this forces a new resource to be created. Refer to Azure Locations documentation for a full list of supported locations.

 	
 base_cidr_block

 	
 String

 	
 10.0.0.0/16

 	
 The address space (CIDR block) that is used for the virtual network.

 	
 subnets

 	
 Map

 	
 None

 	
 A map holding a list of subnets to create inside the virtual network.

 When authenticating as a service principal using a client certificate, the following fields should be set: client_certificate_password and client_certificate_ path.

 Now it’s time to run the terraform apply command. Terraform will call Azure APIs to set up the new virtual network as shown here:

 [image:]

 To verify the results within the Azure portal, browse to the management resource group. The new virtual network is located under this group, as shown in figure 6.23.

 To access private Jenkins machines, we need to deploy a gateway or proxy servers, also known as jump boxes or bastion hosts. Fortunately, Azure provides a managed service called Azure Bastion offering Remote Desktop Protocol (RDP) and SSH access to any VM without the need to manage a hardened bastion instance and apply security patches (no operational overhead).

 [image:]

 Figure 6.23 Management virtual network

 To deploy the Azure Bastion service into the existing Azure virtual network, create a bastion.tf file with the following content. The bastion host service will be deployed into the dedicated AzureBastionSubnet subnet:

 Listing 6.22 Azure Bastion service deployment

 resource "azurerm_public_ip" "bastion_public_ip" {
 name = "bastion-public-ip"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 allocation_method = "Static" ❶
 sku = "Standard"
}
data "azurerm_subnet" "bastion_subnet" {
 name = "AzureBastionSubnet"
 virtual_network_name = azurerm_virtual_network.management.name
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]
}
resource "azurerm_bastion_host" "bastion" {
 name = "bastion"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]
.
 ip_configuration {
 name = "bastion-configuration"
 subnet_id = data.azurerm_subnet.bastion_subnet.id ❷
 public_ip_address_id = azurerm_public_ip.bastion_public_ip.id ❷
 }
}

 ❶ Requests a static public IP address

 ❷ Reference to a subnet in which the bastion host will be created. It also associates the provisioned public IP address to the bastion host.

 Use a Terraform output variable to act as a helper to expose the bastion IP address by referencing the azurerm_public_ip resource.

 Listing 6.23 Bastion host public IP address

 output "bastion" {
 value = azurerm_public_ip.bastion_public_ip.ip_address
}

 Run terraform apply to apply the configuration. A bastion service will be deployed into the management resource group, as shown in figure 6.24.

 [image:]

 Figure 6.24 Azure bastion host

 6.2.3 Deploying a Jenkins master virtual machine

 With the VPN being deployed, we can deploy our Jenkins cluster. Figure 6.25 summarizes the target architecture.

 [image:]

 Figure 6.25 Jenkins VM inside a private subnet

 Deploy a virtual machine based on the Jenkins master image built with Packer earlier. Define the resource in jenkins_master.tf with the following code.

 Listing 6.24 Jenkins master virtual machine

 data "azurerm_image" "jenkins_master_image" {
 name = var.jenkins_master_image
 resource_group_name = data.azurerm_resource_group.management.name
}

resource "azurerm_virtual_machine" "jenkins_master" {
 name = "jenkins-master"
 resource_group_name = data.azurerm_resource_group.management.name
 location = var.location
 vm_size = var.jenkins_vm_size

 network_interface_ids = [
 azurerm_network_interface.jenkins_network_interface.id,
]

 os_profile {
 computer_name = var.config["os_name"]
 admin_username = var.config["vm_username"]
 }

 os_profile_linux_config {
 disable_password_authentication = true ❶
 ssh_keys { ❶
 path = "/home/${var.config["vm_username"]}/.ssh/authorized_keys" ❶
 key_data = file(var.public_ssh_key) ❶
 } ❶
 }

 storage_os_disk {
 name = "main"
 caching = "ReadWrite"
 managed_disk_type = "Standard_LRS" ❷
 create_option = "FromImage" ❷
 disk_size_gb = "30" ❷
 }

 storage_image_reference {
 id = data.azurerm_image.jenkins_master_image.i ❸
 }

 delete_os_disk_on_termination = true ❹
}

 ❶ Disables password authentication and enables SSH as an authentication mechanism

 ❷ Specifies the type of managed disk that should be created. Possible values are Standard_LRS, StandardSSD_LRS, or Premium_LRS.

 ❸ Provisions the VM from the baked Jenkins master image

 ❹ Deletes the OS disk automatically when deleting the VM

 Note We allowed 30 GB as the disk size for the virtual machine. Jenkins needs some disk space to perform builds and keep archives and build logs.

 SSH key data is provided in the ssh_key section, and the username is provided in the os_profile section with password authentication disabled.

 The Jenkins virtual machine uses the B-Series Azure VM family with burstable CPU performances. This VM family provides the right balance between computing and network bandwidth. I recommend selecting your VM family type based on your project build needs and requirements.

 Listing 6.24 created a VM named jenkins-master, and now we’ll attach the virtual network interface, as shown in the following listing.

 Listing 6.25 Jenkins VM network configuration

 data "azurerm_subnet" "private_subnet" {
 name = var.subnets[2].name
 virtual_network_name = azurerm_virtual_network.management.name
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]
}

resource "azurerm_network_interface" "jenkins_network_interface" {
 name = "jenkins_network_interface"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 depends_on = [azurerm_virtual_network.management]

 ip_configuration {
 name = "internal" ❶
 subnet_id = data.azurerm_subnet.private_subnet.id ❶
 private_ip_address_allocation = "Dynamic" ❶
 }
}

 ❶ Deploys the Jenkins master instance in a private subnet and assigns a dynamic private IP address

 The virtual network interface connects the Jenkins master to the private network subnet.

 Once you provide the needed Terraform variables in variables.tfvars, issue terraform apply. Creating the Jenkins VM, shown in figure 6.26, from your Packer image and the expected resources takes a few minutes.

 [image:]

 Figure 6.26 Jenkins master virtual machine

 The Jenkins virtual machine should be accessible through a Bastion host only. Figure 6.27 confirms that the machine was deployed within a private subnet.

 [image:]

 Figure 6.27 Jenkins master deployed in a private subnet

 However, to access the Jenkins dashboard, we will deploy a load balancer in front of the VM. Create a loadbalancers.tf file on which you define an Azure load balancer and a security rule to serve the Jenkins dashboard and attach it to a public IP address, as shown in the following listing.

 Listing 6.26 Jenkins dashboard load balancer configuration

 resource "azurerm_public_ip" "jenkins_lb_public_ip" {
 name = "jenkins-lb-public-ip"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 allocation_method = "Static"
}
resource "azurerm_lb" "jenkins_lb" {
 name = "jenkins-lb"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name

 frontend_ip_configuration {
 name = "publicIPAddress" ❶
 public_ip_address_id = azurerm_public_ip.jenkins_lb_public_ip.id ❶
 }
}
resource "azurerm_lb_rule" "jenkins_lb_rule" {
 name = "jenkins-lb-rule"
 resource_group_name = data.azurerm_resource_group.management.name
 protocol = "tcp" ❷
 enable_floating_ip = false ❷
 probe_id = azurerm_lb_probe.jenkins_lb_probe.id ❷
 loadbalancer_id = azurerm_lb.jenkins_lb.id ❷
 backend_address_pool_id = azurerm_lb_backend_address_pool
.jenkins_backend.id .
 frontend_ip_configuration_name = "publicIPAddress" ❸
 frontend_port = 80 ❸
 backend_port = 8080 ❸
}

 ❶ Associates a public IP address to the load balancer

 ❷ The load balancer listens on port 80 for incoming requests and communicates with the Jenkins master instance through port 8080.

 ❸ The load balancer listens on port 80 for incoming requests and communicates with the Jenkins master instance through port 8080.

 Within the same file, define an Azure backend address pool and assign it to the load balancer. Then set a health check on port 8080, as shown in the following listing.

 Listing 6.27 Jenkins dashboard health check

 resource "azurerm_lb_backend_address_pool" "jenkins_backend" {
 resource_group_name = data.azurerm_resource_group.management.name
 loadbalancer_id = azurerm_lb.jenkins_lb.id
 name = "jenkins-backend"
}
resource "azurerm_lb_probe" "jenkins_lb_probe" {
 resource_group_name = data.azurerm_resource_group.management.name
 loadbalancer_id = azurerm_lb.jenkins_lb.id
 name = "jenkins-lb-probe"
 protocol = "Http"
 request_path = "/" ❶
 port = 8080 ❷
}

 ❶ The URI used for requesting health status from the backend endpoint

 ❷ Port on which the probe queries the backend endpoint

 Azure allows for opening ports to traffic via security groups, which can also be managed in the Terraform configuration. Add the following to security_groups.tf and proceed to run plan/apply to create the security rule to allow inbound traffic on port 8080 and SSH traffic on TCP port 22.

 Listing 6.28 Jenkins master security group

 resource "azurerm_network_security_group" "jenkins_security_group" {
 name = "jenkins-sg"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name

 security_rule {
 name = "AllowSSH" ❶
 priority = 100 ❶
 direction = "Inbound" ❶
 access = "Allow" ❶
 protocol = "Tcp" ❶
 source_port_range = "*" ❶
 destination_port_range = "22" ❶
 source_address_prefix = "*" ❶
 destination_address_prefix = "*" ❶
 }

 security_rule {
 name = "AllowHTTP" ❷
 priority = 200 ❷
 direction = "Inbound" ❷
 access = "Allow" ❷
 protocol = "Tcp" ❷
 source_port_range = "*" ❷
 destination_port_range = "8080" ❷
 source_address_prefix = "Internet" ❷
 destination_address_prefix = "*" ❷
 }
}

 ❶ Allows inbound traffic on port 22 (SSH) from anywhere

 ❷ Allows inbound traffic on port 8080, where the Jenkins web dashboard is served

 Finally, assign the security group to the virtual network interface attached to the Jenkins master virtual machine, as shown in the following listing.

 Listing 6.29 Jenkins network interface configuration

 resource "azurerm_network_interface" "jenkins_network_interface" {
 name = "jenkins_network_interface"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 network_security_group_id = azurerm_network_security_group.jenkins_security_group.id
 depends_on = [azurerm_virtual_network.management]

 ip_configuration {
 name = "internal" ❶
 subnet_id = data.azurerm_subnet.private_subnet.id ❶
 private_ip_address_allocation = "Dynamic" ❶
 load_balancer_backend_address_pools_ids = ❶
 [azurerm_lb_backend_address_pool.jenkins_backend.id] ❶
 }
}

 ❶ Assigns the Jenkins security group to the virtual network interface configured in a private subnet

 Apply the changes with the terraform apply command. Once Terraform completes, your load balancer is ready. Obtain its public IP address from outputs.tf by adding the following code.

 Listing 6.30 Jenkins master firewall and traffic control

 output "jenkins" {
 value = azurerm_public_ip.jenkins_lb_public_ip.ip_address
}

 Let’s verify the resources by using the Azure portal. As you can see in figure 6.28, Terraform created all the expected resources under the management resource group.

 [image:]

 Figure 6.28 Public load balancer pointing to Jenkins master VM

 Now point your web browser to the public IP address of the load balancer in the address bar. The default Jenkins home page will be displayed, as shown in figure 6.29.

 [image:]

 Figure 6.29 Jenkins dashboard accessible from LB public IP address

 You can now sign in with admin credentials defined in the Groovy init scripts while baking the Jenkins master machine image.

 6.2.4 Applying autoscaling to Jenkins workers

 We’re ready to deploy Jenkins workers to offload build projects from the master. The workers will be deployed inside an autoscaling set to be provisioned dynamically. Figure 6.30 illustrates the target deployment architecture.

 [image:]

 Figure 6.30 Jenkins workers scale set

 We need to deploy Jenkins worker machines inside a machine scale set. A Jenkins worker will be based on the Jenkins worker image built earlier with Packer and will be deployed inside a private subnet. Create jenkins_workers.tf with the following content.

 Listing 6.31 Jenkins worker machine scale set

 data "azurerm_image" "jenkins_worker_image" {
 name = var.jenkins_worker_image ❶
 resource_group_name = data.azurerm_resource_group.management.name
}
resource "azurerm_virtual_machine_scale_set" "jenkins_workers_set" {
 name = "jenkins-workers-set"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 upgrade_policy_mode = "Manual"
 sku {
 name = var.jenkins_vm_size
 tier = "Standard"
 capacity = 2
 }
 storage_profile_image_reference {
 id = data.azurerm_image.jenkins_worker_image.id
 }
 storage_profile_os_disk {
 caching = "ReadWrite"
 create_option = "FromImage"
 managed_disk_type = "Standard_LRS"
 }
 os_profile {
 computer_name_prefix = "jenkins-worker"
 admin_username = var.config["vm_username"]
 custom_data = data.template_file.jenkins_worker_startup_script.rendered
 }
 os_profile_linux_config {
 disable_password_authentication = true ❷
 ssh_keys { ❷
 path = "/home/${var.config["vm_username"]}/.ssh/authorized_keys" ❷
 key_data = file(var.public_ssh_key) ❷
 } ❷
 }
 network_profile {
 name = "private-network" ❸
 primary = true ❸
 network_security_group_id = ❸
 azurerm_network_security_group.jenkins_worker_security_group.id ❸
 ip_configuration { ❸
 name = "private-ip-configuration" ❸
 primary = true ❸
 subnet_id = data.azurerm_subnet.private_subnet.id ❸
 }
 }
}

 ❶ References the Jenkins worker machine image ID

 ❷ Disables password authentication and configures the SSH credentials

 ❸ Assigns a security group to the VM instances and requests private IP addresses

 Note You should test your projects on multiple Azure VM family types to determine the appropriate machine type for Jenkins workers, as well as the amount of disk space.

 Each Jenkins worker machine will execute a custom script (chapter6/azure/terraform/scripts/join-cluster.tpl) at runtime to join the Jenkins cluster; see the following listing.

 Listing 6.32 Jenkins workers launch script

 data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}" ❶

 vars = {
 jenkins_url = "http://${azurerm_public_ip.jenkins_lb_public_ip.ip_address}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}

 ❶ Initialization script to autojoin the VM as a Jenkins agent

 The script will use Azure Instance Metadata Service (IMDS) to fetch information regarding the machine’s private IP address and hostname and will issue a POST HTTP request to the Jenkins RESTful API to establish a bidirectional connection with the machine and join the cluster:

 INSTANCE_NAME=$(curl -s http://169.254.169.254/metadata/instance/compute/name
?api-version=2019-06-01&format=text)
INSTANCE_IP=$(curl -s http://169.254.169.254/metadata/instance/network/interface/0/ipv4/ipAddress/0/privateIpAddress
?api-version=2017-08-01&format=text)

 A security group will be attached to the virtual network interface attached to the scale set. It allows inbound traffic on port 22 (SSH), as shown in the following listing.

 Listing 6.33 Jenkins worker security group

 resource "azurerm_network_security_group" "jenkins_worker_security_group" {
 name = "jenkins-worker-sg"
 location = var.location
 resource_group_name = data.azurerm_resource_group.management.name
 security_rule {
 name = "AllowSSH" ❶
 priority = 100 ❶
 direction = "Inbound" ❶
 access = "Allow" ❶
 protocol = "Tcp" ❶
 source_port_range = "*" ❶
 destination_port_range = "22" ❶
 source_address_prefix = "*" ❶
 destination_address_prefix = "*" ❶
 }
}

 ❶ Allows incoming traffic on port 22 (SSH) from anywhere. It’s recommended to restrict the access to your network CIDR block.

 Once the deployment has completed, the content of the resource group resembles that shown in figure 6.31.

 [image:]

 Figure 6.31 Jenkins worker virtual machine scale set

 By default, two Jenkins workers will be up and running, as shown in figure 6.32.

 [image:]

 Figure 6.32 Static number of Jenkins workers

 To be able to scale workers based on build jobs and pipeline running, we will use Azure autoscale policies to trigger a scale-out or scale-in based on CPU utilization of the worker machines. Within jenkins_workers.tf, add the following resource block.

 Listing 6.34 Jenkins worker autoscaling policies

 resource "azurerm_monitor_autoscale_setting" "jenkins_workers_autoscale" {
 name = "jenkins-workers-autoscale"
 resource_group_name = data.azurerm_resource_group.management.name
 location = var.location
 target_resource_id = azurerm_virtual_machine_scale_set.jenkins_workers_set.id

 profile {
 name = "jenkins-autoscale"
 capacity {
 default = 2 ❶
 minimum = 2 ❶
 maximum = 10 ❶
 }
 rule {
 metric_trigger { ❷
 metric_name = "Percentage CPU" ❷
 metric_resource_id = ❷
 azurerm_virtual_machine_scale_set.jenkins_workers_set.id ❷
 time_grain = "PT1M" ❷
 statistic = "Average" ❷
 time_window = "PT5M" ❷
 time_aggregation = "Average" ❷
 operator = "GreaterThan" ❷
 threshold = 80 ❷
 } ❷
 scale_action { ❷
 direction = "Increase" ❷
 type = "ChangeCount" ❷
 value = "1" ❷
 cooldown = "PT1M" ❷
 } ❷
 }

 rule {
 metric_trigger { ❸
 metric_name = "Percentage CPU" ❸
 metric_resource_id = ❸
 azurerm_virtual_machine_scale_set.jenkins_workers_set.id ❸
 time_grain = "PT1M" ❸
 statistic = "Average" ❸
 time_window = "PT5M" ❸
 time_aggregation = "Average" ❸
 operator = "LessThan" ❸
 threshold = 20 ❸
 } ❸

 scale_action { ❸
 direction = "Decrease" ❸
 type = "ChangeCount" ❸
 value = "1" ❸
 cooldown = "PT1M" ❸
 } ❸
 }
 }
}

 ❶ Defines the minimum and maximum numbers of Jenkins workers

 ❷ Monitors the CPU utilization of the workers—if it hits 80%, a new Jenkins worker’s VM will be deployed.

 ❸ Monitors the CPU utilization of the workers—if it’s below 20%, an existing Jenkins worker VM will be terminated.

 Apply the changes with terraform apply. Then, head over to the Jenkins worker scale set configuration. In the Scaling section, define a new autoscale policy, as shown in figure 6.33.

 [image:]

 Figure 6.33 Jenkins worker autoscaling policies

 Note Once you’re finished playing with the Jenkins cluster, you will likely want to tear down everything that was created so that you don’t incur any further costs.

 Great! You are now able to deploy a self-healing Jenkins cluster on Microsoft Azure.

 6.3 DigitalOcean

 When we think of cloud computing providers, we are typically referring to the three giants in the industry: Azure, Google Cloud, and AWS. Unlike those providers that are known to everyone, DigitalOcean (www.digitalocean.com) is relatively new. You might be wondering why you should choose DigitalOcean over other providers. The reason lies in the differences between the three big players and DigitalOcean.

 They differ in many aspects. One is small, while the others (AWS, GCP, and Azure) are huge. DigitalOcean provides virtual machines (called Droplets). There are no bells and whistles. You do not get lost in a catalog of services, since they are almost nonexistent. Plus, DigitalOcean’s interface allows developers to quickly set up machines because of its friendly design. Moreover, it’s affordable and has cheaper instances, which is a good starting point for beginner businesses and startups. (If you don’t have a DigitalOcean account, you will need to create one; you will get $100 of free credits.)

 To use Packer with DigitalOcean, we first need to generate a DigitalOcean API token. This can be done on the DigitalOcean Applications & API page. Click the Generate New Token button to obtain a token with read and write permissions, as shown in figure 6.34.

 [image:]

 Figure 6.34 Packer API access token

 6.3.1 Creating Jenkins DigitalOcean Snapshots

 We’re using the same template covered in listings 6.1 and 6.2; the only difference is the use of the digitalocean Packer builder to interact with the DigitalOcean API. The builder takes a CentOS source image and runs the provisioning necessary—installing the tools required for building Jenkins jobs on the image after launching it—and then snapshots it into a reusable image; see the following listing. This reusable image can then be used as the foundation of new Jenkins workers that are launched within DigitalOcean by using Terraform.

 Listing 6.35 Jenkins worker image with DigitalOcean builder

 {
 "variables" : {
 "api_token" : "DIGITALOCEAN API TOKEN", ❶
 "region": "DIGITALOCEAN REGION" ❶
 },
 "builders" : [
 {
 "type": "digitalocean",
 "api_token": "{{user `api_token`}}",
 "image": "centos-8-x64", ❷
 "region": "{{user `region`}}",
 "size": "512mb",
 "ssh_username": "root",
 "snapshot_name": "jenkins-worker"
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 ❶ DigitalOcean API token and target region

 ❷ The build Droplet will be based on CentOS 8.

 Include your DigitalOcean API token and target region (refer to the official documentation for a list of supported regions: http://mng.bz/EDRJ). Then run the packer build template.json command. You’ll get a working Jenkins worker image in your DigitalOcean account in a couple of minutes, as shown in figure 6.35.

 [image:]

 Figure 6.35 Jenkins worker image snapshot

 Similarly, update the Jenkins master template referenced in listing 6.2 to use the digitalocean builder. The provisioning part creates a Jenkins credential based on a private SSH key used to deploy Jenkins workers. This is needed, as Jenkins needs to set up a bidirectional connection with workers via SSH.

 Listing 6.36 Jenkins master image with DigitalOcean builder

 {
 "variables" : {
 "api_token" : "DIGITALOCEAN API TOKEN",
 "region": "DIGITALOCEAN REGION",
 "ssh_key" : "PRIVATE SSH KEY FILE"
 },
 "builders" : [
 {
 "type": "digitalocean",
 "api_token": "{{user `api_token`}}",
 "image": "centos-8-x64",
 "region": "{{user `region`}}",
 "size": "2gb",
 "ssh_username": "root",
 "snapshot_name": "jenkins-master-2.204.1"
 }
],
 "provisioners" : [
 ...
]
}

 This template has been cropped for brevity. The full JSON file can be downloaded from chapter6/digitalocean/packer/master/template.json.

 Run the packer validate command to make sure that everything is copacetic. Then issue a packer build command. Once the build and provisioning part is finished, the Jenkins master snapshot should be ready to be used, as shown in figure 6.36.

 [image:]

 Figure 6.36 Jenkins master image snapshot

 6.3.2 Deploying a Jenkins master Droplet

 In this step, you’ll write Terraform template files for automating Jenkins cluster Droplet deployments of the snapshot containing the Jenkins master and worker you just built using Packer.

 Define a terraform.tf file and declare DigitalOcean as a provider. The provider needs to be configured with the proper API token before it can be used, as shown in the following listing.

 Listing 6.37 Defining the DigitalOcean provider

 provider "digitalocean" {
 token = var.token
}

 Run terraform init to download the DigitalOcean plugin needed to translate the Terraform instructions into API calls:

 [image:]

 Define a single resource of the type digitalocean_droplet named jenkins- master in the jenkins_master.tf file, as shown in Listing 6.38. Then set its parameters according to the variable values and add an SSH key (using its fingerprint) from your DigitalOcean account to the Droplet resource. The deployed Droplet will be of type s-1vcpu-2gb, which comes up with 1 GB of RAM and 1vCPU.

 For heavier workloads and larger projects, and to handle concurrent users connecting to the Jenkins web dashboard, a large Droplet type might be required. Refer to the official documentation for the list of available Droplet sizes: http://mng.bz/N4yD.

 Listing 6.38 Jenkins master Droplet

 data "digitalocean_image" "jenkins_master_image" {
 name = var.jenkins_master_image
}
resource "digitalocean_droplet" "jenkins_master" {
 name = "jenkins-master"
 image = data.digitalocean_image.jenkins_master_image.id ❶
 region = var.region
 size = "s-1vcpu-2gb" ❷
 ssh_keys = [var.ssh_fingerprint]
}

 ❶ Uses the Jenkins master image backed previously with Packer

 ❷ Provisions a Droplet with 2 GB of RAM and 1vCPU

 On DigitalOcean, you can upload your SSH public key to your account, which lets you add it to your Droplets at creation time (figure 6.37). This lets you log in to your Jenkins master without a password while still remaining secure.

 [image:]

 Figure 6.37 Adding a public SSH key

 Next, attach a firewall to the Jenkins master Droplet with rules allowing inbound traffic on port 22 and 8080 from anywhere; see the following listing. For security purposes, I recommend limiting SSH incoming traffic to your CIDR network block.

 Listing 6.39 Jenkins master Droplet’s firewall

 resource "digitalocean_firewall" "jenkins_master_firewall" {
 name = "jenkins-master-firewall"

 droplet_ids = [digitalocean_droplet.jenkins_master.id]

 inbound_rule {
 protocol = "tcp" ❶
 port_range = "22" ❶
 source_addresses = ["0.0.0.0/0", "::/0"] ❶
 }

 inbound_rule {
 protocol = "tcp" ❷
 port_range = "8080" ❷
 source_addresses = ["0.0.0.0/0", "::/0"] ❷
 }
 outbound_rule {
 protocol = "tcp" ❸
 port_range = "1-65535" ❸
 destination_addresses = ["0.0.0.0/0", "::/0"] ❸
 }

 outbound_rule {
 protocol = "udp" ❸
 port_range = "1-65535" ❸
 destination_addresses = ["0.0.0.0/0", "::/0"] ❸
 }

 outbound_rule {
 protocol = "icmp" ❸
 destination_addresses = ["0.0.0.0/0", "::/0"] ❸
 }
}

 ❶ Allows inbound traffic on port 22 (SSH) from anywhere

 ❷ Allows inbound traffic on port 8080, where the Jenkins web dashboard is served from

 ❸ Allows outbound traffic on all ports from anywhere

 Paste the following code to the outputs.tf file to display the IP address of the Jenkins master Droplet when the deployment is complete.

 Listing 6.40 Jenkins master public IP address

 output "master" {
 value = digitalocean_droplet.jenkins_master.ipv4_address
}

 Define the Terraform variables listed in table 6.3 in a new variable.tf file. Set their values in variables.tfvars to keep secrets and sensitive information out of template files.

 Table 6.3 DigitalOcean Terraform variables

 	
 Name

 	
 Type

 	
 Value

 	
 Description

 	
 token

 	
 String

 	
 None

 	
 This is the DigitalOcean API token. Alternatively, this can also be specified using DIGITALOCEAN_TOKEN environment variables.

 	
 region

 	
 String

 	
 None

 	
 The DigitalOcean region in which deploy the Jenkins master.

 	
 jenkins_master_image

 	
 String

 	
 None

 	
 The name of the Jenkins master image that was built previously with Packer.

 	
 ssh_fingerprint

 	
 String

 	
 None

 	
 SSH ID or fingerprint. To retrieve the info, head to the DigitalOcean Security dashboard.

 Run the terraform plan command to see the effect of the deployment before execution:

 [image:]

 You can now move on to validating and deploying it on a Droplet with a terraform apply command. The deployment process should take a few seconds to finish. Then a new Jenkins master Droplet will be available in the Droplets console, and Terra- form should display the IP address of the Jenkins master Droplet, as you can see in figure 6.38.

 [image:]

 Figure 6.38 Jenkins master Droplet

 Open your favorite browser and connect to the public IPv4 that was returned by the previous command. A preconfigured Jenkins dashboard should be displayed; see figure 6.39.

 [image:]

 Figure 6.39 Jenkins dashboard access with Droplet public IP

 6.3.3 Building Jenkins worker Droplets

 Now to delegate build jobs to workers and offload the Jenkins master Droplet. Several build workers will be deployed to absorb the build activity.

 Create a jenkins_workers.tf file where you define Jenkins worker Droplets. The workers will be launched from the Jenkins worker image.

 Listing 6.41 Jenkins worker Droplets

 data "digitalocean_image" "jenkins_worker_image" {
 name = var.jenkins_worker_image
}

data "template_file" "jenkins_worker_startup_script" {
 template = "${file("scripts/join-cluster.tpl")}" ❶

 vars = {
 jenkins_url = "http://${digitalocean_droplet.jenkins_master.ipv4_address}:8080"
 jenkins_username = var.jenkins_username
 jenkins_password = var.jenkins_password
 jenkins_credentials_id = var.jenkins_credentials_id
 }
}
resource "digitalocean_droplet" "jenkins_workers" {
 count = var.jenkins_workers_count ❷
 name = "jenkins-worker"
 image = data.digitalocean_image.jenkins_worker_image.id
 region = var.region
 size = "s-1vcpu-2gb" ❸
 ssh_keys = [var.ssh_fingerprint]
 user_data = data.template_file.jenkins_worker_startup_script.rendered ❹
 depends_on = [digitalocean_droplet.jenkins_master]
}

 ❶ The script is used to make the Droplet autojoin the cluster as a Jenkins agent/worker.

 ❷ Indicates the number of Jenkins workers to create

 ❸ In this Droplet configuration, we’re using 1 GB of RAM and 1vCPU as configuration for Jenkins workers.

 ❹ The launch script is passed in the user_data section so it can be executed the first time the Droplet is running.

 The count variable is used to define the number of workers to deploy. Each Droplet will execute a shell script at startup. This script is similar to the one provided in previous sections, except for the use of the DigitalOcean metadata server to fetch the Droplet IP address and hostname:

 INSTANCE_NAME=$(curl -s http://169.254.169.254/metadata/v1/hostname)
INSTANCE_IP=$(curl -s http://169.254.169.254/metadata/v1/
interfaces/public/0/ipv4/address)

 Finally, to set up a bidirectional connection between Jenkins master and workers, we define a firewall allowing inbound traffic on TCP port 22.

 Listing 6.42 Jenkins worker firewall

 resource "digitalocean_firewall" "jenkins_workers_firewall" {
 name = "jenkins-workers-firewall"

 droplet_ids .
[for worker in digitalocean_droplet.jenkins_workers : worker.id]

 inbound_rule {
 protocol = "tcp" ❶
 port_range = "22" ❶
 source_droplet_ids = [digitalocean_droplet.jenkins_master.id] ❶
 }
}

 ❶ Allows the Jenkins master to SSH to the Jenkins workers

 After a few minutes, the workers’ Droplets will finish provisioning, and you’ll see output similar to figure 6.40.

 [image:]

 Figure 6.40 Jenkins worker Droplets

 Go back to the Jenkins dashboard. The new deployed workers should join the cluster after executing the user data script covered in chapter 5’s listing 5.7; see figure 6.41.

 [image:]

 Figure 6.41 Worker Droplets joining the cluster

 You can take this architecture further by deploying a load balancer in front of the Jenkins master Droplet to forward traffic to port 8080 and creating a DNS record pointing to the load balancer FQDN; see figure 6.42.

 [image:]

 Figure 6.42 Jenkins cluster architecture on DigitalOcean

 When you’re finished, clean up the infrastructure by running the following:

 terraform destroy --var-file=variables.tfvars

 This chapter has covered how to deploy and operate a resilient and self-healing Jenkins cluster from scratch on numerous cloud providers with IaC tools. I’ve also explained how to architect Jenkins workers for scale with autoscaling policies and metrics alarms. In the next chapter, we will implement pipelines as code on Jenkins for numerous cloud-native applications such as Dockerized microservices and serverless applications.

 Summary

 	
 The power of Packer comes from leveraging template files to create identical Jenkins machine images independently of the target platform.

 	
 Deploying Jenkins on Google Cloud Platform comes with seamless native support for Kubernetes.

 	
 Azure offers a variety of cloud-based services and might be a good alternative for running Jenkins on the cloud.

 	
 Running Jenkins on DigitalOcean can be a cost-efficient solution for beginner businesses and startups.

 Part 3. Hands-on CI/CD pipelines

 You’ve smashed through parts 1 and 2 but you’re still hungry for more. I understand. Thankfully, this part is designed to give you a lot to chew on.

 You’ll implement CI/CD workflows for real-world, cloud-native applications. In the next few chapters, you’ll run automated tests with Docker, analyze your Docker images for security vulnerabilities, and deploy containerized microservices on Docker Swarm and Kubernetes. You’ll learn how to automate the deployment process for your serverless applications. This is just a tiny glimpse, so roll up your sleeves and let’s dive into this!

 7 Defining a pipeline as code for microservices

 This chapter covers

 	Using a Jenkins multibranch pipeline plugin and GitFlow model

 	Defining multibranch pipelines for containerized microservices

 	Triggering a Jenkins job on push events using GitHub webhooks

 	Exporting Jenkins jobs configuration as XML and cloning Jenkins jobs

 The previous chapters covered how to deploy a Jenkins cluster on multiple cloud providers by using automation tools: HashiCorp Packer and Terraform. In this chapter, we will define a continuous integration (CI) pipeline for Dockerized microservices.

 In chapter 1, you learned that CI is continuously testing and building all changes of the source code before integrating them into the central repository. Figure 7.1 summarizes the stages in this workflow.

 [image:]

 Figure 7.1 Continuous integration stages

 Every change to the source code triggers the CI pipeline, which launches the automated tests. This comes with many benefits:

 	
 Detecting bugs and issues earlier, which results in a dramatic decrease in maintenance time and costs

 	
 Ensuring that the codebase continues to work and meets the spec requirements as the system grows

 	
 Improving team velocity by establishing a fast-feedback loop

 While automated tests come with multiple benefits, they’re extremely time-consuming to implement and execute. Therefore, we will use a testing framework based on the target service runtime and requirements.

 Once tests are successful, the source code is compiled and an artifact is built. Then it will be packaged and stored in a remote registry for version control and deployment later.

 Chapter 8 covers how to write a classic CI pipeline for containerized microservices. The end result will look like the CI pipeline in figure 7.2.

 [image:]

 Figure 7.2 Target CI pipeline

 These steps cover the most basic flow of a continuous integration process. In the following chapters, once you are comfortable with this workflow, we’ll go even further. We’ll start by creating our multibranch pipeline from scratch with Jenkins and continuously running pipelines with GitHub webhooks.

 7.1 Introducing microservices-based applications

 It can be challenging to create a reliable CI/CD process for a microservices architecture. The goal of the pipeline is to allow teams to build and deploy their services quickly and independently, without disrupting other teams or destabilizing the application as a whole.

 To illustrate how to define a CI/CD pipeline from scratch for containerized microservices, I have implemented a simple web application based on a microservices architecture. We are going to integrate and deploy a web-based application called Watchlist, where users can browse the top 100 greatest movies of all time and add them to their watching list.

 The project includes tests, benchmarks, and everything needed to run the application locally and on the cloud. The deployed application will look like figure 7.3.

 [image:]

 Figure 7.3 Watchlist marketplace UI

 Figure 7.4 illustrates the application architecture and flow.

 [image:]

 Figure 7.4 The Loader service takes an array of movies in JSON format and forwards them one by one to a message queue (for example, Amazon SQS). From there, a Parser service will consume the items and fetch the movie’s details from the IMDb database and save the result into MongoDB. Finally, the data is served through a RESTful API by the Store service and visualized with the Marketplace UI.

 Note Amazon Simple Queue Service (SQS) is a distributed message queuing service. It is intended to provide a highly scalable managed message queue to resolve issues arising from producer-consumer problems and to decouple distributed application services. See https://aws.amazon.com/sqs/ for more details.

 The architecture is composed of multiple services written in different languages to illustrate the advantages of the microservices paradigm and the use of Jenkins to automate the build and deployment process of different runtime environments. Table 7.1 lists the microservices.

 Table 7.1 Application microservices

 	
 Service

 	
 Language

 	
 Description

 	
 Loader

 	
 Python

 	
 Responsible for reading a JSON file containing a list of movies and pushing each movie item to Amazon SQS.

 	
 Parser

 	
 Golang

 	
 Responsible for consuming movies by subscribing to SQS and scraping movie information from the IMDb website (www.imdb.com) and storing the metadata (movie’s name, cover, description, and so forth) into MongoDB.

 	
 Store

 	
 Node.js

 	
 Responsible for serving a RESTful API with endpoints to fetch a list of movies and insert new movies into the watch list database in the MongoDB server.

 	
 Marketplace

 	
 Angular and TypeScript

 	
 Responsible for serving a frontend to browse movies by calling the Store RESTful API.

 Before we dig deeper into the CI workflow for the application, let’s see how the distributed application source code will be organized. When you start moving to microservices, one of the big challenges you will be facing is the organization of the codebase.

 Do you create a repository for each service or a single repo for all services? Each pattern has its own advantages and disadvantages.

 	
 Multiple repositories—You can have multiple teams independently developing a service (clear ownership). Plus, smaller codebases are easier to maintain, test, and deploy with less team coordination. However, having independent teams might create localized knowledge across the organization and result in teams lacking an understanding of the bigger picture of the project.

 	
 Mono repository—Having a single source-control repository comes with a simplified project organization with less overhead from managing project dependencies. It also improves the overall work culture when teams work on a mono repository. However, versioning might become more complicated, and performance and scalability issues may arise.

 Both patterns have pros and cons, and neither is a silver bullet. You should understand their benefits and limitations, and use them to make an informed decision on what’s best for you and your project.

 The way you structure your codebase will impact the design of the CI/CD pipeline. Having a project hosted on a single repository might result in a single pipeline with fairly complex stages. Pipeline size and complexity are often a huge pain point. As the number of services evolves within an organization, the management of pipelines becomes a bigger issue as well. In the end, most pipelines end as a spaghetti mix of npm, pip, and Maven scripts sprinkled with some bash scripts all over the place. On the other side, adopting a multiple-repositories strategy might result in multiple pipelines to manage and code duplication. Fortunately, solutions are available to reduce pipeline management, including using shared pipeline segments and shared Groovy scripts.

 Note Chapter 14 covers how to write a shared library in Jenkins to share common code and steps across multiple pipelines.

 This book illustrates how to build CI/CD pipelines for both patterns. For microservices, we will adopt the multiple repositories strategy. We will cover the mono-repo approach while building CI/CD pipelines for serverless functions.

 First, create four Git repositories to store the source code for each service (Loader, Parser, Store, and Marketplace). In this book, I’m using GitHub, but any SCM system can be used, such as GitLab, Bitbucket, or even SVN. Make sure you have Git installed on the machine that you will use to perform the steps mentioned in the following section.

 Note Throughout this book, we will use the GitFlow model for branch management. For more information, read chapter 2.

 Once the repositories are created, clone them to your workspace and create three main branches: develop, preprod, and master branches to help organize the code and isolate the under-development code from the one running in production. This branching strategy is a slimmer version of the GitFlow workflow branching model.

 Note The complete Jenkinsfile for each service can be found in the chapter7/ microservices folder within the book’s GitHub repository.

 Use the following commands to create the target branches and push them to the remote repository:

 git clone https://github.com/mlabouardy/movies-loader.git
cd movies-loader
git checkout -b preprod
git push origin preprod
git checkout -b develop
git push origin develop

 To view the branches in the Git repository, run this command in your terminal:

 git branch -a

 An asterisk (*) will be next to the branch that you’re currently on (develop). Output similar to the following should be displayed in your terminal session:

 [image:]

 Next, copy the code from the book’s GitHub repository to each Git repository on the develop branch, and then push the changes to the remote repository:

 git add .
git commit -m "loading from json file"
git push origin develop

 The GitHub repository should look like figure 7.5.

 [image:]

 Figure 7.5 The Loader GitHub repository has the service source’s code.

 Note For now, we push the changes directly to the develop branch. Later, you will see how to create pull requests and set up a review process with Jenkins.

 The movies-loader source code is available in the chapter7/microservices/movies-loader folder. Repeat the same process to create the movies-parser, movies-store, and movies-marketplace GitHub repositories.

 7.2 Defining multibranch pipeline jobs

 To integrate the application source code with Jenkins, we need to create Jenkins jobs to continuously build it. Head over to Jenkins web dashboard and click the New Item button at the top-left corner, or click the Create New Jobs link to create a new job, as shown in figure 7.6.

 [image:]

 Figure 7.6 Jenkins new job creation

 Note For a step-by-step guide on deploying Jenkins, refer to chapter 5.

 On the resultant page, you will be presented with various types of Jenkins jobs to choose from. Enter the name of the project, scroll down, select Multibranch Pipeline, and click the OK button. The Multibranch Pipeline option allows us to automatically create a pipeline for each branch on the source-control repository.

 Figure 7.7 shows the multibranch job pipeline for the movies-loader service.

 [image:]

 Figure 7.7 Jenkins new job settings

 Note The Jenkins Multibranch Pipeline plugin (https://plugins.jenkins.io/workflow-multibranch/) is installed by default on the baked Jenkins master AMI.

 I’ll briefly summarize the new job types here and then explain each in more detail in upcoming chapters:

 	
 Freestyle project—This is a classic way of creating a Jenkins job, wherein each CI stage is represented by using UI components and forms. The job is a web-based configuration, and any modification is done through the Jenkins dashboard.

 	
 Inheritance project—The purpose of this project type is to bring true inheritance of properties between multiple job definitions to Jenkins. It allows you to share common properties only once and create Jenkins jobs to inherit them across many projects.

 	
 Pipeline—This job type lets you either paste a Jenkinsfile directly into the job UI or reference a single Git repository as the source and then specify a single branch where the Jenkinsfile is located. This job can be useful if you plan to use a trunk-based workflow to manage your project source code.

 	
 Folder—This is a way to group multiple projects together rather than a type of project itself. This is different from the view tabs on the Jenkins dashboard, which provide just a filter. Rather, this is like a directory folder on the server, storing nested items.

 	
 Multibranch pipeline—This is a type of project we will use through this book. As its name indicates, it allows us to automatically create nested jobs for each Git branch containing a Jenkinsfile.

 	
 Organization—Certain source-control platforms provide a mechanism for grouping multiple repositories into organizations. This project type allows you to use a Jenkinsfile in the repositories within an organization and execute a pipeline based on the Jenkinsfile. Currently, the project type supports only GitHub and Bitbucket organizations.

 Note The trunk-based strategy uses one central repository with a single entry (called a trunk or master) for all changes to the project.

 To be clear, having these new job types available depends on having the requisite plugins installed. If you baked the Jenkins master machine image with the list of plugins provided in chapter 4’s section 4.3.2, you will get all the job types discussed in the preceding list.

 7.3 Git and GitHub integration

 The pipeline script (Jenkinsfile) will be versioned in GitHub. Therefore, we need to configure the Jenkins job to fetch it from the remote repository.

 Set a name and description in the General section. Then, select the code source from the Branch Sources section. Configure the pipeline to refer to GitHub for source-control management by selecting GitHub from the drop-down list; see figure 7.8.

 [image:]

 Figure 7.8 Branch Sources configuration

 For checkout credentials, open a new tab and go to the Jenkins dashboard. Click Credentials and then System. On the Global Credentials page, from the menu on the left, click the Add Credentials link. Next, create a new Jenkins global credential of type Username and Password to access the microservices projects in Git. The GitHub username and password can be set as shown in figure 7.9. However, it’s not recommended to use a personal GitHub account.

 Note The Jenkins Credentials plugin (https://plugins.jenkins.io/credentials/) is installed by default on the baked Jenkins master machine image. It is part of the essential plugins listed in chapter 4’s section 4.3.2.

 [image:]

 Figure 7.9 Jenkins credentials provider

 Therefore, I have created a dedicated Jenkins service account on GitHub and used an access token instead of the account password. You can create the access token by signing in with the GitHub credentials and navigating to Settings. Then, from the left menu, select Developer Settings and select Personal Access Tokens, as shown in figure 7.10.

 [image:]

 Figure 7.10 GitHub personal access tokens

 Click the Generate New Token button, give a name to the access token, and select the repo access from the list of authorized scopes, as shown in figure 7.11. For private repositories, you must ensure that the repo scope is selected, and not just the repo:status and public_repo scopes. The token name is helpful, as you’ll likely have many of these tokens for many applications.

 [image:]

 Figure 7.11 Jenkins dedicated token for GitHub access

 As the GitHub warning in figure 7.12 indicates, you must copy the token after you generate it, as you won’t be able to see it again. If you fail to do so, your only recourse will be to regenerate the token.

 [image:]

 Figure 7.12 Jenkins personal access token

 Paste in the GitHub personal access token to the Password field. Give a unique ID to your GitHub credentials by typing a string in the ID field and add a meaningful description to the Description field, as shown in figure 7.13. Then click the Save button.

 [image:]

 Figure 7.13 GitHub credentials configuration on Jenkins

 Go back to the job configuration tab, shown in figure 7.14, and select the credentials you created from the Credentials drop-down list. Set the repository HTTPS clone URL and set the discovering behavior to allow scanning of all repository branches. Then, scroll all the way down and click the Apply and Save buttons.

 [image:]

 Figure 7.14 GitHub repository configuration on Jenkins

 Note We cover Jenkins advanced scanning behaviors and strategies in chapter 9.

 Jenkins will scan the GitHub repository, looking for branches with a Jenkinsfile in the root repository. So far, there are none, and we can check that by clicking the Scan Repository Log button from the left sidebar.

 Note In this book, we will use the concept of pipeline as code instead of representing each CI stage within the UI as in a Jenkins classic freestyle job. The pipeline will be described in a Jenkinsfile.

 The log output confirms that no Jenkinsfile has been found yet in the GitHub repository, as shown in figure 7.15.

 [image:]

 Figure 7.15 Jenkins repository scanning logs

 It’s time to create a Jenkinsfile. Using your favorite text editor or IDE, create and save a new text file with the name Jenkinsfile at the root of your local movies-loader Git repository. Copy the following scripted pipeline code and paste it into your empty Jenkinsfile.

 Listing 7.1 Jenkinsfile using a scripted approach

 node('workers'){
 stage('Checkout'){
 checkout scm
 }
}

 Note We are using scripted pipeline syntax to write most of the Jenkinsfile. However, the declarative approach will be given when the CI pipeline is completed.

 The Checkout stage, as its name indicates, will simply check out the code at the reference point that triggered the run. You can customize the checkout process by providing additional parameters. Also, the stages will be executed on Jenkins workers—hence, the use of the workers label on the node block. We’re assuming we have a Jenkins worker already set up on the Jenkins instance labeled workers. If no label is provided, Jenkins will run the pipeline on the first executor that becomes available on any machine (master or worker).

 Save your edited Jenkinsfile and push the changes to the develop branch by running the following commands:

 git add Jenkinsfile
git commit -m "creating Jenkinsfile"
git push origin develop

 The Jenkinsfile lives with the source code in GitHub. Therefore, like any code, it can be peer-reviewed, commented on, and approved before being merged into main branches; see figure 7.16.

 [image:]

 Figure 7.16 Jenkinsfile is stored along with source code

 Go back to the Jenkins dashboard, and to trigger the scanning again, click the Scan Repository Now button. By default, this will automatically trigger builds for all newly discovered branches, as shown in figure 7.17.

 [image:]

 Figure 7.17 Jenkinsfile detected on develop branch

 In our current setup, a Jenkinsfile has been found only on the develop branch. If we click the movies-loader job again. Jenkins should have created a nested job for the develop branch, as you can see in figure 7.18. There was no pipeline scheduled for the preprod and master branches since there was no Jenkinsfile on them yet.

 [image:]

 Figure 7.18 Build job triggered on the develop branch

 Note If you ever have problems with jobs for branches not being created or built automatically, check the Scan Repository Log item from the left job sidebar.

 The build should be triggered on the develop branch automatically, and the checkout stage will be executed and turned green. Note that the Git client should be installed on the worker where the build is executed.

 The Jenkins Stage view, shown in figure 7.19, lets us visualize the progress of various stages of the pipeline in real-time.

 [image:]

 Figure 7.19 Pipeline execution

 Note The Jenkins Stage view is a new feature that comes as a part of release 2.x. It works only with Jenkins Pipeline and Jenkins Multibranch pipeline jobs.

 Click the Checkout stage column to view the stage’s logs. You can see that Jenkins has cloned the movies-loader GitHub repository and checked out the develop branch to fetch the latest source code changes from the remote repository, as shown in figure 7.20.

 [image:]

 Figure 7.20 Checkout stage logs

 To view the complete build log, look for the Build History on the left side. The Build History tab will list all the builds that have been run. Click the last build number; see figure 7.21.

 [image:]

 Figure 7.21 Build number settings

 Then, click the Console Output item from the left corner. The complete build logs will be displayed, as shown in figure 7.22.

 [image:]

 Figure 7.22 Build console logs

 Now that we have created a Jenkins job for movies-loader, let’s create another Jenkins job for the movies-parser service; once again, head over to Jenkins main page and click the New Item button. However, to save time, copy the configuration from the previous job, as shown in figure 7.23.

 [image:]

 Figure 7.23 Parser job’s creation

 Click the OK button. The movies-parser job will reflect all features of the cloned movies-loader job. Update appropriately the GitHub repository HTTPS clone URL, job description, and display name, as shown in figure 7.24.

 [image:]

 Figure 7.24 Parser job GitHub configuration

 Push the same Jenkinsfile used in the previous job to the develop branch of the movies-parser GitHub repository. Then click Apply for changes to take effect.

 After saving, the build will always run from the current version of Jenkinsfile into the repository, as shown in figure 7.25.

 [image:]

 Figure 7.25 Parser job list of active branches

 Follow the same steps to create Jenkins jobs for the movies-store and movies-marketplace services.

 While Git is the most used distributed version control nowadays, Jenkins comes with built-in support for Subversion. To use source code from a Subversion repository, you simply provide the corresponding Subversion URL—it will work fine with any of the three Subversion protocols of HTTP, SVN, or File. Jenkins will check that the URL is valid as soon as you enter it. If the repository requires authentication, you can create a Jenkins credential of type Username with Password, and select it from the Credentials drop-down list, as shown in figure 7.26.

 [image:]

 Figure 7.26 SVN repository configuration

 You can fine-tune the way Jenkins obtains the latest source code from your Subversion repository by selecting an appropriate value in the Check-out Strategy drop-down list.

 7.4 Discovering Jenkins jobs’ XML configuration

 Another way to create or clone a multibranch pipeline job is to export the config.xml file of an existing job. The XML file contains, as you might expect, the configuration details for the build job.

 You can view the XML configuration of a job by pointing your browser to JENKINS _DNS/job/JOB_NAME/config.xml. It should dump the job XML definition in the browser page, as shown in figure 7.27.

 [image:]

 Figure 7.27 Job XML configuration

 Save the job definition in an XML file and update the XML tags in table 7.2 with the appropriate values based on the target Jenkins job you’re planning to create.

 Table 7.2 XML tags

 	
 XML tag

 	
 Description

 	
 <description>

 	
 Meaningful description explaining in a few words the purpose of the Jenkins job

 	
 <displayName>

 	
 Jenkins job’s display name; general practice is to use the name of the repository storing the source code as a value for display name

 	
 <repository>

 	
 Name of the GitHub repository holding the source code, such as movies-store

 	
 <repositoryURL>

 	
 GitHub repository HTTPS clone URL, set in the following format: https://github.com/username/repository.git

 Note In chapter 14, we will cover how to use the Jenkins CLI to automate the import and export of multiple jobs and plugins in Jenkins.

 The following listing is an example of an XML config file for the movies-store job. It illustrates a typical structure of a Jenkins job XML configuration.

 Listing 7.2 Movies store config.xml

 <?xml version="1.0" encoding="UTF-8"?>
<org.jenkinsci.plugins.workflow
.multibranch.WorkflowMultiBranchProject plugin="workflow-multibranch@2.21">
 <actions />
 <description>Movies store RESTful API</description> ❶
 <displayName>movies-store</displayName> ❶
 <sources class="jenkins.branch
.MultiBranchProject$BranchSourceList" plugin="branch-api@2.5.5">
 <data>
 <jenkins.branch.BranchSource>
 <source class="org.jenkinsci.plugins
.github_branch_source.GitHubSCMSource" plugin="github-branch-source@2.5.8">
 <id>bf197dad-7d42-4a00-be25-7ae8ea7fef15</id>
 <apiUri>https://api.github.com</apiUri> ❷
 <credentialsId>github</credentialsId> ❷
 <repoOwner>mlabouardy</repoOwner> ❷
 <repository>movies-store</repository> ❷
 <repositoryUrl>
https://github.com/mlabouardy/movies-store.git
 </repositoryUrl> ❸
 <traits> ❸
 <org.jenkinsci.plugins.github__branch__source.BranchDiscoveryTrait> ❸
 <strategyId>1</strategyId> ❸
</org.jenkinsci.plugins.github__branch__source.BranchDiscoveryTrait> ❸
 </traits>
 </source>
 </jenkins.branch.BranchSource>
 </data>
 </sources>
</org.jenkinsci.plugins.workflow.multibranch.WorkflowMultiBranchProject>

 ❶ Defines the job’s name and description

 ❷ Defines the project GitHub repository URL (HTTPS format)

 ❸ Tells Jenkins to scan all branches in the GitHub repository looking for a Jenkinsfile

 Note The XML has been cropped for brevity. The full job XML definition is available in the GitHub repository in chapter7/jobs/movies-store.xml.

 Once you have updated the config.xml file with the appropriate values, issue an HTTP POST request with the job XML definition as a payload to the Jenkins URL with a query parameter name equal to the target job’s name. Figure 7.28 shows an example for creating a movies-store job with a Postman HTTP API client.

 Note If CSRF protection is enabled on Jenkins, you will need to create an API token instead of a crumb issuer token. For more information, refer to chapter 2.

 [image:]

 Figure 7.28 Job creation Jenkins RESTful API with Postman

 A one-line cURL command can also be used to clone and create a new job:

 curl -s https:///<USER>:<API_TOKEN>@JENKINS_HOST/job/JOBNAME/config.xml
| curl -X POST 'https:///<USER>:<API_TOKEN>@JENKINS_HOST/createItem?name=JOBNAME.
--header "Content-Type: application/xml" -d @-

 The Jenkins API token (API_TOKEN variable) can be created from the Jenkins dashboard by logging with the user that you want to generate the API token for. Then open the user profile page and click Configure to open the user configuration page.

 Locate the Add new Token button, give a name to the new token, and click the Generate button, as shown in figure 7.29. Retrieve the token and replace the API_ TOKEN variable in the preceding cURL commands with the generated token value.

 [image:]

 Figure 7.29 Jenkins API token generation

 Note Jenkins jobs can also be created by copying the XML file directly to the /var/lib/jenkins/jobs/<Job name> folder on the Jenkins master instance and restarting Jenkins with the service jenkins restart command for changes to take effect.

 Once the four Jenkins jobs are created, you should have the jobs shown in figure 7.30 on the Jenkins main page. You can organize these jobs in one view by creating a Jenkins folder. You can create a folder named Watchlist and move these jobs to it.

 [image:]

 Figure 7.30 Microservices jobs in Jenkins

 To do so, follow these steps: From the sidebar, click New Item, enter Watchlist as a name in the text box, and select Folder to create the folder. To move the existing jobs to the folder, click the arrow to the right of the job and select Move. Select Watchlist as the desired folder and click Move.

 The microservices jobs will be accessible with the following URL format: JENKINS_DNS/job/Watchlist/job.

 The Jenkins CLI can be used to import or export a job even if its usage is deprecated and not recommended for security vulnerabilities (at least for Jenkins 2.53 and older versions). You can run this command to import your Jenkins job XML file:

 java -jar jenkins-cli.jar -s JENKINS_URL
-auth USERNAME:PASSWOR.
create-job movies-marketplace < config.xml

 An alternative authentication method is to use an access token by replacing the -auth option with the username:token argument.

 7.5 Configuring SSH authentication with Jenkins

 Previously, you learned to configure GitHub on Jenkins with username and password credentials. We also covered how to create a GitHub API access token with granular permissions. This section covers how to use SSH keys instead to authenticate with project repositories.

 Note You can generate a one-purpose SSH key for SSH authentication with remote Git repositories by using the ssh-keygen command.

 First, configure the Jenkins public SSH key on GitHub. You can configure SSH on the GitHub repository by going to the repository settings and adding a deploy key from the Deploy Keys section. Or simply configure the SSH key globally from the user profile settings. Give a name such as Jenkins and paste the public key (from the id_rsa.pub file); see figure 7.31.

 [image:]

 Figure 7.31 GitHub SSH configuration

 Note Once a key has been attached to one repository as a deploy key, it cannot be used on another repository.

 To determine whether the key is successfully configured, type the following command on your Jenkins SSH session. Use the -i flag to provide the path to the Jenkins private key:

 ssh -T -ai PRIVATE_KEY_PATH git@github.com

 If the response looks something like Hi username, the key has been properly configured.

 Now go to Credentials from the left pane inside the Jenkins console and click Global. Then select Add Credentials and create a credential of type SSH Username with Private Key. Give it a name and set the value of the SSH private key, as shown in figure 7.32. The Username should be the username for the GitHub account that hosts the project. In the Passphrase text box, write the passphrase given while generating the SSH RSA key. If not set, leave it blank.

 [image:]

 Figure 7.32 Configuring GitHub SSH credentials on Jenkins

 Head back to the Jenkins job, and under Branch Sources, choose Git from the drop-down list, set the repository SSH clone URL, and select the saved credentials title name; see figure 7.33.

 [image:]

 Figure 7.33 Configuring the Jenkins job to use SSH keys

 If you go to the build output, it should clearly list that the SSH key is being used for authentication. The following is sample output highlighting the same:

 [image:]

 Until now, the Checkout stage has been using the credentials and settings configured in the current Jenkins job. If you want to customize the settings and use specific credentials, you can replace it with the following listing.

 Listing 7.3 Customized git clone command

 stage('Checkout') {
 steps {
 git branch: 'develop',
 credentialsId: 'github-ssh',
 url: 'git@github.com:mlabouardy/movies-loader.git'
 }
}

 This example will clone the develop branch of the movies-loader GitHub repository, using the SSH credentials saved in the github-ssh Jenkins credentials.

 7.6 Triggering Jenkins builds with GitHub webhooks

 So far, we have always built the pipeline manually by clicking the Build Now button. It works but is not very convenient. All team members would have to remember that after committing to the repository, they need to open Jenkins and start the build.

 To trigger the jobs by push event, we will create a webhook on the GitHub repository of each service, as illustrated in figure 7.34. Remember, a Jenkinsfile should also be present on the respective branch to tell Jenkins what it needs to do when it finds a change in the repository.

 Note Webhooks are user-defined HTTP callbacks. They are triggered by an event in a web application and can facilitate integrating different applications or third-party APIs.

 [image:]

 Figure 7.34 Webhook explained

 Navigate to the GitHub repository that you want to connect to Jenkins and click the repository Settings option. In the menu on the left, click Webhooks, as shown in figure 7.35.

 GitHub webhooks allow you to notify external services when certain Git events happen (push, merge, commit, fork, and so forth) by sending a POST request to the configured service URL.

 [image:]

 Figure 7.35 GitHub Webhooks section

 Click the Add Webhook button to bring up the associated dialog, shown in figure 7.36. Fill in the form with the following values:

 	
 The payload URL should be in the following format: JENKINS_URL/github-webhook/ (make sure it includes the last forward slash).

 	
 The content type can be either application/json or application/x-www-form-urlencoded.

 	
 Select the push event as a trigger and leave the Secret field empty (unless a secret has been created and configured in the Jenkins Configure System > GitHub Plugin section).

 [image:]

 Figure 7.36 Jenkins webhook settings

 Leave the rest of the options at their default values and then click the Add Webhook button. A test payload should be sent to Jenkins to set up the hook. If the payload is successfully received by Jenkins, you should see the webhook with a green check mark, as shown in figure 7.37.

 [image:]

 Figure 7.37 Jenkins webhook settings

 With these GitHub updates done, if you push some changes to the Git repository, a new event should get kicked off automatically. In this scenario, we update the README.md file:

 [image:]

 Go back to your Jenkins project, and you’ll see that a new job was triggered automatically from the commit we made at the previous step. Click the little arrow next to the job and choose Console Output. Figure 7.38 shows the output.

 The update readme message confirms that the build was triggered automatically upon pushing the new README.md to the GitHub repository. Now, every time you publish your changes to your remote repository, GitHub will trigger your new Jenkins job. Create a similar webhook on the remaining GitHub repositories by following the same procedure.

 [image:]

 Figure 7.38 GitHub push event

 Note If you want SVN users to continuously trigger Jenkins jobs after every commit, you can either configure Jenkins to periodically poll the SVN server or set up a post-commit hook on the remote repository.

 In a different situation, the Jenkins dashboard might not be accessible from a public network. Instead of executing jobs manually, you can set up a public reverse proxy as middleware between the GitHub server and Jenkins, and configure the GitHub webhook to use the middleware URL. Figure 7.39 explains how to use AWS managed services to set up a webhook forwarder for a Jenkins instance within a VPC.

 [image:]

 Figure 7.39 GitHub webhook setup with API Gateway

 Note You can generalize this approach to other services too, such as Bitbucket or DockerHub—or anything, really, that emits webhooks.

 If you’re using AWS as a cloud provider, you can use a managed proxy called Amazon API Gateway to invoke a Lambda function when a POST request is invoked on a specific endpoint, as shown in figure 7.40.

 [image:]

 Figure 7.40 Triggering a Lambda function with API Gateway

 The Lambda function will receive the GitHub payload from API Gateway and relay it to the Jenkins server. The following listing is a function entry point written in JavaScript.

 Listing 7.4 Lambda function handler

 const Request = require('request');
exports.handler = (event, context, callback) => {
 Request.post({
 url: process.env.JENKINS_URL,
 method: "POST",
 headers: {
 "Content-Type": "application/json",
 "X-GitHub-Event": event.headers["X-GitHub-Event"]
 },
 json: JSON.parse(event.body)
 }, (error, response, body) => {
 callback(null, {
 "statusCode": 200,
 "headers": {
 "content-type": "application/json"
 },
 "body": "success",
 "isBase64Encoded": false
 })
 })
};

 To deploy the GitHub webhook and AWS resources, we will use Terraform. But first, we need to create a deployment package with the Lambda function index.js entry point. The deployment package is a zip file that can be generated with the following command:

 zip deployment.zip index.js

 Note This section assumes you’re familiar with the usual Terraform plan/apply workflow. If you’re new to Terraform, refer to chapter 5.

 Next, we define a lambda.tf file containing the Terraform resource definition for an AWS Lambda function. We set the runtime to be a Node.js runtime environment (the Lambda handler is written in JavaScript). We define an environment variable named JENKINS_URL with a value pointing to the Jenkins web dashboard URL, as shown in the next listing.

 Listing 7.5 Lambda function based on Node.js runtime

 resource "aws_lambda_function" "lambda" {
 filename = "../deployment.zip"
 function_name = "GitHubWebhookForwarder"
 role = aws_iam_role.role.arn
 handler = "index.handler"
 runtime = "nodejs14.x"
 timeout = 10
 environment {
 variables = {
 JENKINS_URL = var.jenkins_url
 }
 }
}

 Then, we define an API Gateway RESTful API to trigger the preceding Lambda function when a POST request occurs on the /webhook endpoint. Create a new file, apigateway.tf, in the same directory as our lambda.tf from the previous step and paste the following content.

 Listing 7.6 API Gateway RESTful API

 resource "aws_api_gateway_rest_api" "api" {
 name = "GitHubWebHookAPI"
 description = "GitHub Webhook forwarder"
}

resource "aws_api_gateway_resource" "path" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 parent_id = aws_api_gateway_rest_api.api.root_resource_id
 path_part = "webhook"
}

resource "aws_api_gateway_integration" "request_integration" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 resource_id = aws_api_gateway_method.request_method.resource_id
 http_method = aws_api_gateway_method.request_method.http_method
 type = "AWS_PROXY"
 uri = aws_lambda_function.lambda.invoke_arn
 integration_http_method = "POST"
}

 Finally, in the following listing, we create an API Gateway deployment to activate the configuration and expose the API at a URL that can be used for webhook configuration. We use a Terraform output variable to display the API deployment URL by referencing the API deployment stage.

 Listing 7.7 API new deployment stage

 resource "aws_api_gateway_deployment" "stage" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 stage_name = "v1"
}

output "webhook" {
 value = "${aws_api_gateway_deployment.stage.invoke_url}/webhook"
}

 Before issuing the terraform apply command, you need to define the variables used in the preceding resources. The variables.tf file will contain the list of variables, which are detailed in table 7.3.

 Table 7.3 GitHub webhook proxy’s Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 region

 	
 String

 	
 none

 	
 The AWS region in which to deploy AWS resources. It can also be sourced from the AWS_REGION environment variable.

 	
 shared_creden tials_file

 	
 String

 	
 none

 	
 The path to the shared credentials file. If this is not set and a profile specified, ~/.aws/credentials will be used.

 	
 aws_profile

 	
 String

 	
 profile

 	
 The AWS profile name as set in the shared credentials file.

 	
 jenkins_url

 	
 String

 	
 none

 	
 The Jenkins URL, which has the format http://IP:8080, or uses HTTPS if an SSL certificate is being used.

 When Terraform finishes deploying the AWS resources, a new Lambda function called GitHubWehookForwarder should be created with a trigger of type API Gateway, as shown in figure 7.41.

 [image:]

 Figure 7.41 GitHubWebhookForwarder Lambda function

 Furthermore, Terraform will display the RESTful API deployment URL, which you can use to create a webhook on the target GitHub repository, as shown in figure 7.42.

 [image:]

 Figure 7.42 GitHub webhook based on API Gateway URL

 Webhooks should be flowing now. You can make a change to your repository and check that a build starts soon after. You also can add an extra security layer, by requiring a request secret and validating the incoming request signature on the Lambda function side.

 If you’re running Jenkins locally, you can use a build trigger to poll SCM and schedule it to run periodically, as shown in figure 7.43. In such a case, Jenkins would regularly check the repository, and if anything changed, it would run the job.

 [image:]

 Figure 7.43 Under the job’s settings, you can define the interval of checks.

 After running the pipeline manually for the first time, the automatic trigger is set. Then it checks GitHub every minute, and for new commits, starts a build. To test that it works as expected, you can commit and push anything to the GitHub repository and see that the build starts.

 Note Polling SCM, even if it’s less intuitive, might be useful if Git commits are frequent and the build takes a long time, so executing a build upon a push event every time would cause an overload.

 So far, you have learned how to integrate Git repositories with Jenkins and define multibranch pipeline jobs. And we have ended up creating our first complete commit pipeline. However, with the current state, it doesn’t do much. In the following chapters, we will see what improvements can be made to make the commit pipeline even better, and we will start by running automated tests within the Jenkins pipelines.

 Summary

 	
 A webhook is a mechanism to automatically trigger the build of a Jenkins project upon a commit pushed in a remote Git repository.

 	
 The development workflow should be carefully chosen inside the team or organization because it affects the CI process and defines the way the code is developed.

 	
 Using multi-repo or mono-repo strategies to organize the codebase will define the complexity of a CI/CD pipeline as the number of applications evolves within an organization.

 	
 A pipeline can go through the standard code development process (code review, pull requests, automated testing, and so forth) when a Jenkinsfile and application source code live together on the same Git repository.

 	
 Jenkins stores configuration files for the jobs it runs in an XML file. Editing these XML configuration files has the same effect as editing Jenkins jobs through the web dashboard.

 	
 A reverse proxy can be useful to let Git webhooks reach a running Jenkins server behind a firewall.

 8 Running automated tests with Jenkins

 This chapter covers

 	Implementing CI pipelines for Python, Go, Node.js, and Angular-based services

 	Running pre-integration tests and automated UI testing with Headless Chrome

 	Executing SonarQube static code analysis within Jenkins pipelines

 	Running unit tests inside a Docker container and publishing code coverage reports

 	Integrating dependency checks in a Jenkins pipeline and injecting security in DevOps

 In the previous chapter, you learned how to set up multibranch pipeline jobs for containerized microservices and for continuously triggering Jenkins upon push events with webhooks. In this chapter, we will run automated tests within the CI pipeline. Figure 8.1 summarizes the current CI workflow stages.

 [image:]

 Figure 8.1 The test stages covered in this chapter

 Test automation is widely considered a cornerstone of Agile development. If you want to release fast—even daily—with reasonable quality, you have to move to automated testing. On the other hand, giving less importance to testing can result in customer dissatisfaction and a delayed product. However, automating the testing process is a bit more difficult than automating the build, release, and deployment processes. Automating nearly all the test cases used in an application usually takes a lot of effort. It is an activity that matures over time. It is not always possible to automate all the testing. But the idea is to automate whatever testing is possible.

 By the end of this chapter, we will implement the test stage in the target CI pipeline shown in figure 8.2.

 [image:]

 Figure 8.2 Target CI pipeline

 Before resuming the CI pipeline implementation, a quick reminder regarding the web distributed application we’re integrating with Jenkins: it’s based on a microservices architecture and split into components/services written in different programming languages and frameworks. Figure 8.3 illustrates this architecture.

 [image:]

 Figure 8.3 Watchlist microservices architecture

 In the following sections, you will learn how to integrate various types of tests in our CI workflow. We will start with unit testing.

 8.1 Running unit tests inside Docker containers

 Unit testing is the frontline effort to identify issues as early as possible. The test needs to be small and quick to execute to be efficient.

 The movies-loader service is written in Python. To define unit tests, we’re going to use the unittest framework (it comes bundled with the installation of Python). To use it, we import the unittest module, which offers a rich set of methods to construct and run tests. The following listing, test_main.py, demonstrates a short unit test to test the JSON loading and parsing mechanism.

 Listing 8.1 Unit testing in Python

 import unittest
import json

class TestJSONLoaderMethods(unittest.TestCase):
 movies = []

 @classmethod
 def setUpClass(cls):
 with open('movies.json') as json_file:
 cls.movies = json.load(json_file)

 def test_rank(self):
 self.assertEqual(self.movies[0]['rank'], '1')

 def test_title(self):
 self.assertEqual(self.movies[0]['title'], 'The Shawshank Redemption')

 def test_id(self):
 self.assertEqual(self.movies[0]['id'], 'tt0111161')

if __name__ == '__main__':
 unittest.main()

 The setUpClass() method allows us to load the movies.json file before the execution of each test method. The three individual tests are defined with methods whose names start with the prefix test. This naming convention informs the test runner about which methods represent tests. The crux of each test is a call to assertEqual() to check for an expected result. For instance, we check whether the first movie’s title attribute parsed from the JSON file is The Shawshank Redemption.

 To run the test, we can execute the python test_main.py command on Jenkins. However, it requires Python 3 to be installed. To avoid installing the runtime environment for each service we are building, we will run the tests inside a Docker container. That way, we will be using Docker as an execution environment across all Jenkins workers.

 On the movies-loader repository, create a Dockerfile.test file by using your favorite text editor or IDE with the following content.

 Listing 8.2 Movie loader’s Dockerfile.test

 FROM python:3.7.3
WORKDIR /ap.
COPY test_main.py .
COPY movies.json .

 The Dockerfile is built from a Python 3.7.3 official image. It sets a working directory called app, and copies the test files to the working directory.

 Note The name convention Dockerfile.test is used to avoid name conflict with Dockerfile, which is used to build the main application’s Docker image.

 Now, update the Jenkinsfile given in listing 7.1 and add a new Unit Test stage, as shown in the following listing. The stage will create a Docker image based on Dockerfile .test and then spin up a Docker container from the created image to run the python test_main.py command to launch unit tests. The Unit Test stage uses a DSL-like syntax to define the shell instructions.

 Listing 8.3 Movie loader’s Jenkinsfile

 def imageName = 'mlabouardy/movies-loader'

node('workers'){
 stage('Checkout'){
 checkout scm
 }

 stage('Unit Tests'){
 sh "docker build -t ${imageName}-test -f Dockerfile.test ."
 sh "docker run --rm ${imageName}-test"
 }
}

 The docker build and docker run commands are used to create an image and build a container from the image, respectively.

 Note The --rm flag in the docker run command is used to automatically clean up the container and remove the filesystem when the container exits.

 You can use the powershell step in your pipeline on a Windows worker. This step has the same options as the sh instruction.

 Commit the changes to the develop branch with the following commands:

 git add Dockerfile.test Jenkinsfile
git commit -m "unit tests execution"
git push origin develop

 In a few seconds, a new build should be triggered on the movies-loader job for the develop branch. From the movies-loader Multibranch Pipeline job, click the respective develop branch. On the resultant page, you will see the Stage view for the develop branch pipeline, as shown in figure 8.4.

 [image:]

 Figure 8.4 Unit test stage execution

 Click the Console Output option to view the test results. All three test cases ran, and the status shows as SUCCESS in the logs, as you can see in figure 8.5.

 [image:]

 Figure 8.5 Unit test successful execution logs

 The shell commands can be replaced with Docker DSL instructions. I advise using them where appropriate instead of running Docker commands via the shell, because they provide high-level encapsulation and ease of use:

 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
 "-f Dockerfile.test .")
 imageTest.inside{
 sh 'python test_main.py'
 }
}

 The docker.build() method is similar to running the docker build command. The returned value of the method can be used for a subsequent call to create a Docker container and run the unit tests. Figure 8.6 shows a successful run of the pipeline.

 [image:]

 Figure 8.6 Using the Docker DSL to run tests

 To show results in a graphical, visual way, we can use the JUnit report integration plugin on Jenkins to consume an XML file generated by Python unit tests.

 Note The JUnit report integration plugin (https://plugins.jenkins.io/junit/) is installed by default in the baked Jenkins master machine image.

 Update the test_main.py file to use the xmlrunner library, and pass it to the unittest .main method:

 import xmlrunner
...
if __name__ == '__main__':
 runner = xmlrunner.XMLTestRunner(output='reports')
 unittest.main(testRunner=runner)

 This will generate test reports in the reports directory. However, we need to address a problem: the test container will store the result of the tests that it executes within itself. We can resolve this by mapping a volume to the reports directory. Update the Jenkinsfile to tell Jenkins where to find the JUnit test report:

 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test",
 "-f Dockerfile.test .")
 sh "docker run --rm -v $PWD/reports:/app/reports ${imageName}-test"
 junit "$PWD/reports/*.xml"
}

 Note You can also get the report results by using the docker cp command to copy the report files into the current workspace. Then, set the workspace as an argument for the JUnit command.

 Let’s go ahead and execute this. This will add a chart to the project page in Jenkins after the changes are pushed to the develop branch and CI execution is completed; see figure 8.7.

 [image:]

 Figure 8.7 JUnit test chart analyzer

 The historic graph shows several metrics (including failure, total, and duration) related to the test execution over a period of time. You can also click the chart to get more details about individual tests.

 8.2 Automating code linter integration with Jenkins

 Another example of tests to implement within CI pipelines is code linting. Linters can be used to check the source code and find typos, syntax errors, undeclared variables, and calls to undefined or deprecated functions. They can help you write better code and anticipate potential bugs. Let’s see how to integrate code linters with Jenkins.

 The movies-parser service is written in Go, so we can use a Go linter to make sure that the code respects the code style. A linter may sound like an optional tool, but for larger projects, it helps to keep a consistent style over your project.

 Dockerfile.test uses golang:1.13.4 as a base image, and installs the golint tool and service dependencies, as shown in the following listing.

 Listing 8.4 Movie parser’s Dockerfile.test

 FROM golang:1.13.4
WORKDIR /go/src/github.com/mlabouardy/movies-loader
ENV GOCACHE /tmp
WORKDIR /go/src/github/mlabouardy/movies-parser
RUN go get -u golang.org/x/lint/golint
COPY . .
RUN go get -v

 Add the Quality Tests stage to the Jenkinsfile to build a Docker image based on Dockerfile.test with the docker.build() command, and then use the inside() instruction on the built image to start a Docker container in daemonized mode to execute the golint command:

 def imageName = 'mlabouardy/movies-parser'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 stage('Quality Tests'){
 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 imageTest.inside{
 sh 'golint'
 }
 }
}

 Note If an ENTRYPOINT instruction is defined in Dockerfile.test, the inside() instruction will pass the commands defined in its scope as an argument to the ENTRYPOINT instruction.

 The golint execution will result in the logs shown in figure 8.8.

 [image:]

 Figure 8.8 The golint command output identifies the missing comment.

 By default, golint prints only the style issues, and returns (with a 0 exit code), so the CI never considers that something went wrong. If you specify -set_exit_status, the pipeline will fail if an issue is reported by golint.

 We can also implement a unit test for the movies-parser service. Go has a built-in testing command called go test and the package testing, which combine to give a minimal but complete unit-testing experience.

 Similarly to the movies-loader service, we will write a Dockerfile.test file to execute the go test command that will execute tests written in the main_test.go file. The code in the following listing has been cropped for brevity and to highlight the main parts. You can browse the full code in chapter7/microservices/movies-parser/main_test.go.

 Listing 8.5 Movie parser’s unit test

 package main

import (
 "testing"
)
const HTML = `
<div class="plot_summary ">
 <div class="summary_text">
 An ex-hit-man comes out of retirement to track down the gangster.
that killed his dog and took everything from him.
 </div>
 ...
</div>
`
func TestParseMovie(t *testing.T) {
 expectedMovie := Movie{
 Title: "John Wick (2014)",
 ReleaseDate: "24 October 2014 (USA)",
 Description: "An ex-hit-man comes ...",
 }

 currentMovie, err := ParseMovie(HTML)
 if expectedMovie.Title != currentMovie.Title {
 t.Errorf("returned wrong title: got %v want %v"
, currentMovie.Title, expectedMovie.Title)
 }
}

 This code shows the basic structure of a unit test in Go. The built-in testing package is provided by Go’s standard library. A unit test is a function that accepts the argument of type *testing.T and calls the t.Error() method to indicate a failure. This function must start with a Test keyword, and the latter name should start with an uppercase letter. In our use case, the function tests the ParseMovie() method, which takes as a parameter HTML and returns a Movie’s structure.

 8.3 Generating code coverage reports

 The Unit Tests stage is straightforward: it will execute go test inside the Docker container created from the Docker test image. Instead of building the test image on each stage, we move the docker.build() instruction outside the stage to speed up the pipeline execution time, as you can see in the following listing.

 Listing 8.6 Movie parser’s Jenkinsfile

 def imageName = 'mlabouardy/movies-parser'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Quality Tests'){
 imageTest.inside{
 sh 'golint'
 }
 }
 stage('Unit Tests'){
 imageTest.inside{
 sh 'go test'
 }
 }
}

 Push the changes to the develop branch, and the pipeline should be triggered to execute the three stages defined on the Jenkinsfile, as shown in figure 8.9.

 [image:]

 Figure 8.9 Go CI pipeline

 The go test command output is shown in figure 8.10.

 [image:]

 Figure 8.10 go test command output

 Note Go provides the -cover flag to the go test command as a built-in functionality to check your code coverage.

 If we want to get the coverage report in HTML format, you need to add the following command:

 go test -coverprofile=cover/cover.cov
go tool cover -html=cover/coverage.cov -o coverage.html

 [image:]

 Figure 8.11 The coverage.html content can be served from the Jenkins dashboard at the end of the test stage.

 The commands render an HTML page, shown in figure 8.11, that visualizes line-by-line coverage of each affected line in the main.go file.

 You can include the previous command in the CI workflow to generate coverage reports in HTML format.

 8.4 Injecting security in the CI pipeline

 It’s important to make sure that no vulnerabilities are published to production—at least no critical or major ones. Scanning project dependencies within a CI pipeline can ensure this additional level of security. Several dependency scanning solutions exist, commercial and open source. In this part, we’ll go with Nancy.

 Nancy (https://github.com/sonatype-nexus-community/nancy) is an open source tool that checks for vulnerabilities in your Go dependencies. It uses Sonatype’s OSS Index (https://ossindex.sonatype.org/), a mirror of the Common Vulnerabilities and Exposures (CVE) database, to check your dependencies for publicly filed vulnerabilities.

 Note Chapter 9 covers how to use the OWASP Dependency-Check plugin on Jenkins to detect references to dependencies that have been assigned CVE entries.

 Step one in the process is to install a Nancy binary from the official release page. Update Dockerfile.test for the movies-parser project to install Nancy version 1.0.22 (at the time of writing this book) and configure the executable on the PATH variable, as shown in the following listing.

 Listing 8.7 Movie parser’s Dockerfile.test

 FROM golang:1.13.4
ENV VERSION 1.0.22
ENV GOCACHE /tmp
WORKDIR /go/src/github/mlabouardy/movies-parser
RUN wget https://github.com/sonatype-nexus-community/nancy/releases/download/$VERSION/nancy

linux.amd64-$VERSION -O nancy && \
 chmod +x nancy && mv nancy /usr/local/bin/nancy
RUN go get -u golang.org/x/lint/golint
COPY . .
RUN go get -v

 To start using the tool, add a Security Tests stage on the Jenkinsfile to run Nancy with the Gopkg.lock file as parameter, which contains a list of used Go dependencies in the movies-parser service:

 stage('Security Tests'){
 imageTest.inside(‘-u root:root’){
 sh 'nancy /go/src/github/mlabouardy/movies-parser/Gopkg.lock'
 }
}

 Push the changes to the remote repository. A new pipeline will be started. At the Security Tests stage, Nancy will be executed, and no dependency security vulnerability will be reported, as shown in figure 8.12.

 [image:]

 Figure 8.12 Dependencies scanning for known vulnerabilities

 If Nancy finds a vulnerability in one of your dependencies, it will exit with a nonzero code, allowing you to use Nancy as a tool in your CI/CD process, and fail builds.

 While you should aim to resolve all security vulnerabilities, some security scan results may contain false positives. For example, if you see a theoretical denial-of-service attack under obscure conditions that don’t apply to your project, it may be safe to schedule a fix a week or two into the future. On the other hand, a more serious vulnerability that may grant unauthorized access to customer credit card data should be fixed immediately. Whatever the case, arm yourself with knowledge of the vulnerability so you and your team can determine the proper course of action to mitigate the security threat.

 Adding the dependency scanning to your pipeline (figure 8.13) is a simple first step to reduce your attack surface. This is easy to implement, as it requires no server reconfigurations or additional servers to work. In its most basic form, simply install the Nancy binary and roll it out.

 [image:]

 Figure 8.13 Security injection in CI pipeline

 8.5 Running parallel tests with Jenkins

 So far, pre-integration tests are running sequentially. One problem we always encounter is how to run all the tests needed to ensure high-quality changes while still keeping pipeline times reasonable and changes flowing smoothly. More tests mean greater confidence, but also longer wait times.

 Note In chapter 9, we will cover how to use the Parallel Test Execution plugin to run tests in parallel across multiple Jenkins workers.

 One of the features of Jenkins pipelines that you see advertised quite frequently is its ability to run parts of your build in parallel by using the parallel DSL step.

 Update the Jenkinsfile to use the parallel keyword, as shown in the following listing. The parallel section contains a list of nested test stages to be run in parallel. Also, you can force your parallel stages to all be aborted when any one of them fails, by adding a failFast true instruction.

 Listing 8.8 Running tests in parallel

 node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 imageTest.inside{
 sh 'golint'
 }
 },
 'Unit Tests': {
 imageTest.inside{
 sh 'go test'
 }
 },
 'Security Tests': {
 imageTest.inside('-u root:root'){
 sh 'nancy Gopkg.lock'
 }
 }
)
 }
}

 If you push those changes to the remote repository, a new build will be invoked (figure 8.14). However, one disadvantage of the standard pipeline view is that you can’t easily see how the parallel steps progress, because the pipeline is linear, like a pipeline. This issue has been addressed by Jenkins by providing an alternate view: Blue Ocean.

 [image:]

 Figure 8.14 Pre-integration tests’ parallel execution

 Figure 8.15 shows the results for the same pipeline, with parallel test execution in Blue Ocean mode.

 [image:]

 Figure 8.15 Parallel stages in Blue Ocean

 This looks nice and provides great visualization for parallel pipeline stages.

 8.6 Improving quality with code analysis

 Apart from continuously integrating code, CI pipelines nowadays also include tasks that perform continuous inspection—inspecting code for its quality in a continuous approach.

 The movies-store application is written with TypeScript. We will use Dockerfile.test to build the Docker image to run automated tests, as shown in the following listing.

 Listing 8.9 Movie store’s Dockerfile.test

 FROM node:14.0.0
WORKDIR /app
COPY package-lock.json .
COPY package.json .
RUN npm i
COPY . .

 The first category of tests will be linting the source code. As you saw earlier in this chapter, linting is the process of checking the source code for programmatic, syntactic, stylistic errors. Linting puts the whole service in a uniform format. The code linting can be achieved by writing some rules. Many linters are available, including JSLint, JSHint, and ESLint.

 When it comes to linting TypeScript code, ESLint (https://eslint.org/) has a higher-performing architecture than others. For that reason, I’m using ESLint for linting the Node.js project, as shown in the following listing.

 Listing 8.10 Movie store’s Jenkinsfile

 def imageName = 'mlabouardy/movies-store'

node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")

 stage('Quality Tests'){
 imageTest.inside{
 sh ‘npm run lint'
 }
 }
}

 Copy this content to the movies-store Jenkinsfile and push the changes to the develop branch. A new build should be triggered. At the Quality Tests stage, we’ll see the errors regarding undefined keywords (figure 8.16) such as describe and before, which are part of the Mocha (https://mochajs.org/) and Chai (www.chaijs.com) JavaScript frameworks. These frameworks are used to describe unit tests (located under the test folder) efficiently and handily.

 [image:]

 Figure 8.16 ESLint problem detection

 ESLint will return an exit 1 code error, which will break the pipeline. To fix the spotted errors, extend ESLint rules by enabling the Mocha environment for ESLint. We use the key attribute in eslintrc.json to specify the environments we want to enable by setting mocha to true:

 {
 "env": {
 "node": true,
 "commonjs": true,
 "es6": true,
 "mocha": true
 },

}

 If you push the changes, this time the static code analysis results will be successful, as you can see in figure 8.17.

 [image:]

 Figure 8.17 CI pipeline execution after fixing ESLint errors

 8.7 Running mocked database tests

 While many developers focus on 100% coverage with unit tests, the code you write must not be tested just in isolation. Integration and end-to-end tests give you that extra confidence by testing parts of your application together. These parts may be working just fine on their own, but in a large system, units of code rarely work separately.

 Typically, for integration or end-to-end tests, your scripts will need to connect to a real, dedicated database for testing purposes. This involves writing code that runs at the beginning and end of every test case/suite to ensure that the database is in a clean, predictable state.

 Using a real database for testing does have some challenges: database operations can be relatively slow, the testing environment can be complex, and operational overhead may increase. Java projects widely use DbUnit with an in-memory database for this purpose (for example, H2, www.h2database.com/html/main.html). Reusing a good solution from another platform and applying it to the Node.js world can be the way to go here.

 Mongo-unit (www.npmjs.com/package/mongo-unit) is a Node.js package that can be installed by using Node Package Manager (npm) or Yarn. It runs MongoDB in memory. It makes integration tests easy by integrating well with the Mocha framework and providing a simple API to manage the database state.

 Note In chapter 9 and 10, we will run sidecar containers in Jenkins pipelines, such as a MongoDB database, to run end-to-end tests.

 The following listing is a simple test (/chapter7/microservices/movies-store/test/dao.spec.js), written with Mocha and Chai, that uses the mongo-unit package to simulate MongoDB by running an in-memory database.

 Listing 8.11 Mocha and Chai unit tests

 const Expect = require('chai').expect
const MongoUnit = require('mongo-unit')
const DAO = require('../dao')
const TestData = require('./movies.json')

describe('StoreDAO', () => {
 before(() => MongoUnit.start().then(() => {
 process.env.MONGO_URI = MongoUnit.getUrl()
 DAO.init(.
 }))
 beforeEach(() => MongoUnit.load(TestData))
 afterEach(() => MongoUnit.drop())
 after(() => {
 DAO.close()
 return MongoUnit.stop()
 })
 it('should find all movies', () => {
 return DAO.Movie.find()
 .then(movies => {
 Expect(movies.length).to.equal(8)
 Expect(movies[0].title).to.equal('Pulp Fiction (1994)')
 })
 })
})

 Next, we update the Jenkinsfile to add a new stage that executes the npm run test command:

 stage('Integration Tests'){
 sh "docker run --rm ${imageName}-test npm run test"
}

 The npm run test command is an alias; it runs the Mocha command line against test cases in the test folder (figure 8.18). The command is defined in package.json, provided in the following listing.

 Listing 8.12 Movie store’s package.json

 "scripts": {
 "start": "node index.js",
 "test": "mocha ./test/*.spec.js",
 "lint": "eslint .",
 "coverage-text": "nyc --reporter=text mocha",
 "coverage-html": "nyc --reporter=html mocha"
}

 [image:]

 Figure 8.18 Unit testing using the Mocha framework

 Note If your tests depend on other services, Docker Compose can be used to simplify the startup and connection of all the services that the application depends on.

 8.8 Generating HTML coverage reports

 We create a new stage to run the coverage tool with a text output format:

 stage('Coverage Reports'){
 sh "docker run --rm ${imageName}-test npm run coverage-text"
}

 This will output the text report to the console output, as shown in figure 8.19.

 Note Istanbul is a JavaScript code coverage tool. For more information, refer to the official guide at https://istanbul.js.org.

 [image:]

 Figure 8.19 Istanbul coverage reports in text format

 The metrics that you might see in your coverage reports could be defined as in table 8.1.

 Table 8.1 Coverage report metrics

 	
 Metric

 	
 Description

 	
 Statements

 	
 The number of statements in the program that are truly called, out of the total number

 	
 Branches

 	
 The number of branches of the control structures executed

 	
 Functions

 	
 The number of functions called, out of the total number of functions defined

 	
 Lines

 	
 The number of lines of source code that are being tested, out of the total number of lines present inside the code

 By default, Istanbul uses a text reporter, but various other reporters are available. You can view the full list at http://mng.bz/DKoE.

 To generate the HTML format, we will map a volume to /app/coverage, which is the folder in which Istanbul will generate the reports. Then, we’ll use the Jenkins HTML Publisher plugin to display the generated code coverage reports, as shown in the following listing.

 Listing 8.13 Publishing code coverage HTML reports

 stage('Coverage Reports'){
 sh "docker run --r.
-v $PWD/coverage:/app/coverage ${imageName}-tes.
npm run coverage-html"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
}

 The publishHTML command takes the target block as the main parameter. Within that, we have several subparameters. The allowMissing parameter is set to false, so if something goes wrong while generating the coverage report and the report is missing, the publishHTML instruction will throw an error.

 At the end of the CI pipeline, an HTML file will be generated and consumed by the HTML Publisher plugin, as shown in figure 8.20.

 [image:]

 Figure 8.20 HTML report generation with Istanbul

 The HTML report will then be accessible from Jenkins, by clicking the Coverage Report item from the left panel; see figure 8.21.

 [image:]

 Figure 8.21 The coverage report can be accessible from the Jenkins panel.

 Note The Cobertura plugin (https://plugins.jenkins.io/cobertura/) can also be used to publish HTML reports. Both plugins show the same results.

 We can drill down to identify the uncovered lines and functions, as shown in figure 8.22.

 [image:]

 Figure 8.22 Deep dive inside the coverage report

 Note Several tools exist to create coverage reports, depending on the language you use (for example, SimpleCov for Ruby, Coverage.py for Python, and JaCoCo for Java).

 You can take this further and run stages in parallel to reduce the waiting time of running tests, as shown in the following listing.

 Listing 8.14 Running pre-integration tests in parallel

 stage('Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Integration Tests': {
 sh "docker run --rm ${imageName}-test npm run test"
 },
 'Coverage Reports': {
 sh "docker run --r.
-v $PWD/coverage:/app/coverage ${imageName}-tes.
npm run coverage-html"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
 }
)
}

 Figure 8.23 shows the end result of running this job in the Blue Ocean view.

 [image:]

 Figure 8.23 Running tests in parallel

 8.9 Automating UI testing with Headless Chrome

 For the Angular application, we will create a Dockerfile.test file that installs the Angular CLI (https://angular.io/cli) and the needed dependencies to run automated tests; see the following listing.

 Listing 8.15 Movie marketplace’s Dockerfile.test

 FROM node:14.0.0
ENV CHROME_BIN=chromium
WORKDIR /app
COPY package-lock.json .
COPY package.json .
RUN npm i && npm i -g @angular/cli
COPY . .

 The linting state is similar to the previous part; we will use the TSLint linter, which comes installed by default for Angular projects. Hence, we will run the npm run lint alias command defined in package.json, as shown in the following listing.

 Listing 8.16 Movie marketplace’s package.json

 "scripts": {
 "start": "ng serve",
 "build": "ng build",
 "test": "ng test --browsers=ChromeHeadlessCI --code-coverage=true",
 "lint": "ng lint",
 "e2e": "ng e2e"
 }

 We update the Jenkinsfile with the following content.

 Listing 8.17 Movie marketplace’s Jenkinsfile

 def imageName = 'mlabouardy/movies-marketplace'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 }
)
 }
}

 Let’s save this config and run a build. The pipeline should fail and turn red because of the forced rules on TSLint, as shown in figure 8.24.

 [image:]

 Figure 8.24 CI pipeline failur.

 If you click the Quality Tests stage logs, the logs should display errors regarding missing semicolons and trailing whitespace, as shown in figure 8.25.

 [image:]

 Figure 8.25 Angular linting output log.

 If you wish to let TSLint pass within your code (figure 8.26), you need to update tslint.json to disable forced rules or add the /* tslint:disable */ instruction at the beginning of each file for TSLint to skip the linting process on those files.

 [image:]

 Figure 8.26 Angular linting output log.

 For Angular unit testing, we will use the Jasmine (https://jasmine.github.io/) and Karma (https://karma-runner.github.io/latest/index.html) frameworks. Both testing frameworks support the BDD practice, which describes tests in a human-readable format for nontechnical people. The sample unit test (chapter7/microservices/ movies-marketplace/src/app/app.component.spec.ts) in the following listing is self-explanatory. It tests whether the app component has a property text with the value Watchlist that is rendered in the HTML inside a span element tag.

 Listing 8.18 Movie marketplace’s Karma tests

 import { TestBed, async } from '@angular/core/testing';
import { RouterTestingModule } from '@angular/router/testing';
import { AppComponent } from './app.component';

describe('AppComponent', () => {
 beforeEach(async(() => {
 TestBed.configureTestingModule({
 imports: [
 RouterTestingModule
],
 declarations: [
 AppComponent
],
 }).compileComponents();
 }));
 it('should create the app', () => {
 const fixture = TestBed.createComponent(AppComponent);
 const app = fixture.debugElement.componentInstance;
 expect(app).toBeTruthy();
 });
 it('should render title', () => {
 const fixture = TestBed.createComponent(AppComponent);
 fixture.detectChanges();
 const compiled = fixture.debugElement.nativeElement;
 expect(compiled.querySelector('.toolbar span').textContent).toContain('Watchlist');
 });
});

 Note When creating Angular projects with the Angular CLI, it defaults to creating and running unit tests by using Jasmine and Karma.

 Running unit tests for frontend web applications requires them to be tested in a web browser. While it’s not an issue on a workstation or host machine, it can become tedious when running in a restricted environment such as a Docker container. In fact, these execution environments are generally lightweight and do not contain any graphical environment.

 Fortunately, Karma tests can be run with a UI-less browser, and two main options can be used: Chrome Headless or PhantomJS. The example in the following listing uses Chrome Headless with Puppeteer, which can be configured on a simple flag in the Karma config (chapter7/microservices/movies-marketplace/karma.conf.js).

 Listing 8.19 Karma runner configuration

 module.exports = function (config) {
 config.set({
 basePath: '',
 frameworks: ['jasmine', '@angular-devkit/build-angular'],
 customLaunchers: {
 ChromeHeadlessCI: {
 base: 'Chrome',
 flags: [
 '--headless',
 '--disable-gpu',
 '--no-sandbox',
 '--remote-debugging-port=9222'
]
 }
 },
 browsers: ['ChromeHeadless', 'Chrome'],
 singleRun: true, });
};

 Headless Chrome needs sudo privileges to be run unless the --no-sandbox flag is used. Next, we need to update Dockerfile.test to install Chromium:

 RUN apt-get update && apt-get install -y chromium

 Note Chromium/Google Chrome has shipped with the headless mode since version 59.

 Then, we update the Jenkinsfile to run unit tests with the npm run test command. The command will fire up Headless Chrome and execute Karma.js tests. Next, we generate a coverage report in HTML format that will be consumed by the HTML Publisher plugin, as shown in the following listing.

 Listing 8.20 Mapping the workspace folder with the Docker container volum.

 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Unit Tests': {
 sh "docker run --r.
-v $PWD/coverage:/app/coverage ${imageName}-tes.
npm run test"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])}
)
}

 Once changes are pushed to the GitHub repository, a new build will be triggered and unit tests will be executed, as shown in figure 8.27.

 [image:]

 Figure 8.27 Running headless Chrome inside a Docker container

 The Karma launcher will run the tests on the Headless Chrome browser and display the code coverage statistics, as shown in figure 8.28.

 [image:]

 Figure 8.28 Successful execution of the Karma unit tests

 Also, a generated HTML report will be available in the Artifacts section in the Blue Ocean view, shown in figure 8.29.

 [image:]

 Figure 8.29 Coverage report alongside other artifacts

 If you click the coverage report link, it should display the statements and functions coverage by Angular components and services, as shown in figure 8.30.

 [image:]

 Figure 8.30 Coverage statistics by filename

 With this done, it is now possible to run the unit tests with Chromium inside a Docker container.

 8.10 Integrating SonarQube Scanner with Jenkins

 While code linters can give you a high-level overview of the quality of your code, they’re still limited if you want to perform deep static code analysis and inspection to detect potential bugs and vulnerabilities. That’s where SonarQube comes into play. it will give you a 360-degree vision of the quality of the codebase by integrating external libraries like PMD, Checkstyle, and FindBugs. Every time code gets committed, code analysis is performed.

 Note SonarQube can be used to inspect code in more than 20 programming languages, including Java, PHP, Go, and Python.

 To deploy SonarQube, we will bake a new AMI with Packer. Similarly to previous chapters, we create a template.json file with the content in the following listing (chapter8/sonarqube/packer/template.json).

 Listing 8.21 Jenkins worker’s Packer templat.

 {
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ubuntu",
 "ami_name" : "sonarqube-8.2.0.32929",
 "ami_description" : "SonarQube community edition"
 }
],
 "provisioners" : [
 {
 "type" : "file",
 "source" : "sonar.init.d",
 "destination" : "/tmp/"
 },
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 The temporary EC2 instance will be based on Amazon Linux AMI and uses a shell script to provision the instance to install SonarQube and configure the needed dependencies.

 The setup.sh script will install SonarQube from the official release page. For this example, SonarQube 8.2.0 will be installed. SonarQube supports PostgreSQL, MySQL, Microsoft SQL Server (MSSQL), and Oracle as a backend. I opted to go with PostgreSQL to store configurations and report results. Then, the script creates a directory named sonar, sets permissions, and configures SonarQube to start automatically; see the following listing.

 Listing 8.22 Installing SonarQube LT.

 wget https://binaries.sonarsource.com/
Distribution/sonarqube/$SONAR_VERSION.zip -P /tmp
unzip /tmp/$SONAR_VERSION.zip
mv $SONAR_VERSION sonarqube
mv sonarqube /opt/

apt-get install -y unzip curl
sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/
 `lsb_release -cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'
wget -q https://www.postgresql.org/media/keys/ACCC4CF8.as.
-O - | sudo apt-key add -
apt-get install -y postgresql postgresql-contrib
systemctl start postgresql
systemctl enable postgresql
cat > /tmp/db.sql <<EOF
CREATE USER $SONAR_DB_USER WITH ENCRYPTED PASSWORD '$SONAR_DB_PASS';
CREATE DATABASE $SONAR_DB_NAME OWNER $SONAR_DB_USER;
EOF
sudo -u postgres psql postgres < /tmp/db.sql

mv /tmp/sonar.properties /opt/sonarqube/conf/sonar.properties
sed -i 's/#RUN_AS_USER=/RUN_AS_USER=sonar/' sonar.sh
sysctl -w vm.max_map_count=262144
groupadd sonar
useradd -c "Sonar System User" -d /opt/sonarqube -g sonar -s /bin/bash sonar
chown -R sonar:sonar /opt/sonarqube
ln -sf /opt/sonarqube/bin/linux-x86-64/sonar.sh /usr/bin/sonar
cp /tmp/sonar.init.d /etc/init.d/sonar
chmod 755 /etc/init.d/sonar
update-rc.d sonar defaults
service sonar start

 Note The full shell script is available on the GitHub repository along with a step-by-step guide. Also, make sure you have at least 4 GB of memory to run the 64-bit version of SonarQube.

 Once you define the needed Packer variables, issue a packer build command to start the provisioning process. Once the AMI is baked, it should be available on the EC2 dashboard in the Images section, as shown in figure 8.31.

 [image:]

 Figure 8.31 SonarQube machine image

 From there, use Terraform to deploy a private EC2 instance based on the SonarQube AMI, as shown in the following listing.

 Listing 8.23 SonarQube EC2 instance resource with Terraform

 resource "aws_instance" "sonarqube" {
 ami = data.aws_ami.sonarqube.id
 instance_type = var.sonarqube_instance_type
 key_name = var.key_name
 vpc_security_group_ids = [aws_security_group.sonarqube_sg.id]
 subnet_id = element(var.private_subnets, 0)

 root_block_device {
 volume_type = "gp2"
 volume_size = 30
 delete_on_termination = false
 }

 tags = {
 Name = "sonarqube"
 Author = var.author
 }
}

 Then, define a public load balancer to forward incoming HTTP and HTTPS (optional) traffic to the instance on port 9000 (the port to which the SonarQube dashboard is exposed). Also, create an A record in Route 53 pointing to the load balancer FQDN.

 Issue the terraform apply command to provision the instance and other resources. The instance should be deployed in a few seconds, as shown in figure 8.32.

 [image:]

 Figure 8.32 SonarQube private EC2 instance

 On the terminal, you should have the URL of the public load balancer in the Outputs section, as shown in figure 8.33.

 [image:]

 Figure 8.33 SonarQube DNS URL

 Head over to the URL and log in with the default credentials (figure 8.34). Right now, no user accounts are configured in SonarQube. However, by default, an admin account exists with the username admin and the password admin.

 [image:]

 Figure 8.34 SonarQube web dashboard

 Next, make sure the TypeScript analyzer is enabled from the SonarQube Plugins section, as shown in figure 8.35.

 [image:]

 Figure 8.35 SonarQube TypeScript analyzer plugin

 Then, generate a new token for Jenkins to avoid using SonarQube admin credentials for security purposes. Go to Administration and navigate to Security. On the same page under the Tokens section is an option to generate a token; click the Generate button, shown in figure 8.36.

 [image:]

 Figure 8.36 SonarQube Jenkins dedicated token

 The server authentication token should be created as a Secret text credential from Jenkins, as shown in figure 8.37.

 [image:]

 Figure 8.37 SonarQube secret text credentials

 To trigger the scanning from the CI pipeline, we need to install SonarQube Scanner. You can choose to either install it automatically or provide the installation path for this tool on Jenkins workers. It can be installed by choosing Manage Jenkins > Global Tool Configuration. Or you can bake a new Jenkins worker image with SonarQube Scanner with the commands shown in the following listing.

 Listing 8.24 SonarQube Scanner installation

 wget https://binaries.sonarsource.com/
Distribution/sonar-scanner-cli/sonar-scanner-cli-2.0.1873-linux.zip -P /tmp
unzip /tmp/sonar-scanner-cli-4.2.0.1873-linux.zip
mv sonar-scanner-4.2.0.1873-linux sonar-scanner
ln -sf /home/ec2-user/sonar-scanner/bin/sonar-scanner /usr/bin/sonar-scanner

 Note The launch configuration of the Jenkins workers is immutable. You will need to clone the launch configuration, update it with newly built AMI, and attach it to the Jenkins workers’ Auto Scaling group to create new workers with the Sonar Scanner tool.

 Lastly, make Jenkins aware of the SonarQube server installation from the Configure menu in Manage Jenkins, as shown in figure 8.38.

 [image:]

 Figure 8.38 SonarQube server settings

 Then, create a sonar-project.properties file in the movies-marketplace root folder to publish the coverage report to the SonarQube server. This file contains certain sonar properties, such as which folder to scan and exclude, and the name of the project; see the following listing.

 Listing 8.25 SonarQube project configuration

 sonar.projectKey=angular:movies-marketplace
sonar.projectName=movies-marketplace
sonar.projectVersion=1.0.0
sonar.sourceEncoding=UTF-8
sonar.sources=src
sonar.exclusions=**/node_modules/**,**/*.spec.ts
sonar.tests=src/app
sonar.test.inclusions=**/*.spec.ts
sonar.ts.tslint.configPath=tslint.json
sonar.javascript.lcov.reportPaths=/home/ec2-user/coverage/marketplace/lcov.info

 Next, update the Jenkinsfile to create a new Static Code Analysis stage.

 Then inject a SonarQube global configuration (secret token and SonarQube server URL values) with the withSonarQubeEnv block and invoke the sonar-scanner command to start the analysis process, as shown in the following listing.

 Listing 8.26 Triggering SonarQube analysis

 stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') {
 sh 'sonar-scanner'
 }
}

 You can override property values by using the -D flag:

 sh 'sonar-scanner -Dsonar.projectVersion=$BUILD_NUMBER'

 This option allows us to attach the Jenkins build number with every analysis that we perform and publish to SonarQube.

 After a successful build, the logs will show you the files and folders SonarQube has scanned. After scanning, the analysis report is posted to the SonarQube server we have integrated. This analysis is based on rules defined by SonarQube. If the code passes the error threshold, it’s allowed to move to the next step in its life cycle. But if it crosses the error threshold, it’s dropped:

 [image:]

 You can define your custom thresholds by creating Quality Profiles, which are a set of rules that will make the pipeline fail if an issue is raised in your codebase.

 Note Refer to this official documentation for a step-by-step guide on how to create SonarQube custom rules with Quality Profiles: http://mng.bz/l9vy.

 Finally, on visiting the SonarQube server, the project details should be visible with all the metrics captured from the code coverage report, as you can see in figure 8.39.

 [image:]

 Figure 8.39 SonarQube project metrics

 Now you can go inside the movies-marketplace project and discover issues, bugs, code smells, coverage, or duplication. The dashboard (figure 8.40) shows where you stand in terms of quality in the glimpse of an eye.

 [image:]

 Figure 8.40 SonarQube project deep-dive metrics and issues

 Also, when the job is completed, the SonarQube Scanner plugin will detect that a SonarQube analysis was made during the build. The plugin will then display a badge and a widget on the Jenkins job page with a link to the SonarQube dashboard as well as quality gate status, as shown in figure 8.41.

 [image:]

 Figure 8.41 SonarQube integration with Jenkins

 The SonarQube analysis was quick, but for larger projects, the analysis might take a few minutes to complete.

 To wait for the analysis to be completed, we will pause the pipeline with the withForQualityGate step, which waits for SonarQube analysis to be done. To notify the CI pipeline about the analysis completion, we need to create a webhook on SonarQube to notify Jenkins when project analysis is done, as shown in figure 8.42.

 [image:]

 Figure 8.42 SonarQube webhook creation

 Next, in the following listing, we update the Jenkinsfile to integrate the waitForQualityGate step that pauses the pipeline until SonarQube analysis is completed and returns the quality gate status.

 Listing 8.27 Adding a quality gate to the Jenkinsfile

 stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') {
 sh 'sonar-scanner'
 }
}
stage("Quality Gate"){
 timeout(time: 5, unit: 'MINUTES') {
 def qg = waitForQualityGate()
 if (qg.status != 'OK') {
 error "Pipelin.
aborted due to quality gate failure: ${qg.status}"
 }
 }
}

 Note The quality gate can be moved outside the node{} block to avoid occupying a Jenkins worker waiting for SonarQube notification.

 Commit the changes and push them to the remote repository. A new build will be triggered, and SonarQube analysis will be kicked off automatically. Once the analysis is completed, a notification will be sent to the CI pipeline to resume the pipeline stages, as shown in figure 8.43.

 Note We can set up Post-build actions in Jenkins to notify the user about the test results.

 [image:]

 Figure 8.43 SonarQube project analysis status

 As a result, as soon as a developer commits the code to GitHub, Jenkins will fetch/pull the code from the GitHub repository, perform static code analysis with the help of Sonar Scanner, and send analysis reports to the SonarQube server.

 In this chapter, you learned how to run various automated tests and how to integrate external tools like Nancy and SonarQube to inspect code quality, detect bugs, and avoid potential security vulnerabilities while continuously building microservices within Jenkins CI pipelines. In the next chapter, we will build the Docker image after a successful run of tests and push the image to a private remote repository.

 Summary

 	
 Docker containers are used to run tests to avoid installing multiple runtime environments for each service we’re integrating and keep a consistent execution environment across all Jenkins workers.

 	
 Promoting traditional security practices into CI/CD workflows like external dependencies scanning can enable an additional security layer to avoid security breaches and vulnerabilities.

 	
 Headless Chrome is a way to run UI tests in a headless environment without the full browser UI.

 	
 The parallel DSL step gives the ability to easily run pipeline stages in parallel.

 	
 SonarQube is a code-quality management tool that allows teams to manage, track, and improve the quality of their source code.

 9 Building Docker images within a CI pipeline

 This chapter covers

 	Building Docker images inside Jenkins pipelines and best practices of writing Dockerfiles

 	Using Docker agents as an execution environment in Jenkins declarative pipelines

 	Integrating Jenkins build statuses into GitHub pull requests

 	Deploying and configuring hosted and managed Docker private registry solutions

 	Docker images life cycle within the development cycle and tagging strategies

 	Scanning Docker images for security vulnerabilities within Jenkins pipelines

 In the previous chapter, you learned how to run automated tests inside Docker containers within CI pipelines. In this chapter, we will finish the CI workflow by building a Docker image and storing it inside a private remote repository for versioning; see figure 9.1.

 [image:]

 Figure 9.1 The Build and Push stages will be implemented in this chapter.

 By the end of this chapter, you should be able to build a similar CI pipeline with these steps:

 	
 Check out the source code from a remote repository. The CI server fetches the code from the version-control system (VCS) on a push event.

 	
 Run pre-integration tests such as unit tests, security tests, quality tests, and UI tests inside a Docker container. These might include generating coverage reports and integrating quality-inspection tools like SonarQube for static code analysis.

 	
 Compile the source code and build a Docker image (automated packaging).

 	
 Tag the end image and store it in a private registry.

 Figure 9.2 summarizes the end result of the CI workflow.

 [image:]

 Figure 9.2 The CI pipeline process

 The purpose of this CI pipeline is to automate the process of continuously building, testing, and uploading the Docker image to the private registry. Reporting for failures/ success happens at every stage.

 Note The CI design discussed in this chapter and previous ones can be modified to suit the needs of any type of project; the users just need to identify the right tools and configurations that can be used with Jenkins.

 9.1 Building Docker images

 For now, each push event to the remote repository triggers the pipeline on Jenkins. The pipeline will be executed based on stages defined in the Jenkinsfile. The first stage to be launched will be cloning the code from the remote repository, running automated tests, and publishing coverage reports. Figure 9.3 shows the current CI workflow for the movies-loader service.

 [image:]

 Figure 9.3 Current CI workflow

 If the tests are successful, the next stage will be building the artifact; in our case, it will be a Docker image.

 Note When you’re building a Docker image for your application, you’re building on top of an existing image. A broken base image can lead to production outages (security breaches, for instance). I recommend using an up-to-date and well-maintained image.

 9.1.1 Using the Docker DSL

 To build the main application Docker image, we need to define a Dockerfile with a set of instructions that specify the environment to use and the commands to run. Create a Dockerfile in the top-level directory of the movies-loader project, using the following code.

 Listing 9.1 Movie loader’s Dockerfile

 FROM python:3.7.3
LABEL MAINTAINER mlabouardy
WORKDIR /ap.
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY movies.json main.py ./
CMD python main.py

 The Python-based application will use Python v3.7.3 as a base image, install the runtime dependencies with the pip manager, and set python main.py as the main command for the Docker image.

 Note To maintain the consistency of your image builds, create a requirements .txt file with transitively pinned versions of all used dependencies.

 The order of instructions in a Dockerfile is important. The Docker image is rebuilt whenever any change occurs in the source code. That’s why I placed the pip install command in listing 9.1, as the dependencies are not frequently changed. Therefore, Docker will rely on layer caching that will speed up the build time of the image. Refer to the official Docker documentation to learn more about the Docker build cache: http://mng.bz/B10J.

 Finally, we add a Build stage in the Jenkinsfile, which uses the Docker DSL to build an image based on the Dockerfile in the repository:

 stage('Build'){
 docker.build(imageName)
}

 The build() method builds the Dockerfile in the current directory by default. You can override this by providing the Dockerfile path as the second argument of the build() method.

 The changes are pushed to the develop branch with the following commands:

 git add Jenkinsfile Dockerfile
git commit -m "building docker image"
git push origin develop

 Then a new build should be triggered, and the image should be built, as shown in figure 9.4.

 [image:]

 Figure 9.4 Python Docker image build logs

 [image:]

 Figure 9.5 Movie loader CI pipeline

 So far, we’ve defined the CI stages in figure 9.5 for the movies-loader CI pipeline. The movies-parser service’s Dockerfile will be different, as it’s written in Go. Because Go is a compiled language, we won’t need it at the runtime of the service. Therefore, we will use Docker’s multistage build feature to reduce the Docker image size, as shown in the following listing.

 Listing 9.2 Multistage build usage

 FROM golang:1.16.5
WORKDIR /go/src/github.com/mlabouardy/movies-parser
COPY main.go go.mod .
RUN go get -v
RUN CGO_ENABLED=0 GOOS=linux go build -a -installsuffix cgo -o app main.go

FROM alpine:latest
LABEL Maintainer mlabouardy
RUN apk --no-cache add ca-certificates
WORKDIR /root/
COPY --from=0 /go/src/github.com/mlabouardy/movies-parser/app .
CMD ["./app"]

 The Dockerfile is split into two stages. The first stage builds the binary with the go build command. The second stage uses Alpine as the base image, which is a lightweight image, and then copies the binary from the first stage.

 The intermediate layer where the Go build tools and compilation happen is about 300 MB. The final image has a minimal footprint of 8 MB. The end result is the same tiny production image as before, with a significant reduction in complexity. The Go SDK and any intermediate artifacts are left behind and not saved in the final image.

 Note The multistage build feature requires Docker engine 17.05 or higher on the daemon and client.

 In the previous Dockerfile, stages are not named and are referred to by their integer number (starting with 0 for the first FROM instruction). However, we can name the stages by passing AS NAME to the FROM instruction, as shown in the following listing.

 Listing 9.3 Naming Docker multistages

 FROM golang:1.16.5 AS builder
WORKDIR /go/src/github.com/mlabouardy/parser
...
FROM alpine:latest
...
COPY --from=builder /go/src/github.com/mlabouardy/movies-parser/app .

 Add the Build stage to the project Jenkinsfile, and push the changes to the develop branch. The pipeline will be triggered, and the result of the build should be similar to the one shown in figure 9.6.

 [image:]

 Figure 9.6 Movie parser CI pipeline

 Note You could have just as easily based the final image on scratch or distroless images, but I prefer to have the convenience of Alpine. Plus, it’s a safe choice for reducing image size.

 The movies-store Docker image will use the Node.js base image from DockerHub; we’re using the latest LTS node release at the time of writing. I prefer to name a specific version, rather than one of the floating tags like node:lts or node:latest, so that if you or someone else builds this image on a different machine, they will get the same version, rather than risking an accidental upgrade and attendant head-scratching.

 Note In most cases, the best choice for a base image is from the official images available in DockerHub (https://hub.docker.com/). They tend to be better controlled than those created by the community.

 Then, we install the needed dependencies for runtime by passing --only=prod. Finally, we set the npm start command to start the express server when the container is created, as shown in the following listing.

 Listing 9.4 Movie store’s Dockerfile

 FROM node:14.17.0
WORKDIR /app
COPY package-lock.json package.json .
RUN npm i --only=prod
COPY index.js dao.js ./
EXPOSE 3000
CMD npm start

 Note that, rather than copying the entire working directory, we are copying only the package.json and package-lock.json files. This allows us to take advantage of cached Docker layers. The package-lock.json file records the versions of all dependencies to ensure that the npm install command in Docker builds is consistent.

 Once the pipeline changes are versioned and the execution is completed, the CI pipeline so far for movies-store should look similar to the Blue Ocean view in figure 9.7.

 [image:]

 Figure 9.7 Movie store CI pipeline

 Note During image build, Docker takes all files in the context directory. To increase the Docker build performance, exclude files and directories by adding a .dockerignore file to the context directory.

 9.1.2 Docker build arguments

 Finally, for the Angular application (aka movies-marketplace), we will once again use the multistage build feature to build the static folder with the ng build command. Then we’ll copy the folder to an NGINX image to serve the content with a web server; see the following listing.

 Listing 9.5 Movie marketplace’s Dockerfile

 FROM node:14.17.0 as builder
ARG ENVIRONMENT
ENV CHROME_BIN=chromium
WORKDIR /app
RUN apt-get update && apt-get install -y chromium
COPY package-lock.json package.json .
RUN npm i && npm i -g @angular/cli
COPY . .
RUN ng build -c $ENVIRONMENT

FROM nginx:alpine
RUN rm -rf /usr/share/nginx/html/*
COPY --from=builder /app/dist /usr/share/nginx/html
EXPOSE 80
CMD ["nginx", "-g", "daemon off;"]

 Note The ENV instruction is available during build and runtime. The ARG instruction (listing 9.5) is accessible only during build time.

 Because we might have multiple Angular configurations (with different settings) based on the running environment, we will inject a build argument during the build time to specify the target environment as follows:

 stage('Build'){
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .')
}

 When passing arguments to the build() method, the last value should end with the folder to use as the build context.

 Finally, make sure to create a .dockerignore file in the root folder of the project to prevent local modules, debug logs, and temporary files from being copied into the Docker image. To exclude those directories, we create a .dockerignore file with the following content:

 nodes_modules
coverage
dist
tmp

 After pushing the changes, the pipeline should look like the Blue Ocean view in figure 9.8.

 [image:]

 Figure 9.8 Movie marketplace CI pipeline

 Now that the project Docker images are built, we need to store them somewhere. Therefore, we will deploy a private registry on which we will store all the images built through the development cycle of the project.

 9.2 Deploying a Docker private registry

 Continuous integration results in frequent builds and packages. Hence, we need a mechanism to store all this binary code (builds, packages, third-party plugins, and so on) in a system akin to a version-control system. Since VCSs such as Git and SVN store code and not binary files, we need a binary repository tool.

 Many solutions exist, such as Nexus or Artifactory. However, they come with challenges including managing and hardening the instance. Fortunately, managed solutions also exist, depending on the cloud provider you’re using, such as Amazon Elastic Container Registry (ECR), Google Container Registry, and Azure Container Registry.

 Note You can also host your Docker images in DockerHub. If you go with this approach, you can skip this part.

 9.2.1 Nexus Repository OSS

 Nexus Repository OSS (www.sonatype.com/products/repository-oss) is a widely used open source, free artifact repository that can be used to store binaries and build artifacts. It can be used to distribute Maven/Java, npm, Helm, Docker, and more.

 Note Since you’re already familiar with Docker, you can run Nexus Repository OSS in a Docker container by using the Docker image from Sonatype.

 To deploy Nexus Repository OSS, we need to bake a new machine image with Packer. The following listing provides the template.json content (the full template is available in chapter9/nexus/packer/template.json).

 Listing 9.6 Nexus Repository OSS Packer template

 {
 "variables" : {...},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "ami_name" : "nexus-3.22.1-02",
 "ami_description" : "Nexus Repository OSS"
 }
],
 "provisioners" : [
 {
 "type" : "file",
 "source" : "./nexus.rc",
 "destination" : "/tmp/nexus.rc"
 },
 {
 "type" : "file",
 "source" : "./repository.json",
 "destination" : "/tmp/repository.json"
 },
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 This will create a temporary instance based on the Amazon Linux image and provision it with a shell script (listing 9.7) that installs the Nexus OSS version from the official repository and configures it to run a service with init.d, so it restarts after the instance reboots. This example uses version 3.30.1-01. The full script is available in chapter9/nexus/packer/setup.sh.

 Listing 9.7 Installing the Nexus Repository OSS version (setup.sh)

 NEXUS_USERNAME="admin" ❶
NEXUS_PASSWORD="admin123" ❶
echo "Install Java JDK 8"
yum update -y
yum install -y java-1.8.0-openjdk ❷
echo "Install Nexus OSS"
wget https://download.sonatype.com/nexus/3/latest-unix.tar.gz -P /tmp ❸
tar -xvf /tmp/latest-unix.tar.gz ❸
mv nexus-* /opt/nexus ❸
mv sonatype-work /opt/sonatype-work ❸
useradd nexu.
chown -R nexus:nexus /opt/nexus/ /opt/sonatype-work/
ln -s /opt/nexus/bin/nexus /etc/init.d/nexus
chkconfig --add nexus
chkconfig --levels 345 nexus on
mv /tmp/nexus.rc /opt/nexus/bin/nexus.rc
echo "nexus.scripts.allowCreation=true" >> nexus-default.propertie.
systemctl enable nexus
Systemctl start nexus

 ❶ Defines Nexus OSS default credentials (admin/admin123)

 ❷ Installs Java JDK 1.8.0, which is required to run Nexus OSS

 ❸ Downloads Nexus OSS from the official repository and extracts the archive to the target

 Then, the script will start Nexus server with the service nexus restart command and wait for it to be up and ready, as shown in the following listing.

 Listing 9.8 Waiting for the Nexus server to be up (setup.sh)

 until $(curl --output /dev/nul.
--silent --head --fail http://localhost:8081); do
 printf '.'
 sleep 2
done

 Once the server responds, a POST request will be issued to the Nexus Script API to create a Docker hosted repository. The scripting API can be used to automate the creation of complex tasks for the Nexus Repository Manager, as shown next.

 Listing 9.9 Nexus OSS script API (setup.sh)

 curl -v -X POST -u $NEXUS_USERNAME:$NEXUS_PASSWORD ❶
--header "Content-Type: application/json" 'http://localhost:8081/service/rest/v1/script' ❶
-d @/tmp/repository.json ❶

 ❶ Performs a POST request on the Nexus server by including the default credentials in the request and the Docker repository config in the request payload

 Note A comprehensive listing of Nexus REST API endpoints and functionality is documented through the NEXUS_HOST/swagger-ui endpoint.

 The request payload is a Groovy script that exposes a Docker hosted registry on port 5000:

 import org.sonatype.nexus.blobstore.api.BlobStoreManager;
import org.sonatype.nexus.repository.storage.WritePolicy;
repository.createDockerHosted('docker-registry'.
5000, 443,
BlobStoreManager.DEFAULT_BLOBSTORE_NAME, true, true, WritePolicy.ALLOW, true)

 Issue the packer build command to bake the AMI. Once the provisioning is finished, the Nexus AMI should be available in the Images section in the AWS Management Console, as shown in figure 9.9.

 [image:]

 Figure 9.9 Nexus OSS AMI

 From there, use Terraform to provision an EC2 instance based on the baked Nexus OSS AMI. Create a nexus.tf file with the content in the following listing.

 Listing 9.10 Nexus EC2 instance resource

 resource "aws_instance" "nexus" {
 ami = data.aws_ami.nexus.id
 instance_type = var.nexus_instance_type
 key_name = var.key_name
 vpc_security_group_ids = [aws_security_group.nexus_sg.id]
 subnet_id = element(var.private_subnets, 0)

 root_block_device {
 volume_type = "gp2"
 volume_size = 50
 delete_on_termination = false
 }

 tags = {
 Author = var.author
 Name = "nexus"
 }
}

 Note Running Nexus OSS without a problem requires a minimum of 8 GB of memory. Additionally, I strongly recommend using a dedicated EBS for blob storage (http://mng.bz/dr7Q).

 Also, provision a public load balancer to forward incoming HTTP and HTTPS traffic to port 8081 of the EC2 instance, which is the port where the Nexus Repository Manager (dashboard) is exposed. Create a new file, loadbalancers.tf, with the following listing.

 Listing 9.11 Nexus Repository Manager public load balancer

 resource "aws_elb" "nexus_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_nexus_sg.id]
 instances = [aws_instance.nexus.id]

 listener {
 instance_port = 8081
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }

 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8081"
 interval = 5
 }

 tags = {
 Name = "nexus_elb"
 Author = var.author
 }
}

 Within the same file, add another public load balancer, as shown in the next listing. This will access the Docker private registry pointing to port 5000 of the hosted repository on the Nexus Repository Manager.

 Listing 9.12 Docker registry public load balancer

 resource "aws_elb" "registry_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_registry_sg.id]
 instances = [aws_instance.nexus.id]

 listener {
 instance_port = 5000
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }
}

 Use terraform apply to provision the AWS resources, the Nexus dashboard, and Docker Registry. URLs should be displayed at the end of the provisioning process in the Outputs section, as shown in figure 9.10.

 [image:]

 Figure 9.10 Nexus Terraform resources

 Point your favorite browser to the Nexus URL, and the web dashboard in figure 9.11 should be displayed. The default admin password can be found in /opt/sonatype-work/nexus3/admin.password.

 [image:]

 Figure 9.11 Nexus Repository Manager

 If you jump to Settings from the cogwheel icon and then Repositories, a new Docker hosted repository should be created. The repository disables tag immutability and allows image tags to be overwritten by a subsequent image push using the same tag. If this option is enabled, an error will be returned if you attempt to push an image with a tag that already exists in the repository. The rest of the configurations should be similar to figure 9.12.

 [image:]

 Figure 9.12 Docker-hosted registry on Nexus

 To be able to pull and push Docker images to the registry, we will create a custom Nexus role from the Security section. This role, shown in figure 9.13, will give full access to the Docker hosted registry.

 [image:]

 Figure 9.13 Nexus custom role for the Docker registry

 Note For push and pull operations, only nx-*-registry-add and nx-* -registry-read permissions are required.

 Next, we create a Jenkins user and assign to it the custom Nexus role we just created, as shown in figure 9.14.

 [image:]

 Figure 9.14 Docker registry credentials for Jenkins

 We can test out the authentication by jumping back to the terminal session on the local machine and issuing the docker login command:

 [image:]

 Note The hosted Docker repository is exposed on HTTPS by default. However, if you expose the private repository on a plain HTTP endpoint only, you need to configure the Docker daemon to allow insecure connections by passing the –insecure-registry flag to the Docker engine.

 Finally, on Jenkins, create a registry credential of type Username with Password with the Nexus credentials we created so far for Jenkins (figure 9.15).

 [image:]

 Figure 9.15 Docker registry credentials

 Another alternative to Nexus Repository OSS is an AWS managed service.

 9.2.2 Amazon Elastic Container Registry

 If you’re using AWS, as I am, you can use a managed AWS service called Elastic Container Registry (ECR) to host your private Docker images. From the AWS Management Console, navigate to Amazon ECR (https://console.aws.amazon.com/ecr/repositories). Then, create a repository for each Docker image you want to host or store. In our project, we need to create four repositories, one for each microservice. The service-loader repository, for instance, is shown in figure 9.16.

 [image:]

 Figure 9.16 ECR new repository

 Once the repository is created, you can click the View Push Commands button, and a dialog should pop up with a list of instructions on how to tag, push, and pull images to the remote repository; see figure 9.17.

 [image:]

 Figure 9.17 Movie loader ECR repository

 Before interacting with the repository, you need to authenticate with ECR. The following command for Mac and Linux users can be used to log in to the remote repository:

 aws ecr get-login-password --region REGION
| docker login --username AWS --password-stdi.
ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/
mlabouardy/movies-loader

 Note Replace ACCOUNT_ID and REGION with your Amazon account ID and AWS region, respectively.

 For Windows users, here is the command:

 (Get-ECRLoginCommand).Password |
docker login --username AWS --password-stdi.
ACCOUNT_ID.dkr.ecr.REGION.amazonaws.com/mlabouardy/movies-loader

 Repeat the same procedure to create dedicated ECR repositories per microservice, as shown in figure 9.18.

 [image:]

 Figure 9.18 ECR repository for each microservice

 9.2.3 Azure Container Registry

 For Azure users, the Azure Container Registry service can be used to store container images without managing a private registry. On the Azure portal (https://portal.azure.com/), navigate to the Container Registries service and click the Add button to create a new registry. Specify the region where you want to deploy the registry and give it a name, as shown in figure 9.19.

 [image:]

 Figure 9.19 Azure new registry configuration

 Leave other fields at the defaults and click Create. Once the registry is created, navigate to Access Keys under the Settings section, where you will find the admin username and password that you can use to authenticate to the registry to push or pull Docker images from Jenkins; see figure 9.20.

 [image:]

 Figure 9.20 Azure Docker registry admin credentials

 You can use those credentials in Jenkins to push the image within the CI pipeline. However, I recommend creating a token with granular access control by using role-based access control (RBAC), or the least privilege principle. The admin account is designed for only a single user to access the registry, mainly for testing purposes.

 Navigate to the Tokens section and click the Add button to create a new access token. Give it a name and associate the _repositories_push scope to allow the execution of the docker push operation only (Jenkins will need to push only images to the registry); see figure 9.21.

 [image:]

 Figure 9.21 Azure Docker registry new access token

 Generate a password after you have created a token, as shown in figure 9.22. To authenticate with the registry, the token must be enabled and have a valid password.

 [image:]

 Figure 9.22 Azure Docker registry credentials

 After generating a password, copy and save it as Jenkins credentials of type Username with Password. You can’t retrieve a generated password after closing the dialog screen, but you can generate a new one.

 9.2.4 Google Container Registry

 For Google Cloud Platform users, a managed service called Google Container Registry (GCR) can be used to host Docker images. To get started, you need to enable API Container Registry (https://cloud.google.com/container-registry/docs/quickstart) for your GCP project and then install the gcloud command line. For Linux users, run the following listing.

 Listing 9.13 gcloud installation

 curl -O https://dl.google.com/dl/cloudsdk/channels/
rapid/downloads/google-cloud-sdk-344.0.0-linux-x86_64.tar.gz
tar zxvf google-cloud-sdk-344.0.0-linux-x86_64.tar.gz
 google-cloud-sdk
./google-cloud-sdk/install.sh

 Note For further instructions on how to install the Google Cloud SDK, read the official GCP guide at https://cloud.google.com/sdk/install.

 Next, issue the following command to authenticate with the registry. The resulting authentication token is persisted in ~/.docker/config.json and reused for any subsequent interactions against that repository:

 gcloud auth configure-docker

 You need to tag the target images with the GCR URI (gcr.io/[PROJECT-ID]) and push the images with the docker push command. Figure 9.23 shows how to tag and push the movies-loader Docker image to GCR:

 docker tag mlabouardy/movies-loader
eu.gcr.io/PROJECT_ID/mlabouardy/movies-loader
docker push eu.gcr.io/PROJECT_ID/mlabouardy/movies-loader

 [image:]

 Figure 9.23 Google Container Registry images

 Now that we’ve covered how to deploy a private Docker registry, we will update the Jenkinsfile for each service to push the image to the remote private registry at the end of a successful CI pipeline execution.

 9.3 Tagging Docker images the right way

 Add a new push stage to the Jenkinsfile with the withRegistry block, which authenticates against the registry URL provided in the first parameter by using the credentials provided in the second parameter. Then it persists the changes in ~/.docker/config.json. Finally, it pushes the image with a tag value equal to the build number ID (using the env.BUILD_ID keyword). The following listing is the Jenkinsfile for the movies-loader service after implementing the Push stage.

 Listing 9.14 Publishing Docker image to a registry

 def imageName = 'mlabouardy/movies-loader'
def registry = 'https://registry.slowcoder.com'
node('workers'){
 stage('Checkout'){
 checkout scm
 }

 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .")
 imageTest.inside{
 sh 'python test_main.py'
 }
 }

 stage('Build'){
 docker.build(imageName)
 }

 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(env.BUILD_ID)
 }
 }
}

 Note The imageName and registry values must be replaced with your own Docker private registry URL and name of the image to store, respectively.

 For this example, the build number is 2; therefore, the movies-loader image is pushed to the registry after tagging it with a tag equal to 2, as shown in figure 9.24.

 [image:]

 Figure 9.24 Docker push command logs

 If we head back to the registry (for example, on Nexus Repository Manager), we can see that a movies-loader image has been successfully pushed (figure 9.25).

 [image:]

 Figure 9.25 Docker image stored in Nexus

 While the Jenkins build ID can be used to tag the images, it might not be handy. A better identifier is the Git commit ID. In this example, we will use it to tag the built Docker image. On a declarative and scripted pipeline, this information is not available out of the box. Therefore, we will create a function that uses the Git command line to fetch the commit ID and return it:

 def commitID() {
 sh 'git rev-parse HEAD > .git/commitID'
 def commitID = readFile('.git/commitID').trim()
 sh 'rm .git/commitID'
 commitID
}

 From there, we can update the Push stage to tag the image with the value returned by the commitID() function:

 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())
 }
}

 Note In chapter 14, we will cover how to create a Jenkins shared library with custom functions to avoid duplication of code in Jenkinsfiles.

 Push the changes to the GitHub repository with the following commands:

 git add Jenkinsfile
git commit -m "tagging docker image with git commit id"
git push origin develop

 The new CI pipeline stages should look like figure 9.26 for the movies-loader service.

 [image:]

 Figure 9.26 Movie loader CI pipeline

 After a successful run on Nexus Repository Manager, a new image with a commit ID should be available (figure 9.27).

 [image:]

 Figure 9.27 Commit ID image tag

 We will take this further and push the same image with a tag based on the branch name. This tag will be helpful when we tackle continuous deployment and delivery. It will allow us to assign a particular tag per environment:

 	
 Latest—Used to deploy the image to the production environment

 	
 Preprod—Used to deploy the image to the staging or preproduction environment

 	
 Develop—Used to deploy the image to the sandbox or development environment

 The Push stage code block is as follows:

 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

 The env.BRANCH_NAME variable contains the branch name. Also, you can just use BRANCH_NAME without the env keyword (it hasn’t been required since Pipeline Groovy Plugin 2.18).

 Lastly, if you’re using Amazon ECR as a private registry, you need to authenticate first with the AWS CLI to the remote repository before issuing the push instructions. For AWS CLI 2 users, use the shell instruction in the following listing to invoke the aws ecr command.

 Listing 9.15 Publishing the Docker image to ECR

 def imageName = 'mlabouardy/movies-loader'
def registry = 'ACCOUNT_ID.dkr.ecr.eu-west-3.amazonaws.com'
def region = 'REGION'

node('workers'){
 ...
 stage('Push'){
 sh "aws ecr get-login-password --region ${region} .
docker login --username AW.
--password-stdin ${registry}/${imageName}"

 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

 Make sure to substitute the ACCOUNT_ID and REGION variables with your own AWS account ID and AWS region, respectively. If you’re using a 1.x version of the AWS CLI, use this code block instead:

 stage('Push'){
 sh "\$(aws ecr get-logi.
--no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
}

 Before triggering the CI pipeline, you will need to give access to Jenkins workers to perform the push operation on the ECR registry. Therefore, you need to assign an IAM instance profile to Jenkins worker instances with the AmazonEC2ContainerRegistryFullAccess policy. Figure 9.28 illustrates the IAM instance profile assigned to Jenkins workers.

 [image:]

 Figure 9.28 Jenkins workers’ IAM instance profile

 Once you’ve made the required changes, a new build should be triggered. A new image tag should be pushed to the ECR repository, at the end of the CI pipeline, as shown in figure 9.29.

 [image:]

 Figure 9.29 Movie loader ECR repository images

 Repeat the same procedure for the rest of the microservices, to push their Docker image to the end of the CI pipeline, as shown in figure 9.30.

 [image:]

 Figure 9.30 Movie marketplace CI pipeline

 In a typical workflow, the Docker images should be analyzed, inspected, and scanned against security rules for compliance and auditing. That’s why, in the upcoming section, we will integrate a container inspection and analytics platform within the CI pipeline to continuously inspect built Docker images for security vulnerabilities.

 9.4 Scanning Docker images for vulnerabilities

 Anchore Engine (https://github.com/anchore/anchore-engine) is an open source project that provides a centralized service for inspection, analysis, and certification of container images. You can run Anchore Engine as a standalone service or as a Docker container.

 Note A standalone installation will require at least 4 GB of RAM and enough disk space available to support the container images you intend to analyze.

 You can bake your own AMI with Packer from scratch to install Anchore Engine and set up the PostgreSQL database. Then, use Terraform to deploy the stack, or you can simply deploy the configured stack out of the box with Docker Compose. Refer to chapters 4 and 5 for instructions on how to use Terraform and Packer.

 Launch a private instance in the management VPC with Docker Community Edition (CE) pre-installed, and then install the Docker Compose tool from the Docker official guide page. Issue the following command to deploy Anchore Engine.

 curl https://docs.anchore.com/current/docs/
engine/quickstart/docker-compose.yaml > docker-compose.yaml
docker-compose up -d

 After a few moments, your Anchore Engine services should be up and running, ready to use. You can verify that the containers are running with the docker-compose ps command. Figure 9.31 shows the output. Make sure to allow inbound traffic on port 8228 (Anchore API) from the Jenkins master security group ID only, as shown in figure 9.32.

 [image:]

 Figure 9.31 Docker Compose stack services

 [image:]

 Figure 9.32 Anchore instance’s security group

 Note You can take this further and deploy a load balancer in front of the EC2 instance and create an A record in Route 53 pointing to the load balancer FQDN.

 When it comes to Jenkins, an available plugin already makes the integration much easier. From the main Jenkins menu, select Manage Jenkins and jump to the Manage Plugins section. Click the Available tab and install the Anchore Container Image Scanner plugin, as shown in figure 9.33.

 [image:]

 Figure 9.33 Anchore Container Image Scanner plugin

 Next, from the Manage Jenkins menu, choose Configure System and scroll down to the Anchore Configuration. Then, set the Anchore URL with the /v1 route included and credentials (the default is admin/foobar), as shown in figure 9.34.

 [image:]

 Figure 9.34 Anchore plugin configuration

 Finally, integrate Anchore into the Jenkins pipeline by creating a file named images in the project workspace. This file should contain the name of the Docker image to be scanned and optionally include the Dockerfile. Then, call the Anchore plugin with the file created as a parameter, as shown in the following listing.

 Listing 9.16 Analyzing Docker images with Anchore

 stage('Analyze'){
 def scannedImage .
"${registry}/${imageName}:${commitID().
${workspace}/Dockerfile"
 writeFile file: 'images', text: scannedImage
 anchore name: 'images'
}

 Push the changes with the following commands to the remote repository on the develop branch:

 git add Jenkinsfile
git commit -m "image scanning stage"
git push origin develop

 The CI pipeline will be triggered upon the push event. After the image has been built and pushed to the registry, the Anchore Scanner should be called. It will throw an error due to Anchore not being able to pull the Docker image from the private registry for analysis and inspection.

 Fortunately, Anchore integrates and supports analyzing images from any registry compatible with Docker v2. To allow access to the remote images from Anchore, install the anchor-cli binary from the Anchore EC2 instance:

 yum install -y epel-release python-pip
pip install anchorecli

 Next, we define credentials for the private Docker registry. Run this command; the REGISTRY parameter should include the registry’s fully qualified hostname and port number (if exposed).

 anchore-cli registry add REGISTRY USERNAME PASSWORD

 Note The same command can be used to configure a Docker registry hosted on Nexus or other solutions.

 Since we’re using Amazon ECR repositories and running Anchore from an EC2 instance, we will assign an IAM instance profile instead with the AmazonEC2ContainerRegistryReadOnly policy. In this case, we will pass awsauto for both USERNAME and PASSWORD and instruct the Anchore Engine to inherit the role from the underlying EC2 instance:

 anchore-cli --u admin --p foobar registry add ACCOUNT_ID.dkr.ecr.REGION .amazonaws.com awsauto awsauto --registry-type=awsecr

 To verify that credentials have been properly configured, run the following command to list the defined registries:

 anchore-cli --u admin --p foobar registry list

 [image:]

 Rerun the pipeline with the Replay button. This time, Anchore will examine the contents of the image filesystem for vulnerabilities. If high-severity vulnerabilities are found, this will fail the image build, as shown in figure 9.35.

 [image:]

 Figure 9.35 Image scanning with Anchore

 Once the scanning is finished, Anchore will return with a nonzero exit code if the image has any known high-severity issues. The result of the Anchore policy evaluation will be saved in JSON files. Also, the pipeline will show the status of the build (STOP, WARN, or FAIL), as shown in figure 9.36.

 [image:]

 Figure 9.36 Anchore report results

 The HTML report is automatically published, as well, on the newly created page. Clicking the Anchore Report link will display a graphical policy report showing the summary information and a detailed list of policy checks and results; see figure 9.37.

 [image:]

 Figure 9.37 Anchore Common Vulnerabilities and Exposures (CVE) report

 Note You can customize Anchore Engine to use your own security policies to allow/block external packages, OS scanning, and so forth.

 And that’s how to define a continuous integration pipeline on Jenkins from scratch for Dockerized microservices.

 Note An alternative solution is Aqua Trivy (https://github.com/aquasecurity/trivy), which is a freely available community edition. Paid solutions also can be integrated easily with Jenkins such as Sysdig (https://sysdig.com/) and Aqua.

 9.5 Writing a Jenkins declarative pipeline

 Along with the previous chapters, we have used the scripted pipeline approach to define the CI pipeline for our project because of the flexibility it gives while using Groovy syntax. This section covers how to get the same pipeline output with a declarative pipeline approach. This is a simplified and friendlier syntax with specific statements for defining them, without a need to learn or master Groovy language.

 Let’s take as an example the scripted pipeline used for the movies-loader service. The following listing provides the service Jenkinsfile (cropped for brevity).

 Listing 9.17 Jenkinsfile scripted pipeline

 node('workers'){
 stage('Checkout'){
 checkout scm
 }
 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .")
 imageTest.inside{
 sh "python main_test.py"
 }
 }
 stage('Build'){
 docker.build(imageName)
 }
 stage('Push'){
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
 }
}

 This scripted pipeline can be easily converted to a declarative version, by following these steps:

 	
 Replace the node('workers') instruction with a pipeline keyword. All valid declarative pipelines must be enclosed within a pipeline block.

 	
 Define an agent section at the top level inside the pipeline block, to define the execution environment where the pipeline will be executed. In our example, the execution will be on Jenkins workers.

 	
 Wrap stage blocks with a stages section. The stages section contains a stage for each discrete part of the CI pipeline, such as Checkout, Test, Build, and Push.

 	
 Wrap each given stage command and instruction with a steps block.

 Create a Jenkinsfile.declarative file with the required changes. The end result should look like the following listing.

 Listing 9.18 Jenkinsfile declarative pipeline

 pipeline{
 agent{
 label 'workers' ❶
 }
 stages{
 stage('Checkout'){
 steps{
 checkout scm ❷
 }
 }
 stage('Unit Tests'){
 steps{ ❸
 script {
 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .")
 imageTest.inside{
 sh "python test_main.py"
 }
 }
 } ❸
 }
 stage('Build'){ ❹
 steps{
 script {
 docker.build(imageName)
 }
 }
 } ❹
 stage('Push'){ ❺
 steps{
 script {
 docker.withRegistry(registry, 'registry') {
 docker.image(imageName).push(commitID())

 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 }
 }
 }
 } ❺
 }
}

 ❶ Defines where the pipeline should be executed. In the example, the pipeline stages will be performed on the agents with the workers label.

 ❷ Clones the GitHub repository configured in the Jenkins’s job settings

 ❸ Builds a Docker image based on Dockerfile.test and provisions a container from the image to run the Python unit tests

 ❹ Builds the application Docker image from the Dockerfile

 ❺ Authenticates with the Docker remote repository and pushes the application image to the repository

 Note The declarative pipeline might also contain a post section to perform post-build steps such as notification or cleaning up the environment. This section is covered in chapter 10.

 Update the Jenkins job configuration to use the new declarative pipeline file instead by updating the Script Path field, as shown in figure 9.38.

 [image:]

 Figure 9.38 Jenkinsfile path configuratio.

 Push the declarative pipeline to the remote repository with these commands:

 git add Jenkinsfile.declarative
git commit -m "pipeline with declarative approach"
git push origin develop

 The GitHub webhook will notify Jenkins upon the push event, and the new declarative pipeline should be executed, as you can see in figure 9.39.

 [image:]

 Figure 9.39 Jenkinsfile declarative pipeline executio.

 You can now restart any completed declarative pipeline from any top-level stage that ran in that pipeline. You can go to the side panel for a run in the classic UI and click Restart from Stage, as shown in figure 9.40.

 [image:]

 Figure 9.40 Restart from Stage featur.

 You will be prompted to choose from a list of top-level stages that were executed in the original run, in the order they were executed. This allows you to rerun a pipeline from a stage that failed because of transient or environmental considerations.

 Note Restarting stages can also be done in the Blue Ocean UI, after your pipeline has completed, whether it succeeds or fails.

 Docker can also be used as an execution environment for running CI/CD pipelines in the agent section, as shown in the following listing.

 Listing 9.19 Declarative pipeline with a Docker agent

 pipeline{
 agent{
 docker .
 image 'python:3.7.3'
 }
 }
 stages{
 stage('Checkout'){
 steps{
 checkout scm
 }
 }
 stage('Unit Tests'){
 steps{
 script {
 sh 'python test_main.py'
 }
 }
 }
 }
}

 If we try to execute this pipeline, the build will quickly fail because the pipeline assumes that any configured machine/instance is capable of running Docker-based pipelines. In this example, the build ran in the master machine. However, because Docker is not installed in this machine, the pipeline failed:

 [image:]

 To run the pipeline on Jenkins workers only, update the Pipeline Model Definition settings from the Jenkins job configuration and set the workers label on the Docker Label field, as shown in figure 9.41.

 [image:]

 Figure 9.41 Pipeline model definitio.

 When the pipeline executes, Jenkins will automatically start the specified container and execute the steps defined within it. This pipeline executes the same stages and the same steps.

 9.6 Managing pull requests with Jenkins

 For now, we push directly to the develop branch; however, we should create feature branches and then create pull requests to run tests and provide feedback to GitHub and block submission approval if tests fail. Let’s see how to set up a review process with Jenkins for pull requests.

 Create a new feature branch from the develop branch with the following command:

 git checkout -b feature/featureA

 Make some changes; in this example, I have updated the README.md file. Then, commit the changes and push the new feature branch to the remote repository:

 git add README.md
git commit -m "update readme"
git push feature/featureA

 Head over to the GitHub repository, and create a new pull request to merge the feature branch to the develop branch, as shown in figure 9.42.

 [image:]

 Figure 9.42 New pull request

 On Jenkins, a new build will be triggered on the feature branch, as you can see in figure 9.43.

 [image:]

 Figure 9.43 Build execution on the feature branc.

 Once the CI is finished, Jenkins will update the status on GitHub (figure 9.44). The build indicator in GitHub will turn either red or green, based on the build status.

 [image:]

 Figure 9.44 Jenkins post-build status on GitHub PR

 Note You can also configure SonarQube to analyze pull requests so you can ensure that the code is clean and approved for merging.

 This process allows you to run a build and subsequent automated tests at every check-in so only the best code gets merged. Catching bugs early and automatically reduces the number of problems introduced into production, so your team can build better, more efficient software. We can now merge the feature branch and delete it; see figure 9.45.

 [image:]

 Figure 9.45 Merge and delete the feature branch.

 And that will trigger another build on the develop branch, which will trigger the CI stages and push the image with the develop tag to the remote Docker registry.

 Once the build is completed, we can check the status of previous commits by clicking the Commits section from the GitHub repository. A green, yellow, or red check mark should be displayed, depending on the state of the build; see figure 9.46.

 [image:]

 Figure 9.46 Jenkins build status history

 Finally, to disable developers from pushing directly to the develop branch and also merging without a Jenkins build being passed, we will create a new rule to protect the develop branch. On the GitHub repository settings, jump to the Branches section and add a new protection rule that requires the Jenkins status check to be successful before merging. Figure 9.47 shows the rule configuration.

 [image:]

 Figure 9.47 GitHub branch protection

 Apply the same rule for the preprod and master branches. Then, repeat the same procedure for the rest of the GitHub repositories of the project.

 With the Docker images safely stored in the private registry and the build status posted to GitHub, we’ve completed the implementation of the CI pipeline of Dockerized microservices with Jenkins multibranch pipelines. The next two chapters cover how to implement continuous deployment and delivery practices with Jenkins for two of the most used container orchestration platforms for cloud-native applications: Docker Swarm and Kubernetes.

 Summary

 	
 You can optimize Docker images for production with Docker caching layers, multistage build features, and lightweight base images such as an Alpine base image.

 	
 The commit ID and Jenkins build ID can be used to tag Docker images for versioning and rollback to a working version in case of application deployment failure.

 	
 Binary repository tools like Nexus and Artifactory can manage and store build artifacts for later use.

 	
 Anchore Engine is an open source tool that lets you scan Docker images for security vulnerabilities during CI workflow.

 	
 In a CI environment, the frequency of a build is too high, and each build generates a package. Since all the built packages are in one place, developers are at liberty to choose what to promote and what not to promote in higher environments.

 10 Cloud-native applications on Docker Swarm

 This chapter covers

 	Deploying a self-healing Swarm cluster on AWS and using an S3 bucket for node discovery

 	Running SSH-based commands within Jenkins pipelines and configuring SSH agents

 	Automating deployment of Dockerized applications to Swarm

 	Integrating Slack to manage releases and build notifications of CI/CD pipelines

 	Continuous delivery to production and user manual approvals within Jenkins

 The previous chapter covered how to set up a continuous integration pipeline for a containerized microservice application with Jenkins. This chapter covers how to automate the deployment and manage multiple application environments. By the end of this chapter, you will be familiar with continuous deployment and delivery (figure 10.1) for containerized microservices running in a Docker Swarm cluster.

 [image:]

 Figure 10.1 A complete CI/CD pipeline workflow

 One of the basic solutions to run multiple containers across a set of machines is Swarm (https://docs.docker.com/engine/swarm/), which comes bundled with Docker Engine. By the end of this chapter, you should be able to build a CI/CD pipeline from scratch for services running inside a Docker Swarm cluster, as shown in figure 10.2.

 [image:]

 Figure 10.2 Target CI/CD pipeline

 10.1 Running a distributed Docker Swarm cluster

 Docker Swarm was originally released as a standalone product that ran master and agent containers on a cluster of servers to orchestrate the deployment of containers. This changed with the release of Docker 1.12 in 2016. Docker Swarm became officially part of Docker Engine and was built right into every Docker installation.

 Note This is just a brief overview of the capabilities of Docker Swarm in Docker. For further reading, feel free to explore the Docker Swarm official documentation (https://docs.docker.com/engine/swarm/).

 To illustrate the deployment of containers into a Swarm cluster from a CI/CD pipeline defined in Jenkins, we need to deploy a Swarm cluster.

 The Swarm cluster will be deployed inside a VPC with two Auto Scaling groups: one for Swarm managers and another for Swarm workers. Both ASGs will be deployed within private subnets that spin up across multiple availability zones for resiliency.

 Once the ASGs are created, setting up the Swarm requires manual initialization of the managers, and adding new nodes to the cluster requires additional information (a cluster join token) provided by the first manager when the Swarm is created.

 This step can be automated with configuration management tools like Ansible or Chef. However, it requires manual interaction. To address this, and to provide automatic Swarm initialization, we will run a one-shot Docker container on instance launch; the container uses an S3 bucket as a cluster discovery registry to find active managers and join tokens.

 Figure 10.3 summarizes the architecture we will deploy. We will focus on AWS, but the same architecture can be applied in other cloud providers or locally.

 [image:]

 Figure 10.3 Swarm architecture in AWS

 Note A distributed, consistent key-value store such as etcd (https://etcd.io/), HashiCorp’s Consul (www.consul.io), or Apache ZooKeeper (https://zookeeper.apache.org/) can be used as service discovery to make the nodes autojoin the Swarm cluster.

 To deploy Swarm instances, we need to provide an AMI with Docker Engine preinstalled. By now, you should be familiar with Packer. We will create a template.json file with the content in the following listing. (The full template can be downloaded from chapter10/swarm/packer/docker-ce/template.json.)

 Listing 10.1 Docker AMI’s Packer template

 {
 "variables" : {},
 "builders" : [
 {
 "type" : "amazon-ebs",
 "profile" : "{{user `aws_profile`}}",
 "region" : "{{user `region`}}",
 "instance_type" : "{{user `instance_type`}}",
 "source_ami" : "{{user `source_ami`}}",
 "ssh_username" : "ec2-user",
 "ami_name" : "18.09.9-ce",
 "ami_description" : "Docker engine AMI",
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "script" : "./setup.sh",
 "execute_command" : "sudo -E -S sh '{{ .Path }}'"
 }
]
}

 The base image is Amazon Linux 2, which will be provisioned with a shell script that installs the most recent Docker Community Edition package. Then it adds the ec2-user username to the docker group, to be able to execute Docker commands without using the sudo command; see the following listing.

 Listing 10.2 Docker Community Edition installation

 #!/bin/bash
yum update -y
yum install docker -y
usermod -aG docker ec2-user
systemctl enable docker

 Issue a packer build command to bake the Docker AMI. Once the provisioning process is completed, the new baked AMI should be available on the Images section on the AWS Management Console (figure 10.4).

 [image:]

 Figure 10.4 Docker Community Edition AMI

 Next, deploy the infrastructure with Terraform, and create a dedicated VPC called sandbox with a 10.1.0.0/16 CIDR block to isolate the sandbox application and workload. Define the block in listing 10.3 in the vpc.tf file.

 Note Deploying the cluster on a different VPC is not mandatory, but following the best practices by isolating your workload environments for auditing and security compliance is strongly recommended.

 Listing 10.3 Sandbox VPC resource

 resource "aws_vpc" "sandbox" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true

 tags = {
 Name = var.vpc_name
 Author = var.author
 }
}

 The Swarm manager needs a way of passing the worker token to the workers after it has initialized. The best way to do that is to have the Swarm manager’s user data trigger generating the token and putting it into an S3 bucket. Define a private S3 bucket resource in s3.tf with the code in the following listing.

 Listing 10.4 Swarm discovery S3 bucket resource

 resource "aws_s3_bucket" "swarm_discovery_bucket" {
 bucket = var.swarm_discovery_bucket
 acl = "private"

 tags = {
 Author = var.author
 Environment = var.environment
 }
}

 Note The AWS Systems Manager Parameter Store (http://mng.bz/r6GX) can also be used as a shared encrypted store to store and retrieve the join token for Swarm workers.

 An IAM instance profile is necessary for EC2 instances to be able to interact with the S3 bucket to store or fetch the Swarm token for an autojoin operation. Define an IAM role policy within the iam.tf file, as shown in the next listing.

 Listing 10.5 Swarm nodes IAM policy

 resource "aws_iam_role_policy" "discovery_bucket_access_policy" {
 name = "discovery-bucket-access-policy-${var.environment}"
 role = aws_iam_role.swarm_role.id

 policy = <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:*"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}
EOF
}

 Then, we create a launch configuration for Swarm managers that uses the Docker AMI baked with Packer and run a startup script configured on user data. Use the following listing to define the code in swarm_managers.tf.

 Listing 10.6 Swarm managers launch configuration

 resource "aws_launch_configuration" "managers_launch_conf" {
 name = "managers_config_${var.environment}"
 image_id = data.aws_ami.docker.id
 instance_type = var.manager_instance_type
 key_name = var.key_name
 security_groups = [aws_security_group.swarm_sg.id]
 user_data = data.template_file.swarm_manager_user_data.rendered
 iam_instance_profile = aws_iam_instance_profile.swarm_profile.id

 root_block_device {
 volume_type = "gp2"
 volume_size = 20
 }

 lifecycle {
 create_before_destroy = true
 }
}

 The startup script uses the name of the cluster discovery S3 bucket and the role of the running instance (manager or worker), as shown in the next listing. Based on the instance role, the docker swarm join command will use the right token (workers token or managers token).

 Listing 10.7 Swarm managers user data

 data "template_file" "swarm_manager_user_data" {
 template = "${file("scripts/join-swarm.tpl")}"
 vars = {
 swarm_discovery_bucket = "${var.swarm_discovery_bucket}"
 swarm_name = var.environment
 swarm_role = "manager"
 }
}

 The shell script joint-swarm.tpl, shown in the following listing, uses EC2 metadata to fetch the instance private IP address. The script then executes a container that uses the S3 bucket to store the state of the Swarm once it’s created or creates a new Swarm if no state already exists in the bucket.

 Listing 10.8 Swarm nodes startup script

 #!/bin/bash
NODE_IP=$(curl -fsS http://169.254.169.254/latest/meta-data/local-ipv4)
docker run -d --restart on-failure:5 \
 -e SWARM_DISCOVERY_BUCKET=${swarm_discovery_bucket} \
 -e ROLE=${swarm_role} \
 -e NODE_IP=$NODE_IP \
 -e SWARM_NAME=${swarm_name} \
 -v /var/run/docker.sock:/var/run/docker.sock \
 mlabouardy/swarm-discovery

 Note The mlabouardy/swarm-discovery full Python script and Dockerfile is given in the GitHub repository: pipeline-as-code-with-jenkins/tree/master/chapter10/discovery.

 From there, we will create an ASG of managers. By default, we will create one manager for the cluster. But I recommend using an odd number when running Swarm in production, as a majority vote is needed among managers to agree on proposed management tasks. An odd—rather than even—number is strongly recommended to have a tie-breaking consensus. However, for a sandbox cluster, we will keep it simple and go with one Swarm manager. In swarm_mangers.tf, define the ASG resource as shown in the following listing.

 Listing 10.9 Swarm managers Auto Scaling group

 resource "aws_autoscaling_group" "swarm_managers" {
 name = "managers_asg_${var.environment}"
 launch_configuration = aws_launch_configuration.managers_launch_conf.name
 vpc_zone_identifier = [for subnet in aws_subnet.private_subnets: subnet.id]
 depends_on = [aws_s3_bucket.swarm_discovery_bucket]
 min_size = 1
 max_size = 3
 lifecycle {
 create_before_destroy = true
 }
}

 Note You can define autoscaling policies with CloudWatch alarms to trigger scale-out or scale-in events based on CPU utilization or custom metrics of the Swarm nodes.

 Similarly, we will create an ASG for workers, and we will go with two Swarm workers. Note the use of the depends_on keyword to create an implicit dependency on the swarm_managers resource. Terraform uses this information to determine the correct order for creating resources.

 In this example, Terraform will create Swarm managers first. That way, we guarantee the Swarm initialization and the availability of a join token in the S3 bucket. Add the resource in the following listing in the swarm_workers.tf file.

 Listing 10.10 Swarm workers ASG

 resource "aws_autoscaling_group" "swarm_workers" {
 name = "workers_asg_${var.environment}"
 launch_configuration = aws_launch_configuration.workers_launch_conf.name
 vpc_zone_identifier = [for subnet in aws_subnet.private_subnets: subnet.id]
 min_size = 2
 max_size = 5
 depends_on = [aws_autoscaling_group.swarm_managers]
 lifecycle {
 create_before_destroy = true
 }
}

 Finally, allow the firewall rules in table 10.1 on the security group assigned to the Swarm cluster instances.

 Table 10.1 Swarm cluster security group rules

 	
 Protocol

 	
 Port

 	
 Source

 	
 Description

 	
 TCP

 	
 2377

 	
 Swarm

 	
 Cluster management and raft sync communications

 	
 TCP

 	
 7946

 	
 Swarm

 	
 Control-plane gossip discovery communication among all nodes

 	
 UDP

 	
 7946

 	
 Swarm

 	
 Container network discovery from other Swarm nodes

 	
 UDP

 	
 4789

 	
 Swarm

 	
 Data-plane VXLAN overlay network traffic

 	
 TCP

 	
 22

 	
 Jenkins and Bastion SGs

 	
 SSH traffic from Jenkins master and bastion security groups

 The following listing provides the security group definition.

 Listing 10.11 Swarm nodes security group

 resource "aws_security_group" "swarm_sg" {
 name = "swarm_sg_${var.environment}"
 description = "Allow inbound traffic fo.
swarm management and ssh from jenkins & bastion hosts"
 vpc_id = aws_vpc.sandbox.id

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 security_groups = [var.bastion_sg_id, var.jenkins_sg_id]
 }
 ingress {
 from_port = "2377"
 to_port = "2377"
 protocol = "tcp"
 cidr_blocks = [var.cidr_block]
 }
 ...
 egress {
 from_port = "0"
 to_port = "0"
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

 Note I recommend using an S3 backend with encryption and versioning enabled to remotely store the Terraform state files.

 Define the required Terraform variables in variables.tfvars as listed in table 10.2.

 Table 10.2 Swarm Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 region

 	
 String

 	
 None

 	
 The name of the region, such as eu-central-1, in which to deploy the Swarm cluster

 	
 shared_credentials_file

 	
 String

 	
 ~/.aws/credentials

 	
 The path to the shared credentials file. If this is not set and a profile is specified, ~/.aws/credentials will be used.

 	
 aws_profile

 	
 String

 	
 profile

 	
 The AWS profile name as set in the shared credentials file

 	
 author

 	
 String

 	
 None

 	
 Name of the owner of the Swarm cluster. It’s optional, but recommended, to tag your AWS resources to track the monthly costs by owner or environment.

 	
 key_name

 	
 String

 	
 None

 	
 SSH key pair

 	
 availability_zones

 	
 List

 	
 None

 	
 Availability zone where you’ll spin up the VPC subnet

 	
 bastion_sg_id

 	
 String

 	
 None

 	
 The bastion host security group ID

 	
 jenkins_sg_id

 	
 String

 	
 None

 	
 The Jenkins master security group ID

 	
 vpc_name

 	
 String

 	
 sandbox

 	
 The name of the VPC

 	
 environment

 	
 String

 	
 sandbox

 	
 The runtime environment name

 	
 cidr_block

 	
 String

 	
 10.1.0.0/16

 	
 The VPC CIDR block

 	
 cluster_name

 	
 String

 	
 sandbox

 	
 The Swarm cluster’s name

 	
 public_subnets_count

 	
 Number

 	
 2

 	
 The number of public subnets to create

 	
 private_subnets_count

 	
 Number

 	
 2

 	
 The number of private subnets to create

 	
 swarm_discovery_bucket

 	
 String

 	
 swarm-discovery-cluster

 	
 The S3 bucket where the Swarm tokens will be stored

 	
 manager_instance_type

 	
 String

 	
 t2.small

 	
 The EC2 instance type for Swarm managers

 	
 worker_instance_type

 	
 String

 	
 t2.large

 	
 The EC2 instance type for Swarm workers

 Then, use the terraform apply command to start the deployment process. Once deployed, the ASGs will be created, the Swarm discovery container will be launched on each instance, and the first manager to be run will execute the swarm init command and store the token on the S3 bucket (figure 10.5), which will be used by other instances to join the cluster.

 Note You can have as many or as few worker groups as you wish, running in as many different configurations as you choose (CPU or memory-optimized workers alongside general-purpose Swarm workers).

 [image:]

 Figure 10.5 Swarm state stored in an S3 bucket

 If you decide to create a dedicated VPC for the Swarm cluster, you need to set up VPC peering between management and sandbox VPCs, as shown in figure 10.6. For a step-by-step guide on how to set up peering with Terraform, refer to the official Terraform documentation at http://mng.bz/VBw5.

 [image:]

 Figure 10.6 VPC peering between management and sandbox VPCs

 Note If you intend to use the VPC peering connection, make sure the VPCs don’t have matching or overlapping IPv4 CIDR blocks. In our example, the management and sandbox CIDR blocks are 10.0.0.0/16 and 10.1.0.0/16, respectively.

 From the VPC dashboard, navigate to Peering Connections and create a new one. Configure the peering as shown in figure 10.7.

 [image:]

 Figure 10.7 Configuring the peering of management and sandbox VPCs

 After creating the peering connection, you’ll see Pending Acceptance in the status bar. If you are using a different account or different region, go to the corresponding VPC console, where you can see Pending Acceptance in the status bar of the peering connection. From the Actions drop-down, choose Accept Request, as shown in figure 10.8. Then, in the Accept VPC Peering Connection Request prompt box, click Yes, Accept.

 [image:]

 Figure 10.8 Accepting VPC peering request

 To send and receive traffic across this VPC peering connection, you must add a route to the peered VPC in one or more of your VPC route tables. In the route tables associated with the subnets of the VPC, create a route with the CIDR block of the peer VPC as a destination, and the ID of the VPC peering connection as a target.

 Repeat the same setups for all other VPC route tables. Once everything is set up, your routing table will look like figure 10.9.

 [image:]

 Figure 10.9 Sandbox VPC’s route table update

 To view the Swarm state, set up an SSH tunnel by using the bastion host deployed in chapter 5’s section 5.2.4:

 ssh -N 3000:SWARM_MANAGER_IP:22 ec2-user@BASTION_IP
ssh ec2-user@localhost -p 3000

 Replace SWARM_MANAGER_IP with the Swarm manager private IP address. Once connected, if you type the docker info command, the Swarm: active attribute should confirm that Swarm has been properly configured:

 [image:]

 Run docker node ls from the manager machine to view your Swarm’s connected nodes. As you can see in figure 10.10, we now have one manager and two workers.

 docker node ls

 [image:]

 Figure 10.10 Swarm cluster nodes list

 With our Swarm up and running, let’s deploy the Dockerized-based application with Jenkins.

 10.2 Defining a continuous deployment process

 Create a new GitHub repository for deployment. Because deployment options are often changed, we will store the deployment part on a different Git repo. Then, create three main branches: develop, preprod, and master, as in figure 10.11.

 Docker Swarm mode now integrates directly with Docker Compose v3 and officially supports the deployment of stacks (groups of services) via docker-compose.yml files. The same docker-compose.yml file you would use to test your application locally can now be used to deploy your application to Swarm.

 [image:]

 Figure 10.11 GitHub deployment repository

 To do a Docker Swarm deployment from Jenkins, we need a docker-compose file that contains the references to Docker images along with the configuration settings such as port, network name, labels, and constraints. To run this file, we need to execute the docker stack deployment command over SSH on a manager machine.

 On the develop branch, create a docker-compose.yml file by using your favorite text editor or IDE, with the content in the following listing.

 Listing 10.12 Application Docker Compose

 version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 environment:
 - AWS_REGION=REGION
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox

 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 environment:
 - AWS_REGION=REGION
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox
 - MONGO_URI=mongodb://root:root@mongodb/watchlist
 - MONGO_DATABASE=watchlist
 depends_on:
 - mongodb

 movies-store:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-store:develop
 environment:
 - MONGO_URI=mongodb://root:root@mongodb/watchlist
 ports:
 - 3000:3000
 depends_on:
 - mongodb

 movies-marketplace:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-marketplace:develop
 ports:
 - 80:80

 mongodb:
 image: bitnami/mongodb:latest
 environment:
 - MONGODB_USERNAME=root
 - MONGODB_PASSWORD=root
 - MONGODB_DATABASE=watchlist

 Note Substitute the ID, REGION, and USER with your own AWS Account ID, AWS region, and ECR URI.

 Each service uses the image we built in chapter 9 and references the develop tag. This tag is dedicated to sandbox deployment and contains the codebase of the develop branch. Also, we have defined a MongoDB service that will be used by both the movies-store and movies-parser services.

 The MongoDB service credentials are in plaintext. However, you shouldn’t commit sensitive information under any circumstances and opt for managed solutions like HashiCorp Vault or AWS SSM Parameter Store to encrypt your credentials and access tokens. You can also use an integrated feature of Docker called Secrets to create database credentials:

 openssl rand -base64 12 | docker secret create mongodb_password -

 And update docker-compose.yml to use the secret instead of the plaintext password:

 mongodb:
 image: bitnami/mongodb:latest
 environment:
 - MONGODB_USERNAME=root
 - MONGO_ROOT_PASSWORD_FILE: /run/secrets/mongodb_password
 - MONGODB_DATABASE=watchlist

 Note If the MongoDB service crashes for unknown reasons or has been removed, its data will be lost. To avoid this loss of data, you should mount a persistent volume. Depending on the cloud provider used, Docker volumes support use of external persistent storage such as Amazon EBS.

 To decouple the crawling and parsing of HTML pages, we are using a distributed queue between the movies-loader and movies-parser services. In addition to its high availability, this will allow us to deploy additional movies-parser workers based on the number of HTML pages to parse. Create an SQS for the sandbox environment called movies_to_parse_sandbox with Terraform (chapter10/swarm/terraform/sqs.tf), as shown in figure 10.12. This queue will be used by movies-loader to push movies into, and then it will be consumed by movies-parser workers.

 [image:]

 Figure 10.12 Sandbox queue settings

 With Docker Compose out of the way, we can proceed and create a Jenkinsfile, shown in listing 10.13, with these steps:

 	
 Clone the GitHub repository (chapter10/deployment/sandbox/Jenkinsfile) and check out the develop branch.

 	
 Send the docker-compose.yml file over SSH to the manager node and execute the command docker stack deploy.

 Note We use the master label to constrain the pipeline to be executed on the Jenkins master only. Workers’ machines might also be used for this job.

 Listing 10.13 Deployment Jenkinsfile

 def swarmManager = 'manager.sandbox.domain.com'
def region = 'AWS REGION' ❶
node('master'){
 stage('Checkout'){
 checkout scm
 }
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user"
 }
 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no ec2-user@${swarmManager} '\$(\$(aws ecr get-login --no-include-email --region ${region}))' || true"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager} docker stack deploy
--compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

 ❶ Replace with your own AWS default region.

 This Jenkinsfile uses Amazon ECR as a private registry. If you’re using a private registry that requires username and password authentication (such as Nexus, DockerHub, Azure, or Cloud Container Registry), you can use the Credentials Binding plugin https://plugins.jenkins.io/credentials-binding/), which is installed by default, to allow registry credentials to be bounded to USERNAME and PASSWORD variables. Then, pass those variables to the docker login command for authentication:

 stage('Deploy'){
 withCredentials([[
$class: 'UsernamePasswordMultiBinding',
credentialsId: 'registry',
usernameVariable: 'USERNAME',
passwordVariable: 'PASSWORD']]) {
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker login --password $PASSWORD --username $USERNAME
${registry}"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

 Push the Jenkinsfile and docker-compose.yml files to the develop branch with the following commands:

 git add .
git commit -m "deploy watchlist stack to sandbox"
git push origin develop

 Head over to Jenkins, and create a new multibranch pipeline job called watchlist-deployment.

 Note For a step-by-step guide on how to create and configure multibranch pipeline jobs on Jenkins, check out chapter 7.

 Set the GitHub repository HTTPS clone URL and allow Jenkins to discover all branches looking for a Jenkinsfile on the root repository, as shown in figure 10.13.

 [image:]

 Figure 10.13 Branch sources configuration

 For now, the job pipeline should discover the develop branch and execute the stages defined in the Jenkinsfile, as shown in figure 10.14.

 [image:]

 Figure 10.14 Deployment job on Jenkins

 The pipeline should fail and turn red at the Copy stage, as shown in figure 10.15. The Jenkins master cannot SSH to the Swarm manager because the Jenkins master has the wrong private SSH key.

 [image:]

 Figure 10.15 SCP command logs

 For Jenkins to continuously deploy to the Swarm, it needs access to the Swarm manager. Create a new credential of type SSH Username with Private Key on Jenkins to access the Swarm sandbox. On a private-key field, paste the content of the key pair used while creating Swarm EC2 instances. Then, call it swarm-sandbox, as shown in figure 10.16.

 [image:]

 Figure 10.16 Jenkins credential with Swarm SSH key pair

 Note Jenkins would need access to only the Swarm manager. The other nodes are managed by the Swarm manager, so Jenkins does not need direct access to them.

 Update the Jenkinsfile to use the SSH agent plugin (Credentials Binding plugin) to inject the credentials. The sshagent block should wrap all SSH- and SCP-based commands, as shown in the following listing.

 Listing 10.14 SSH agent configuration

 sshagent (credentials: ['swarm-sandbox']){
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user"
 }

 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
'\$(\$(aws ecr get-login --no-include-email --region ${region}))'
|| true"
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-file docker-compose.yml
--with-registry-auth watchlist"
 }
}

 Push the changes to the develop branch. A new build should be triggered on the develop branch’s nested job of the watchlist-deployment item.

 Note For continuous deployment, create a GitHub webhook on the GitHub repository to notify Jenkins on push events.

 This time, the pipeline should be successful and turns green (figure 10.17).

 [image:]

 Figure 10.17 Continuous deployment pipeline

 On the build logs side, Jenkins will run docker stack deploy over SSH on the Swarm manager, and the services in figure 10.18 will be deployed based on the develop tag image.

 [image:]

 Figure 10.18 Output from docker stack deploy

 Note If you plan to use Amazon ECR as a remote repository, you need to assign an ECR IAM policy to the IAM instance profile assigned to Swarm instances.

 On Swarm, type the following command, and we should be able to view the status of the stack and the services running within it:

 docker service ls

 The four microservices should be deployed alongside a MongoDB service, as shown in figure 10.19.

 [image:]

 Figure 10.19 Stack successfully deployed on Swarm sandbox

 Next, we will deploy an open source tool called Visualizer to visualize Docker services across a set of machines. Execute these commands on the Swarm manager machine:

 docker service create --name=visualizer
--publish=8080:8080/tc.
--constraint=node.role==manager \
 --mount=type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \
 dockersamples/visualizer

 Once the service is deployed, we will create a public load balancer to forward incoming HTTP and HTTPS (optional) traffic to port 8080, which is the port the Visualizer UI is exposed to. Declare the ELB resource in the following listing or download the resources file from chapter8/services/loadbalancers.tf.

 Listing 10.15 Visualizer load balancer

 resource "aws_elb" "visualizer_elb" {
 subnets = var.public_subnets
 cross_zone_load_balancing = true
 security_groups = [aws_security_group.elb_visualizer_sg.id]
 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 443
 lb_protocol = "https"
 ssl_certificate_id = var.ssl_arn
 }
 listener {
 instance_port = 8080
 instance_protocol = "http"
 lb_port = 80
 lb_protocol = "http"

 }
 health_check {
 healthy_threshold = 2
 unhealthy_threshold = 2
 timeout = 3
 target = "TCP:8080" resource "aws_autoscaling_attachment" "cluster_attach_visualizer_elb" {
 autoscaling_group_name = var.swarm_managers_asg_id
 elb = aws_elb.visualizer_elb.id
}

 interval = 5
 }
}

 Then, we attach the load balancer to the ASG of the Swarm managers. The load balancer can also be assigned to the Swarm workers. In fact, all of the nodes within the Swarm cluster are aware of the location of every container within the cluster via the gossip network. If an incoming request hits a node that is not currently running the service for which that request was intended, the request will be routed to a node that is running a container for that service.

 This is so nodes don’t have to be purpose-built for specific services. Any node can run any service, and every node can be load balanced equally, reducing complexity and the number of resources needed for an application. This feature is called mesh routing:

 resource "aws_autoscaling_attachment" "cluster_attach_visualizer_elb" {
 autoscaling_group_name = var.swarm_managers_asg_id
 elb = aws_elb.visualizer_elb.id
}

 The following listing (chapter8/services/dns.tf) is not mandatory, but can be used to create a friendly DNS record pointing to the Visualizer load balancer FQDN.

 Listing 10.16 Visualizer DNS configuration

 resource "aws_route53_record" "visualizer" {
 zone_id = var.hosted_zone_id
 name = "visualizer.${var.environment}.${var.domain_name}"
 type = "A"
 alias {
 name = aws_elb.visualizer_elb.dns_name
 zone_id = aws_elb.visualizer_elb.zone_id
 evaluate_target_health = true
 }
}

 Note Update the security group of the Swarm cluster to allow incoming inbound traffic on port 8080 from the load balancer security group. Add an ingress rule for port 8080 and use terraform apply for changes to take effect.

 Once changes are issued, point the browser to the load balancer URL displayed in the Outputs section in your terminal session. This handy tool, shown in figure 10.20, helps you see which containers are running, and on which nodes.

 Note This tool works only with Docker Swarm mode in Docker Engine 1.12.0 and later. It does not work with the separate Docker Swarm project.

 [image:]

 Figure 10.20 Visualizer dashboard

 Note Containers are deployed on the manager, too. If you want to restrict deployment to workers, use Docker constraints with labels.

 We have successfully deployed our application stack to Swarm. However, for now, the deployment is triggered manually. Ultimately, we want the deployment job to be executed at the end of each CI pipeline’s successful execution.

 To do so, update the Jenkinsfile (chapter10/pipelines/movies-loader/Jenkinsfile) to trigger the external job with the build job keyword. For example, on the movies-loader Jenkinsfile, add the following Deploy stage code block to the end of the pipeline:

 stage('Deploy'){
 if(env.BRANCH_NAME == 'develop'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

 Commit and push the changes to a feature branch. Then create a pull request (PR) to merge to develop. A new build should be triggered on the feature branch, and once it’s done, Jenkins will post the build status on the PR, as shown in figure 10.21.

 [image:]

 Figure 10.21 Pull request build status

 Once the pull request is validated, we merge to the develop branch, and a new build will be triggered on that branch, as shown in figure 10.22.

 [image:]

 Figure 10.22 Jenkins CI/CD pipeline for the movies-loader project

 At the end of the CI pipeline, the deploy stage will be executed, and watchlist-deployment will be triggered on the develop branch, as shown in figure 10.23.

 [image:]

 Figure 10.23 External job triggering

 That will trigger the deployment job, which will deploy the stack and force the pull of new Docker images with the develop tag. Repeat the same process for other GitHub repositories. In the end, each repository will trigger a deployment to sandbox if the CI is successfully executed, as shown in figure 10.24.

 [image:]

 Figure 10.24 Marketplace CI/CD pipeline execution

 Note In chapters 11 and 12, we will cover how to run automated health checks and post-integration tests on the deployed application from Jenkins within the CI/CD pipeline.

 By now, our application is deployed to the Swarm sandbox environment. To access the application, we need to create two public load balancers: one for the API (movies-store) and another for the frontend (movies-marketplace). Use Terraform template files available in the GitHub repository (under the /chapter8/services folder) to create the AWS resources, and then issue terraform apply to provision the resources. At the end of the deployment process, the marketplace and store API access URLs will be displayed in the Outputs section, as shown in figure 10.25.

 [image:]

 Figure 10.25 Terraform apply output

 Note Make sure to allow inbound traffic on ports 80 (frontend), 8080 (visualizer), and 3000 (API) from the security group attached to the Swarm EC2 instances.

 For the marketplace to be able to interact with the RESTful API to show a list of crawled movies, we need to inject the API URL at the build time of the marketplace Docker image. The source code of the marketplace contains multiple files based on the target environment (figure 10.26).

 [image:]

 Figure 10.26 Angular environment files

 Each file contains the right API URL. For the sandbox environment, the environment .sandbox.ts file will be used, as shown in the following listing.

 Listing 10.17 Marketplace sandbox environment variables

 export const environment = {
 production: false,
 apiURL: 'https://api.sandbox.slowcoder.com',
};

 The marketplace Docker image will be built using the ng build -c sandbox flag, which will replace the environment.ts file with environment.sandbox.ts values; see figure 10.27.

 [image:]

 Figure 10.27 Docker image build execution

 Once the new image is deployed to Swarm, point your browser to the marketplace URL. It should display the top 100 IMDb best movies in history, as shown in figure 10.28.

 [image:]

 Figure 10.28 Watchlist marketplace dashboard

 That’s how to reach continuous deployment. However, we want to alert the development and product teams of the deployment and CI/CD status of the project.

 10.3 Integrating Jenkins with Slack notifications

 At certain stages of the pipeline, you may decide you want to send out a Slack notification to your team to inform them of the build status. To send Slack messages through Jenkins, we need to provide a way for our job to authorize itself with Slack.

 Luckily for us, Slack has a prebuilt Jenkins integration that makes things pretty easy. Install the plugin from http://mng.bz/xXOB. Replace WORKSPACE with your Slack workspace name, as shown in figure 10.29.

 [image:]

 Figure 10.29 Jenkins CI Slack integration

 Click the Add to Slack button. Then select the channel on which you want Jenkins to send notifications, as shown in figure 10.30.

 [image:]

 Figure 10.30 Slack channel configuration

 After that, we need to set the configuration on the Jenkins Slack Notification plugin (https://plugins.jenkins.io/slack/), which is already installed on the baked Jenkins master machine image. Enter the team workspace name, integration token created on your slack, and channel name, as shown in figure 10.31, and click the Apply and Save buttons.

 [image:]

 Figure 10.31 Jenkins Slack Notification plugin

 Now that we have Slack properly configured in Jenkins, we can configure our CI/CD pipeline to send a notification to broadcast the status of the build with the following method:

 slackSend (color: colorCode, message: summary)

 Let’s add this instruction at the end of the CI/CD pipeline for the movies-loader service as an example; see the following listing.

 Listing 10.18 Jenkins Slack plugin DSL

 node('workers'){
 stage('Checkout'){}

 stage('Unit Tests'){}

 stage('Build'){}

 stage('Push'){}

 stage('Deploy'){}

 slackSend (color: '#2e7d32',
message: "${env.JOB_NAME} has been successfully deployed")
}

 Note For simplicity, I skipped steps that run unit tests, build the image, and push the image to the registry. You’re advised to put them inside the workflow we are about to explore.

 Push the changes to a feature branch, and then merge to develop. At the end of the pipeline, a new Slack notification will be sent, as shown in figure 10.32.

 [image:]

 Figure 10.32 Jenkins Slack notification

 While this works, we also want to be notified when the pipeline fails. That’s where try-catch blocks come into play to handle errors thrown by pipeline stages; see the following listing.

 Listing 10.19 Slack notifications within Jenkins

 node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 stage('Unit Tests'){}
 stage('Build'){}
 stage('Push'){}
 stage('Deploy'){}
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

 This time, a notifySlack() method is used, which sends a notification with a different color based on the pipeline build status, as shown in the following listing.

 Listing 10.20 Custom Slack notification message color

 def notifySlack(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 def colorCode = '#FF0000'

 if (buildStatus == 'STARTED') { ❶
 colorCode = '#546e7a' ❶
 } else if (buildStatus == 'SUCCESSFUL') { ❶
 colorCode = '#2e7d32' ❶
 } else { ❶
 colorCode = '#c62828c' ❶
 } ❶
 slackSend (color: colorCode.
message: "${env.JOB_NAME} build status: ${buildStatus}") ❷
}

 ❶ Colors the border along the left side of the message

 ❷ Sends a Slack message with the job name by using the env.JOB_NAME, and build status by using the buildStatus variable

 Based on your build result, the code sends Slack notifications as shown in figure 10.33.

 [image:]

 Figure 10.33 Build status notification

 Let’s simulate a build failure by throwing an error, by adding the following instruction to the Build stage:

 error "Build failed"

 Push the changes to GitHub. The pipeline will fail at the Build stage (figure 10.34).

 [image:]

 Figure 10.34 Throwing an error within the Jenkins pipeline

 On the Slack channel, this time we will receive a notification with the build status set to Failure, as you can see in figure 10.35.

 [image:]

 Figure 10.35 Build failure Slack notification

 In the following listing, we take this further. We’ll add more information to the notification, such as the author of the push event, Git commit ID, and message.

 Listing 10.21 Custom Slack notification message attributes

 def notifySlack(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 def colorCode = '#FF0000'
 def subject = "Name: '${env.JOB_NAME}'\n
Status: ${buildStatus}\nBuild ID: ${env.BUILD_NUMBER}" ❶
 def summary = "${subject}\nMessage: ${commitMessage()}
\nAuthor: ${commitAuthor()}\nURL: ${env.BUILD_URL}" ❷

 if (buildStatus == 'STARTED') {
 colorCode = '#546e7a'
 } else if (buildStatus == 'SUCCESSFUL') {
 colorCode = '#2e7d32'
 } else {
 colorCode = '#c62828c'
 }
 slackSend (color: colorCode, message: summary)
}

 ❶ Displays the job’s name, its status, and build number

 ❷ Holds the subject’s value and Git info (author, commit message) and build URL

 The notifySlack() method will call commitAuthor() and commitMessage() to get the appropriate information. The commitAuthor() method will return the name of the commit author by executing the git show command, as shown in the following listing.

 Listing 10.22 Git helper function to fetch the author

 def commitAuthor(){
 sh 'git show -s --pretty=%an > .git/commitAuthor' ❶
 def commitAuthor = readFile('.git/commitAuthor').trim() ❷
 sh 'rm .git/commitAuthor'
 commitAuthor
}

 ❶ Displays the commit message’s author with the git show command, saves the output to the commitAuthor file

 ❷ Reads the commitAuthor file and trims extra spaces

 And the commitMessage() method will use the git log command alongside the HEAD flag to fetch the commit message description; see the following listing.

 Listing 10.23 Git helper function to fetch the commit message

 def commitMessage() {
 sh 'git log --format=%B -n 1 HEAD > .git/commitMessage' ❶
 def commitMessage = readFile('.git/commitMessage').trim() ❷
 sh 'rm .git/commitMessage'
 commitMessage
}

 ❶ Displays the last commit message description and saves the output in a commitMessage file

 ❷ Reads the commitMessage content and trims extra spaces

 If we push the changes, at the end of the CI/CD pipeline, the Slack notifications should contain the name of Jenkins job, build ID and its status, author name, and commit description, as shown in figure 10.36.

 [image:]

 Figure 10.36 Slack notification with Git commit details

 Apply the same changes for the movies-store, movies-marketplace, and movies-parser Jenkinsfiles.

 Note Chapter 11 covers how to use the Jenkins Slack Notification plugin to send a notification with a changelog as an attachment.

 10.4 Handling code promotion with Jenkins

 Maintaining multiple Swarm cluster environments makes sense to avoid breaking things while promoting code to production. Also, having a production-like environment can help you keep a mirror of your application running in production and reproducing issues in the staging environment without impacting your clients. But this comes at a price.

 Note You can reduce the costs of the sandbox and staging environments by shutting down instances outside of regular business hours.

 With that being said, create a new Swarm cluster for the staging environment in a dedicated staging VPC with a 10.2.0.0/16 CIDR block, or deploy it within the same management VPC where Jenkins is deployed, as shown in figure 10.37.

 [image:]

 Figure 10.37 Deployment of sandbox and staging Swarm clusters and Jenkins within the same VPC

 Create a preprod branch on the watchlist-deployment GitHub repository by running this command:

 git checkout -b preprod

 Create a docker-compose.yml file that uses the preprod tag, and update the SQS URL to use the staging queue, as shown in the following listing.

 Listing 10.24 Docker Compose for staging deployment

 version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:preprod
 environment:
 - AWS_REGION=eu-west-3
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_staging
 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-parser:preprod

 Create a Jenkins credential of type SSH Username with Private Key with the SSH key pair used to deploy the Swarm staging cluster. Give it a name of swarm-staging, as shown in figure 10.38.

 [image:]

 Figure 10.38 Swarm staging cluster SSH credentials

 Create a Jenkinsfile similar to the one in the develop branch, as shown in the following listing. Update the swarmManager variable to reference the manager staging the IP or DNS record instead. Also update the SSH agent credentials to use the Swarm staging credential.

 Listing 10.25 Jenkinsfile for staging deployment

 def swarmManager = 'manager.staging.domain.com' ❶
def region = 'AWS REGION' ❷

node('master'){
 stage('Checkout'){
 checkout scm
 }

 sshagent (credentials: ['swarm-staging']){
 stage('Copy'){
 sh "scp -o StrictHostKeyChecking=no
docker-compose.yml ec2-user@${swarmManager}:/home/ec2-user" ❸
 }

 stage('Deploy stack'){
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
'\$(\$(aws ecr get-login --no-include-email --region ${region})).
|| true" ❹
 sh "ssh -oStrictHostKeyChecking=no
ec2-user@${swarmManager}
docker stack deploy --compose-fil.
docker-compose.yml --with-registry-auth watchlist" ❹
 }
 }
}

 ❶ Swarm manager DNS alias record or private IP address

 ❷ AWS region where the ECR repositories are created

 ❸ Copies docker-compose.yml to the Swarm manager instance over SSH

 ❹ Authenticates with ECR and redeploys the application stack over SSH

 Push the changes to the preprod branch. A new preprod nested job should be triggered on the watchlist-deployment item on Jenkins upon the push event, as shown in figure 10.39.

 [image:]

 Figure 10.39 Stack deployment on staging

 At the end of the pipeline, the application stack will be deployed to Swarm staging. Similarly, to access the application, use Terraform to deploy a public load balancer for the marketplace and the store API.

 Finally, to trigger autodeployment on preprod, we need to update the Jenkinsfile for each project to trigger the watchlist-deployment on preprod—for example, for movies-loader Jenkinsfile. We build and push a Docker image with the preprod tag, as shown in the next listing.

 Listing 10.26 Tagging a Docker image based on the Git branch

 stage('Push'){
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true" ❶
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID()) ❷
 if (env.BRANCH_NAME == 'develop') { ❸
 docker.image(imageName).push('develop') ❸
 } ❸
 if (env.BRANCH_NAME == 'preprod') { ❸
 docker.image(imageName).push('preprod') ❸
 } ❸
 }
}

 ❶ Authenticates with ECR by using AWS CLI

 ❷ Tags the image with the current Git commit ID and stores it in ECR

 ❸ Based on the current Git branch name, the Docker image is tagged with a unique tag.

 In the following listing, we update the Deploy stage’s if clause condition to trigger the deployment of the external job if the branch name is preprod.

 Listing 10.27 Triggering external deployment job

 stage('Deploy'){
 if(env.BRANCH_NAME == 'develop' || env.BRANCH_NAME == 'preprod'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

 Push the changes to the develop branch. Then create a pull request to merge develop to the preprod branch after Jenkins posts the build status regarding develop changes (figure 10.40).

 [image:]

 Figure 10.40 Pull request build status

 When the merge occurs, a new build should be triggered on the preprod branch, as you can see in the Blue Ocean view in figure 10.41.

 [image:]

 Figure 10.41 Build trigger on preprod branch

 Once the Push stage is executed, a new image with a preprod tag should be pushed to the Docker registry (figure 10.42).

 [image:]

 Figure 10.42 Docker image with preprod tag stored in ECR

 Then, the deployment job on the preprod branch will be executed to deploy the changes on the Docker Swarm staging environment (figure 10.43).

 [image:]

 Figure 10.43 Staging deployment triggered automatically

 Make the same changes for other microservices, except for movies-marketplace. For movies-marketplace, we need to update the build stage, as shown in the following listing, to inject the appropriate environment and point the frontend to the right API URL.

 Listing 10.28 Injecting API URL during build

 stage('Build'){
 switch(env.BRANCH_NAME){
 case 'develop':
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .') ❶
 break
 case 'preprod':
 docker.build(imageName, '--build-arg ENVIRONMENT=staging .')
 break
 default:
 docker.build(imageName) ❷
 }
}

 ❶ If the branch name is develop, we set the environment to sandbox, so the sandbox settings are loaded.

 ❷ If the branch name doesn’t match develop or preprod, the sandbox settings will be loaded by default.

 Push the changes to GitHub. This time, the Docker build process will be executed with the ENVIRONMENT argument set to staging (when the current branch is preprod), as shown in figure 10.44. This will replace the environment.ts file with environment .staging.ts values.

 [image:]

 Figure 10.44 Docker build with the environment as an argument

 10.5 Implementing the Jenkins delivery pipeline

 Finally, to deploy our application stack to production, you need to spin up a new Swarm cluster for the production environment. Once again, I opted to isolate the production workload in a dedicated production VPC with the 10.3.0.0/16 CIDR block and to set up a VPC peering between the management VPC (where Jenkins is located) and production VPC (where Swarm production is deployed). Figure 10.45 summarizes the deployed architecture.

 [image:]

 Figure 10.45 VPC peering with multiple Swarm cluster VPCs. The management VPC where the Jenkins cluster is deployed has access to the sandbox, staging, and production VPCs.

 Note VPC peering doesn’t support transitive peering. The production, staging, and sandbox environments are fully isolated, and packets cannot be routed directly from sandbox to production, for example, through the management VPC.

 On the master branch of the watchlist-deployment repository, create a docker-compose .yml file. This time, we use the latest tag for services running in production, as shown in the next listing.

 Listing 10.29 Docker Compose for production deployment

 version: "3.3"
services:
 movies-loader:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:latest
 environment:
 - AWS_REGION=eu-west-3
 - SQS_URL=https://sqs.REGION.amazonaws.com/ID/movies_to_parse_production
 movies-parser:
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-parser:latest

 Create a Jenkins credential with the SSH key used to deploy the Swarm cluster for the production environment and call it swarm-production, as shown in figure 10.46.

 [image:]

 Figure 10.46 Swarm production cluster SSH credentials

 Then, create a Jenkinsfile, shown in the following listing, to remotely upload the docker-compose.yml file to the manager machine. Execute the docker stack deploy command to deploy the application.

 Listing 10.30 Jenkinsfile for production deployment

 def swarmManager = 'manager.production.domain.com'
def region = 'AWS REGION'
node('master'){
 stage('Checkout'){...} ❶

 sshagent (credentials: ['swarm-production']){
 stage('Copy'){...} ❷

 stage('Deploy stack'){...} ❸
 }
}

 ❶ Clones the GitHub repository—refer to listing 10.25 for instructions.

 ❷ Copies docker-compose.yml to the Swarm manager over SSH—refer to listing 10.25 for instructions

 ❸ Redeploys the Docker Compose stack over SSH—refer to listing 10.25 for instructions

 Push the changes to the master branch. The GitHub repository should look like fig-ure 10.47.

 [image:]

 Figure 10.47 Deployment files stored in the GitHub repository

 The Jenkins pipeline will be triggered on the master branch. Once the pipeline is finished, the application stack will be deployed to the production environment, as you can see in figure 10.48.

 [image:]

 Figure 10.48 Deployment triggered in the master branch

 To trigger the deployment of production at the end of the CI pipeline, update the GitHub repository to trigger the deployment job if the current branch is master. For instance, update the movies-loader’s Jenkinsfile to build the image for production and push the result to the Docker registry with the latest tag, as shown in the following listing.

 Listing 10.31 Tagging the production image

 stage('Push'){
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true"
 docker.withRegistry("https://${registry}") {
 docker.image(imageName).push(commitID())
 if (env.BRANCH_NAME == 'develop') {
 docker.image(imageName).push('develop')
 }
 if (env.BRANCH_NAME == 'preprod') {
 docker.image(imageName).push('preprod')
 }
 if (env.BRANCH_NAME == 'master') {
 docker.image(imageName).push('latest')
 }
 }
}

 For the deployment part, we can simply update the if clause to support deployment on the master branch too:

 stage('Deploy'){
 if(env.BRANCH_NAME == 'develop.
|| env.BRANCH_NAME == 'preprod.
|| env.BRANCH_NAME == 'master'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
}

 However, we want to require manual validation before deploying to production to simulate the product/business validation (or QA team running tests before approving for production) before deploying releases to production.

 To do so, you can use the Input Step plugin to pause the pipeline execution and allow the user to interact and control the deployment process to production, as shown in the following listing.

 Listing 10.32 Requiring user approval before production deployment

 stage('Deploy'){
 if(env.BRANCH_NAME == 'develop' || env.BRANCH_NAME == 'preprod'){
 build job: "watchlist-deployment/${env.BRANCH_NAME}"
 }
 if(env.BRANCH_NAME == 'master'){
 timeout(time: 2, unit: "HOURS") {
 input message: "Approve Deploy?", ok: "Yes"
 }
 build job: "watchlist-deployment/master"
 }
}

 Here, we set the time-out to be 2 hours to give developers enough time to validate the release. When the 2-hour time-out is reached, the pipeline will be aborted.

 Note To avoid having a Jenkins worker doing nothing for 2 hours, you can move the Deploy stage outside a node block. You can also send a Slack reminder when waiting for user input.

 Push the changes to a feature branch, and raise a pull request to merge changes to the develop branch after the feature branch is successfully built and approved by Jenkins (figure 10.49).

 [image:]

 Figure 10.49 Merging the feature branch into develop

 Merge the changes to the develop branch and delete the feature branch. A new build should be triggered on the develop branch, which will deploy the image to the Swarm sandbox cluster; see figure 10.50.

 [image:]

 Figure 10.50 Deployment to sandbox triggered

 Next, raise a pull request to merge develop into the preprod branch (figure 10.51).

 Once the PR is merged, a new build will be triggered on the preprod branch, at the end of the CI/CD pipeline. The changes will be deployed into the Swarm staging cluster, as shown in figure 10.52.

 [image:]

 Figure 10.51 Merging the develop branch into preprod

 [image:]

 Figure 10.52 Deployment to staging cluster triggered

 Finally, create a pull request to merge preprod into the master branch (figure 10.53).

 [image:]

 Figure 10.53 Merging the preprod branch into master

 When the merge occurs, Jenkins will trigger a build on the master branch of the movies-loader service, as illustrated in figure 10.54. However, this time, once it reaches the deploy stage, an input dialog will pop up for deployment confirmation.

 [image:]

 Figure 10.54 CI/CD pipeline execution on the master branch

 As you can see in figure 10.55, the interactive input will ask whether we approve the deployment.

 [image:]

 Figure 10.55 Deployment user input dialog

 If we click Yes, the pipeline will be resumed, and the deployment job will be triggered on the master, as shown in figure 10.56.

 [image:]

 Figure 10.56 Production deployment approval

 At the end of the deployment process, the new stack will be deployed to Swarm production, and a Slack notification will be sent to the configured Slack channel (figure 10.57).

 [image:]

 Figure 10.57 Production deployment success notification

 With the production deployment covered, you have seen how to deploy containerized microservice applications to multiple environments and how to handle code promotion within a CI/CD pipeline. However, because we’re managing only three environments (sandbox, staging, and production), we will limit the discovering behavior of the deployment job to the three main branches by defining a regular expression, as shown in figure 10.58.

 [image:]

 Figure 10.58 Jenkins discovery behavior based on a regular expression

 As a result, Jenkins will discover and be triggered only if one of the three main branches has changed; see figure 10.59.

 [image:]

 Figure 10.59 Deployment multibranch job

 So now if we make any change to our application, CI/CD pipelines will be triggered and docker stack deploy will be executed, which will update any services that were changed from the previous version.

 Note If the deployment target is one single host, a swarm is not needed. The same docker-compose.yml and procedure explained in this chapter should be sufficient to continuously deploy your application on a single-host deployment environment.

 Summary

 	
 An S3 bucket or distributed consistent key-value store such as etcd, Consul, or ZooKeeper can be used as service discovery to make the nodes autojoin a Swarm cluster.

 	
 Continuous deployment of containers on a Swarm cluster can be reached by executing docker stack deploy over SSH on a Swarm manager.

 	
 Adding Slack notifications within CI/CD pipelines makes the product delivery faster. The sooner the team members are aware of a build, integration, or deployment failure, the quicker they can act.

 	
 To simulate business/product validation before deploying a production release, the Jenkins Input Step plugin can prompt the user for manual validation before deployment.

 11 Dockerized microservices on K8s

 This chapter covers

 	Setting up a Kubernetes cluster on AWS with Terraform

 	Automating application deployment on Kubernetes with Jenkins pipelines

 	Packaging and versioning Kubernetes Helm charts

 	Converting Compose files to Kubernetes manifests with Kompose

 	Running post-deployment tests and health checks within CI/CD pipelines

 	Discovering Jenkins X and setting up serverless CI/CD pipelines

 The preceding chapter covered how to set up a CI/CD pipeline from scratch for containerized applications running in Docker Swarm (figure 11.1). This chapter covers how to deploy the same application in Kubernetes (K8s) and automate the deployment. In addition, you’ll learn how to use Jenkins X to simplify the workflow of cloud-native applications running in Kubernetes.

 [image:]

 Figure 11.1 Current CI/CD pipeline workflow

 Docker Swarm might be a good solution for beginners and smaller workloads. However, for large deployment and at a certain scale, you might want to consider shifting to Kubernetes.

 For those of you who are AWS power users, Amazon Elastic Kubernetes Service (EKS) is a natural fit. Other cloud providers offer managed Kubernetes solutions, including Azure Kubernetes Service (AKS) and Google Kubernetes Engine (GKE).

 11.1 Setting up a Kubernetes cluster

 As I’ve said, AWS offers the Amazon Elastic Kubernetes Service (https://aws.amazon.com/eks). The EKS cluster will be deployed in a custom VPC within multiple private subnets. EKS runs the Kubernetes control plane for you across multiple AWS availability zones to eliminate a single point of failure, as shown in figure 11.2.

 [image:]

 Figure 11.2 The AWS EKS architecture consists of node groups deployed in private subnets.

 A few tools (including AWS CloudFormation, eksctl, and kOps) allow you to get up and running quickly on EKS. In this chapter, we picked Terraform because we were already using it to manage our Jenkins cluster on AWS.

 To get started, provision a new VPC to host the sandbox environment and divide it into two private subnets. Amazon EKS requires subnets in at least two availability zones. The VPC is created to isolate the Kubernetes workload. For EKS to discover the VPC subnets and manage network resources, we tag them with kubernetes.io/cluster/<cluster-name>. The <cluster-name> value matches the EKS cluster’s name, which is sandbox. Create a file called vpc.tf with the content in the following listing.

 Listing 11.1 Kubernetes custom VPC

 resource "aws_vpc" "sandbox" {
 cidr_block = var.cidr_block
 enable_dns_hostnames = true
 tags = {
 Name = var.vpc_name
 Author = var.author
 "kubernetes.io/cluster/${var.cluster_name}" = "shared"
 }
}

 Then, define the subnets and set up the appropriate route tables. Refer to chapter11/eks/vpc.tf for the full source code, or head back to chapter 10 for a step-by-step guide on how to deploy a custom VPC on AWS.

 Next, we create a new eks_masters.tf file and define the sandbox EKS cluster, which is a managed K8s control plane, as shown in the following listing.

 Listing 11.2 EKS sandbox cluster

 resource "aws_eks_cluster" "sandbox" {
 name = var.cluster_name
 role_arn = aws_iam_role.cluster_role.arn
 vpc_config {
 security_group_ids = [aws_security_group.cluster_sg.id]
 subnet_ids = [for subnet in aws_subnet.private_subnets : subnet.id]
 }
 depends_on = [
 aws_iam_role_policy_attachment.cluster_policy,
 aws_iam_role_policy_attachment.service_policy,
]
}

 The managed control plane uses an IAM role with the AmazonEKSClusterPolicy and AmazonEKServicePolicy policies. These attachments grant the cluster the permissions it needs to take care of itself.

 Now it’s time to spin up some worker nodes. A node is a simple EC2 instance that runs the Kubernetes objects (pods, deployments, services, and so forth). The master’s automatic scheduling takes into account the available resources on each node. Define an EKS node group resource within eks_workers.tf as shown in the following listing.

 Listing 11.3 Kubernetes node group resource

 resource "aws_eks_node_group" "workers_node_group" {
 cluster_name = aws_eks_cluster.sandbox.name
 node_group_name = "${var.cluster_name}-workers-node-group"
 node_role_arn = aws_iam_role.worker_role.arn
 subnet_ids = [for subnet in aws_subnet.private_subnets : subnet.id]
 scaling_config {
 desired_size = 2
 max_size = 5
 min_size = 2
 }
 depends_on = [
 aws_iam_role_policy_attachment.worker_node_policy,
 aws_iam_role_policy_attachment.cni_policy,
 aws_iam_role_policy_attachment.ecr_policy,
]
}

 We also create an IAM role that the worker nodes are going to assume. We grant the AmazonEKSWorkerNodePolicy, AmazonEKS_CNI_Policy, and AmazonEC2ContainerRegistryReadOnly policies. Refer to chapter11/eks/eks_workers.tf for the full source code.

 Note This section assumes that you are familiar with the usual Terraform plan/apply workflow; if you’re new to Terraform, refer first to chapter 5.

 Lastly, define the variables listed in table 11.1 in the variables.tf file.

 Table 11.1 EKS Terraform variables

 	
 Variable

 	
 Type

 	
 Value

 	
 Description

 	
 region

 	
 String

 	
 None

 	
 The name of the region, such as eu-central-1, in which to deploy the EKS cluster

 	
 shared_credentials_file

 	
 String

 	
 ~/.aws/credentials

 	
 The path to the shared credentials file. If this is not set and a profile is specified, ~/.aws/credentials will be used.

 	
 aws_profile

 	
 String

 	
 profile

 	
 The AWS profile name as set in the shared credentials file

 	
 author

 	
 String

 	
 None

 	
 Name of the owner of the EKS cluster. It’s optional, but recommended, to tag your AWS resources to track the monthly costs by owner or environment.

 	
 availability_zones

 	
 List

 	
 None

 	
 Availability zone for spinning up the VPC subnets

 	
 vpc_name

 	
 String

 	
 sandbox

 	
 The name of the VPC

 	
 cidr_block

 	
 String

 	
 10.1.0.0/16

 	
 The VPC CIDR block

 	
 cluster_name

 	
 String

 	
 sandbox

 	
 The EKS cluster’s name

 	
 public_subnets_count

 	
 Number

 	
 2

 	
 The number of public subnets to create

 	
 private_subnets_count

 	
 Number

 	
 2

 	
 The number of private subnets to create

 Then, issue the terraform init command to initialize a working directory and download the AWS provider plugin. In your initialized directory, run terraform plan to review the planned actions. Your terminal output should indicate that the plan is running and the resources that will be created. This should include the EKS cluster, VPC, and IAM roles.

 If you’re comfortable with the execution plan, confirm the run with terraform apply. This provisioning process should take a few minutes. Upon successful deployment, a new EKS cluster for the sandbox environment will be deployed and available in the AWS EKS console, as shown in figure 11.3.

 [image:]

 Figure 11.3 EKS sandbox cluster

 Now that you’ve provisioned your EKS cluster, you need to configure kubectl. This is a command-line utility for communicating with the cluster API server. At the time of writing this book, I’m using version v1.18.3.

 Note The kubectl tool is available in many operating system package managers; refer to the official documentation (https://kubernetes.io/docs/tasks/tools/) for installation instructions.

 To grant kubectl access to the K8s API, we need to generate a kubeconfig file (located under .kube/config in your home directory). You can create or update a kubeconfig file with the AWS CLI update-kubeconfig command. Issue this command to get the access credentials for your cluster:

 aws eks update-kubeconfig --name sandbox --region AWS_REGION

 To verify that your cluster is configured correctly and running, execute the following command.

 kubectl get nodes

 The output will list all of the nodes in a cluster and the status of each node:

 [image:]

 Note To optimize K8s costs, you can use EC2 Spot instances, as they cost about 30–70% less than their on-demand counterparts. However, this requires some special considerations, as they could be terminated with only a 2-minute warning.

 At this point, you should be able to use Kubernetes. In the next section, we will automate the deployment of the Watchlist application described in chapter 7 into the K8s cluster with Jenkins following the PaC approach.

 11.2 Automating continuous deployment flow with Jenkins

 To complete a Kubernetes deployment from Jenkins, all we need are K8s deployment files, which will contain references to the Docker images, along with the configuration settings (for example, port, network name, labels, and constraints). To run this file, we will need to execute the kubectl apply command.

 On the develop branch of the watchlist-deployment GitHub repository, create a deployments folder. Inside it, create a movies-loader-deploy.yaml file by using your favorite text editor or IDE, with the content in the following listing. The deployment instructs Kubernetes on how to create and update the movies-loader service.

 Listing 11.4 Movie loader deployment resource

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: movies-loader
 namespace: watchlist
spec:
 selector:
 matchLabels:
 app: movies-loader
 template:
 metadata.
 labels.
 app: movies-loader
 spec:
 containers:
 - name: movies-loader
 image: ID.dkr.ecr.REGION.amazonaws.com/USER/movies-loader:develop
 env:
 - name: AWS_REGION
 value: REGION
 - name: SQS_URL
 value: https://sqs.REGION.amazonaws.com/ID/movies_to_parse_sandbox

 Note As a reminder, the movies-loader and movies-store services are using Amazon SQS to load and consume movie items, respectively. To grant those services permission to interact with SQS, you need to assign the AmazonSQSFullAccess policy to the EKS node group.

 The movies-loader service can be deployed to Kubernetes through a deployment resource. The deployment definition uses the develop tag of the movies-loader Docker image and defines a set of environment variables, such as the SQS URL and AWS region. The MongoDB resource can also be deployed with the mongodb-deploy.yaml file in the following listing.

 Listing 11.5 MongoDB deployment resource

 apiVersion: apps/v1
kind: Deployment
metadata:
 name: mongodb
 namespace: watchlist
spec:
 selector:
 matchLabels:
 app: mongodb
 template:
 metadata.
 labels.
 app: mongodb
 spec:
 containers:
 - name: mongodb
 image: bitnami/mongodb:latest
 env:
 - name: MONGODB_USERNAME
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: username
 - name: MONGODB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: password
 - name: MONGODB_DATABASE
 valueFrom:
 secretKeyRef:
 name: mongodb-access
 key: database

 The most interesting thing about this deployment definition is the environment variables part. Instead of hardcoding the MongoDB credentials, we are using K8s secrets. We’re creating secret store authentication credentials so only Kubernetes can access them.

 Before we create a Kubernetes secret, we need to maintain a space in the Kubernetes cluster where we can get a view on the list of pods, services, and deployments we use to build and run the application. We will create a dedicated namespace to associate all of our Kubernetes objects with the following command:

 kubectl create namespace watchlist

 Then, invoke the following Kubernetes command on your local machine to create MongoDB credentials secrets:

 kubectl create secret generic mongodb-access --from-literal=database='watchlist'
--from-literal=username='root.
--from-literal=password='PASSWORD' -n watchlist

 [image:]

 Create deployment files for the rest of the services: movies-store, movies-parser, and movies-marketplace. The deployments folder structure should look like this:

 mongodb-deploy.yaml
movies-store-deploy.yaml
movies-loader-deploy.yaml
movies-parser-deploy.yaml
movies-marketplace-deploy.yaml

 All the source code can be downloaded from the GitHub repository, under the chapter11/deployment/kubectl/deployments folder.

 To deploy the application with Jenkins, create a Jenkinsfile.eks file at the top-level directory of the watchlist-deployment project, as shown in the following listing. The Jenkinsfile will configure kubectl with the aws eks update-kubeconfig command. Then it issues a kubectl apply command to deploy the deployment resources. The kubectl apply command takes as an argument the deployments folder.

 Listing 11.6 Jenkinsfile deployment stages

 def region = 'AWS REGION' ❶
def accounts = [master:'production', preprod:'staging', develop:'sandbox']

node('master'){
 stage('Checkout'){
 checkout scm
 }

 stage('Authentication'){
 sh "aws eks update-kubeconfig
 --name ${accounts[env.BRANCH_NAME]} --region ${region}" ❷
 }

 stage('Deploy'){
 sh 'kubectl apply -f deployments/' ❸
 }
}

 ❶ AWS region where the EKS cluster is deployed

 ❷ Configures kubectl so that you can connect to an Amazon EKS cluster

 ❸ Deploys the new changes to EKS

 Before pushing the Jenkinsfile and deployment files to the Git remote repository, we need to install the kubectl command line on the Jenkins master. Also, we need to provide access to EKS with IAM roles. To grant Jenkins master permissions to interact with the K8s cluster, we must edit the aws-auth ConfigMap within Kubernetes. On your local machine, run the following command:

 kubectl edit -n kube-system configmap/aws-auth

 A text editor will open; add the Jenkins instance’s IAM role to the mapRoles section. Then, save the file and exit the text editor. Check whether the ConfigMap is properly configured with the following command:

 kubectl describe -n kube-system configmap/aws-auth

 [image:]

 Once the ConfigMap is configured, install aws-iam-authenticator, which is a tool to manage AWS IAM credentials for Kubernetes access. Refer to the AWS documentation at http://mng.bz/AOWW for the installation guide. Then, generate a kubeconfig with the AWS CLI update-kubeconfig command. The command should create a /home/ec2-user/.kube/config file with no warning. Now we can issue the kubectl get nodes command:

 [image:]

 Now, we’re ready to push the Jenkinsfile and Kubernetes deployment files to the Git repository under the develop branch:

 git add .
git commit -m "k8s deployment files"
git push origin develop

 The GitHub repository content should look similar to figure 11.4 after pushing K8s deployment files.

 [image:]

 Figure 11.4 Kubernetes deployment files in the Git repository

 Once the changes are committed, the GitHub webhook we created in section 7.6 will trigger a build on the watchlist-deployment multibranch job on the develop branch’s nested job; see figure 11.5.

 [image:]

 Figure 11.5 The kubectl apply command’s outpu.

 At the Deploy stage, the kubectl apply command will be executed to deploy the application deployment resources. On your local machine, run this command to list deployments running in the sandbox K8s cluster:

 kubectl get deployments --namespace=watchlist

 The four components (loader, parser, store, and marketplace) of our application will be deployed alongside a MongoDB server:

 [image:]

 These deployment resources are referencing Docker images stored in Amazon ECR. At the time of deploying the EKS cluster, we have granted permissions to the K8s cluster to interact with ECR. However, if your Docker images are hosted on a remote repository that requires username/password authentication, you need to create a Docker Registry secret with the following command:

 kubectl create secret docker-registry registry
--docker-username=USERNAME
--docker-password=PASSWOR.
--namespace watchlist

 Then, you need to reference this secret in your deployment file under the spec section as follows:

 spec:
 containers:
 - name: movies-loader
 image: REGISTRY_URL/USER/movies-loader:develop
 imagePullSecrets:
 - name: registry

 Our application is deployed. To access it, we need to create a K8s service for both the marketplace and store, as shown in the following listing. Create a services directory in the root repository, and then create a service for movies-store called movies-store.svc.yaml. The service creates a cloud network load balancer (for instance, AWS Elastic Load Balancer). This provides an externally accessible IP address for accessing the Movies Store API.

 Listing 11.7 Movie store service resource

 apiVersion: v1
kind: Service
metadata:
 name: movies-store
 namespace: watchlist
spec:
 ports:
 - port: 80
 targetPort: 3000
 selector:
 app: movies-store
 type: LoadBalancer

 Additionally, we create another service to expose the Movies Marketplace (UI). Add the content in the following listing to movies-marketplace.svc.yaml.

 Listing 11.8 Movies Marketplace service resource

 apiVersion: v1
kind: Service
metadata:
 name: movies-marketplace
 namespace: watchlist
spec:
 ports:
 - port: 80
 targetPort: 80
 selector:
 app: movies-marketplace
 type: LoadBalancer

 The movies-store and movies-parser services store the movie metadata in a MongoDB service. Therefore, we need to expose the MongoDB deployment through a Kubernetes service to allow MongoDB to receive incoming operations. The service is exposed to an internal IP in the cluster. The ClusterIP keyword makes the service reachable from only within the cluster. The MongoDB pod targeted by the service is determined by LabelSelector. Add the following YAML block to mongodb-svc.yaml.

 Listing 11.9 Movies Marketplace service resource

 apiVersion: v1
kind: Service
metadata:
 name: mongodb
 namespace: watchlist
spec:
 ports:
 - port: 27017
 selector:
 app: mongodb
 tier: mongodb
 clusterIP: None

 Finally, we update the Jenkinsfile in listing 11.6 to deploy the Kubernetes services by providing the services folder as a parameter to the kubectl apply command:

 stage('Deploy'){
 sh 'kubectl apply -f deployments/'
 sh 'kubectl apply -f services/'
}

 Push the changes to the develop branch. A new build will be triggered, and the services will be deployed, as shown in figure 11.6.

 [image:]

 Figure 11.6 The kubectl apply output

 Type the following command on your local machine:

 kubectl get svc -n watchlist

 It should show the load balancers for the three K8s services:

 [image:]

 On AWS Management Console, two public-facing load balancers should be created in the EC2 dashboard (http://mng.bz/Zx7Z), as shown in figure 11.7.

 [image:]

 Figure 11.7 Movies Store and Marketplace ELBs

 Note Make sure to set the load balancer FQDN in the environment.sandbox.tf file of the movies-marketplace project. The API URL will be injected while building the marketplace Docker image. Refer to section 9.1.2 for more details.

 To secure access to the Store API, we can enable an HTTPS listener on the public load balancer by updating the movies-store service with the changes detailed in the following listing.

 Listing 11.10 HTTPS listener configuration

 apiVersion: v1
kind: Service
metadata:
 name: movies-store
 namespace: watchlist
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-backend-protocol: http ❶
 service.beta.kubernetes.io/aws-load-balancer-ssl-cert: ❶
 arn:aws:acm:{region}:{user id}:certificate/{id} ❶
 service.beta.kubernetes.io/aws-load-balancer-ssl-ports: "https" ❶
spec:
 ports:
 - name: http
 port: 80
 targetPort: 3000
 - name: https ❷
 port: 443 ❷
 targetPort: 3000 ❷
 selector:
 app: movies-store
 type: LoadBalancer

 ❶ Used on the service to specify the protocol spoken by the backend (pod) behind a listener

 ❷ Exposes port 443 (HTTPS) and forwards requests internally to port 3000 of the movies-store pod

 Push the changes to the remote repository. Jenkins will deploy the changes and update the load balancer listener configuration to accept incoming traffic on port 443 (HTTPS), as shown in figure 11.8.

 [image:]

 Figure 11.8 Load balancer HTTP/HTTPS listeners

 It’s optional, but you can create an A record in Amazon Route 53 pointing to the load balancer FQDN and update environment.sandbox.ts to use the friendly domain name instead of the load balancer FQDN; see the following listing.

 Listing 11.11 Marketplace Angular environment variables

 export const environment = {
 production: false,
 apiURL: 'https://api.sandbox.domain.com',
};

 If you point your browser to the marketplace URL, it should call the Movies Store API and list the movies crawled from IMDb pages, as shown in figure 11.9. It might take several minutes for DNS to propagate and for the marketplace to show up.

 [image:]

 Figure 11.9 Watchlist Marketplace application

 Now, every time you change the source code of any of the four microservices, the pipeline will be triggered, and the changes will be deployed to the sandbox Kubernetes cluster, as shown in figure 11.10.

 [image:]

 Figure 11.10 Movies Marketplace CI/CD workflo.

 Finally, to visualize our application, we can deploy the Kubernetes dashboard by issuing the following commands in a terminal session:

 kubectl apply -f https://github.com/kubernetes-sigs/
metrics-server/releases/latest/download/components.yaml
kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v2.0.5/aio/deploy/recommended.yaml

 These commands will deploy the metrics-server and K8s dashboard v2.0.5 under the kube-system namespace. The metrics-server, which collects resource metrics from Kubelet, has to be running in the cluster for the metrics and graphs to be available in the Kubernetes dashboard.

 To grant access to cluster resources from the K8s dashboard, we need to create an eks-admin service account and cluster role binding to securely connect to the dashboard with admin-level permissions. Create an eks-admin.yaml file with the content in the following listing (apiVersion of the ClusterRoleBinding resource may differ between Kubernetes versions).

 Listing 11.12 Kubernetes dashboard service account

 apiVersion: v1
kind: ServiceAccount
metadata:
 name: eks-admin
 namespace: kube-system

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: eks-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 name: eks-admin
 namespace: kube-system

 Then, create a service account with the following command:

 kubectl apply -f eks-admin.yaml

 Now, create a proxy server that will allow you to navigate to the dashboard from the browser on your local machine. This will continue running until you stop the process by pressing Ctrl-C. Issue the kubectl proxy command, and the dashboard should be accessible from http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/#/login.

 Opening this URL will take us to the account authentication page for the Kubernetes dashboard. To get access to the dashboard, we need to authenticate our account. Retrieve an authentication token for the eks-admin service account with the following command:

 kubectl -n kube-system describe secret
$(kubectl -n kube-system get secre.
| grep eks-admi.
| awk '{print $1}')

 Now copy the token and paste it into the Enter Token field on the login screen. Click the Sign In button, and that’s it. You are now logged in as an admin.

 The Kubernetes dashboard, shown in figure 11.11, provides user-friendly features to manage and troubleshoot the deployed application. Awesome! You have successfully built a CI/CD pipeline for a cloud-native application in K8s.

 [image:]

 Figure 11.11 Kubernetes dashboard

 11.2.1 Migrating Docker Compose to K8s manifests with Kompose

 Another way of creating deployment files is by converting the docker-compose.yml file defined in chapter 10’s listing 10.12 with an open source tool called Kompose. Refer to the project’s official GitHub repository (https://github.com/kubernetes/kompose) for an installation guide.

 Once Kompose is installed, run the following command against the docker-compose.yml file provided in chapter 10 (chapter10/deployment/sandbox/docker-compose.yml):

 kompose convert -f docker-compose.yml

 This should create the Kubernetes deployments and services based on the settings and network topology specified in docker-compose.yml:

 [image:]

 You can push those files to the remote Git repository, and Jenkins will issue the kubectl apply -f command to deploy the services and deployments.

 However, writing and maintaining Kubernetes YAML manifests for all the required Kubernetes objects can be a time-consuming and tedious task. For the simplest of deployments, you would need at least three YAML manifests with duplicated and hardcoded values. That’s where a tool like Helm (https://helm.sh/) comes into play to simplify this process and create a single package that can be advertised to your cluster.

 11.3 Walking through continuous delivery steps

 Helm is a useful package manager for Kubernetes. It has two parts: the client (CLI) and the server (which is called Tiller and was removed in Helm 3). The client lives on your local machine, and the server lives on the Kubernetes cluster to execute what is needed.

 To fully grasp Helm, you need to become familiar with these three concepts.

 	
 Chart—A package of preconfigured Kubernetes resources

 	
 Release—A specific instance of a chart that has been deployed to the cluster by using Helm

 	
 Repository—A group of published charts that can be made available to others through a remote registry

 Check out the getting started page for instructions on downloading and installing Helm: https://helm.sh/docs/intro/install/.

 Note Helm is assumed to be compatible with n-3 versions of Kubernetes. Refer to the Helm Version Support Policy documentation to determine which version of Helm is compatible with your K8s cluster.

 At the time of writing this book, Helm v3.6.1 is being used. After installing Helm, create a new chart for the application called watchlist in the top-level directory of the watchlist-deployment project:

 helm create watchlist

 This should create a directory called watchlist with the following files and folders:

 	
 Values.yaml—Defines all values we want to inject into Kubernetes templates

 	
 Chart.yaml—Can be used to describe the version of the chart we’re packaging

 	
 .helmignore—Similar to .gitignore and .dockerignore, contains a list of files and folders to exclude while packaging the Helm chart

 	
 templates/—Contains the actual manifest such as Deployments, Services, ConfigMaps, and Secrets

 Next, define template files inside the templates folder for each microservice. The template file describes how to deploy each service on Kubernetes:

 [image:]

 For instance, the movies-loader template folder uses the same deployment files we defined in listing 11.4, except it references variables defined in values.yaml.

 The deployment.yaml file is responsible for deploying a deployment object based on the movies-loader Docker image. This definition pulls the built Docker image from the Docker Registry and creates a new deployment with it in Kubernetes; see the following listing.

 Listing 11.13 Movie loader deployment

 apiVersion: apps/v.
kind: Deploymen.
metadata.
 name: movies-loader
 namespace: {{ .Values.namespace }}
 labels.
 app: movies-loader
 tier: backen.
spec:
 selector.
 matchLabels.
 app: movies-loader
 template.
 metadata.
 name: movies-loader
 labels.
 app: movies-loader
 tier: backen.
 annotations:
 jenkins/build: {{ .Values.metadata.jenkins.buildTag | quote }}
 git/commitId: {{ .Values.metadata.git.commitId | quote }}
 spec:
 containers.
 - name: movies-loader
 image: "{{ .Values.services.registry.uri }}/
mlabouardy/movies-loader:{{ .Values.deployment.tag }}".
 imagePullPolicy: Always
 envFrom:
 - configMapRef:
 name: {{ .Values.namespace }}-movies-loader
 - secretRef:
 name: {{ .Values.namespace }}-secrets
 {{- if .Values.services.registry.secret }}
 imagePullSecrets:
 - name: {{ .Values.services.registry.secret }}
 {{- end }}

 Helm charts use {{}} for templating, which means that whatever is inside will be interpreted to provide an output value. We can also use a piping mechanism to combine two or more commands for scripting and filtering.

 The movies-loader container reference environment variables like AWS_REGION and SQS_URL are defined in configmap.yaml, as shown in the following listing.

 Listing 11.14 Movie loader ConfigMap

 apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ .Values.namespace }}-movies-loader
 namespace: {{ .Values.namespace }}
 labels.
 app: {{ .Values.namespace }}-movies-loader
data:
 AWS_REGION: {{ .Values.services.aws.region }}
 SQS_URL: https://sqs.{{ .Values.services.aws.region }}
.amazonaws.com/{{ .Values.services.aws.account }}/
movies_to_parse_{{ .Values.environment }}

 The deployment file also references sensitive information such as MongoDB credentials. These credentials are stored securely in Kubernetes secrets, which are provided in the following listing.

 Listing 11.15 Application secrets

 apiVersion: v1
kind: Secret
metadata:
 name: {{ .Values.namespace }}-secrets
 namespace: {{ .Values.namespace }}
data:
 MONGO_URI: {{ .Values.services.mongodb.uri | b64enc }}
 MONGO_DATABASE : {{ .Values.mongodb.mongodbDatabase | b64enc }}
 MONGODB_USERNAME : {{ .Values.mongodb.mongodbUsername | b64enc }.
 MONGODB_PASSWORD : {{ .Values.mongodb.mongodbPassword | b64enc }}

 Helm charts make it easy to set overridable defaults in the values.yaml file, allowing us to define a base setting. We can move as many variables as we want out of the template and into the values.yaml file. This way, we can easily update and inject new values at installation time:

 namespace: 'watchlist'
services:
 registry:
 uri: ''
 secret: ''
deployment:
 tag: ''
 workers:
 replicas: 2

 This allows us to create a portable package that can be customized during runtime by overriding the values.

 Also, note the use of custom annotations or metadata in the deployment file. We will inject the Jenkins build ID and Git commit ID during the build of the Helm chart. This can be useful for debugging and troubleshooting running Kubernetes deployments:

 annotations:
 jenkins/build: {{ .Values.metadata.jenkins.buildTag | quote }}
 git/commitId: {{ .Values.metadata.git.commitId | quote }}

 MongoDB offers a stable and official Helm chart that can be used for straightforward installation and configuration on Kubernetes. We define the MongoDB chart as a dependency in Chart.yaml under the dependencies section:

 dependencies:
 - name: mongodb
 version: 7.8.10
 repository: https://charts.bitnami.com/bitnami
 alias: mongodb

 Now that our chart is defined, on your terminal session, issue the following command to install the watchlist application via the Helm chart we just created:

 helm install watchlist ./watchlist -f values.override.yaml

 The command takes the values.override.yaml file, which contains the values to override at runtime, such as the environment name and MongoDB username and password:

 environment: 'sandbox'
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'develop'
 workers:
 replicas: 2

 Check installation progress by checking the status of deployments and pods. Type kubectl get pods -n watchlist to show the running pods:

 [image:]

 Note To check the generated manifests of a release without installing the chart, use the --dry-run flag to return rendered templates.

 We can now update the Jenkinsfile (chapter11/Jenkinsfile.eks) to use the Helm command line instead of kubectl. Since our application chart is already installed, we will use the helm upgrade command to upgrade the chart. This command takes as a parameter values to override, and sets the annotation values from the Jenkins environment variable BUILD_TAG and the commitID() method, as shown next.

 Listing 11.16 Helm upgrade within the Jenkins pipeline

 stage('Deploy'){
 sh """
 helm upgrade --install watchlis.
./watchlist -f values.override.yaml \
 --set metadata.jenkins.buildTag=${env.BUILD_TAG} \
 --set metadata.git.commitId=${commitID()}
 """
}

 Helm tries to perform the least invasive upgrade. It will update only things that have changed since the last release.

 Push the changes to the develop branch. The GitHub repository should look similar to figure 11.12.

 [image:]

 Figure 11.12 Watchlist Helm chart

 On Jenkins, a new build will be triggered. At the end of the Deploy stage, the helm upgrade command will be executed; the output is shown in figure 11.13.

 [image:]

 Figure 11.13 Helm upgrade output

 Now every change on the develop branch will build a new Helm chart and create a new release on the sandbox cluster. If the Docker image has been changed, Kubernetes rolling updates provide the functionality to deploy changes with 0% downtime.

 Note If something does not go as planned during a release, rolling back to a previous release is easy by using the helm rollback command.

 For code promotion to the staging environment, we just need to update the values .override.yaml file to set the environment value to staging and use the preprod image tag, as shown in the following listing.

 Listing 11.17 Staging variable.

 environment: 'staging'
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'preprod'
 workers:
 replicas: 2

 If you push the changes to the preprod branch, the application will be deployed to the Kubernetes staging cluster, as shown in figure 11.14.

 [image:]

 Figure 11.14 CI/CD workflow on preprod branch

 We can verify that the preprod version has been deployed by typing the following command:

 kubectl describe deployment movies-marketplace -n watchlist

 The movies-marketplace deployment has annotations with git/commitId equal to the GitHub commit ID responsible for triggering the Jenkins job, and the jenkins/build annotation’s value is the name of the Jenkins job that triggered the deployment (figure 11.15).

 [image:]

 Figure 11.15 Movies Marketplace deployment description

 For production deployment, update values.override.yaml with proper values, as shown in the following listing. In this example, we set the image tag to latest, the environment to production, and we configure five replicas of the movies-parser service.

 Listing 11.18 Production variables

 environment: production
mongodb:
 mongodbUsername: 'watchlist'
 mongodbPassword: 'watchlist'
deployment:
 tag: 'latest'
 workers:
 replicas: 5

 Push the new files to the master branch. At the end of the pipeline, the stack will be deployed to the K8s production cluster.

 Now if a push event occurs on the master branch on any of the four microservices, the CI/CD pipeline will be triggered, and user approval will be requested, as shown in figure 11.16.

 [image:]

 Figure 11.16 User approval for production deployment

 If the deployment is approved, the watchlist-deployment job will be triggered, and the master nested job will be executed. As a result, a new Helm release of the watchlist application will be created in production, as shown in figure 11.17.

 [image:]

 Figure 11.17 Application deployment in production

 Upon the completion of the deployment process, a Slack notification will be sent to a preconfigured Slack channel, as shown in figure 11.18.

 [image:]

 Figure 11.18 Production deployment Slack notification

 Run the kubectl get pods command. This should display five pods based on the movies-parser Docker image:

 [image:]

 To view the marketplace dashboard, locate the external IP of the load balancer in the EXTERNAL-IP column of the kubectl get services -n watchlist output:

 [image:]

 Navigate to that address in your browser, and the Movies Marketplace UI should be displayed, as you can see in figure 11.19.

 [image:]

 Figure 11.19 Marketplace production environment

 Under a production environment, you would replace the load balancer FQDN with an alias in Route 53. Refer to the official AWS documentation for instructions: http://mng.bz/Rq8P.

 11.4 Packaging Kubernetes applications with Helm

 So far, you have seen how to create one single chart for the microservices-based application and how to create a new release with Jenkins upon new Git commits. Another way of packaging the application is to create separate charts for each microservice, and then reference those charts as dependencies in the main chart (similar to a MongoDB chart). Figure 11.20 illustrates how Helm charts are packaged within a CI/CD pipeline.

 [image:]

 Figure 11.20 CI/CD of containerized application with Helm

 On a push event, a Jenkins build will be triggered to build the Docker image and package the new release in a Helm chart. From there, the new chart is deployed to the corresponding Kubernetes environment. Along the way, a Slack notification is sent to notify the developers about the pipeline status.

 On the movies-marketplace project, create a new Helm chart in the top-level directory by typing the following command:

 helm create chart

 It should create a new folder called chart with the following structure:

 [image:]

 As mentioned earlier, a Helm chart consists of metadata used to help describe the application, define constraints on the minimum required Kubernetes and/or Helm version, and manage the version of the chart. All of this metadata lives in the Chart.yaml file (chapter11/microservices/movies-marketplace), shown in the following listing.

 Listing 11.19 Movie loader chart

 apiVersion: v2
name: movies-marketplace
description: UI to browse top 100 IMDb movies
type: application
version: 1.0.0
appVersion: 1.0.0

 To be able to reference this chart from the main watchlist chart, we need to store it somewhere. Many open source solutions are available for storing Helm charts. GitHub can be used as a remote registry for Helm charts. Create a new GitHub repository called watchlist-charts and create an empty index.yaml file. This file will contain the metadata about available charts in the repository.

 Note Nexus Repository OSS supports Helm charts as well. You can publish charts to a Helm-hosted repository on Nexus.

 Then, push this file to the master branch by issuing these commands.

 git clone https://github.com/mlabouardy/watchlist-charts.git
cd watchlist-charts
touch index.yaml
git add index.yaml
git commit -m "add index.yaml"
git push origin master

 The GitHub repository will look like figure 11.21.

 [image:]

 Figure 11.21 Helm charts GitHub repository

 The Helm repository is an HTTP server that has a file index.yaml and all your chart files. To turn the GitHub repository into an HTTP server, we will enable GitHub pages.

 Click the Settings tab. Scroll down to the GitHub Pages section and select the master branch as a source, as shown in figure 11.22.

 [image:]

 Figure 11.22 Enabling GitHub pages

 With the private Helm repository ready to be used, let’s package and publish our first Helm chart. On the movies-marketplace project, update the Build stage to use a parallel build to build the Docker image and the Helm chart. The Build stage should look like the following listing. (The complete Jenkinsfile is available at chapter11/pipeline/movies-marketplace/Jenkinsfile.)

 Listing 11.20 Building the Docker image and Helm chart

 stage('Build') {
 parallel(
 'Docker Image': {
 switch (env.BRANCH_NAME) {
 case 'develop':
 docker.build(imageName, '--build-arg ENVIRONMENT=sandbox .') ❶
 break
 case 'preprod':
 docker.build(imageName, '--build-arg ENVIRONMENT=staging .') ❶
 break
 ...
 }
 },
 'Helm Chart': {
 sh 'helm package chart' ❷
 }
)
}

 ❶ Builds the appropriate Docker image by injecting the target environment settings

 ❷ Packages the application in a Helm chart

 The helm package command, as its name indicates, packages the chart directory into a chart archive (movies-marketplace-1.0.0.tgz). Finally, update the Push stage to use a parallel step as well, as shown in the following listing.

 Listing 11.21 Storing the Docker image in a private registry

 stage('Push') {
 parallel(
 'Docker Image': {
 sh "\$(aws ecr get-login --no-include-email --region ${region}) || true" ❶
 docker.withRegistry("https://${registry}") { ❷
 docker.image(imageName).push(commitID()) ❷
 if (env.BRANCH_NAME == 'develop') { ❷
 docker.image(imageName).push('develop') ❷
 } ❷
 ... ❷
 } ❷
 },
 'Helm Chart': { ❸
 ...
 }
)
}

 ❶ Authenticates with ECR in order to push the Docker images afterward

 ❷ Tags and stores the image in ECR

 ❸ Publishes the Helm chart to GitHub—see listing 11.22 for complete instructions.

 The Helm Chart stage will clone the watchlist-charts GitHub repository with the git clone command, and add the metadata of the new packaged Helm chart to index.yaml with the helm repo index command. Then it pushes index.yaml and the archive chart to the Git repository; see the following listing.

 Listing 11.22 Publishing the Helm chart to GitHub

 'Helm Chart': {
 sh 'helm repo index --url https://mlabouardy.github.io/watchlist-charts/ .' ❶
 sshagent(['github-ssh']) { ❷
 sh 'git clone git@github.com:mlabouardy/watchlist-charts.git.
 sh 'mv movies-marketplace-1.0.0.tgz watchlist-charts/'
 dir('watchlist-charts'){ ❸
 sh 'git add index.yaml movies-marketplace-1.0.0.tg.
&& git commit -m "movies-marketplace".
&& git push origin master' ❹
 }
 }
 }

 ❶ Generates an index file, given a directory containing packaged charts

 ❷ Provides SSH credentials to builds via an ssh-agent

 ❸ Changes current directory to watchlist-charts folder

 ❹ Commits and pushes the archive and index file to GitHub

 If you push the new Jenkinsfile to the Git remote repository, a new pipeline will be triggered, as shown in figure 11.23. At the Build stage, the movies-marketplace Docker image and Helm chart will be packaged. Next, the Push stage will be executed to push the Docker image to the Docker private registry and the Helm chart to the GitHub repository.

 [image:]

 Figure 11.23 CI/CD workflow with Helm and Docker

 Upon the completion of the CI/CD pipeline, a new archived chart will be available in the GitHub repository, as shown in figure 11.24.

 [image:]

 Figure 11.24 Packaging the Movies Marketplace chart

 The index.yaml file will reference the newly built Helm chart under the entries section, as you can see in figure 11.25.

 [image:]

 Figure 11.25 Helm repository metadata

 You can override the chart version set in Chart.yaml by providing the new version with the --version flag at the time of packaging a Helm chart:

 sh 'helm package chart --app-version ${appVersion} --version ${chartVersion}'

 Repeat the same steps for other repositories to create a Helm chart per service. Once done, the Helm charts repository should contain four archived files (figure 11.26).

 [image:]

 Figure 11.26 Application charts stored in the GitHub repository

 Next, we configure the GitHub repository as a Helm repository:

 helm repo add watchlist https://mlabouardy.github.io/watchlist-charts

 Finally, we can reference these charts in the watchlist Chart.yaml file under the dependencies section, as shown in the following listing.

 Listing 11.23 Watchlist application charts

 apiVersion: v2
name: watchlist
description: Top 100 iMDB best movies in history
type: application
version: 1.0.0
appVersion: 1.0.0
maintainers:
 - name: Mohamed Labouardy
 email: mohamed@labouardy.com
dependencies:
 - name: mongodb
 version: 7.8.10
 repository: https://charts.bitnami.com/bitnami
 alias: mongodb
 - name: movies-loader
 version: 1.0.0
 repository: https://mlabouardy.github.io/watchlist-charts
 - name: movies-parser
 version: 1.0.0
 repository: https://mlabouardy.github.io/watchlist-charts
 - name: movies-store
 version: 1.0.0
 repository: https://mlabouardy.github.io/watchlist-charts
 - name: movies-marketplace
 version: 1.0.0
 repository: https://mlabouardy.github.io/watchlist-charts

 Now that all pieces are running together and we checked the core functionality, let’s validate that the solution is up for a typical GitFlow development process.

 11.5 Running post-deployment smoke tests

 The microservices are deployed. However, that doesn’t mean these services are properly configured and correctly performing all the jobs that they’re supposed to be doing.

 You want to have a health check that indicates the current health operation of your services. You can set up a simple one by implementing an HTTP request to a service URL and check whether the response code is 200.

 For instance, let’s implement a health check for the movies-store service. Update the Jenkinsfile of the movies-store project (chapter11/pipeline/movies-store/Jenkinsfile) to add the function shown in the following listing.

 Listing 11.24 Groovy function to return API URL

 def getUrl(){
 switch(env.BRANCH_NAME){
 case 'preprod':
 return 'https://api.staging.domain.com'
 case 'master':
 return 'https://api.production.domain.com'
 default:
 return 'https://api.sandbox.domain.com'
 }
}

 The function returns the service URL based on the current Git branch name. Finally, we add a Healthcheck stage at the end of the pipeline to issue a cURL command on the service URL:

 stage('Healthcheck'){
 sh "curl -m 10 ${getUrl()}"
}

 The -m flag is used to set a time-out of 10 seconds, to give Kubernetes enough time to pull the latest built image and deploy the changes into the cluster before checking the service health status.

 Once you push the changes to the Git remote repository, a new build will be triggered. Upon the completion of the CI/CD pipeline, a cURL command will be executed with a GET request on the service URL, as shown in figure 11.27.

 [image:]

 Figure 11.27 cURL command output

 If the service responds before the expiration time-out, the cURL command will return a successful exit code. Otherwise, an error will be thrown to make the pipeline fail.

 However, if the service is responding, that doesn’t mean it’s working correctly or a new version of the service has been successfully deployed.

 To be able to issue advanced HTTP requests against the service URL, we will install the Jenkins HTTP Request plugin (www.jenkins.io/doc/pipeline/steps/http_request/) from the Jenkins Plugins page, as shown in figure 11.28.

 [image:]

 Figure 11.28 Jenkins HTTP Request plugin

 We can now update the movies-store’s Jenkinsfile. The plugin offers an httpRequest DSL object that can be used to call a remote URL. In the following listing, httpRequest returns a response object that exposes the response body through a content attribute. Then, we use the JsonSlurper class to parse the response to a JSON object. The updated Healthcheck stage is shown in the following listing.

 Listing 11.25 Movie store Healthcheck stage

 stage('Healthcheck'){
 def response = httpRequest getUrl()
 def json = new JsonSlurper().parseText(response.content)
 def version = json.get('version')

 if version != '1.0.0' {
 error "Expected API version 1.0.0 but got ${version}"
 }
}

 The service returns the version number deployed in Kubernetes. This value is fixed in the service source code, but you can inject the Jenkins build ID as a version number while building the Docker image of the service and check whether the returned version is equal to the Jenkins build ID at the Healthcheck stage.

 Figure 11.29 shows the end result of the CI/CD pipeline of each microservice running in Kubernetes.

 [image:]

 Figure 11.29 Complete CI/CD workflow for containerized microservices

 When you opt for Jenkins to build cloud-native applications running in Kubernetes, you’re required to create extensive configurations, as well as spending considerable time learning and using all of the necessary plugins to make it happen. Fortunately, Jenkins X comes into play to offer simplicity and ready-to-go templates.

 11.6 Discovering Jenkins X

 Jenkins X (https://jenkins-x.io/) is a CI/CD solution for modern cloud applications on Kubernetes. It’s used to simplify the configurations and lets you harness the power of Jenkins 2.0. It also lets you use open source tools like Helm, Artifact Hub, ChartMuseum, Nexus, and Docker Registry to easily build cloud-native applications.

 Jenkins X adds what’s missing from Jenkins: comprehensive support for continuous delivery and managing the promotion of projects to preview, staging, and production environments running in Kubernetes. It uses GitOps to manage the configuration and version of the Kubernetes resources that are deployed to each environment. So each environment has its own Git repository that contains all the Helm charts, their versions, and the configuration for the applications to be run in the environment.

 When following this methodology, Git is the single source of truth for both the infrastructure as code and the application code. All changes to the desired state are Git commits. So it’s easy to see who made changes when, and more importantly, it’s then easy to revert changes that cause bad things to happen.

 With that being said, let’s get our hands dirty and cover how Jenkins X works. To get started, install the Jenkins X CLI, and pick the most suitable instructions for your operating system: http://mng.bz/20ZX. Run jx version --short to make sure you’re on the latest stable version. I’m using version 2.1.71 at the time of writing this book.

 Jenkins X runs on a Kubernetes cluster. If you’re running on one of the major cloud providers (Amazon EKS, GKE, or AKS), Jenkins X provides multiple approaches for creating this cluster:

 jx create cluster eks --cluster-name=watchlist
Jx create cluster aks --cluster-name=watchlist
Jx create cluster gke --cluster-name=watchlist
Jx create cluster iks --cluster-name=watchlist

 Note You can run Jenkins X on the existing EKS cluster by referring to the official guide at https://jenkins-x.io/v3/admin/setup/operator/.

 Install Jenkins X on a K8s cluster by issuing the following command from your terminal session:

 jx boot

 You will be asked a series of questions that will configure the installation, as shown in figure 11.30.

 When the installation is done, you will be presented with useful links and the password for your Jenkins X–related services. Don’t forget to save it somewhere for future use.

 Jenkins X also deploys a set of supporting services, including the Jenkins dashboard, Docker Registry, ChartMuseum, and Artifact Hub to manage Helm charts, and Nexus, which serves as a Maven and npm repository.

 [image:]

 Figure 11.30 Jenkins X installation output

 The following is the output of the kubectl get svc command:

 [image:]

 Point your browser to the Jenkins URL printed during the installation process and sign in with the admin username and password displayed previously in figure 11.30. The dashboard in figure 11.31 should be served.

 [image:]

 Figure 11.31 Jenkins web dashboard

 It is possible to run Jenkins in serverless mode while installing Jenkins X. Then, instead of running the Jenkins web dashboard, which continuously consumes CPU and memory resources, you can run Jenkins only when you need it.

 The Jenkins X installation also creates two Git repositories by default: one for your staging environment and one for production, as shown in figure 11.32:

 	
 Staging—Any merge performed on the project master branch will automatically be deployed as a new version to staging (auto promote).

 	
 Production—You will have to manually promote your staging application version into production by using a jx promote command.

 [image:]

 Figure 11.32 Application deployment environments

 Jenkins X uses these repositories to manage deployments to each environment, and promotions are done via Git pull requests. Each repository contains a Helm chart that specifies the applications to be deployed to the corresponding environment. Each repository also has a Jenkinsfile to handle promotions.

 Now that you have a working cluster with Jenkins X installed, we are going to create an application that can be built and deployed with Jenkins X. For clarity, I have created a RESTful API in Go that serves an HTTP endpoint with a list of the top 100 IMDb movies. We will import this project inside Jenkins with this command:

 jx import

 If you wish to import a project that is already in a remote Git repository, you can use the --url argument:

 jx import --url https://github.com/mlabouardy/jx-movies-store

 The following is the output of the import command:

 [image:]

 Jenkins X will go over the code and choose the right default build pack for the project based on the programming language. Our project was developed in Go, so it will be a Go build pack. Jenkins X will generate a Jenkinsfile, Dockerfile, and Helm chart based on the project runtime environment. The import command will create a remote repository on GitHub, register a webhook, and push the code to the remote repository, shown in figure 11.33.

 [image:]

 Figure 11.33 Application GitHub repository

 Jenkins X will also automatically create a Jenkins multibranch pipeline job for the project, and the pipeline will be triggered. You can check the progress of the pipeline with this command:

 jx get activity -f jx-movies-store -w

 [image:]

 You can also track the progress of the pipeline from the Jenkins dashboard by clicking the project job; figure 11.34 shows the result.

 [image:]

 Figure 11.34 Application build pipeline

 The pipeline stages are executed on a Kubernetes pod running in the Kubernetes cluster we provisioned earlier, as you can see in figure 11.35.

 [image:]

 Figure 11.35 Jenkins workers based on Kubernetes pods

 The executed pipeline will clone the repository, build the Docker image, and push it to a Docker registry, as shown in the following listing.

 Listing 11.26 Build stage when an event occurs on master branch

 stage('Build Release') {
 when {
 branch 'master'
 }
 steps {
 container('go') {
 dir('/home/jenkins/agent/go/src/
github.com/mlabouardy/jx-movies-store') {
 checkout scm
 sh "git checkout master"
 sh "git config --global credential.helper store"
 sh "jx step git credentials"
 sh "echo \$(jx-release-version) > VERSION"
 sh "jx step tag --version \$(cat VERSION)"
 sh "make build"
 sh "export VERSION=`cat VERSION.
&& skaffold build -f skaffold.yaml"
 sh "jx step post build --image $DOCKER_REGISTRY/$ORG/$APP_NAME:\$(cat VERSION)"
 }
 }
 }
}

 A Helm chart will be packaged and pushed to the ChartMuseum repository, and a new release will be published on the project GitHub repository, as shown in figure 11.36. Jenkins X uses semantic versioning for tagging.

 [image:]

 Figure 11.36 Publishing the application release

 The release will be promoted automatically to the staging environment, as shown in figure 11.37.

 [image:]

 Figure 11.37 Jenkins pipeline on the master branch

 During the promotion stage, a new PR will be created by Jenkins X to deploy the new release to staging. This PR will add our application and its version in the env/requirements.yaml file inside the Git repository, as shown in figure 11.38.

 [image:]

 Figure 11.38 Promoting the application to staging

 Now you can see that the multibranch jx-movies-store pipeline is triggered for the pull request. It will check out the PR, perform a helm build, and execute tests on the environment along with code review and approval. When it’s successful, it will merge the PR with the master, see figure 11.39.

 [image:]

 Figure 11.39 Deploying an application to staging

 Once the application is deployed, we can type jx get applications to get the access URL for the application, as shown in figure 11.40.

 [image:]

 Figure 11.40 Application overall health status

 Now we will update our application and see what will happen! Let’s create a new feature branch:

 git checkout -b feature/readme
git add README.md
git commit -m "update readme"
git push origin feature/readme

 Jenkins X creates a GitHub webhook during the import of our application. This means we can just commit a change, and our application will be updated automatically, as shown in figure 11.41.

 [image:]

 Figure 11.41 Building GitHub pull request

 Jenkins X automatically spins up preview environments for our pull request, so we can get fast feedback before changes are merged to the master:

 [image:]

 Jenkins X creates a preview environment in the PR for the application changes and displays a link to evaluate the new feature, as shown in figure 11.42.

 [image:]

 Figure 11.42 Pull request preview environment

 The preview environment is created whenever a change is made to the repository, allowing any relevant user to validate or evaluate features, bug fixes, or security hotfixes. If we click the preview environment URL, we should have access to the service REST API, as shown in figure 11.43.

 [image:]

 Figure 11.43 Movies Store API

 Once the new changes are validated, we can confirm the code and functionality changes with an /approve comment, as shown in figure 11.44. This simple comment will merge the code changes back to the master branch and initiate a build on the master branch.

 [image:]

 Figure 11.44 ChatOps commands within Git PR

 Jenkins X offers multiple commands that can be used while managing pull requests. Each command triggers a specific action. Table 11.2 summarizes the most used commands.

 Upon the completion of the build on the master branch, a new release will be published, as shown in figure 11.45.

 Table 11.2 ChatOps commands

 	
 Command

 	
 Description

 	
 /approve

 	
 This PR can be merged. This command must be from someone in the repo OWNERS file.

 	
 /retest

 	
 Rerun any failed test pipeline contexts for this PR.

 	
 /assign USER

 	
 Assign the PR to the given user.

 	
 /lgtm

 	
 This PR looks good to me. This command can be from anyone with access to the repo.

 [image:]

 Figure 11.45 New application release

 When you’re satisfied with your application, you can use the jx CLI to promote the application to a different environment using a GitOps approach. For example, we can promote our application to production with the following command:

 jx promote --app jx-movies-store --version 0.0.3 --env production

 A new PR will be created, but this time on our production repository, and the environment-watchlist-production job is triggered, as shown in figure 11.46.

 [image:]

 Figure 11.46 Promoting the application to production

 Once the pull request is validated, the production pipeline runs Helm, which deploys the environment, pulling Helm charts from ChartMuseum, and Docker images from the Docker Registry. Kubernetes creates the project’s resources, typically a pod, service, and ingress.

 Jenkins X uses Git branch patterns to determine which branch names are automatically set up for CI/CD. By default, the master branch, and any branch starting with PR- or feature will be scanned. You can set up your own branch discovery mechanism with the following command:

 jx import --branches "develop|preprod|master|PR-.*"

 Note If you are done with your Amazon EKS cluster, you should delete it and its resources so that you do not incur additional charges. Issue a terraform destroy command to delete the AWS resources.

 Summary

 	
 Kubernetes manages containerized applications on clusters of nodes by helping operators deploy, scale, update, and maintain their services, and providing mechanisms for service discovery.

 	
 The kubectl apply command can be used from Jenkins pipelines to perform deployments on K8s clusters.

 	
 A Helm chart encapsulates Kubernetes object definitions and provides a mechanism for configuration at deployment time.

 	
 GitHub pages have built-in support for installing Helm charts from an HTTP server.

 	
 Jenkins X creates a Kubernetes pod for each agent started, defined by the Docker image to run, and stops it after each build.

 	
 Jenkins X preview environments are used to get early feedback on changes to applications before the changes are merged into the master branch.

 	
 Jenkins X does not aim to replace Jenkins but builds on it with best-of-breed open source tools. It’s a great way to achieve CI/CD with batteries included, without having to assemble things together.

 12 Lambda-based serverless functions

 This chapter covers

 	Implementing a CI/CD pipeline for a serverless-based application from scratch

 	Setting up continuous deployment and delivery with AWS Lambda

 	Separating multiple Lambda deployment environments

 	Implementing API Gateway multistage deployments with Lambda alias and stage variables

 	Delivering email notifications with attachments upon completion of CI/CD pipelines

 In the previous chapters, you learned how to write a CI/CD pipeline for a containerized application running in both Docker Swarm and Kubernetes. In this chapter, you will learn how to deploy the same application written in a different architecture.

 Serverless is the fastest-growing architectural movement right now. It allows developers to develop scalable applications faster by delegating the full responsibility of managing the underlying infrastructure to the cloud provider. That said, going serverless carries several key challenges, one of which is CI/CD.

 12.1 Deploying a Lambda-based application

 Multiple serverless providers are out there, but to keep it simple, we’ll use AWS—and specifically, AWS Lambda (https://aws.amazon.com/lambda/), which is the best known and most mature solution in the serverless space today. AWS Lambda, launched at AWS re:Invent 2014, was the first implementation of serverless computing. Users can upload their code to Lambda, which then performs operational and scaling activities on behalf of the users.

 The service follows an event-driven architecture. This means the code deployed in Lambda can be triggered in response to events like HTTP requests coming from services like Amazon API Gateway (https://aws.amazon.com/api-gateway/).

 Before going into further detail about how to create a CI/CD pipeline for a serverless application, we will look at the corresponding architecture. Figure 12.1 shows how serverless services like Amazon API Gateway, Amazon DynamoDB, Amazon S3, and AWS Lambda fit into the application architecture.

 [image:]

 Figure 12.1 Watchlist application based on serverless architecture. Each Lambda function is responsible for a single API endpoint. The endpoints are managed through API Gateway and consumed by the Marketplace service hosted on an S3 bucket.

 AWS Lambda empowers microservice development. That being said, each endpoint triggers a different Lambda function. These functions are independent of one another and can be written in different languages. Hence, this leads to scaling at the function level, easier unit testing, and loose coupling. All requests from clients first go through API Gateway. It then routes the incoming request to the right Lambda function accordingly. The functions are stateless, so that’s where DynamoDB comes into the scene, to manage data persistence across Lambda functions. The Amazon S3 bucket is used to serve the marketplace static web application. Finally, an Amazon CloudFront distribution (optional) is used to deliver static assets such as Cascading Style Sheets (CSS) or JavaScript files from edge cache locations around the globe.

 To deploy a Lambda function, we need to create an AWS Lambda resource and an IAM execution role with a list of AWS resources that the Lambda function has access to during runtime. For instance, the Lambda function MoviesStoreListMovies issues a Scan operation on a DynamoDB table to fetch a list of movies. Therefore, the Lambda execution role should grant access to the DynamoDB table.

 To avoid duplication of code and provide a lightweight abstraction for creating Lambda functions, we will use Terraform modules. A module is a container for multiple resources that are used together.

 Note You can use Terraform Registry (https://registry.terraform.io/) to download well-tested modules built by the community or publish your own modules remotely.

 The module responsible for creating an AWS Lambda resource is located under the modules folder (chapter12/terraform/modules). Create a new lambda.tf file with a module block for each Lambda function, as shown in the following listing. The module resource references the custom module through the source argument and overrides default variables such as the Lambda runtime environment and environment variables.

 Listing 12.1 Creating Lambda functions with the Terraform module

 module "MoviesLoader" {
 source = "./modules/function"
 name = "MoviesLoader"
 handler = "index.handler"
 runtime = "python3.7"
 environment = {
 SQS_URL = aws_sqs_queue.queue.id
 }
}

module "MoviesParser" {
 source = "./modules/function"
 name = "MoviesParser"
 handler = "main"
 runtime = "go1.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreListMovies" {
 source = "./modules/function"
 name = "MoviesStoreListMovies"
 handler = "src/movies/findAll/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreSearchMovies" {
 source = "./modules/function"
 name = "MoviesStoreSearchMovies"
 handler = "src/movies/findOne/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.movies.id
 }
}

module "MoviesStoreViewFavorites" {
 source = "./modules/function"
 name = "MoviesStoreViewFavorites"
 handler = "src/favorites/findAll/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.favorites.id
 }
}

module "MoviesStoreAddToFavorites" {
 source = "./modules/function"
 name = "MoviesStoreAddToFavorites"
 handler = "src/favorites/insert/index.handler"
 runtime = "nodejs14.x"
 environment = {
 TABLE_NAME = aws_dynamodb_table.favorites.id
 }
}

 This code will provision a MoviesLoader Lambda function based on the Python 3.7 runtime environment, a MoviesParser function based on the Go runtime, and a MoviesStoreListMovies function based on the Node.js environment.

 Next, we will deploy a RESTful API with Amazon API Gateway and define HTTP endpoints to trigger the Lambda functions upon incoming HTTP/HTTPS requests. The Terraform code in listing 12.2 exposes a GET method on the /movies resource. When a GET method is invoked on the /movies endpoint, the MoviesStoreListMovies Lambda function will be triggered to return a list of IMDb movies stored on the DynamoDB table. Add the code shown in the following listing to apigateway.tf.

 Listing 12.2 GET /movies endpoint definition

 resource "aws_api_gateway_resource" "path_movies" {
 rest_api_id = aws_api_gateway_rest_api.api.id
 parent_id = aws_api_gateway_rest_api.api.root_resource_id
 path_part = "movies"
}
module "GetMovies" {
 source = "./modules/method"
 api_id = aws_api_gateway_rest_api.api.id
 resource_id = aws_api_gateway_resource.path_movies.id
 method = "GET"
 lambda_arn = module.MoviesStoreListMovies.arn
 invoke_arn = module.MoviesStoreListMovies.invoke_arn
 api_execution_arn = aws_api_gateway_rest_api.api.execution_arn
}

 Note In addition to providing a unified entry point for Lambda functions, API Gateway comes with powerful features such as caching, cross-origin resource sharing (CORS) configuration, security, and authentication.

 Define the rest of the API endpoints, or download the complete apigateway.tf file from chapter12/terraform/apigateway.tf.

 The Movies Marketplace content—including HTML, CSS, JavaScript, images, and other files—will be hosted in an Amazon S3 bucket. The end users will then access the application by using the public website URL exposed by Amazon S3. Hence, we don’t need to run any web server such as NGINX or Apache to make the web application available. The Terraform code in the following listing (s3.tf) creates an S3 bucket and enables website hosting.

 Listing 12.3 S3 website hosting configuration

 resource "aws_s3_bucket" "marketplace" {
 bucket = "marketplace.${var.domain_name}"
 acl = "public-read"
 website {
 index_document = "index.html"
 error_document = "index.html"
 }
}

 The bucket access-control list (ACL) must be set to public-read. The website block is where we define the index document for the application. Also, we grant access to the static content by attaching a bucket policy. The bucket policy grants s3:GetObject to all principals for any object in the bucket.

 Note Unless you want to access the marketplace via the S3 bucket URL, you can use CloudFront on top of S3 to serve the application content by using a custom domain name over SSL.

 Install the local modules with the terraform init command and run terraform apply to provision the AWS resources. Creating the whole infrastructure should take a few seconds. After the creation steps are complete, the API and marketplace URLs will be displayed in the Outputs section, as you can see in figure 12.2.

 [image:]

 Figure 12.2 API Gateway and S3 website URLs

 The api variable holds the RESTful API URL powered by API Gateway, and the marketplace variable is the S3 website URL for the marketplace application. If you head to AWS Lambda console (http://mng.bz/10Qg), the Lambda functions in figure 12.3 should be deployed.

 [image:]

 Figure 12.3 Watchlist application’s Lambda functions

 Point your favorite browser to the API Gateway URL, and navigate to the /movies endpoint. The HTTP request should trigger the MoviesStoreListMovies Lambda function responsible for listing movies. The error message in figure 12.4 will be displayed.

 [image:]

 Figure 12.4 MoviesStoreListMovies HTTP response

 Right now, no code is deployed to Lambda functions, so there would be nothing to see. To list movies, we need to deploy the function’s code to the Lambda resource. In the upcoming section, we will create a CI/CD pipeline in Jenkins to automate the deployment of Lambda functions. Figure 12.5 illustrates the target CI/CD workflow.

 [image:]

 Figure 12.5 CI/CD workflow for a serverless application

 A pipeline will be triggered whenever you make a change to your application’s source code. The Jenkins master will schedule the build on one of the available Jenkins workers. The worker will execute the stages described in the Jenkinsfile located in the root directory of the application Git repository. The stages Checkout and Tests are given in chapter 8. The Build stage will compile the source code, install needed dependencies, and generate a deployment package (zip archive). Next, the Push stage will store the zip file in a remote S3 bucket and finally, the Deploy stage will be executed to update the Lambda function’s code with the newest changes.

 12.2 Creating deployment packages

 Before integrating the serverless application in Jenkins, we need to store the Lambda functions’ source code in a centralized remote repository for versioning. When it comes to serverless applications, two strategies are most used to organize functions into repositories:

 	
 Mono-repo—Everything is put into the same repository; cohesive functions that work together to serve a business feature are grouped together under the same repository.

 	
 One repository per service—Each Lambda function gets its own Git repository, with its own CI/CD pipeline.

 This section doesn’t go into the details around which is better, but instead shows how to build a CI/CD pipeline with the two approaches.

 12.2.1 Mono-repo strategy

 The MoviesLoader service, which consists of a single Lambda function written in Python, is responsible for loading a list of movies into a message queue. Create a GitHub repository, shown in figure 12.6, for the movies-loader Lambda function, and then push the source code available in the book’s repository (chapter12/functions) to the develop branch.

 [image:]

 Figure 12.6 MoviesLoader Lambda function GitHub repository

 The Jenkinsfile (chapter12/functions/movies-loader/Jenkinsfile) is stored in the root repository. It’s similar to the one provided in chapter 8’s listing 8.3. Upon a push event, it will check out the function source code and run unit tests inside a Docker container. Having proper unit tests in place safeguards against subsequent Lambda code updates. This definition file, shown in the following listing, must be committed to the Lambda function’s code repository.

 Listing 12.4 Running function unit tests inside a Docker container

 def imageName = 'mlabouardy/movies-loader'
node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED') ❶
 }
 stage('Unit Tests'){
 def imageTest= docker.build("${imageName}-test", "-f Dockerfile.test .")
 imageTest.inside{
 sh "python test_index.py"
 }
 }
 } catch(e){
 currentBuild.result = 'FAILED' ❷
 throw e
 } finally {
 notifySlack(currentBuild.result) ❸
 }
}

 ❶ Sends a Slack notification when the build starts, by using the custom notifySlack method

 ❷ When an error occurs, it’s cached here, and the currentBuild.result variable is set to FAILED so the right Slack notification will be sent afterward.

 ❸ When the pipeline is completed (success or failure), a Slack notification is sent to raise awareness about the pipeline status.

 In listing 12.5, we create a deployment package, which is a zip file that includes both the Python code and any dependencies that the code needs to run. The Build stage generates a zip file and uses the Git commit ID as a name. Finally, we push the zip file to an S3 bucket for versioning and delete the file to save space.

 Listing 12.5 Generating a deployment package

 def functionName = 'MoviesLoader'
def imageName = 'mlabouardy/movies-loader'
def bucket = 'deployment-packages-watchlist' ❶
def region = 'AWS REGION'

node('workers'){
 try {
 stage('Checkout'){...} ❷

 stage('Unit Tests'){...} ❸

 stage('Build'){
 sh "zip -r ${commitId}.zip index.py movies.json" ❹
 }

 stage('Push'){
 sh "aws s3 cp ${commitId}.zip s3://${bucket}/${functionName}/" ❺
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm -rf ${commitId}.zip " ❻
 }
}

 ❶ The name of the S3 bucket where the deployment packages (zip files) are stored

 ❷ Clones the Git repository. The instruction was omitted for brevity; see chapter12/functions/movies-loader/Jenkinsfile for the command.

 ❸ Runs unit tests within a Docker container. See chapter12/functions/movies-loader/Jenkinsfile for instructions.

 ❹ Creates an archive (zip file) with the function entrypoint (index.py) and the movies JSON array. The commitId function is used to create a unique ID for the archive based on the current Git commit ID.

 ❺ Stores the archive to an S3 bucket

 ❻ Deletes the archive at the end of the pipeline to save hard disk space

 Note We use the Git commit ID as a name for the deployment package to give a meaningful and significant name for each release and be able to roll back to a specific commit if things go wrong.

 On Jenkins, create a new multibranch pipeline job for the MoviesLoader lambda function (refer to chapter 7 for a step-by-step guide). Jenkins will discover the develop branch, and a new build will start; see figure 12.7.

 [image:]

 Figure 12.7 MoviesLoader Lambda function pipeline

 You can drill down to see the steps on the UI that match our steps in the Jenkinsfile. While Jenkins is executing each stage, you can see the activity. You can see the tests running as part of the Unit Tests stage (figure 12.8). If tests are successful, a zip file will be generated and stored in an S3 bucket.

 [image:]

 Figure 12.8 Pipeline execution logs

 Open the S3 console and click the bucket used by the pipeline for package storage. A new deployment package should be available with a key name identical to the Git commit ID, as shown in figure 12.9.

 [image:]

 Figure 12.9 S3 bucket for deployment packages storage

 Similarly for the movies-parser function, push the function source code to a dedicated GitHub repository, shown in figure 12.10.

 [image:]

 Figure 12.10 MoviesParser Lambda function GitHub repository

 Create a Jenkinsfile (chapter12/functions/movies-parser/Jenkinsfile) with similar stages to chapter 8’s listing 8.8 in the top-level directory of the Git repository; see the following listing.

 Listing 12.6 Running function pre-integration tests in parallel

 def imageName = 'mlabouardy/movies-parser'

node('workers'){
 try{
 stage('Checkout'){
 checkout scm
 }

 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .")
 stage('Pre-integration Tests'){
 parallel(
 'Quality Tests': {
 imageTest.inside{
 sh 'golint'
 }
 },
 'Unit Tests': {
 imageTest.inside{
 sh 'go test'
 }
 },
 'Security Tests': {
 imageTest.inside('-u root:root'){
 sh 'nancy /go/src/github/mlabouardy/
movies-parser/Gopkg.lock'
 }
 }
)
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

 The function is written in Go, so we need to build a binary with the Docker multistage build feature, as explained in listing 9.2. Then, we copy the built binary from the Docker container and generate a zip package. Finally, we push the deployment package to the S3 bucket, as shown in the following listing.

 Listing 12.7 Building a Go-based Lambda deployment package

 def functionName = 'MoviesParser'
def imageName = 'mlabouardy/movies-parser'
def region = 'eu-west-3'

node('workers'){
 try{
 stage('Checkout'){...} ❶
 stage('Pre-integration Tests'){...} ❶

 stage('Build'){
 sh """
 docker build -t ${imageName} .
 docker run --rm ${imageName}
 docker cp ${imageName}:/go/src/github.com/mlabouardy/
movies-parser/main main
 zip -r ${commitID()}.zip main
 """
 }

 stage('Push'){
 sh "aws s3 cp ${commitID()}.zip s3://${bucket}/${functionName}/"
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm ${commitID()}.zip"
 }
}

 ❶ Refer to listing 12.6 for the instructions.

 Push the changes to the movies-parser Git repository, and create a new multibranch pipeline job for movies-parser. The pipeline stages should be executed. Upon completion, the pipeline should look like figure 12.11 in the Blue Ocean view.

 [image:]

 Figure 12.11 MoviesParser Lambda function workflow

 Figure 12.12 shows the console output of the Push stage. The function deployment package will be stored under the MoviesParser subfolder.

 [image:]

 Figure 12.12 Publishing deployment package to S3

 The obvious counterpart to the multi-repo pattern is the mono-repo approach. In this pattern, a single repository holds a collection of Lambda functions grouped by business capabilities.

 12.2.2 Multi-repo strategy

 The Movies Store API is split into multiple Lambda functions (MoviesStoreListMovies, MoviesStoreSearchMovie, MoviesStoreViewFavorites, MoviesStoreAddToFavorites). The easiest way to share code among these functions is by having them all together in a single repository. Create a new GitHub repository (chapter12/functions/movies-store), shown in figure 12.13.

 The src/ folder at the root is made up of a collection of services. Each service deals with a relatively small and self-contained function. For instance, the movies/findAll folder is responsible for serving a list of movies from the DynamoDB table. The package.json file is located at the root of the repo. However, it is fairly common to have a separate package.json inside each service directory.

 [image:]

 Figure 12.13 Multiple Lambda functions stored in single repository

 On the movies-store repository, create a Jenkinsfile (chapter12/functions/movies-store/Jenkinsfile) by using your favorite text editor or IDE with the content in the following listing. Refer to listing 8.14 for more details about the implemented stages.

 Listing 12.8 Running quality tests and generating code coverage reports

 def imageName = 'mlabouardy/movies-store'
node('workers'){
 try {
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .")

 stage('Tests'){
 parallel(
 'Quality Tests': {
 sh "docker run --rm ${imageName}-test npm run lint"
 },
 'Unit Tests': {
 sh "docker run --rm ${imageName}-test npm run test"
 },
 'Coverage Reports': {
 sh "docker run --r.
-v $PWD/coverage:/app/coverage ${imageName}-tes.
npm run coverage"
 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: "$PWD/coverage",
 reportFiles: "index.html",
 reportName: "Coverage Report"
])
 }
)
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

 Next, we run a Docker container from a Node.js base image to install external dependencies by running the npm install command. Then, we copy the node_modules folder from the running container to the current workspace and create a zip file, as shown in the next listing. The deployment package size will impact the functions’ cold start. To keep the deployment package size smaller, we install only the runtime dependencies by passing --prod=only to the npm install command.

 Listing 12.9 Building a Node.js-based Lambda deployment package

 stage('Build'){
 sh """
 docker build -t ${imageName} .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/node_modules node_modules
 docker rm -f \$containerName
 zip -r ${commitID()}.zip node_modules src
 """
}

 Note One drawback of dynamic provisioning is a phenomenon called cold start. Essentially, functions that haven’t been used for a while take longer to start up and to handle the first request.

 Then, in the following listing, we push the generated zip file to an S3 bucket, use a loop to go through each function name, and save the zip in an S3 bucket under the function folder. You can use the Serverless framework (www.serverless.com) to create a zip file per function and exclude unused dependencies and files.

 Listing 12.10 Publishing Node.js deployment packages to S3

 def functions = ['MoviesStoreListMovies'.
'MoviesStoreSearchMovie'.
'MoviesStoreSearchMovie'.
'MoviesStoreAddToFavorites']
def bucket = 'deployment-packages-watchlist'

node('workers'){
 try {
 stage('Checkout'){...}
 stage('Tests'){...}
 stage('Build'){...}
 stage('Push'){
 functions.each { function ->
 sh "aws s3 cp ${commitID()}.zip s3://${bucket}/${function}/"
 }
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 sh "rm --rf ${commitID()}.zip"
 }
}

 Head back to the Jenkins dashboard, create a new multibranch pipeline job for the movies-store project, and commit the changes to the develop branch. In a few seconds, a new build should be triggered on the movies-store job for the develop branch. On the resultant page, you will see the Stage view for the develop branch pipeline, shown in figure 12.14.

 [image:]

 Figure 12.14 MoviesStore Lambda functions CI workflow

 For common situations, the build and push stages can take a good amount of the CI/CD execution time. Therefore, we can use the parallel key, as shown in the following listing, to run the push stage in parallel, to keep the pipeline turnaround time short.

 Listing 12.11 Parallel directive with a map structure

 stage('Push'){
 def fileName = commitID() ❶
 def parallelStagesMap = functions.collectEntries { ❷
 ["${it}" : { ❷
 stage("Lambda: ${it}") { ❷
 sh "aws s3 cp ${fileName}.zip s3://${bucket}/${it}/" ❷
 } ❷
 }] ❷
 } ❷
 parallel parallelStagesMap ❸
}

 ❶ Sets the archive’s name to the Git commit ID

 ❷ Parallel directive is expecting a map structure, so we’re building one. We iterate over the functions list and create the corresponding command to store the archive file to the appropriate S3 folder.

 ❸ Runs the stages in parallel

 The parallel directive takes a map of the string and closure. The string is the display name of the parallel execution (name of the function), and the closure is the actual aws s3 cp instruction to copy the deployment package to the corresponding function folder in S3. As a result, storing the deployment packages for each function will be run in parallel, as shown in figure 12.15.

 [image:]

 Figure 12.15 MoviesStore CI workflow

 Once the pipeline execution is completed, in the S3 bucket, a deployment package should be stored for each Lambda function, as shown in figure 12.16.

 [image:]

 Figure 12.16 Lambda functions deployment packages

 By now, the deployment packages are stored in an S3 bucket, so we can go ahead and update the Lambda function source code with the built zip files.

 12.3 Updating Lambda function code

 For MoviesLoader and MoviesParser Lambda functions, add the following Deploy stage to their Jenkinsfiles (chapter12/functions/movies-loader/Jenkinsfile and chapter12/functions/movies-parser/Jenkinsfile). The stage uses the AWS Lambda CLI to issue an update-function-code command to update the function code with the zip file stored previously in the S3 bucket; see the following listing.

 Listing 12.12 Updating the Lambda function’s code with AWS CLI

 stage('Deploy'){
 sh "aws lambda update-function-code --function-name ${functionName.
 --s3-bucket ${bucket} --s3-key ${functionName}/${commitID()}.zi.
 --region ${region}"
}

 The command takes as an argument the name of the S3 bucket where the zip file is stored as well as the Amazon S3 key of the deployment package.

 Once you push the changes to the Git remote repository, Jenkins will update the Lambda function’s code with the update-function-code command. The output in figure 12.17 confirms that.

 [image:]

 Figure 12.17 UpdateFunction-Code operation logs

 The CI/CD pipelines for the MoviesLoader and MoviesParser functions should contain the stages shown in figure 12.18.

 [image:]

 Figure 12.18 Python- and Go-based Lambda function CI/CD pipelines

 Note The Serverless framework (https://serverless.com/) or AWS Serverless Application Model (SAM) can also be used to write and deploy Lambda functions within Jenkins pipelines.

 Similarly, add the same stage to the MoviesStore Lambda functions—except this time, we will wrap the update-function-code command with a for loop to update each function versioning within the same GitHub repository; see the following listing.

 Listing 12.13 Updating multiple Lambda functions

 stage('Deploy'){
 functions.each { function ->
 sh "aws lambda update-function-cod.
--function-name ${function.
--s3-bucket ${bucket.
--s3-key ${function}/${commitID()}.zi.
--region ${region}"
 }
}

 When the new stage is committed, the pipeline will be triggered upon a push event, and the CI/CD stages in figure 12.19 will be executed.

 [image:]

 Figure 12.19 MoviesStore CI/CD pipeline

 Before we automate the deployment of the marketplace, we need to load some data into the DynamoDB table. Trigger the MoviesLoader function from AWS Management Console, or by issuing the following command from your terminal session:

 aws lambda invoke --function-name MoviesLoader --payload '{}' response.json

 Note Make sure to assign the AWSLambda_FullAccess policy to the IAM user configured with your AWS CLI.

 The preceding command will invoke the MoviesLoader function and save the function’s output in the response.json file. The function will load movies to SQS and trigger the MoviesParser Lambda function, which will crawl the movie’s IMDb page and store its information in the Movies DynamoDB table, shown in figure 12.20.

 Figure 12.20.

 [image:]

 Figure 12.20 Movies DynamoDB table

 Each message in SQS will invoke the MoviesParser function; once the queue is empty, the DynamoDB table should contain the top 100 IMDb movies.

 12.4 Hosting a static website on S3

 The Movie Marketplace is a single-page application (SPA), written in TypeScript, using the Angular framework. The application serves static content (HTML, JavaScript, and CSS files), which can be a good fit for S3 website-hosting features.

 Let’s automate the deployment of the marketplace to an S3 bucket, as shown in the next listing. First, create a GitHub project to version the marketplace source code. Then, write a Jenkinsfile to run quality, unit tests, and static code analysis with SonarQube. Refer to chapter 8 for more details.

 Listing 12.14 Integrating an Angular application with the Jenkinsfile

 def imageName = 'mlabouardy/movies-marketplace'
def region = 'AWS REGION'

node('workers'){
 try{
 stage('Checkout'){
 checkout scm
 notifySlack('STARTED')
 }

 def imageTest= docker.build("${imageName}-test".
"-f Dockerfile.test .") ❶
 stage('Quality Tests'){
 sh "docker run --rm ${imageName}-test npm run lint" ❷
 }
 stage('Unit Tests'){
 sh "docker run --r.
-v $PWD/coverage:/app/coverag.
${imageName}-test npm run test" ❸
 publishHTML (target: [❹
 allowMissing: false, ❹
 alwaysLinkToLastBuild: false, ❹
 keepAll: true, ❹
 reportDir: "$PWD/coverage/marketplace", ❹
 reportFiles: "index.html", ❹
 reportName: "Coverage Report" ❹
]) ❹
 }
 stage('Static Code Analysis'){
 withSonarQubeEnv('sonarqube') { ❺
 sh 'sonar-scanner' ❺
 } ❺
 }
 stage("Quality Gate"){
 timeout(time: 5, unit: 'MINUTES') { ❻
 def qg = waitForQualityGate() ❻
 if (qg.status != 'OK') { ❻
 error "Pipeline aborted due to ❻
quality gate failure: ${qg.status}" ❻
 } ❻
 } ❻
 }
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)
 }
}

 ❶ Builds a Docker image based on Dockerfile.test to run automated tests

 ❷ Runs the code linting process

 ❸ Runs unit tests and generates a coverage report

 ❹ Consumes the coverage report with the Jenkins Publish HTML plugin

 ❺ Runs code-quality inspection with SonarQube

 ❻ Interrupts SonarQube inspection if it takes more than 5 minutes

 Add a Build stage to create a Docker container to install the npm dependencies and copy the dependencies folder as well as the generated static web application files to the current workspace, as shown in the following listing. Note the use of the --build-arg argument to inject the API Gateway URL at the build time.

 Listing 12.15 Building the Angular application

 stage('Build'){
 sh """
 docker build -t ${imageName} --build-arg ENVIRONMENT=sandbox .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/dist dist
 docker rm -f \$containerName
 """
 }

 Then, in the following listing, use the AWS CLI to push the generated static web application to the S3 bucket where website hosting is enabled.

 Listing 12.16 Storing the Angular static application to S3

 stage('Push'){
 sh "aws s3 cp --recursive dist/ s3://${bucket}/" ❶
}

 ❶ Recursively copies local files to S3

 Push the changes to the develop branch. A new pipeline should be triggered, and the stages in figure 12.21 will be executed successfully.

 [image:]

 Figure 12.21 Marketplace CI/CD workflow

 You can verify that the files have been successfully stored from the Amazon S3 bucket dashboard, or by running the aws s3 ls command in your terminal session. Figure 12.22 shows the content of the marketplace S3 bucket.

 [image:]

 Figure 12.22 Marketplace S3 bucket content

 If you head to the S3 website URL (http://BUCKET.s3-website-REGION.amazonaws .com/), it should display the marketplace UI, shown in figure 12.23.

 That’s great! However, when you’re building your serverless application, you must separate your deployment environments to test new changes without impacting your production. Therefore, having multiple environments makes sense while building serverless applications.

 [image:]

 Figure 12.23 Marketplace dashboard running in the sandbox environment

 12.5 Maintaining multiple Lambda environments

 AWS Lambda allows you to publish a version, which represents the state of the function’s code and configuration in time. By default, each Lambda function has the $LATEST version pointing to the latest changes deployed to the function.

 To publish a new version from the $LATEST version, update the Jenkinsfile (chapter12/functions/movies-loader/Jenkinsfile) to add a new stage to publish a new Lambda function’s version, as shown in the following listing.

 Listing 12.17 Publishing a new Lambda version

 stage('Deploy'){
 sh "aws lambda update-function-code --function-name ${functionName}
 --s3-bucket ${bucket} --s3-key ${functionName}/${commitID()}.zip
 --region ${region}"

 sh "aws lambda publish-version --function-name ${functionName.
 --description ${commitID()} --region ${region}"
}

 When you publish a new version of your Lambda function, you should give it a meaningful version name that allows you to track different changes made to your function through its development cycle. In listing 12.17, we’re using the Git commit ID as a version scheme. However, you can use an advanced version mechanism like semantic versioning (https://semver.org/).

 When the pipeline is executed, at the Deploy stage the preceding commands will be executed. Figure 12.24 shows their execution logs.

 [image:]

 Figure 12.24 Update and Publish commands executed within the deploy stage

 Note Versions are immutable: once they’re created, you cannot update their code or settings (memory, execution time, VPC config, and so forth).

 On the MoviesLoader Lambda dashboard, a new version will be published based on the develop branch source code, as shown in figure 12.25.

 [image:]

 Figure 12.25 MoviesLoader Lambda new published version

 The publication of Lambda versions for the MoviesStore API will be done in parallel to reduce the execution time of the pipeline; see figure 12.26.

 As a result, you can work with different variations of your Lambda function in your development workflow.

 [image:]

 Figure 12.26 Running the publish command in parallel

 For now, API Gateway triggers the MoviesStore Lambda functions based on the $LATEST version, so every time a new version is published, we need to update API Gateway to point to the newest version (figure 12.27)—a tedious and not handy task.

 [image:]

 Figure 12.27 GET /favorites integration request

 Fortunately, there’s the concept of a Lambda alias. The alias, a pointer to a specific version, allows you to promote a function from one environment to another (such as staging to production). Aliases are mutable, unlike immutable versions. Now, instead of directly assigning a Lambda function version in an API Gateway integration request, you can assign Lambda alias, where the alias is a variable. The variable will be resolved from a value during runtime.

 That being said, create an alias for the sandbox, staging, and production environments that points to the latest version published by using the AWS command line:

 aws lambda create-alias --function-name MoviesStoreViewFavorites --name sandbox --version 1

 Once created, the new aliases should be added to the list of Aliases under the Qualifiers drop-down list (figure 12.28).

 [image:]

 Figure 12.28 Using multiple aliases to reference different environments

 We can update the Jenkinsfile to update the alias directly. Update the Deploy stage with the code in the next listing. It updates the Lambda function code, publishes a new version, and then points the alias corresponding to the current Git branch (master branch = production alias, preprod branch = staging alias, develop branch = sandbox alias) to the newly deployed version.

 Listing 12.18 Updating the Lambda alias to point to the newest version

 sh "aws lambda update-function-code --function-name ${it}
 --s3-bucket ${bucket} --s3-key ${it}/${fileName}.zip
 --region ${region}"

def version = sh(
 script: "aws lambda publish-version --function-name ${it}
 --description ${fileName}
--region ${region} | jq -r '.Version'",
 returnStdout: true
).trim()

if (env.BRANCH_NAME in ['master','preprod','develop']){
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

 The publish-version operation returns JSON output with the deployed version number as an attribute. The jq command is used to parse the Version attribute and store its value in a version variable. Then, based on the current Git branch, the corresponding alias will point to the published version number.

 Push the changes to the develop branch. The function code will be updated, a new version will be created, and the sandbox alias will point to the newest published version, as you can see in figure 12.29.

 [image:]

 Figure 12.29 Updating the Lambda alias to the deployed version

 On the MoviesStoreListMovies Lambda, for instance, the sandbox alias should point to the version with the develop branch source code, as shown in figure 12.30.

 [image:]

 Figure 12.30 Sandbox alias pointing to the new Lambda version

 Now that you have seen how to create aliases and switch their values within a Jenkins pipeline, let’s configure the API Gateway to use these aliases with stage variables.

 Stage variables are environment variables that can be used to change the behavior at runtime of the API Gateway methods for each deployment stage.

 On the API Gateway Console, navigate to the Movies API, click the GET method for the instance, and update the target Lambda function to use a stage variable instead of a hardcoded Lambda function version, as shown in figure 12.31.

 [image:]

 Figure 12.31 Using a stage variable while configuring the API integration request

 In the Lambda Function field, the ${stageVariables.environment} tells API Gateway to read the value for this field from a stage variable at runtime.

 When you save the configuration, a new prompt will ask you to grant the permissions to API Gateway to call your Lambda function aliases. At this point, we need to deploy our API to make it publicly available.

 From the Actions drop-down, select Deploy API. Choose the New Deployment Stage option, enter sandbox as a stage name, and deploy it. Or use the Terraform code in listing 12.19. The sandbox stage will set the environment stage variable to sandbox. As a result, if a user invokes an HTTP request on any endpoint of the sandbox deployment, the corresponding Lambda function with the sandbox alias will be triggered.

 Listing 12.19 API Deployment with an alias stage variable

 resource "aws_api_gateway_deployment" "sandbox" {
 depends_on = [
 module.GetMovies,
 module.GetOneMovie,
 module.GetFavorites,
 module.PostFavorites
]

 variables = {
 "environment" = "sandbox"
 }

 rest_api_id = aws_api_gateway_rest_api.api.id
 stage_name = "sandbox"
}

 Create additional deployment stages for staging and production environments. On completion of the terraform apply command, the three deployment stage URLs will be displayed, as shown in figure 12.32.

 [image:]

 Figure 12.32 API Gateway deployment URLs

 If you open the API at https://id.execute-api.region.amazonaws.com/sandbox/movies, you will get the response from Lambda MoviesStoreListMovies with the alias sandbox.

 To deploy the serverless application to the staging environment, create a pull request to merge the develop branch to the preprod branch. Jenkins will post the build status of the develop job on the PR (figure 12.33). Then, merge develop to preprod.

 [image:]

 Figure 12.33 Jenkins post build status on GitHub PR

 Once the PR is merged, a new build will be triggered on the preprod branch. At the end of the CI/CD pipeline, the staging alias will point to the newly deployed version, as you can see in figure 12.34.

 [image:]

 Figure 12.34 Deploying Lambda functions to staging

 Now, to deploy the marketplace on multiple environments, we will inject the environment name based on the current branch name; see the following listing.

 Listing 12.20 Injecting the environment name during the build

 stage('Build'){
 sh """
 docker build -t ${imageName}
--build-arg ENVIRONMENT=${environments[env.BRANCH_NAME]} .
 containerName=\$(docker run -d ${imageName})
 docker cp \$containerName:/app/dist dist
 docker rm -f \$containerName
 """
}

 Then, in listing 12.21, we update the aws s3 cp instruction to push the static files to a folder named as the environment name under the S3 bucket. You can also create an S3 bucket per environment, but for simplicity, we use a single S3 to store different environments of the marketplace.

 Listing 12.21 Pushing static files to an S3 bucket

 if (env.BRANCH_NAME in ['master','preprod','develop']){
 stage('Push'){
 sh "aws s3 cp --recursive dist/ s3://${bucket}/${environments[env.BRANCH_NAME]}/"
 }
}

 Push these changes to a feature branch. Then raise a pull request to merge to the develop branch. When the merge occurs, the new pipeline in figure 12.35 will be executed.

 [image:]

 Figure 12.35 Marketplace new CI/CD pipeline

 Merge the changes to preprod to deploy the application to staging. Then, merge from preprod to master branch for production deployment. As a result, the S3 bucket should contain three folders. Each folder holds a different runtime environment of the marketplace, as you can see in figure 12.36.

 [image:]

 Figure 12.36 S3 bucket with multiple environments

 If you point to the S3 bucket website URL and add the /staging endpoint, it should serve the staging environment of the marketplace, as shown in figure 12.37.

 [image:]

 Figure 12.37 Marketplace staging environment

 Now, to deploy the Lambda functions to production, merge the preprod branch to the master branch by raising a pull request, as shown in figure 12.38.

 [image:]

 Figure 12.38 Merging the movies-store Lambda functions’ preprod branch to master

 When the merge occurs, the pipeline will be triggered on the master branch; see figure 12.39.

 [image:]

 Figure 12.39 Deploying Lambda functions to production

 The movies-store functions will be updated, a new version will be created, and the production alias will point to the newly deployed version.

 You can take this further and ask for developer authorization before actual deployment to production by using the Jenkins Input Step plugin; see the following listing. When the Deploy stage is reached, an input dialog will pop up for deployment confirmation.

 Listing 12.22 Asking for user approval before production deployment

 if (env.BRANCH_NAME == 'preprod' || env.BRANCH_NAME == 'develop'){
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

if(env.BRANCH_NAME == 'master'){
 timeout(time: 2, unit: "HOURS") {
 input message: "Deploy to production?", ok: "Yes"
 }
 sh "aws lambda update-alias --function-name ${it}
 --name ${environments[env.BRANCH_NAME]}
--function-version ${version}
 --region ${region}"
}

 The interactive input will ask whether we approve the deployment. If we click Yes, the pipeline will be resumed, and the production alias will point to the newly deployed version, as shown in figure 12.40.

 [image:]

 Figure 12.40 Production deployment confirmation within the Jenkins pipeline

 So now if we make any change to our serverless application, CI/CD pipelines will be triggered, and the newly published Lambda function code will be promoted to production. A Slack notification will also be sent with the deployment job status, as shown in figure 12.41.

 [image:]

 Figure 12.41 Production deployment Slack notification

 Sending notifications on pipeline triggering and progress helps to communicate the work among team members. So far, we have used it to send start, completed, and failure notifications. but Slack can also be used to take actions or execute commands from the chat window to confirm the production deployment, for instance, or trigger the build of a Jenkins job.

 Another way of raising awareness of job build status and reporting testing results is through email notifications.

 12.6 Configuring email notification in Jenkins

 Email notification within Jenkins can be done with the help of an Email Extension plugin (https://plugins.jenkins.io/email-ext/). This plugin comes with a list of essentials plugins installed on Jenkins.

 To enable email notification, you need to configure an SMTP server. Go to Manage Jenkins, then Configure System. Scroll down to the Extended E-mail Notification section. Enter your SMTP credentials, if you’re using Gmail, and then type smtp.gmail.com for the SMTP server and enter your Gmail username and password. Select the use of SSL and enter the port number as 465.

 To be able to send an email, you need to configure a list of recipient addresses. Next, click the Apply and Save buttons, as shown in figure 12.42.

 [image:]

 Figure 12.42 Extended email notification configuration

 You can test configurations by entering the recipient email address and clicking Test Configuration. If all is good, you will see the message Email sent successfully.

 Now that the plugin is configured, type the following listing in your Jenkinsfile to define a function responsible for sending an email with customizable attributes based on the job build status.

 Listing 12.23 Sending email to report job build status

 def sendEmail(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 emailext body: "More info at: ${env.BUILD_URL}",
 subject: "Name: '${env.JOB_NAME}' Status: ${buildStatus}",
 to: '$DEFAULT_RECIPIENTS'
}

 Finally, you can invoke the function upon the completion of the CI/CD pipeline by calling the sendEmail() method on the finally block. In the following listing, an email notification is sent only if a build is running on the master branch to avoid spamming developers.

 Listing 12.24 Sending email when a production deployment is happening

 node('workers'){
 try {
 stage('Checkout'){...}
 stage('Tests'){...}
 stage('Build'){...}
 stage('Push'){...}
 stage('Deploy'){...}
 } catch(e){
 currentBuild.result = 'FAILED'
 throw e
 } finally {
 notifySlack(currentBuild.result)

 if (env.BRANCH_NAME == 'master'){
 sendEmail(currentBuild.result)
 }
 }
}

 Push the new Jenkinsfile to GitHub. When a build is occurring on the master branch, an email will be sent. Once the pipeline is finished, you should be able to see an email like the one in figure 12.43.

 [image:]

 Figure 12.43 Email notification reporting job build status

 The email’s subject contains the name of the Jenkins job as well as its build status. The email’s body has a link to the job output.

 The declarative approach of writing Jenkinsfiles provides a post section, which can be used to place post-execution scripts. You can invoke the sendEmail() method by placing it in the post build section, as shown in the following listing.

 Listing 12.25 Post steps in Jenkins declarative pipeline

 pipeline {
 agent{
 label 'workers'
 }
 stages {
 stage('Checkout'){...}
 stage('Unit Tests'){...}
 stage('Build'){...}
 stage('Push'){...}
 }
 post {
 always {
 if (env.BRANCH_NAME == 'master'){
 sendEmail(currentBuild.currentResult)
 }
 }
 }
}

 You can also attach the job build logs by enabling the attachLog attribute with the following listing.

 Listing 12.26 Attaching log files in a notification mail

 def sendEmail(String buildStatus){
 buildStatus = buildStatus ?: 'SUCCESSFUL'
 emailext body: "More info at: ${env.BUILD_URL}",
 subject: "Name: '${env.JOB_NAME}' Status: ${buildStatus}",
 to: '$DEFAULT_RECIPIENTS',
 attachLog: true
}

 As a result, email sent by Jenkins will now contain the job status as well the full console output as an attachment, as shown in figure 12.44.

 [image:]

 Figure 12.44 Sending job logs as an email notification attachment

 Summary

 	
 Terraform modules allow you to better organize your infrastructure configuration code and make the resources reusable.

 	
 When building a serverless application as a collection of Lambda functions, you need to decide whether you’re going to push each function individually to its own Git repository, or bundle them all together as a single repo.

 	
 AWS Lambda supports aliases, which are named pointers to a particular version. This makes it easy to use a single Lambda function for sandbox, staging, and production environments.

 	
 The API Gateway stage variable feature enables you to dynamically access different Lambda function environments.

 	
 The Email Extension plugin allows you to configure every aspect of email notifications. You can customize when an email is sent, who should receive it, and what the email says.

 Part 4. Managing, scaling, and monitoring Jenkins

 This final part is about combining and coalescing everything you’ve learned and moving even further. You’ll learn how to monitor and troubleshoot a running Jenkins cluster. We’ll start by exposing Jenkins metrics with Prometheus and build an interactive dashboard with Grafana. Next, I will demonstrate how to stream Jenkins logs to a centralized logging platform based on the ElasticSearch, Logstash, and Kibana (ELK) stack. Finally, I will share tips and best practices to secure and maintain Jenkins.

 13 Collecting continuous delivery metrics

 This chapter covers

 	Monitoring Jenkins and its jobs effectively

 	Forwarding Jenkins build logs to a centralized logging platform

 	Parsing Jenkins logs into something structured and queryable

 	Exposing Jenkins internal metrics with Prometheus

 	Building interactive dashboards with Grafana

 	Creating metric-based alerts for Jenkins

 In the previous chapters, you learned to design, build, and deploy a Jenkins cluster from scratch by using automation tools; you also learned to set up a fully working CI/CD pipeline for several cloud-native applications. In this chapter, we will dive into advanced Jenkins topics: monitoring a running Jenkins server and detecting anomalies and resource starvation. Along the way, we will cover how to build a centralized logging platform for Jenkins logs.

 13.1 Monitoring Jenkins cluster health

 The cluster we built in chapter 5 consists of a Jenkins master and workers, with each node running inside an EC2 instance. Figure 13.1 shows a typical Jenkins node configuration.

 [image:]

 Figure 13.1 Jenkins distributed build architecture

 So far, the Jenkins cluster is working as expected. However, you should never take your IT infrastructure for granted. Your Jenkins master or workers one day will break and will need to be replaced. So, how do you know if your Jenkins cluster is working effectively if you aren’t monitoring it?

 Monitoring Jenkins should become a crucial part of your IT management. Monitoring helps you look for abnormalities and spot issues on instances running the cluster, saves you money as it minimizes the network downtime, and enhances efficiency.

 In AWS, you can monitor Jenkins instances by using Amazon CloudWatch (https:// aws.amazon.com/cloudwatch). The platform consumes data coming from all AWS services and allows the user to visualize, query, and take action on the data. By default, Amazon EC2 sends metrics data to CloudWatch.

 Note You can use Azure Monitor (http://mng.bz/wQYQ) or Google Cloud’s operations (https://cloud.google.com/monitoring/quickstart-lamp) if you want to monitor the overall health and performance of Jenkins instances running in Azure or GCP environments.

 Navigate to the Amazon CloudWatch console and jump to the All Metrics tab. Then, under EC2, look for instances running the cluster by typing their instance ID on the search bar, as shown in figure 13.2.

 [image:]

 Figure 13.2 Key metrics for EC2 monitoring

 You will see a pretty long list of reported metrics for your Jenkins EC2 instances. You can scroll and select one or more metrics to display (for example, EC2 instance CPU utilization) and create a graph widget to display them, as shown in figure 13.3.

 [image:]

 Figure 13.3 The percentage of allocated EC2 compute units currently in use on the Jenkins instances

 By default, EC2 reports metrics to CloudWatch in 5-minute intervals. However, if your Jenkins cluster is being extensively used (for example, hosting multiple jobs and scheduling many CI/CD pipelines), you can enable the enhanced monitoring feature (http://mng.bz/GOZR) on each instance to get metrics in 1-minute intervals (though an additional cost applies).

 CloudWatch also offers dashboards, which provide a quick view of how your instances are performing as well as tremendous flexibility in terms of data visualization—for example, zooming in or rescaling.

 You can customize the dashboard and add additional graphs showing, for example, the number of bytes received and sent out on all network interfaces, or disk usage (bytes written and read from all instance store volumes), as demonstrated in figure 13.4.

 [image:]

 Figure 13.4 Building the CloudWatch dashboard to monitor Jenkins instances

 Now you know how to monitor Jenkins instances using CloudWatch. However, it can be error-prone and tedious to set up CloudWatch monitoring for all your Jenkins instances (and remembering to do it for Jenkins workers created for scaling events). Additionally, some metrics are unavailable through CloudWatch (such as memory usage). Hence, we will use an advanced monitoring stack.

 Note The Amazon CloudWatch agent can be installed on EC2 instances to report additional and useful metrics. This feature is seldom used, but it is good to know it exists. Refer to the official guide at http://mng.bz/q5J2 for instructions.

 Many tools, from open source to a commercial level, can help you monitor your infrastructure and notify you of any failure. (Section 13.3 covers how to set up alerts that will notify you in near real-time.) The good thing is that a powerful open source monitoring solution is available, thanks to the open source community that maintains it. Figure 13.5 summarizes the open source solution we’re going to implement.

 [image:]

 Figure 13.5 Telegraf will collect metrics, store them in InfluxDB, and from there we can visualize them in Grafana.

 This monitoring solution can be split into three parts:

 	
 Telegraf—A metric collector agent, installed on each Jenkins instance. It collects the internal metrics and ships them to a time-series database.

 	
 InfluxDB—An open source time-series database (TSDB), optimized for fast, high-availability storage. It consumes the telemetry coming from Telegraf agents.

 	
 Grafana—An open source visualization platform, used to build dynamic and interactive dashboards based on data stored in InfluxDB.

 Now that the architecture is clear, we need to deploy an InfluxDB server on an EC2 instance. Check out the InfluxDB official documentation at http://mng.bz/7lJy for a step-by-step guide on how to install and configure InfluxDB.

 Once the instance is up and running, SSH to the InfluxDB instance and type the influx command on the terminal. The influx CLI, which is included in all InfluxDB packages, is a lightweight and simple way to interact with the database. We need to create two databases:

 	
 instances—To store metrics about resource usage, such as CPU utilization, memory, network traffic, disk usage, and so forth.

 	
 containers—To store metrics about containers running in the Jenkins workers. The containers are basically build jobs scheduled for Jenkins workers.

 Create the databases by using the CREATE DATABASE Influx Query Language (InfluxQL) statement:

 CREATE DATABASE containers;
CREATE DATABASE instances;

 The databases can also be created by making raw HTTP requests to an InfluxDB API over port 8086 (see http://mng.bz/m1z2).

 Now that we have databases, InfluxDB is ready to accept queries and writes. To collect Jenkins instance metrics, we need to install a Telegraf agent on each server. One way to do this is to install Telegraf on the existing instances, but this solution won’t scale, as we need to install and configure a Telegraf agent each time a new Jenkins worker is deployed. Therefore, the best way is to ship Telegraf within the Jenkins AMI. Once again, we will use Packer to bake the Jenkins master and worker AMIs with a preinstalled and configured Telegraf agent.

 Add the code in the next listing to the setup.sh (chapter13/telegraf/setup.sh) script provided in chapter 4, listings 4.4 and 4.5. This code will install the latest stable version of Telegraf (at the time of writing this book, version 1.19.0 is available).

 Listing 13.1 Installing the Telegraf agent with the Yum utility

 wget https://dl.influxdata.com/telegraf/releases/telegraf-1.19.0-1.x86_64.rpm
yum localinstall telegraf-1.19.0-1.x86_64.rpm
systemctl enable telegraf
systemctl restart telegraf

 Next, we tell Telegraf what metrics to collect, by creating a configuration file at /etc/telegraf/telegraf.conf. The config file consists of inputs (where the metrics come from) and outputs (where the metrics go). The following listing specifies three inputs (CPU memory usage, and Docker), and specifies InfluxDB as the output. The Docker input reads metrics about the Docker daemon and then outputs this data to InfluxDB.

 Listing 13.2 Telegraf configuration file with various inputs

 [global_tags]
hostname="Jenkins" ❶

[[inputs.cpu]] ❷
 percpu = false
 totalcpu = true
 fieldpass = ["usage*"]
 name_suffix = "_vm"

[[inputs.disk]] ❸
 fielddrop = ["inodes*"]
 Mount_points = ["/"]
 name_suffix = "_vm"

[[inputs.mem]] ❹
 name_suffix = "_vm"

[[inputs.swap]] ❺
 name_suffix = "_vm"

[[inputs.system]] ❻
 name_suffix = "_vm"

[[inputs.docker]] ❼
 endpoint = "unix:///var/run/docker.sock"
 container_names = []
 name_suffix = "_docker"

[[outputs.influxdb]] ❽
 database = "instances"
 urls = ["http://INFLUXDB_IP:8086"]
 namepass = ["*_vm"]

[[outputs.influxdb]] ❾
 database = "containers"
 urls = ["http://INFLUXDB_IP:8086"]
 namepass = ["*_docker"]

 ❶ Overrides default hostname; if empty, use os.Hostname()

 ❷ Gathers metrics on the system CPUs

 ❸ Gathers metrics about disk usage. By default, stats are gathered for all mount points, and setting Mount_points will restrict the stats to the root volume.

 ❹ Collects system memory metrics

 ❺ Collects system swap metrics

 ❻ Gathers general stats on system load, uptime, and number of users logged in. It is similar to the Unix uptime command.

 ❼ Uses the Docker Engine API to gather metrics on running Docker containers

 ❽ Writes system metrics to the InfluxDB instance database

 ❾ Writes Docker metrics to the InfluxDB container database

 Make sure to replace the INFLUXDB_IP variable with the IP address of the instance where the InfluxDB server is running.

 Bake a new Jenkins AMI and redeploy a Jenkins cluster with the newly built image by following steps described in section 5.3. Once the new Jenkins cluster is up and running, Telegraf will start collecting metrics and streaming them to InfluxDB for storage and indexing.

 To explore the metrics, we will use Grafana. You can install Grafana from a Yum repository or by running a Docker image. (Check out the Grafana official documentation at http://mng.bz/5ZY1 for more details.) Once Grafana is installed, head your browser to HOST_IP:3000. On the login page, enter admin for the username and password.

 Before we create a dashboard to monitor the overall health of the Jenkins instances, we need to link the InfluxDB databases to Grafana. To do so, we need to create a data source for each InfluxDB database.

 In the side panel, click the cog icon and then click Configuration > Data Sources. Click the Add Data Source button, shown in figure 13.6. Then fill the settings page with the following values:

 	
 Name—The data source name. (This is how you’ll refer to the data source in queries.)

 	
 URL—The HTTP, IP address, and port of your InfluxDB API. (By default, the InfluxDB API port is 8086.)

 	
 Database—Name of the InfluxDB database (instances or containers database).

 [image:]

 Figure 13.6 Configuring InfluxDB-based data sources in Grafana

 With your InfluxDB connection configured, use Grafana and InfluxQL to query and visualize time-series data stored in InfluxDB. From the left panel, click Dashboards. From the top menu, click Home to get a list of dashboards. Click the Create New button at the bottom to create a new dashboard. To add a graph, just click the graph button in the panel filter. In the Query section, type the following InfluxQL statement:

 SELECT mean("used_percent") FROM "mem_vm"
WHERE $timeFilte.
GROUP BY time($__interval), "host" fill(null)

 This query selects the memory usage from the mem_vm measurement and groups the results by Jenkins node. The query results in the graph in figure 13.7.

 [image:]

 Figure 13.7 Building a memory utilization gauge chart

 To monitor the Jenkins jobs build time, you can use the following statement:

 SELECT mean("uptime_ns") FROM "docker_container_status_docker"
WHERE ("hostname" = 'Jenkins') AND $timeFilte.
GROUP BY time($__interval), "container_name" fill(null)

 This selects the uptime value (the amount of time the container is online and operational) from the docker_container_status_docker measurement and groups the results by the container name (figure 13.8).

 [image:]

 Figure 13.8 Monitoring containers built within CI/CD pipelines

 Back to Grafana, you can create multiple graphs to monitor various metrics of the Jenkins cluster:

 	
 CPU usage of Jenkins nodes (master and worker instances)

 	
 Network traffic (in and out bytes)

 	
 Memory utilization of each Jenkins node

 	
 Number of running build jobs

 	
 Overall health and number of workers

 Figure 13.9 shows host-level details for the Jenkins cluster. The complete dashboard can be imported from the JSON file (chapter13/grafana/dashboard/influxdb.json). Refer to http://mng.bz/6mGD for instructions.

 [image:]

 Figure 13.9 Jenkins host metrics

 As mentioned earlier, monitoring the state of your instances is imperative to keeping your Jenkins cluster healthy, and by using the preceding metrics (and the many others) provided by Telegraf, you can achieve this with relative ease.

 So far, you have seen how to monitor the Jenkins instances (server side). Let’s explore monitoring the Jenkins server itself (application side). As you may have already guessed, a monitoring plugin for Jenkins can provide a lot of data about what’s going on within Jenkins and about the tasks being performed by Jenkins. For example, the Metrics plugin (https://plugins.jenkins.io/metrics/) provides health checks by exposing an API on the Jenkins server at the $JENKINS_URL/metrics endpoint. The API provides information on the following:

 	
 HTTP sessions and current HTTP requests

 	
 Detailed statistics of the build times and the build steps by period

 	
 Threads, process list of OS, and heap dumps

 For instance, the API call in figure 13.10 returns statistics about the number of executors available to Jenkins.

 [image:]

 Figure 13.10 Metrics API with health-check endpoints

 To create a dashboard based on those metrics, we can write a custom script to save those values regularly to InfluxDB, or use a Prometheus metric plugin (https://plugins.jenkins.io/prometheus/) to expose an endpoint (the default is /prometheus) with metrics that a Prometheus server can scrape.

 Prometheus (https://prometheus.io/) is an open source monitoring system with a dimensional data model, flexible query language, efficient time-series database, and modern alerting approach.

 Note The Packer template file and Terraform HCL files for baking and deploying a Prometheus server are available in the chapter13/prometheus folder.

 First, install the Prometheus Metrics plugin (https://plugins.jenkins.io/prometheus/) from the Manage Plugins section. Once it’s installed, you can see the plugin’s output through JENKINS _URL/prometheus (figure 13.11).

 [image:]

 Figure 13.11 Prometheus endpoint serves a list of metrics

 Then, you need to configure a Prometheus server to scrape metrics from Jenkins. Edit the configuration file at /etc/prometheus/prometheus.yml (listing 13.3). In the scrape_configs section, add a job for the Jenkins server. The format for writing this config file can be found at http://mng.bz/o8Vr.

 Listing 13.3 Configuring Prometheus to scrape metrics from Jenkins

 global:
 scrape_interval: 10s

scrape_configs:
 - job_name: 'prometheus_master'
 scrape_interval: 5s
 static_configs:
 - targets: ['localhost:9090']
 - job_name: 'jenkins'
 metrics_path: '/prometheus/'
 scheme: https
 static_configs:
 - targets: ['JENKINS_URL']

 On the Prometheus dashboard (the default port is 9090), you can explore the metrics collected from Jenkins. You will be greeted will the screen in figure 13.12.

 [image:]

 Figure 13.12 Exploring Jenkins metrics from the Prometheus dashboard

 Collected metrics are not very useful unless they are visualized. Connect Prometheus with Grafana by creating a new data source. To create a Prometheus data source in Grafana, follow these steps:

 	
 Click the cogwheel icon in the side panel to open the Configuration menu.

 	
 Click Data Sources.

 	
 Click Add Data Source.

 	
 Select Prometheus as the type.

 	
 Set the appropriate Prometheus server URL to http://prometheus:9090.

 	
 Click Save & Test to save the new data source.

 Then, create a dashboard based on the available metrics. The dashboard features application-level metrics (which track the total number of jobs in a queue, how many are pending, and how many are stuck or otherwise delayed), followed by internal operation metrics (JVM), and finally system-level metrics (disk I/O, network, memory, and so forth). Figure 13.13 shows a part of the dashboard.

 [image:]

 Figure 13.13 Comprehensive Jenkins monitoring summary of jobs and builds

 The complete dashboard can be imported from the following JSON file: chapter13/grafana/dashboard/prometheus.json.

 Another popular solution for monitoring Jenkins is the Monitoring plugin (previously called JavaMelody). This plugin produces comprehensive HTML reports about the state of Jenkins, including CPU and system load, average response time, and memory usage; see https://plugins.jenkins.io/monitoring/ for more details. Moreover, the reports are served from the Jenkins dashboard, as shown in figure 13.14.

 [image:]

 Figure 13.14 Statistics of JavaMelody monitoring

 Great! You should now be able to monitor a Jenkins cluster running in production. To provide even further visibility into your Jenkins environment, you can collect and analyze Jenkins logs of real-time system and security events and correlate them with performance and server metrics to identify and resolve issues.

 13.2 Centralized logging for Jenkins logs with ELK

 By default, Jenkins logs are located at /var/log/jenkins/jenkins.log. To view those logs, SSH to the Jenkins master instance with the bastion host, and then issue the following command:

 tail -f -n 100 /var/log/jenkins/jenkins.log

 Figure 13.15 shows the command output.

 [image:]

 Figure 13.15 Viewing Jenkins logs at /var/log/jenkins/jenkins.log

 You can also view those logs from the web dashboard (figure 13.16). Head to the Jenkins dashboard and select System Log from the Manage Jenkins page.

 [image:]

 Figure 13.16 Viewing Jenkins logs from the Jenkins dashboard

 By default, Jenkins records every INFO log to stdout, but you can configure Jenkins to record logs of a specific Jenkins plugin by creating a custom log recorder. From the System Log page, click the Add New Log Recorder button and choose a name that makes sense to you. The example in figure 13.17 creates a log recorder for the Slack plugin (the Java package is located at jenkins.plugins.slack).

 [image:]

 Figure 13.17 Capturing the Slack plugin’s login with a custom log recorder

 Now, if any Slack notification is sent from a Jenkins pipeline, a log should be captured as shown in figure 13.18.

 [image:]

 Figure 13.18 Display of Slack plugin’s logs

 You can also view the build logs for a particular job by navigating to the job item from the dashboard and clicking Console Output, or by viewing the content of the logfile at $JENKINS_HOME/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log.

 Depending on a log rotation configuration, the logs could be saved for X number of builds (or days, and so forth), meaning the old job logs might be lost. That’s why you need to persist the logs in a centralized logging platform for auditing and potential troubleshooting.

 Note You can enable the Discard Old Build plugin (https://plugins.jenkins.io/discard-old-build/) in each project or job configuration page to configure the interval to keep old builds (for example, once a month, once in 10 builds, and so forth).

 Additionally, analyzing Jenkins logs can provide a lot of information that helps with troubleshooting the root cause of pipeline job failure. Build logs contain a full set of records such as build name, number, execution time, and other things. However, to analyze those logs, you need to ship them to an external logging platform. That’s where a platform like the ELK stack (Elasticsearch, Logstash, and Kibana) comes into play.

 13.2.1 Streaming logs with Filebeat

 Filebeat (www.elastic.co/beats/filebeat), a lightweight agent that will be installed on the Jenkins master instance, will ship the logs to Logstash (www.elastic.co/logstash) for processing and aggregation. From there, the logs will be stored in Elasticsearch (www.elastic.co/elasticsearch) and visualized in Kibana (www.elastic.co/kibana) through interactive dashboards. Figure 13.19 summarizes the entire workflow.

 [image:]

 Figure 13.19 Shipping Jenkins logs to the ELK platform with Filebeat

 To deploy this architecture, we need to create a machine image for each component. You can use Packer to bake the AMIs (figure 13.20). The Packer templates are available in the GitHub repository at chapter13/COMPONENT_NAME/packer/template.json.

 Once the AMIs are created, you can use Terraform to deploy the ELK stack. The template resources are available in the GitHub repository at chapter13/COMPONENT_ NAME/terraform/*.tf.

 [image:]

 Figure 13.20 Logstash, Kibana, and Elasticsearch AMIs built with Packer

 By the end of the provisioning process, three EC2 instances should be created, as shown in figure 13.21.

 [image:]

 Figure 13.21 Deployed ELK stack on AWS

 With the logging platform ready to consume incoming Jenkins logs, we need to install Filebeat on the Jenkins master instance. SSH to the Jenkins server, and run the commands in the following listing to install the latest stable version of Filebeat (at the time of writing this book, version 7.13.2 is available).

 Listing 13.4 Installing the Filebeat agent on the Jenkins server

 curl -L -O https://artifacts.elastic.co/downloads/beats/
filebeat/filebeat-7.13.2-x86_64.rpm
sudo rpm -vi filebeat-7.13.2-x86_64.rpm

 Next, we need to set the path of the log files that we want to forward to ELK. Here we want to forward logs to /var/log/jenkins/jenkins.log. Go to the configuration directory of Filebeat under the location /etc/filebeat, and update filebeat.yml with the following listing.

 Listing 13.5 Filebeat input configuratio.

 filebeat.inputs:
- type: log
 enabled: true
 paths:
 - /var/log/jenkins/jenkins.log ❶
 fields: ❷
 type: jenkins ❷
 multiline.pattern: '[0-9]{4}-[0-9]{2}-[0-9]{2}' ❸
 multiline.negate: true ❸
 multiline.match: after ❸
output.logstash: ❹
 hosts: ["LOGSTASH_HOST"] ❹

processors: ❺
 - add_host_metadata: ~ ❺
 - add_cloud_metadata: ~ ❺
 - add_docker_metadata: ~ ❺
 - add_kubernetes_metadata: ~ ❺

 ❶ Harvests lines from the /var/log/jenkins/jenkins.log file

 ❷ Adds a field called type to the output, so we can easily identify logs coming from Jenkins

 ❸ Configures Filebeat to handle a multiline message

 ❹ Sends logs directly to Logstash

 ❺ Annotates each log event with relevant metadata from the host machine

 Multiline messages are common in Jenkins logs, especially for log messages containing Java stack traces. Here’s an example of a Java stack trace:

 2020-10-22 20:06:58.217+0000[id=124635] FATAL: Ping failed.
 java.util.concurrent.TimeoutException:
 at hudson.remoting.PingThread.ping(PingThread.java:134)
 at hudson.remoting.PingThread.run(PingThread.java:90)

 To correctly handle these multiline messages, we use the multiline settings to specify which lines are part of a single log message.

 Replace the LOGSTASH_HOST variable, with the IP address of the Logstash server. Then restart the Filebeat agent with the following command:

 systemctl restart filebeat

 Head to the Kibana dashboard (at KIBANA_IP:5601), jump to the Management tab, and to Index Patterns. We have to create a new index pattern. Creating an index pattern means mapping Kibana with an Elasticsearch index. Since Logstash stores incoming Jenkins logs to a series of indices in the format jenkins-YYYY.MM.DD, we will create an index pattern jenkins-* to explore all the logs, as shown in figure 13.22.

 Click the Next Step option. From the Time Filter Field Name drop-down, select @timestamp. Then click the Create Index Pattern button.

 Now, to view logs, go to the Discover page. You can see your index data coming in (figure 13.23).

 [image:]

 Figure 13.22 Connecting an Elasticsearch index to Kibana

 [image:]

 Figure 13.23 Visualizing Jenkins logs from Kibana

 Now you have a working pipeline that reads Jenkins logs. However, you’ll notice that the format of the log messages is not ideal. You want to parse the log messages to create specific, named fields from the logs. Let’s take, as an example, the following Jenkins log:

 2020-06-02 15:21:56.990+0000 INFO o.j.p.workflow.job.WorkflowRun#finish: movies-loader/develop #7 completed: SUCCESS

 The timestamp at the beginning of the line is easy to define as the level of the log (INFO, WARNING, DEBUG, etc.). To parse the line, we can write a Grok expression.

 Grok works by parsing text patterns, using regular expressions, and assigning them to an identifier. The syntax is %{PATTERN:IDENTIFIER}. We can write a sequence of Grok patterns and assign various pieces of the preceding log message to various identifiers, as you can see in the following listing.

 Listing 13.6 Grok expression to parse Jenkins log message

 %{TIMESTAMP_ISO8601:createdAt} %{LOGLEVEL:level}%{SPACE}%{JAVACLASS:class}%{DATA:state}:%{SPACE}%{JOBNAME:project} #%{NUMBER:buildNumber} %{DATA:execution}: %{WORD:status}

 Grok comes with its own dictionary of patterns that you can use out of the box. But you can always define your own custom pattern, as shown in the following listing.

 Listing 13.7 Grok custom patterns definition

 JAVACLASS (?:[a-zA-Z0-9-]+\.)+[A-Za-z0-9$]+
JOBNAME [a-zA-Z0-9\-\/]+

 You can use the Kibana Grok Debugger console to debug the expression. This feature, which is automatically enabled in Kibana, is located on the DevTools tab.

 Enter the log message in the Sample Data field, and the Grok expression in the Grok Pattern field. Then click Simulate. You will see the simulated event that results from applying the Grok pattern (figure 13.24).

 [image:]

 Figure 13.24 Simulating Grok parsing with Grok Debugger tool

 Note that the Grok pattern references the JAVACLASS and JOBNAME custom patterns. They are defined in the Custom Patterns section. Each pattern definition is specified on its own line.

 Note If an error occurs, you can continue iterating over the custom pattern until the output matches the event that you expect.

 The Grok expression is working, but we want the parsing mechanism to be done before storing logs to Elasticsearch. That’s why we will update the Logstash config (chapter13/logstash/packer/jenkins.conf) to parse incoming logs from Filebeat. The filter section will attempt to match messages coming from Jenkins with the Grok expression defined earlier, as shown in the following listing.

 Listing 13.8 Parsing Jenkins logs at the Logstash level

 filter {
 if [type] == "jenkins" {
 grok {
 patterns_dir => ["/etc/logstash/patterns"]
 match => {
 "message" => "%{TIMESTAMP_ISO8601:createdAt}%{SPACE}\[id=%{INT:buildId}\]
%{SPACE}%{LOGLEVEL:level}%{SPACE}%{JAVACLASS:class}
%{DATA:state}:%{SPACE}%{JOBNAME:project.
#%{NUMBER:buildNumber} %{DATA:execution}: %{WORD:status}"
 }
 }
 }
}

 This code takes the Jenkins logs collected by Filebeat, parses them into fields, and sends the fields to Elasticsearch. The pattern_dir setting tells Logstash where your custom patterns directory is. You can customize the parsing mechanism by adding more processing, such as dropping unused fields or renaming fields. See the Mutate Filter plugin at http://mng.bz/J6Av for more information.

 Restart Logstash to reload the configuration. Your Jenkins logs will be gathered and structured into fields (figure 13.25). Right now, not much is in there because you are gathering only Jenkins logs. Here, you can search and browse through your logs.

 [image:]

 Figure 13.25 Structuring Jenkins logs into separated queryable fields

 Each log message coming from Jenkins will match and result in the fields listed in table 13.1.

 Table 13.1 Jenkins index fields in Elasticsearch

 	
 Field

 	
 Description

 	
 time

 	
 The data and time of the message in UTC format

 	
 level

 	
 The log message level (INFO, WARNING, DEBUG, FATAL, ERROR)

 	
 project

 	
 The Jenkins job’s build name

 	
 buildNumber

 	
 The build number of the job, which identifies how many times Jenkins runs this build process

 	
 status

 	
 The status of the build (FAILURE or SUCCESS)

 	
 execution

 	
 The current state of the build (running, pending, terminated, or completed)

 You can create a stacked bar chart showing the number of failed versus successful builds based on the status field over a period of time; see figure 13.26.

 [image:]

 Figure 13.26 Building interactive widgets based on Jenkins structured fields

 You can save the bar chart as a widget and import it to a dashboard. With a dashboard, you can combine multiple visualizations onto a single page, and then filter them by providing a search query or by selecting filters by clicking elements in the visualization. Dashboards are useful when you want to get an overview of your Jenkins logs and make correlations among various visualizations and logs; see figure 13.27.

 [image:]

 Figure 13.27 Analyzing Jenkins logs from a Kibana dashboard

 The complete dashboard can be imported from the following JSON file: chapter13/kibana/dashboard/jenkins.json.

 That’s it! You’ve successfully created a pipeline that uses Filebeat to take Jenkins logs as input, forwards those logs to Logstash for parsing, and writes the parsed data to an Elasticsearch server.

 13.2.2 Streaming logs with the Logstash plugin

 You can skip the Filebeat and Logstash configurations by shipping Jenkins logs directly to an Elasticsearch instance via the Logstash plugin (https://plugins.jenkins.io/logstash/) on Jenkins. This solution is ideal if you’re not already using external Logstash agents to stream your infrastructure or application logs to Elasticsearch, and if you don’t need to enrich the parsing mechanism of logs with custom Grok expressions. Plus, the Logstash plugin can stream the log data from a Jenkins instance to any indexer solution (including Redis, RabbitMQ, and Elasticsearch). In the current scenario, we will use Elasticsearch.

 After successfully installing the Logstash plugin in the global configuration of the Jenkins dashboard, we need to configure the plugin with the target indexer. Configure the URI, where the Elasticsearch server is running, as shown in figure 13.28.

 [image:]

 Figure 13.28 Configuring the Logstash plugin to stream logs to the Elasticsearch server

 After configuring the Elasticsearch endpoint in the Logstash configuration, you can add the following block to your pipelines. That way, all the logs produced within the logstash step will be streamed into Elasticsearch:

 logstash {
 echo "Job:${env.JOB_NAME}"
}

 You can view the streamed logs by accessing the Kibana dashboard, shown in figure 13.29.

 [image:]

 Figure 13.29 Example of a log message sent to Elasticsearch

 Now we are able to stream the log data from the Jenkins instance to Elasticsearch and finally to Kibana.

 13.3 Creating alerts based on metrics

 We can take the logging and monitoring solutions further and set up alerts. One of the most common use cases is DevOps teams getting notifications of events, such as when the failure build rate is significantly higher than usual. Needless to say, this issue can have a significant impact on the release of new features, hence having an impact on business and user experience.

 You can use Kibana to define a meaningful alert on a specified condition; see figure 13.30. For instance, you can define an alert to periodically check the failure build rate. For the notification channel, you can use Slack, OpsGenie, or a simple email notification.

 [image:]

 Figure 13.30 Configuring an alert on Kibana

 You can also create alerts based on metrics collected by Prometheus or Telegraf, by using the Grafana alerting feature.

 Note While it’s easy to set up and use Grafana alerting, it’s more limited in terms of the alert rules you can apply to your metrics queries. If you’re looking for an advanced solution, go with Prometheus Alertmanager (https://prometheus.io/docs/alerting/latest/alertmanager/).

 Before creating monitoring alerts, we need to add the notification channel through which we will be notified. Here, we will be adding Slack as the notification channel.

 To set up Slack, you need to configure an incoming Slack webhook URL. Create a Slack application by going to https://api.slack.com/apps/new. After creating the application, you’ll be redirected to the Settings page of the new app (figure 13.31). From there, enable the Incoming Webhook feature by switching the radio button to On.

 [image:]

 Figure 13.31 Enabling the incoming webhook on a Slack application

 Now that incoming webhooks are enabled, the Settings page should refresh, and some extra options will appear. One of those options will be a really helpful button marked Add New Webhook to Workspace, and you should click it.

 Go ahead and pick a Slack channel that Grafana will post to, and then click Authorize Your App. You’ll be sent back to your app settings, where you should now see a new entry under the webhook URLs for the Your Workspace section, with a webhook URL. Copy it.

 After creating the webhook URL, you need to create a notification channel in Grafana. In the Grafana sidebar, hover your cursor over the Alerting icon and then click Notification Channels, as shown in figure 13.32. Create a Slack notification channel as follows:

 	
 Input the name of the channel.

 	
 Change Type to Slack and input a webhook URL that you have created.

 [image:]

 Figure 13.32 Configuring a new Slack notification channel

 You can test the setup by clicking the Send Test button at the bottom. After setting up all the fields, just click the Save button.

 Now let’s create the alert. Select the panel where you want to create an alert. For instance, we can create an alert on the memory usage metric. Click the Alert tab and then click Create Alert. This will open a form for configuring the alert, where you can set the following options:

 	
 Evaluate Every—The time interval on which you want the alert rule to be evaluated. For this example, we can set the option to Evaluate Every 1m for 1m. It means that Grafana will evaluate the rule every minute. If the metrics violate the rule, Grafana will wait for 1 minute. If, after 1 minute, the metrics are not recovered, Grafana will trigger an alert.

 	
 Conditions—We can use the avg() function as we want to validate our rule against the average memory utilization.

 This alert will be triggered when the average memory utilization is above 90%, as shown in figure 13.33.

 [image:]

 Figure 13.33 Defining an alert rule for memory usage

 Additionally, we need to add the notification channel where the alert needs to be sent, as well as the alert message. If the alert is triggered, you will see the message in figure 13.34 on your Slack channel.

 [image:]

 Figure 13.34 Slack notification upon memory threshold exceeded

 Creating an alert to a messaging application like Slack is very beneficial. This ensures that you and your teammates get notifications immediately if something wrong happens. You can mention your team Slack group or use @here or @channel to make sure your team gets the message.

 Summary

 	
 You can build a monitoring stack with Telegraf, InfluxDB, and Grafana to collect, store, and visualize Jenkins instance metrics.

 	
 You can collect and parse Jenkins logs into structured fields by writing Grok expressions.

 	
 The Prometheus plugin can be used to expose internal and client-side metrics in Jenkins.

 	
 The Logstash plugin is an easy way to integrate Jenkins logs with the ELK stack.

 	
 Filebeat can be installed as an agent on your Jenkins master instance to ship logs to Logstash for parsing. From there, logs will be stored in Elasticsearch and analyzed from Kibana within an interactive dashboard.

 14 Jenkins administration and best practices

 This chapter covers

 	Sharing common code and steps across CI/CD pipelines

 	Granting job permissions for a user

 	Using GitHub for authentication information to secure a Jenkins instance

 	Backing up and restoring Jenkins plugins and jobs

 	Using Jenkins as a scheduler for cron jobs

 	Migrating build jobs to a new Jenkins instance

 Chapter 13 covered how to monitor a Jenkins cluster, and how to configure alerts and correlate Jenkins logs and metrics to identify issues and avoid downtime. In this chapter, you will learn how to enforce security on Jenkins by setting up granular access with role-based access control (RBAC) for logged-in users and how to add an extra security layer by using the GitHub authentication mechanism.

 We also will discuss a few tips and tricks that you might find useful when maintaining a Jenkins instance. We will look at things like how to back up, restore, and archive build jobs or migrate them from one server to another.

 14.1 Exploring Jenkins security and RBAC authorization

 The current configuration of Jenkins allows not-logged users to have read access, and logged users to access almost everything. To override this default behavior, head to the Configure Global Security section from Manage Jenkins (figure 14.1).

 [image:]

 Figure 14.1 Enabling security in Jenkins

 Disable Allow Anonymous Read Access and enable Allow Users to Sign Up, and you will be redirected to the sign-in page. This option allows users to create accounts by themselves via the Create an Account link, shown in figure 14.2.

 [image:]

 Figure 14.2 Jenkins sign-in page

 Click the Create an Account link. You will be prompted to add a new user. In figure 14.3, we are setting up a developer account.

 [image:]

 Figure 14.3 Setting up a developer account

 Once the new account is created, sign in. You’ll notice that it has full control of Jenkins. Letting signed-in users do anything is certainly flexible, and maybe all you need for a small team. For larger or multiple teams, or when Jenkins is being used outside the development environment, a more secure approach is generally required.

 Note By default, Jenkins does not use CAPTCHA verification if the user creates an account. If you’d like to enable CAPTCHA verification, install a support plugin such as the Jenkins JCaptcha plugin (https://plugins.jenkins.io/jcaptcha-plugin/).

 14.1.1 Matrix authorization strategy

 To set up granular access for logged-in users, we can use the Jenkins Matrix Authorization Strategy plugin (https://plugins.jenkins.io/matrix-auth/). This plugin allows you to control job permission on each project with specific users who can do something on that job.

 Once the Matrix Authorization Strategy plugin is installed, head to Configure Global Security. In the Authorization section, enable Project-Based Matrix Authorization Strategy. Jenkins will display a table containing authorized users, and check boxes corresponding to the various permissions that you can assign to these users (figure 14.4).

 [image:]

 Figure 14.4 Matrix-based security configuration

 The permissions are organized into several groups, such as these.

 	
 Overall—Covers basic system-wide permissions.

 	
 Credentials—Covers managing Jenkins credentials.

 	
 Agent—Covers permissions about build nodes or workers (adding or removing Jenkins nodes).

 	
 Job—Covers job-related permissions (creating a new build job, updating or deleting an existing build job).

 	
 Run—Covers rights related to particular builds in the build history.

 	
 View—Covers managing views. Views in Jenkins allow us to organize jobs and content into tabbed categories.

 	
 SCM—Covers permissions related to a version-control system (such as Git or SVN).

 The matrix controls what users can do (read jobs, execute builds, install plugins, and so forth). We have a couple of built-in authorizations to consider:

 	
 Anonymous—Anyone who has not logged in

 	
 Authenticated—Anyone who has logged in

 You can configure permissions for a specific user by clicking Add User or Group. Add two users: one administrator (say, mlabouardy/admin) and a regular user (say, developer).

 All the check boxes next to users are for setting global permissions. Select all check boxes to give admin full permissions. For Developer (aka John Doe), we are selecting read permissions under Job. With this, Developer would now have read permission to view all jobs that we created in the previous chapters; see figure 14.5.

 Click Save, and the login page opens if you log in using developer credentials. In this mode, the developer account has only read permissions, as shown in figure 14.6 (for example, the developer can’t trigger a build or configure job settings).

 [image:]

 Figure 14.5 Fine-tuning user permissions

 [image:]

 Figure 14.6 Jenkins read-only access

 So far, you have seen how to create and manage Jenkins users as well as how to give granular access to these users. However, in a large organization, assigning granular permissions to multiple users can be tedious. Luckily, you can create different roles with the appropriate permissions and assign them to different users in Jenkins.

 14.1.2 Role-based authorization strategy

 To manage different roles, install the Role-Based Authorization Strategy plugin (https://plugins.jenkins.io/role-strategy/) from the Plugin Manager page. Then activate the Role-Based Strategy option from the Manage Global Security page, as shown in figure 14.7.

 [image:]

 Figure 14.7 Enabling the Role-Based Authorization Strategy plugin

 Then you can define global roles on the Manage Jenkins page by selecting the Manage and Assign Roles option (figure 14.8). Note that Manage and Assign Roles will be visible only if you have installed the plugin correctly.

 [image:]

 Figure 14.8 Defining custom roles

 Click the Manage Roles option to add new roles. Create three custom roles with the appropriate permissions:

 	
 Admin—Will be assigned to Jenkins administrators for full access to Jenkins

 	
 Developer—Will be assigned to developers for permissions to build jobs and view their logs and status

 	
 QA—Will be assigned to software quality assurance engineer for permissions to view jobs status/health

 Then, assign these roles to specific users from the Assign Roles screen (figure 14.9). In these settings, we assign the admin’s role to the administrator account, the developer’s role to a member of the development team, and QA’s role to a software QA.

 [image:]

 Figure 14.9 Managing and assigning roles

 If you’re using Jenkins within an organization, creating and managing users’ access might be a tedious task. You can use GitHub as an authentication mechanism.

 Note You can configure many OAuth2 authentication services with Jenkins, including GitLab, Google, and OpenID.

 14.2 Configuring GitHub OAuth for Jenkins

 Jenkins supports several authentication plugins, in addition to built-in username and password authentication. If you’re using GitHub as your version-control system within your organization, you can also use the GitHub OAuth service for user authentication and privileges management.

 On Jenkins, install the GitHub Authentication plugin (https://plugins.jenkins.io/github-oauth/) from Manage Plugins. Once it’s installed, head to your GitHub account and create a new application (https://github.com/settings/applications/new) called Jenkins with the settings in figure 14.10.

 [image:]

 Figure 14.10 Configuring the GitHub OAuth application

 The authorization callback URL must be JENKINS_URL/securityRealm/finishLogin. Click the Register Application button. A Client ID and secret will be generated, as shown in figure 14.11. Keep the page open to the application registration, so this information can be copied into your Jenkins configuration.

 [image:]

 Figure 14.11 Application client ID and client secret

 Head back to Jenkins, and in the Global Security configuration, set the Security Realm option to GitHub Authentication Plugin. Then set the Client ID, Client Secret, and OAuth scopes as shown in figure 14.12.

 [image:]

 Figure 14.12 Configuring the Jenkins client settings for OAuth

 Click the Save and Apply buttons to reload the configuration. You can now sign in with your GitHub account, as shown in figure 14.13.

 [image:]

 Figure 14.13 Authorizing Jenkins to access your GitHub account

 Similar to classic username and password authentication, you can use a project-based matrix authorization strategy to determine Jenkins permissions for each GitHub account.

 Another option is to use the GitHub Committer Authorization strategy. If you check this option, you can use GitHub repository permissions to determine permissions for each Jenkins project. If the GitHub repository of the project is public, all authenticated users will have read-only access, while project collaborators can build, edit, configure, cancel, or delete the Jenkins job. However, if the GitHub repository of the project is private, only collaborators can manage the Jenkins job.

 To determine Jenkins access based on GitHub access, head to the Configure Global Security section from Manage Jenkins (figure 14.14).

 [image:]

 Figure 14.14 Configuring GitHub Authorization settings

 Note We have authorized the use of the /github-webhook callback URL to receive post-commit hooks from GitHub.

 14.3 Keeping track of Jenkins users’ actions

 In addition to configuring user accounts and access rights, keeping track of individual user actions can also be useful: in other words, who did what to your Jenkins configuration. This sort of audit trail facility is even required in many organizations for security compliance.

 The Audit Trail plugin (https://plugins.jenkins.io/audit-trail/) keeps track of the main user actions in a set of rolling log files. To set this up, go to the Plugin Manager page and select the Audit Trail plugin in the list of available plugins. Then, as usual, click Install and Restart Jenkins after the plugin has been downloaded.

 To enable audit logging, configure the plugin from the main Jenkins configuration page. Select Logfile as a Logger; that way, the plugin will produce a system-style log file. Then, set the log location (the directory in which the log files are to be written), as shown in figure 14.15. Of course, you need to ensure that the user running your Jenkins instance is allowed to write to this directory.

 [image:]

 Figure 14.15 Configuring the Audit Trail plugin

 By default, the details recorded in the audit logs are fairly sparse—they effectively record key actions performed, such as creating, modifying, or deleting job configurations or views, and the user who performed the actions. The log also shows how individual build jobs started. Figure 14.16 shows an extract of the default log.

 [image:]

 Figure 14.16 Viewing audit logs for the authorized user activity

 You can also configure the number of log files to be maintained and the maximum size of each file. In the previous configuration, we have the Log File Count set to 10; in this case, Jenkins will write to log files with names like jenkins-audit.log.0, jenkins-audit.log.1 . . . jenkins-audit.log.9. Now, you can access the configuration history for the whole server, including system configuration updates, as well as the changes made to the configuration of each project.

 Note You can take the preceding configuration further and stream those log files to a centralized ELK platform and set up alerts on unauthorized user activities. For a step-by-step guide, head back to chapter 13.

 14.4 Extending Jenkins with shared libraries

 Throughout this book, you have learned how to write a CI/CD pipeline for multiple applications, and while implementing those pipeline steps, we have invoked multiple custom functions. Those functions, shown in the following listing, were duplicated in multiple Jenkinsfiles.

 Listing 14.1 Helper functions for Git and Slack

 def commitAuthor(){
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
}

def commitID() {}
def commitMessage() {}
def notifySlack(String buildStatus){}

 Therefore, we had some common code across different pipelines. To avoid copying and pasting the same code into different pipelines, and to reduce redundancies, we can centralize the common code in a shared library within Jenkins. That way, we can reference the same code in all of the pipelines.

 A shared library is a collection of independent Groovy scripts stored in a Git repository. This means you can version, tag, and do all the stuff you’re used to with Git. Before writing our first shared library in Jenkins, we need to create a GitHub repository where Groovy scripts will be stored.

 Inside the repository, create a vars folder and write a Groovy script per function. For example, create a file named commitAuthor.groovy and define a function called call. The body of the function is what will be executed when the commitAuthor instruction is invoked, as shown in the following listing.

 Listing 14.2 Defining a global variable in the shared library

 #!/usr/bin/env groovy ❶

def call() { ❷
 sh 'git show -s --pretty=%an > .git/commitAuthor' ❸
 def commitAuthor = readFile('.git/commitAuthor').trim() ❸
 sh 'rm .git/commitAuthor' ❸
 commitAuthor ❸
}

 ❶ Searches your path looking for Groovy to execute the script

 ❷ Allows the global variable to be invoked in a manner similar to a step

 ❸ Prints the Git commit author

 Notice that the Groovy script must implement the call method. Write your custom code within the braces {}. You can also add parameters to your method. Do the same for other functions and push the changes to the remote repository. Eventually, your repository should look like figure 14.17.

 [image:]

 Figure 14.17 Shared library custom global variables

 Now that you’ve created your library with custom steps, you need to tell Jenkins about it. To add a shared library, head to a job configuration. Under Pipeline Libraries, add a library with the following settings:

 	
 Name—A short identifier that will be used in pipeline scripts

 	
 Default version—Could be anything understood by Git—for example, branches, tags, or commit ID hashes

 Next, load the library from the GitHub repository at the master branch, as shown in figure 14.18.

 [image:]

 Figure 14.18 Loading a shared library from GitHub

 Note You can also define a shared library globally, from Manage Jenkins > Configure System > Global Pipeline Libraries. That way, all pipelines can use functionality implemented in this library.

 To load the shared library in a pipeline, you need to import it with the @Library annotation at the top of your pipeline definition. Then call the target function by its name, as shown in the following listing.

 Listing 14.3 Importing the shared library in the scripted pipeline

 @Library('utils')_ ❶

node('workers'){
 stage('Checkout'){
 checkout scm
 notifySlack 'STARTED'
 }
}

 ❶ The underscore is required if the line immediately after the @Library annotation is not an import statement.

 The underscore is not a typo or mistake; you need this if the line immediately after the @Library annotation is not an import statement. You can override the default version defined for the library with the @Library('id@version') annotation.

 If you’re using a declarative pipeline, you need to wrap the library name inside a libraries section, as shown in the following listing.

 Listing 14.4 Importing shared library in the declarative pipeline

 libraries {
 lib('utils')
 }
 pipeline {
 // Your pipeline would go here....
 }

 When using a library, you may also specify a version with the following format:

 libraries {
 lib('utils@VERSION')
 }

 Run the previous pipeline, and the output should look something like figure 14.19.

 [image:]

 Figure 14.19 Loading the shared library from Git within a pipelin.

 Another way to write a library is to define the functions within a Groovy class. Create the Git.groovy class in src/com/labouardy/utils, as shown in the following listing.

 Listing 14.5 Writing a shared library

 #!/usr/bin/env groovy
package com.labouardy.utils

class Git {
 Git(){}

 def commitAuthor() {
 sh 'git show -s --pretty=%an > .git/commitAuthor'
 def commitAuthor = readFile('.git/commitAuthor').trim()
 sh 'rm .git/commitAuthor'
 commitAuthor
 }

 def commitID() {
 sh 'git rev-parse HEAD > .git/commitID'
 def commitID = readFile('.git/commitID').trim()
 sh 'rm .git/commitID'
 commitID
 }

 def commitMessage() {
 sh 'git log --format=%B -n 1 HEAD > .git/commitMessage'
 def commitMessage = readFile('.git/commitMessage').trim()
 sh 'rm .git/commitMessage'
 commitMessage
 }
}

 You can load classes defined in the library by selecting their fully qualified name:

 @Library('utils') import com.labouardy.utils.Git
this.commitAuthor()

 Or you can create an object constructor function and then call the method from the object:

 def gitUtils = new Git(this)
gitUtils.commitAuthor

 Note It is possible to use third-party Java libraries, typically found in Maven Central (https://search.maven.org/), from trusted library code by using the @Grab annotation. Refer to the Grape documentation for details (http://mng.bz/nrxg).

 14.5 Backing up and restoring Jenkins

 Backing up your data is a universally recommended practice, and your Jenkins server should be no exception. Fortunately, backing up Jenkins is relatively easy. In this section, we will look at a few ways to do this.

 In Jenkins, all the settings, build logs, and archives of the artifacts are stored under the $JENKINS_HOME directory. You can back up the directory manually, or by using a plugin like ThinBackup (https://plugins.jenkins.io/thinBackup/). The plugin provides a simple user interface that you can use to back up and restore your Jenkins configurations and data.

 Once you install the plugin, you need to configure the backup directory, as shown in figure 14.20. Specify the backup directory to be /var/lib/backups. Be sure Jenkins has write rights!

 [image:]

 Figure 14.20 Configuring the ThinBackup plugin

 Now, you can test whether the backup is working by clicking the Backup Now option. It will create a backup of Jenkins data in the backup directory you specified in the settings:

 [image:]

 To restore a previous configuration, just go to the Restore page and choose the date of the configuration you wish to reinstate, as shown in figure 14.21. Once the configuration has been restored to the previous state, you need to reload the Jenkins configuration from disk or restart Jenkins.

 [image:]

 Figure 14.21 Restoring a previous configuration

 As a result of the backup, you can restore Jenkins from an earlier point in time in case of data corruption or a human-caused event.

 Note The ThinBackup plugin stores the backup locally for production usage. It’s highly recommended to store your backups on a remote server or mount an external data storage.

 If you’re not a fan of plugins, you can set up a cron job (see the next section for more details) on Jenkins to schedule regular backups. It will back up everything located at /var/lib/jenkins to a remote repository such as S3 bucket, as shown in the following listing.

 Listing 14.6 Backing up the $JENKINS_HOME folder to an S3 bucket

 cd $JENKINS_HOME
BACKUP_TIME=$(date +'%m.%d.%Y')
zip -r backup-${BACKUP_TIME} .
aws s3 cp backup-${BACKUP_TIME} s3://BUCKET/

 Sometimes you need to move or copy Jenkins build jobs from one Jenkins instance to another, without copying the entire Jenkins configuration. For example, you might be migrating your build jobs to a Jenkins server on a brand-new instance.

 You can copy or move build jobs between instances of projects simply by copying or moving the build job directories to the new Jenkins instance. I have built an open source CLI called Butler (https://github.com/mlabouardy/butler) to import/export Jenkins jobs and plugins easily.

 To get started, find the appropriate package for your system and download it. Here’s the command for Linux:

 wget https://s3.us-east-1.amazonaws.com/butlercli/1.0.0/linux/butler
chmod +x butler
cp butler /usr/local/bin/

 Verify that the installation worked by opening a new terminal session and checking whether Butler is available. To export Jenkins plugins, you need to provide the Jenkins URL:

 butler jobs export --server JENKINS_URL --username USERNAME --password PASSWORD

 A new jobs/ directory will be created with every job in Jenkins. Each job will have its own configuration file, config.xml.

 To import the plugins, issue the butler plugins export command. Butler will dump a list of plugins installed to stdout, and a new file, plugins.txt, will be generated, with a list of installed Jenkins plugins with name and version pairs, as shown in fig- ure 14.22.

 [image:]

 Figure 14.22 Listing of installed Jenkins plugins

 You can import exported jobs and plugins with the butler plugins/jobs import commands. Butler will use the exported files to issue API calls to the target Jenkins instance to import plugins and jobs.

 So, all in all, migrating build jobs between Jenkins instances isn’t all that hard—you just need to know a couple of tricks for the corner cases, and if you know where to look, Jenkins provides some nice tools to make the process smoother.

 If you want $JENKINS_HOME content to be persisted on disk even if the Jenkins master instance has been restarted or shut down, you can mount a remote filesystem on the $JENKINS_HOME folder.

 If you’re running Jenkins on AWS, you can use an AWS service called Amazon Elastic File System, or EFS (https://aws.amazon.com/efs/). Create a filesystem on EFS by clicking the Create File System button (figure 14.23).

 [image:]

 Figure 14.23 Creating an Amazon EFS filesystem

 Once the filesystem is created and its state is Available, mount the EFS filesystem in the /var/lib/jenkins directory, so all the configuration will be saved in EFS:

 sudo mount -t nfs4
-o nfsvers=4.1,rsize=1048576,wsize=1048576,
hard,timeo=600,retrans=2,noresvpor.
EFS_ID.efs.REGION.amazonaws.com:/ /var/lib/jenkins/

 If you want to test it, terminate your EC2 instance and a new one will be launched automatically with the same configuration (make sure to add the mount commands to the Packer template while baking the Jenkins master AMI).

 14.6 Setting up cron jobs with Jenkins

 Jenkins provides a cron-like feature to periodically build a project. This feature is primarily used to run scheduled builds, like nightly/weekly builds or running tests. For example, you might want to run performance tests or integration tests for Android or iOS releases at night, when users do not access the backend under test.

 To configure a scheduled nightly build that runs at a certain day and time, head over to Jenkins dashboard. Create a new job and select Freestyle Project. Configure the job accordingly by adding the job details shown in figure 14.24.

 [image:]

 Figure 14.24 Creating a Freestyle project

 Schedule your build from the Build Triggers tab by writing the cron syntax shown in figure 14.25, and then select the Build Periodically option. Fill in a cron-like value for the time you wish to trigger the pipeline execution.

 [image:]

 Figure 14.25 Defining a cron job expression

 Jenkins uses a cron expression, with fields as follows.

 	
 MINUTES —Minutes in one hour (0–59)

 	
 HOURS —Hours in one day (0–23)

 	
 DAYMONTH—A day in a month (1–31)

 	
 MONTH—Month in a year (1–12)

 	
 DAYWEEK —Day of the week (0–7), where 0 and 7 are Sunday

 For example (figure 14.26), to trigger a build at midnight on Sunday, the cron value H 12 * * 7 will do the job.

 Note You should be aware that the time zone is relative to the location where your Jenkins virtual machine is running. This example uses Coordinated Universal Time (UTC).

 [image:]

 Figure 14.26 Shell script to back up the $JENKINS_HOME folder

 Build your job to test that everything is working as you’ve expected. Your build results should look like figure 14.27.

 [image:]

 Figure 14.27 Triggering a cron job manually

 Next time, your job will automatically execute at 12:00 A.M. since you have scheduled it to run at this time using cron syntax.

 Jenkins jobs could be run programmatically, using API calls or the Jenkins CLI. That opens up the opportunity to implement complex schedule builds by integrating an external service like AWS Lambda to invoke a Jenkins build job based on different events; see figure 14.28.

 [image:]

 Figure 14.28 Triggering a Jenkins job from a Lambda function

 This diagram covers how to trigger a Jenkins build job from a Lambda function through the Jenkins RESTful API. The Lambda function is invoked on the upcoming CloudWatch event rule (cloud-managed cron job) or HTTPS requests from API Gateway.

 14.7 Running Jenkins locally as a Docker container

 If you need to debug Jenkins or test a new plugin, you can deploy Jenkins locally on your machine and run it as a Docker container. That way, you can easily create and destroy a Jenkins server.

 You can use the official Jenkins Docker image from the DockerHub repository (https://hub.docker.com/_/jenkins). The image contains the current LTS release of Jenkins (v2.60.3 at the time of this writing).

 To get started, on your terminal, create a bridge network in Docker with the following command:

 docker network create jenkins

 We will need the Docker daemon to be able to provision Jenkins workers dynamically. That’s why we will deploy a Docker container based on the Docker image:

 docker run -d --name docker --privileged
--network jenkins --network-alias docke.
--env DOCKER_TLS_CERTDIR=/cert.
--volume jenkins-docker-certs:/certs/clien.
--volume jenkins-data:/var/jenkins_hom.
--publish 2376:2376 docker:dind

 To avoid exposing the Docker daemon (/var/run.docker.sock) running in the host machine, we will run a Docker container providing a self-service and ephemeral Docker Engine, which Jenkins will use instead of the worker machine’s Docker engine. This pattern is referred to as Docker in Docker, or nested containerization.

 We will override the Jenkins official image to install the Docker CLI and needed plugins for Jenkins. Create a Dockerfile with the content in the following listing.

 Listing 14.7 Dockerfile to build custom Jenkins image

 FROM jenkins/jenkins:lts
MAINTAINER mlabouardy <mohamed@labouardy.com>

USER root
RUN apt-get update && apt-get install -y apt-transport-https \
 ca-certificates curl gnupg2 \
 software-properties-common
RUN curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -
RUN apt-key fingerprint 0EBFCD88
RUN add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/debian \
 $(lsb_release -cs) stable"
RUN apt-get update && apt-get install -y docker-ce-cli ❶
USER jenkins ❷
RUN jenkins-plugin-cl.
--plugins blueocean:1.24.3 workflow-aggregator:2..
github:1.32.0 docker-plugin:1.2.1 ❸

 ❶ Installs Docker community edition (CE) client

 ❷ Switches to Jenkins user to avoid running the container by default in privileged mode

 ❸ Installs the Jenkins plugins

 This Dockerfile does the following:

 	
 Installs the Docker Community Edition CLI

 	
 Installs Jenkins plugins, including the following:

 	Blue Ocean—Sophisticated visualizations of CD pipelines for fast and intuitive comprehension of software pipeline status

 	Workflow—A suite of plugins that lets you write pipelines as code (Jenkinsfiles)

 	GitHub—GitHub API integration and support of Git operations

 	
 Docker—Lets you provision Jenkins workers on Docker containers

 Build a new Docker image from this Dockerfile and assign the image a meaningful name:

 docker build -t jenkins-custom:lts .

 Then, deploy a container based on the built image with the following docker run command:

 docker run -d --name jenkins --network jenkins
--env DOCKER_HOST=tcp://docker:2376
--env DOCKER_CERT_PATH=/certs/clien.
--env DOCKER_TLS_VERIFY=.
--publish 8080:8080 --publish 50000:5000.
--volume jenkins-data:/var/jenkins_hom.
--volume jenkins-docker-certs:/certs/client:r.
jenkins-custom:lts

 This command will map a Docker volume to the /var/jenkins_home folder. In case you need to restart or recover your Jenkins instance, all of the state is stored inside the Docker volume.

 You can also build and deploy all the services by writing a docker-compose.yml file, as shown in the following listing.

 Listing 14.8 Grok custom patterns definition

 version: "3.8"

services:
 docker:
 image: docker:dind
 ports:
 - "2376:2376"
 networks:
 jenkins:
 aliases:
 - docker
 environment:
 - DOCKER_TLS_CERTDIR=/certs
 volumes:
 - jenkins-docker-certs:/certs/client
 - jenkins-data:/var/jenkins_home
 privileged: true

 jenkins:
 build: .
 ports:
 - "8080:8080"
 - "50000:50000"
 networks:
 - jenkins
 environment:
 - DOCKER_HOST=tcp://docker:2376
 - DOCKER_CERT_PATH=/certs/client
 - DOCKER_TLS_VERIFY=1
 volumes:
 - jenkins-data:/var/jenkins_home
 - jenkins-docker-certs:/certs/client:ro

volumes:
 jenkins-docker-certs: {}
 jenkins-data: {}

networks:
 jenkins:

 Run docker-compose up, and Docker Compose starts and runs Jenkins.

 Visit localhost:8080; you should see the login page. As a part of the Jenkins setup, we need to view the password inside the container instance; use the container ID (or the name) and run the docker exec command:

 docker container exec ID sh -c "cat /var/jenkins_home/secrets/initialAdminPassword"

 After running the command, you should see the code. Copy and paste it on the dashboard to unlock Jenkins; see figure 14.29.

 [image:]

 Figure 14.29 Jenkins server running inside a Docker container

 To set up workers, choose Manage Jenkins and System Configuration. Then click the Configure tab in the Cloud section. The Docker option will be available. Set the Docker URI to tcp://docker:2376, as shown in figure 14.30. Click the Test button to check the connection.

 [image:]

 Figure 14.30 Configuring Docker remote API on Jenkins

 The Docker API should return an error: server gave HTTP response to HTTPS client. You need to configure the client TLS certificates to connect with the Docker daemon. The certificates can be found at the /certs/client folder within the Jenkins container.

 Create a new Jenkins credential of type Certificate with the following settings:

 	
 Client Key—/certs/client/key.pem content

 	
 Client Certificate—/certs/client/cert.pem content

 	
 Server CA Certificate—/certs/client/ca.pem content

 The credential settings should look similar to those in figure 14.31.

 [image:]

 Figure 14.31 Jenkins server deployed locally inside a Docker container

 Then, we need to define an agent template, as shown in figure 14.32; this template is the blueprint used to spin up Jenkins workers. You need a Docker image that can be used to run the Jenkins agent runtime. You can use the jenkins/ssh-agent (https://hub.docker.com/r/jenkins/ssh-agent) as a base for Jenkins workers. The image has SSHD installed (this listens for an incoming connection when you attempt to connect via SSH).

 [image:]

 Figure 14.32 Configuring a new Docker agent template

 You can also build a custom Docker agent image with all dependencies and packages needed to build your projects. To test it out, create a new Jenkins pipeline with the content shown in figure 14.33.

 [image:]

 Figure 14.33 New inline pipeline

 Trigger the pipeline by clicking the Build Now link from the left navigation menu; the job will launch a container and execute the pipeline (figure 14.34).

 [image:]

 Figure 14.34 Spinning up the Jenkins agent based on a Docker container

 The agents are provisioned dynamically and stopped after each build.

 Summary

 	
 You can share common code and steps across multiple pipelines by writing a Jenkins shared library.

 	
 You can define fine-grained control over user/group permissions per project with the Matrix Authorization Strategy plugin.

 	
 You can also create a custom role with a list of permissions and assign the role to users instead of assigning appropriate permissions to each user with the Role Strategy plugin.

 	
 Use GitHub’s own authentication scheme for implementing authentication in your Jenkins instance.

 	
 The Docker plugin will run dynamic Jenkins agents inside Docker containers.

 Wrapping up

 We’re at the end of our journey in this book. You learned about Jenkins and the pipeline-as-code approach. You discovered several CI/CD implementations for cloud-native applications, such as containerized applications in Kubernetes and serverless applications. You designed and deployed a Jenkins cluster on the cloud for scale and mastered monitoring and troubleshooting Jenkins.

 Technology changes quickly, so it’s great to have a few resources to go to for recent news and information. The weekly newsletter DevOps Bulletin (https://devopsbulletin .com) features a great collection of posts regarding PaC and the latest wonders in the DevOps space. I also recommend keeping an eye on DevOps World (www.devopsworld .com), where you can be inspired by experts and your peers and gain the tools you need to shape the future of software delivery at your organization and at large.

 I hope you’ve enjoyed the book and learned something from it. PaC is still new, but awareness is growing rapidly. Over the next few years, you’ll see many organizations, small and large, embrace PaC to release faster and reduce the feedback loop.

 index

 Symbols

 _repositories_push scope 288

 --build-arg argument 421

 --dry-run flag 376

 --no-sandbox flag 257

 --prod 415

 --region command-line option 69

 --url argument 392

 --version flag 385

 -auth option 219

 -cover flag 241

 -i flag 220

 -set_exit_status 239

 .helmignore 372

 *testing.T 240

 /* tslint:disable */ instruction 256

 /approve comment 398

 %{PATTERN:IDENTIFIER} syntax 458

 ${stageVariables.environment} 428

 $JENKINS_HOME directory 64, 124

 $JENKINS_HOME/init.groovy.d directory 85

 $LATEST version 423, 425

 A

 Acceptance tests stage 24

 ACCOUNT_ID variable 287, 294

 ACLs (access-control lists) 57, 405

 ACM (AWS Certificate Manager) 63, 124

 AD (Azure Active Directory) 163

 admin 263, 446

 agent directive 51

 Agent permission 470

 agent section 33, 302, 304

 AKS (Azure Kubernetes Service) 356

 alerts 462–466

 allowMissing parameter 252

 always directive 34

 always post condition block 34

 Amazon ECR (Elastic Container Registry) 286–287

 Amazon Elastic File System (EFS) 124

 Amazon Elastic Kubernetes Service (EKS) 356

 Amazon Resource Name (ARN) 125

 Amazon S3 420–422

 Amazon Simple Queue Service (SQS) 200

 amazon-ebs builder 78

 AMIs (Amazon Machine Images) 55

 master, baking 85–96

 configuring Jenkins upon startup 85–88

 Jenkins plugins 88–96

 worker, baking 96–99

 Anchore Engine 296

 Anonymous 470

 api variable 406

 API_TOKEN variable 218

 apiVersion 370

 applications, microservices-based 199–203

 ARG instruction 278

 ARN (Amazon Resource Name) 125

 AS NAME 276

 ASG (Auto Scaling group) 57, 131–133

 assertEqual() function 234

 Authenticated authorization 470

 Auto Scaling groups 128

 automated tests 231–270

 code analysis 246–248

 code coverage reports 240–242

 code linter integration 238–240

 HTML coverage reports 250–254

 mocked database tests 248–250

 parallel tests 244–246

 security in CI pipeline 242–244

 SonarQube Scanner 260–270

 UI testing with Headless Chrome 254–260

 unit tests inside Docker containers 233–238

 autoscaling 9

 autoscaling workers 128–139

 Auto Scaling group 131–133

 CPU utilization load 136–139

 launch configuration 128–131

 scaling policies 133–135

 avg() function 465

 AWS (Amazon Web Services) 141

 architecting Jenkins for scale in 55–69

 configuring CLI (command-line interface) 65–66

 creating and managing IAM (Identity and Access Management) user 66–69

 preparing environment 64–65

 provisioning VPC (virtual private cloud) 103–117

 overview 104–108

 VPC bastion host 114–117

 VPC route tables 111–114

 VPC subnets 108–111

 AWS Certificate Manager (ACM) 63, 124

 AWS CLI update-kubeconfig command 360, 363

 aws configure command 69

 aws ec2 describe-availability-zones command 109

 aws ecr command 294

 aws eks update-kubeconfig command 362

 aws provider 104

 aws s3 cp instruction 417, 430

 aws s3 ls command 422

 AWS_ACCESS_KEY_ID variable 104

 aws_ami data source 114

 aws_autoscaling_group resource 131

 AWS_DEFAULT_REGION environment variable 69

 aws_instance resource 117

 aws_key_pair resource 115

 aws_launch_configuration resource 128

 AWS_PROFILE environment variable 104

 aws_profile variable 107

 AWS_REGION 374

 AWS_SECRET_ACCESS_KEY variable 104

 aws-auth ConfigMap 363

 awsauto 299

 AWSLambda_FullAccess 419

 Azure 162–183

 applying autoscaling to Jenkins workers 178–183

 building Jenkins VM images in 162–166

 deploying Jenkins master virtual machine 171–177

 deploying private virtual network 166–170

 Azure Active Directory (AD) 163

 Azure Bastion offering Remote Desktop Protocol (RDP) managed service 169

 Azure Instance Metadata Service (IMDS) 179

 azure-arm builder 163

 AzureBastionSubnet 167, 170

 azurerm 167

 azurerm_public_ip resource 170

 B

 backing up 480–484

 baking machine images 70–99

 immutable infrastructure 71–72

 master AMI 85–96

 configuring Jenkins upon startup 85–88

 Jenkins plugins 88–96

 with Packer 72–85

 baking machine image 75–85

 installation and configuration 74–75

 process 73–74

 worker AMI 96–99

 BasicSSHUserPrivateKey constructor 87

 bastion host 61, 114–117

 BDD (behavior-driven development) 24

 before keyword 247

 Blue Ocean plugin 26–29, 488

 BRANCH_NAME 294

 build arguments, Docker 277–279

 build job keyword 332

 Build stage 24, 31, 274, 276, 302, 338–339, 383–384, 407, 409, 421

 BUILD_TAG environment variable 376

 build() method 274, 278

 builders 74, 145

 butler plugins export command 483

 butler plugins/jobs import commands 483

 C

 CA (certificate authority) 124

 CD (continuous delivery)

 defined 14

 metrics 441–466

 centralized logging for Jenkins logs with ELK 452–462

 creating alerts based on 462–466

 monitoring Jenkins cluster health 442–452

 on K8s (Kubernetes) 372–381

 CD (continuous deployment)

 automating flow with Jenkins 360–372

 defined 13–14

 on Docker Swarm 321–335

 CE (Docker Community Edition) 296

 centralized logging 452–462

 streaming logs with Filebeat 454–461

 streaming logs with Logstash plugin 461–462

 certificate authority (CA) 124

 chaos engineering 10

 Chart.yaml 372

 Checkout stage 24, 31, 209, 222, 302

 chkconfig command 79

 CI (continuous integration) pipeline 197

 Docker images within 271–308

 building 273–279

 deploying Docker private registry 279–291

 managing pull requests with Jenkins 305–308

 scanning for vulnerabilities 296–301

 tagging 291–296

 writing Jenkins declarative pipeline 301–304

 security in 242–244

 CI/CD (continuous integration/continuous deployment) 3–20

 cloud native approaches 4–12

 cloud native 8–10

 microservices 5–8

 monolithic 4–5

 serverless 10–12

 embracing practices 15–16

 tools for 16–20

 choosing 17–18

 Jenkins 18–20

 CIDR (Classless Inter-Domain Routing) 60

 cidrsubnet(prefix, newbits, netnum) method 109

 CLI (command-line interface) 53, 64–66, 372

 Client Certificate 490

 Client Key 490

 client_certificate_password 169

 client_certificate_path 169

 cloud native 3–20

 approaches for going 4–12

 cloud native 8–10

 microservices 5–8

 monolithic 4–5

 serverless 10–12

 CI/CD (continuous integration/continuous deployment)

 CD (continuous delivery), defined 14

 CD (continuous deployment), defined 13–14

 CI (continuous integration), defined 12–13

 embracing practices 15–16

 tools for 16–20

 Docker Swarm, applications on 309–354

 defining continuous deployment process 321–335

 handling code promotion with Jenkins 341–346

 implementing Jenkins delivery pipeline 346–354

 integrating Jenkins with Slack notifications 335–341

 running distributed Docker Swarm cluster 310–321

 cloud providers 140–193

 DigitalOcean 183–192

 building Jenkins worker Droplets 190–192

 creating Jenkins DigitalOcean Snapshots 183–185

 deploying Jenkins master Droplet 186–189

 Google Cloud Platform (GCP) 141–161

 building Jenkins VM images 141–147

 configuring with Terraform 147–153

 deploying Jenkins on Google Compute Engine 153–157

 launching automanaged workers on 157–161

 Microsoft Azure 162–183

 applying autoscaling to Jenkins workers 178–183

 building Jenkins VM images in 162–166

 deploying Jenkins master virtual machine 171–177

 deploying private virtual network 166–170

 cloud-native architecture 4

 ClusterIP keyword 366

 ClusterRoleBinding resource 370

 clusters

 monitoring health of 442–452

 running distributed Docker Swarm 310–321

 setting up Kubernetes 356–360

 code

 analysis 246–248

 linter integration 238–240

 promotion 341–346

 cold start 415

 command-line interface (CLI) 53, 64–66

 command-line pipeline linter 41–43

 commitAuthor instruction 477

 commitAuthor() method 340

 commitID() function 293

 commitID() method 376

 commitMessage() method 340

 communication 6

 complexity 8

 Conditions option 465

 consistency 22

 containers, Docker

 running Jenkins locally as 487–491

 unit tests inside 233–238

 continuous everything 7

 continuous integration. See CI (continuous integration) pipeline

 CORS (cross-origin resource sharing) 405

 cost optimization 11

 cost-effectiveness 5

 count variable 191

 coverage reports

 code 240–242

 HTML 250–254

 CPU utilization load 136–139

 CREATE DATABASE InfluxQL (Influx Query Language) statement 445

 create_before_destroy life cycle setting 132

 Credentials 470

 credentials file 66

 credentials() helper method 34

 cron jobs 484–486

 cross-origin resource sharing (CORS) 405

 CSRF (cross-site request forgery) 41

 CSS (Cascading Style Sheets) 403

 currentBuild.result variable 34

 D

 database tests, mocked 248–250

 DEBUG 457

 declarative pipeline 31–35, 301–304

 declarative-lint option 43

 Default version 478

 delivery pipeline 346–354

 dependencies section 375, 386

 depends_on keyword 316

 deploy machine learning (ML) models 141

 Deploy stage 24, 332, 344, 349, 365, 377, 407, 417, 424, 426, 432

 deployment 6

 deployment packages 407–417

 mono-repo strategy 407–413

 multi-repo strategy 413–417

 describe keyword 247

 Develop 294

 develop branch 38–39

 develop tag 307, 323, 329, 333, 361

 Developer permission 472

 development speed 10

 development velocity 4, 7, 10

 DevOps 4

 DigitalOcean 183–192

 building Jenkins worker Droplets 190–192

 creating Jenkins DigitalOcean Snapshots 183–185

 deploying Jenkins master Droplet 186–189

 digitalocean builder 183, 185

 digitalocean Packer builder 183

 digitalocean_droplet type 186

 Docker 488

 docker build command 235–236

 Docker Community Edition (CE) 296

 Docker containers

 running Jenkins locally as 487–491

 unit tests inside 233–238

 docker cp command 237

 Docker DSL 273–277

 docker exec command 489

 docker group 312

 Docker images 271–308

 building 273–279

 Docker build arguments 277–279

 using Docker DSL 273–277

 deploying Docker private registry 279–291

 Amazon Elastic Container Registry (ECR) 286–287

 Google Container Registry (GCR) 290–291

 Nexus Repository OSS 279–286

 managing pull requests with Jenkins 305–308

 scanning for vulnerabilities 296–301

 tagging Docker images right way 291–296

 writing Jenkins declarative pipeline 301–304

 Docker in Docker 487

 docker info command 321

 docker login command 34, 285, 325

 docker node ls 321

 Docker plugin 488

 docker push command 290

 docker push operation 288

 docker run command 235, 488

 docker stack deploy command 322, 324, 329, 347, 354

 Docker Swarm 309–354

 defining continuous deployment process 321–335

 handling code promotion with Jenkins 341–346

 implementing Jenkins delivery pipeline 346–354

 integrating Jenkins with Slack notifications 335–341

 running distributed Docker Swarm cluster 310–321

 docker swarm join command 314

 docker_container_status_docker measurement 448

 docker-compose ps command 296

 docker-compose up 489

 docker.build() method 236, 238, 240

 Dockerfile.test 234

 Droplet deployments 186–189

 DSL (domain-specific language) 23

 E

 ec2-user username 312

 ECR (Elastic Container Registry) 286–287

 efficiency 22

 EFS (Amazon Elastic File System) 124

 EKS (Amazon Elastic Kubernetes Service) 356

 ELB (Elastic Load Balancing) 121

 ELK stack (Elasticsearch, Logstash, and Kibana) 452–462

 streaming logs with Filebeat 454–461

 streaming logs with Logstash plugin 461–462

 email notifications 434–437

 entries section 385

 ENTRYPOINT instruction 239

 ENV instruction 278

 env keyword 294

 env.BRANCH_NAME variable 294

 env.BUILD_ID keyword 291

 env.JOB_NAME variable 35

 ENVIRONMENT argument 346

 environment credentials 66

 environment section 34

 environment tag 168

 Environment Variables 65

 ETL (extract-transform-load) pipelines 141

 Evaluate Every option 465

 extract-transform-load (ETL) pipelines 141

 F

 failFast true instruction 245

 failure post condition block 34

 false 252

 fast infrastructure deployment 73

 fault tolerance 7

 feature/X branch 38

 Filebeat 454–461

 finally block 435

 Folder 205

 for loop 419

 FQDN (fully qualified domain name) 125

 Freestyle project 204

 FROM instruction 276

 function code 417–420

 G

 GCE (Google Compute Engine) console 145

 gcloud command 290

 gcloud compute images list command 144

 GCP (Google Cloud Platform) 4, 141–161

 building Jenkins VM images 141–147

 configuring with Terraform 147–153

 deploying Jenkins on Google Compute Engine 153–157

 launching automanaged workers on 157–161

 GCP virtual machines (VMs) 141

 GCR (Google Container Registry) 290–291

 Get-AzSubscription 163

 Git 205–215

 git clone command 384

 git log command 340

 git show command 340

 Git.groovy class 480

 GitFlow branch model 38–39

 GitHub 488

 integrating 205–215

 triggering builds with webhooks 222–230

 GitHub OAuth 472–475

 GitHub plugin 488

 GitHubWehookForwarder Lambda function 228

 GKE (Google Kubernetes Engine) 141, 356

 go build command 275

 go test command 239–241

 golint command 238–239

 Google Cloud Platform. See GCP

 Google Compute Engine 153–157

 Google Compute Engine (GCE) console 145

 Google Kubernetes Engine (GKE) 141, 356

 GOOGLE_APPLICATION_CREDENTIALS environment variable 144

 googlecompute builder 143, 145

 @Grab annotation 480

 Grafana platform 444

 granularity 6

 H

 HCL (HashiCorp Configuration Language) declarative language 104

 HEAD flag 340

 Headless Chrome 254–260

 Healthcheck stage 387–389

 Helm 381–387

 helm build 396

 Helm Chart stage 384

 helm package command 384

 helm repo index command 384

 helm rollback command 377

 helm upgrade command 376–377

 horizontal autoscaling 11

 hotfix/X branch 38

 HTML 240

 HTML coverage reports 250–254

 httpRequest DSL object 388

 HTTPS 124–127

 Hudson plugin 91

 I

 IaaS (infrastructure-as-a service) provider 100, 140

 IaC (infrastructure as code) 22, 101–103

 IAM (AWS Identity and Access Management) 66–69

 IAM roles 66

 ID 323

 identified by a client ID (aka application ID) 162

 if clause 344, 349

 IGW (internet gateway) 60

 images file 298

 IMDS (Azure Instance Metadata Service) 179

 immutable infrastructure 71–72

 influx CLI 445

 influx command 445

 InfluxDB 444

 INFLUXDB_IP variable 446

 INFO log 453, 457

 infrastructure as code (IaC) 22, 101–103

 infrastructure-as-a service (IaaS) provider 100, 140

 Inheritance project 204

 inputs 445

 –insecure-registry flag 285

 inside() instruction 238–239

 instance.save() statement 86

 instances 445

 Integration tests 13

 internet gateway (IGW) 60

 J

 Java Network Launch Protocol (JNLP) 53–54

 Java Web Start (JWS) 53

 JAVACLASS custom pattern 458

 JDK (Java Development Kit) 79

 Jenkins 18–46, 49–69, 140–193

 administration 467–492

 backing up and restoring 480–484

 configuring GitHub OAuth 472–475

 running locally as Docker container 487–491

 security and RBAC authorization 468–472

 setting up cron jobs 484–486

 shared libraries 476–480

 users actions, keeping track of 475–476

 architecting for scale in AWS 55–69

 configuring CLI 65–66

 creating and managing IAM user 66–69

 preparing environment 64–65

 as code with Terraform 100–139

 autoscaling worker pool 128–139

 infrastructure as code (IaC) 101–103

 provisioning AWS VPC 103–117

 running with native SSL/HTTPS 124–127

 setting up self-healing master 117–124

 automated tests with 231–270

 code analysis 246–248

 code coverage reports 240–242

 code linter integration 238–240

 HTML coverage reports 250–254

 mocked database tests 248–250

 parallel tests 244–246

 security in CI pipeline 242–244

 SonarQube Scanner 260–270

 UI testing with Headless Chrome 254–260

 unit tests inside Docker containers 233–238

 baking machine images 70–99

 immutable infrastructure 71–72

 master AMI 85–96

 with Packer 72–85

 worker AMI 96–99

 code promotion, handling 341–346

 configuring SSH authentication with 219–222

 DigitalOcean 183–192

 building Jenkins worker Droplets 190–192

 creating Jenkins DigitalOcean Snapshots 183–185

 deploying Jenkins master Droplet 186–189

 email notifications in 434–437

 GitFlow branch model 38–39

 Google Cloud Platform (GCP) 141–161

 building Jenkins VM images 141–147

 configuring with Terraform 147–153

 deploying on Google Compute Engine 153–157

 launching automanaged workers on 157–161

 Jenkinsfile 22–35

 Blue Ocean plugin 26–29

 declarative pipeline 31–35

 scripted pipeline 29–31

 managing pull requests with 305–308

 command line 53

 JNLP 53–54

 SSH 52–53

 master-worker architecture 50–52

 Microsoft Azure 162–183

 applying autoscaling to Jenkins workers 178–183

 building Jenkins VM images in 162–166

 deploying Jenkins master virtual machine 171–177

 deploying private virtual network 166–170

 monitoring cluster health 442–452

 multibranch pipelines 36–37

 Slack notifications, integrating with 335–341

 command-line pipeline linter 41–43

 Jenkins Replay button 40–41

 triggering builds with GitHub webhooks 222–230

 writing declarative pipeline 301–304

 XML configuration 215–219

 Jenkins agent 29

 Jenkins Long-Term Support (LTS) 56

 Jenkins master 50

 Jenkins plugin 91

 jenkins user 97

 Jenkins worker 50

 Jenkins X 390–400

 JENKINS_HOME directory 481, 483

 JENKINS_HOSTNAME and JENKINS_SSHD_PORT variables 43

 jenkins_master.tf file 154

 JENKINS_URL environment variable 227

 jenkins_worker 132

 jenkins_workers.tf file 131, 178, 181, 190

 jenkins-* index pattern 453

 jenkins-master 140, 173

 Jenkinsfile 209

 JNLP (Java Network Launch Protocol) 52, 54

 Job 470

 JOBNAME custom pattern 458

 JsonSlurper class 388

 jump box 61, 114

 JVM (Java Virtual Machine) 85

 JWS (Java Web Start) 53

 jx CLI 399

 jx promote command 392

 jx version --short 390

 K

 K8s (Kubernetes) 355–400

 automating continuous deployment flow with Jenkins 360–372

 continuous delivery steps 372–381

 Jenkins X 390–400

 packaging with Helm 381–387

 running post-deployment smoke tests 387–389

 setting up Kubernetes cluster 356–360

 Kompose 371–372

 kubectl apply -f command 372

 kubectl apply command 360, 362, 365–366

 kubectl get nodes command 363

 kubectl get pods -n watchlist 375

 kubectl get pods command 380

 kubectl get services -n watchlist output 380

 kubectl get svc command 391

 kubernetes.io/cluster/ 357

 L

 labels 29

 LabelSelector 366

 Lambda aliases 425

 Lambda-based serverless functions 401–437

 configuring email notification in Jenkins 434–437

 creating deployment packages 407–417

 mono-repo strategy 407–413

 multi-repo strategy 413–417

 deploying Lambda-based application 402–407

 hosting static website on S3 420–422

 maintaining multiple Lambda environments 423–434

 updating Lambda function code 417–420

 latest 294, 378

 latest tag 294, 347–348

 launch configuration 58

 Less operational overhead 11

 @Library annotation 478–479

 @Library('id@version') annotation 479

 logging, centralized 452–462

 streaming logs with Filebeat 454–461

 streaming logs with Logstash plugin 461–462

 logstash step 462

 LOGSTASH_HOST variable 456

 LTS (Jenkins Long-Term Support) 56

 M

 machine images, baking 70–99

 immutable infrastructure 71–72

 master AMI 85–96

 configuring Jenkins upon startup 85–88

 Jenkins plugins 88–96

 with Packer 72–85

 baking machine image 75–85

 installation and configuration 74–75

 process 73–74

 worker AMI 96–99

 maintainability 5

 management resource group 171, 176

 management visual network 167

 management VPC 108, 296

 managers token 314

 mapRoles section 363

 marketplace variable 406

 master AMI

 baking 85–96

 configuring Jenkins upon startup 85–88

 Jenkins plugins 88–96

 deploying Jenkins Droplet 186–189

 self-healing master 117–124

 master branch 38–39

 master-worker architecture 50–52

 Matrix authorization strategy 469–471

 mem_vm measurement 447

 mesh routing feature 330

 metrics, CD (continuous delivery) 441–466

 centralized logging for Jenkins logs with ELK 452–462

 creating alerts based on 462–466

 monitoring Jenkins cluster health 442–452

 microservices

 on K8s (Kubernetes) 355–400

 automating continuous deployment flow with Jenkins 360–372

 continuous delivery steps 372–381

 discovering Jenkins X 390–400

 packaging applications with Helm 381–387

 running post-deployment smoke tests 387–389

 setting up Kubernetes cluster 356–360

 overview 5–8

 pipeline as code for 197–230

 configuring SSH authentication with Jenkins 219–222

 Git and GitHub integration 205–215

 Jenkins jobs’ XML configuration 215–219

 microservices-based applications 199–203

 multibranch pipeline jobs 203–205

 triggering Jenkins builds with GitHub webhooks 222–230

 microservices architecture pattern 5

 mocha 248

 mocked database tests 248–250

 modules 403

 mono repository 201

 mono-repo strategy 407–413

 monolithic architecture 4–5

 movies_to_parse_sandbox 324

 MoviesLoader Lambda function 404, 409, 417–419

 MoviesParser Lambda function 404, 417–420

 MoviesStore Lambda functions 419, 425

 MoviesStoreAddToFavorites Lambda function 413

 MoviesStoreListMovies Lambda function 403–404, 406, 413, 427, 429

 MoviesStoreViewFavorites Lambda function 413

 multi-repo strategy 413–417

 multibranch pipelines 36–37, 203, 205

 multiline settings 456

 multiple repositories 201

 multiprovider support 73

 N

 Name 478

 name query parameter 217

 NAT (Network Address Translation) 61

 native SSL (Secure Sockets Layer) 124–127

 nested containerization 487

 Network Address Translation (NAT) 61

 Nexus Repository OSS 279–286

 NFS (Network File System) server 64

 ng build -c sandbox flag 334

 ng build command 277

 no operational overhead 9

 node block wrapper 51

 node:latest floating tag 276

 node:lts floating tag 276

 node('workers') instruction 301

 node{} 269

 notifySlack() method 338, 340

 npm (Node Package Manager) 249

 npm install command 277, 415

 npm run lint alias command 254

 npm run test command 249–250, 258

 npm start command 277

 nx-*-registry-add permission 271

 nx-*-registry-read permission 285

 O

 one repository per service strategy 407

 operational overhead 8

 Organization 205

 os_profile section 172

 output section 126

 output variable 152

 outputs 445

 Outputs section 283, 331, 333, 405

 Overall 470

 P

 PaaS (platform-as-a-service) provider 140

 PaC (pipeline as code) 22

 for microservices 197–230

 configuring SSH authentication with Jenkins 219–222

 Git and GitHub integration 205–215

 Jenkins jobs’ XML configuration 215–219

 microservices-based applications 199–203

 multibranch pipeline jobs 203–205

 triggering Jenkins builds with GitHub webhooks 222–230

 with Jenkins 21–46

 GitFlow branch model 38–39

 Jenkinsfile 22–35

 multibranch pipelines 36–37

 Packer 72–85, 142

 baking machine image 75–85

 installation and configuration 74–75

 process 73–74

 packer build command 80–81, 94, 98, 144, 146, 164, 185, 281, 312

 packer build template.json command 184

 packer validate command 94, 185

 packer validate template.json command 146

 parallel directive 417

 parallel DSL step 244

 parallel key 416

 parallel keyword 244

 parallel section 244

 parallel tests 244–246

 ParseMovie() method 240

 PASSWORD 299

 PATH variable 65, 75, 103, 242

 pattern_dir setting 459

 pip install command 274

 Pipeline 204

 pipeline as code. See PaC (pipeline as code)

 pipeline block 301–302

 pipeline keyword 301

 plan step 150

 plan/apply 175

 platform-as-a-service (PaaS) provider 140

 plugins

 Blue Ocean 26–29

 Jenkins 88–96

 Logstash 461–462

 policies, scaling 133–135

 PoLP (principle of least privilege) 66

 polyglot 11

 post build section 436

 post section 34, 303, 436

 powershell step 235

 PR- or feature 400

 Preprod 294

 preprod branch 38–39

 preprod image tag 377

 preprod tag 294, 343, 345, 377

 principle of least privilege (PoLP) 66

 private registry, Docker 279–291

 Amazon Elastic Container Registry (ECR) 286–287

 Google Container Registry (GCR) 290–291

 Nexus Repository OSS 279–286

 production 378, 392

 programming language and architecture 17

 provider section 167

 provisioner file 91

 provisioners section 74

 provisioners stage 78

 public_repo scope 207

 public-read 405

 publish-version operation 427

 publishHTML command 252

 Push stage 24, 291, 293–294, 302, 345, 384, 407, 413

 python main.py command 274

 python test_main.py command 234

 Q

 QA 472

 QA permission 472

 quality tests 13, 24

 Quality Tests stage 238, 247

 R

 RBAC (role-based access control) 288, 467, 472

 Matrix authorization strategy 469–471

 role-based authorization strategy 471–472

 RDP (Remote Desktop Protocol) 169

 REGION log 323

 REGION variable 287, 294

 REGISTRY parameter 299

 REGISTRY_CREDENTIALS_USR and REGISTRY_CREDENTIALS_PSW environment variables 34

 release 372

 Replay button 40–41

 repo scope 207

 repo:status 207

 repositories 372

 resiliency 10

 resource block 181

 restoring 480–484

 risk management 22

 role-based access control. See RBAC (role-based access control)

 route tables, VPC 111–114

 Run 470

 S

 s-1vcpu-2gb 186

 S3 420–422

 s3:GetObject 405

 SAM (Serverless Application Model) 419

 sandbox 428

 sandbox EKS cluster 357

 sandbox VPC 313

 scalability 5, 7, 73

 scaling 55–69

 configuring CLI 65–66

 creating and managing IAM (Identity and Access Management) user 66–69

 policies 133–135

 preparing environment 64–65

 scaling and resiliency 5

 scaling policy 58

 Scan operation 403

 SCM 470

 scrape_configs section 450

 scripted pipeline 29–31

 Secure Shell (SSH) 52–53, 219–222

 security 468–472

 in CI pipeline 242–244

 Matrix authorization strategy 469–471

 role-based authorization strategy 471–472

 security compliance 9

 security group 56

 security tests 13, 24

 Security Tests stage 243

 security_groups.tf 175

 self-healing master 117–124

 sendEmail() method 435–436

 Server CA Certificate 490

 server gave HTTP response to HTTPS client error 490

 Serverless 401

 Serverless Application Model (SAM) 419

 serverless functions

 defined 10–12

 Lambda 401–437

 configuring email notification in Jenkins 434–437

 creating deployment packages 407–417

 deploying application 402–407

 hosting static website on S3 420–422

 maintaining multiple environments 423–434

 updating function code 417–420

 serverless movement 401

 service jenkins status command 121

 service nexus restart command 280

 service principal (SP) 162

 service_account variable 144

 service-oriented architecture (SOA) 6

 setUpClass() method 234

 Shared Credentials file 66

 shared libraries 477, 480

 sharing, component 6

 Slack notifications 335–341

 slave or build agent 50

 slave term 50

 smoke tests 387–389

 Snapshots, DigitalOcean 183–185

 SOA (service-oriented architecture) 6

 sonar-scanner command 266

 SonarQube Scanner 260–270

 source argument 403

 SP (service principal) 162

 SPA (Movie Marketplace is a single-page application) 420

 spec section 365

 speed 22

 SQS (Amazon Simple Queue Service) 200

 SQS_URL 374

 SSH (Secure Shell) 52–219, 222

 ssh_keys section 172

 ssh-keygen command 92, 115

 sshagent block 328

 SSL (Secure Sockets Layer) 62, 124–127

 stacks 321

 stage blocks 302

 stage command 302

 stage variables environment variables 427

 stages 23

 stages section 302

 staging 346, 377, 392

 static code analysis 13

 static website 420–422

 steps block 302

 steps section 35

 strategy.setAllowAnonymousRead(true) instruction 86

 streaming logs

 with Filebeat 454–461

 with Logstash plugin 461–462

 subnets, VPC 60, 108–111

 success post condition block 34

 SUCCESS status 236

 sudo command 312

 swarm init command 318

 SWARM_MANAGER_IP 321

 swarm_managers resource 316

 swarm-production 347

 swarm-sandbox 327

 swarm-staging 342

 swarmManager variable 342

 synchronization 8

 T

 t.Error() method 240

 t2.large instances 119, 136

 t2.micro instance 83

 tagging Docker images 291–296

 tags 83

 target block 252

 target platform 17

 TDD (test-driven development) 24

 team experience and skills 17

 Telegraf 444

 Template validated successfully 94

 templates 372

 Terraform

 configuring GCP network with 147–153

 Jenkins as code with 100–139

 autoscaling workers 128–139

 infrastructure as code (IaC) 101–103

 provisioning AWS VPC (virtual private cloud) 103–117

 running with native SSL/HTTPS 124–127

 setting up self-healing master 117–124

 terraform apply command 110, 112–113, 116, 126, 131–132, 135, 149–150, 152, 155–156, 160, 169, 171, 173, 176, 182, 189, 228, 262, 283, 318, 331, 333, 359, 405, 429

 terraform destroy command 400

 terraform init command 359, 405

 terraform output command 116, 157

 terraform plan command 106–107, 110, 119

 Terraform vX.Y.Z 103

 Test keyword 240

 test prefix 234

 Test stage 35, 302

 command-line pipeline linter 41–43

 Jenkins Replay button 40–41

 testing package 239–240

 TF_VAR environment variable 107

 TF_VAR_aws_profile variable 107

 tools 16–20

 choosing 17–18

 Jenkins 18–20

 top command 136

 true 248

 U

 UI testing 13, 254–260

 Unit testing 233

 unit tests 13, 24, 233–238

 Unit Tests stage 234, 240, 410

 unstable post condition block 34

 update-function-code command 417–419

 USER 323

 user variables 74

 USERNAME variable 299, 325

 username:token argument 219

 users 475–476

 UTC (Coordinated Universal Time) 485

 V

 Values.yaml file 372

 variable block 105

 VCS (version-control system) 31, 272

 version variable 427

 View 470

 VMs (virtual machines)

 Azure

 building Jenkins images 162–166

 deploying Jenkins master 171–177

 GCP 141–147

 VPC (virtual private cloud) 60, 103–117

 bastion host 114–117

 overview 104–108

 route tables 111–114

 subnets 108–111

 VPN (virtual private network) 114, 166–170

 VSCode (Visual Studio Code) 43

 vulnerabilities 296–301

 W

 waitForQualityGate step 269

 WARNING 457

 Watchlist 219

 watchlist application 372

 webhooks 222–230

 website block 405

 withForQualityGate step 268

 withRegistry block 291

 withSonarQubeEnv block 266

 applying autoscaling to 178–183

 autoscaling 128–139

 Auto Scaling group 131–133

 launch configuration 128–131

 scaling policies 133–135

 workers CPU utilization load 136–139

 baking AMI 96–99

 building Droplets 190–192

 command line 53

 JNLP 53–54

 launching on GCP 157–161

 SSH (Secure Shell) 52–53

 workers label 51, 131, 209, 304

 workers token 314

 Workflow plugins 488

 WORKSPACE 335

 X

 XML (Extensible Markup Language) 22, 215–219

OEBPS/Images/CH13_F12_Labouardy.png
Er— Try experimantalReact 1

defaul onkin.uids astbuid resut R o

Graph Console

w)
v scednio o ks g M)

A

[T —

P —

et i,k ot .1t ki o oA i, 5 O 650)

et ki, 5.5l sosstanc ki oo o443 ki, i1 oo ki 850)

T]

OEBPS/Images/CH04_F05_Labouardy.png
) HashiCorp

W Packer

Browse Products About HashiCorp.

Overview Tutorsls Docs Community

Download Packer

macOS Windows Linux Free8SD OpenBSD Solaris

W Packer 172
St Amsa

Bandwidth courtesy of
View Tutorials at HashiCorp Learn fastly

0 o [

OEBPS/Images/CH07_F29_Labouardy.png
Jorkdns » misbouardy
2 Poone

Q saus

= o

2 contigure

& My vows,

Q. Crecenils

L3 mabouardy

AP Token
[er—"
Thore aro o roistord okansfor s usor.
-

Ada o Token

OEBPS/Images/CH12_F39_Labouardy.png
HEALTH

L X & 3R

STATUS

cooe

BRANCH

develop

preprod

feature/stage-variables

master

commIT

219f888

LATEST MESSAGE

usage of stage variables

usage of stage variables

Push event to branch feature/stage-variables.

Push event to branch master

COMPLETED

3minutes ago

aminute ago

4 minutes ago

* | % | %

OEBPS/Images/CH08_F02_Labouardy.png
P—

o

o — B osaens D

: 52,
Punen T s

docker
~ @0
GitHub. %
w.,.‘<w,w+ S

setoou,/

.
&= ui

Clouawaten Atam

OEBPS/Images/CH14_F07_Labouardy.png
Authorization
© Anyone can do anting

O Legaoy mode

© Loggedtin users cando anyhing
owm

ibased socuriy
O Project based Matix Authorzation Strtegy
© Role-Based Strategy

0000 ®

OEBPS/Images/CH11_F44_Labouardy.png
miabouardy commented 6 minutes ago Aathor) @ -

< PR buitand avaiable n a preview environment miabouardy-jx-movies-store-pr-1 here.

miabouardy commented 14 saconds 1g0 Ao ©
fvprove
) misbouardy merged commit b330 nto saster o Vi gt) ((pevet

2chacks passed

OEBPS/Images/CH03_F10_Labouardy.png
AWS Cloud

Security group

EC2 instance

OEBPS/Images/CH06_F18_Labouardy.png
PS /home/mohamed> Get-AzSubscription

Tenantzd state.

Pay-Rs-You-Go 50009e38-b0cd-4042-a5d3-02dcdBd85713 37741b5b-342b-dc1b-bebe~b9TbbT4cetB Enabled

PS /home/mohased> $op = New-AsADServicerrincipal -Displaylane “Fackersorvicorrincipal:
WARNING: A zole ‘Contributor’ over scope '/

713" to the new service principal.

03 /hons/mohamed> Splainrassvord - [System:Rontine. nteropservices. Harehell: sPULTostringALCo(SBSTR)
5 /hone/nohaned> New-AzRoleAssignment ~RoleDefinitionName Contributor -ServicePrincipalName §sp.ApplicationTd
Rev-AsRoleAssignments The role assigament already exists.

OEBPS/Images/CH10_F26_Labouardy.png
> assets.
\ environments

1S environment production.ts
1S environment.sandbox.ts.
s environment staging.ts

75 environment.ts

OEBPS/Images/CH14_F23_Labouardy.png
Amazon EFS > File systems

File systems (1)
Q Fiter by property values
File

Name v system
) v

jenkins. fi-5bb7503

Encrypted ¥

@Encrypted

Totalsize v

6K

Sizein EFS
Standard

KB

View details

SizeinEFSIA v

OBytes

Provisioned
‘Throughput
(MiB/s)

<

1

>

@

File
system
state

©vaitabl

OEBPS/Images/CH09_F13_Labouardy.png
M & Roles / & Create Role

Repository

1 Repositories Role

ManageDockerPrivateRegist

& BlobStores " oy
Role name:

) CaTREIEED ManageDockerPrivateRegisty

& Cleanup Policies Role description:

Al fll access to docker private regst
& Routing Rules o 0 coker v ey

privieges:
v @ Secuity
Avalabic Gven
T docker xrepostony view-docker docker ogisty

xrepostonyview dockerdelete

crepostoryview-docker-"2dit

OEBPS/Images/CH05_F09_UN05_Labouardy.png
[ddubastion]
66cc8236160b133)

28]

. [idmign-02078206223¢

[dsubnet-Ocfe7a7ebasdd161]

. Lid=subnet-0779¢779d06d7¢711]
. [id=sg-004670a4c835224d)

Refroshing state... [i
sociation public[e]: Refreshing state. .. [ic
private_rt: Refreshing state... [idsrtb-08a7e79493c2fcsf6]

.. [id=rtbassoc-adaeb3sesssestess]
association.private[6]: Refreshing state... [id=rtbassoc-e9757cd37637a6bf]

Apply complete! Resources: © added, @ changed, O destroyed
outputs:

bastion = 35.180.67.177

OEBPS/Images/CH05_F16_Labouardy.png
AWS Cloud

Availability Zone

: - Private subnet

Jenkins Master

u Public subnet

Availability Zone

H n Private subnet

. Public subnet

Route Table

172.16.0.0

6w

Route 53

OEBPS/Images/CH06_F34_Labouardy.png
Applications & API

TokensKeys A

Orepiets Personal access tokens GenerteNewToen
oA Name. Scope. Created «.
. Packer. 5 More v

Spaces access keys

OEBPS/Images/CH12_F10_Labouardy.png
Branch develop + | New pullrequest
85 misbouardy creating deployment package
D Dockerfile
D Dockerfile.test
O Gopkglock
O Gopkg.tom!

D Jenkinsfile
D main.go

D main_test.go

creating deployment package
creating deployment package
creating deployment package
creating deployment package
creating deployment package
creating deployment package

creating deployment package

Crestenewile | Uplosd s | Findfle

Latest commit 3283801 10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago

10 seconds ago

OEBPS/Images/CH06_F27_Labouardy.png
I3 jenkins-master

5 Feoch Cmdeh) «
& Oveniew

& adiitylog

. Access control (AM)

@ Togs

& Diagnose and solve problems
Settings

2 Networing

& Comnect

& Comnear [> s

@ resun Osiop & Copre [Oclete O Refeesh

Resource group (change) ; management

s
Subscrpion (hange)
Subscripion 10
Computerrame
Operating system
Sue

Tags change)

 Runving
 ConalUs
ay-As-You-Go
© 50K09030-b0cA-4042-4543-024cBBSTTS
(ot waable

nax

 Standard B1ms 1 vcpus, 2 GB memory)

Gl here toadd ags

Aave Spot A
pubicIp adaress
Pive P address 10024

PubicIP adaess ()
Private 1P address (N6) -

Vitalnetworkjsubnet ; management/priate-10020
ONS name.

OEBPS/Images/CH09_F06_Labouardy.png
Preieation
[

P~ 1
—0
o
v
2
a

o6
> Checsifrming on 3 Ui ode
«

> docker b 4 sl parer. — Shc St

OEBPS/Images/CH05_F09_Labouardy.png
Q Fiter by tags and attributes orsearch by keyword

® Namo - Instance D - s

ncoType - AvailabityZone - Instance State - Status Checks - Alarm Status Public DNS (Pvé) -

® basion 10cl48202411206983 2o evwest3a @ rnning Z intaiing Nono N ec235-180.57-177.0u-..

62-35-180-57-177.ou-west-3.compute. amazonaws.com

Description | Status Checks Monitoring Tags

Instance D 1-0c148242411250993 Publc DNS (Pvé) 0c2-35-180-57-177.eu-west-3.cor
nstanco state running 1Py Public P 35.180.57.177
Instance type t2.micro e -

Finding Optinto AWS Compute Optimizerfor ecommendations. Elastic P

Loem more

OEBPS/Images/CH04_F12_Labouardy.png
AWS Cloud

Security group

EC2 instance

OEBPS/Images/CH03_F03_Labouardy.png
Jenkins master

SSHINLP

Jenkins worker
Windows

OEBPS/Images/CH11_F37_Labouardy.png
CIBuild and push
Start snapshot Build Release

Promote to
Environments

End

=D

OEBPS/Images/CH11_F28_Labouardy.png
Updates Avallable Instalied Advancod

stal | Name. Version
‘Generic Webhook Trgger
© Ganroceivo any HTTP roquest, extract any vaues fom JSON o XML an tigger a 0b withthose valos avalabl as variaias, Works wih Giub, Gitab, Bitucker, 167
Jra and many mor.
HITP Besuest
This pugin sends ahtp raquost 1 an ur wih somo paramelers b
‘CoRS sumpn
1

T it i et I e Evcme il ST rocyss

OEBPS/Images/CH12_F01_Labouardy.png
GET /movies

Marketplace

RESTAPI ﬂ

{JSON}

GET Aavorites

POST avorites

OEBPS/Images/CH09_F34_UN02_Labouardy.png
Razonaws.com awsauto awsauto --registry-typesawsecr

305929695723, akr

(ec2-userdip-10-0-0-229 ~1 anchore-c1i —-u adain o foobr registry list
Repisery Home
308929695733, dkr ocr.ou-mes 3. amozonaws .con 305929695733,k ocx.
Toc2-usoreip-10-0-6-229 ~18

Tyoe user
R ——— smrocr. amsaut

OEBPS/Images/CH05_F16_UN09_Labouardy.png
aws,

autoscaling_grouj

enkins_workers will be created

+ resource "aws_autoscaling_group” "jenkins_workers" {

arn
availability_zones
default_cooldown
desired_capacity
force_delete
health_check_grace_period
health_check_type

id

launch_configuration
1oad_balancers

max_size
metrics_granularity
min_size

name
protect_fron_scale_in
service_linked_role_arn
target_group_arns
vpc_zone_identifier

known
known
(known
known
false
300
(known after apply)
known after apply)
enkins_workers_config"
(known after apply)

10

“IMinute"

2

“jenkins_workers_asg"
false

(known after apply)
(known after apply)

C

after
after
after
after

apply)
apply)
apply)
apply)

+ "subnet-8779f779d06d7e711"
+ "subnet-0988872367b9b40b4"

1
wait_for_capacity_timeout

tag {
+ key
+ propagate_at_launch
+ value -

tag {
+ key
+ propagate_at_launch
+ value

“om"

“"Author"
true
“mlabouardy"

“Name"
true
“jenkins_worker"

OEBPS/Images/CH14_F16_Labouardy.png
[root@ip-10-0-0-61 jenkins)# tail -f jenkins-audit.log.e

Nov
Nov
Nov
Nov
Nov

15,
1s,
15,
15,
15,

2020
2020

PM/configSubmit by mlabouardy

PMjob/movies-marketplace/job/develop/ #3 Started by user mlabouardy, Parameters:(]

PMjob/movies-store/job/develop/ #3 Started by user John Doe, Parameters:()

PMmovies-store » develop #3 Started by user John Doe, Parameters:(] on node #unknown# started

Phmovies-narketplace » develop #3 Started by user mlabouardy, Parameters:[

1 on node #unknown#

OEBPS/Images/IFC_F01_Labourardy.png
Push files

e H
&> :
\/0 H
™ :
«\‘ :
Jenkins cluster
Push ovent: e $
e ‘ Kes Cluster
GwHub

Docker images

Publish version

zip

Deployment package

O - 5 Lull

Prometheus Grafana Visualize metrics in near real-time

‘Soutow asodx3

Amazon
¥ Web Services

OEBPS/Images/CH07_F36_Labouardy.png
Options
Manage access
Branches
‘Webhooks.
Notifications
Integrations
Deploy keys
Autolink references
Secrets

Actions

Webhooks / Add webhook

We'll send a PoST request to the URL below with details of any subscribed events. You can also specify which
data format you'd like to receive (JSON, x-w-forn-urlencoded, etc). More information can be found in our

developer documentation.

Payload URL *

hitps:/enkins.slowcoder.com/github-webhook/

Content type

application/x-www-form-urlencoded &

Secret

SSL verification

BBy defautt, we verify SSL certificates when delivering payloads.

© Enable SSL verification) Disable (not recommended)

wi

h events would you like to trigger this webhook?

© Justthe push event.

OEBPS/Images/CH10_F19_Labouardy.png
0c2-user@ip-10-1-2-147 ~1$ docker service 1s.
1 Iz

sepLiens s
an7h matenlist_songoss i Ditnsai/mangodbilatest
csones mehList novios on 308925695735
fnaizis i S0892560873
iiies ¥ on

Fitnlics SR movior-store repticoted n

el

By

OEBPS/Images/CH10_F35_Labouardy.png
| movies-loader/develop build status: STARTED

movies-loader/develop build status: FAILURE

OEBPS/Images/CH06_F32_Labouardy.png
I jenkins-workers-set | Instances

[P J«| Do < teson O oesoe G Reimage B Deee

ade () Refresh | £ protection P

% Overview |2 Search virtual machine instances

3 rsivion Nome Status Protection policy
5 Acces conrol (AN e Py

¢ O jenkins-workers-set.2 © Ruming

& Diagnose and solve problems

Settings

3 Instances

OEBPS/Images/CH05_F25_Labouardy.png
AWS Cloud

Availabilty Zone

- Private subnet

Jenkins Master

' n Private subnet
f

Auto Scaling Group
Jenkins Workers

Public subnet

Route Table

172. 0

6w

OEBPS/Images/CH11_F42_Labouardy.png
> maboumaycommentoanon abor) @ -+

% PRObuilt and ay

ble in a preview environment miabouardy-jx-m

-store-pr-1 here

Add more commit by pushing

i feature/readae branch on misbouardyfj-movies-sto

° All checks have passed Hide all checks
2 successtul checks

4§ contnuous-integrationfenkinsfbranch — Thiscomitocks good oetas
' continuous-imegrationfenkinpr-head — THis comitooks good Detss

° ‘This branch has no conflicts with the base branch
Merging can be performed automaticaly.

s itroncs - | ISP

OEBPS/Images/CH06_F12_UN06_Labouardy.png
Apply complete! Resources: 1 added, @ changed, 1 destroyed.
Outputs:

bastion
jenkins

4.89.153.200
5., 246.170. 204

OEBPS/Images/CH02_F01_Labouardy.png
Quality.
Tests

Security
Tests

Acceptance!

Checkout =

Unit Tests

Push Deploy

OEBPS/Images/CH06_F19_UN07_Labouardy.png
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:

azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:
azure-arm:

azure-arm:
azure-arm:
azure-arm:

rm: output will be in this color.

Running builder
Getting tokens using client secret

Getting tokens using client secret

Creating Azure Resource Manager (ARM) client ...

Creating resource group ...

> ResourceGroupName : 'packer-Resource-Group-gré8cazkyb’
-> Location *centralus'

> Tags
Validating deployment template ..

> ResourceGroupName : 'packer-Resourc
> DeploymentName *pkrdpgrégcazkyb’
Deploying deployment template .
> ResourceGroupName : 'packer-Resource-Group-grégcazkyb’
> DeploymentName * prdpgrégeazkyb!

Getting the VM's IP address ...

roup-grigcazkyb®

> ResourceGroupName : 'packer-Resource-Group-grégcazkyb’
> PublicIPAddressName : 'pkripgréBcazkyb’
> NicName *pkrnigragcazkyb*

-> Network Connection : 'PublicEndpoint'
-> 1P Address 140.122.174.203"
Waiting for SSH to become available.
Connected to SSH!

Provisioning with shell script: ./setup.sh
Install Java J0K 8

OEBPS/Images/CH10_F31_Labouardy.png
Slack

Workspace

Credential

Detaultchannel/ member id

‘Custom slack app bot user

miabouarcy
w3 [

jenkins-notifcations

®o © o

OEBPS/Images/CH10_F24_Labouardy.png
V m

QuityTests

Rosvis. QuityGote

Degioy

OEBPS/Images/CH07_F43_Labouardy.png
Scan Multibranch Pipeline Triggers

Build when another project is promoted

Periodically if not otherwise run

Interval 1 minute

®e®

OEBPS/Images/CH11_F01_Labouardy.png
e e

Stc Code

St Cedow QuiyRm UM Aome Geiyen o i F O
—o © o © © ©—
Start Checkout Unit Tests Build Push Analyze Deploy End
—0 O O O
Start. Checkout Tests. Build Push Analyze Deploy. End
—0 © 0——0—0—©@—

coveses s

negatonTess

Quality Tests.

Preintegration
Start Checkout Tests. Build Push. Analyze Deploy. End
—@ o——© O

QuattyTests

SeayTets

UniTests

OEBPS/Images/CH08_F38_Labouardy.png
‘SonarQube servers.

Environment variabios @ Enable injocton of SonarQube server configuration as buid environment variablos
1 chockod,jo aminstators b abi o jct Sonau s OGN 5 nvorment s i i B
‘SonarQube instalations.

Hiome) sonaraube

Seree e hitpsisonarqube.slowcoder.com

Oetautis pocamost 000
‘Server authenticaion token | SonarQube 1oken ¢ o aug

‘SonarQube aunentcaionoken, Mandtary ho snorymos secss s dsaiod.

Add Sonaraubo

Listof SonarOube nsiaiations

Advanced..

OEBPS/Images/CH14_F25_Labouardy.png
Build Triggers

(O Tiger buids remolely (o9, rom scrips)

(00 Bl atr oherprojects are buit
G Buid parodially

Scheduio Hiz

Would st have run at Sunday, November 8, 2020 12:55:11 PM UTG; would next un at Sunday, November 15, 2020 12:55:11 PM.
urc.

oo

OEBPS/Images/CH05_F14_Labouardy.png
Load balancer: | tf-1b-20200323152023632600000001

Listeners

Descrption Instances | Healthcheck Montorng | Tags || Migraion
T folowing listeners re curenty configured fo this load balancer:

Load Balancer Protocol | Load Balancer Port Instance Protocol Instance Port | Cipher
HrTPS s HrTe 8080 Ghange
g & HrTP 8080 NA

SSL Cortificate
50014605-2095-4802-aBe-ac722ddd2cc3 (ACM) Change

NA

OEBPS/Images/CH10_F42_Labouardy.png
mlabouardy/movies-loader

| View push commands

Images 5 ETzm] s |
Q <1>|®
f— e
© imagews image uRI pued | oigest o
ST, 055298575 e asosn
TGRS, Samstmovscom/ahocmyods: Gase O wessuais...
i ST e e
st SO0,
et
oo
o s, § HESIOTI e oo ,
ervmietioniaiimireiossion R oy i ot O s, 3
L a0

4883204dc6B0d010cb03804dF726c5Sa3 ez,

OEBPS/Images/CH11_F35_Labouardy.png
.

Name |

gomsmes

‘master

Data obtained

Architecture

Linux (amds4)

Linux (amds4)

3min 59 sec

Clock Difference

Insync

Insync

3min 59 sec

Free Disk Space
864068
289668

3min 59 sec

Free Swap Space
Qo8
Qs

3min’59 sec

Free Tomp Space
864068
899368

3min’59 sec

Response Time

95ms

- &

3min59 sec

OEBPS/Images/CH03_F01_Labouardy.png
Jenkins master

OEBPS/Images/CH04_F07_Labouardy.png
Add permissions to mlabouardy

Grant permissions

Use 1AM polices to grant permissions. You can assign an existing policy or create a new one.

SO raa userto gowp

Create policy

Fiter policies v Q EC2F{

Policy name ~

¥ » W8 AmazonEC2FuliAccess

Copy permissions from
existing user

Attach exiting policies
directly.

Type.

AWS managed

‘Showing 1 result

Usedas.

Pormissions policy 2)

OEBPS/Images/CH13_F30_Labouardy.png
Metric threshold X

Conditions.
WHEN Document count IS ABOVE 5

FOR THE LAST 1 minute

© Add condition

Filter (optional)

Q. status:"FAILURE" and _index : "jenkins-*" and project.keyword : * (-]
Use a KaL expression tomit the scope of your alrt rigger.
Create alertper (optional)

Everything v
Create an slert for every unique value. For example: host.d or “cloud region”

Actions: Select an action type Get more actions.

L

OEBPS/Images/CH05_F07_Labouardy.png
VPC Dashboard Actions v
‘

Filter by VPC:
Qselecta Ve [Q. searh: to-oarasesnasemesst haa fiter
® Name - RoutoTablelD ~ Explicit subnet associatior Edge associations Main
Virtual Private Cloud
@ public it m... rb-0a734e90a66be96! 2 subnets - No
Your VPGs
Subnets
| Route Tavies Routo Tabl: i 0873460036606
Intemet Gateways i RRi
Summary Routes Subnet Associations. Edge Associations Route Propagation Tags.
Egress Only Internet
Gateways
- Editroutes.
DHCP Options Sets
Elestio s/ View All routes -
Endpoints
hdpoict Sorices Destination Targot
NAT Gatevways 1000016 tocal
Peering Connections.

00000 igw-0247a205223ca0fa8

OEBPS/Images/CH07_F02_Labouardy.png
Jonking Workers.

- i
O Push Event @ Tige | Test
cPuuumxm:w+ H @

setoou,/

Trigger 2
L~ .

Clouawaten Atam

e

@ ey

X+@®

sonarqube |

Coverage Report

o
. ... U
2,
e
dock-zr
~ a0
Pov—

OEBPS/Images/CH13_F05_Labouardy.png
© telegrof

e

© telegraf
@ OB
© telegraf

@

Worker

OEBPS/Images/CH08_F20_Labouardy.png
(nemipablisher) Areniving K. repores
[nemipubiiaher) Arehiving o€ BALD leve /neme/ect-uses/cove:

o <o vaz/2is/fonkine sovamovies-

OEBPS/Images/CH12_F12_Labouardy.png
@ Console Output

+ aws 63 cp 1073885083427905948dc00420bc364862252ac. 2ip 53://deployent-packages-watchlist/Noviesparser/
Completed 256.0 KiB/6.9 MiB (540.0 KiB/s) with 1 file(s) remaining
Completed 512.0 KiB/6.9 MiB (1.0 MiB/s) with 1 file(s) remaining
Completed 768.0 KiB/6.9 MiB (1.5 MiB/s) with 1 file(s) remaining
Completed 1.0 MiB/6.9 NiB (2.0 NiB/s) with 1 file(s) remaining
1.2 HB/6.9 MiB (2.5 MiB/s) with 1 file(s) remaining
1.5 HiB/6.9 MiB (3.0 MiB/s) with 1 file(s) remaining
Completed 1.8 MiB/6.9 NiB (3.5 NiB/s) with 1 file(s) remaining
Completed 2.0 MiB/6.9 MiB (3.8 MiB/s) with 1 file(s) remaining

OEBPS/Images/CH10_F17_Labouardy.png
Jenkins » walchiist-deployment » develop

2w

4% View Configuration

O, Full Stage View

(@ Oren Blue Ocean

P aitiuo

1) Embeddable Buid Status
© Build Review

© Pipeiine Syntax

Branch develop

Full projoctname: watchist-deploymentdovelop
.
27 Becen Changes
(=]
Stage View
Checkout
2
1s

copy

245

543ms

Deploy stack

£

3s.

OEBPS/Images/CH06_F25_Labouardy.png
Public Subnet

> Virtual Network

Public Subnet Private Subnet Private Subnet

8080 -

Load Balancer Jenkins Master
A

OEBPS/Images/CH14_F05_Labouardy.png
Usorigoup

& Anonymous Users 0 O)

& miabovardy

e E——— i “ An | vew SoM e | Locabe
o
H Tz
R H
2 f ggffseifselies Sf g5+
SRR EERFTEIIEEIE8 gpiigd
EREpEiEgefEy gptid
Bt 8
0O 0000000 O0O0O0OO0OO0OO0O0OO0OOOO0OOOO0OOOOOO O OOO0OOO®0
0 000000000 D0O0OO0O00O00O0O0O0O0O0O0O0O0DO00O0O0 O0D0O0O0O0OO®0
0 0000000000000 0000C00®CO 00000000 0000000®06

@06

OEBPS/Images/CH07_F38_Labouardy.png
Jerkins

4 Back o Project
\ Status

= Changes

B Console Output

= e uid Informaton

© Delete build 42"

® Timings

) GitBuid Data

o NoTags

(@ Open e Ocean
) Embedcable Buid Staus
& Roplay

Pipeline Steps.

deveiop > 12

Jenkins

() Build #2 (Apr 20, 2020 2:07:01 PM)

O¢ N\l

it

Ghanges

1. update readme (detas / glhubwed)
Bush event 0 branch develop 21 2.06:54 PM on Apr 20,2020

This run spent
+ 13 ms waiting
+ 4.8 sec buid duration;
+ 4.8 s total rom scheduled 1o completon.

Rovision: ¢1766007112694084987610c0c600¢736a69650d

+ dovoiop

OEBPS/Images/CH14_F18_Labouardy.png
‘Sharatie ibraries avaiable 0 any Pipeine joos s s fode. These lbxasies vl be uninusied, mearing e code rns he Groow sandoox.

oy =
Namo -
[
et
Losa iy o
e et s o om vrtn

s GLscary chargs o roorsros T
Retrieval method
@ vasomscit

Source Code Management

oa
© oo

OEBPS/Images/CH09_F20_Labouardy.png
Microsoft Azure.

Home > Container registries > mlabouardy | Access keys
@ miabouardy | Access keys

Continerregisty

P _Search (Cmd+/) «

Registry name
@ Ovenview

misbouardy
B Acivitylog
. Access control (IAM) Login server
@ Tags miabouardy azurectio
& Quick start

Admin user O
¥ Events

@@ v
Settings
PR Usemame

i

@ Encrypton (review) Ll
. Identity (Preview)

Name Password
g Firewalls and virtual networks (..

password [7njnF1kekODLTCBYin=OhilhWwoq0agv

connections (.

password2 | iglRav+YC/CHZLtKay +OHARWNYIQG6H

OEBPS/Images/CH02_F19_Labouardy.png
#OST hups/jenkins slowcoder.com..® - see o EnvRonmeT o
Untited Request POST Request
< | hapspekin sowcodercomippeine model<omencntine swve v
@ _sosye Conkies Code
one @ formds xwmwlormaurencoded @ raw @ binary @ GraphQLPTA

ekt et X Jenkinsfile

Stn: 200K Tene: ST

Body 0 ©

prety Tt v

Errors encountered validating Jenkinsfile:
WorkfLowScript: 16: Methad calls on objects not allowed outside "script” blocks. @ Line 16, column 13,
ocker.buila ("s{inageliee}:5{env. BUILD_ID}", '~f Dockerfile.quality .')

WorkflowSeript: 15: Unknown stage section "error”, Starting with version 0.5, steps in o stage must be in a ‘steps’ block. @ line 15, column
9
stage(“Quatity Test'){

WorkflouScript: 15: Unknown stage section "sh". Starting with version 0.5, steps in @ stage must be in a ‘steps’ block. @ line 15, coluen 9.

stage(“Quatity Test'){

Workflouscript: 21: Method calls on objects not allowed outside "script” blocks. @ Line 21, colvan 13.
ocker.build ("s{inagelase) :${env. BUILD_ID}", '~ Dackerfile.unit +

WorkflowScripts 201 Unknown stage section "error”. Starting with version 0.5, steps in @ stage sust be in a ‘steps’ block. @ Line 20, column
.
stage("Unit Test){

2158 Save Response v

Output ma

OEBPS/Images/CH03_F21_Labouardy.png
Add user e s o @

© Success
You successfully created the users shown balow. You can view and downioad user security credentils. You can also email users
nstructions for signng n to the AWS Managment Console. This is tho last time thoso crodentias wil bo avalabl to download. Howover,
You can create new crodontial at any Ume.

Users with AWS Managament Consolo access can signinat: hts/abouardy.signin.aws amazon.com/console

& Download .csv.

OEBPS/Images/CH14_F30_Labouardy.png
“ZAConfigure Clouds

Docker
Name docker
Docker Host URI tepijdocker:2376

Servercredontls [ook (docker)

OEBPS/Images/CH11_F03_UN03_Labouardy.png
Name: aws-auth
Namespace: kube-systen
Labels: <none>
Annotations: <none>

Data

mapRoles:
- groups:
- system:bootstrappers
- system:nodes
rolearn: arn:aws:iam::306929695733:role/terraforn-eks-demo-node
username: system:node:{{EC2PrivateDNSName}}
- groups:
- system:masters
rolearn: arn:aws:iam::305929695733:role/JenkinsMasterRole
username: system:node:{{EC2PrivateDNSName}}

Events: <none>

OEBPS/Images/CH04_F14_Labouardy.png
[icsoe

L T T R T ———) © K < ttote1 5)

@ vame - ANme - ano © Sowe - Ower - Vebly - Saws - Cresienose - pitorm

0 ot maston 22001 amSTCSSRRTIIIT WSSTIN).. WSRRSTS Prvale miste sy 4,220 13617P... Otk

OEBPS/Images/CH11_F40_Labouardy.png
=

C @ Nonsécurisé | jx-movies-store.jx-staging.35.198.184.208.nip.io

“message

OEBPS/Images/CH13_F01_Labouardy.png
LI

Name |

2100221600 vest:
3computeinternal

master

Data obtained

Architecture ~ Clock Difference ~ Free Disk Space Freo Swap Space Free Temp Space Response Time.

— Insyne 278268 Qo8 276268 zms P
i o 278268 Qo8 276268 34ms ﬁ
— Insyne 274668 Qo8 27.46G8 oms %

30ms stms s2ms 30ms 20ms 26ms

OEBPS/Images/CH14_F34_Labouardy.png
Build Executor Status
® master

1 ide

2 e

%, agent-0000edvrgz7y2 (@launching...)

OEBPS/Images/CH04_F16_Labouardy.png
tlogout

& Nowtam

& Pesie 4. Credentials

B A oo -y " 2

(@ OvonBin Ocean Stores scoped to Jenkins

2 Crocentls
2 Sy
B e v

OEBPS/Images/CH12_F05_Labouardy.png
oo
e B
(-]
D e
o A—® =

Versions Aisses

Gitun

CPU Utization > 90%

Tigger

Clouawsten A

OEBPS/Images/CH02_F03_Labouardy.png
[T Tee———

eoplotes e 20

OEBPS/Images/CH07_F11_Labouardy.png
GitHub Apps

OAuth Apps.

Personal access tokens

New personal access token
Personal access tokens function like ordinary OAuth access tokens. They can be used instead of a password for
Git over HTTPS, or can be used to authenticate to the APl over Basic Authentication.
Note
jenkins.

‘What's this token for?

Select scopes.
Scopes define the access for personal tokens. Read more about OAuth scopes.

@ repo Full control of private repositories
7 reporstatus Access commit status
© repo_deployment Access deployment status
7 public_repo Access public repositories

7 repoiinvite Access repository invitations

OEBPS/Images/CH04_F09_Labouardy.png
Services v Resource Groups v

1.Choosa AW 2.Croose s Tpe o bt SAdTgs 6 CombgueSocuty o 7R

Step 1: Choose an Amazon Machine Image (AMI) Gancetana st
A et s o St con i o, ppicaton s, appicaions) e 1 s nanc. Yo can et an A prordd by ANS, o i commny o o AYS sk o you can
Coectons ot o w0

Q Seach fo an AMI by enteing a search tom 0.9

Quick Start TioSolS AMis

nkins-master-2.204.1 - am-051933c5601c71592 =3

Aemazon Linox naga with Jekin Server
AWS Markatpaco o B0 586)

e
")

Communty s
NTPRRp——
a L]
N azn i e o i v oaonoan
e cwsennon vomtpann G
S

o Jenkinsmaster21072- ami0aisadss sosai =3

OEBPS/Images/CH06_F23_Labouardy.png
2]

() management

D Search Cmd+/)

Overview

B Actviylog

. Access control 1AM)

°
4

Tags
Events

Settings

-

o »

Quickstat
Deployments

poiicies

Properties

+ Add == editcolumns] Delete resource group () Refresh

Subscription (change) Pay-As-You-Go.

= Move L BxporttoCSV | © Assigntags (i) Delete

Deployments : No deployments

Subscription ID 50c09¢38-b0cd-4002-3543-026cdBABST 13
Togs change) + Click hre t0.9dd tags
[Fier by name.] (e ==atl @) (toction==all ©) (FgAddfiter)

Showing 1103 f 3 tecords. [Show hidden ypes ©

4

3 o Co
[RL Y e—— —
Ry o— s
Do e PPy

OEBPS/Images/CH03_F14_Labouardy.png
AWS Cloud

Availability Zone

Private subnet

Public subnet

Availability Zone

Private subnet

Route table

Public subnet

Route table

internet
Gateway

OEBPS/Images/CH11_F33_Labouardy.png
& miabouardy / jx-movies-store e

OCode Olssues 1 Pulrecuests O Acions [Pojecis DWK O Seculy L isighs © Sengs.

Oumaen- 1 frsw o Yrew

¥ Branch: mastor - cotorte ncarie- (R Avowt ®

) miboumray commited s 2 mintes 390 = ©2comis P b Sots
e ot cese p—
p— ot 2mtes o0
0 s gt 2mites g0
O heimignore Oraft create 2minutes ago
0 ooserie - 2mntes o0
O st . 2mtes o
0 wsete - Pra—
0 omees ot pra—
O omees aunses ot st 2mtes o0
0O maingo Iniial import 2minutes ago
O main_testgo Initial import 2minutes ago
O moviesjson Initial import 2minutes ago
0 skattoidyami Oraft create 2minutes ago
O vansn - 2mntes o0

Nodescription, website, o topics
provided.

[——
oot snowrsossa

ackages

o packgessblsned

Languages
© Gosan o uamete 360
o smnysze o seaie

OEBPS/Images/CH12_F21_Labouardy.png
Static Code.
Unit Tests Analysis Quality Gate B Push End

© © © 0——©—

Stat Checkout
—0

OEBPS/Images/CH08_F36_Labouardy.png
Tokens

1t you want to enforce securty by not providing credentils of a real SonarQube usor to run
Your codo scan orto invoke veb services, you can provido a Usor Token as a oplacomont of
tho usar login. This willincrease th security of your nstalation by not lating your analysis
user's password going though your network.

Generate Tokens

Enter Token Name on

@ Norwtoken Jenkins” has been creted. Make sure you copy it now, you ven't
bo ablo to 500 it again!

5b903956e1ddas fb9af2cadeldcT1460e01f1b7
Namo Lastuso Greated

Jonkins Nover April 23, 2020 Rovoke

OEBPS/Images/CH09_F24_Labouardy.png
ockerRegistry
§ docker login ~u jenkins -p *4++4+++ https://registry.sloscoder.con

WARNING! Using --passuord via the CLI is insecure. Use --password-stdin.

WARNING! Your password will be stored unencrypted in /home/ecz-user/workspace/movies-loader.
86edds38ba44/contig. Json.

Conigure a credential helper to remove this varning. Seo

hsps://docs. docker .con/engine/xeference/commandline/login/4credent als=store

Login Succeeded
(pipeline] (
(Pipeline] is
(Pipeline] sh
+ docker tag mlabouardy/movies-loader registry.sloucoder.con/mlabouardy/movies-loader:2
(Pipeline] isunix

(Pipeline] sh

+ docker push registry.slowcoder.con/nlabovardy/movies-loader:2

The push rofers to repository (registry.slovcodor.con/mlabovardy/movies
908027c5b2¢4: Preparing

©89248b9¢b10: Proparing
59bc756£6273: Preparing
BaBoRsaleani Dreparing

OEBPS/Images/CH01_F01_Labouardy.png

OEBPS/Images/CH13_F07_Labouardy.png
€ Jenkins Cluster/ Edit Panel

© | bea | s [N

Fil| m | oo | [Qunismnne <[@1[Q]¢] Tm| e ovedes

Memory Untizston * Visstaston

B 92% LEY B 94%

ip100:029 ip100:09 ip10:02216
Qawy 1 Tmem ®
© wances - @] uyeptons wosasonem meninre Quy nspactor
oA svreo0e
row PR
saser st pe) 0+
GRowsr [umai) o) G [+
s g rost)
ot

OEBPS/Images/CH09_F40_Labouardy.png
Jenkins » movies-loader » develop » #6 » Restartfrom Stage

4 Back o Project

Restart #6 from Stage

0, status
= B checiou |
B Cronoes o st

B Console Output

= it Buid Information

© Delet buia
® Timings
& Giteuid Data

& roTass

@ Docker Fingerprints
(@ Open Blue Ocean
1) Embeddable Build Status

@ Restart from Stage

OEBPS/Images/CH09_F38_Labouardy.png
Build Configuration
Mode by Jenkinsfile

Script Path Jenkinsfile.declarative

OEBPS/Images/CH08_F38_UN01_Labouardy.png
INFO: Sensor SonarTS [typescript] (done) | time=oms
Run sensors on project
+ Sensor Zero Coverage Sensor
Sensor zexo Coverage Sensor (done) | time=ns
P Executor Calculating CBD for 5 files
o Executor CPD calculation finished (done) | time=27ms
Analysis report generated in 103ms, dir sizer121 KB
Analysis report compressed in 42ms, zip size=i2 Kb
Analysis report uploaded in Sins
ANALYSIS SUCCESSFUL, you Gan browse https://sonarqube.sloucoder.con/dashboard?id=angalaxtdhmovies-narketplace
Note that you will be able to access the updated dashboard once the server has processed the submitted analysis report
Hore about the report processing at https://sonazqube.sloucoder.con/opi/ce/sask2id=AXGrUCTYRDGIIELIDRY
Analysis total time: 6.103 s

EXECUTION SUCCESS

Total time: 9.014s
Final Memory: 13M/44

OEBPS/Images/CH11_F41_UN16_Labouardy.png
+ jx% preview --app jx-movies-store --dir .
Creating a preview
Found commit author match for: mlabouardy with email address: mohamedélabouardy.com
Created environment mlabouardy-jx-movies-store-pr-1
Namespace jx-mlabouardy-jx-movies-store-pr-1 created
expose:
Annotations:
helm.sh/hook: post-install,post-upgrade
heln. sh/hook-delete-policy: hook-succeeded

contig:
domain: 35.198.184.208.nip. io
exposer: Ingress
http: "true’
preview:
inage:
repository: 10.15.244.126:5000/crew-sandbox/ Jx-movies-store

tag: 0.0.0-SNAPSHOT-PR-1-1

Cloning the Jenkins X versions repo https://github.con/jenkins=x/jenkins-x-versions.git with ref res/heads/master to
/x00t/ 3%/ Senkins-x-versions

Updating PipelineActivities mlabouardy-jx-movies-store-pr-1-1 which has status Running

Preview application is now available at: http://jx-movies-store.jx-mlabouardy-jx-movies-store-pr-1.35.198.184.208.nip.i0

OEBPS/Images/CH07_F32_Labouardy.png
Kind | SSH Usemame with private key

Scope | Global (Jenkins, nodes, iems, alchid tems, etc)

1@
2 githud-ssh ®
DeseriptoN | Gty SSH credentials ®
Usermame | ok ouardy
Pivate Key @ Enter directly
Key
Enter New Secret Below

-==--BEGIN QRENSSH PRIVATE KEY--

BABABANAACLEZXKE I EAMARARGSYDIUARAAEERINZQAAAANAAAABARABEHARARAZS2GE SR

NRARAAAWEAAOAAAOEAXTYSZEB3SDUAT2THMEUVAF i REFCHDV2adadaf 2 1h9a3T90R6UCIU 4

Passphrase

OEBPS/Images/CH01_F08_Labouardy.png
Rely on automated reliable tests
Tovaldate each ime dveloper integates
newcode,Cielies onan utomated and
el e of ests

Commit on a regular basis
Source cade s sored i cenlrepostony;
and developers commit ther changes.
tegulaly, st east ot th end of every day.

(] ‘ .

S
S

Frequent small deployments.
Workin sma btches todetectssues.
earer and oll backin caseof fire and
use featue agsfo sigificont change n
theapplcation.

Prioritize fixing broken build
112 developercommit code changes ot
confictvith another evelopers work the
buid server aerts the tea.

K a CI/CD tool

Agood CI/CD 0ol should allow deelopers
1o ocus on engineering and managing the
ente pipeine 1o bull,execut ll qualty
checks and deploy wihease.

OEBPS/Images/CH02_F10_Labouardy.png
peline

Definition

Pipeline script

1~ node('workers'J{

Serpt 2™ Stage(Checkout ">

3 git “https: //gi thub. con/mlabouardy/koniser .git"
o ¥

5

6+ stage('Build'){

7 docker..build("koniser")

8 3

ol }

@ Use Groovy Sandbox
Pipeline Syntax

OEBPS/Images/CH06_F04_UN02_Labouardy.png
Using inage: centos-8-120200316
Creating instance.
googlecospute: Loading zone: europe-westd-a
googlecompute: Loading machine type: ni-stondard-1
Roquesting instance creation...

Waiting for creation operation to complote
Instance has been created!
Waiting for the instance to
: 1p: 34.89.261.218

Using ssh communicator to comnect: 34.89.251.218
Waiting for SSH to becons available...
Comnected to SSHI
Uploading ./scripts => /tep/

come running. ..

Uploading /Users /mlabouardy/ . ssh/id_xsa => [tmpic

§0.x82 1.81 KB / 1.81 Kif (=emeememssmsrassssesssssinsssmsssmeossemsmsssmsssssmsssmamssamanss
Provisioning with shell script: -/setup.sh

Install Jenkins stsble release

No packages marked for removal.

No match for argunent: java

Dependencies resolved.

Nothing to do.

Completes
Cont0s-3 - Appstre: | 6.6
Cont0s-8 - Base | slom
Cont0s-8 Extras |48 ke
Cent0s- - powerTools | 2.0 u
Google Compute Engine 62k
googlecospute: Google Cloud SOK | s

OEBPS/Images/CH03_F07_Labouardy.png
Jenkins, Nodes

4 Back to Dashboard Preventive Node Monitoring

£+ Manage Jenkins @ Acchitecture
B NewNode @ Clock Difference

Free Disk Space

Free Space Threshold 15

Build Queue =

Free Swap Space

No builds in the queue. @ Free Temp Space

Free Space Threshold | o
Build Executor Status -

@ Response Time
* master

OEBPS/Images/CH10_F06_Labouardy.png

OEBPS/Images/CH12_F14_Labouardy.png
Start

Checkout

 grmmn,

Tests

Coverage Reports
Quaity Tests

UnitTests

Build Push End

°0——©—

OEBPS/Images/CH11_F32_UN14_Labouardy.png
WARNING: No username defined for the current Git server!
7 00 you wish to use labouardy as the Ot user name: 1cs

The directory /Users/mlabousrdy/giehus/ x-rovies store is not yet using git
2 Would you Tike to initialise git nowr ‘o:

* Conmit message: Initinl port

6t repository created
pexforming pack detection in foldor /Users/mlabouardy/github/jx-novies-store

> Draft dotected ISON (63.955137%)

—-> Could not find a pack for JSON. Trying to find the next likely language mateh..

-5 Draft dotected Go (36.044863%)

selected pack: /Users/mlabouardy/ . x/draft/packs/github. con/Jenkins-x-buildpacks/ jenkins-x-kubernetes/packs/go
2 Who should be the owner of the xepository? «libcuard)

replacing placeholders in directory /Users/mlabouardy/github/ jx-novies-store

app name: jx-movies-store, git server: github.com, org: mlabouardy, Docker registry org: crew-sandbox
skipping directory */Users/mlabouardy/github/3x-novies-store/ .gi

Draft pack go added

2 Would you like to define a different proview n:
Using Git provider github.con at https://github.com
? Using organisation: nlabouardy

2 Enter the new repository name: x-rovies-store

Creating repository mlabouardy/jx-novies-store

Pushed Git repository to https://github.con/mlabovardy/ jx-novies-store

Created Jonkins Project: http://jenkins .ix.35.198.184.208. nip. io/3ob/mlabouardy/Job/jx-novies-store/

space? 1o

OEBPS/Images/CH07_F04_Labouardy.png
Parser

storo

ResTAP!

Marketplace

e “a"e}“""]

neder

Message Queue

nsertovies

==

Database

OEBPS/Images/CH06_F30_Labouardy.png
e+ Virtual Network

Private Subnet

Load Balancer Jenkins Master
A

OEBPS/Images/CH09_F31_Labouardy.png
Name Command State Ports

ec2-user_analyzer_1 /docker-entrypoint..sh anch . starting) 8228/tep
ec2-user_api_1 Jdocker-entrypoint.sh anch . starting) 0.0.0.6:8228->8228/tcp
ec2-user_catalog_1 Jdocker-entxypoint.sh anch . starting) 8228/tcp
ec2-user_db_1 dockez-entrypoint..sh postgres. 5432/tcp

ec2-user_policy-engine 1 /docker-entrypoint.sh anch .
ec2-user_queve_1 /docker-entrypoint.sh anch .

starting) 8228/tcp
starting) 8228/tcp

OEBPS/Images/CH08_F29_Labouardy.png
/' movies-marketplace < 9 Peine Changes

Branch: develop. @ 235 [E—

Comit: ~ ® 5 minutes ago Replayed #8

OEBPS/Images/CH06_F09_Labouardy.png
8E Compute Engine VM instances QU CREATEINSTANCE & IMPORTVM CIREFRESH b START msTP (1)

B VMinstances

& instance groups = Loiichd
Namen zome Recommendston Inusely nemalip s comect

0 instance templstes L]
@ basion evopenesiza 10013 (4c0) 35246240251 s+ 3

B Soetenantnodes

OEBPS/Images/CH11_F19_Labouardy.png
C O Nonséc

»

23b35067b36014a5e9ddBebc81dfBec-167487368.ou-west-3.elb.amazonaws.com/dash

Environment: production

The Shawshank The Godfather: Part
Redemption (1994) w(t974)

JACK NICHOLSON

Tom
Hanks
Forrest

OEBPS/Images/CH11_F11_UN09_Labouardy.png
NAME
movies-loader-748c544c6b-17¢15
movies-marketplace-57659fbcc-b53hs
movies-parser-84df877c4-7mnéh
movies-parser-84df877c4-nrsmd
movies-store-76d74646bc-v7rsx

READY
o/1
1/1
1/1
1/1
11

STATUS
Completed
Running
Running
Running
Running

RESTARTS

o
o
o
o
0

AGE
4s

3om
3om
32m
32m

OEBPS/Images/CH10_F20_Labouardy.png
L 4
Cr—

©ip-10-1-0-161 ®ip-10-1-2-147 @ip-10-1-2-16

worker manager worker

e [e L p——

OEBPS/Images/CH14_F21_Labouardy.png
&5 Restore Configuration

Restorsaptions
esoe bacop fom

O Restoro next busd umber i (¢ found in backap)

O Restore plugins.
=1

ee e

OEBPS/Images/CH04_F03_Labouardy.png
il

Template

-53&

Plattorm Agnostic

Buila

aWs G

. oo
e

cooncuinr Qg

vmware

Me openstack.
E

-y ¥

© e > puppet

CHEF o
Configuration Tools

Bake

ECzinsance

Baked Image

Inrastructure as Codo.

OEBPS/Images/CH12_F26_Labouardy.png
Start Checkout Tests Build Push Deploy

-0 © © @ @

| Coverage Reports MoviesStoreAdd MoviesStoreAdd
ToFavorites ToFavorites

Quality Tests MoviesStoreList MoviesStorelist
Movies

Unit Tests MoviesStoreSearch

MoviesStoreView MoviesStoreView
Favorites it

End

OEBPS/Images/CH13_F14_Labouardy.png
2 Sttisties of JavaMelody montoring tke at 15/1120 13:38 on_Ip-10-0-0.208 (Jenkins v2.204.1,2204.1)

2 Update - POF_ Oninahelp 5 Deskiop _ Choloa o prod: 5 Day = Wesk 1 Monih = Year (A 3 Cusiozed_ 8y deploymant
sed memory -1.day wcou-1amy

Mt hits per minute -1 day

OEBPS/Images/CH02_F08_Labouardy.png
teme 9-10:0:3:168 eu-contra-1.compute.ntormal

Doscripton

¥ ofexecutors 7

Remote 100t Girectory | poioca usor

e e ey

Usage Use this node as much as possible B
Launch method Launch agent agents via SSH. +
Hoat 1003.168
Crodontials oczuser B

Host Key Vericaton Strategy | Non verying Veriication Stategy

00 0000 © 0 0 0o

OEBPS/Images/CH06_F07_UN04_Labouardy.png
google_compute_network.management will be created
+ resource "google_compute_network" "management" {

+ auto_create_subnetworks false

+ delete_default_routes_on_create = false

+ gateway_ipvé (known after apply)
+id (known after apply)
+ ipvé_range (known after apply)
+ name “management"

+ project (known after apply)
+ routing_mode (known after apply)
+ self_link = (known after apply)

OEBPS/Images/CH10_F39_Labouardy.png
watchlist-deployment

Watehist deployment configs

Branches (2)
s W hemey Lost Success Last Faiure Last Durtion o
@ o wm Tminssec-£13 A 1050 o W%
O e Na A A oA
eon: SHL

Legend £

Mtomfeed for il) Atom feed orfaiures

‘Atom feed for just test buids

OEBPS/Images/CH08_F31_Labouardy.png
Ownedbymo +

sonarqubes.
onkdns-worker
Jonidng mast.
docker-16.00

Q. Fiter by tags and atibutos o search by koyword

- AMIName

sonarqube 82..

Jonkins-worker
Jonidng-masto.
dockor-18.009.

Amio

ami0c2a36Tasc2ate
ami 096 1b4coBE40

03T 1T21609673007
ami0cd5660852590472

Sourco

3059296957535,
305929695753

305529695733
305920695733

Owner

20029685733
20629685733
205629685733
305029695733

visiily

prvate
prvte
privte

prvate

Status

pending
avaiatio
avaiatie

avaiatio

Greation Date

Apri 24, 2020 1 1:52:56 PM.
March 23,2020 0173533 .
March 23,2020 a1 33309 .

Ape 18, 2020 1 4:35:46 PM.

OEBPS/Images/CH06_F36_Labouardy.png
Images

Soapshots Backups Custom ima

Take a Snapshot

(0o $005/G8/mo.

19 Snapshot o ensur data consistency. Snapshot cost s based on space used and charge

Snapshots

B Droplets Volum

= Name P Regons Creued =

1 (@)] Retreveoner 20408 om More v

OEBPS/Images/CH11_F46_Labouardy.png
& miabouardy / environment-watchlist-production pe

o Oses N

Uroquests 1 © Actons [projects Wik

Fiters + | Qisprisopen

T 10pen ~ 0Cised

11 chore: jx-movies-storet0 0.0.3 updsabet
1opones 21 seconds o by bty

© secury

Auor+

@ Unmten -
o signs 5 Sotings

sbels 10 piestones 0
Lsbol- projects - Miestonos~ Reviews -

rsu

Assignoa

Sot~

¥ ron

OEBPS/Images/CH09_F45_Labouardy.png
update readme #1

‘miabouardy merged 1 commit into develop from feature/featurer [now

¢ Conversation 0 < Commits 1 R Checks 0 (D Files changed 1
E mlabouardy commented § minutes ago @ -
No description provided.

o BB uptate readne + sasbbdc
£53 miabouardy merged commit docseb nto devetap now view detas | | Rovert
T eheck passed
Pull request successfully merged and closed e

You're all set—the feature/featurea branch can be safely deleted.

OEBPS/Images/CH10_F13_Labouardy.png
Gonera

ranch Sources | Buid Confguran Scan Multbranch Pioine Tiggors Orphaned tom Stategy

‘operies Pipein Livarios Pipeino Model Defton

Gittub

Credentials $ eAdd -]

© Reposiory HTTPS UAL

Repository HTTPS URL | hups:igitnud.comimiabouardywatchist depioyment gt L]

vatcate

Roposiry Scan - Daprocated Visualzation

L Discovor branches.

ee

Stategy | Exciude branches thatao alsoflod s PR

Add +

Propeny suategy | Allbranches gt the same propertos

Add propary ~

Add source -

OEBPS/Images/CH05_F03_Labouardy.png
(W HashiCorp Browse Products +

W Terraform

Downloads

- Download Tarrform
Dabian/Ubunty APT Packages
RHEL Fodora Yum Packages.
Upgrade Guides

Other Docs
Inteo o Tereform
Toratorm Language
Toratorm CLl
Toratorm Cloud
Terstorm Enterpr
Providor Documentation
Tonatorm Glossary.

Publishing Providers and Modules.

Exending Terratorm

About HashiCorp.

Rogiy Tutorals Communty Gib DownlosdCL Temform Cloud

Download Terraform

Below a
package for your operating system and architecture.

the available downloads for the latest version of Terraform (1.0.0). lease downioad the proper

Terraform is i

ibuted as a single binary. Instal Terraform by unzipping it and moving it to a directory
included in your systems PATH .

You can fir

the SHA256 checksums for Terraform 100 online and you can verify the checksums signature
file which has been signed using HashiCorps GPG key. You can also download older versions of Terraform
from the releases servi

Gheck out the v1.0.0 CHANGELOG for information on the latest release.

Note: I you'o upgrading from an older version of Terraform then there may be some extra notes or
upgrade steps. Please refer to the Upgrade Guides to learn more.

macOs
64-bit

OEBPS/Images/CH10_F09_UN01_Labouardy.png
lec2-user@ip-10-1-2-168 ~]$ docker info
Containers: 1

Running: @

Paused: 0

Stopped: 1

Inages: 1

Server Version: 18.09.9-ce

Storage Driver: overlay2

Backing Filesystem: extfs

Supports d_type: true

Native Overlay Diff: true

Logging Driver: json-file

Cgroup Driver: cgroupfs

Plugins:

Volume: local

Network: bridge host macvlan null overlay

Log: awslogs fluentd gcplogs gelf journald json-file local logentries splunk syslog
swarm: active

NodeID: zv2gyvahzélnthzraz29el6vi

Is Manager: true

OEBPS/Images/CH09_F11_Labouardy.png
€ e

> Q seoen
8 some

2 Upions

(@111 T ——

Get Started

 Configuraton
& sulvnino ooy

Documentation

Communiy

Repository Formats

AT Composer 7 Conan? & COAN 7 @ Dockar

@GHLES 7 GO Go” £ Haim” V Maven” [npm” @ NuGet

£RP R % Raw @ RubyGems? YU Yum

OEBPS/Images/CH07_F16_Labouardy.png
Branch: develop~ | New pull request Create newfile Upload files Fina fie (TN TS R

This branch is 2 commits ahead of master. T Pull request ~ [5) Compare
53 misbouardy creating Jeninsie Latest commit 707744 3 minutes ago.
B Jenkinsfile creating Jenkinsfile 3 minutes ago
README.md Create README.md 3 hours ago
main.py oading from json fle 3hours ago
B movies json oading from json file 3hours ago
B requirements.txt Toading from json fie 3 hours ago

B test.main.py Ioading from json file 3hours ago

OEBPS/Images/CH08_F04_Labouardy.png
Jenkins > movies-loader » develop

2w
g Branch develop
s, Fullpoect nme: movis oadocdevlon
i .
1D eutoow | 2 mecant cranges
4% View Configuration
O, Ful Stage View Stage View
(@ OpanBus Ocean
e Checkou UnitTests
0 Embeddabl Buid Satus Average stage times: 5 205
@ Buikd Review :
© Piotine synax o
st
o Htory
find x| Q‘uxv No.
Changos| 9s
v Ape 21,2020 12:37 PM fiiced
[y

Q@u Aw2i2001208PM

OEBPS/Images/CH14_F14_Labouardy.png
GitHub Authorization Settings

‘Admin User Names e
Paricipant in Organization

Use Gitkub reposiory pemissions.

Grant READ permissions o all Authenticated Users

Grant CREATE Job permissions o all Authenticated Users (]

‘Grant READ permissions or /gihub-webhook

Grant READ permissions for “/oc.xml o
‘Grant READ permissions for Anonymous Users. o

‘Grant ViewStatus permissions for Anonymous Users ()

000000 O ©

OEBPS/Images/CH10_F40_Labouardy.png
deploy to staging #6
miabouardy wants to merge 41 commits into preprod from asvetop

Open

Add more commits by pushing to the develop branch on mlabouardy/movies-loader.

° All checks have passed Hide all checks

1 successful check

3 continuous-integration/jenkins/branch — This commit looks good

° This branch has no conflicts with the base branch
Merging can be performed automaticaly

Merge pull request You can also open

i Github Desktop or view command line instructions.

OEBPS/Images/CH04_F10_Labouardy.png
Services v Resource Groups v

1.CmomAM 2. CroosebsancoTpe 3. Contweinsince

iosge SAdTis 6. ConoureSecurty Qrovp 7 R

Step 6: Configure Security Group
Rsoty 7o i 50 el it cotl vl o yourinstace, O s page you can s s s i e you intanc. o o, o van 15 o s 4 o e s your
nare, 44 ol ot ko et o0 HITP s TP pors. o ca et sy o o st 3 X4 o o, s v s A G sy i
Resign scurty g ¢Crst e sy govp
Stctanaisting sy 100

Socurty grop name: jeins.standaone-sg
Descripton: aiow a it o port 8050
Tpe (0 Protocol (i PortRange (i Source (i Descrption (1
£ 3 e 2 Gusiom £ 00000 9. 55 or Admin Desidop o
Guson TGP ¢ o a0 Gustom %) 00000, 0 9. 55H or Admin Deskiop o

AddRulo

OEBPS/Images/CH09_F04_Labouardy.png
Jenkins.

movies-loader

develop

#2

(Pipeline) st.

(Pipeline) { (Build)
(Pipeline] isUnix
(Pipeline) s

+ docker build -t mlabouardy/movies-loader .
Sending build context to Docker daemon 114.2kB

Step 1/7 : FROM python:2.7.10
> 4442€7b981ca

Step 2/7 : LABEL MAINTAINER mlabouardy

> Running in e2cla27aae2

Removing intermediate container e2claz7aa2e2

> 0899cadac2ed

Step 3/7 : WORKDIR /app

> Running in ab0b93253€21

Removing intermediate container ab0b93253£21

> bab38bb0c657

Step 4/7 : COPY requirements.txt .

> 54£3£491c8d3

Step 5/7 : RUN pip install -r requirements.txt

OEBPS/Images/CH12_F19_Labouardy.png
Start Checkout Tests Push Deploy End
{ e © o o
Covse m,‘ hoessorensr
fosin
© o
Qs Moot
s
O o
it Morkssorsen

hMovie.

OEBPS/Images/CH10_F53_Labouardy.png
user approval required for production deployment #9

‘miabouardy wants to merge 45 commits into. master from preprod. [

‘Add more commits by pushing to the preprod branch on miabouardy/movies-loader.

° All checks have passed Hide all checks
1 successful check

v} continuous-integration/jenkins/branch — This commit looks good Details

° This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request You can also open this in GitHub Desktop or view command line instructions.

OEBPS/Images/CH14_F27_Labouardy.png
e

s W Name | Last Success. Last Failure Last Duration Fav

Q@ A wn sminsssec-£3 smin29sec-£1 . O

OEBPS/Images/CH02_F15_Labouardy.png
All checks have failed Hide all checks
2 errored checks

X &3 continuous-integration/jenkins/branch — This commit cannot be buit [T Details

X continuous-integration/jenkins/pr-merge — This commit cannot be built Details

o Required statuses must pass before merging
Al required statuses and check runs on this pul request must run successfully o enable automatic
merging

As an administrator, you may still merge this pull request.

Merge pull request |~ | You can also open this in GitHub Desktop or view command line nstructions.

OEBPS/Images/CH14_F01_Labouardy.png
ﬂ Configure Global Security

Enable secuity

Aecass Control

O Disable remember me.
Security Reaim
O Detegateto servie container
© Jenking'oun user daabase
O Alow users o sign up
O owe
O Unix usergroup databse
Authorization
© Anyone can o anytring
O Legacy moce
© Loggedtinusers can do anything
Alow anonymous read access
O Matixbased securty

O Projoct based Matix Authorization Strategy.

22NN

o0 00009

OEBPS/Images/CH06_F37_UN11_Labouardy.png
digitalocean_droplet..
+ resource

‘digitalocean_drople

nkins_master will be created
“Jenkins_master

+ backups. false
+ created_at (known after apply)
+ disk (known after apply)
14 (known after apply)
+ inage “61197862"

+ ipvé_address (known after apply)
+ ipvé_address_private = (known after apply)
+ ipve false
+ ipvé_address (known after apply)
+ ipvé_address_private = (known after apply)
+ locked (known after apply)
+ memory (known after apply)
+ monitoring false
+ name “Jenkins-master"
+ price_hourly (known after apply)
+ price_monthly (known after apply)
+ private_networking = false
+ region “lon1®
+ resize_disk true
+ size “s-1vopu-2gb*
+ ssh_keys t

+ 87 £31:2f:55:db:20:34:

1
+ status (known after apply)
+ urn (known after apply)
+ vopus (known after apply)
+ volune_ids (known after apply)
»
Plan: 1 to add, © to change, © to destroy.

OEBPS/Images/CH13_F21_Labouardy.png
O New EC2 Experionce. Launch Instance Connect Actions ¥

QtacksLogaog - | Ada e

¥ INSTANGES.
nstances 5 Name ~ anco> - instancoType - Instance Ststo - Status Chocks - Alam Status
i assicsoocn iosroneones0 2iarge Qg O Zacs. N Y
Lanch Tplesse: bana 10068031235068639 2 medium © ring © 22checks .. Nono. %
‘Spot Requests. & logsasn 103374a07550018b16 12.smail @ running © 22checks... None %

‘Savings Plans

OEBPS/Images/CH13_F34_Labouardy.png
Mohamed @ 9:59 PM
added an integration to this channel: Grafana
Grafana A%% 1001 P\
@channel
[Alerting] Memory Usage alert
Jenkins cluster memory usage is above 90%
ip-10-0-3-84.eu-central-
1.computeinternal
6.2945358514843

5 Grafanav7.0.1 Today at 1001 PM

OEBPS/Images/CH11_F26_Labouardy.png
Branch: master | Now pull request
5 misbouardy movies-store
@ indexyam!

8 movies-loader-

001gz

movies-marketplace-1.0.0.tgz

movies-parser-1.0.0.gz

movies-store-10.01tgz

Create now filo

movies-store
movies-loader
movies-marketplace
movies-store

movies-store

pload files Find file [ETL R

Latest commit e8abs? 10 seconds ago
10 seconds ago

6 minutes ago

32 minutes ago

10 seconds ago

10 seconds ago

OEBPS/Images/CH05_F23_Labouardy.png
Filter: | Q Filter Auto Scaling groups... X

® Namo

® jenkins _worker

Auto Scaling Group:

Details

Filter: Any Status v

Status

Successful
Successful
Successiul

Successtul

jenkins_workers_config 2 2 2

jenkins_workers_asg

Activity History Scaling Policies Instances Monitoring

Q Filter scaling history... x

- Description

Terminating EC2 instance: -016e200c6ddbaads.

Launching a new EC2 instance:

71373177899a4190
Launching a new EC2 instance: i-01155e52ced6279(9
Launching a new EC2 instance: I-0f6e20dc6ddbdfadt

Launch Configuration /~ Instances - Desired ~ Min ~ Max ~

10

Notifications

Availability Zones - Default Cooldown
ouwest-3a, eu-west3b 300
Tags Scheduled Actions Lifecycle Hooks.

Start Time.

2020 Maren 26 13:14:43 UTG1
2020 Mareh 26 13:08:11 UTC1
2020 March 24 12:26:58 UTG1
2020 March 24 12:26:58 UTC+1

OEBPS/Images/CH10_F33_Labouardy.png
@ Jenkins AP 3.48 PM
| movies-loader/feature%s2Fdeployment build status: STARTED

| movies-loader/feature%2Fdeployment build status: SUCCESSFUL

| movies-ioader/develop build status: STARTED

| movies-loader/develop build status: SUCCESSFUL

OEBPS/Images/CH06_F29_Labouardy.png
168.61.214.146.

Jenking

enabl autorfresh

o tonis Welcome to Jenkins!
R ===
@ rereome

P

OEBPS/Images/CH11_F39_Labouardy.png
Validate Update
Start Environment Environment End

e

OEBPS/Images/CH05_F10_Labouardy.png
Q. Instance State : Rumning ~ Jdd fiter
Namo - Instance ID ~ instancoTypo - Availability Zone - Instance Stato -
bastion i0aBeSadi01a931a77 2.micro eu-west-3a @ running

@ jenkins_master -0d04179493b04ed. Rlarge eu-west-3a @ running

Description | Status Checks.

Instance ID
Instance state
Instance type

Finding

Private DNS
Private IPs

0d04179493b04ed38 (jenkins_master)

Private IP: 10.0.0.71

Monitoring | Tags

10d04179483004ed38

running

t2large

Opt-in to AWS Compute Optimizer for recommendations.
Learn more.

ip-10-0-0-71.eu-west-3 compute.internal

1000.71

Status Check

@ 212 checks
22 checks

OEBPS/Images/CH10_F46_Labouardy.png
Credentials that should be available rrespective of domain specification to requirements matching.

Name
‘ec2-user (SSH Keypair for Jenkins workers)

‘miabouardy!

(Gittub credentals)
‘ac2:user (§SH Keypair for Swarm sandbos)

i ken
Sk access token
‘ec2-user (SSH Keypair for Swarm staging)
c2-user (SSH Keypale for Swarm production)

Kind
SSH Usemame wih prvate key
Username with passwiord

SSH Usemame wit pivate oy
Socrettoxt

Secrettext

SSH Usemame wi private ke

‘SSH Usermame with private key

Description
SSH Keypaifor denkin vorkors
Gt crecentias

SSH Keypai for Swarm sandbox
‘SonarQube access token

Stack access token

SSH Keypalr or Swarm staging

‘SSH Keypar for Swarm production

bdb3badbadbdbadts

OEBPS/Images/CH08_F24_Labouardy.png
Xmovies marketplace <3 Pipeline Changes

Branch: develop @ 1més es by mlabouardy

Commit: 9361b74 © inafewseconds Started by user mlabouardy

Pre-integration
Start Checkout Tests End

o S - -

OEBPS/Images/CH06_F16_Labouardy.png
< Instance groups 7 EOTGROUP G ROLUNGUPDATE C ROLUNG RESTART/REPLACE.

@ jenkinsworkars
Mambes Dests Monkarng s

[— scesbysas Locaion
Jenkins worke20200326150446591100000001 2 intotal euopewestsa
@2 o

e o Tempe
© eS8, 2020, 155070 ks ke 20026150481 102000501
P P —— R e

[——

Autohealng nods 0 be configured o gt instances health.

@ DeLETEGROUP.

ot +
10003 None
10004 None

s

© REMOVE FROM GROUP

Achesiog

W DELETEWSTANCE

pe——

OEBPS/Images/CH08_F11_Labouardy.png
e —— T

func ParseMovie(sovieHTHL string) (Hovie, error) {
movie 1= Hovie(}

doc, err := goquery.NewbocumentFrosReader (strings. NewReader (RovieHTHL))
iferr temil |

return novie, err
»

movie. Title = strings. TrinSpace(doc. Find(".title wrapper h1").Text())
movieRating = strings. TrinSpace(doc. Find(*. ratingValus") . Text())
Rovie. Releasebate = strings. Trinspace(doc.Find(" . title_wrapper .subtext a).Last().Text())

OEBPS/Images/CH07_F09_Labouardy.png
/r@ Jenkins Credentials Provider: Jenkins.

= Add Credentials

Domain Global credentias (unresticied)

Kind | Usomamo with password

Scope Global (Jenkins, nodos, tems, alchid itams, otc)
[—
Password

© gt

Descripion Giup credentils

Ada | cancel

® © © 00"

OEBPS/Images/CH09_F17_Labouardy.png
© successtuly created repostory mabovardy/mavies oader View push commands.

ECR > Reposiores

Repositories (1 f 1 (0] [iew s commanes) [omee] e | (I
Q i <1>| @
tomtorysame o i =
o i g S s Samavsconiromdmoies A o

oder loader v

OEBPS/Images/CH08_F40_Labouardy.png
e\ Projects

5 movies-marketplace 77

D master ©

Overvow Issues Securly Hotspols Moasures Code Aty

QUALITY GATE STATUS.

Passed

Al conitions passed.

MEASURES

Now Code Overall Codo

0 sowwoms

O & Howinenies

O 0 o swctyos Jp—

O resavee O @ewcssosnas

Dupicatons on O New Linos

© Lastanasis hod 2 warmings

ProjectSettings +

socy @

Securty Reviow (@)

Vatanabity @)

OEBPS/Images/CH07_F14_Labouardy.png
GitHub

Credentials. miabouardy/**"*** (GitHub credentials) &= Add ~

User miabouardy
© Repository HTTPS URL

Repository HTTPS URL | hitpsy/github com/mlabouardylmovies-loadergit
Validate

Repository Scan - Deprecated Visualization

Behaviours Discover branches ®
Strategy Exclude branches that are also filed as PRs. s @
Add ~
Property sirategy | All branches get the same properties

Add property +

OEBPS/Images/CH12_F24_Labouardy.png
Stage Logs (Deploy)

© ShellScript = il rev-parse HEAD > gitcommill (self e 291ms)
© Read fefrom workspace = gicommiD (self me 13ms)

© Shell Serfpt - m gicommi (sef tme 285ms)

© Shel Sorpt - aws lambda update-funciion-code ~fungtion-name MoviesLoader -s3-bucket deployment-packages waichls -3-
key MoviesL oader/d0b3434b342623245201603509700612560d501.2ip 1egion eu-west-3 (self time 852ms)

© Shell Script - gitrev-parse HEAD > gitlcommiliD (self time 284ms)
© Read flefrom workspace - giticommilD (self time 17ms)
© Shell Script - m_git/commillD (self time 324ms)

‘O Shell Script - aws lambda publish-version -funclion-nam
40h3434064262324520120c35097006(256bd50! -region eu-wast:3 (sel tme 863ms)

OEBPS/Images/CH10_F48_Labouardy.png
«
<

*

smatus.

°
]
]

master

preprod

develop.

wesTMEsSAGE

Started by upstream pipeline “movies: parser/master bulld 1

Started by upsteam pipeline “moviesparser/preprod buld

Started by upsteam pipelne “movies-arser/develop” build

2minutes g0

aminute ago

16 minutes ago

*

OEBPS/Images/CH11_F06_Labouardy.png
Stage Logs (Deploy)
© Shell Script - kubectl apply -f deployments/ (self time 813ms)
® Shell Script - kubectl apply.-f services/ (self time 810ms)

+ kubectl apply ~f services/

service/movies-store created
service/movies-narketplace created

OEBPS/Images/CH02_F14_Labouardy.png
Quality

e Security. ”
Qualty Unit Tests Build

Tests

Push Depy Accptance

- quiy - s .
oo Qalty s S o s sy
) anch:covoon

Checkout Quality Jnit Tests Seciity ul ust

Checelsy Tests. it Tests B G

Jenkins

OEBPS/Images/CH05_F04_UN01_Labouardy.png
Initializing the backend...

Initializing provider plugins...
- Checking for available provider plugins
- Downloading plugin for provider "aws" (hashicorp/aws) 2.54.0.

The following providers do not have any version constraints in configuration,
S0 the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.aws: version = "~> 2.54"
Terraforn has been successfully initialized!

You may now begin working with Terraforn. Try running "terraforn plan* to see
any changes that are required for your infrastructure. ALl Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
oommands will detect it and remindl you o do 0 if neosssary.

OEBPS/Images/CH10_F11_Labouardy.png
& miabouardy / watchlist-deployment prate Ounwatch~ |1 ksar o Yrok 0

©Code (lssues 0 [1Pullrequests 0 O Actions I Projects 0 Wiki ©Security 0 L1 Insights £ Settings

Watchlist deployment configs et

Manage topics

-0 2 commits. ¥ 3 branches @ 0 packages © Oreleases 221 contributor
(S e Nowputuent Crestonewts | Upoad s Find e
Sakchbeanches/tave) Latest commit Seg14e2 36 seconds ago
eate a br Update README.md 36 seconds ago
Sranches Tags

d

e detoit

deveon
ient

preprod

OEBPS/Images/CH05_F13_UN08_Labouardy.png
aws_elb.jenkins_elb: Modifying... [id=tf-1b-20200323152023632600000001]
aws_elb. jenkins_elb: Modifications

‘aws_routes3_record. jenkins_master
‘aws_routes3_record. jenkins_master
aws_routes3_record. jenkins_master © [205 elapsed]
aws_routes3_record. jenkins_master -- [36s elapsed]
aws _routes3_record. jenkins_master: Creation complete after 37s [it

.. [10s elapsed]

2TRISQTUSUIUT_jenkins. slowcoder . con_A]

Apply complete! Resources: 1 added, 1 changed, © destroyed.
outputs:
bastion = 35.180.122.81

Jenkins-dns = https://jenkins .sloncoder .con
Jenkins-master-elb = tf-1b-20200323152023632600000001-587097021

e e ¥l e Uk

OEBPS/Images/CH03_F09_Labouardy.png
7 aws marketplace S —

AU products > Source Contrl > Jekin Certfid b Bitnami

Jenkins Certified by Bitnami

Up -t s g bk o s oo gt o

Oy 10 e e 10t s, s, nd oo oy e
s So019/hr
Unafunis ket 2 eews e
=

Product Overview

Jnkin .30 opensoecs aomaton s that g you sutomtsthe

g testing, and deployment of any prjectaros ol pafars Highlights
Jenkin s 10 v reking changes o thtyou can sve e nd et

e dlery of igh-qulysoftwar, s wed e prvides n ey wiy to + Cooranates muttpetols o 2 CCD pipline.
manage nd testyour spplcaions befre takig them 1o production. This image ExcotesRpach An,Rpache Maven, a0 Gradie based
undisthe testversions of community.rcommended g ncuing project 5wl s by snell s nd indows
pipeinesand it egraton st commands.

+ Largeccomptem of over 1000 community<ontbutad
Blgins. Con e customized with new extasions nd
Plgis ot ny profect,

s opensource sltionis packaged b Binar. Les how o iastall, coniur,
3 mana it ¢ doc i com. Forceployment sue, 5¢h ot vt

L000rt a3 M e + Easy10-u50 Gl ensles simpl configuation,

management of plugins and sutomated sk, a0

[re———
nid estionfacetion of uier.

i e inages re tways p-1-date, secure, and Bt o ok gt

OEBPS/Images/CH03_F17_UN_code.png
Jjenkins:~ mlabouardy$ aws s3 1s --region eu-central-1
Unable to locate credentials. You can configure credentials by running "aws configure'.
jenkins:~ mlabouardy$ I

OEBPS/Images/CH08_F25_Labouardy.png
rm miabouardy/movies-marketplace-test npm run lint

+ docker run

» nlabouardy/movies-sarketplace-test npa run Uint

> marketplace.0.0 Uint /opp
> 19 Lint

Linting "sarketplace
WARNING: /app/Src/app/api.service. spec.ts:7:15 - Hetplodule is deprecated: see https://anaular- o/auide/ it
WARNING: /app/Src/apb/api.service. t5:13:29 Http is deprecated: see https://anaular. 1o/ade/hi o,

ERROR: /opp/Src/app/api.service. t5:19:26 ~ Missing semicolon

ERROR: /app/src/app/api.service. t5:20:10 Missing semicolon

ERROR: /app/src/app/api.service. t5:27:26 ~ Missing semicolon

ERROR: /app/src/app/apL.service. t5:28:10 Missing semicolon

ERROR: /app/Src/app/api.service. t5:35:26 Missing semicolon

ERROR: /app/src/app/api.service. t5:36:10 Missing semicolon

ERROR: /app/Src/app/api.service. t5:43:26 Missing semicolon

ERROR: /app/src/app/api.service. t5:44:10 - Missing semicolon

ERROR: /app/Src/app/apL. service. t5:46:2 ~ file shauld end with a nexline
ERROR: /app/Src/app/app-routing. module. t5:8:4 — trailing whitespace
ERROR: /opp/src/app/app-routing. module. ts:13:4 — trailing whitespace
ERROR: /opp/src/app/app-routing. module. t5:18:4 — trailing whitespace
ERROR: /app/Src/app/app. component. spec. t:26:27 - Hissing semicolon

OEBPS/Images/CH09_F43_Labouardy.png
Jenking » movies-marketplace
P

o status

. Confgure

£5) scan Repository Now

|B Scan Repository Log

2 Wutibranch Pipein Events
© Dslee Mulibranch Pipsine
& People

= Bkt Hisory

movies-marketplace

Frontend to browse top 100 best movies o all ime.

Branches (2)

s w Name |
[*] D deven
featuereaturen

feon: SML

Last Success.
10min- 25

NA

OEBPS/Images/CH05_F01_Labouardy.png
[P actons

Owned by | Q Fie by tgs and st o seweh by eord

Aviama

e masir 21072
o masier 22041
[r—
erswonor
nensa 10101
[roee—

o

[T re—
amastaesaverisez
[——
]
-]
amrzresisn

Souren

ossascasray
ossaseasran,
ossaseasra

ossaseasrsy.
osszseasrsy.

ansszscasran
ansszseasran
nsszsensran
nsszseasran
nsszseasras
ansszseasras

vy

Pt
Pt

Pt
Prte

Sous

atole
i

il

io %0
@ K < 1wsots > i

CrestionDate & [
Septonber1,2019216020... Oertinx
Onconber 22, 20190722, Omerix
Septomber 1,2019 06073, Oartinx
Oncomber25, 019 a1 428 Omer i
Septomber 1, 2019316381, Omer
Moy 2163121005 PM .. Oter i

OEBPS/Images/CH12_F09_Labouardy.png
Amazon$3 > deploymont-packages-watchiist > MoviesLoader

deployment-packages-watchlist

[|

Q. Type. profxand poss Entr o saarch, ross ESC to clwr.

o
o

Namo v

[F) Sonob1542d087228572044830858515642087708.2ip

Last maitod » sizov

May 28,2020 7:6:13 PM GMT:0200. 2.7K8

EU (Frankfur)

Viowiog 1101
Storago class ~
Standars

Vioning 1101

OEBPS/Images/CH11_F22_Labouardy.png
GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

A caution: This repository is private but the published site will be public.

 Your site is published at https://mlabouardy.github.io/watchlist-charts/

Source
Your GitHub Pages site is currently being built from the master branch. Learn more.

master branch ~

‘Theme Chooser
Select a theme to publish your site with a Jekyll theme. Learn more.

Choose a theme

OEBPS/Images/CH07_F30_Labouardy.png
Jenkins
& New ltem
e
& People
= Build History s w Name | Last Success. [
Project Relationship o movies-loader 24min-log
422 Check File Fingerprint ® movies marketplace 32sec-log
™
b @ movies-parser 14min-log
Support
8 9 movies-siore a7 sec-log

loon: SML
(@ Open Bive Ocean Legend [Ato

OEBPS/Images/CH13_F26_Labouardy.png
DESO O

Y

a
Q
<
El
Fy
3
®
)

B vewe croe

Sove. St nspect Refresn

@y sewen L
®

ot ot |+ Ado iter

Gumestamppr 30 sconss

Bv st moues

Jonkins-*

Dsta Metrics &axes Panelsetings

Matrics
> Yoo Count
© ras
Buckats.

> Xears @Uimestamp por O milsoconds © = X

1 spitseres @=x
Swopygsion Tomsrep
Toms. v

OEBPS/Images/CH08_F16_Labouardy.png
Jenkins » movies-store » develop > #7

eline] { (Quality Te
eline] sh
+ docker run --rm mlabouardy/movies-store-test npm run lint

ts)

> movies-store€1.0.0 lint /app
> eslint .

/app/dac. js
29:32 error ‘'process’ is not defined no-undef

/app/index. 3s
49:12 error ‘process’ is not defined no-undef

Japp/test/dac.spec. 35
6:1 error ‘describe’ is not defined no-undef

7:3 error ‘before' is not defined no-undef
9:5 error ‘process’ is not defined no-undef
10:5 error ‘process’ is not defined no-undef

13:3 error 'beforeEach' is not defined no-undef
14:3 error ‘afterEach' is not defined no-undef

15:3 error ‘after’ is not defined no-undef
20:2 error ‘it' is not defined no-undef
28:2 error 'it' is not defined no-undef
41:2 error 'it' is not defined no-undef

* 12 problems (12 errors, 0 warnings)

npm ERR! code ELTFECYCLE
npm ERR! errno 1

npm ERR! movies-store€l.0.0 lint: “eslint .
npm ERR! Exit status 1

OEBPS/Images/CH11_F30_UN13_Labouardy.png
NAME
chartauseun
docker-registry
Jenkins

HOSTS
chartausoun. jx.34.89.183.25.nip. 10
docker-registry.ix.34.89.183.25 nip. 10
Jenkins. jx.36.89.183.25..nip. 1o
nexus.jx.34.89.183.25.nip. i0

ADDRESS
34.89.183.25
34189118325
34189118325
34.89.183.25

PORTS

s0
80
80

AGE
2n525
2n535
20535
2n83s

OEBPS/Images/CH11_F18_UN11_Labouardy.png
NAVE TYPE CLUSTER-IP EXTERNAL-1P
movies-marketplace LoadBalancer 172.20.93.31 a3b35d67b368f4aSe9ddBebca1bdfBec-167487368. eu-west-3.elb. amazonaus. con
movies-stors LoadBalancer 172.20.230.116 228091de87549426cac6f128b0e73512-633343171 . eu-west-3. elb.amazonaws.com

OEBPS/Images/CH02_F23_Labouardy.png
Jenkinstile X

maning > chapter2 > § Jenkinsfle
1 def imagease = ‘exsuple’

2
3 pipelinel

3 agent

s abet “workers®

6 »

7

s stogest

5 stage("checkout){

10 steps(

n eheckout sca

1)

B)

1

15 stage("Buila")(

16 docker. boi d(imageose)
n »

1

1 stage("vetoy") (

2 echo "Deptoying ..."
2)

2 3

El

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL Jonins Ppoine Untor ¢

Errors encountered validating Jenkinstite:
Worklowscript: 16: Method calls on objects not allowed outside "script” blocks. @ line 16, columm 13,
docker. bui (imageane)

Workflowscript: 1
stage(

nkaoun stage section "error”. Starting with version 0.5, steps in a stage must be in a “steps’ block. @ Uine 15, column 9.
it}

WorkflowScript: 19 Unknown stage section “echo". Starting with version 0.5, steps in a stage must be in a ‘steps’ block. @ Line 19, column 9.
stage(‘Deptoy'){

Workfloscript: 15: Expected one of "steps”, “stages”, or "parallel” for stage "Build" @ line 15, colun 9.
stage("Build)

Workflowscript: 19: Expected one of "steps”, “stages, or "parallel” for stage "Deploy” @ Line 19, colusn 9.
stage(‘Depoy)

OEBPS/Images/CH12_F40_Labouardy.png
Deploy/ MovesSoreAdTofavoies 95

> s it fnction o function e MovisStoreAGToFvrks 53 ke deployment packages votchist -3 ey MovisStreAToF s 2116B0483316300601c6.

> s bl o - functo e MoviesStoreAGATFavorits - escripion 2183048331c3006afc6ADa943SB207283 -rgioncvmest - Voo

Vi oreracive ot

Checkout Tess Buid

Deploy to production?

[- I

Shet s

sne

.

105

OEBPS/Images/CH08_F41_Labouardy.png
*w
o staws

B crges
(D BuidNow
4 View Configuration

O, Fu Stage View
o Coverage Repor
N sonmaube

(@ Oven Biue Ocoan
P G

) Embeddable Buid Status

@ Buid Reviow

© Pieine Syniax

g
on
on

Buila

story

26,2020 1034

A2, 2020 10:160

Branch develop
Fulprojct name: movies markpacodensop

[s s

Stage View
Checkout Qualty Tests
go t 2 8
2 8

SonarQube Quality Gate
movies-marketplace

servoride processing:

Permalinks

UnitTests

165

165

Statc Codo
analysis

%

9%

OEBPS/Images/CH07_F13_Labouardy.png
Jenkins » Credentials » System » Global credentials (unrestricted) > mlabouardy/****** (GitHub credentials)

A Back to Global credentials (unrestricted) Scope Global (Jenkins, nodes, items, all chi

items, etc)

7. Update Userame

© Delete

miabovardy

Password

0 github

Description iy credentials

OEBPS/Images/CH08_F26_Labouardy.png
+/ movies-mark

Pre-integration
Tests

Pre-integration Tests / Qualiy Tests - 85

v docker run --rm mlabouardy/movies-marketplace- test npm run int

+ docker run

narketplace@0.0.0 Lint /app
ng Uint

Linting "narketpla

HARNING 7:15 -

WARNING: /app; api. :13:29 - http ated: see
WARNING: /app/src/app/app.module. £s:24:5 HetpModule is deprecated: se
VARNING: /app/src/app/dashboard/dashboard. conponent. spec. ts:13:44 ~ HttpModule is deprecatet
/app/ favorites/ favorites. conponent. spec, ts: 13:31 - HttpHodule is deprecatet
Japp/src/app/movie/movie. component. spec. ts:13:17 ~ Httphodule is deprecated: see

Lint varnings found in the Uisted files

OEBPS/Images/CH05_F04_UN02_Labouardy.png
Terraform will perform the following actions:

aws_vpc.managenent will be cre

ted

+ resource “aws_vpc" "management” {

Plan:

+ arn 5
+ assign_generated_ipvé_cidr_block = false
+ cidr_block "10.0.0.0/16"
+ default_network_acl_id = (known after
+ default_route_table_id = (known after
+ default_security_group_id (known after
+ dnep_options_id (known after
+ enable_classiclink = (known after
+ enable_classiclink_dns_support = (known after
+ enable_dns_hostnanes true
+ enable_dns_support true
+1d = (known after
+ instance_tenancy default:
+ ipvé_association_id (known after
+ ipvé_cidr_block (known after
+ main_route_table_id = (known
+ owner_id (known after
+ tags a

 "Author® = *mlabouardy”

+ "Name" = "management"

D

1 to add, © to change, @ to destroy.

(known after apply)

apply)
apply)
apply)
apply)
apply)
2pply)

apply)

apply)
apply)
apply)
apply)

OEBPS/Images/CH10_F12_Labouardy.png
[crotoow auewe JRCRRTETIRS

Fitor by Profix: Q, Enter Text. X
® Name - QueweType - Content-Based Deduplication -~ Messages Ave
@ movios.to_parso_sandbox Standard NA o

1505 Quous seloctod

Dotails Pormissions Rodrivo Policy Monitoring Tags Encryption Lambda Trggers

Name: moves_to_parso.sandbox Default Visibilty Timeout: 30 seconds
URL: hitps:/sas ou-wost-3.amazonaws.com/305929685733/movies (o parso_sandbor. Message Rotention Poriod: 4 days
ARN: am:aws:sqs:ou-west-3:305929695733movies.to_parse_sandbox. 'Maximum Message Size: 256 KB

OEBPS/Images/CH09_F28_Labouardy.png
Roles > JenkinsWorkersRole

Summary Deletsrole

Role ARN armawsiam:3059296957 35 role/enkinsWorkersRole. @)
Role doscription Alows EC2 instances to all AWS sevices on your behall, | Edit
Instance Profile ARNs am:aws:an:305929695733:nstanco-profielJenkinsWorkersRole.)
Patn /
Greation time 2020-04-25 15:36 UTC+0200
Lastactivty ot accossed in the tracking poriod
Maximum GLUAP! sossion duration 1 hour Edit

Permissions | Trustrelationships Tags Access Advisor Revoke sessions
~ Permissions policies (1 policy applied)

Policy name + Policy type ~

» 8 AmazonEOzContaerRegtyFutAccess AWS managed poly x

OEBPS/Images/CH06_F11_Labouardy.png
{sF Compute En VMinstances DICREATEINSTANCE & IMPORTVM CREFRESH > sTART mstop &) sHow INF

B Winstnces

P coumas -
PRre——
Fo = e o0 [e Exensie ot
@ boston [R—. 100120060 prery s -
ol e o R e— Jnkinsmastetapeigosl 10002 (ic0) None s -

Machineimages.

OEBPS/Images/CH12_F08_Labouardy.png
(Pipeline) sh

+ 2ip -r Sefebl5d2d087026572044890868b1642087758 . 24p index.py movies. json
index.py (doflated 478)

: movies.json (deflated 79%)

(pipeline] }

(Pipeline] //

(Pipeline) stage

(Pipeline) { (Push)

(Pipeline] sh

+ git rev-parse HERD

(Pipeline) readrile

(Pipeline] sh

+ rm .git/commitID

(Pipeline] sh

+ aus 63 cp SeBebl5d2de87a28572a44896363b10642687758. 21p 83/ /deployment-packages-vatchlist /MoviesLoader/

Completed 2.7 KiB/2.7 KiB (6.1 KiB/s) with 1 file(s) remaining

upload: ./Se8eb15d2de87a2857244896868b156420877b8. 21p to s3: //deployrent-packages-

vatohlist/HoviesLoader/Se8eb15d2de87a28572a4489¢868b1b6426877b8 . 23p.

OEBPS/Images/CH11_F21_Labouardy.png
¥ Branch: master - Gotofile Addfi

:

€ miabouardy committed g4dbt71 on 22 May = D1commits P 2branches ©0tags

DO indexyaml ‘add index.yam! last month

OEBPS/Images/CH05_F02_Labouardy.png
.H’

Terraform

Clougromation

CHEF

\ 4

Vagrant

Terraform

CloudFormation

Pulumi

Chet

Vagrant

OEBPS/Images/CH09_F44_Labouardy.png
° All checks have passed Hide all checks
1 successful check

v continuous-integration/jenkins/branch — This commit looks good Details

This branch has no conflicts with the base branch
Merging can be performed automatically

Merge pull request You can also open this in GitHub Desktop or view command fine instructions.

OEBPS/Images/CH12_F07_Labouardy.png
Checkout Unit Tests Build Push

Average stage 2 35 888ms is
(Average full run tim — — —

=] =
M2 | ranges 2s 3s 888ms 1s

1938

OEBPS/Images/CH13_F25_Labouardy.png
Count

Time -+

Jun 2,

Jun 2,

Jun 2,

Jun 2,

180200 180400

2020 © 18:

2020 © 18:1

2620 © 18:1

2020 © 18:

Jun 2, 2020 @ 18:02:22.871 - Jun 2, 2020 @ 18:20:22.871 —

180500 180600 180700 180800 180900

project
Rovies-store/develop
movies-store/preprod
movies-parser /develop

movies-loader /develop

state

#finish

#finish

#finish

#finish

000 M0 181200 181300 181400
@timestamp por 30 seconds

status evel execution
FAILURE INFO conpleted
FAILURE INFO conpleted
SUCCESS INFO conpleted
Success IO conpleted

4 hits

Auto

181500 181600

10

13

W00 181800 181900

class
0.5.p.workfLow. job_Workf LowRun
0.5.p.workfLow job_Workf lowRun
0.3.p.workflow. job_Workf lowRun

©.3.p.workfLow. Job.Workf LowRun

OEBPS/Images/CH08_F15_Labouardy.png
+/ movies-parser < 38 Pipeline Changes Avtifacts

Branch: develop Nochanges

Comit: ® 2minutes ago Replayed #37

Precintegration

St Checkout Tests End
—0 ©
QuityTests

UnitTests

OEBPS/Images/CH09_F41_Labouardy.png
Pipeline Model Defi

Docker Label workers
Docker registry URL

Registry credentials | - none -

o Add ~

® 9

OEBPS/Images/CH11_F12_Labouardy.png
s dovion - | ewpu et Crstewti | Uposates i e
This branch is 18 commits ahead, 4 commits behind master. 1 Pull request [2) Compare
£53 isbouardy upgrade hlm chart Latest commit 8624c37 3 minutes ago
i deployments upgrade helm chart 3 minutes ago.
i services upgrade helm chart 3 minutes ago
B watchlist upgrade helm chart 3 minutes ago
[Jenkinsfile.eks upgrade helm chart 3 minutes ago
& Jenkinsfile.swarm deploy to eks yesterday
[README.md update readme 15 days ago
© docker-composeym! deploy to eks. yesterday

) values overrideyam! upgrade helm chart 3 minutes ago

OEBPS/Images/CH14_F10_Labouardy.png
Register a new OAuth application

Application name *
Jenkins

‘Something users wil recognize and trust.

Homepage URL *
hitp:/fenkins.slowcoder.com

The full URL to your application homepage.

Application description

Application description is optional

This s displayed to all users of your application.

Authorization callback URL *

http:/fjenkins. slowcoder.com/securityRealm/f

hLogin

Your application's callback URL. Read our OAuth documentation for more information.

Register application [UX)

OEBPS/Images/CH09_F26_Labouardy.png
Branch develop

Full project name: movies-loaderidevelop

s
‘Recent Chan
== ges
Stage View
Checkout
Average stage times: as

-]
A5 i
1519

Unit Tests.

11s

3s

Build

332ms

Push

155

1s

OEBPS/Images/CH06_F02_Labouardy.png
O 1AM &Admin Create service account

e @ Service account detals — @) Grant this service account access to project
© entty & Organizaton
X Poliey Trouleshooter Service account permissions (optional)
Grant s sevice aceount access o Crew Producton s tha it as permisionto
B organization Polcies complete secif actons o theresautcs nyour poject,Learn more
& Quotas Role. Condition
jOvper} Add condition U
= Senice Accounts =T r— e
@ Labels + ADD ANOTHER ROLE
& Seuings
@ Privacy &Security COMTRLEH] e

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH10_F47_Labouardy.png
Branch: master ~ | New pullrequest Createnewfile | Upload files | Find file
51 miabouardy Merge branch master of htps:/github.com/miabouardycrew-deployment Latest commit ef45f5b 11 seconds ago
B Jenkinsfile deploy to production 1 minute ago
) README.md Update README.md 2days ago

B docker-compose yml deploy to production 1 minute ago

OEBPS/Images/CH09_F29_Labouardy.png
ECR > Repositories > miabouardy/movies-loader

mlabouardy/movies-loader

Images (1) Detete || scan
Q e <1> @
Pushed size saan
Image g Image Rt fushed | oigest | e
(9 305929695753 dkcceu-west- 0472520,
deaion 3 amazonaws.com/miabouardy/movies- 03:43:45 0 sha2s6:076990091.... 28402 -

67120cd8ad1518b15ce3f168/5760235€268578 s o

OEBPS/Images/CH02_F13_Labouardy.png
P
s] example
-
o o o o e o
R p——)
¥ o)
e g)

OEBPS/Images/CH10_F21_Labouardy.png
Add more commits by pushing to the feature/depLoynent branch on miabouardy/movies-loader.

° All checks have passed Hide all checks
1 successful check

v} continuous-integration/jenkins/branch — This commit looks good Details

° This branch has no conflicts with the base branch
Merging can be performed automatcally.

Merge pull request You can also open this in GitHub Desktop or view command I

OEBPS/Images/CH04_F13_UN02_Labouardy.png
Prevalidating any provided VPC information

Provalidating AW Name: jenkins-master-2.204.1

Found Irage ID: ani-010fa013216763bb4

Creating temporary keypair: packer_5e108560-917d-06du-88dc-73915737cad3

Creating temporary security group for this instance: packor_5e10866f-20d6-76c3-1749-0acE90672186

Authorizing access to port 22 fron [0.9.0.0/0] in the temporary security groups...

Launching a source AWS instance.

Adding tags to source instance

Adding tag: "Name": "packer-builder”

Instance I0: i-03b1f67327193394¢

Waiting for instance (1-03b1fb7327193394) to becons ready...
ng ssh communicator to connect: 18.184.27.211

Waiting for SSH to becone available...

Connected to SSHI

Uploading ./scripts/basic-

anazon-ebs: Uploading ./scripts/disabl
disable-cli.groovy 176 8 / 174 8 [sz=ss=z=
azon-ebs: Uploading ./scripts/csrf-p
csrf-protection.groovy 228 8 / 228 B (===
anazon-ebs: Uploading ./scripts/disabls
disable-jnlp.groovy 463 B / 463 B (z=zams=
zon-cbs: Uploading -/scripts/skip:
Skip-jenkins-setup.groovy 182 8 / 182 B
anazon-ebs: Uploading ./config/jenkins.
Jenkins 3.09 KiB / 3.09 Kib [smmsmssmsamss
azon-ebs: Uploading Nsu!/-hhnuudylkly!/komu" pe:

ont..groovy.

node-agent.groovy 705 B / 765 8 (==
bs: Uploading . /plugins. txt => /tm/plugins. txt
Plugine. txt 1.85 KiB / 1.85 Kif (s=ememmemmzmsamcmmas
bs: Uploading ./install-plugins.sh

> Jtmp/nstall-plugins .sh

install-plugins.sh 1.18 KiB / 1.18 KiB (sssssssmsmssssmssmsassmssssssssssssasss S
anazon-cbs: Provisioning with shell script: ./setup.sh
anazon-obs: Install Jenkins stable release
amazon-ebs: Loaded plugins: priorities, update-notd, upgrade-helper

Tsnstin: | MissTitiig Disiaaannine

OEBPS/Images/CH07_F15_Labouardy.png
Jenking » movies-loader » Scan Repository

20
Q staws
. Contigure
£5) Scan Repasiory Now
3 Scan Repository Log
12 Viewas pain text
3 Mitbranch Ppelne Events
(© Delete Mutibranch Pipeline

°Scan Repository Log

Started by user mlabouardy.
(Hon apr 20 13:04

examining mlabouardy/novies-loader

Finished examining mlabouardy/movies-loader

9 o hetps://api.github.con using mlabovar

++ (GitHub credentials)

(Mon Apr 20 13:04:09 UTC 2020] Finished branch indexing. Tndexing took 0.64 sec

Finished: SUCCESS

OEBPS/Images/CH02_F09_Labouardy.png
Pipeline

Definition

Pipeiine script
scrpt L+ nodeChworkers'){
2 git "https://github. con/nlabouardy/koniser. git"

3 docker.build("komiser')
4y

@ Use Groovy Sandbox
Pipsiine Syntax

Apply

OEBPS/Images/CH06_F12_Labouardy.png
Network services

Load balancing
Cloud DN
Cloud CON
Cloud NAT
Trafe Director

Service Directory.

< Load balancer details /EOT i DELETE

jenkins-master-target-pool

Frontend
Protocol ~ IPPort Network Ter
Top 3261702048080 Premium

Backend

Name: jonkins-master-target-pool _ Region: europe-west3 Session afinity: None Health check: enkinsmaster-health-check

Instances ~ Zone 35206170200

jenkinsmaster europewest3a @

OEBPS/Images/CH07_F40_Labouardy.png
Resources | Actons~ | @ /ywebhook - POST - Setup

i (Ghoosa thentgeation o o your mew method
« wehook
e Itegration type + Lamba Fucion ©
e o
Mook ©
A sonicn ©
veoUnK ©

Uso Lambda Proxy intogration /0

Lambda Rogion _eu-yost
Lambda Function Tiggersenkinsiobs

Uso Detaut Timaout # 0.

OEBPS/Images/CH06_F38_Labouardy.png
@ jenkins-master a
P Loorang 2 68 Momory /50,63 Dsk /Lo

o 786276277 s Enabienow Privte P Ena

cnow Flosting : Enable o Console:

Ghous.

Droplts

OEBPS/Images/CH12_F25_Labouardy.png
Switch versionsfaliases x

MoviesLoader

Confguration | permissions | Monitoring

Versions | Alases

v Designer
suesT T minsteago
' 1 minste ag0

MoviesLoader

S e @

OEBPS/Images/CH04_F01_Labouardy.png
AWS Cloud

Security group

EC2 instance

OEBPS/Images/CH08_F30_Labouardy.png
© > @ (@ jenkins.slowcoder.comjjobjmovies-marketplace/job/develop/9/Coverage_20Report/ ¥ r)0 4EO0FO S
Backto s [

Al fles
86.04% Statomrts 35755 0% Banches 3 8933% Fnctons 1N 817% Unes 2

Prsa 10 go o th ext covered bk, p o for hprvies Bk

Fo Sttomts Bancnes Functins nes
P] 100% s wox | oo 100 o 1005 »
seipp e ser s o oo o w0 ssw em
P] % e x| o % w wiex e
srcpprimortes] wox " o oo % s a1 o
srctppimovo e e na o oo e . PR
srimrenments] 100% " W% oo 100% o0 1005 "

OEBPS/Images/CH07_F25_Labouardy.png
Jenkins » movies-parser >
E

O, Status

. Configure

£9) Scan Reposiory Now

[Scan Repository Log

€2 Mulibranch Pipeine Events
(© Delete Mutibranch Pipeline

& People

= uid History

movies-parser

Responsible for crawing iMDB page and scraping movie's metadata
Branches (1)

s w Name | Last Success

deveiop 12500+ 82

OEBPS/Images/CH07_F12_Labouardy.png
Github Apps Personal access tokens ‘Generate new token

QA Arpr Tokens you have generated that can be used to access the Gitrub APL.
Personal access tokens

Make sure to copy your new personal access token now. You won't be able to see it again!

v dfffd29cec2845dd080azesea322 2 BeeBe3ab3

Komiser token — admin:org, repo. Never used

Revoke all

Delete

Delete.

OEBPS/Images/CH12_F22_Labouardy.png
marketplace.slowcoder.com

o T

0 ®D®BO0

favconico
p—
man-es2015 s
man-es2018 s map
man-essis

main-ess.jsmap.

Q Type. profx and pross Entr to search. Prss ESC o clear.

Actons

Moy 29,2020355:41 PM GMT40200
Moy 29,2020355:41 PM GMTA0200
Moy 29,2020356:41 PM GMTA0200
Moy 29,2020356:41 PM GMT40200
May29,2020356:41 PM GMT40200

May 20, 2020 3:56:41 PM GIT40200

%808

20k8

650k8

559K8

721K8

05K8

EU (Paris)
Viewing 11026

Storage class +

Standard
Standars
Standard

Standard

OEBPS/Images/CH11_F18_UN10_Labouardy.png
NAME READY ~ STATUS RESTARTS AGE

movies-loader-5fcsb6847b-72rsg 6/1 Completed 1 125
movies-marketplace-6b7898ds67-xvhrh 1/1 Running @ imés.
movies-parser-7fd8co498d-nva27 /1 Rumning 5 anés
movies-parser-7fd8co498d-s1p7t 1/1 Rumning 5 amés.
movies-parser-7fd8co498d-tpwid /1 Rumning 5 anés
movies-parser-7fd8co498d-x87qv /1 Rumning 5 imés.
movies-parser-7fdgco498d-xdlvs 1/1 Rumning 5 anés
movies-store-58d9ffc7d9-omlsc 1/1 Running © 4més

OEBPS/Images/CH11_F07_Labouardy.png
Create Load Balancer Y 4

Q. kubornetes.jo/cluster/sandbox : owned Add fter

Name ~ NS namo - sut - vecm - Avallabilty Zones - Typo.

5149491400274c27151... 2514949140027 4ac2aTb1S. VPc-08086224ad514b5a euwest3b, euwestda classic
@ 200485440004040c68a6060... a9b4854406ad04dc68a60e0... Vpc-09066224ad5145ba6. euwest3b, euwestda classic

OEBPS/Images/CH08_F43_Labouardy.png
Stage Logs (Qualit Gate)

v
o, suws
= Changes

(D Buaon

5 View Contguration

X, Fol Siage Vew
fo Coverage Repon

= sowrawe

(@ Open e Ocean

9 cn

) Emvosabio i Saus

@ Buid Review

o

o Son

o con

SonarQube task

SonarQube task AIGro91000GAITLADBO" on server *sonaraube
s s *PENOING
tus i SUCCESS

Sonaraube task *AXGro9100

Stage View
Chekout QuatyTesis UnitTests
i ™ 1o

o
ror2t T’ C 165

statc Cod.
Anaysis

8

uaity Gato

10ims

OEBPS/Images/CH12_F35_Labouardy.png
Static Code
Start Checkout Quality Tests Unit Tests Analysis Quality Gate: Build Push End

—0—0—0——0—0—0—©@ —

OEBPS/Images/CH05_F12_Labouardy.png
@ Dashboard Jenkins) x4

= C @ Nonsécurisé | tf-1b-20200323152023632600000001-587097020.eu-west-3.elb.amazonaws.com o ¥
Jonkins

@ Newltem

& People Welcome to Jenkins!

(= Build History
Please create new jobs to gel started

&% Manage Jenkins

8 suwon
& My views

(@ Open B Ocoan

Wy Lockable Resources
(@) Pa Trigger

Q. Credoniials

[Now View

OEBPS/Images/CH10_F22_Labouardy.png
Branch develop

Full project name: movies-loader/develop

‘ﬁﬁm&_ﬁhﬂwﬁ

Stage View
Checkout
Average stage times: 55

May 05 1
18:12

Unit Tests.

195

3s

310ms

Push

as

55

Deploy

OEBPS/Images/CH13_F08_Labouardy.png
Fil | Ft | Bact | | @lastSminutes v Q| Q

Build Containers
358
308
255
208 8
158
154400 154430 154500 154530 154600 154630 154700 154730 154800 154830

— admiring sammet — modest_allen — nostaigi_cesley — sherp_jehmann — vibant booth

OEBPS/Images/CH11_F10_Labouardy.png
Stage View
Checkout

as

oy 20

Quaiity

108

UnitTests

2

Static Code
Analysis

as

Quaity
Gate.

287ms

Build

2min 125

2min 125,

push

Analyze

22ms

Deploy

17s

OEBPS/Images/CH10_F37_Labouardy.png
AWS Cloud

vpe
. D
y & y H
$88 Auto Scaling Group [ELg Bn] Auto Scaling Group 281
3 T v 3

Jenkins Workers. ‘Swarm Workers

¢
> >
ROA] Auto Scaling Group (g8 Auto Scaling Group

‘Swarm Managers A8 5\vam Managers
Sandbox Staging

Jenkins Master

OEBPS/Images/CH09_F39_Labouardy.png
Declarative:

e Checkout Unit Tests Build Push
Average stage times: 1s 1s 1s 4s 44ms

(Average full run time: ~16s)

May 02 1s 1s 3s 7s s5ms
15:14

OEBPS/Images/CH08_F13_Labouardy.png
Stage View

Average stage times:
(Average full run time: ~35s)

Apr21

20:48

No
Changes

Checkout

1s

1s

1s

Quality Tests

2s

2s

3s

Unit Tests

10s

10s

10s

Security Tests

3s

4s

3s

OEBPS/Images/CH09_F01_Labouardy.png
Continuous integration
Quality Unit Security

OEBPS/Images/CH07_F04_UN01_Labouardy.png
jenkins:movies-loader mlabouardy$ git branch -a
* develop

preprod

remotes/origin/develop

remotes/origin/master

remotes/origin/preprod
jenkins :movies-loader mlabouardys |

OEBPS/Images/CH07_F41_Labouardy.png
GitHubWebhookForwarder

Contiouraton | permisions | Monitring

 Designer

B 201 Geteway

Qualiiers v

[GitubwebhookForwarder

S s

[mokmr]

OEBPS/Images/CH02_F11_Labouardy.png
53 misbouardy Crate README mo
- statc

5 vendorlgithub.com
 gitignore

© Dockertie

© Dockerfe quaity

© Dockerfe security

© Dockerfe.unit

£ Gopkglock

6 Gopkgtom!

B Jerin

) README A
 maingo

© maintestgo

add environment varisble
scan securty wienerabiies
iforma
instaldepedencies

improve bud time:

scan secuity ienerabiltes
improve buid time

scan secuity wienerabiltes
scan security wienerabiltes

scan security wilener

Create README.md

2dd environment variable

uiforimdd

X Latest commit 0162268 on 20 Nov 2019
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 months ago
6 montns ag0
6 months ago
6 months ag0
6 months ago
3 monthe ago
6 montns ag0

& months ago

OEBPS/Images/CH12_F36_Labouardy.png
marketplace.slowcoder.com

P = = e =

[[@ o racanaen et soren. Press E5 o .

Nama v Lastmodfiod ~
& production
= sandbox

& sagng

EU (Paris)

Viewing 1103
Storago cass +

Viowing 1103

OEBPS/Images/CH08_F28_Labouardy.png
Pre-integration Tests / Unit Tests - 21

v docker run -rm -v /home/ec2-user/coverage:/app/coverage mlabouardy/movies-marketplace-test npm run test

+ docker run

m -V /hone/ec2-user/coverage: /app/overage mlabouardy/movies-narketplace~test npa run test

> narketplacee?. 0.0 test /app
> ng test —browsers=ChroneHeadlessCI —cade-coverage=true

22 04 2020 17:35:19.948:INFO [Karma-server]: Karma vA.1.0 server started at http://0.0.0.0:9876/
22 04 2020 17:35:19,951:INF0 [launcher]: Launching browsers ChromeHeadlessCI with concurrency unlinited

22 04 2020 17:35:19,961:INFO [Launcher]: Starting browser Chrone

22 04 2020 17:35:25.470:INFO [HeadlessChrome 73.0.3683 (Linux 0.0.0)): Connected on socket X1yfpAW_KEMLXOGGARA d 33194942

HeadlessChrone 73.0.3683 (Linux 0.0.0): Executed @ of 6 SUCCESS (0 secs / 0 secs]
22 04 2020 17:35:28.185:WARN [ueb-server]: 404: /movies/undefined

Head lessChrone 73.0.3683 (Linux 0.0.0): Executed 1 of 6 SUCCESS (0 secs / 0.143 secs)
HeadlessChrone 73.0.3683 (Linux 0.0.0): Executed 2 of 6 SUCCESS (0 secs / 0.154 secs)
HeadlessChrone 73.0.3683 (Linux 0.0.0): Executed 3 of 6 SUCCESS (0 secs / 0.188 secs)
Head lessChrone 73.0.3683 (Linux 0.0.0): Executed 4 of 6 SUCCESS (0 secs / 0.237 secs)

22 04 2020 17:35:28.352:WARN [web-server]: 404: /movies
HeadlessChrone 73.0.3683 (Linux 0.0.0): Executed 5 of 6 SUCCESS (0 secs / 0.277 secs)

20 04 2020 17:35:28.400:WARN [eb-server]: 404: /favorites

Head lessChrone 73.0.3683 (Linux 0.0.0): Executed 6 of 6 SUCCESS (0 secs / 0.317 secs!
HeadlessChrone 73.0.3683 (Linux 0.0.0): Executed 6 of 6 SUCCESS (0.365 secs / 0.317 secs
TOTAL: 6 SUCCESS

TOTAL: 6 SUCCESS

TOTAL: 6 SUCCESS

Coverage susmary

Statements : 66.04% (35/53)
Branches : 0% (0/2)
Functions 53.33% (16/30)
Lines 61.7% (29747

OEBPS/Images/CH14_F12_Labouardy.png
‘Security Realm
O Delegate to servet contaner
® Gitud Authentication Plugin

Global Github OAuth Settings
Gtk Web URI

Github AP URI
Gient D
Gnt Socret

Ofuth Scope(s)

hips:igihub.com

hips:apigithuo.com

[—

readorguseremailrepo

e © © o o

OEBPS/Images/CH13_F24_Labouardy.png
Console ~ Search Profi

Grok Debugger Painless Lab BETA.

p——
T 202006.02 15:21156.99000090 IMO .5.p.orkflow. 0 RorkFLontnsinian: sovies-Losr/develep 87 completed: SXCESS

5 HTIESTAVP_IS08E0L createdae) MLOGLEVELFLevel KSPACEISIAVRCLAS: s H{DATASs o) H{SPAC KBV projec) SKINMBER:butl mber) MOATA:execution): K(WORD:status)

> Custom Patterns

-t
creotedht 2000-06-02 15:21156.9010000"
“Gecution “campleted”

Tevet: D0’

OEBPS/Images/CH11_F11_UN07_Labouardy.png
INFO Kubernetes file "movies-marketplace-service.yaml" created
INFO Kubernetes file "movies-store-service.yaml' created

INFO Kubernetes file "mongodb-deployment.yaml® created

INFO Kubernetes file "movies-loader-deployment.yaml® created
INFO Kubernetes file "movies-marketplace-deployment.yaml® created
INFO Kubernetes file "movies-parser-deployment.yaml® created
INFO Kubernetes file "movies-store-deployment.yaml® created

OEBPS/Images/CH10_F07_Labouardy.png
Pecring connection name tag | management-sandbox

Select a local VPC to peer with

VPG (Requester]® | vpc-oB24f95166451924

CIDRs cipR
1000016

Select another VPC to peer with

Account © My account
Another account

s region feu-west-3)
Another Region

Rogion

Status Status Roason

® sssociaed

VPG (Accepten)® | vpc-0737691190630090

CIDRs cipR

10100116

Status Roason

© assocites

OEBPS/Images/CH06_F14_Labouardy.png
On premises) Google Cloud Platiorm

Region | I
Bastion Firewall Jenkins Firewal
vec Cloud Firewall Rules Cloud Firewall Rules
Zone A
kot ‘Subnetwork

& Jenkins
© > @ i

Cloud
Users Router
Jenkins Dashboard CloudLoad |__
S ——— Balancing ‘
Zone A
T Subnetwork
Jenkins Workers

Compute Engine

OEBPS/Images/CH06_F01_Labouardy.png
@ 1AM &Admin Create service account

e @ Service accountdetails — @) Grant this service account access 1o poject
© Identity & Organization
%, Policy Troubleshooter Service account details
R
B Ogizaion olcies packer
. Diloy amefor s senic sccaun
& Quotes mch s g
Senicoscmunt 0
5 sanves ecounis packer @eaning 223618 am gseniceaceounicom X G
Q@ Labels
Servios scoout dscrtion
Seting
& e Describe what this service account will do.
© prvacy 8 secury
@ Cryptographic Keys CREATE CANCEL

OEBPS/Images/CH09_F02_Labouardy.png
B eemy s
O 088 Index

‘2,];
B
WK+@© 221 & a2y, [

| docker | |
\ wage
sonarqube | : : : ‘% @
CPU Utiization > 90% s 1 1 I Private Rogistry
1 i 0
1® 1 1
Covorago Report | i
\ JiS 7

"- =

Clouavateh

OEBPS/Images/CH11_F05_UN05_Labouardy.png
NAME
mongodb-7b647bdds4-rdczs
movies-loader-7895fcc9cc-vgpik
movies-marketplace-7749dc4fd8-wtgfs
movies-parser-7d4fd8f7-91xkk
movies-store-584658766b-b5b2c

READY
1/1
13
/1
FVEY

11

STATUS
Running
Running
Running
Running
Running

RESTARTS

AGE
33s
7s
16m
am9s.
16m

OEBPS/Images/CH07_F26_Labouardy.png
Subversion

Project Repository Base.

Credentials -none- § e=Add

Include branches. trunk,branches" tags", sandbox/*

Exclude branches

Property sirategy | All branches get the same properties

Add property ~

Add source +

OEBPS/Images/CH11_F11_Labouardy.png
© kubernetes

cster

Clusteroes
Namespaces
Nodes
—
StorogeClsses

e

overview

Wortosds
Cansoss
Osemensits
Deploments

Deployments.

Q

Deployments

mongeds

movis osder

movies matkeplce

Search

Labee

Pods

"

n

n

oot

19mines

anbo

anbou

anbor

anbou

+ A
images
binamimongodsiatest
205929695733 e ccrovwestdom

e commisboony mooes]

e

s G cccumest 33
b

305929695733 s oqmost3.om
Eanaa commsSS mORED
ey

205929695733 oot am
Shonias commissosmeymoeas
ey

1sas K < >

OEBPS/Images/CH07_F39_Labouardy.png
Push Event

SOES 3

GitHub API Gateway

OEBPS/Images/CH09_F15_Labouardy.png
Jenkins » Credentials » System » Global credentials (unrestricted) »

4 Back to credential domains Kind | Usermame with password

@= Add Credentials Scope Global (Jenkins, nodes, items, all child items, etc)
Usermame [o yine
Password

D

registry

Descrplion | pocker prvate registry

OEBPS/Images/CH11_F24_Labouardy.png
Branch: master~ New pull request

Createnewfile Upload fles Find file ([0t R

 Latest commit e47842a 2 minutes ago

£58 misbousray moves-markstlace

 indexyami

movies-marketplace 23 minutes ago
) movies-marketplace-10.0.gz movies-marketplace 2 minutes ago

OEBPS/Images/CH10_F51_Labouardy.png
user approval required for production deployment #&

miabouardy wants to merge 2 commits into prepros from aevetos B

Add more commits by pushing to the develop branch on miabouardy/movies-loa

° All checks have passed Hide all checks
1 successful check

v %3 continuous-integration/jenkins/branch — This commit looks good Details.

° This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request You can also open this in Gitkub Desktop or view command line nstructions.

OEBPS/Images/CH03_F13_Labouardy.png
AWS Cloud

Auto Scaling group

Worker Worker

OEBPS/Images/CH07_F42_Labouardy.png
Webhooks / Add webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify which
data format you'd like to receive (JSON, x-wi-form-urlencoded, etc). More information can be found in our
developer documentati

Payload URL *

hitps:/

/ock39agwig.execute-api.eu-west-3.amazonaws.com/vi/w

Content type

application/x-www-form-urlencoded #

OEBPS/Images/CH11_F09_Labouardy.png
n sécurisé | 25149491400274ac2a7b160140133ed-1717030020.eu-west-3.elb.amazonaws.com/

Environment: sandbox

ANGRY W\

The Silence of the The Good, the Bad and the Goodellas (1990)
Lambs (1991) Ugly (1966)

12 Angry Men (1957) The Usual
Suspects (1995)

OEBPS/Images/CH13_F10_Labouardy.png
c

gauges

“jenkins .executor .count .value
Jenkins. executor . free.value”

@ jenkins.slowcoder.com/metrics/currentUser/metrics?pretty=true

ersion”: "4.0.0",

¢
1=,
-}

“jenkins. executor. in-use.value’s (.}, // |

T

Jenkins.health-check.count”: { ..}, e
Jenkins .health-check. inverse-score”s { ..}, .
“Jenkins.health-check.score” :

<
alue’: 0.75

OEBPS/Images/CH13_F23_Labouardy.png
B oiscover o =

New Save Open Share Inspect

4
®
]

© +Addfiter

g ok v o 2,855 hits
1in2,2020 6 16:4704220 - un 2, 20208 170 v

Q Search fed names e 9
a

© Fiterbype o -
e foos

[——. 1=
® 3

) mesage -
P, =
@ O etnesny b Waseo S0 S0 S0 WSMD S0 WSSO WSO W00 WSO 65000 W00 UOWO 70200 1430
o 0 e P —

T o

0.

o > om0 vesin.ons P ———
o g > anz, 2 e e e
¢ (@ > an 2 e menaes o hadsn. remtioSnglaL aneEsecutorSavice.in(SinglaL aeSsecutorSavice ave: 131
o | [e— B 2 e GomcxtResxtingEesutrServicedtrn(GonseRascSingEecurServie. Jv8)
@ Imsmensoo/so e . ok snrie.Iparsoatingsecuorervicstrn(TapronacgRsectorSavice, ove:Sh)

7.8 5 unz, s P —
o
> an a0 e o 3000 concurent FutaraTok. i (FutureTesk. Jova 268
a7t > ana, 2 o s o 3avnts concurrent. TheodPtsastor. rutorke (T ssdostExeutor Joa:119)
At aa | o 41 vt concurrnt TheadPosesuorStrkerrhrendontExcutor. v 624)

OEBPS/Images/CH11_F23_Labouardy.png
Start

Checkout

Qualty Tests

UnitTests

Static Code:
‘Analysis

mm

Avalyze

o..wm M«-...

OEBPS/Images/CH14_F09_Labouardy.png
‘ Assign Roles

Global roles.

Userlgroup
& & John Doe

& Anonymous

& Marcus Bergson

& Mohamed Labouardy

admin developer qa

(o]
o
(@

[u]
o
[u]

O
Oa
Qg
Oa

OEBPS/Images/CH06_F13_Labouardy.png
Fp— x it
«

o

3524617020800

senkins

& Nowtem
& oo

ensble stoefesh
Welcome to Jenkins!

Fusmscaso
s srgate e b o e s

OEBPS/Images/CH07_F01_Labouardy.png
Continuous integration
Quality Unit Security
(Groskoy—=(Sty (oot)

OEBPS/Images/CH12_F37_Labouardy.png
€ 5 C @ marketplace.slowcoder.com.s3-website.ou-west-3.amazonaws.com/staging)d

Environment: staging

Paths of Glory (1957) Or. Strangelove or: How |
Learned to Stop Worrying
and Love the Bomb (1964)

Rear Window (1964) WALLE (2008)

OEBPS/Images/CH06_F39_Labouardy.png
x4

deuriss | 7862762178 % 0O/ mGUgOe Q@

login

senking ensble st refesh
3 el Welcome to Jenkins!

@ v [

0 pa o

PR

OEBPS/Images/CH07_F27_Labouardy.png
@ htpsifjenkins.sloweoder.com X
€ > C @ jenkins.slowcoder.com/job/movies-loader/config.xml

‘This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<org. jenkinsci.plugins .workflow.multibranch.WorkflowMul tiBranchProject plugin="workflow-multibranche2.21">
<actions/>
v<description>
Responsible for loading movies from JSON file and pushing them to SQS
</description>
<displayNane>movies-loader</displayName>
» <properties>...</properties>
»<folderViews class="jenkins.branch.MultiBranchProjectViewHolder” plugi
» <healthMetrics>. ..</healthMetrics>
»<icon class="jenkins.branch.MetadatahctionFolderIcon” plugin="branch-api€2.5.5">...</icon>
» <orphanedItenStrategy class="com.cloudbees.hudson.plugins. foldex.computed.DefaultOrphanedItenstrategy” plugin="clo

</folderviews>

‘branch-api2.5.5">.

<triggers/>
<disabled>false</disabled>

v<sources class="jenkins.branch.MultiBranchProjectsBranchsourceList" plugin="branch-api€2.5.5'
v<data>

v<jenkins.branch.BranchSource>
v<source class="org.jenkinsci.plugins.github_branch_source.GitHubSCHSource
<1d>b£197dad-7d42-4a00-be25~Taeea7 fef15</id>
<apiUri>https://api.github.com</apiuri>
<credentialsId>github</credentialsid>
<repoowner>mlabouardy</repodner>
<repository>movies-loader</repository>
<repositoryUri>https://github. con/mlabouardy/movies-loader .git</xepositoryurl>
v<traits>
v<org. jenkinsci .plugins .github_branch_source.BranchDiscoveryTrait>
<strategyld>1</strategyld>
</org. jenkinsci.plugins.github_branch_source.BranchDiscoveryTrait>
</traits>
</source>
v<strategy class="jenkins.branch.DefaultBranchPropertyStrategy">

plugin="github-branch-sourceg2. 5.8’

<properties class="empty-list'
</strategy>
</jenkins.branch.Branchsource>
</data>

<owner class="org.jenkinsci.plugins.vorkflow.multibranch.Workflowlult iBranchProject” reference
</sources>
v<factory class="org.jenkinsci.plugins.workflow. multibranch.WorkflowBranchProjectFactory”>
<ouner class="org.jenkinsci.plugins.vorkflow.multibranch.WorkelowtultiBranchProject” reference
<scriptPath>Jenkinsfile</scriptPath>
</factory>
</org. jenkinsci.plugins .workflow. multibranch.WorkflowdultiBranchProject>

OEBPS/Images/CH12_F11_Labouardy.png
Pre-integration

Start Checkout Tests Build Push End
0 o o—@—
Quality Tests
Security Tests

Unit Tests

OEBPS/Images/CH09_F14_Labouardy.png
Sonatype Nexus Repository Manager

Adminisration

88 Users / & Create User
v Repostory

Repostories. 3
£ Blob Stores. jenidns.
© Content Selectors Fistname:
Jenkins
& Cleanup Policies.
Lost name:
Routing Rules o
v @ securty Emait
Privieges Jenkins labovardycom
2 Roles Password

‘Confinm password:
& Anonymous Access.

0 oap. Statws:
Reaims Actve id
Roles:
SSL Certificates
Avallable Granted
9 10 Server
v ManageDockerPrivateRegisty.

» & Support

> @ System xanonymous

OEBPS/Images/CH10_F50_Labouardy.png
Depoy- 185
> vlchistdelommentdevop — Buing itcis dpient - deviop
> itlg -foms X8 1HEAD » gicommitessage — el St

- R T —

- P ————
> itshow - ety on > gikommithor 1ot
[T —

B 5 o sucommiabor — sv it
B > serasckmesse
Tigzered s

° deop

amintesgo

a

OEBPS/Images/CH03_F12_Labouardy.png
AWS Cloud

Auto Scaling group

Master

Worker Worker Worker
CloudWatch Alarm

Scaling Policy

OEBPS/Images/CH08_F42_Labouardy.png
sonarqube | Projects Issu Quality Profil

Administration
Configuration » Security ~ Projects ~ System Marketplace
Webhooks

Webhooks are used to notify external services when a project analysis is done. An HTTP POST request including a JSON payload is sent
10 ach of the provided URLS. Learn more in the Webhooks documentation.

Name URL Secret?

Jenkins hitps/jenkins slowcoder.com/sonarqube-webhook/ No

OEBPS/Images/CH13_F11_Labouardy.png
& 5 C @ jenkins.slowcoder.com/prometheus/

 HELE GULAULG_Juin i _OUEAY_LaNS_DUEKG_SEALE_CL L L LSUCONIN LaE DULLG SLALE CLMSARD L0 AL LSeones
7 TYPE dofault Jonkins builds last build start time ailliseconds gauge
default_jenkins builds last build scart tine milliseconds {jenkins. job=movi
dofault_Jenkins_builds_Last_busild_start_tine_millisoconds{jnkins_job="movi
defaule jenkins builds last build start tine, Jobe"movios
dofauls Jenkins builds last build start time. Jobe"ovies
dofault_Jonkins_builds_last _build_start_timo, Sobe"povios.
9 HELP dofault Jenkins bu

TYPE default_jenkins_builds_stage _duration,
BPRRTE el e R AL

susmary

-Loader/develop® repo="NA",} 1.591019270526812
toro/dovelop” Fopo="NA,} 1.59102046462812
tore/preprod”, repo="¥A",) 1,591020467274512
“parser/develop’ repo="NA",} 1.891021820595E12
toro/master”, repo="NA",} 1.59102046629812
‘Summary of Jenkins build times by Job and Stage

OEBPS/Images/CH12_F23_Labouardy.png
marketplace.slowcoder.com.s3- website.eu-west-3.amazonaws.com

“The Silence of the
Lambs (1991)

Tom
THanks,
Forrest

Environment: sandbox

Saving rivate Paths of Glory (1957) (1931
Ryan (1998)

OEBPS/Images/CH11_F08_Labouardy.png
Load Balancer Protocol | Load Balancer Port Instance Protocol Instance Port Cipher SSL Certificate.
HTTP 80 HTTP. 31123 NA NA

HTTPS. 443 HTTP. 30757 Change fecce01b-9c10-41ae-8ata-345d9(83efad (ACM) Change

OEBPS/Images/CH04_F07_UN01_Labouardy.png
amazon-ebs: Total download size: 60 M
amazon-ebs: Installed size: 61 M

amazon-ebs: Downloading packages:

amazon-ebs: Running transaction check

amazon-ebs: Running transaction test

amazon-ebs: Transaction test succeeded

amazon-ebs: Running transaction

amazon-ebs: Installing : jenkins-2.204.1-1.1.noarch 171
amazon-ebs: Verifying : jenkins-2.204.1-1.1.noarch 11
amazon-ebs

amazon-ebs: Installe
amazon-ebs: jenkins.noarch 0:2.206.1-1.1

amazon-ebs:

amazon-ebs: Complete!

amazon-ebs: Starting Jenkins [OK 1

amazon-ebs: Stopping the source instance...

amazon-ebs: Stopping instance

amazon-ebs: Waiting for the instance to stop...

amazon-ebs: Creating AMI jenkins-master-2.204.1 from instance i-o4ce242efag9eescd
amazon-ebs: AMI: ami-051933c5e07c71592
amazon-ebs: Waiting for AMI to become ready.
amazon-ebs: Modifying attributes on AMI (ani-051933c5e@fc71592)...
amazon-ebs: Modifying: description

amazon-ebs: Modifying attributes on snapshot (snap-oddcaf514891ce646).
amazon-ebs: Adding tags to AMI (ami-051933c5e0fc71592)...

amazon-ebs: Tagging snapshot: snap-eddcaf514891ce6ss

amazon-ebs: Creating AMI tags

amazon-ebs: Adding tag: "Tool": "Packer"

amazon-ebs: Adding tag: "Author": *mlabouardy"

> amazon-ebs: Creating snapshot tags

> amazon-ebs: Terminating the source AWS instance...

> amazon-ebs: Cleaning up any extra volumes...
>
>

amazon-ebs: No volumes to clean up, skipping
amazon-ebs: Deleting temporary security group...
==> amazon-ebs: Deleting temporary keypair...

Build ‘amazon-ebs' finished.

> Builds finished. The artifacts of successful builds ar
—-> amazon-ebs: AMIs were created:
~central-1: ami-051933c560fc71592

OEBPS/Images/CH10_F49_Labouardy.png
user approval required for production deployment #7
bl rmiabouardy wants to merge 1 commitinto sevelop from feature/prosuction-approve. B

‘Add more commits by pushing to the feature/production-approve branch on miabouardy/movies-loader.

° All checks have passed Hide all checks
1 successful check

3 continuous-integrationflenkinsbranch — This commit looks good Detais

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request You can also open this in GitHub Deskiop o view command line instructions.

OEBPS/Images/CH09_F42_Labouardy.png
<Code (lssues 0 [Pullrequests 1 OActions [Projects 0 ©IWiki) Security 0 Liu Insights £ Settings

update readme #1 it
[EYSE] miabouardy wants to merge 1 commitinto cevetop from featureyfeaturer B
& Conversation 0 -0 Comr 1 ® Checks 0 ([DFiles changed 1 +3 <19 mmmm
B B~ .
Noreviews
Nodescription provided.
Assignees. 2
No one—assign yourself
o B update readne © sasbbdc
Labets %
A more commits by pushing 1 the feature/ featureA branch on mlabouardyjmovies-marketplace None yet
o Some checks haven't completed yet Hide al checks. Projects o
4 pending check s
o continuous-integration/jenkins/branch Pending — This commits being. Detals | -
8 e Nomlestone
This branch has no conflicts with the base branch i
Merging can be performed automatical.
Uinked ssues @

Successfly merging this pull equest

Merge pull request |~ Youcan aiso open this in Githiub Deskiop or view command line instructions. e ik

esngsane:

OEBPS/Images/CH10_F36_Labouardy.png
@ Jenkins A% 357 M
Name: 'movies-loader/develop"

Status: STARTED
Build ID: 6
Message: Merge pull request #5 from mlabouardy/feature/deployment
commit message & author
Author: LABOUARDY Mohamed
URL: https:/jenkins.slowcoder.com/job/movies-loader/job/develop/6/

Name: ‘movies-loader/develop"

Status: SUCCESSFUL

Build ID: 6

Message: Merge pull request #5 from miabouardy/feature/deployment
commit message & author

Author: LABOUARDY Mohamed
URL: https:/jenkins.slowcoder.com/job/movies-loader/job/develop/6/

OEBPS/Images/CH05_F13_Labouardy.png
& Services v Resource Groups v Pt

ates Certificates
| Certicate Manager

[sy s e e 1 o e

Private certficate authority

Name + Domain name + Additional names Status + Type v

& soucodeccom soucodercom lesued Amazon ssued
Status

Status Issued
Detailed status Tho certfcate was issued at 2020-03-23T15:58:16UTC.

Domain Validation status
» slowcodercom Success
» "slowcodercom Success

L0 ONS confguationtoais You cn oxpet ofho CNAME record ool

OEBPS/Images/CH10_F10_Labouardy.png
[ec2-user@ip-10-1-2-168 ~)$ docker node 1s
i) HOSTNAME
uoxlezrwdfizbsuegadestuol ip-10-1-
WyoBuo4sjiguofae3eainBeon ip-1-1-
2v2gyvahz61nthzr3z29e16vl * ip-10-1-
(ec2-user@ip-10-1-2-168 ~1s II

STATUS
Ready
Ready
Ready

AVAILABILITY
Active
Active
Active

MANAGER STATUS

Leader

ENGINE VERSION
18.09.9-ce.
18.09.9-co
18.09.9-co

OEBPS/Images/CH08_F14_Labouardy.png
m Stage Logs (Pre-integration Tests)

Jorkins > movesparser . dovlop
© Checks i 1umig o a Unisienoda ol o ome)
* © Shel Script - docker inspect_ miabouardymovies paserest (sl tme 287ms)
0 sttus © Sl St o sl o 578me)
= Changes © Chcks f unning on 2 Unixike node (s time 7ms)
£ suianow © ol S - ockr a1 bt T
2% viow Contiuraton © Shot Scrpt - gotost ot o 85)
Q Fu Stage view © Gk o ot Unk i e ool)
(@ Open o Ocean © Shot Scrpt - ok inspact 1 mibouymoies.casacta (e o 25
B o © Sha St ancy oaclotubabouaimoes parsarGankoJoc i e 23
) Emboddabi Buid Status
& suidRoion — —_
© Fioine Syax
L 1s. 13s

28
@ Build History trend =

OEBPS/Images/CH10_F23_Labouardy.png
Stage Logs (Deploy)
‘® Buiking watchist-deployment » develop - watchist-deploymentdevelop (sef tme 165)

Scheduling project: watchlist-deploynent » develop
Starting building: watchlist-deploynent » develop #9

OEBPS/Images/CH08_F27_Labouardy.png
Precintegration
Tests End

Qualy Tests

UnitTests

Preintegration Tests / Unit Tests - 435
v docker run --rm - /home/ec2-user/coverage:/app/coverage mlabouardy/movies-marketplace-test npm run test
+ docker run ~=rm v /hone/ec2-user/coverag e narketplace-test npn run t

marketplaceed.0.0 test /app.
> ng test ~-browsers=ChroneHeadlessCI —code-coverag:

://0.0.0.0:9876/

OEBPS/Images/CH08_F01_Labouardy.png
Continuous integration

OEBPS/Images/CH09_F27_Labouardy.png
R = Browse / © dockerregisty

O Weicome
HTML View
» Q Search Bv2
iy

3 miabouardy
& Upload = [movies-loader
489 manitests

=9 tags

[d6e80470b7237b{d28cb7c3c093d790672505707
A

OEBPS/Images/CH06_F41_Labouardy.png
Vabouardy E5]log out

ensblesutorfresh
Py — = Achtoctur ClockDffownco FeaDikSpace FrenSwopSpace FreTomp Space Responsa i
£ Mansgo sonks o [P o r2sce o8 P
B oo
simzs " o e Qos 72560 s 2%
Contiua Gl
R —— e Py ©oe e o 2%

OEBPS/Images/CH02_F12_Labouardy.png
SR

node (*node label’) {
stage (*id #1') {
//DSL statements

g

stage(*1d #2')
//DSL statements

g

/1 ox
//DSL statements without stage block
/1 or

//Loops, conditions, variables, etc
dof variable = value

if (variable) (
//DSL statenents
elsel

//DSL statements
g

det list = (]
for (int i=0;iclist.size();ise)(
//DSL statenents

g

g

Declarative

pipeline(
agent (

label ‘node label'
)

envizonnent (
ENV_VARTABLE_A = 'value’
)

stagesi

stage(*id #1%) (
agent {

label *node label 1
)

envizonment (}
steps(

//0SL statenents

)

)

stage(*id #2°) (
agent {

label 'node label 2¢
)

environment (}
steps(

/105 statements

)

)

)

post {
always (

//psL statenents
)

success (

//psL statenents
)

failure (

//DSL statements
)

)

3

OEBPS/Images/CH10_F08_Labouardy.png
VPC Dashboard
Fier oy VPC;
Qssectavee

YourveGs
Soets
Routa Tabes

et Gatoays
Bomas tisions

Pearing Conneciion

perDteTT206055

Requestsr VPG Accepter VPG

VPG OUBEIOBH... eOTITERNISS,

Ropct Rerst

Aot Tz

Reaquestor

1000018

OEBPS/Images/CH14_F24_Labouardy.png
Enter an item name

l cron-job
~ Roquirod flokd

~ . Inheritance Project
{19) his should bo choson for al tasks that run real commands on buld nodos. Such projocts allow propartos to bo inharited batwoen each othor.
" Thi alows tho dofinion ofparon”prjecs, that havo gonorc setings. Oher, moro spaciic, chid tasks can thn inhert haso stings wihout
havingt t-dofne thomfom sratch.

Freestyle project
“This i the centralfeature of Jenkins. Jenkins will b your project, combining any SCM with any bulld system, and this can be even used for
‘something other than software buid.

OEBPS/Images/CH13_F09_Labouardy.png
15 & Jenkins Cluster & < w80 (@] [oumsomms -[aa]-

v Sk ornr -
a = —
Z bro0ormmn
+ m Zrosameomen 2%
i = orosomon
8 =™ owsorae 200
~ rseaeuse
® - ™
COs = wewe wm we wsww
o= — s e — v — duty — g S — ottt
e wewm ww s e syl
%) Network Traffc Momory slizaion
7\ Y & 7
p100029 p10009 1p1002216
pine

1p100029 22411 [p10.00.9 2SS [p10-02216 224190

— 1000w — 910003 moms — P0G — IOVt — IOt

o2t e—

°o@

OEBPS/Images/CH14_F11_Labouardy.png
Settings / Developer settings / Jenkins

General

Beta features

Advanced

Jenkins

& miabouardy owns this appication. Transfer ownership

You can st your application in the Gittub Marketplace 50 that other st this application in the Marketplace
users can discover it

0 users Revoke all user tokens.
ClientID

0e8336c8a539335346

Client secrets Generate a new client secret

Make sure to copy your new client secret now. You won't be able to see it again.

 13dba9af23a33f531417d772488ddd f7de8bae6d (°]
D raearontymasourey
Ry
I T e T O

Client secret

OEBPS/Images/CH09_F05_Labouardy.png
Branch develop

Full project name: movies-loader/develop

o,
& Recent Changes

Stage View
Checkout
8s
[]
Apr2a s

1427

Unit Tests

255

25s

Build

7s

7s

OEBPS/Images/CH06_F26_Labouardy.png
(+4) management

Resourcegoup

5 Search (Cmd+/)

@ Activity log

. Access conteol (AM)
@ Tags

7 events

Settings

Quickstart
Deployments

Policies

"o e

Properties

3

Locks

Export template
Cost Management

& costanaysis
B Costlents (preview)

Subscription (change) : Pay-As-You-Go
Subscription D : 50c0938-b0cd-40d2-3543-026cdBABST 13

Tags (change) Click here to add tags.

e

Showing 110 8 of 8 records. [Show hidden types ©

[Name

O X bastion

[0 B bastion-public-ip

[B jenkins-master

[&8 jenkins-master-v22041
[J &8 jenkins-worker

O @ jenkins network interface:
0O 8 main

O «> management

) (i aatiter)

Cdtcons [Delteresourcegroup O Refiesn —> Move & BrporttoCsv | @ Assign

Deployments : No

Type T
Basiion

Public 1P address
Virtual machine
Image

Image

Network inerface
Disk

Virtual network

OEBPS/Images/CH14_F15_Labouardy.png
Audit Trail

i Log file
LoglLocalion yvartogfenins-auditiog)
PS— o
rrwcom [o
o— o
[e=]
st

VR Paams 1 Loy “I(%conigSubmitidoDeletelposiBuidResuienabeldisablelcancel QueuelstopltogoleLogieepldoWipeOutWorkspacelcreatelte

Log how each buld is tiggered

OEBPS/Images/CH10_F18_Labouardy.png
+ ssh -oStrictHostKeyChecking=no ec2-user@manager.sandbox.slowcoder.com docker stack deploy --compose-file docker-compose.yml --with-
registry-auth watohlist

Creating network watchlist_default

Creating service watchlist mongodh

Creating service watchlist movies-loader

Creating service watchlist_movies-par:

Creating service watchlist_movies-store
Creating service watchlist_movies-marketplace
(Pipeline))

(Pipeline) // stage
(Pipeline))

5 ssh-agent -k

unset SSH_AUTH_SOCK;

unset SSH_AGENT_PID;

echo Agent pid 4018 killed,
(ssh-agent) Stopped.
(Pipeline) // sshagent
(pipeline))
(Pipeline) //
[Pipeline) End of Pipeline

OEBPS/Images/CH11_F36_Labouardy.png
& miabouardy / jx-movies-store erwe

©OCode Olses IPulwqests OActons [Pojects WK O Secuty L isights

oser 0,01

10304 & minute ag0- 0 comits o mastr since his 13
- ssots 2

D Source code (z6)

D Source code (arc2)

@ Sotings

@ Umaten+

tram o

ety oelete

OEBPS/Images/CH03_F02_Labouardy.png
Jenkins » Nodes
4 BacktoList
Status

@ Delete Agent
. Configure
> Build History
€3 Load Statistics.
& script Console

[oo

B system Information

ip-10-0-2-18.eu

central-1.compute.internal

Nams) ip-10-0-2-18.eu-central-1.compute.internal

Descipton ip-10-0-0-126.eu-central-1.compute.internal

#of executors

Remote 10t directory | oo/ cor

Lebek workers

Usage Use this node as much as possible

Launch method Launch slave agents via SSH

OEBPS/Images/CH13_F20_Labouardy.png
© New EC2 Experience
Totus whatyoutink

Spot Requests

Savings Plans.

Reserved Instances

Dedicated Hosts new

Capacity Reservations
v IMAGES

AMiIs

Bundle Tasks

ELASTIC BLOCK
STORE

Volumes

Snapshots.

[[

Ownedbyme v | Q Fier by tags and attibutes or search by keywword

® logstasn7.00
‘sonarqube-8.2.0.32929
nowus-322.102

® bana700
jenkins-worker
jenkins.master-2.204.1
inflxdo-1.8.0
grafana.7.0.1

® cusicsearch700
docker-18.099-co

AMI Namo

logstash-7.0.0
sonarqube-8.2.0.32929
nexs3.22.1-02
Kibana-7.0.0

jenkins-worker

jonkins master-2204.1
inflxdo-1.8.0
grafana.7.0.1
clastcsearch7.00

docker-18.09.9-ce

AMIID.

ami08443060894014063
ami-0c24436745620b4e
ami08196884c39a27068
ami02635664436288018
ami0961b4cbdIB640

ami0371TLR 169673007
ami01540c15034ed628
ami01c8a938475069011
amior0277664129682

amicd58160852590472

OEBPS/Images/CH12_F02_Labouardy.png
Apply complete! Resources: 57 added, @ changed, © destroyed.
outputs:

api = https://kvafot7nal.execute-api .eu-west-3.anazonaws. con/ test
markatplace = markstplace.slowcoder.com.ad-website. su-west-3. auazonaws.con

OEBPS/Images/CH11_F20_UN12_Labouardy.png
f— chart.yam1

[— charts

[— templates

|— deployment.yanl
L service.yaml
values.yaml

OEBPS/Images/CH11_F29_Labouardy.png
Sart Checkout Yes(s smm

Oegloy Healthcheck End
—@ o (O—e
T o]] o
©
gt et
Quirtess

St Code
QuityTess UnitTess s

Quaity Gate: Buia Pusn
O @ 0—© O
ooaresse || oscerionse
O O
Ssart Checkout Hul(hmxk ummn Bulld Analyxe Deploy End
w“m.e mﬂ-w
M(M mcm«
Preintegration
Sort Chedout Tests Analvze
- > jt j_._@_.
quiyiess || oocerimse [| oocerimaee
=0=

OEBPS/Images/CH07_F37_Labouardy.png
Okay, that hook was successfully created. We sent a ping payload to test it out! Read more about it at https://developer.github.com/webhooks/#ping-
event.
& mlabouardy / movies-loader rivate Oumaten~ 1 ksur 0 Yrerk o
©Code (lssues 0 I1Pullrequests 0 ©Actions [Projects 0 COWiki) Security Ll Insights £ Settings
Options Webhooks Add webhook
Manage access
Webhooks allow external services to be notified when certain events happen. When the specified events.

Branches happen, we'll send a POST request to each of the URLS you provide. Learn more in our Webhooks Guide.

Webhooks + httpss/fjenkins.slowcoder.com/github-webhook/ (push) Edit Delete

Notifications

x

OEBPS/Images/CH08_F10_Labouardy.png
| stage Logs (Unit Tests)

Jonking»_moviosparser»davelop » |
© Checks f g on a Unieike nade (sef tme f0ms
* v © Shell Scrip - docker inspect -1 miabouardy/movies-parser-est (sel ime 314ms)
0, status © Shell St = go test (sol mo 65)
(= Changes
+ g0 test
© suianow e
3 view Contgration ok _/hose/ec2-user/workspace/movies-parser_develop 0.008s
©, Full Stage View, Stage View

OEBPS/Images/CH04_F13_Labouardy.png
Plugins Index

Discover the 1800+ community contributed Jenkins plugins to support building, deploying and automating any project.

OEBPS/Images/CH05_F08_Labouardy.png
QW) Services v Resource Groups v

R Actions v
«

VPC Dashboard

Fiter by VPO:
Qoosctaves Q. search: o-08aro70453c2Ies Actor

@ Mme - RoueTablel - Explcit subn sssociator Edge associations
Virtual Private Cloud

@ pivaton. bOBTOTSACAcHH 2subnets 5
Your PGs
Subnets Routo Tablest.0847670493c24c65

| Rovto Tabes

e Summary Routes. ‘Subnot Associations | | Edgo Associations | Routo Propagation
intornet Gateways
Egress Only Internet i
it Edit routos
'DHCP Options Sats s G
Eastic IPs
Endpoints Destination Target
Endpoint Services Aot e
NAT Gateways
00000 Pat-0118101283802¢32

Poaring Comnections

Main

No

Tags

Status.

active

active

OEBPS/Images/CH10_F34_Labouardy.png
Stage View

Checkout
Average stage times: 3s
(Average full run time: ~ -
o o
Changes.

May 06 2
1549

Unit Tests. Build Push
9 1s 3s
3s
3s 302ms. 25

Deploy

135

19s

OEBPS/Images/CH14_F31_Labouardy.png
scope Global(Jenkins, nodes, tems,alchild tems, etc)

—
[e—

Cllent Certfcate

EGIN CERTIFICATE.
MIE22CCASOGANIBAGIUBOAKCHe +2YGLWHGDDBAATIUZNDQYIKGZINVCNAGEL
BANGTEXMBUGAIUEANWOZG9j32Vy OmRpDMQQQOEWHNCNMAXMTEZMTEYMDUSWHN
eyNU: DVQQDDB KbZN
MAOG RVIRHL
2T+ FINWOCIPHUFA0BOY ViJFS
L 118B47A0NoY

Server CA Certiicate

EGIN CERTIFICATE.
MIFEZCCAVUGAWBAGIULRQNUNCAHAZQ/EX319127XBYWDQYJKOZIVENAQEL
BOANGTEXMBUGAIUEANMOZG9j02Vy OmRpbMQGQOEWHRCNMAXMTEZMTEYMOU2Whe
MMAMESMTey MOU2WIAZMRCWFQYDVQQDDASKbNiZXI62GuZCBOGTCCAIWOAY)

o docker

Description docker

OEBPS/Images/CH06_F42_Labouardy.png
Worker

Load Jenkin

b DS Balancer Master.

Worker

OEBPS/Images/CH04_F06_Labouardy.png
: Choose an Amazon Machine Image (AMI)

srtion (operatng system, appicatin sarver, and applcation) require o aunch your instance, You can seect n AMI provided by AWS, our usercommanty, o the AWS Marketplace o you o

Gancel and Exit

Step
A7 Al tmplate rat contans thesoftware con
ssectoneof yourown Al

Q Sesrch foran AMI by entering a searchtem 5. “Windows

Quick start 110400140 s

My Avts §5 Amazon Linux 2 AMI (HVM), SSD Volume Type - ami-Odc3eabb0e72650a (64-bit XB6) / ami-04{7 706056031699 (64-bit)
pre— e Ao s i s 5t L 4 i e n ATz G52y 219, GO, O 228 B 221, 4%) 410
tot st pckages ougn exas. foretid

Gommurity AMs

. ‘Amazon Linux AMI 2018.03.0 (HVM), SSD Volume Type - ami-010fa#13a16763604
Amazon i TS ok, Pthn, Py, P, and . Th raostors nckoDockes. g ne
PP, MySOL. PostoeSOL. and e packages

OEBPS/Images/CH08_F03_Labouardy.png
Parser

storo

ResTAP!

Marketplace

e “a"e}“""]

neder

Message Queue

nsertovies

==

Database

OEBPS/Images/CH06_F33_Labouardy.png
i«

5 Search Cmdvh)

% oveniew
B aawiylog

. Access control (AM)

@ v

2 Dispose and st s
Stings

»

Networking

s

saaing
Storage
Operating ysem.
Securty

sz

-1

extensions

Continuous delvery

@
a

Contiguration
Upgrade policy

Hesthand epaic

dentiy

It properes

jenkins-workers-set | Scaling

B s X Discard O Retesh © Providefeedback

Custom autoscale

Autoscleseting name jerkins-workers et Autoscale 318

Resourcogroup management
acecount 2
Default jenkins-autoscale /7
oletevarning | @) Thevery st rdfit recurence ke cannot b deltec sted. you an dsabloautocale ot of autocale
Sclomode © Sclbasedonametic O St speic nsance count

scleon

When jenkinwokersant (vrage ecetage CPU > 80wt fiters ncese countby 1
f— Scalein

When jenkinsvorerst (hverage Pecentage CPU < 20wt fikers Decresse count by 1

+ adda e

winimum © Masimm © oetaut ©

B D P

Schedule

Thisscle condition s exccuted when none of the other scale conditon(s) match

+ Add ascle condition

OEBPS/Images/CH11_F43_Labouardy.png
€ 9 C O Nonséourisé | jrmovies-siors x-miabouardy-jx-movies-store-pr-1.35.198.184.208.ip.ojmovies.

. Michacl, xpands and tigneers his g5ip on the fomily crise

Mo

OEBPS/Images/CH09_F21_Labouardy.png
Home > Container registries > mlabouardy | Tokens (Preview) > Create token
Create token

@ 7o use this token, please generate passwords/credential after successful creation.

Token *

[lenkins 7]

Scope map *

oD =
=

Status

. @D e

OEBPS/Images/CH14_F06_Labouardy.png
Branch develop

P

Stage View

OEBPS/Images/CH10_F09_Labouardy.png
Route Tables > Edit routes.

Edit routes

Dostnation
1010016
00000

1000016

Addroute

*Roquired

Torget
oca
[———,

pexO1eT72600904155

Propagated

OEBPS/Images/CH05_F24_Labouardy.png
Jenkins > Nodes

4 Back to Dashboard

Queue.

No buikdsin

= master
1 10
2 1de

queue.

mastor

mputc ntornal

9:10:0.0:76 u-wost:3 compute nternal

10:0.2-119,eu-west-3 compute internal

Data obtained

Architecture

Linux (ames)

Linu (amisa)

Linux (amas4)

13 min

OEBPS/Images/CH13_F13_Labouardy.png
o3

Q@ >0 B+ O

°8e

88 Jenkins Cluster & <
— 2
=
0 jobs/min
M

ey

74.2%
A BEen

e
= i
e BB BT

0 jobs/min

ol

1.5 hour L= o
— —. 1]
e e e e e e
iy 137 —————————
poc o =
40 =
o]
2 _ S
S e s

OEBPS/Images/CH08_F39_Labouardy.png
Qualty Profies Quality Gatos Adminit

tproiects @b

iy Fovorvs [0 Porspoctive: OveciSats - Sotby: Name <l Qsean
Fiters

¢ movies-marketpiace @D
Quatty Gate .

20 2@ -0 (X~} O 00% @e@

i ugs B unoubiies @ HopotsRevewsd @ Coda Smats css.HmL

Rliablty (¥

OEBPS/Images/CH13_F04_Labouardy.png
ook Custer « || Addwisger || Actons - | ave dostbonrs oo n 19 3w custom(ism) - | &
CPU Utlization

"

s we we e we ms ws o we ws o ns omss nse ww we
18 nsz5c589108 i st @ OATERS17ck07orki, v @GN 0426 ks, vk

Network Traffic Workers CPU
. @ czsczssscon1as guokins,master Net... 0 52
e ———— . %
oo 8 ouTsen17c20507 Gk woen] .
@ oursessircaoe? o vord o PSR
© a2 s,k .
e [a————

OEBPS/Images/CH14_F22_Labouardy.png
mlabouardy@Mohameds-MBP-001 github % butler jobs export -—-server jenkins.slowcoder.com --username mlabouardy --password mlabouardy
Exporting job: movies-loader

Exporting job: movies-marketplace

Exporting job: movies-parser

Exporting job: movies-store

(mLabouardy@Mohaneds-H8P-001 github % butler plugins export --server jenkins.slowcoder.con --username mlabouardy --password mlabouardy

i ave | version | DESCRIPTION |
| blueocean-personslization 1210 | Personalization for 8lue Ocean |
| subversion 1212300 | Jenkine Subversion Plug-in |
| trilead-api 11505 | Trilesd A°T Plugin 1
| mapdo-api 115019.0 | MapoB APT Plugin 1
| struces | 1.20 | Structs Plugin 1
| blueccean-dashboord 11210 | Dashboard for Blue Ocean 1
| managed-scripts 1 1.4 | Managed Sripts 1
| token-nocxo | 2.16 | Token Mocro Plugin 1
| fovorite 12.3.2 | Favorite 1
anazon-ecr 1 1.6	Amazon ECR plugin	
workflow-api	2.38	Pipeline: APL
blucocean-bitbucket-pipeline [1.21.0	Bitbucket Pipeline for Blue	
1 i | ocean 1
§ ST i H 2.36 | Pipeline: Job H

OEBPS/Images/CH09_F40_UN03_Labouardy.png
+ docker inspect -f . python:3.7.3
/vax/1ib/jenkins /workspace/movies-loader_develop@tmp/durable-efd13as2/script.sh: line 1: docker: command not found
(pipeline] isUnix

(Pipeline] sh

+ docker pull python:3.7.3

/vax/1ib/jenkins/workspace/movies-loader_develop@tmp/durable-7€4£d486/script.sh: line 1: docker: command not found

OEBPS/Images/CH10_F25_Labouardy.png
Creating
aws_routes3_record.movies_marketplace: Creating...

aws_routes3_record.movies_marketplace: Still creating... [10s elapsed]

aws_routes3_record.movies_store: Still creating... [10s elapsed]

aws_route53_record.movies_store: Still creating... [20s elapsed]

aws_route3_record.movies_marketplace: Still creating... [20s elapsed]

aws_route§3_record.movies_store: Still creating... [30s elapsed]

aws_routes3_record.movies_marketplace: Still creating... [30s elapsed]

ams_route3_record.movies_store: Still creating... [40s elapsed]

aws_route53_record.movies_marketplace: Still creating... [40s elapsed]

aws_route53_record.movies_store: Creation complete after 47s [id=Z2TRISQTUIVIUT api.sandbox.slowcoder. con_A]
aws_routes3_record.movies_marketplace: Creation complete after 48s [id=Z2TR9SQTUSUIUT_marketplace.sandbox. slowcoder.con_A]

Apply complete! Resource:

2 added, © changed, © destroyed.

Outputs:

marketplace = https://marketplace. sandbox. slowcoder.con
store = https://api.sandbox. slowcoder. com
visualizer = https://visualizer.sandbox.slowcoder.com

OEBPS/Images/CH07_F33_UN02_Labouardy.png
Branch indexing

> git rev-parse --is-inside-work-tree # timeout=10

Setting origin to gitegithub.com:mlabouardy/movies-loader.git

> git config remote.origin.url gitegithub.com:mlabouardy/movies-loader.git # timeou
Fetching origin
Fetching upstream changes from origin

> git --version # timeout=10

> git config --get remote.origin.url # timeout=10

using GIT_SSH to set credentials GitHub SSH credentials

> git fetch --tags --progress -- origin +refs/heads/*:refs/remotes/origin/+ # timeout=10

OEBPS/Images/CH09_F12_Labouardy.png
Sonatype Nexus Repository Manager

© | &

Administration

Repositories / & docker-registry

v [Repository.

) Delete repository /& Rebuild index

Settings
& Blob Stores
© Content Selectors Name: docker-registry
Format: docker
& Cleanup Policies
Type hosted
& Routing Rules
e 2 URL: ttps://nexus slowcoder.comvrepository/docker-registry
v @ Security onii 7 checked.the reposiary accepts nconing recuests

= Privileges
Repository Connectors

F Rz Connectors alow Docker clients to connect directy to hosted registies, but ae not

always required. Consult our documentation for which connector is appropriate for
your use case. For information on scaling the repositories see our scaling
documentation.

2 Users

& Anonymous Access

wrTe:
v 5000
¥ Reaims vTes:
I CrsteanHITPS conneciort spcied or. Normaty used e seve I conred o s,
v 443
% 1Q Server

Allow anonymous docker pull:

> & Support Alon anonymous docker pul(Docker Barer Token Real equied

OEBPS/Images/CH10_F41_Labouardy.png
loader Y7 &% Activity

® O E S 3 *
o 2 P S *

B O o - it sn st Y *

OEBPS/Images/CH05_F15_Labouardy.png
x +

& jonkin soweodac.com

Welcome to Jenkins!

(=

OEBPS/Images/CH03_F04_Labouardy.png
Launch method

Launch agent agents via SSH
b=d 1000190
Gredentials oc2users) [paa ~

Host Key Verfcation Strategy | Known hosts fle Veriication Strategy.

Advanced...

®0o ® ® o

OEBPS/Images/CH14_F13_Labouardy.png
g ()

Authorize Jenkins

Jenkin by misbouardy

Oraanizstons snd eams o
Resdoy s

Repositores e
oY

o3

Al 2

Orgaizationaccess

O erovnsrs

— ot
8 tonate x £
[Ie— oot
[=J— oo

o

OEBPS/Images/CH01_F09_Labouardy.png
Open Source

@ |[>go

et

¢

Jenkins GitLab Spinnaker

Jenkins GocD Gitabct orone ci Spinnaker Buldbot
SaaS

6 = ’4‘

B circleci O

Codeship Travis 1 TeamCity CircleCl GitHubActions Semaphor
Cloud Services

Azuro aws Googl Cloud

DevOps CodePipeline Build

OEBPS/Images/CH09_F03_Labouardy.png
Stage View

Checkout Quality Tests
Average stage times: 1s 2s
(Average full run time: ~3 - —
Laic] 1s 25
20148
Aprat | No % &

Changes.

Unit Tests

10s

10s

10s

Security Tests

3s

4s

3s

OEBPS/Images/CH11_F38_Labouardy.png
chore: jx-movies-store to 0.0.1 #2 Eat | openith «

QDY) sty s o s o s o o omi-sreans ©

© Conversation ©/ > Commits 2 [Checks © + Fileschanged 1 s3-om

Crange o acommite -l er.+ Jompta. + @ie oresvonss ©

v 3w env/requiresents.yost. ()

Viewed |

@ 7,3 47,6 00 dependencies:
nase: exposecontroller
repositorys tp://chartauseua. Jenkins-x. o
version: 2.3.118

1+ - neser x-movies-store

4 repository: hetp://Senking-x-cha

OEBPS/Images/default_cover.jpeg

OEBPS/Images/CH05_F17_Labouardy.png
aws Services v
© New EC2 Experience

EC2 Dashboard wew

Events e,

Tags

Reports

Limits

¥ INSTANCES
Instances

Resource Groups v

Launch Instancs Connect Actions v

Q. Instance State : Runing o

Namo -
Jonkins_worker
baston

jenkins._master

Jenkins_worker

Instanco 1D -
101155052c00627910
0ageSad01a031a77
1004179493004,
1016020dcBdbdlads

Instance Typo -
2.medium
2aicro

2o

2.mogium

Zone -

euestab

euwestda
cuwestda

cuwest3a

Instanca State -

@ running
© wning
® waring
@ rming

Status Chacks -

© 22 cnecks.
© 22cn0cis.
© 22encs

© 22cncis.

Aarm's
Nono
Nono
Nono

Nono

OEBPS/Images/CH04_F11_Labouardy.png
rper— x
€ 5 C O Nonsbeuiss | 3121216133 8080 ogntrom=42F

Getting Started

Unlock Jenkins

o ensure Jenkinsis securely set up by the administator, a password has been writen

10 the log (not sure where to find 17) and this file on the server:

/var/ib/senkins secrets/ initialAdninpassword

Please copy the password from either location and paste it below:
O —

OEBPS/Images/CH08_F12_Labouardy.png
+ mancy /go/src/github/mlabouardy/movies-parser/Gopkg.lock

ANAN
AL i i
NN E e S
VAV A A AN AN
YR A /RO g
NIZINZE NN S NI N

o -
AN T

/

QD
71

Nancy version: 0.2.0

[3Imt111L WARNING 1111

Scanning cannot be completed on the following package(s) since they do not use semver.
[0n(1/9] [1mpkg: golang/github.con/golang/snappyenaster (0m
(2/9] (1npkg: golang/github. con/ mespath/go-jmespathtc2b3lesd (Om
(3/9] (1mpkgsgolang/gi thub. con/xdg/scrandmaster (On

(4/9) (1mpkg:golang/github.con/xdg/stringpreptnaster (O

(5/9) (1mpkg: golang/golang.org/x/cryptotmaster [Om

[6/9] [1mpkg: golang/golang.org/x/intenaster [Om

(7/9] [1npkg:golang/golang . org/x/netemaster [0m

[8/9] (1mpkg: golang/golang.org/x/syncemaster [Om

[9/9) (1mpkg: golang/golang.org/x/toolsenaster (Om

(1/8) {1mpkg: golang/github.con/PuerkitoBio/goquery€l.5.1 [Om [38;5:251n No known vulnerabilities against package/version
(0m(2/8] (1rpkg:golang/github. con/andybalholn/cascadiaé1.1.0 (Om (38:5:251n No known vulnerabilities against package/version
(0m(3/8) (1mpkg:golang/gs thub. con/avs/aws-sdk-go-v2€0.20.0 [Om (38;5;251n o known vulnerabilities against package/version
(0m(4/8) (1mpkg:golang/github. con/go-stack/stacke1.8.0 (Om (38;5;251n No known vulnerabilities against package/version
(0n(5/8) (1rpkg:golang/github.con/klauspost /conpressel.10.4 (Om (38:5;251m No known vulnerabilities against package/version
(0m{6/8] [1mpkg:golang/github.con/pka/errors0.9.1 (0m [38;5:251 No known vulnerabilities against package/version
(0m(7/8] (1mpkg:golang/go.mongodb.org/mongo-driverl.3.2 (Om (38;5;251n No known vulnerabilities against package/version
(0n(8/8) (1mpkg:golang/golang.org/x/cexc80.3.2 (Om [38;5;251m No known vulnerabilities againse package/version
(on

Audited dependencies:8,Vulnerable: (1;31m0 (Om

OEBPS/Images/CH11_F27_Labouardy.png
Stage Logs (Healthcheck)

| vTot wRece
vy

f o 19 00 19
Cuersions*1.6.0%

st _

e

s2apisandbox slowcodor com (soll imo 277ms)

s://ani. sandbox. slo
Average Speed

Xferd
Dload
SR
o o 126
Checkout

3s

Upload

Total Spent

Tosts

s

Tine Current

Left Speed
o
1266
Build Push Analyze. Deploy.
1s s 165 22ms
6s

Healtheheck

297ms

OEBPS/Images/CH13_F22_Labouardy.png
= Elasticsearch

Index Management Create index pattern

Index Lifecycle Policies

® ©

Kibana uses index patterns to retrieve data from Elasticsearch indices for things like visualizations.

@ Transforms.
Rollup Jobs
Sl Snapshot and Restore Step 1of 2: Define index pattern
. License Management
Indes
Remote Clusters el ek
e 80 Upgrade Assistant jenkins-*
Y You can use a * as a wildcard in your index pattern.
* K Kibana You can't use spaces or the characters\, 1,7, <,>,|.
) . Success! Your index pattern matches 1index.
index Patterns
@ Alerts and Actions jenkins-2020.06.02

OEBPS/Images/CH06_F40_Labouardy.png
e ——]

Droplets

[O):--+-M

(@) lenkinsworker

@

161353436

astom233

627620

Tags

o

OEBPS/Images/CH10_F32_Labouardy.png
7| Mohamed Labouardy 330 P
FMS added an integration to this channel: Jenkins

@ Jenkins AP 3:32 M
| Slack/Jenkins plugin: you're all set on https:/jenkins.slowcoder.com/

@ Jenkins AP 3:41PM
| movies-toader/develop has been successfully deploed

OEBPS/Images/CH06_F17_Labouardy.png
miabouardy

Jenkins + Nodes enabl

2 Backio Dasnbord S Namo i Achitectora ClockDDifironce Frea DiskSpaca Froa SwipSpaca Froa TompSpaca _ Responso
&% Manage Jenkins. [} i (amd64) Insync 471668 Qo8 47.16 GB
B newioce B s workerwbpp NA NA NA NA
[- [— nsyne 67568 oos 68

Oata btained e e e a5 e :

sutdoune = [

Nobuids in

queue

OEBPS/Images/CH09_F30_Labouardy.png
+/ movies-marketplace < 5 Pipeline Changes.

Branch: develop. @ i [pm—

Commit: — © afewseconds ago T ——

Static Code
Sot Chedout QuiltyTests UnitTests Anslyss Qualty Gate

Push

End

OEBPS/Images/CH07_F35_Labouardy.png
& miabouardy / movies-loader rivate @uUnwach~ 1 kStar 0 YFork 0
©Code (lssues 0 [1Pullrequests 0 OActions (1] Projects 0 Wiki @ Security L Insights £ Settings
Options. Webhooks ‘Add webhook
Manage access.

Webhooks aliow external services to be notified when certain events happen. When the specified events.

Branches happen, we'll send a POST request to each of the URLS you provide. Learn more in our Webhooks Guide.

Webhooks

OEBPS/Images/CH06_F28_Labouardy.png
management

;
&
H Activity log

. Access control (IAM)

Overview

@ Tags

7 Events
Settings

& quidstart

2 Deployments

o4

Polcies
Properties

Locks

a oo

Exporttemplate
Cost Management

& Costanabysis

B3 Cost alents (preview)

D Budgets

@ Advisorrecommendations

Monitoring

+ Add == eatcoumns [Deletoresourcegroup O Reresh > Move L Bporttocsv | G Assgnags [Doete
Subscipton (change) Pay As-You Go Ocployments & No depioyments
Subscripion!d SOCOSe38-b0cd-4DK2-25C3-024cdBABST13
Tags(ange) : Cickhere o dd tage

A

ai 0) (g asaier)

[Fiter by name.

Showing 110 1101 1 records. (] show icentypes ©

(5] Name Type 14

O X bastion Bastion.

O & vastion-publicip Public P address:
O & jenkins:o Load balancer
(O B jenkins-tb-public-ip Public P address
& B jenkins-master Virtual machine
O & jenins-master-v22041 Image

O @ jenkinssg Network security group
O jenkins worker image

OB jenkins. e incetace Networkntriace
O & main Disk

O > management Virtual network

OEBPS/Images/CH05_F22_Labouardy.png
Jenkins > Nodes

4 Back o Dashiboard
&% Manage Jenkins.
B Now Nodo

% Configuro

Build Queuo.

Nobu

Build Executor Status

Name

-10.0:0.69 st
3computeintemal
-100.0.76 ou-nost
3 compute.ntemal
1002110 cunost.
Aconguteiniomal

Data obiained

Architecture Clock Diference

Linux
(amass)

27min

Insyne

insyne

insyne

27min

Freo Disk Space

278168

NA

278168

274668

27min

Freo Swap Space Freo
o8
NA
Qo8
Qo8

27min

OEBPS/Images/CH11_F11_UN08_Labouardy.png
Chart.yanl
charts
templates
|— movies-loader

|— confignap.yanl
L deployment..yam
{— movies-marketplace

|— deployment.yan1
L service.yaml
{— movies-parser

[confignap.yan1
L deployment.yam1
| movies-store
|— deployment.yam.
L service.yaml
{— namespace. yaml
L secret.yamy
values.yanl

OEBPS/Images/CH12_F38_Labouardy.png
usage of stage variables #4
oty s o ot Gomris o s fom sl)

‘Add more commits by pushing to the preprod branch on miabouardy/serverless-mot

Q All checks have passed Hide all checks
1 successful check

) continuous-integration/jenkins/branch — This commit looks good Details

‘This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request You can also open this in GitHub Deskiop or view command line instructions.

OEBPS/Images/CH09_F23_Labouardy.png
& Images C REFRESH
B mlabouardy
2 eu.gerio / leaming-223618 / mlabouardy I
Filter by name or tag
Neme Tags

@ movies-loader
(@ movies-marketplace.
@ movies parser

@ moviesstore

OEBPS/Images/CH14_F33_Labouardy.png
Pipeline

Definition pipeline script

Seript 1+ node('workers'){
2. stage('Stage 1)
3 echo “test”
4 3
Bl Y

OEBPS/Images/CH07_F28_Labouardy.png
POST v httpsijenkins slowcoder.comy/createltem?name=movies-store

Params® Authorization ® Headers (11) Body ® PreequestScript Tests

®none ® form-data @ xwww-form-urlencoded @ raw @ binary ® GraphQL®™ XML (application/xmi) ¥

1 <2xml version="1.0" encoding="UTF-§"
2+ <org. jenkinsci.plugins .workfLow.multibranch.WorkflowMul tiBranchProject plugin="workflow-multibranche2.21">
3 <actions />

4 <description>Movies Store API</description>
5 <displayNamesnovies-store</displayNane>
6- <properties>
7- <org. jenkinsci .plugins. pipel ine.modeldefini tion. config. FolderConfig plugine"pipeline-model-definitiond1.5.0">
8 <dockerLabel />
9 <registry plugina"docker-comonse1.16" />
10 </0rg. jenkinsci.plugins. pipel ine.modeldefinition. config. FolderConfig>
1- <org. jenkinsci.plugins. configfiles. folder. FolderConfigFileProperty plugine"config-file-providere3.6.3">
12- <configs class="sorted-set">
13 <comparator class="org. jenkinsci.plugins. configfiles.ConfigByldComparator” />
14 </configs>
15 </org. jenkinsci .plugins. configfiles. folder. FolderConfigFileProperty>
Body Cookies Headers (5) TestResults Status: 200 0K Time: 71ms

OEBPS/Images/CH14_F20_Labouardy.png
= thinBackup Configuration

Backup settings
Backup directory Nartibackups
Backup schedulefor full backups. RS
Backup scheduiefor difrental backups
Mas number ofbackup sets 5

Files excluded from backup (regula expression)

Wait untl JenkinsHudson i e to perform backup.
Force Jenkins o quiet mode aftr speciied minutes | 150

[

Backup buid esults:
Backup buid achive

Backup ony buids marked fokeop
Backup userContont folder
Backup noxt bl numbr flo
Backup plugins archivos

Backup acdiiona ies

Cloan up diferental backups

(o) (a): (o) {0 (@] (gki{a} (o)

Move old backups to ZIPfles

20000009090 © 0 ® ® © @ ©

OEBPS/Images/CH14_F08_Labouardy.png
8= Manage Roles

P
o | 0w S ot o -

Aot fasa Dosncacund Grto Dot ansuDorans Upcl Ve i G Cornact Crse Dl Oacnec o Buid Crcl oo Coteerions Gt Dot Dicors v Faad VS
Guen @ 8 @ @ 8 @ ao 8 @ o 8 a o aa @ L) @ 888 g
Ofimimel O [0 G 0[O0 0 [0[0/0[00 0[O0l 0 [0 800 o lololololel®
Ga o lol o Jolol o lolololoclolotol o lolololo o lololololal e

OEBPS/Images/CH09_F10_Labouardy.png
aws_route53_record.nexus: Creating...
aws_routes3_record.registry: Still creating... [10s elapsed]

aws_routes3_record.nexus: Still creating... [10s elapsed]

aws_routes3 _record.registry: Still creating... [20s elapsed]

aws_routes3_record.nexus: Still creating... [20s elapsed]

aws_routes3_record. registry: Still creating... [30s elapsed]

aws_routes3 _record.nexus: Still creating... [30s elapsed]

aws_routes3_record. registry: Creation complete after 34s [id=Z2TR9SQTUSUIUT_registry.slowcoder.con_A]
aws_routes3_record.nexus: Creation complete after 34s [id=Z2TR9SQTUSUIUT_nexus.slowcoder.con_A]

Apply complete! Resources: 8 added, © changed, © destroyed.

outputs:

nexus = https://nexus. slowcode:
e e e e

OEBPS/Images/CH03_F11_Labouardy.png
AWS Cloud

Security group

Master Worker Worker Worker

OEBPS/Images/CH04_F04_Labouardy.png
Temporary Instance

)

Baked Image

CHEF xnsioce

Configuration Tools

OEBPS/Images/CH11_F45_Labouardy.png
v0.0.3

©v003

i released this 1 min mimits to master since ths rel
o tasors | B miabouardy released this 1 minute ago -0 commits to master since this release

compe~ Changes
* update readme

- Assots 2

) Source code (zip)

D Source code (targz)

OEBPS/Images/CH13_F02_Labouardy.png
Allmetrics | Graphed metrics Graph options | Source

Paris v Al > EC2 > PerinstanceMelrcs | 1-026d142588cd5915a © | Q Search forany metic, dimension o resource id
Instanco Name (14) + Instancold Motric Namo
oking master 02satazsacasoion NetworkPacketsin
onking master 028a142588c4891%a NetworkPacketsOut

O jonkins master ozsatazsacdsoioa CPuUtization
jonking master 028at42588ca891%a Networkin
onking master 028a42588ca891%a NetworkOut
Jorking_smaster 1028425888919 DiskReadBytes

Graph search

OEBPS/Images/CH08_F05_Labouardy.png
¥ Replay + docker build -t mlabouardy/movies-loader-test -t Dockerfile.test .
Sending build concext o Docker dacson 97.79K0
G Pipaine Sops
Step 175 + FRON pyehons2. 1.0
B Viorkspaces > baaaermsios
Step 2/5 + wowwoin /app
et > vaing cacho
5 mnaoesases
Step 375 + ConY test maiapy -
> Using coche
o
Step 4/5 + CoPY mavios. Ston
> sing coche
-5 oomsetowenre
Step /5 ¢ 0 python tose_sain.py
> vaing cacho
5 sscatrenssia
saccosatuly busle 2caercassia
Succosatully tagged miabosardy/movios-losder-tes
(ripetine) on
+ docker run ~-cn mlabouaxdy/movies-londec-test.

Ran 3 tests in 0.0008

(Pipeline) }
(Bipeline] // stage
(Pipeline))
(pipoline) // node

(Pipeline) £nd of Pipeline

Gitiub has been notitied of this commits build result

Finished: succEss

OEBPS/Images/CH13_F15_Labouardy.png
[£00t0§p-10-0-0-130 ec2-user)# tail -f /var/log/jenkins/jenkins.log

at
at
at
at
at
at
at
at
2020-06-02
2020-06-02

hudson. remoting. SingleLaneExecutorServicasi. run(SingleLaneExecutorService. java:131)
Jenking .util.ContextResettingExecutorServicest. run(ContextReset tingExecutorService. jav
Jenkins . security. InporsonatingExecutorServicesi. run(ImpersonatingExecutorService. java:59)
Java.util.concurrent. ExecutorsSRunnableAdapter .call (Executors. java:511)
Java.util.concurrent. FutureTask. run(FutureTask . ava:266)
Java.util.concurrent. ThreadPoolExecutor . runtorker (ThreadPoolExecutor . jav
Java.util.concurrent. ThreadPoolExecutorsorker . run(ThreadPoolExccutor . jave:624)
Java.lang. Thread. run(Thread. java:748)
11:80:36.93840000 [id=167) INFO c.s.0.i.PlatfornSJdkithJettyBootplat formégetSelectedProtocol:
13.304+0000 [id=418) INFO c.s.0.i,Platform$JdkWithJettyBootPlatformfgetSelectedProtoco!

)

OEBPS/Images/CH10_F27_Labouardy.png
Branch develop

Fullproject name: movies-markelplace/deveiop.

=
‘Fecen! Changes
==
Stage View
Qualiy
Checkout Qe unitTests
Average stage times: 2 7 125
(Average ful run time: 5 || = 2
% 1s 7 175
s

Static Code
Analysis

6

o

OEBPS/Images/CH06_F35_Labouardy.png
Images

Snapshots Backups Cust

Matketloce Take a Snapshot

Pone.donn Dropots b $005/G8/mo.

foe takinga 3napshottoensure data consistency. Snaphats ostis based on poce used and charged a1

Choose aDroplet r volume rame .

Snapshots
oroplets Voume
Namo sie Rogions Crovted =

24468 Lom 2minutes g0 More v

OEBPS/Images/CH10_F52_Labouardy.png
movies-loader Yr &%

HeATH

L X3 X

satus

BRANCH

develop.

feature/producton:appro..

preprod.

feature/deployment

commr

3302462

UATesTMEssAGE

user approval requied for production deployment

Push event tobranch feature/production-approve

user approval requied for roduction deployment

commit message & author

Actvty Branches.

compLeTeD

4minutes ago

6 minutes ago

afew seconds

anhourago,

Pull R

OEBPS/Images/CH11_F25_Labouardy.png
14 lines (14 sloc) 465 Bytes Raw Blame History (1 o @

apiversion: v
entrie
movies-narketplace:

Created: "2020-05-22T15:18:03.1736408622"
description: UI to browse top 100 iHDB movies
digest: 21e52779af6aca2abfadd295b2bach141a820006aa1ee8Fed03afOc{I4CI0204
nane: movies-narketplace
type: application
urts
- https://mlabovardy. github. io/watchlist-charts/movies-narketplace-1
version: 1.0.0

generated: "2020-05-22T15:18:03.1732357412"

0.tgz

OEBPS/Images/CH12_F13_Labouardy.png
Branch: develop | New pull request
IR riiouarey create deploymant package
i sre
. test
[.dockerignore
[-eslintrcjson

gitignore

Dockerile

Dockerfile test

Jenkinsfile

package-lock json

(=20 -2 - R - R - R]

package.json

create deployment package
create deployment package
create deployment package
create deployment package
create deployment package
create deployment package
create deployment package
create deployment package
create deployment package

create deployment package

Crestonawtie | Unoadts | Fnd s

Latest commit 5165628 15 seconds ago.
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago
15 seconds ago

16 seconds ago

OEBPS/Images/CH14_F26_Labouardy.png
Build

Execute shell

Command #!/bin/bash
cd SIENKINS_HOME

BACKUP_TIME=S(date +'Sm.3d.3Y'}

2ip - "backup-${BACKUP TIME}" .

aus s3 cp "backup-$(BACKUP_TIME}" s3://BUCKET/|

See the list of available environment variables

Advanced...

Add build step ~

OEBPS/Images/CH01_F07_Labouardy.png
Continuous integration

: Continuous deployment

Checkout Tests Build Push)in(Staaing Wit Vaiidation

deployment, geployment,

Continuous delivery

OEBPS/Images/CH05_F04_Labouardy.png
Route Table

Availability Zone Availability Zone

Private subnet Private subnet

IGW

Public subnet Public subnet

i Bastion

OEBPS/Images/CH09_F32_Labouardy.png
Inbound rules o

Type into Protocol info Portrange info
ssi v] ‘tee 2
Custom TcP. v| e 8228
‘Add rule.

A NOTE: Any edits made on ules will esut in the dited rule
of time until the new rule can be created.

Source info

asom v | [Q
Sg-035176781786157 X
s

custom v | [Qjend X!
Security Groups

deleted and a new rule created

jenkins_workers_sg | sg-
00b8ab9210764c54.
e workers 9.
jenkins_master_sg | sg-
078cabd92cae9b7af
s master. 39
elb_jenkins_sg [sg-
0/0c8009321532069

b jenkins 39

OEBPS/Images/CH04_F02_Labouardy.png
Mutable Infrastructure

Immutable Infrastructure

Update Jenkins

__Instance A

Restart

Provision

Instance A

Instance B

OEBPS/Images/CH10_F45_Labouardy.png
- B
[PRt

Jenkins Workers

A
>0
T

Jenkins Master

5
Qe
5

VPC Peering 'VPC Peering
b b
Staging Production
o g
Auto Scaling Group %gt Auto Scaling Group 99&' Auto Scaling Group vg‘

Swarm Workers.

Auto Scaling Group
Swarm Managers

Swarm Workers.

B
.
o PPt

Swarm Managers

~
v

~
>0
v

‘Swarm Workers

Auto Scaling Group
Swarm Managers

OEBPS/Images/CH09_F16_Labouardy.png
Create repository

Repository configuration

Repository name

305929695733 dkr.ecr.eu-west-3.amazonaws.com/ | mlabouardy/movies-loader

A namespace can be included with your repository name (e.g. namespace/repo-namel

Tag immutabilty
Enable tag immutabiity to prevent image tags from being overwiritten by subseauent image pushes using the same tag. Disable tag
immutabilty to allow image tags to be overwritten.

@ pisabled

Scan on push
Enable scan on push to have each image automatically scanned afte being pushed to repository.f disabled, each image scan must be
‘manually started to get scan results.

@ Disabled

Cancel

OEBPS/Images/CH07_F03_Labouardy.png
e ov

S B i e
LT PULPFICTI0

¥ Ay

OEBPS/Images/CH06_F15_Labouardy.png
™M

instances

Fiter VM instances
Name ~

@ vastion

@ jenkins master

@ jenkinsworker3mf7

@ jenkinsworkerwbpp

£ CREATE INSTANCE

Zone
europewestza
europewestza
europewestza

europewestda

& IMPORTVM C REFRESH START
Recommendation Inusoby Intenal P

10.0.1.2 (nic0)

jenking master-target pool 10002 (nc0)

jenkins-vorkers jenkins-workerspool 10.00.3 (nc0)

jenkins-workers jenkins workers pool 10.0.0.4 (nc0)

sTop

© RESET

Extomal 1P

3489153200

None

None

None

OEBPS/Images/CH11_F18_Labouardy.png
@

Jenkins A7 2:54 P01
Name: ‘movies-marketplace/master’
Status: STARTED
Build ID: 2
Message: Merge pull request #24 from mlabouardy/preprod
show running environment
Author: LABOUARDY Mohamed
URL: https:/jenkins slowcoder.com/job/movies-marketplace/job/master/2/

Name: ‘movies-marketplace/master’
Status: SUCCESSFUL

Build ID: 2

Message: Merge pull request #24 from mlabouardy/preprod

show running environment

Author: LABOUARDY Mohamed

URL: https:/jenkins slowcoder.com/job/movies-marketplace/job/master/2/

OEBPS/Images/CH11_F41_Labouardy.png
@ miabouardy / jx-movies-store Yr Activity Branch Pull Requests.

o vt misbovardy

OEBPS/Images/CH05_F11_Labouardy.png
Jenkins:chapterS mlabouardy$ ssh ec2-user@localhost -p 4000

The authenticity of host '[localhost]:4000 (U 080) " can't be established.
ECDSA key fingerprint is SHA256:+7ERUB0CBK9TOKBZKZ6ASKPKIOt+28W+3ZVEYQVOIAY.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '(localhost]:4088' (ECDSA) to the list of known hosts.

Anazon Linux AMI

https:/ /aws..anazon. con/amazon-Linux-smi /2018 .03-release-notes/
15 package(s) needed for security, out of 36 available

fun "sudo yun update® to apply all updates.
Tec2-user0ip-20-0-0-72 15

fec2-user0ip-10-0-0-71 13

{ec2-user0ip-10-0-0-72 15 service Jenkins status

Jenkine (pid 302) is rumning...

feca-useroip-10-0-0-72 ~18 I

OEBPS/Images/CH14_F20_UN01_Labouardy.png
[[root@ip-16-0-0-116 backups)# pwd
/var/1ib/backups

((xo0tip-10-0-0-116 backups# 1s
FULL-2020-11-16_19-11 FULL-2020-11-16_19-12
[root@ip-10-0-0-116 backups)# ||

OEBPS/Images/CH06_F07_UN03_Labouardy.png
Initializing the backend...

Initializing provider plugins...
- Checking for available provider plugins...
- Downloading plugin for provider *google" (hashicorp/google) 3.14.0.

The following providers do not have any version constraints in configuration,
S0 the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recomnended to add version constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.google: version = *~> 3.14"

Torraforn has been successfully initialized!

OEBPS/Images/CH14_F19_Labouardy.png
Examining mlabouardy/pipeline-libraxy.

Attempting to resolve master as a branch

Resolved master as branch master at revision e8dadcd€aa6ds6159laceesddzbobdbe3cobdse]
using credential github

> git rev-parse --is-inside-work-tree # tineoute10

Fetching changes fron the remote Git repository

> git contig remote.origin.url hetps://github.con/labouardy/pipeline-1ibrary.git # tineout=10
Fetching without tags

Petching upstrean changes from htps://github.con/nlabouardy/pipeline=library.oit

> git —-version # timeouts10

using GIT_ASKPASS to set credentials github

> git foteh --no-tags --progress -~ httpa://github.con/mlabouady/pipeline=1ibrary.git +refs/heads/master:refs/renotes/origin/master
timouts10

Checking out Revision c8dadc3£aa6ds61591aceeddd2bebdbe3cobdss? (mastor)

> git contig core.sparsecheckout # timcout=10

> git checkout - eBdadc3faa6dse1591aceesddzbobbe3csbdss? # timeout=10

Comit messago: "shared library"

> git rov-list --no-walk e8dadc3faa6dss159laceesddzbebdbe3cIbdss? # timeout=10
Replacing contents of vars/notifySlack.groovy

Replacing contents of vars/commitiD.groovy

Replacing contents of vars/commitiessage.groovy

Replacing contents of vars/commitAuthor.groovy

(Pipeline) Start of Pipeline

OEBPS/Images/CH06_F22_UN09_Labouardy.png
azurerm_virtual_network.management will be created
+ resource "azurerm_virtual_network" "management® {

+

address_space. =
+ 10.6.0.0/16",
1
dns_servers =t
+"10.0.0
+ "10.0.0
]
id = (known after apply)
location “centralus"
name “management"
Tesource_group_name = "management"
tags {
+ "environment" = *management"
¥
subnet {
+ address_prefix = "10.0.0.0/24"
+ id (known after apply)
+ name “public-10.0.0.0"
3
subnet {
+ address_prefix = "10.0.1.0/24"
+ id (known after apply)
+ name “public-10.0.1.0"
)]
subnet {
+ address_prefix = "10.0.2.0/24"
+ id (known after apply)
+ name “private-10.0.2.0"
)]
subnet {
+ address_prefix = "10.0.28.0/27"
+ id (known after apply)
+ name “AzureBastionsubnet"
3
subnet {
+ address_prefix = "10.0.3.0/24"
+ id (known after apply)
+ name “private-10.0.3.0"

¥

OEBPS/Images/CH09_F09_Labouardy.png
Ownedbyme v | Q Fite by tags and atrbutes or search by keyword

sonarqube-s.

® newsazi
Jenkins-worker
jokins mast

docker-18.09.

AMIName

sonarqube-8.2.
nexs 322102
Jenkins-worker
jenking-master.

docker-18.009.

v
ami0c24436745c200040
ami08190884c39027068
ami 09 bécoeDEB0
ami03717021009073007
i d56160852500072

Source
30592960573
3059296057331
305929605733
09296957331
3059296957331

Owner
05529695733
305529605733
05529695753
05529658733
305529695733

Visibity
private
private
private
private

private

status
avaiatie
avaiatio
avaiatie
avaiablo
avaiatio

OEBPS/Images/CH12_F20_Labouardy.png
~ Viewing 1 to 12 ter

{ndo oveTiongor e

T
(Y ool ravs
—— T
(Cpiturer . {"picture”ttps://m media-amazon.gPing® A cynical American expatriate struggles to decide whether o

("picture* picture":"https://m.media-amazon.com... An angelis sent from Heaven to help a desperately frustratex

(Cpicture” picture""htps:/immecia-amazon,com... A bounty hunting scam oins two men i an uneasy allance s

OEBPS/Images/CH06_F37_Labouardy.png
Account

Securty

Droples SSH keys

Nome. Fingerprint

730bede 2 NINASS 26965930

AcasshKey

OEBPS/Images/CH06_F24_Labouardy.png
[14) management
neouce g

5 Search (Cmd+/) «

() Overview

B Acwiylog
. Access control (AM)
@ Tags

7 bvens

Settings

© Quidkstart

Deployments

»

Policies

[4

Properties

Locks

[

Export template

+ Add

Subscription (change) : Pay-As-You-Go
Subscription ID

Tags (change)

Fiter by name. Ty

Edit columns [i] Delete resource group.

 Click here to add tags.

all ©) (Location

+ 50c0938-b0cd-40d2-253-024cdBABST13

al 0) (i Adafiter)

Shoving 1105 of records. (] Show hicden types ©

[Nome
O X bastion

O B vastion-public-ip

[&8 jenkins-master-v22041
(O & jenkins-worker

0 ¢ management

o)

O Refresh [> Move L Exporttocsv | @ Assign:

Deployments : Noc

Type Tu
Bastion

Public I address.
Image

Image

Virtual network

OEBPS/Images/CH10_F38_Labouardy.png
ﬁ Global credentials (unrestricted)

‘Credentias that should be availabe irrespective of domain speciication o requirements malching.

Name Kind Description
B8 ecruser (sHKeyoaictor denking workers) ‘SSH Username with private key. ‘SSH Keypair for Jenkins workers

B by Gt credentat) Username with password Gitub crodentials

B eczuser(sHKeyoaictor Swam sandbox) ‘SSH Username with private key. ‘SSH Keypair for Swarm sandbox

o n ken Secrettoxt ‘SonarQube access ten

@= Siackaccesstoken Secrettext ‘Sack accoss token

B eczuser (ssH Keypairtor Swam siaging) ‘SSH Usormame with private key. ‘SSH Koypair for Swarm staging X

leon: SML

OEBPS/Images/CH07_F17_Labouardy.png
2+ U

Q, staws

. Configure

() Sean Reposiory Now

{3 scan Repository Log
View s plain text

2 Mutibranch Pipeine Events
© Deete Mulibranch Ppeiine
& People

= suid History

@, Project Rolatonship

42 Gheck File Fingerprint

(@ Open 8o Ocean

Gonlg s
1© Pipeline Syntax
2 Credeniiis

Build Queuo
No buids in the queve.

Build Executor Status

OScan Repository Log

Started
tHon Apr 20 13:15:
3115127 Connecting ¢

7 UTC 2020) Starting branch indexing.
https://api.github.con us:
Examining labouardy/zovies-loader

uazdy/ssses (Github credentials)

s mlab

Checking branches.

Getting remote branches.

Checking branch master
Getting remote pull requests...
“Jenkinstile’ not found

Does not meot criteria
Checking branch develop
“Jenkinstile found
Mot criteria
Scheduled build for branch: develop
Checking branch preprad
“Jenkinstile’ not found
3 branches were processed
Checking pull-requests. ..
0 pull requests were processed

Finished exanining mlabouardy/movies-loader

[Hon Apr 20 13115:30 UTC 2020) Finished branch indexing. Indexing took 2.2 sec
Finished: SUCCESS

OEBPS/Images/CH09_F25_Labouardy.png
Sonatype Nexus Repository Manager

0ss 3.221.02

o #

Browse € Browse / © docker-registry
() e Eme HIML View
» Q Search Bv2
blobs.

miabouardy
25 movies-loader

5 manifests
2 tags
2

OEBPS/Images/CH12_F27_Labouardy.png
Resources Actions- /@ ¢ Method Execution /favorites - GET - Integration Request

5l Provide information about the target backend thatths method willcall and whether the incoming request data should be mocified.
~ favorites
aer
PosT Integration type Lambda Function @
~ Imovies [P
cer
Mock ©
~ fname)
et AWS Senvice ©
VPG Link @

Use Lambda Proxy integration ¥ ©
Lambda Region cu-wost-3 #
Lambda Function MoviesStoreViewFavorites:9022567e6dbb36(cioed2cb8(28767c1181505aa

Executionrole #

OEBPS/Images/CH11_F34_Labouardy.png
« C @ Nonsécurisé | jenkins.jx.35.198.184.208.nip.iofjob/mlabouardy/job/jx-movies-store/job/master/ W %
Jenkins 3
Jenkins » misbouardy » jemovies-sore master
4+ U

Branch master

), Status

= Full projectname: misbouardyfx movies-sire/master

= Changes
£ Build Now 2 Becent Changes

{% View Configuration

O, Full Stage View Stage View
(@ Open Blue Ocean

Doctarative: Cisuildand
{5 it CheckoutSCH push snapshot 21114 Release
Pipeine Syntax
e % 108 oms. 2min 1s
. Build History trend = @
nts

53 Atom feed for al) Atom feed for falur
Permalinks

OEBPS/Images/CH07_F10_Labouardy.png
Settings ~ Developer settings

GitHub Apps.
OAuth Apps

Personal access tokens

Personal access tokens Generate now token Revoke all

Tokens you have generated that can be used to access the GitHub APL.

Komiser token — admin:org, ropo Neverused | pelete

Personal access tokens function ke rdinary OAuth access tokens. They can be used instead of password for Git over HITPS,
or can be used to authenticate 1o the APl over Basic Authentication.

OEBPS/Images/CH06_F08_Labouardy.png
I vecnetwork & VPCnetwork details /DT DELETE VPC NETWORK

= VRCnetworks ‘management

Subnetcreation mode

[¥ ExtemalIP addresses. P

Firewallrules: Dynamic routing mode
Regional

toes NS server oy
None

VPC network peering

Subnets Staticinternal P addresses Firewallrules Routes VPG Network Peering Prvate service connection

~
>
]

& Serverless VPCaccess

Shared VPG
Addsubnet Flowlogs

Name ~ Region Paddessionges Gatewsy Pt Gonglesccess Flowlogs

il Packet minoring
PIEI0000 cwopeness 10000724 10001 on on]
pE10020 ewcpewess 10020724 10021 on on s
PICI0010 eucpewess 10010724 w0011 on ot

PUBICI0030 ewopewest3 10030/24 10031 off ont

OEBPS/Images/CH10_F54_Labouardy.png
Start Checkout Unit Tests. Build Push Deploy End

C—— 00

OEBPS/Images/CH10_F05_Labouardy.png
Amazon$3 > swam-discovery-cluser > sandbox

‘swarm-discovery-cluster

Overviow

Q. Typoa profcan pross Entor o srch Pross ESCto .

| @

Viewing 1104
[Name~ Lastmodtiod + Szo Storago class ~

[& managers - i i

0 & workers E

[D) managoriniviock Apr 18,2020 72119 PMGMTA0200 2008 Standars

0 D toens Aor 18,2020 72124 PMGNTI0200 19908 Standas

Viewing 1104

OEBPS/Images/CH03_F15_Labouardy.png
Availability Zone

Private subnet

Availability Zone

Private subnet

Public subnet

Internet
Gateway |

@

OEBPS/Images/CH01_F02_Labouardy.png
Cloud Providers

I Kubemetes

OEBPS/Images/CH13_F06_Labouardy.png
Contalners stk T
g sowcodescom
Instances Lo
[—

OEBPS/Images/CH04_F15_Labouardy.png
& reos

@ OpenuoOce

) P

Q. Crovomits

[RrTerr—

Welcome to Jenkins!

[—

OEBPS/Images/CH03_F08_Labouardy.png
Remote oot dectory | o no/eca-users

Labels

Usage
Launch method

workers

Ui his i s miich 7 nossbia
¥ Use this node as much as pos:
‘Only build jobs wi

oo o o

OEBPS/Images/CH07_F24_Labouardy.png
Branch Sources

GitHub

Credentials miabouardy/"**** (GitHub credentials) 4 e= Add +.

User miabouardy
© Repository HTTPS URL

Repository HTTPS URL _ https:/github.com/mlabouardy/movies-parser.git

Repository Scan - Deprecated Visualization

havi
Behaviours Discover branches.

Strategy Exclude branches that are also filed as PRs.

Add ~

(=] E—

Validate

(]
()

OEBPS/Images/CH05_F04_UN03_Labouardy.png
Do you want to perform these actions?
Terraforn will perform the actions described above.
only ‘'yes' will be accepted to approve.

Enter a valu

yes

aws_vpc.managenent: Creating. ..
aws_vpc.managenent: Creation complete after 2s [id=vpc-0c11cb69a871f0b24]

Apply complete! Resources: 1 added, @ changed, ® destroyed.

OEBPS/Images/CH12_F34_Labouardy.png
Start Checkout Tests Build

—0 © @

| Coverage Reports

Quality Tests

Unit Tests

MoviesStoreView MoviesStoreView
Favorites Favorites

OEBPS/Images/CH11_F03_UN04_Labouardy.png
[ec2-user@ip-10-0-0-216 ~1$ kubectl get nodes

NAME STATUS ROLES AGE VERSION
ip-16-1-0-43.eu-west-3.compute.internal Ready ~ <none> 4h8m v1.16.8-eks-e16311
ip-10-1-2-182.eu-west-3.compute.internal Ready <none> 4h8m v1.16.8-eks-e16311

OEBPS/Images/CH11_F20_Labouardy.png
— @
° { Notify “
() =

docker

\ . lnstal
T @ Build * Package H):I:‘M
~NA
Senking

Docker Image Helm Chart

; @ Production
@ Staging
Sandbox

OEBPS/Images/CH06_F10_Labouardy.png
On-premises) Google Cloud Platiorm

Region I N
Bastion Firewall Jenkins Firewal
vec Cloud Firewall Rules Cloud Firewall Rules
Zone A
kot ‘Subnetwork

. Jenkins.
@ s > @ i

Cloud
Users ‘ Router
Jenkins Dashboard CloudLoad |__
S e Balancing ‘
Zone A
‘Subnetwork

Subnetwork

OEBPS/Images/CH09_F37_Labouardy.png
Jenkins

Jonkins » movies-loader

2 BacktoProject
o, staus

= Cranges

B Console Output

= e B nformation
© Doto buia 017
© Timings
 Geuiana
o NoTags

& Docker Fingerprints

Q0 Anchore Roport (FAIL)
(@) Open Blue Ocean
) Emboddabio Buid Status

& Ropiay

Pipeine Steps
[Workspaces
© Timings
 GtBuavma
o Noags
& Docker Fingorprints
Q0 Anchoro Report (FAIL
(@ Open e Ocean

) Embeddable Buid Status

Anchoro Report (FAIL)

-

Anchore Policy Evaluation Summary

show 10

RepoTag

+ enties

3.6 o ouwost .
oader 026TIC28314901761736C7T22620601 60901221

Showing 110 1of 1 enties

Anchore Policy Evaluation Report

show + entios
Trigger
Imageld Repo Tag 0 Gate
o OVE20195
3046053123632 ouwost3 amazonaws, | 481 scurl
cOcot3422086a commiabovardyimario
boc00B0AEHTS0 l0ader0207Ic2863140
c36E90cal G176a1738672202060
1obod122t
6604042 | 205929695733 dkeocr. | CVE2010S winorabites

3460512962
cOco134220860
b000e604ct799

ouwost 3 amazonaws.
commiabouardymovio
Sloader 02¢71c2063149

s82ucur

Tigger

package

package

Search
stop warn o
Actions. Actions. Actions.

Search
Gate

Check Output Action 11 Whitslisted

HIGH Vulnorabiy found n 05 aiso

package typo (epka) - curl (OVE-

20195481 - hupsisocuriy-

ackor dobian rgacketCVE-

20195181)

HIGH Vunorabityfoundinos R fako

package ypo (¢pka) - curl (CVE:
20195162 - hps:socuriy-
acker debian orgracker/CVE-

@ misbouardy |log out

Final
Action 1

Policy 4

48061706
1765103
b5

sbot2285465

48061765
17651108
b510

806122854856

OEBPS/Images/CH12_F06_Labouardy.png
Branch: develop + | New pullrequest
53 misbousray cresting depioyment pacages
O gitignore

[Dockerfile.test

D Jenkinsfile

D index.py

0 movies json

D requirements.txt

D test index.py

creating deployment packages
creating deployment packages
creating deployment packages
creating deployment packages
creating deployment packages
creating deployment packages

creating deployment packages

Create new file

Upload files Fi

Tl cione or download -

Latest commit 4912270 10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago
10 seconds ago

10 seconds ago

OEBPS/Images/CH02_F02_Labouardy.png
Jenkins

rw
Status.

£©) suic Now

& v

w Configuration
FullStage View
(@) Open Blue Ocean

P Gt

) Em

fable Buid Status
@ Buld Roviow

© Pipeiine Syntax

. Buila History trond =

RSS foral £ ASS for ares

Branch develop

Ful projoct namo: xamploidor

2 Focent.

Stage View

Checkout Qualiy Test

Permalinks

+ Lastbui (), 23 sec 000
+ Laststabl buid (¢4) 23 sec
+ Lastsuccossiu buid (14) 2300 3

- Lastfalod buk (¢2)4 min 38 500 290

+ Last unsuccesstul buid (£2), 4 mn 38 s6¢ 990
+ Last complated buid (44) 20

UnitTest

2

Security Tost

Buila

3s6ms

Deploy.

3

OEBPS/Images/CH06_F31_Labouardy.png
management

Qi

5 Search Cmd+/) « o

Edtcoumns [Deleteresourcegroup () Refiesh > Move & ExporttoCsV | © Assigntags [Delte

bscpton (change) : ay As-You Deployments : Nodeployments
S Subscrition change) : Pay-As-You-Go oloy ploym
Subscripion D 50c0938-bcd-4042-3543-024cdBaBST13
B Advitylog
Tags change) Clckheretosdd tags
. Acces contol (M) sl i A
@ Tags 2 ¥ N N
(Fiteroymame.] (Type ==t ©) (tocation ==l ©) (Y Add fter)
e () (@ b
: Showing 110 13.1 13 recods. (] Show idden types ©
Setings
& Quickstart (=] Name © Type T
i g O & enimts Lo aancer
© rosdes O B jenins-o-pubiicp Public P adaress
= properies OB jerkinmaster Vinual machine
8 tods [R[r— image
% Spon wenpisie 0@ jontimsg Networksecury rove
Cost Managemant (O & jenkins-worker Image
& Costanalysis O @ jenkins-worker-sg Network security group
B Costalens (preview) B % jenkins workers-set Virtual machine scale set
© sudgers O & jenins network imerioce Networkinterace
@ Advisor recommendations O min i

s 0 ¢ mansgement Vituatnewark

OEBPS/Images/CH11_F13_Labouardy.png
) Console Output

+ holn upgrade —-install vatchlist ./uatchlist - valuos.override.yaml —-set metadata.jenkins.buildTag=jenkins-watchlist-deployrent-develop-3
set metadata. git . comni dn58a23ed£b3a22badcInTESBE50T6074TBEIETSE

Release “watchlist has been upsraded. Happy Helming!

NAE: watehist

LAST DEPLOYED: Thu May 21 14:51:29 2020

NANESPACE: default

STATUS: deployed

RevIsIoN: 2

TEST SUITE: None

OEBPS/Images/CH04_F08_Labouardy.png
Ownedbyme v | Q Fiter by tags and attributes o search by keyword

Name

AMIName

foking master2.107.2
fondns master2204.1
foking-savo
noxus:318.1.01
publc-boo-withur.

Awio Source - Owner
mi004B3AIBIISI62 I05G29695733]... 05929695733
1592 350,
ami08166808305520622 305929695733]... 05929695733
amiObaBATSCINTEA0d I0SG296957IY... 305929695733
ami72765499 305629695733, 305929695733

Visibily -
Privato
privat
Private
Private

privato

Statws
avaiasio
avalatio
avaiavio
avaiatio
avalatio

a

<

#® 0

@ K < 1sots >)

Greation Dato

Soptomber 1,2019.16:020...

Docombor 23, 2019 a1 7:22.
‘Septomber 1,2019 at 67
September 1,2019.216:38:
May 6,2018 at 12:18:05 P11

Plattorm
Othor Linux
Other Linux
Othor Linux
Other Linux

Othor Lnux

OEBPS/Images/CH12_F41_Labouardy.png
@ Jenkins A58 74370
Name: ‘movies-store/master’

Status: STARTED
Build ID: 2
Message: Merge pull request #4 from mlabouardy/preprod
usage of stage variables
Author: LABOUARDY Mohamed
URL: hitps://jenkins slowcoder.com/job/movies-store/job/master/2/

OEBPS/Images/CH08_F37_Labouardy.png
Jenkins Credentials System Global credentials (unrestricted)

4 Backto credential domains Kind | Secretext

@ Add Credentials Scope Global (Jenkins, nodes, items, all child items, etc)
Secret

D

sonarqube

Description | sonarQube token

OEBPS/Images/CH07_F31_Labouardy.png
peronssttnge SSH keys / Add new

profie
Tite

Account

Security ==
y

‘Security log

Bogins with‘ssh-rsa, ssh-ed25519, ‘ecdsa-sha2-nistp256, ecdsa-sha2-nistp3a4’ or‘ecdsa-sha2-nistps21

Emais
Noteatons
Schaduied rominders
siing

SSHand GPG keys

OEBPS/Images/CH10_F59_Labouardy.png
watchlist-deployment

Watcis dapoyment conigs

‘Branches (3)
s w I Last Sucenss Last Fallare LastDuraton o
o g 2min- 118 A atme O
Q@ A o somn-i2 ssmin-11 740 o %
@ B umw JeT— ssmin-110 sasec %

Legend) Atom feed foral) Atom feed forfiures) Atom feed for just atest builds

OEBPS/Images/CH06_F03_Labouardy.png
{aE Compute Engine

DB P

o]

VM instances
Instance groups
Instance templates
Saletenant nodes
Machine images
Disks

Snapshots

Images

Images] CREATE IMAGE

images Image mporthistory

Nome
@ centos6+420200309
@ centos 7420191014
@ centos 7420200309

@ centos:8+420200316

C ReFRES

Image exporthistory

centos @ Fier mages

Locotion

asia,eu.us

asia, eu,us

asia,eu.u5

asia, s

165668

150268

8168

20768

Oisksize

1068

1068

1068

1068

2 CREATE INSTANCE

Createdty

Famy
contoss
centos
contos?

centos

© DEPRECATE i DELETE

x Cotumas
Crestontime.
Mar 11,2020, 124818 AM.
0ct15,2019,80347 PM
Mar 11,2020, 11341 AM

Mar 17,2020, 54801 PM

OEBPS/Images/CH05_F09_UN06_Labouardy.png
aws_instance. jenkins_saster will be created
+ resource *aws_instance" *jenkins_master” {

ani ni-03717b2169673007"

arn (known after apply)

associate_public_ip_address = (known after apply)
availability_zone. (known after apply)
pu_core_count (known after apply)
cpu_threads_per_core. (known after apply)
get_password_data = false
host_id (known after apply)
1d (known after apply)
instance_state = (known after apply)
instance_type 2. 1arge"
ipve_address_count (known after apply)
ipve_addresses = (known after apply)

key_nane (known after apply)
network_interface_id (known after apply)
password_data = (known after apply)

placenent_group
prinary_network_interfa

(known after apply)
(known after apply)
(known after apply)
(known after apply)

public_dns (known after apply)
public_ip (known after apply)
security_groups = (known after apply)
source_dest_check = true
subnet_id ubnet-0988872367b9b40b4"
tags =<
+ "Author* = "mlabouardy"
+ "Name* = "jenkins_master"
)
+ tenancy (known after apply)
+ volune_tags (known after apply)

+ vpe_security_group_ids (known after apply)

OEBPS/Images/CH10_F03_Labouardy.png
$3 Bucket

oW

Public subnet

s o
g g g g
“““““ g &%
R >
miimil
am] =
....... S5 8¢
94 2
2 LR
ie
iR
£z H
54 g
iE z
g e v 7 <
b - <> > 5
& + + &

AWS Cloud

OEBPS/Images/CH08_F17_Labouardy.png
©, Full Stage View

@ Open Blue Ocean

P it

) Embeddable Build Status
@ Build Review

@ Pipeline Syntax

@ Build History

find

Stage View
Checkout

Average stage times: 2s
(Average full run time: ~10s) | me—mm
Apr22 2
1500
Apr22 1s
1454

Quality Tests

25

1s

OEBPS/Images/CH03_F17_Labouardy.png
HA Proxy

Load Balancer

v Shared Directory V

Jenkins Master AWS EFS Jenkins Master
active passive

OEBPS/Images/CH13_F27_Labouardy.png
«DHBO O

G a6

@
03
®
®

B oooone Eatiog enkin o)
© aaatier

o
1 l

imestam per 30 secenes

© success
© rause

messge ket Descnsing
2020.06.02161232088.0000 38121 0.
[t P ———
o7 e s 5 sk 0 bk o P

2020.06.02161020235.0000 8001850

ot e P ———
o7 s i .5 sk 4 bk o

2020.0602 1628507210000 (41403010

ot e P ————
o7 s .5 2k 4 5k s P

2020.06.02 1628525 cot0 2030 0
o P —————
TP e G .5k 1 ok s 5

2020.0602162851708:000 - e30I 5O
B T e —p——
TP e G .5k 1 ok s 5

re—
r——
PR

g

o e
@ success.

OEBPS/Images/CH09_F35_Labouardy.png
17.605 1870 Anchorevorker Jenkins version: 2.204.1

17.605 1870 Anchorevorker Anchore Container Inage Scanner Plugin versior
117.605 INFO Anchoretorker [global] debug: false

17.605 INFO Anchoreworker (build) engineurl: httpi//10.0.0.229:8228/v1
2020-05-15717:08:17.605 19F0 Anchorekorker [build] engineuser: admin
2020-05-15717:08:17.605 INFO Anchoreworker [build] enginepass: e+
2020-05-15717:08:17.605 INF0 AnchoreWorker (build) engineverify: false
2020-05-15717:08:17.605 1970 Anchorekorker [build] name: image
2020-05-15717:08:17.605 1870 Anchorevorker [build] engineRetries: 300
2020-05-15717:08:17.605 TNF0 Anchoreworker [build] policybundlel:
2020-05-15717:08:17.605 TNFO Anchoreworker [build] bailonFail: true
2020-05-15717:08:17.605 1970 Anchoreworker [build] bailonPluginFail
2020-05-15717:08:17.614 TNFO AnchoreWorker Submitting 305929695733 .dkz . ect .eu-west-3. anazonaws. con/mlabovardy /movies~
Loadex 102¢7£c2863€45d176a1738¢722b2b6016b94122¢ for analysis

2020-05-15717:08:17.923 TNFO AnchoreWorker Analysis request accepted, received image digest

Sha56:c00£9£dIce] fa82adee27960£53d20467££9003073951535 763428005254 03

2020-05-15717:08:17.924 INP0 Anchoreworker Waiting for analysis of 305929695733.dke.eck.ou-vest-3.amazonaus.con/mlabouardy/movies-
Loader 10207£c2863¢45d176a1738¢722b2b6016b9A122¢, polling status periodically

-]

(Pipeline] &
2020-05-1571
2020-05-1511
2020-05-15117:

2020051571

1.0.22

OEBPS/Images/CH05_F17_UN10_Labouardy.png
aws_cloudwatch_metric_alarm.high-cpu-jenkins-workers-alarm will be created
+ resource "aws_cloudwatch_metric_alarm" "high-cpu-jenkins-workers-alarm" {
+ actions_enabled true

+ alarm_actions (known after apply)

+ alarm_description “This metric monitors workers cpu utilization"
+ alarm_name “high-cpu-jenkins-workers-alarm"

+ arn (known after apply)

+ comparison_operator “GreaterThanOrEqualToThreshold"

+ dinensions 4

+ "AutoScalingGroupName" = *jenkins_workers_asg"

o
+ evaluate_low_sample_count_percentiles = (known after apply)
+ evaluation_periods =2

+id (known after apply)
+ metric_name “CPUUtilization"

+ namespace “AWS/EC2"

+ period 120

+ statistic "Average®

+ threshold = 80

+ treat_missing_data “missing"

OEBPS/Images/CH10_F56_Labouardy.png
Deploy - 195

Wit for interactive input

Approve Deploy?
Yes or Abort

Approved by mlabouardy

v watchiist-deployment/master

heduling project:

Starting building

OEBPS/Images/CH13_F19_Labouardy.png
Boeas

shp Procossing | . Indoxing
- € K
- nalsis &

visualzation

e Logstash Ennstcsonen Kibana

OEBPS/Images/CH12_F32_Labouardy.png
Apply complete! Resources: 3 added, @ changed, @ destroyed.

Outputs:

api = https://rtheSvizrh. execute-api.eu-west-3.anazonaws. con/test

marketplace = marketplace.slowcoder . con. s3-website. eu-west-3.anazonaws..con
production /xth65vizrb. execute-api . eu-west-3.anazonaws. con/production

sandbox = https

/xth65vizrb. execute-ap. eu-west-3. anazonans..con/sandbox
staging = http

[th6Bvizch. sxeoute-api. su-west=3, amazonaws. con/staging

OEBPS/Images/CH02_F22_Labouardy.png
pipeline-as-code Terrafors
D eeite s

pipeline(

agentf]

E label ‘workers'

OEBPS/Images/CH07_F06_Labouardy.png
Jenkins

& New ltem

& People

> Build History

O, Project Relationship

4 Check File Fingerprint

Welcome to Jenkins!

Please create new jobs to get started.

OEBPS/Images/CH06_F04_Labouardy.png
Images

[+] CREATE IMAGE

C REFRESH

{3 CREATE INSTANCE

© DEPRECATE [DELETE

Images.

Image import history.

v @ jenkins worker

@ c0-commongee-gpuimage-20200128

@ c1-deeplearning common-cu100:20200313

@ _c2-deeplearming pytorch-1-2-cu100-
20191005

@ c2-deepleaming pytorch-1-3-cu100-
20191219

Image export history.

Location

asia, eu,

asia,eu,
us

asia, eu,

10868

3072468

3015368

2953868

3387968

Disksize.

1068

5068

5068

3068

5068

Createdby

crewsandbox

<0-common goe gpuimage 20200128

c1-deeplearning-common cy100:20200313

c2-deepleamingpytoreh-1:2:cu100-
20191005

2-deeplearning pytorch-1-3-cu100-

20191219

Family

common-gee-gpu
image

commondigpu

pytorch1-2:gpu

pytorch1-3.gpu

OEBPS/Images/CH11_F14_Labouardy.png
Stage View

Qualty
Checkout pro
3 o

oy 22 °

6

‘SonarQube Quality Gate
movies-marketpiace [ELY

soversdo processing
a Benon (BASS)

UnitTosts

165

165

Static Code.
Analysis.

108

Quaity
Gato.

336ms

36ms

Build

2nin 108

2min 10

push

4

Analyze

195

Deploy

1oms

OEBPS/Images/CH01_F04_Labouardy.png
Single Page Application REST API Backend Database

. - 1%

s3 API Gateway Lambda DynamoDB

OEBPS/Images/CH02_F07_Labouardy.png
Pipeline Settings

Envronment

Name. Value

OEBPS/Images/CH07_F22_Labouardy.png
o Console Output

Branch indexing

15:29 Connecting to httpa://api.github.con using mlabovardy/**++++ (
Obtained Jenkinsfile from 707£744940482036dc82a60£560416136949828
Running in Durability level: MAX_SURVIVABILITY
(Pipeline] Start of Pipeline
(Pipeline] node
Running on ip=10:0:2:24.cusvest=3.conpute.internal in /home/ec2-user/workspace/movies-loader_develop

Hub credentials)

(Pipeline] stage
} ((Checkout)

(Pipeline] checkout

using credential github

Cloning the remote Git repository

Cloning with configured refspecs honoured and without tags

Cloning repository https://github.con/nlabouaxdy/sovies=loader. it

> git init /home/ec2-user/workspace/movies-loader_dovelop # timeout=10

Petching upstrean changes from https://github.con/nlabouardy/movies-loader.git

> git —-version # tineout=10

using GIT_ASKPASS to set credentials GitHub credentials

> git feteh --no-tags ~-progress -~ hitpsi//github.con/mlabovardy/novies=loader,gis. +rets/heads/develo
tineouta10

Tabcking wibksnt Sag

ots/renotes/origin/develop #

OEBPS/Images/CH08_F09_Labouardy.png
Jenkins » movies-parser » develop

* U
Branch develop

O, status

o Fullpoject name: movies-parserideveop

= Changes

ey —

£ Buid Now " Bocant Changes

2% View Confguration _—

©, Full Stage View Stage View
(@ Open e Ocean

9 Gituo Checkout Quality Tests Unit Tests
1)) Embeddable Build Status Average stage times 2 185 s

@ Build Review

@
© Pipoline Syntax e 5 = -

- Build History trend = o

ez 2 3as
fnd i -

OEBPS/Images/CH04_F19_Labouardy.png
Jonkins AMIs.
Jenkins Master

Auto Scaling group

l_JULJ

jorker Worker Worker

Provision
>

Temporary Intance ® .i! Doploy

Teraform

Bake

>

OEBPS/Images/CH10_F02_Labouardy.png
Build Status

Janking Master

o Push Event @

Gitub.

Trigger

‘ e

CloudWatch

Jonkins Workers,

@ e
Scale Ou/

Tost

@E

Q) osseen (
1
I b
Scan 1
LN . 1
Nane = ARTIFACTORY 1
@ ” . e O 1 1
e !
Build Push Deploy |
K+® & o = Q !
1
sonarqube | e ﬁ% @ | Dockerswam |
I 1
§ [r— | H
e ! [
Covrage Repart ! 1
! 1

N -

OEBPS/Images/CH09_F19_Labouardy.png
Basics* Encryption Tags Review + create

‘Azure Container Registry alows you to build store, and manage container images and arifact in a pivate registry for al types
of container deployments. Use Azure container registries with your existing container development and deployment pipelines.
Use Azure Container Registry Tasks to build container images in Azure on-demand, or automate builds triggered by source
code updates, updates to a container's base image, or imers. Learn more

Project details
Subscription * [Pay-As-You-Go 87
Rasourea group* [mansgement g
Create new
Instance details
Regisry name = [abovaray Z
azurectio
Location * [(europe) France Central Z
Admin user * ©
sKw* @ [‘standard =

OEBPS/Images/CH12_F17_Labouardy.png
@ Console Output

+ aws lasbda update-function-code -~function-nane Noviesioader --s3-bucket deployment-packages-vatchlist --si-key

HoviesLoadex /Se8eb154208702657204489a868b16420877b8 . 21p ~-region eu-vest-3
g

“Punctioname” s “Hoviesioader",
“Lastodi fied™: "2020-05-29715:43:27.094+0000",
“Rovisionld": "46414431-7c6-4199-5ade-80a385ccbe3d",
“HemorySize"s 128,

“Environment™: {

“variables®: {
“505_URL': "httpsi//aqs.cuswest-.omazonaus.con/10392969573/sovies to_parse”

)

)

“Version's “suatest,

“Rote™: " 1308929695733 role/MoviesioaderRole”

“riseout”

“Runtime: pythond.7",
“rracingeonig™s {
“passThroush”

*UdLOEDAFVKNT3a0r959KEOBIBYQZLBTARCEHAKO=" ,

“codesize”s 2725,
“Punctionhxn®: “arn:aus:lasbda:eu-uest-3
“Handler™: “index.handler”

059296957331 funct ionsHovi

OEBPS/Images/CH06_F20_Labouardy.png
Home > Images

Images
oo s

+ Add @ Manageview v O Refresh L BrporttoCSV | B Assigntags |) Feedback & Leave preview

Fierbymame.] (_subscpion ==l) (Resource grovp == al©) (tocaion == ol ©) (‘g Ade er)

Shoving 1101 o 1 recods.
[Name . Source... T4 OStype T Resource group T4

([8B jenkins-worker pkrvmgrdge.. Linux management

OEBPS/Images/CH10_F57_Labouardy.png
@

Jenkins A% 529 pi
Name: ‘movies-loader/master’
Status: STARTED
Build ID: 2
Message: Merge pull request #9 from miabouardy/preprod

user approval required for production deployment
Author: LABOUARDY Mohamed
URL: htps:/jenkins slowcoder.com/job/movies-loader/job/master/2/

Name: ‘movies-loader/master’
Status: SUCCESSFUL

Build 1D:
Message: Merge pull request #9 from miabouardy/preprod

user approval required for production deployment
Author: LABOUARDY Mohamed
URL: https:/jenkins slowcoder.com/job/movies-loader/job/master/2/

OEBPS/Images/CH11_F05_Labouardy.png
M Stage Logs (Deploy)

Jenkins > watchit-doployment » _dovelop

Y

Q sutus

(= Changes

9 suianow

£ View Contursion
2, FulSiago View

(@ Open Bo Ocomn

P i

) Emboddable Buid Staus
@ Buid Roviow

© Pheine Synax

@ Build History

© Shol St kuboct apply 1 dooyments/ (sol imo 509ms)

+ kubeetl apply ~f deployments/

| cotoment.pvsrmongom unchanges
| deploynent.apps/eovies-rarketplace unchanged

eployment.

ps/eavies-store unchang

Stage View

Checkout Authentication Doploy
15 779ms s25ms.
1s oms. 525ms

OEBPS/Images/CH07_F37_UN03_Labouardy.png
Recent Deliveries

v () 2fbagdda-8310-11ea-8100-1a550bb73ad1 2020-06-20 1608153

v () de90c880-8307-11ca-Bebd-b509355115c1 2020-04-2016:04:37 [

OEBPS/Images/CH03_F16_Labouardy.png
Public subnet

NAT Gateway

Availability Zone

Private subnet

Workers

Route table

internet
Gateway

@

Route 53

https:/fjenkins.domain.com

OEBPS/Images/CH09_F34_Labouardy.png
Anchore Container Image Scanner

Engine URL.

Engine Usemamo.

Engine Password

Verify SSL.
Enable DEBUG logging.

hitpu110.0.0.229:82281

admin

OEBPS/Images/CH11_F06_UN06_Labouardy.png
NAME TYPE CLUSTER-1P EXTERNAL-IP

mongodb ClusterIp None <none>

movies-marketplace LoadBalancer 172.20.140.150 a5149491400274ac2a7b15f0140133ed-1717030020. cu-west-3. elb.amazonaws .con
movies-store LoadBalancer 172.20.68.115 a9buB5440eaidbdc68abpeB973954b70-1525632852 . eu-west-3.elb.amazonaws.com

OEBPS/Images/CH12_F33_Labouardy.png
deploy lambda functions to staging #1

‘miabouardy wants to merge 1 commitinto preprad from devetop (5}

Add more commits by pushing to the develop branch on mlabouardy/serverless-movies-store.

° All checks have passed Hide all checks
1 successful check

{5 continuous-integrationjenkins/branch — This commit looks good Detais

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request You can also open this in GitHub Desktop or view command line instructions.

OEBPS/Images/CH07_F07_Labouardy.png
Enter an item name

movies-loader

» Required field

Inheritance Project

“This should be chosen for altasks that run real commands on build nodes. Such projects allow properties to be inherited between each other.
“This allows the definton of “parent” projects, that have generic settings. Other, more specific,chid tasks can then inhri these setiings without
having to re-define them from scratch.

Pipeline

‘Orchestrates long-running activites that can span mulple build agents. Suitable for building pipelines (formerly known as workflows) andlor
organizing complex activities that do not easily ftn freo-style job type.

Folder

Creates a container that stores nested items in t. Useul for grouping things together. Unlike view, which is just a fier, a folder creates a separate
namespace, so you can have mulple things of the same name as long as they are in diferent folders.

Multibranch Pipeline
Greates a set of Pipeline projects according to detected branches in one SCM repository.

Multibranch Pipeline with defaults

Extend Multioranch pipeline plugin and build branches in the efault prepred pipeline script. Creates a set of Pipeline projects according 1o detected
branches in one SCM repository.

OEBPS/Images/CH08_F32_Labouardy.png
Q. Instance State : unring Add fter)

Name. insnceld - InstancoTypo - Avallabilty Zone - Instance State - Status Chocks - Alarm Staus Public DNS (Pé)
beston LoscoSBccBacIaTIRD 2micro cvwest3a © wning © 2cnds.. Moo e 2351033520
Jonkin_mastor LOaaTocabeaTiohe 2iarge ovwest3a © rning © mcvds.. Now
Jonkins_worker L0s26tboas27Ic0S80 2imecium cvwest3n © wning © ncnecs.. Moo W
jonkins_worker HOM18182066c120028 2.medium euwest 3 @ running © 22checks .. Nono %
‘sonarqube 006000253678009b4 2large euwest3a © running & Inioizing Nono %

OEBPS/Images/CH07_F23_Labouardy.png
Enter an item name

movies-parser
oo

Freestyle project
This s tho cantral fatursof Jerkins. Jarkinswi bud you project, comining any SCM with any buld system, an tiscan be ven usedfor
‘omething ohe than sotwaro buid.

Pipeiine
‘Orchestates long-running acivies ha can span maltpl buld agent. Suabl forbuling pipeines (fomerly known as wordows) andlor
organizing complx actvies that o ot ealy it i free-syi ob pe.

Folder
Greatos a conainer that stores nestd s in . Usefu fo rouping tings togethe, Unike view, whic is st ie, a folder creates a separato
namespace, soyou can have mulipo things of tho same namo as long s they aro i ieront odors.

(R e Pioaacn
€ g Creates a st ofPpeline projects according 1o detected branches n one SCM reposiry

1f you wantto create a new item from other existing, you can use this option:

@ s a [omess

OEBPS/Images/CH11_F15_Labouardy.png
Name: movies-marketplace
Namespace: watchlist
CreationTinestany Fri, 22 May 2020 14:32:51 40200
Labels: appzmovies-marketplace
app. kubernetes . io/managed-by=Helm
tier=frontend
Annotation: deploynent . kubernetes. io/revision: 3
meta.heln. sh/release-name: watchlist
meta.heln. sh/release-namespace: default
selector: app=novies-narketplace
Replicas 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds)

RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels

ovies-marketplace

rontend

Annotations: [git/commitld: b82108da404cf03670124881cecbbd72d8f365b3
Jenkins/build: jenkins-watchlist-deployment-preprod-4

Containers:
movies-narketplace:
Inage: 305929695733 . dkr . ecx . ou-west-3. anazonaws . con/mlabouardy/movies-narketplace: preprod
port <none>

Host Port: <none>

OEBPS/Images/CH14_F29_Labouardy.png
@ Jenl

adnin Slogout

Jenkins.

- o doscripion

. pm; Welcome to Jenkins!

" Groate ajob tosar busaing your sotwar proect

& wyviews
@ OpentivoOcean

Buid aueve ~

OEBPS/Images/CH01_F05_Labouardy.png
Docker image

o

O 0_@ o

GitHub Jenkins

Automated tests

Slack notification

-
EEEEE
Docker Registry

OEBPS/Images/CH09_F18_Labouardy.png
Repositories (4]

View push commands | | Delete EIl ot repository

Q Find reposiories <is>|e

: o | ™ Seanon

Repository name 4w Createdat S

lbovimoesiontr) SIS s Sammon cimaboudyinods QUL gy B

miabouardy/movies- (9 305929695753 dkecrev-west-3 amazonaws.com/mlabouardy/movies: O4/25/20,054123 o

marketplace marketplace Y Dt Obtted

e o e 8 0BTt S TSI gy e

P, (5 305929695733 kst eu-west-Samazonaws com/mlabouardy/movies: O4/2S/20,054117 =

store M

OEBPS/Images/CH02_F16_Labouardy.png
hotfix

Production me'

master
Staging
pre;rod
Sandbox el

develop

feature/a i

feature/B

OEBPS/Images/CH12_F30_Labouardy.png
MoviesStoreListMovies

Monitoring

v Designer

AP Gateway

Throttle Qualifiers Actions v

Switch versions/aliases. x

Versions | Aliases

SLATEST 19 seconds ago

4 19 seconds ago
24560004431 150651953b51a23265DI18815525
MoviesStoreListMovies A

3 11 minutes ago

S e

Alas: production Alias: staging

2 1 minutes ago
5 15743524012327940767100ceb454e969829¢0d

OEBPS/Images/CH11_F04_Labouardy.png
et deviop || Nowpulreqes crestnew e | Uplsaties | rina i
This branch is 16 commits ahead, 4 commits behind master. 11 Pull request (3 Compare
53 misbouardy k6= deployment les Latest commit aet7es7 14 seconds ago
i deployments. k8s deployment files 14 seconds ago
B Jenkinsfile fix region 15 days ago
B Jenkinsfile.eks deploy to eks 18 minutes ago
& Jenkinsfile.swarm deploy to eks 17 minutes ago
B ReAOMEMA updiate reacme 14 days ago

& docker-compose.ymi deploy to eks 17 minutes ago

OEBPS/Images/CH14_F28_Labouardy.png
tH

AP Gatowy

Tigger

Incoming event

Buid Job

e

Clauawaten EventRule

Seing

Workr

OEBPS/Images/CH13_F33_Labouardy.png
60%

Memory Usage

5%

s50%

asn

aox

5%

2125

© Query (1

2130 2138 2140

£3 Transform (@) 8 Alert

2145

215

SIS ... e v

v

OEBPS/Images/CH14_F02_Labouardy.png
Welcome to Jenkins!

Please sign in below or create an account.

Username

Password

[Keep me signed in

OEBPS/Images/CH06_F05_Labouardy.png
Images [] CREATEIMAGE C REFRESH

1 CREATE INSTANCE

© DEPRECATE i DELETE

Images Image import history Image export history

Fiterimages

= Name
& @ jenkins masterv22041

@ jenkins-worker

@ c0-common-geegpuimage 20200128

@ c-deeplearning common-cu10020200313

@ c2deeplearning pytorch-1-2-cu100-
20191005

Location

e

asia, eu,

us

asia, eu,
us

asio, eu,
us

size
1368

10868

307.2468

3415368

2953868

Disksize.
1068

1068

5068

5068

3068

Createdby

crewsandbox

erewsandbox

0-common goe-gpuimage 20200128

c1-deeplearning-common-cu100-20200313

c2-deepleaming pytorch-1.2-cu100
20191005

Family

common-gee-gpu
image

common-digpu

pytoreh1-2:gpu

OEBPS/Images/CH12_F18_Labouardy.png
St Checkout Unit Tests Build Push

L— o—.—o—@—o
redegesion
e Towe m Push

.—OT T 9—@—0

umﬂn\s

OEBPS/Images/CH07_F20_Labouardy.png
@ Jenkin

Jonkins > movis-oador

20
O, status

= Ghanges

© suidon

2 Viow Conturstion

0, Stago view

@ OpenBln Ocomn

P ait

0 Embodcatia B Status
@ Build Revew

© Ppoine Symax

. BulaHistory

trend =

Stage Logs (Checkout)

© Gheck out rom vrsion contol (sl me 85)

using credential github
Cloning the resote Git repository
Cloning with configured refspecs honoured and without tags
Cloning repository https://github. con/nlabouardy/sovies-loader .01t
> git init /hose/ec2-user/workspace/sovies-loader_develop # tiseout=10
Fetching upstrean changes fron https://github. con/alabouardy/movies=loader.0it
> git —version # tincout-10
using GIT_ASKPASS to set credentials Github credentials
> git fetch ~—no-tags ~-progress ~— hitps://github. con/alabouardy/aovies=loader,0it +refs/heads/
develop:refs/resotes/origin/develop # tineout=10
Fetching without tags.
> git config resote.origin.url httns://github. con/nlabouardy/sovies-loader.oit # tiseout=10
> git config ~-add resote.origin. fetch +refs/heads/develop: refs/renotes/origin/develop # tineout
0
> git contig resote.origin.url httns://github. con/nlabouardy/sovies-loader,oit # tiseout=10
Fetching upstrean changes fron https://github.con/slabosardy/movies=1oader,9it
using GIT_ASKPASS to set credentials Github credentials
> git fetch ~-no-tags —-progress —- hitps://github. con/alabouardy/novies=loader.git +refs/heads/
develop: refs/ resotes/origin/develop # tiseout=10

OEBPS/Images/CH10_F58_Labouardy.png
GitHub

Credentials. miabouardy/"***** (GitHub credentials) 4 &= Add v

User miabovardy.
© Repository HTTPS URL

Repository HTTPS URL httpsu/github.com/mlabouardy/watchist-deployment git
Validate

Repository Scan - Deprecated Visualization

Behaviours [x |

Discover branches

®e

Strategy Exclude branches that are also filed as PRs

Filter by name (with regular expression)
Regular expression | (masterlpreprodidevelop)| @

Add v

OEBPS/Images/CH12_F15_Labouardy.png
Start Checkout Tests Build Push End

{ e, © © o

 Coverage Reports| MoviesstoreAdd
Tofavorites
Qualty Tests:
UnitTests MoviesStoreSearch

Movie

OEBPS/Images/CH07_F05_Labouardy.png
& mlabouardy / movies-loader prvate Oumatcn~ | 1 | kstar o | Yrork | 0
<>Code (D lIssues 0 11 Pull requests o ©Actions || Projects 0 Wiki @ Security Ll Insights £ Settings

Movies loader Edit

©- 2 commits D 3branches (@0 packages. © Oreleases 221 contributor

I
‘This branch is 1 commit ahead of master. T Pull request (%) Compare
53 misbouardy aacing from sonfle Latest comit ae4d869 5 minutes ago
) README.md Create README.md 20 minutes ago

B main.py
B movies.json
B requirements.txt

B test_main.py

Ioading from json file
loading from json file
loading from json file

Ioading from json file

5 minutes ago
5 minutes ago
5 minutes ago

5 minutes ago

OEBPS/Images/CH01_F06_Labouardy.png
Docker image

www
o) (] H
0 -°-6-°- :
[[11]
GitHub Jenkins. Docker Registry

Automated tests \

Slack notification

Kubernetes

OEBPS/Images/CH08_F23_Labouardy.png
+/ movies-store < 18 Pipeline Changes

Branch: develop Changes by miabouardy.

Comit: 9c0e874 seconds ago Started by user miabouardy

St Checkout Tests End

Tests / Quality Tests - 55

e ———————r—

Acifa

OEBPS/Images/CH07_F08_Labouardy.png
Branch Sources

GitHub

Credentials -none- 4| e=Add

4\ Credentials are recommended
© Repository HTTPS URL

Repository HTTPS URL

Repository Scan - Deprecated Visualization

Behaviors, Add ~

Property strategy Al branches get the same properties.

Add property ~

Add source +

Validate

OEBPS/Images/CH12_F42_Labouardy.png
Extended E-mail Notification

EMTE Server smip.mai ou-west-1.awsapps.com

Defauituser E:mai suffi

@ Use SMTP Authentication

User Name, mohamed@labouardy.com

Password

Advanced Emal Propertis

Use SSL L]

SMTP port 7S

]

OEBPS/Images/CH03_F19_Labouardy.png
Add user o 2

Set user details
You an il e t o with 5 s acess type nd prmissions. Lo rs

Usaenama | abouaty

© Addsnothr user

‘Solect AWS access type.
‘Selct B hso s il acess AWS. Accss ks an Aogeneated passwords o the st s, Lea moro.

Access typer) Programmati access
Ensesan sccess ky 1D 4 secrot accass Key o ha AV APL, CL, SOK,and
therdiopmat ot
AWS Managoment Gonsole sccess
Enses a passwort st aons usrs 0 signan 1 the AS Managamant Conscl.

OEBPS/Images/CH02_F21_Labouardy.png
o Bty Jenkins Pipeline Linter Connector

Cursor
Find Jenkins » Pipeline » Linter > Connector: Crumb Url

Font The url of the crumb service (i.. hitp://<your_jenkins_serveriports/crumblssuer/api/xmi?
e xpath=concat(/fcrumbRequestField, %22:%22, /fcrumb))

Diff Editor

Minimap

Soosstons Jenkins » Pipeline » Linter > Connector: Pass.

Files

Password (can be left blank if you don't want to put your password in your settings)
> Workbench

> Window
> Features
> Application Jenkins » Pipeline > Linter > Connector: Strictss!
 Extensions V) Setto false to allow invalid ss! connections
css
Emmet
Git
Go
Grunt
Gulp
HTML

Token (can be left blank if you don't want to put your token in your settings)

Jenkins » Pipeline > Linter > Connector: Url
Linter url (ie. htip://<your_jenkins.server:port>/pipeline-model-converter/validate)

hitps:/fjenkinsslowcoder.com/pipeline-model-converter/validate.

Markdown Jenkins > Pipeline » Linter > Connector: User
Merge Conflict Username

Hods deng miabouardy

Npm

PHP

Reference Search.

OEBPS/Images/CH09_F36_Labouardy.png
4 Backto Project

O, status.

= Changes

& Console Output

= EditBuild Information
© oelete buia #17

@ Timings

4 GitBuild Data

[NoTags

& Dockor Fingerprits
Q0 Anchore Report (FAIL)
(@) Open Blue Ocean

i Pipeine Steps
B Workspaces

©) Tmings

@ Build #17 (May 15, 2020 5:08:05 PM)

Build Arifacts
i () anchore_gates.json
) anchore_securityjson

[anchoreengine-api-response-evaluation-1.json
[anchoreengine-api-response-vulnerabiities-1,json

‘ Started by user miabovardy

Replayed £16 (dif)

“This run spent

« 5 ms waiing;
« 4min 8 sec buid duration;
« 4min 8 sec total from scheduled to completion.
Revision: 02c7(c28631490176a1738¢722020601€b91221

« develop

a ‘Anchore Report (FALL)

21061 K8 o= view
81286 K8 4= view
35081 K8 4= view

OEBPS/Images/CH08_F18_Labouardy.png
E_m .
Stage Logs (Integration Tests)

Jerkins . moviesstore»dovoop

© shell Script -- docker run -rm miabouardy/movies-store-test nRM run test (self ime 1s)
a0
Pyl + dockerrun ~=rn mlabouardy/movies-store-test npa run test
S Crrges > rovies-storeal.0.0 test /app

> mocha . /test/x.spec. §5
1D BuiaNow
% viow Configuration

Storenio
©, Full Stage View fake mongo is started: mongodb://localhost:27017/test
2 should find aWt sovies

(@/Cper i cozen 7 should add to favorites
Gt 7 should find a novie

) Embeddable Build Status
© Build Roviow, 3 passing (307ns)

© Piosine Synax

OEBPS/Images/CH10_F55_Labouardy.png
Deploy - 425

Approve Deploy?

Abort

OEBPS/Images/CH01_F03_Labouardy.png
aws
~—

.
ore © @

)

“or0 00

c)

Y.N @
—-@

y TR 00 €& -
© oo © eoe

=]
%
~ &

OEBPS/Images/CH08_F33_Labouardy.png
aws_security_group.elb_sonarqube_sg: Creating.

aws_security_group. elb_sonarqube_sg: Creation complete after 1s [i

‘aws_security_group. sonarqube_sg: Creating...

aws_security_group. sonarqube_sg: Creation complete after 2s [i

aws_instanc : Creating.

aws_instance. sonarqube: Still c
Still creating.

g-682e62dc156b43cd]

g-0eec135001042670f]

[205 elapsed]
: Creation complete after 22 [id=i-0ee0c0253678¢09b4]

1b: Creating. ..

1b: Creation complete after 2s [id=tf-1b-20208424121504563680000001]

aws_instance. sonarqube

aws_routes3_record. sonarqub
‘aws_routes3_record. sonarqub
‘aws_route53_record. sonarqube
‘aws_xoutes3_record. sonarqube
aws_routes3_record. sonarqube

Still creating... [10s elapsed]
Still creating... [20s elapsed]
Still creating... [30s elapsed]
Creation complete after 39s [1d=22TR9SQTUSUIUT_sonarqube. slowcoder.con_A]

Apply complete! Resources: § added, @ changed, © destroyed.
Outputs:

1//sonarqube. slowcoder . com

OEBPS/Images/CH04_F17_Labouardy.png
Updtes Avadatlo | Inatalld Advancod

Hame |
Amazon ECR a0
Thi ploin genratos Dockarauthonicaton oken fom Amazon rednts o access Amazon ECR.
Amazon Web Savces SOK
i plugin proides AS.SDK fo ava o othe pugins.
Anteugo
Ak Apacho Ant suppor o Jonkins
Aoache HigComoaosnis Cleot 4 XAPI P
‘Buncios Apache HipComponants Clant 4. and aows 10 b used by Jerkins pgns.
Asynetite Cieny

i plugin proides a shared deperdancy on tho Syl ary S0 hatother g can -
operate when usiog s oary

Aueoticaton Tokens APLPhg
Thi g oo an AP forconver crodentals o athantcaton tkens n orks.
Atolavrte fo Bue Ocean
Automatecaly fvortes mulieanch ppetno obs when usa i the uthor
Biiuchot Braoch S Pogo
Abows 0 us0 Bbucket Cioud and Btbucket Savoras sourcesfor mul-banch projects. 1 50 provdes.
o roqiod connoctosfor Babucket Cloud Team and Bibucket Sever Prject fodr (as0 inown as
ropostores o Gscoverng).
Eiucket Poio or B Ocsan
BoOcoan Bebucketppasns croatr
Block Queuad b Pioon
Blocksinblocksob i quevo wih mached condtions scopo.
BusOcenn
BueOcoan Aggrogater

OEBPS/Images/CH13_F18_Labouardy.png
DSIack plugin logs

Posting: to #ienkins-notifications on menning using https://MORKSPACE.slack.con/services/hooks/ Jenkins-ci?token=TOKEN: #5d6eTa

Posting succeeded

Posting: to #3enkins-notifications on menning using hteps://MORKSPACE.slack.con/services/hooks/ Jenkins-ciztokensTOKEN: #207d32

Posting succeeded

Cloar T

2SEVERE »WARNING

OEBPS/Images/cover.jpeg
(ontinuous Delivery

Mohamed Labouardy

/'I MANNING

OEBPS/Images/CH10_F04_Labouardy.png

 O'Reilly logo

 Houston, we have a problem.

 Sorry for the inconvenience. Please try again. For additional help, please contact our customer service team at 1-800-889-8969, 707-827-7019, or support@oreilly.com

 [image:]

OEBPS/Images/CH11_F32_Labouardy.png
environment-watchlist-production private 77 Star

@ Makefile &8 Apache License 20 Updated 2 minutes ago

environment-watchlist-staging Private ¥ Star

@ Makefile &8 Apache License 20 Updated 2 minutes ago

OEBPS/Images/CH06_F22_UN08_Labouardy.png
Initializing the backend...

Initializing provider plugins...
~ Checking for available provider plugins.
- Downloading plugin for provider *azurern

(hashicorp/azurern) 1.44.0...

Torraform has been successfully initialized!

OEBPS/Images/CH09_F46_Labouardy.png
Branch: develop +
Commits on Apr 25, 2020

Merge pul request #1from miabouardy/featureffeatureA
858 miabourdy comited 1 minut ag0 ©

update readme
858 miabouardy conmited 7 mintes sgo v

add get commit id function
58 miabounrdy commiod 16 mintes ago v

push to private registry
51 miabouardy commited 22 minses ag0 X

Verified

9asbbdc.

9da376b

2921020

<

©

<

©

OEBPS/Images/CH09_F33_Labouardy.png
Fitr: O, anchoro.

jpdates Avallable Installd Advanced
Install | Name. Version

a = 1022
This plugin provides container image scanning using Anchore Engine

[—— T — e o e m

OEBPS/Images/CH08_F08_Labouardy.png
m Stage Logs (Quality Tests)

donkins . movespaser > dovoop
© Checks 1m0 0.2 Unsk o s s

* o © Shet Scr - cocke b A misbouncinovis arseres £ Dackl st (s o 50

@ status © Checks if running.on & Unixclike node (s ime 9ms).

[= changes © Shell Script - dosker inspect - mabouarcyimovies-parsar-ast sel tmo 288ms)

D suiaow © Shal Scip - goin ol o 286me)

2% View Confguration E—

Q Futsiago viw o ingui 22161 cnported ype Hovie should have coment or bo unerported

@ OpmBuoocom AT ST e o Q]

o oo 5ain.q0:47:1: exported function ParseHovie should have comsent or be unexported

£010.90:125:3: var reahttp should be reahTTP

'@ Embaddable Buld Statis. main.go:131:3: var respHttp should be respHTTP

@ Buid Roview

g T —
@ Pica s ez H & ats

OEBPS/Images/CH10_F01_Labouardy.png
CI/CD workflow
Qualy Unit Seoury i
@ckout @ ool Zocnt Build Push

OEBPS/Images/CH13_F28_Labouardy.png
Logstash

@ Enable sending logs to an Indexer

Indexer Type.

Etastic Search

ued hitpsclastcsearch.sioweoder comevenisferting.
User name

Password

Mime TYPe | appiicationson

® © & 0 o

OEBPS/Images/CH02_F06_Labouardy.png
ipetine (
agene (
node ¢
Taber “vorkers®
)

)
stages (
tage("checkout’) (
steps (
‘ocho "clone project”
)
)

stage("unie Tosts’) (
arallel (
Stage(“Unis Testa’) (
stops (
‘oeho "zun unit tosts®
)
)

sage("Quaiiey Tests') (
steps (
‘echo "run quality test

OEBPS/Images/CH06_F22_Labouardy.png

OEBPS/Images/CH10_F14_Labouardy.png
Jenkins » watchlis

P

o staws

= Changes

£ Buid Now

2% View Configuration
@, Full Stage View
(@ Open Biue Ocean
Gt

) Embeddable Bl Status
& Buid Roview

© Pipoine Syntax

“+ Build History

find

o mays209sam
= =5

Branch develop
ol projectname: watchist dopoymenteveop
= ‘Becent Chang
= nges
Stage View
Checkaut
age times -
s [T
e |crmes
ES==
¥
+ Permalinks
s

* Lastbuild (81). 58 sec ago

) Atom feed for all) Atom eed fo aibres

OEBPS/Images/CH12_F43_Labouardy.png
Name: 'movies-store/master' Status: SUCCESSFUL © inbox x

Mohamed Labouardy
tome +

More info at: https:/enkins.slowcoder.com/job/movies-storefjoblmaster/5/

« Reply » Forward

OEBPS/Images/CH13_F31_Labouardy.png
W Grafana -

Settings
Basic Information
Collsborators

Install App.

Manage Distrbution
Submit to App Directory

Interactivity & Shortcuts
Stash Commands

Incoming Webhooks

Activate Incoming Webhooks off
Incoming webhooks are a simple way to post messages from external sources into Slack.
They make use of normal HTTP requests with a JSON payload, which includes the
message and a few other optional detais. You can include message attachments to
isplay richly-formatted messages.

Adding incoming webhooks requires a bot user.If your app doesni't have bot user, we'l
add one for you.

Each time your app is installed, a new Webhook URL will be generated.

OEBPS/Images/CH08_F21_Labouardy.png
denking > movies-siore >
2w

0, staws.

= Changes

£ suidnow

£ View Configuraion

O, Ful Stage View

1 Coveraga Repon

(@) Open Biue Ocean

i ot

) Embedcabie Buid Staus
@ BuldReview

© Pipotine Syntax

develop

Branch develop
Fullprojctname: - soreidoveop

P,
BecantChasoss
=t

Stage View

Checkout

Qualiy Tests

15

1s

Integration
Tosts

15

1s

Coverage.
Reports

7s

OEBPS/Images/CH06_F07_Labouardy.png
e IAM & Admin Create service account

2 1AM @ service account details — @) Grant this service account access to project (optional)
© Identity & Organization
&, Policy Troubleshooter Service account details
Service account name
B Organization Policies terraform
Display name for this service accoun
& Quotas s h t
‘Service account ID
4 Service Accounts terraform @learning 223618 iam gserviceaccountcom X C
Labels
Service account description
% setings

Describe what this service account willdo.

OEBPS/Images/CH05_F19_Labouardy.png
CloudWatch Monitoring Details X

CPU Utilization (Percent) Statistic: | Average | Time Range: | LastHour # Period: 1 Minute)%
0

° o
00
w©
o
o
n

o

W s e s s v s e s w
Wi ws mam was ma was W0 s s s w0 1208

. onissescedeeran

OEBPS/Images/CH11_F17_Labouardy.png
HeATH

&

<
<

status.

BRaNCH

preprod

develop.

commr

waesTMEssAGE

Started by upstream pipeline“movies-marketplace/master”

Started by upstream pipeline“movics-marketplace/preprod

Started by upstream pipeline"movics-marketplace/develop’

compLereD.

afewseconds ¢

6 minutes ago

21 minutes ago

*

OEBPS/Images/CH08_F06_Labouardy.png
$ docker run -t -d -u $00:500 -w /home/ec2-user/workepace/movies-loader_develop -v /home/ec2-user/workspace/movies-
Loader_develop: /home/ec2-usex /workspace/movies-loader_develop:rw, ~v /home/ec2-user/workspace/novies-loader_developtemp: /hone/ec2-
usex/uorkspace/movies-loader_developtnp:ry,: —

. + - stasees mlabovardy/movies-loader-test cat
$ docker top daB10b2d196£b60261456ad caized5caTa0Tebeca697anes 13b29¢382¢£act3 ~eo pid,comn
(pipeline) (

(Pipeline) sh

+ python test main.py

Ran 3 tests in 0.000s

ok
(Pipeline))

§ docker stop --tines1 da810b2d196£b6e261456ad1cadzeds5caTa0 ebecasdanes13b29c3826£ach3
$ docker rm - daB10b24196€b6e261456ad1cad2ed5caTa0Tobecac97aaes13629¢382¢£ac63
(Pipeline] // withn:

{Pipeline) }

OEBPS/Images/CH10_F29_Labouardy.png
it slack

App Directory

< Browse Apps.

Add toSlack

Avphely
Torms

Categories:

Q search App Directory Bowse Mansge Buld

Jenkins CI

Aopinto Sttigs Secuity & Complance W

Sekin G 3 customizable coninous negration server with over 600 plgis owing you o configure
omeet yourneeds.
s ntgraion wilpost b nications (o3 channen Stk

@ crowor +

OEBPS/Images/CH07_F18_Labouardy.png
'

L stotos

movies-loader

£ sean Reposory Now

fespeioon L =

= o sty

OEBPS/Images/CH07_F33_Labouardy.png
Branch Sources

Git
Project Repository _ hitps:/github.com/mlabouardy/movies-loadergit
Credentials. miabouardy (GitHub SSH credentials) 4 &= Add ~

Behaviours.

in Repository

Discover branches

Additional

Add ~

Property strategy Allbranches get the same properties

Add property ~

Add source +

® o

OEBPS/Images/CH09_F08_Labouardy.png
© movies-marketplac Pipeine amis @ 4 B 3

Comi: 4000343 Surted by usermisboarty

St Chedow Quiess UsiTess Aws QuityGoe [

[/, 2 ? o O

OEBPS/Images/CH05_F20_Labouardy.png
History (/)

Q search

oate
2020.03-241207:56
2020.05.24 120756
2020.05.24 1124956

2020.05-2411:49:10

Type Description

e Successfully executed action arn:aws:autoscaling:eu-west-3:305929695733:scalingPolicy bfc 1fa6-fad0-443d-90db-
6dcea363b0fcaautoscalingGroupName/jenkins workers_asg policyName/scale-out-jenkins-workers

State update ‘Alarm updated from OK to I alarm

State update ‘Alarm updated from Insufficient data to OK

Configuration update Alarm "high-cpur-jenkins-workers-alarm” created

OEBPS/Images/CH02_F18_Labouardy.png
2 Backto Projec
Status.

= cnar

B Consolo Output

= et
© oektebuia 42
© Timings
 GtaudDma
o NoTags
(@ Open Biue Ocean
) Embodabio Buld Status
& Repiay
Pipetine Steps

B Workspaces

Replay #2

Alows you 0 oplay Pipoino buid with a modifed scrp. I any Load stops woro run, you

e - exomple’

{imageName) ;S {eny BUILD_I0)

e} 1 ey, BUILD_ID)

Pinolioe Syntax

fy the scrpt oy loadod.

) S {eny.BUILD_I0), '~ Dockerfile. quality

£ Dockerfile.u

uardy

fog out

OEBPS/Images/CH03_F06_Labouardy.png
Launch method

Let Jenkins control this Windows agent as a Windows service
This launch method refies on DCOM and is often associated with sublie problems. Consider using Launch agents using
Java Web Start instead, which also permits nstalation as a Windows service but is generally considered more reiabe.
Administeator user name
Password

Host

Run service as Use Local System User

Advanced..

[}

;

OEBPS/Images/CH06_F03_UN01_Labouardy.png
googlecompute: output will be in this color.

googlecompute: Checking inage does not exist...

Creating temporary SSH key for instance...
Using inage: centos-8-v20200316
Creating instance. ..
Loading zone: europe-west3-i
Loading machine type: ni-standard-1
Requesting instance creation
googlecompute: Waiting for creation operation to complete. ..
googlecompute: Instance has been created!
googlecompute: Waiting for the instance to become running. ..
googlecompute: Ip: 30.89.251.218

Using ssh communicator to connect: 34.89.251.218
Waiting for SSH to become available...

OEBPS/Images/CH11_F03_UN02_Labouardy.png
NAME
default-token-wbzr7
mongodb-access

jenkins:chapterll mlabouardy$ kubectl get secrets

TYPE
kubernetes.io/service-account-token

Opaque

DATA
3
4

AGE
59m
5s

OEBPS/Images/CH10_F15_Labouardy.png
Stage Logs (Copy) x

4+ scp -0 StrictHostKeyChecking=no docker-compose.ynl ec2-user@nanager. sandbox. s lowcoder. con: /hon
e/ec2-user

Warning: Permanently added ‘manager. sandbox.slowcoder. con,10.1.2.147" (ECDSA) to the list of know
n hosts.

Load key "/var/lib/jenkins/.ssh/id_rs:
Permission denied (publickey).

Tost connection

Permission denied

OEBPS/Images/CH14_F04_Labouardy.png
® Project based Matrix Authorization Srategy

g vow
3 unow
A
View
Tiveadunp
HeainChock
Tag
foad
ooeto
e
Contgue
Update
Ropay
Deto
Workspace
Vousiatus
Read
Move
Discover
3 Osieto

View SOM Metics Lockable

Aun

Agent

Update
ManageDomans.
Dette

Create

DounioadBunde

Road
Administer

Overall Support ~ Credentials

Userigroup
@mrenicaiedisers 00, O |0/ 0/0/0/0/0/0 00

eI (e][s) i« i{u][s)(s]{s][s)(s}{s][s)[s]{s][s)[s]{s][s)(s]{s][=){s]{s][s)(s]{s][=)[s]s][s){s]{s][=)f=}{s]{s](=){s]s]=)-]-]

Adduser or group...

OEBPS/Images/CH13_F16_Labouardy.png
Edenkins Log

Log messages at a level lowor than INFO are nover recorded in the Jonkins log. Use log.recordors 0 record theso log messages.

Senkins howe directorys /var/1ib/enkine found at: SystenPeoperties. getProperty (*BNKINS WOHE')

Starved w6162 todh(Tonkine v3.304.1./, Ei1a:///vas/cache/Ynkins ! NATLABLE) /v cache/ Jonkins vz}
Startod SorverCommactort IO (TP 1, (htp/1.11) 0.0.0.0:8080)

Started #4178me [ipHn o mAm A

Vinatone Sarviat Eagine vi.0 rumming, sontrolFort-dissbled

Searted initialization

encountered /var/1ib/Jenkins/plugins/blucocean-porsonalization.hpi under a nonstandard name; expected blucocean-personalization.Jpi

OEBPS/Images/CH12_F28_Labouardy.png
Throttle Qualifiers Actions v

MoviesStoreViewFavorites

— witch versions alases x
Configuration Permissions Monitoring & /

Versions | Aliases

v Designer

Unqualified
Version: SLATEST

production

! MoviesStoreViewFavor Ver<or1
sandbox

= s e
 Lavers
staging

Version:1

+ Add

OEBPS/Images/CH08_F35_Labouardy.png
Pugins

[N oies [vrsmosony | [posciod x

Sonarts LavauAGES 21 ol 589 e Homspage lssue Tacker
Codo sy forTpescrt Leansad under GNULGPLS
Devloped by SonwSoscn

OEBPS/Images/CH11_F03_UN01_Labouardy.png
jenkins:eks mlabouardy$ kubectl get nodes
NAME STATUS ROLES AGE VERSION

$p-10-1-0-25.cu-west-3.conpute. internal Ready <none> 735 v1.15.10-eks-bac369.
TR TBC 2 30 e w3 Gomeni e thsnuil (Hancit | cmwmso | S0al il 10 DN whatbaciin

OEBPS/Images/CH02_F17_Labouardy.png
Jenkins» example » deve

4 Backto Project
\ Status

= Changes

3 Console Output

= et Buid Inormaton @

® Delete build #2
> ®
) GitBuid Data

[NoTags

(@ Opensiue Ocean
) Embeddable Buid Status ogit

Pipeline Stops

B Workspaces.

() Build #2 (Nov 23, 2019 6:00:47 PM)

Started by user miabouardy

Replayed £1 (i)

i run spent:
+ 35 ms waiing,
+ 1 min 18 sec buid duraton
+ 1 min 18 sec total from scheduied o completion.
Revision: 0b9q34769873081266333310927cab680cc00e0.

+ devalop

OEBPS/Images/CH13_F32_Labouardy.png
+ O 103

oo
oo

a & o e

Alerting

Alert rules ¬ifications

= Alert Rules

4 Notification channels

New Notification Channel

Name.
Type

Defaut (send on all alerts)
Include image

Disable Resolve Message

‘Send reminders

Slack
Slack
o
o

o

a»

(e J

OEBPS/Images/CH02_F04_Labouardy.png
Jenkins

Create Pipeline

Where do you store your code?

Pipelines

@ Bitbucket Cloud

@ Bitbucket Server

©) GitHub Enterprise:

@ Git

Which organization does the repository belong to?

§ komiserio

B miabouardy

Complete

OEBPS/Images/CH08_F22_Labouardy.png
Al files dao.js
100% Statements /5 100% Branches 0/o 100% Functions /2 100% Lines 5/5

Press n or 10 9o to the next uncovered block, b, p or for the previous block.

1% const Hongoose = require(*mongoose’)

1
7

3 1 const movieSchesa = new Hongoose. Schesa ({
4 title: String,

5 id: String,

6 poster: String,

7 releasedate: String,

s rating: String,

H genre: String,

10 description: String,

1 videos: [String],

2 snlar: [

1 <

14 title: String,

15 poster: String,

1 B

17 i

OEBPS/Images/CH12_F04_Labouardy.png
> C & kvgfot7ndl.execute-api.eu-west-3.amazonaws.com/test/movies

“message”: “Internal server error”

OEBPS/Images/CH05_F05_Labouardy.png
VPC Dashboard [Actions v

Fiter by VPC:
Qoo Q i by tags and attibutos orsearch by koyword

Name - VPCID ~ state - IPVACIDR
Virtual Private Cloud

management vpc-0cT1cb69a87110b24 available 10.0.0.016

 Yourvos
L vpe-44b07c2d available 172.31.0.0/16

Subnets

OEBPS/Images/CH05_F18_Labouardy.png
Filtr: | Q Filtr Auto Scaling groups x
@ Neme B

Launch Configuration /- Instances - Desired ~

< < 110101 Auto Scaling Groups.
Min - Max - Availability Zones -
@ jenkins_worker... _jonkins workers_config 2

Dofault Cooldown -

Heslth Check Grac-
2 2 10 ovwestdacuwestad 0 00
Auto Scaling Groups onkins workers_asg =mna
Detals | Activty History | Scaling Poliies | | Instances || Monitoing | Notficaions | Tags || Scheduled Actions | Lifecycls Hooks.
Add potcy o
scale-in-jenkins-workers Actions ¥
Policy type: Simple scaling
Executs policy when: low-cpurjenkins-workers-alarm
reaches the alarm theshold: CPUUzation < 20 for 2 Gonsecutive perods of 120 seconds
for the metic dimonsions AutoScalingGroupNam = jnkins workers.asg
Tako the action: Romove 1 capacty unis
And then wait: 300 ssconds befoe alowing anothe scaing actity
scale-out-jenkins-workers Actions v
Policy type: Simpe scaing
Execute policy whon:

high-cpu-jenkins- workers-alarm
breaches the alarm threshold: CPUUtiization >= 80 for 2 consecutive poriods of 120 soconds
for the metric dimensions AutoScalingGroupName = jenkins_wiorkers_asg

Add 1 capacity units
And then wat

300 seconds before allowing another scaling activity

OEBPS/Images/CH09_F47_Labouardy.png
Options
Manage access
Branches.
Webhooks
Notifications
Integrations
Deploy keys
Autolink references
Secrets.

Actions

Branch protection rule

Branch name pattern

develop.

Protect matching branches

Require pull request reviews before merging
When enabled, all commits must be made to a non-protected branch and subimitted ia a pull request with the
required number of approving reviews and no changes requested before it can be merged into a branch that
matches ths rule.

 Require status checks to pass before merging
Choose which status checks must pass before branches can be merged into a branch that matches this rule.
When enabled, commits must first be pushed to another branch, then merged or pushed directly to a branch
that matches this rule after status checks have passed.

 Require branches to be up to date before merging

This ensures pull requests targeting a matching branch have been tested with the latest code. This setting
will not take effect unless at least ane status check is enabled (see below)

Status checks found in the lat week o this repository.

@ continuous-intogrationjenkins/branch [Recure]

OEBPS/Images/CH05_F21_Labouardy.png
Auto Scaling Group: jenkins_workers_asg

Details Activity History = Scaling Policies | Instances Monitoring | Notifications ~ Tags Scheduled Actions Lifecycle Hooks.

Filter: AnyStatus v | Q Filter scaling hstory. x
Status - Description - StartTime

> Notyetinsenvice Launching a new EC instance: -071373177899a4190 2020 March 24 13:08:11 UTC+1

> Succosstul Launching a now EC2 instanco: -01155052000627919 2020 March 24 12:26:58 UTC+1

> Successtul Launching a new EC2 instance: i-016e20dcBddbaads 2020 March 24 1226:58 UTC+1

OEBPS/Images/CH05_F11_UN07_Labouardy.png
aws_security_group.elb_jenkins_sg: Creating
aws_security_group.olb_jonkins_sg: Croation complote after 2s [i
aws_elb.jenkins_elb: Creating
aws_security_group. jenkins_naster_sg: Modifying... [id=sp-8994c23fcd12219db]
aws_security_group. jenkins_master_sg: Modifications corplote after 05 [id=sg-0994c23fcd12219db)
aws_elb.jenkins_elb: Creation complete after 2s [idstf-1b-20200323162023632600000001)

9-005698167b02543a]

Apply conplete! Resources: 2 added, 1 changed, 0 destroyed.
Outputs:

bastion = 35.180.122.81
jenkins-naster-clb = tf-1b-20200323152023632600000001-587097020. cu-west-3.elb. anazonaws. con

OEBPS/Images/CH10_F44_Labouardy.png
Buid- 575
B > crecs trvaingona i e
> dockr bud -t misboundymovics mketlace i g ENVIRONENT-ssgin.

shans

1

s

OEBPS/Images/CH13_F17_Labouardy.png
Name

Slack plugin logs
Loggers
Logger jenkins plugins slack. Loglevel (AL ¢
Add

Lt loggers and e ogevels o 10000

OEBPS/Images/Manning_M_small.png

OEBPS/Images/CH14_F03_Labouardy.png
Create an account!
1fyou aready have a Jenkins account, pisase signin.

Usemame

developer
Fullname.

John Doe
Emai

developer@labouardy.com

Password Show

Strength:

trong

A strong password is a ong password that's nique for every sit. Try using
a phrase with 5-6 words for the best security.

Create account

OEBPS/Images/CH02_F20_Labouardy.png
EXTENSIONS: MARKETS: ‘Extension: Jenkins Pipeiine inter Connector X

Jenkins Jenkins Pipeline Linter Connector
Pipeline Jan Jorke | © 58069 | * Kk k Repository | License

Jem e Connector ey [eP———
e o

Datals Contrbutions Changelog

Jonkins Jack 1 o w5 THS extnsion eidats dnkinsties by sending the o the ipalin Liner of 3 ek seve.

jenkins-pipeline-linter-connector README

Features

OEBPS/Images/CH11_F02_Labouardy.png
AWS Cloud

Availability Zone H Availability Zone

H Private subnet i Private subnet

OEBPS/Images/CH10_F16_Labouardy.png
Kind | SSH Usemame with private key

Scope | Global (Jorikins, nodes, tems, llchilditems, etc)
o

o

swarm-sandbox

DesCrPUON 554 keypairto SSH to Swarm sandbox

[T p—

Private Key @ Enter directly
Key

Enter New Secret Below.

BEGIN RSA PRIVATE KEY-

MAEERQLRAAKCAQEAYK M+ AV RE2A0CH2VHOLK KX KSR ASQIRES2 QK KER +aT TAYMS /uYxa¥G.
FIDRIJ/COtCHBA6/BHOGHRO3 30EAHG SHOXSOE 2B 38 AhX SNLYI 70Vav SONGHREHHhAVBEDOVEF.

Passphrase

[

OEBPS/Images/CH08_F34_Labouardy.png
o #Bugs
& Vuerabitis

Continuous Code Qualty 0
o ®Codssmots

Multi-Language
204 rogramming angu3008 o spportad by SonarOube kst ux - housscodo anayrs, g

e e o cosoL e s reo dmaserpt Tposerpt Onectve on
vener PusaL oL Fx Peon ooy pp Swt Vousguse o

OEBPS/Images/CH09_F14_UN01_Labouardy.png
jenkins:terraform mlabouardy$ docker login https://registry.slowcoder.com

Username: jenkins
Password:
Login Succeeded

OEBPS/Images/CH11_F33_UN15_Labouardy.png
jenkins:jx-movies-store mlabouardy$ jx get activity —f jx-movies-store -w

STEP. STARTED AGO DURATION STATUS
mlabouardy/jx-movies-store/master #1 395 Running
mlabouardy/jx-movies-store/master #1 2m13s Running
Checkout Source 15 Pending
mlabouardy/jx-movies-store/master #1 2m25s Running
Checkout Source 13s 11s Succeeded
CI Build and push snapshot 25 NotExecuted

Build Aslexnn T Pending

OEBPS/Images/CH09_F22_Labouardy.png
@) passwordl %

A\ You cannot retrieve the generated password after closing this screen. Please store your
credentials safelyafter generation.

[et expiration date? ©

Password ©
VBSCHIKNNWIHDCVGLVIOJs +AQxCfQxe o]

Docker login command ©
‘docker login -u jenkins -p VBSCFIKNNWIHDCVGLViOJs +AQxCfQxe miabouardy azurecr... © |

OEBPS/Images/CH04_F18_Labouardy.png
B soone - iAo % e

Owned by me | Q Fiter by tags nd atutes o seeh by ke @ K < 1wsets >
Name - AMiName - amio - Soms - Owner - Vably - Suus - CrestonDte - platom
jonins maso 21072 amiCOMBIAIBHIOMZ 0OITIN,.. NSRITID Prvate e Soplombor 1, 2019a16020... OthrLinax

Jonkas mastr2.208.1 amLOSIONSATISN I0SU0STIV.. 09957 Prvate svalatle Docomber 23, 209t 722... OthrUinux

Jonassave m prvate e Soptombor 1, 2019316073, OtherUinax

Ll jenkins-worker 4. Private. available December 25, 2019 at 4:38:.. Other Linux
nows 210101 amLOPGATSCITON0 NSUOSTIV... 0NUIST Prvate svalatle Soptomber 1,209t 6381.. Othr Ui

puslcboe-with hurl. ami72765499 305620695733 305929695733 Prvate avaiavie May 620181121805 PM .. Other Linux

OEBPS/Images/CH14_F32_Labouardy.png
Docker Agent templates.
Docker Agent templates

Labels. workers

Enabled
Name agent

Docker image jenkins/ssh-agent

® ®©0 ©

OEBPS/Images/CH05_F06_Labouardy.png
VPG Dashboard Actions
‘

Fitor by VPC:
Qselect a VPG

Virtual Private Cloud
Your VPCs.
Subnots

Route Tabies

Q VPO wpe ot tenesasTonee
Namo
private_10.000_ouwast3a
private_10020_euawost3b
publc_10.0.1.0_aw-west3a
public_10.0.3.0_ou-west-3b

Add ior

‘Subnet 1D

Subnot 09888723670904004
Subnel 0777794064767 11
Subnet-0264284296202632
Subnot-Ocf87a7ebagdd1611

stato

avaiable
avaiable
avaiable
availablo

e

VPe-0cT1CH69a87110524 |

VPe-0c1cH69a8710624 | ..
VPe-0c1c69a8710624 | ..
¥pc-0cH1cb69a87 1024 | ..

1Pva CIDR

1000024
1002024
1001024
1003.024

OEBPS/Images/CH10_F43_Labouardy.png
@ watchiist-deployment ¥ & Aciity Branches PullRequ

< (] preprod - Stated by upstream pipeine“movies loader/preprod”buld few seconds 1

o = = Sty psrsmiplne “novies onder el bl 8 minutes a0

OEBPS/Images/CH11_F31_Labouardy.png
s W heme Last suceons [rpew. Lasturon o

esttoctizos £ umtaas

OEBPS/Images/CH09_F07_Labouardy.png
/ moviesstore < 2

i

as

> Chedif ing on Unehe node
: 5

> doker b - misbouandymovics stoe. — 1S

OEBPS/Images/CH08_F19_Labouardy.png
E_a pwwn
Stage Logs (Coverage Reports)

Sokdns 5 movesstore s doveep. >
e e T e e e e e e e TSR)
20 (node:31) Warning: Accessing non-existent property ‘updatedne’ of module exports inside circular
dependenc
O, status. e A
= changes
= Storevho
2 uidNow fake mongo i started: mongodb: //Localhost 27017/ test
o 2 should fing all sovies (42e8)
© should aad to favorites
©, Full Stage View 7 should find a movie
(@ OpenBuo Ocean
1 o 3 passing (300m5)
@ Embeddabio Bula Satus =
& Fite st | v | s | @ Lines | rovred L 25
© Fieine Symax AUtsies | 10| | | 10|
Gaojs | el w0l 0| 100
@ Butdbistory

-
5 o e T =
oy
° Apr 22,2020 1:04 PM.

OEBPS/Images/CH13_F03_Labouardy.png
¢ @ -04a75885117ca95b7 jenkins_worker) EC2 * CPUUtiization * Instanceld: 04a75885117ca95b7 Average 5 Minutes ' > ~A0B0
4 @ 0co7Hifbasat2dva Genkins. worken) EC2 * CPUUtiization * Instanceld: -0c97f1fbagaf2dbd Sum smnes @ ~o@O

OEBPS/Images/CH08_F07_Labouardy.png
Branch develop
Follprojctname: movies-oadardevelop

annuz-mu

Test Result Trend

Gust show failures) enlarge

OEBPS/Images/CH07_F19_Labouardy.png
Jenkins > movies-loader » develop

Up
bl Branch develop
O, status
= Full project name: movies-loader/develop
= Changes
o i
i Now "
===

£ view Contiguraion

O Full Stage View

Stage View
(@ Open Biue Ocean
P Gittuo Checkout
1) Embeddable Build Status B~ e e 8
© Buid Review
© Pipeline Syntax o [T 4

1515

. Build History

find x Permalinks
0u Aoz sen + Lastbuid (¢1). 1 min 17 sec.ag0
+ Laststable bl (£1)_1 mi 17 sec ago
+ Last successful buid (£1). L min
) Atom feed for al 5 Atom feed fo failues: o Loyl (1) L i 17 g5¢ 400

Last completed buid (#1). 1 min 17 sec ago

OEBPS/Images/CH06_F21_Labouardy.png
Images

Detau Drectory

+ Add & Manageview v | O Refresh | & ExporttoCsV | D Assigntags |) Feedback 2 Leave preview

(e) (sopion==ai) (R

Showing 110 2 of 2 records.

T0)

(G ncdtier)

O Name . Source... 4 OStype T4 Resource group 14
O jenkinsmastera22041 Plvm00y.. Unix management

([&8 jenkins-worker pkrvmgrage... Linux management

OEBPS/Images/CH10_F28_Labouardy.png
& marketplace.sandbox.slowcoder.com/dashboard

ELIWALLAC

B 8

The Good, the Bad and
the Ugly (1966)

The Godfather (1972) Star Wars: Episode V -

The Empire Strikes

The Lord of the Rings:

The Fellowship of the Redemption (1994)

OEBPS/Images/CH11_F30_Labouardy.png
Creating staging Environment in namespace jx
Created environnent staging
Namespace jx-staging created
Created Jenkins Project: het;

/3enkins. jx.35.198.184.208. nip. 1o/ job/mlabouardy/job/ environment-natchlist-staging/

Note that your first pipeline may take a fow minutes to start while the necessary inages get downloaded!

Triggered Jenkins job: http://jenkins.jx.35.198.184.208.nip. io/Job/mlabouardy/job/environment-watehlist-staging/
Creating Github webhook for mlabouardy/envizonnent-watchilist-staging for url http://jenkins.ix.35.198.184.208.nip. 10/gi thub-webhook/
Using Git provider github.com at https://github.con

2 Using Git user name: nlibouardy

2 Using organisation: nlabouardy

Creating repository mlabovardy/environment-natchlist-production

Creating Git repository mlabousrdy/environment-natchlist-production

Pushed Git repository to https://github.con/alabouardy/environnent-watehlist-production

Creating production Environment in namespace 3x
Created environnent production
ted

Namespace jx-production cre
Created Jenkins Project: het;

/3enkins. 5x.35.198.184.208. nip. io/ Job/mlabouardy/Sob/ environment-watchlist-production/

Note that your first pipeline my take a few minutes to start while the necessary inages get downloaded!

Triggered Jenkins job: http://jenkins.3x.35.198.184.208.nip. io/Job/mlabouardy/3ob/environment-watehlist-production/
Creating Github webhook for mlabouardy/envizonnent-watehlist-production for url http://jonkins.3x.35.198.184.268.1p. 10/github-wobhook/

Senking X installation completed succossfully

NOTE: Your admin password is: u?zTUZZFGHA79UNGC-6u

OEBPS/Images/CH03_F20_Labouardy.png
Add user

- Set permissions

S8R hs v oo

restapotey

‘Copy pomissions from
Pt

Fitorpotcies Qs

polyname +

» T AmazonDMSRedsntSIRole
© o At
AmazonS3FullAccess
P s o e v i AVS Maragrrt Gl
poteysummary | (13501 |

A
"Version": "2012-10-17",
“Statement”: [
1

Atacnoxitog poscies
arty
Showing 2resuts
R Usadas
Asmemged fero
ASmamged Permisions poley 8

OEBPS/Images/CH02_F05_Labouardy.png
Jenkins Pieline

example

 Choose step type
) . Find steps by name
Shotcrot

print Message
Enforce time limit

Retry the body up to N times

Steep

‘Windows Batch Scrpt

Archive the artifacts

Alocate node:

Add an Embeddable Badge
Configuration

Allocate workspace.

Avchive JUnit-formatted test results

OEBPS/Images/CH06_F36_UN10_Labouardy.png
Initializing the backend...

Initializing provider plugins.
- Checking for available provider plugins...
- Downloading plugin for provider "digitalocean" (terraform-providers/digitalocean) 1.15.1...

The following providers do not have any version constraints in configuration,
S0 the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking
changes, it is recommended to add version = "..." constraints to the
corresponding provider blocks in configuration, with the constraint strings
suggested below.

* provider.digitalocean: version = "~> 1.15"

Terraform has been successfully initialized!

OEBPS/Images/CH14_F17_Labouardy.png
¥ master « pipeline-library / vars /

[————

(AN -2)

commithuthorgroory
commitd.groowy
commitiessage groovy.

notitySiackgroovy

shared liorary
shared liorary

shared i

oy

shared orary

Gotofie Addfile~

etdodcs 1 minute ago O History

1 minute ago
 minute ago
Tminute ago.

1 minute ago

OEBPS/Images/CH13_F29_Labouardy.png
1 hit

Jun2,2020 @ 18:51:28.777 - Jun 2, 2020 @ 19:09:28777 — Auto ~
g o
8 o
o2
@buitaTimestamp por 30 seconds
Time - _source

> 2, 2020 0 19:07:58.261 g

7 data.projectiivme: develop dote.fullProjecthome: sovies-loader /develop data.disployNone: 17
fU1101spLoyNane: movies-loader » develop 417 data.url: Job/movies-loader/job/develop/17/ data butldHost:
uildLobel: master data.buildon: 17 data.buildDuration: 14,658 data. rootProjectase develop
ootFullProjectlisne: movies-loader/develop data.rootProjectDisplayane: £17 data.rootBuilaium: 17
butldvariables. SRAICHNAKE: develop data.builVariables. BULLD DISPLAY_NAKE: 417 data buileVarisbles.BUILD_I0: 17

Senking

OEBPS/Images/CH03_F18_Labouardy.png
History

Py

oo

&

o

[—

& stompe
o
Stoaoe Gy

S dussase
ros
Oamcon
gt

P
Suppon
Mg Sanies

St o Bacron

Gounssien

e —
S Ao e
oty

Opons
Senin iy
pos—
Conortoms

3 At

ouappune
S 0w s

@ Secury, oniy. & Compiance
po—
comn
o
P
g
s segosinon
P——
ot
oy soven

B

@

Businss Aopicatons
.

-
sessienzo

oGk
o s
o7 Saoen

OEBPS/Images/CH12_F44_Labouardy.png
Name: 'movies-store/master' Status: SUCCESSFUL D inbox x

Mohamed Labouardy
tome ~

More info at: htps:/jenkins.slowcoder conyioblmovies-store/job/masterls/

B buldiog v

OEBPS/Images/CH03_F05_Labouardy.png
Launch method

Launch agent via execution of command on the master

Launch command | qqp, oc2.450r@10.0.0.190 java -far ~fin/agentjar

OEBPS/Images/CH07_F21_Labouardy.png
Jerkine > moviesloader » deveop » #1

A Backito Project

Q@ sans () Build #1 (Apr 20, 2020 1:15:29 PM)
(= Changes

& Console Output

= €6 Buid nfomation ’ Baanchntesg

(© Deete buid #1°

i i g

© GisueDa e

DA B pesten —

(@) Oen Biue Ocean ogit " OO s

) Embeddable Buil Status S

OEBPS/Images/CH11_F03_Labouardy.png
EXS > Clusters > sandbox

sandbox C] [oetete
Cluster configuration
[staus
116 ©nae

Platform vrsion nfo
ais

OEBPS/Images/CH12_F31_Labouardy.png
Resources Actions~ |@ ¢ Method Execution /favorites - GET - Integration Request

b Provide information about the target backend thatthis method wil calland whether the incoming request data should be modifed.
~ Mavorites
aer
post Integration type & Lambda Function @
~ /movies TP 0
cer
Mock @
~ finame)
cer AWS Senico ©
VPG Link ©

Use Lambda Proxy integration ¥ ©
Lambda Region cu-west-3
Lambda Function MoviesStoreViewFavorites:Si{stagoVariablos.environmont)

Executionrole #

°o

OEBPS/Images/CH07_F34_Labouardy.png
@

Push event

Jenkins

Webhook

OEBPS/Images/CH06_F08_UN05_Labouardy.png
OO0CE_ S
google_compute
google compute
google

L - i LT/ S O =N L7 OO H R
notwork.managenent: Rofreshing state... [id=projects/learning-223618/global/networks/anagonent]
subnotnork.private_subnets[0]: Refreshing state. .. [idsprojects/learning-223618/regions/europe-west3/subnotworks/private

onpute
onpute

rning-223618/xegions/curope-wests)routers/private-router-nan
[idzprojects/learning-223618/regions/ europo-nests/subnetworks /public-10-8-1-0)
blic_subnets[1): Refreshing state... [idsprojocts/learning-223618/regions/europe-west3/subnotworks/public-10-0-3-0]
- [idz1earning-223618/ europe-west3/private-routor-sanagenent /nat-nanagenent
- [idzprojects/learning-223618/ zones /europe-west3-a/instances bastion]

Apply complete! Resources: o added, © changed, @ destroyed.
outputs:

bestion = 35.266.240.261

OEBPS/Images/CH11_F16_Labouardy.png
Quaity

Qs untTests

Average stage times: a 7 165

-]
Lt hd as 7 165
s

Static Code Quality
ki s Build Push Aulyze Deploy
. 7ime zmnios 7 20 soms
_ approve Doploy? e
& 7ins 2min1 i

OEBPS/Images/Labouardy.png

OEBPS/Images/CH06_F06_Labouardy.png
On-premises {) Google Cloud Platform

Reglon |
Bastion Firewall Jenkins Firewall
VPC Cloud Firewall Rules Cloud Firewall Rules
Zone A

e Cloud
Router
p— cowdtoas |}
| Balancing
Zone A —‘
‘Subnetwork

‘Subnetwork

OEBPS/Images/CH04_F05_UN_code.png
jenkins:~ mlabouardy$ packer

Usage: packer [--version] [

Available commands ar

build
console
fix
inspect
validate
version

help] <command> [<args>]

build image(s) from template
creates a console for testing variable interpolation
fixes templates from old versions of packer

see components of a template

check that a template is valid

Prints the Packer version

OEBPS/Images/CH05_F05_UN04_Labouardy.png
aws_subnet.private_subnets[1] will b
+ resource "aws_subnet" “private_subne
+ arn

+ assign_ipv6_address_on_creation
+ availability_zone
+ availability_zone_id
+ cidr_block
+ id
+ ipvé_cidr_block
+ ipvé_cidr_block_association_id
+ map_public_ip_on_launch
+ owner_id
+ tags
+ "Author" = "mlabouardy"
+ "Name* “private_10.0.2.0.
)
+ vpe_id

»

aws_subnet.public_subnets[6] will be
+ resource "aws_subnet" "public_subnet
+ arn

+ assign_ipvé_address_on_creation
+ availability_zone
+ availability_zone_id
+ cidr_block
+ id
+ ipv6_cidr_block
+ ipv6_cidr_block_association_id
+ map_public_ip_on_launch
+ owner_id
+ tags
+ "Author" = "mlabouardy”
+ "Name" = "public_10.0.1.0_
)
+ vpe_id

e created
5" {
(known after apply)
false

“eu-west-3b"

(known after apply)
"10.0.2.0/24"
(known after apply)
(known after apply)
(known after apply)
false
(known

<

after apply)

_eu-west-3b"

= "Vpc-0c11ch69a8710b24"

created
st

(known after apply)
false

"eu-west-3a"
(known after apply)
*20.0.1.0/24"
(known after apply)
(known after apply)
(known after apply)
true

(known
¢

after apply)

eu-west-3a"

“Vpe-0c11ch69a8710b24"

OEBPS/Images/CH04_F20_Labouardy.png
GitHub

Trigger

Jenkins

f .
)

Packer

@

0%

Configuration Management Tools

Jenkins New AMI

aws

Jenkins Master

OEBPS/Images/CH12_F29_Labouardy.png
Stage Logs (Lambda: MoviesStoreAddToFavorites)

packages:
ip -region eu-west:3 (sef tme 15)

© Shell Seript - aws lambia publish-version ~funclion-name Movi

13743b2401232704067671 —togion ewwest-31 g Version'(sel time 916ms)

O Shell Script - aws lambda update-alias ~function-name MoviesStoreAddToF avorites ~name sandbox —funclion-y
eu-west:3 (self ime 15)

rsion 1 -region

OEBPS/Images/CH12_F16_Labouardy.png
Namo +

-

=
=
=
=

MovisLoader

MoviosParser

MoviosStoroAddToFavarites

MovisStoroListhovios

MovisStoreSearchMovie

Last modifed ~

Sizow

Viewing 1105
Storago class ~

OEBPS/Images/CH06_F19_Labouardy.png
mohamed labouardy@g.

SEETPEMIN © searchresources, senvices, and docs (G+/) ocrau o

Home > Defaul Directory | App registrations

2 Default Directory | App registrations 2 X
5 Search v « F Newnegisuation @ Endpoims £ Troublesnooting | Gt feedback?
© ovenen @ Weiome o he e adimproves Ap regiatons (v Geneally Al e hats new and s e an o s changed. -
Getting started Al applications Owned applications Applications from personal account

K. Disgnose and sove problems
* oo " 5 Start typing 2 name or Application 1Dt fier these results

Mansge
a Oispayname Aoplcaton chen) 1D CromedOn Contfcte 8 secrets
uses

4 [A5TO0 20360 AT-HONVTRCSES IR0 © Curent

2 Gous

£ Organzaons rlionships
&, Roles and administrators
B Emerprise applications.

4 Oeices

. App registrations.

OEBPS/Images/CH10_F30_Labouardy.png
Browse apps > Jenkins CI > New configuration

Jenkins CI

An open source continuous integration server.
Jenkins Cl s a customizable continuous integration server with over 600 plugins, llowing you to configure it to meet your needs.
“Thisintegration will post build notifications to a channel in Slack.

Post to Channel
Start by choosing chamnciwhere | ajenin notitcatons 3

Jenkins notfications will be posted.
Add Jenkins Cl integration

or create anew channel

OEBPS/Images/CH12_F03_Labouardy.png
Functions (14)

Q addfer

Keyword : Movies ©

Funcion name
Movesparser
Moviessoretstioies
MoviessoreSearchMovie
MoviessoreviewFavorites
MoviesstoreadgToravortes

Movestoader

Desciption

Runtime
Gotx

Nodejs 12
Nodejs 12
Nodes 12x
Nodejs 12

Python 3.7

163 bytes
163 bytes

163 bytes
163 bytes
163 bytes
163 bytes

<

© Lastmodifid

“minuteag0
1 minuteago
 minuteago
“minvteago
+ minsteago

2minutes ago

1

>

[}

