

 Mastering PowerShell Scripting

 Fourth Edition

 Automate and manage your environment using PowerShell 7.1

 Chris Dent

 [image:]

 BIRMINGHAM—MUMBAI

 Mastering PowerShell Scripting

 Fourth Edition

 Copyright © 2021 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producer: Tushar Gupta

 Acquisition Editor – Peer Reviews: Divya Mudaliar

 Project Editor: Janice Gonsalves

 Content Development Editor: Bhavesh Amin

 Copy Editor: Safis Editing

 Technical Editor: Aniket Shetty

 Proofreader: Safis Editing

 Indexer: Rekha Nair

 Presentation Designer: Pranit Padwal

 First published: April 2015

 Second edition: October 2017

 Third edition: February 2019

 Fourth edition: June 2021

 Production reference: 1220621

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80020-654-0

 www.packt.com

 Contributors

 About the author

 Chris Dent is an automation specialist with a deep interest in the PowerShell language. Chris has been learning and using PowerShell since 2007 and is often found answering questions in the Virtual PowerShell User Group.

 My thanks, as always, go to my wife and kids. Writing a book is an involved project, and this book would not be possible without their forbearance.

 About the reviewers

 Thomas Lee is a consultant/trainer/writer from England and has been in the IT business since the late 1960s. He has worked for a variety of firms, including ICL, Accenture, Microsoft, Global Knowledge, and QA. He has authored and contributed to numerous books on PowerShell, TCP/IP, Windows, and Windows Server. Thomas holds numerous Microsoft certifications, was an active MCT (for 26 years), and has been awarded Microsoft's MVP award 17 times. He was also a Fellow of the British Computer Society. He has written extensively for the UK trade press, including PC Pro.

 Having traveled the world extensively, he entered semi-retirement in 2016 and is spending more time at his cottage in the English countryside, along with his wife, Susan, and their daughter, Rebecca. He continues to write/edit books and articles as well as give back to the community. He is a group administrator for the PowerShell forum on Spiceworks, where he is also a site moderator. He is also an administrator and contributor to the Microsoft PowerShell Community blog.

 Mike Roberts is a seasoned IT ninja with experience in automation and tool making.

 He maintains https://gngr.ninja to help people get started with and answer questions about PowerShell (as well as C#/.NET).

 I would like to thank my family and Holly for their support and encouragement.

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Introduction to PowerShell

 	What is PowerShell?

 	PowerShell editors

 	Getting help

 	Updatable help

 	The Get-Help command

 	Syntax

 	Examples

 	Parameter

 	Detailed and Full switches

 	Save-Help

 	Update-Help

 	About_* help files

 	Command naming and discovery

 	Verbs

 	Nouns

 	Finding commands

 	Aliases

 	Parameters, values, and parameter sets

 	Parameters

 	Optional parameters

 	Optional positional parameters

 	Mandatory parameters

 	Mandatory positional parameters

 	Switch parameters

 	Parameter values

 	Parameter sets

 	Common parameters

 	Confirm and WhatIf

 	Confirm and ConfirmPreference

 	WhatIf and WhatIfPreference

 	Force parameter

 	PassThru parameter

 	Introduction to providers

 	Drives and providers

 	Introduction to splatting

 	Splatting to avoid long lines

 	Conditional use of parameters

 	Splatting to avoid repetition

 	Splatting and positional parameters

 	Parser modes

 	Experimental features

 	Summary

 	Modules and Snap-Ins

 	Introducing modules

 	The Get-Module command

 	The Import-Module command

 	The Remove-Module command

 	PSModulePath in PowerShell

 	Using Windows PowerShell modules in PowerShell 7

 	Finding and installing modules

 	What is the PowerShell Gallery?

 	The Find-Module command

 	The Install-Module command

 	The Update-Module command

 	The Save-Module command

 	PowerShellGet 3.0

 	Repositories

 	Version ranges

 	PowerShell repositories

 	Creating an SMB repository

 	NuGet repositories

 	About snap-ins

 	Summary

 	Working with Objects in PowerShell

 	Pipelines

 	Standard output

 	Non-standard output

 	The object pipeline

 	Members

 	The Get-Member command

 	Accessing object properties

 	Access modifiers

 	Using methods

 	The Add-Member command

 	Enumerating and filtering

 	The ForEach-Object command

 	Begin and End parameters

 	The Parallel parameter

 	The MemberName parameter

 	The Where-Object command

 	Selecting and sorting

 	The Select-Object command

 	Calculated properties

 	The ExpandProperty parameter

 	The Unique parameter

 	Property sets

 	The Sort-Object command

 	Grouping and measuring

 	The Group-Object command

 	The Measure-Object command

 	Comparing

 	Importing, exporting, and converting

 	The Export-Csv command

 	The Import-Csv command

 	Export-Clixml and Import-Clixml

 	The Tee-Object command

 	Summary

 	Operators

 	Arithmetic operators

 	Operator precedence

 	Addition and subtraction operators

 	Addition operator

 	Subtraction operator

 	Multiplication, division, and remainder operators

 	Multiplication operator

 	Division operator

 	Remainder operator

 	Assignment operators

 	Assign, add and assign, and subtract and assign

 	Multiply and assign, divide and assign, and modulus and assign

 	Statements can be assigned to a variable

 	Comparison operators

 	Case sensitivity

 	Comparison operators and arrays

 	Comparisons to null

 	Equal to and not equal to

 	Like and not like

 	Greater than and less than

 	Contains and in

 	Regular expression-based operators

 	Match and not match

 	Replace

 	Split

 	Logical operators

 	And

 	Or

 	Exclusive or

 	Not

 	Binary operators

 	Binary and

 	Binary or

 	Binary exclusive or

 	Binary not

 	Shift left and shift right operators

 	Type operators

 	As

 	is and isnot

 	Redirection operators

 	Redirection to a file

 	Redirecting streams to standard output

 	Redirection to null

 	Other operators

 	Call

 	Comma

 	Format

 	Increment and decrement

 	Join

 	Ternary

 	Null coalescing

 	Null coalescing assignment

 	Null conditional

 	Pipeline chain

 	Background

 	Summary

 	Variables, Arrays, and Hashtables

 	Naming and creating variables

 	Objects assigned to variables

 	Variable commands

 	Clear-Variable

 	Get-Variable

 	New-Variable

 	Remove-Variable

 	Set-Variable

 	Variable provider

 	Scopes and variables

 	Accessing variables

 	Scope modifiers

 	Numeric scopes

 	Private variables

 	Types and type conversion

 	Typed numeric values

 	Arrays

 	Creating an array

 	Arrays with a type

 	Adding elements to an array

 	Selecting elements from an array

 	Changing element values in an array

 	Removing elements

 	Removing elements by index

 	Removing elements by value

 	Clearing an array

 	Filling variables from arrays

 	Multi-dimensional and jagged arrays

 	Hashtables

 	Creating a Hashtable

 	Adding and changing Hashtable elements

 	Selecting elements from a Hashtable

 	Enumerating a Hashtable

 	Removing elements from a Hashtable

 	Lists, dictionaries, queues, and stacks

 	System.Collections.Generic.List

 	Creating a list

 	Adding elements to the list

 	Selecting elements from the list

 	Removing elements from the list

 	Changing element values in a list

 	System.Collections.Generic.Dictionary

 	Creating a dictionary

 	Adding and changing elements in a dictionary

 	Selecting elements from a dictionary

 	Enumerating a dictionary

 	Removing elements from a dictionary

 	System.Collections.Generic.Queue

 	Creating a queue

 	Enumerating the queue

 	Adding elements to the queue

 	Removing elements from the queue

 	System.Collections.Generic.Stack

 	Creating a stack

 	Enumerating the stack

 	Adding elements to the stack

 	Removing elements from the stack

 	Summary

 	Conditional Statements and Loops

 	if, else, and elseif

 	Assignment within if statements

 	switch

 	switch and arrays

 	switch and files

 	wildcard and regex

 	Script block cases

 	Switch, break, and continue

 	Loops

 	Foreach loop

 	for loop

 	do until and do while loops

 	While loop

 	Loops, break, and continue

 	Break and continue outside loops

 	Loops and labels

 	Implicit Boolean

 	Summary

 	Working with .NET

 	Assemblies

 	About the Global Assembly Cache

 	Types

 	Enumerations

 	Classes

 	Namespaces

 	The using keyword

 	Using namespaces

 	Using assemblies

 	Type accelerators

 	Members

 	Constructors

 	Properties

 	Methods

 	Fluent interfaces

 	Static methods

 	About the new method

 	Static properties

 	Reflection in PowerShell

 	The TypeAccelerators type

 	The ArgumentTypeConverterAttribute type

 	Summary

 	Strings, Numbers, and Dates

 	Manipulating strings

 	Indexing into strings

 	Substring

 	Split

 	Replace

 	Trim, TrimStart, and TrimEnd

 	Insert and Remove

 	IndexOf and LastIndexOf

 	PadLeft and PadRight

 	ToUpper, ToLower, and ToTitleCase

 	Contains, StartsWith, and EndsWith

 	String methods and arrays

 	Chaining methods

 	Converting strings

 	The *-Csv commands

 	ConvertFrom-StringData

 	Convert-String

 	ConvertFrom-String

 	Working with Base64

 	Manipulating numbers

 	Large byte values

 	Power of 10

 	Hexadecimal

 	Using System.Math

 	Converting strings into numeric values

 	Manipulating dates and times

 	Parsing dates

 	Changing dates

 	DateTime parameters

 	Comparing dates

 	Summary

 	Regular Expressions

 	Regex basics

 	Literal characters

 	Any character (.)

 	Repetition with * and +

 	The escape character (\)

 	Optional characters

 	Non-printable characters

 	Debugging regular expressions

 	Anchors

 	Quantifiers

 	Exploring the quantifiers

 	Character classes

 	Ranges

 	Negated character class

 	Character class subtraction

 	Shorthand character classes

 	Unicode category class

 	Alternation

 	Grouping

 	Repeating groups

 	Restricting alternation

 	Capturing values

 	Named capture groups

 	Non-capturing groups

 	Look-ahead and look-behind

 	The .NET Regex type

 	Regex options

 	Examples of regular expressions

 	MAC addresses

 	IP addresses

 	The netstat command

 	Formatting certificates

 	Summary

 	Files, Folders, and the Registry

 	Working with providers

 	Navigating

 	Getting items

 	Drives

 	Creating providers

 	Items

 	Testing for existing items

 	Creating and deleting items

 	Invoking items

 	Item properties

 	Properties and the filesystem

 	Adding and removing file attributes

 	Registry values

 	Windows permissions

 	Access and audit

 	Rule protection

 	Inheritance and propagation flags

 	Removing ACEs

 	Copying lists and entries

 	Adding ACEs

 	Filesystem rights

 	Registry rights

 	Numeric values in the ACL

 	Ownership

 	Transactions

 	File catalog commands

 	New-FileCatalog

 	Test-FileCatalog

 	Summary

 	Windows Management Instrumentation

 	Working with WMI

 	WMI classes

 	WMI commands

 	CIM cmdlets

 	Getting instances

 	Getting classes

 	Calling methods

 	Creating instances

 	Working with CIM sessions

 	Associated classes

 	The WMI Query Language

 	Understanding SELECT, WHERE, and FROM

 	Escape sequences and wildcards

 	Logic operators

 	Comparison operators

 	Quoting values

 	Associated classes

 	WMI object paths

 	Using ASSOCIATORS OF

 	WMI Type Accelerators

 	Getting instances

 	Working with dates

 	Getting classes

 	Calling methods

 	Creating instances

 	Associated classes

 	Permissions

 	Sharing permissions

 	Creating a shared directory

 	Getting a security descriptor

 	Adding an access control entry

 	Setting the security descriptor

 	WMI permissions

 	Getting a security descriptor

 	The access mask

 	WMI and SDDL

 	Summary

 	Working with HTML, XML, and JSON

 	HTML

 	ConvertTo-Html

 	Multiple tables

 	Adding style

 	HTML and special characters

 	XML commands

 	About XML

 	Elements and attributes

 	Namespaces

 	Schemas

 	Select-Xml

 	Select-Xml and namespaces

 	ConvertTo-Xml

 	System.Xml

 	The XML type accelerator

 	XPath and XmlDocument

 	Working with namespaces

 	Creating XML documents

 	Modifying element and attribute values

 	Adding elements

 	Removing elements and attributes

 	Copying nodes between documents

 	Schema validation

 	Infer a schema

 	System.Xml.Linq

 	Opening documents

 	Selecting nodes

 	Creating documents

 	Working with namespaces

 	Modifying element and attribute values

 	Adding nodes

 	Removing nodes

 	Schema validation

 	JSON

 	ConvertTo-Json

 	EnumsAsStrings

 	AsArray

 	EscapeHandling

 	ConvertFrom-Json

 	AsHashtable

 	NoEnumerate

 	Summary

 	Web Requests and Web Services

 	Technical requirements

 	Web requests

 	HTTP methods

 	HTTPS

 	Bypassing SSL errors in Windows PowerShell

 	Capturing SSL errors

 	Working with REST

 	Invoke-RestMethod

 	Simple requests

 	Requests with arguments

 	Working with paging

 	Working with authentication

 	Using basic authentication

 	OAuth

 	Creating an application

 	Getting an authorization code

 	OAuth browser issues

 	Requesting an access token

 	Using a token

 	Working with SOAP

 	Finding a SOAP service

 	SOAP in Windows PowerShell

 	New-WebServiceProxy

 	Methods

 	Methods and enumerations

 	Methods and SOAP objects

 	Overlapping services

 	SOAP in PowerShell 7

 	Getting the WSDL document

 	Discovering methods and enumerations

 	Running methods

 	Summary

 	Remoting and Remote Management

 	Technical requirements

 	WS-Management

 	Enabling remoting

 	Get-WSManInstance

 	The WSMan drive

 	Remoting and SSL

 	Set-WSManQuickConfig

 	Remoting and permissions

 	Remoting permissions GUI

 	Remoting permissions by script

 	User Account Control

 	Trusted hosts

 	PSSessions

 	New-PSSession

 	Get-PSSession

 	Invoke-Command

 	Local functions and remote sessions

 	Using splatting with ArgumentList

 	The AsJob parameter

 	Disconnected sessions

 	The using variable scope

 	The Enter-PSSession command

 	Import-PSSession

 	Export-PSSession

 	Copying items between sessions

 	Remoting on Linux

 	Remoting over SSH

 	Connecting from Windows to Linux

 	Connecting from Linux to Windows

 	The double-hop problem

 	CredSSP

 	Passing credentials

 	CIM sessions

 	New-CimSession

 	Get-CimSession

 	Using CIM sessions

 	Just Enough Administration

 	Session configuration

 	Role capabilities

 	Summary

 	Asynchronous Processing

 	Working with jobs

 	The Start-Job, Get-Job, and Remove-Job commands

 	The Receive-Job command

 	The Wait-Job command

 	Jobs and the using scope modifier

 	The background operator

 	The ThreadJob module

 	Batching jobs

 	Reacting to events

 	The Register-ObjectEvent and *-Event commands

 	The Get-EventSubscriber and Unregister-Event commands

 	The Action, Event, EventArgs, and MessageData parameters

 	Using runspaces and runspace pools

 	Creating a PowerShell instance

 	The Invoke and BeginInvoke methods

 	The EndInvoke method and the PSDataCollection object

 	Running multiple instances

 	Using the RunspacePool object

 	About the InitialSessionState object

 	Adding modules and snap-ins

 	Adding variables

 	Adding functions

 	Using the InitialSessionState and RunspacePool objects

 	Using Runspace-synchronized objects

 	Summary

 	Graphical User Interfaces

 	About Windows Presentation Foundation (WPF)

 	Designing a UI

 	About XAML

 	Displaying the UI

 	Layout

 	Using the Grid control

 	Using the StackPanel control

 	Using the DockPanel control

 	About Margin and Padding

 	Naming and locating elements

 	Handling events

 	Buttons and the Click event

 	ComboBox and SelectionChanged

 	Adding elements programmatically

 	Sorting a ListView

 	Responsive interfaces

 	Import-Xaml and Runspace support

 	Using the Dispatcher

 	Summary

 	Scripts, Functions, and Script Blocks

 	About style

 	Capabilities of scripts, functions, and script blocks

 	Scripts and using statements

 	Scripts and Requires

 	Nesting functions

 	Script blocks and closures

 	Parameters and the param block

 	Parameter types

 	Default values

 	Cross-referencing parameters

 	The CmdletBinding attribute

 	Common parameters

 	CmdletBinding properties

 	ShouldProcess and ShouldContinue

 	ShouldProcess

 	ShouldContinue

 	The Alias attribute

 	begin, process, end, and cleanup

 	begin

 	process

 	end

 	cleanup

 	Named blocks and return

 	Managing output

 	The Out-Null command

 	Assigning to null

 	Redirecting to null

 	Casting to Void

 	Working with long lines

 	Line break after a pipe

 	Line break after an operator

 	Using the array operator to break up lines

 	Comment-based help

 	Parameter help

 	Examples

 	Summary

 	Parameters, Validation, and Dynamic Parameters

 	The Parameter attribute

 	Position and positional binding

 	The DontShow property

 	The ValueFromRemainingArguments property

 	The HelpMessage property

 	Validating input

 	The PSTypeName attribute

 	Validation attributes

 	The ValidateNotNull attribute

 	The ValidateNotNullOrEmpty attribute

 	The ValidateCount attribute

 	The ValidateDrive attribute

 	The ValidateUserDrive attribute

 	The ValidateLength attribute

 	The ValidatePattern attribute

 	The ValidateRange attribute

 	The ValidateScript attribute

 	The ValidateSet attribute

 	The Allow attributes

 	The AllowNull attribute

 	The AllowEmptyString attribute

 	The AllowEmptyCollection attribute

 	PSReference parameters

 	Pipeline input

 	About ValueFromPipeline

 	Accepting null input

 	Input object types

 	Using ValueFromPipeline for multiple parameters

 	Using PSTypeName

 	About ValueFromPipelineByPropertyName

 	ValueFromPipelineByPropertyName and parameter aliases

 	Defining parameter sets

 	Argument completers

 	The ArgumentCompleter attribute

 	Using Register-ArgumentCompleter

 	Listing registered argument completers

 	Dynamic parameters

 	Creating a RuntimeDefinedParameter object

 	Using RuntimeDefinedParameterDictionary

 	Using dynamic parameters

 	Conditional parameters

 	Summary

 	Classes and Enumerations

 	Defining an enumeration

 	Enum and underlying types

 	Automatic value assignment

 	Enum or ValidateSet

 	The Flags attribute

 	Using enumerations to convert a value

 	Creating a class

 	Properties

 	Constructors

 	Methods

 	The Hidden modifier

 	The Static modifier

 	Inheritance

 	Constructors and inheritance

 	Calling methods in a parent class

 	Working with interfaces

 	Implementing IComparable

 	Implementing IEquatable

 	Supporting casting

 	Classes for parameters

 	Argument-transformation attribute classes

 	Validation attribute classes

 	ValidateArgumentsAttribute

 	ValidateEnumeratedArgumentsAttribute

 	Classes for ValidateSet

 	Classes and DSC

 	Implementing Get

 	Implementing Set

 	Implementing Test

 	Using the resource

 	Summary

 	Building Modules

 	Technical requirements

 	Creating a module

 	The root module

 	Export-ModuleMember

 	Module manifests

 	Test-ModuleManifest

 	Update-ModuleManifest

 	Publishing a module

 	Publishing and side-by-side versioning

 	Multi-file module layout

 	Dot sourcing module content

 	Merging module content

 	ModuleBuilder and DSC resources

 	Module scope

 	Accessing module scope

 	Modules, classes, and enumerations

 	Initializing and removing modules

 	The ScriptsToProcess property

 	The OnRemove event

 	Summary

 	Testing

 	Technical requirements

 	Static analysis

 	PSScriptAnalyzer

 	Configurable rules

 	Suppressing rules

 	Using AST

 	Visualizing the AST

 	Searching the AST

 	Tokenizer

 	Custom script analyzer rules

 	Creating a custom rule

 	AST-based rules

 	Token-based rules

 	Testing with Pester

 	Testing methodologies

 	What to test

 	Describing tests

 	About the Describe and Context keywords

 	About the It keyword

 	Should and assertions

 	Testing for errors

 	Iteration with Pester

 	Using the TestCases parameter

 	Using the ForEach parameter

 	Conditional testing

 	Using Set-ItResult

 	Using Skip

 	Pester phases

 	Before and After blocks

 	Mocking commands

 	Parameter filtering

 	Overriding mocks

 	Mocking non-local commands

 	Mocking objects

 	Adding methods to PSCustomObject

 	Disarming .NET types

 	Mocking CIM objects

 	InModuleScope

 	Pester in scripts

 	Summary

 	Error Handling

 	Error types

 	Non-terminating errors

 	Terminating errors

 	Error actions

 	About Get-Error

 	Raising errors

 	Error records

 	Raising non-terminating errors

 	Using the WriteError method

 	Raising terminating errors

 	Using the ThrowTerminatingError method

 	Catching errors

 	ErrorVariable

 	try, catch, and finally

 	Rethrowing errors

 	Inconsistent error handling

 	throw and ErrorAction

 	Nesting try, catch, and finally

 	About trap

 	Using trap

 	trap, scope, and continue

 	Summary

 	Debugging and Troubleshooting

 	Common problems

 	Dash characters

 	Operator usage

 	Assignment instead of equality

 	-or instead of -and

 	Negated array comparisons

 	Use of named blocks

 	Code outside of a named block

 	Pipeline without process

 	Problems with variables

 	About strict mode

 	Variables and types

 	Types and reserved variables

 	Debugging in the console

 	Setting a command breakpoint

 	Using variable breakpoints

 	Setting a line breakpoint

 	Debugging in Visual Studio Code

 	Using the debugger

 	Viewing the CALL STACK

 	Using launch configurations

 	Using WATCH

 	Summary

 	Other Books You May Enjoy

 	Index

 Landmarks

 	

 Cover

 	

 Index

 Preface

 PowerShell is an object-oriented scripting language aimed at Systems Administrators that was invented by Jeffrey Snover. PowerShell was first conceived as far back as 2002 and entered mainstream use in 2006. Exchange 2007 was one of the first major systems to adopt it as an administration language.

 PowerShell has come a long way over the years. PowerShell 7 smooths over a lot of the rough edges in the original releases of the cross-platform PowerShell Core (PowerShell 6).

 Like any good scripting language, PowerShell is the glue that ties automated processes together. It is a vital part of the Microsoft ecosystem and is great in heterogeneous environments.

 Who this book is for

 This book is for PowerShell developers, system administrators, and script authors, new and old, who wish to explore the capabilities and possibilities of the language.

 What this book covers

 Chapter 1, Introduction to PowerShell, introduces you to editors, the help system, command naming, and more.

 Chapter 2, Modules and Snap-Ins, explores finding, installing, and using modules in PowerShell. Snap-ins are not part of PowerShell 7 but are briefly explored as a legacy feature of PowerShell 5.

 Chapter 3, Working with Objects in PowerShell, looks at the concept of objects in PowerShell and the generic commands available for selecting, filtering, and manipulating values.

 Chapter 4, Operators, explores the large variety of operators available in PowerShell.

 Chapter 5, Variables, Arrays, and Hashtables are an important topic in PowerShell. The chapter explores the use of variables, as well as the capabilities of collections.

 Chapter 6, Conditional Statements and Loops are the tools used to make decisions in scripts in PowerShell. This chapter explores keywords like If, and the different loop styles available.

 Chapter 7, Working with .NET, is used to dive into .NET, which was used to create the PowerShell language and is available within PowerShell.

 Chapter 8, Strings, Numbers, and Dates are a vital part of any scripting language, and PowerShell is no exception. This chapter explores the different techniques available for working with such values.

 Chapter 9, Regular Expressions are an incredibly useful inclusion in PowerShell. You can use regular expressions to make short work of string parsing tasks. The chapter ends by walking through several practical parsing examples.

 Chapter 10, File, Folders, and the Registry, explores the use of providers in PowerShell, most used to access the file system and, in Windows, the registry.

 Chapter 11, Windows Management Instrumentation, explores WMI in PowerShell, a significant part of the Windows operating system since Windows NT.

 Chapter 12, Working with HTML, XML, and JSON, looks at the PowerShell commands and .NET types that you can use to work with these different text-based formats.

 Chapter 13, Web Requests and Web Services, explores basic web requests before diving into using PowerShell to work with REST APIs, using the API for GitHub as an example. Support for SOAP in PowerShell 7 is less complete than in PowerShell 5.1. SOAP is explored by way of a web service project via Visual Studio.

 Chapter 14, Remoting and Remote Management, examines the configuration and use of PowerShell Remoting in both Windows and Linux.

 Chapter 15, Asynchronous Processing, dives into the realm of background jobs in PowerShell before exploring .NET events in PowerShell. The chapter ends with a look at runspaces and runspace pools.

 Chapter 16, Graphical User Interfaces, shows you how to implement responsive user interfaces in PowerShell.

 Chapter 17, Scripts, Functions, and Script Blocks, explores the building blocks of larger scripts and modules. The chapter looks at how to define parameters, work in a pipeline, and manage output.

 Chapter 18, Parameters, Validation, and Dynamic Parameters, looks at the many options available for defining parameters and validating input in PowerShell.

 Chapter 19, Classes and Enumerations, shows off the capabilities of the class and enum keywords, which were introduced with PowerShell 5. The chapter includes an exploration of class inheritance and implementing .NET interfaces. This chapter includes a brief look at writing class-based DSC resources.

 Chapter 20, Building Modules, explores the key concepts of creating a module in PowerShell using PowerShell code. The chapter shows off some of the common approaches available to module authors.

 Chapter 21, Testing, is used to explore static analysis using PSScriptAnalyzer as well as acceptance and unit testing using the Pester framework.

 Chapter 22, Error Handling, looks at the complex topic of handling errors in PowerShell, including an exploration of both terminating and non-terminating errors.

 Chapter 23, Debugging and Troubleshooting, uses the built-in debugger in PowerShell and Visual Studio to delve into some of the common problems encountered when debugging scripts.

 To get the most out of this book

 	Some familiarity with operating systems would be beneficial

 	Visual Studio Code (https://code.visualstudio.com/) is used a few times in the book and is a useful tool to have available throughout

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Fourth-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781800206540_ColorImages.pdf.

 Conventions used

 There are several text conventions used throughout this book.

 CodeInText: Indicates code words in the text, type names, property names, property values, variable names, folder names, and file names. For example: "By default, Save-Help (and Update-Help) will not download help content more often than once every 24 hours."

 A block of code is set as follows:

 Get-Process |

 Select-Object Name, ID -First 1

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

 Get-Process |

 Select-Object Name, ID

 Any command-line input or output is written as follows:

 PS> Get-Process |

>> Select-Object Name, ID -First 1

Name Id

---- --

Pwsh 5068

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "Extensible Markup Language (XML) is a plain text format that is used to store structured data."

 Warnings or important notes appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you've read Mastering PowerShell Scripting, Fourth Edition, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

 1

 Introduction to PowerShell

 PowerShell is a shell scripting language from Microsoft originally released for Windows in 2006. PowerShell was written to appeal to systems administrators and presents a great deal of its functionality as commands such as Get-ChildItem, Get-Content, New-Item, and so on. Microsoft Exchange was one of the first systems to embrace PowerShell with the release of Exchange 2007.

 Windows PowerShell includes the original version through to 5.1, which is the final release of the Windows-specific shell. Windows PowerShell versions are based on .NET Framework.

 In 2018, the first version of PowerShell Core was released with PowerShell 6. The move from .NET Framework to .NET Core allows the current versions of PowerShell to run on Linux and macOS, as well as Windows.

 The use of .NET Core 2 in PowerShell 6 introduced a challenge for PowerShell users as it did not include everything that was in.NET Framework. For example, it was not possible to use scripts that created Windows Forms user interfaces in PowerShell 6.

 In PowerShell 7, .NET Core 3.1 is used. This update reintroduced support for many of the missing features, including support for Windows Forms.

 The other significant difference between Windows PowerShell and the current versions of PowerShell is that PowerShell is now open source. The project is on GitHub and is open to public contributors: https://github.com/powershell/powershell.

 A significant number of community contributors have been driving change, making commands more usable and useful, adding new features, and fixing bugs.

 Several core commands have fallen by the wayside while these changes were being made. The reasons for this vary; in some cases, the commands are fundamentally incompatible with .NET Core. In a few cases, the commands were under restricted licensing agreements and could not be made open source. These differences are highlighted in this book and alternatives are demonstrated where possible.

 Despite all this change, PowerShell still maintains a strong backward-compatibility. Lessons learned using Windows PowerShell can be applied to PowerShell Core and 7, and they will continue to be applicable to future versions of PowerShell.

 This book is split into several sections. Much of this book is intended to act as a reference. The following topics will be covered:

 	Exploring PowerShell fundamentals

 	Working with data

 	Automating with PowerShell

 	Extending PowerShell

 In the first section of this book, while exploring the PowerShell fundamentals, you will look at the use of language and cover as many building blocks as possible.

 This chapter explores a diverse set of topics:

 	What is PowerShell?

 	PowerShell editors

 	Getting help

 	Command naming

 	Command discovery

 	Parameters, values, and parameter sets

 	Introduction to providers

 	Introduction to splatting

 	Parser modes

 	Experimental features

 Technical requirements

 This chapter makes use of the following on the Windows platform: PowerShell 7

 Let's begin with what PowerShell is.

 What is PowerShell?

 PowerShell is a mixture of a command-line interface, a functional programming language, and an object-oriented programming language. PowerShell is based on Microsoft .NET, which gives it a level of open flexibility that was not available in Microsoft's scripting languages (such as VBScript or batch) before this.

 PowerShell has been written to be highly discoverable. It has substantial built-in help that's accessible within the console via the Get-Help command. PowerShell has commands such as Get-Member to allow a user to discover the details of the values it returns.

 PowerShell 7 can be installed alongside Windows PowerShell. Windows PowerShell is installed in Windows\System32 by the Windows Management Framework packages, and it cannot be moved elsewhere. PowerShell Core and 7 are both installed in the Program Files folder and do not share any of the files used by Windows PowerShell. Preview versions of PowerShell can be installed alongside the full releases and have separate folder structures.

 PowerShell is a complex language; a good editor can save time finding the right syntax to use in a script.

 PowerShell editors

 While you can develop PowerShell scripts using the Notepad application alone, it is rarely desirable. Using an editor that was designed to work with PowerShell can save a lot of time.

 Specialized PowerShell editors such as Visual Studio Code (VS Code) and PowerShell Studio offer automatic completion (IntelliSense). IntelliSense reduces the amount of cross-referencing help content required while writing code. Finding a comfortable editor early on is a good way to ease into PowerShell; memorizing commands and parameters is not necessary.

 In addition to the aforementioned editors, Windows PowerShell comes with PowerShell ISE. PowerShell ISE has not been updated for PowerShell 6 and higher and will only function correctly for Windows PowerShell.

 PowerShell Studio is not free but includes graphical user interface development features.

 VS Code is a highly recommended editor for PowerShell as it is free. VS Code is an open-source editor that was published by Microsoft and can be downloaded from http://code.visualstudio.com.

 The functionality of VS Code can be enhanced by using extensions from the marketplace: https://marketplace.visualstudio.com/VSCode. The Extension installer is part of the VS Code user interface, and the types of available extensions are shown in Figure 1.1:

 [image:]

 Figure 1.1: PowerShell extensions in VS Code

 The icons available on the left-hand side change depending on the extensions installed. A new installation of VS Code will show fewer icons than Figure 1.1.

 The PowerShell Extension should be installed. Other popular extensions include:

 	Bracket Pair Colorizer 2

 	Chocolatey

 	Live Share

 	Prettify JSON

 Paid-for extensions, such as PowerShell Pro Tools, offer us the ability to design user interfaces in VS Code.

 The integrated console in VS Code can be used with all installed versions of PowerShell. The following screenshot shows how to change the version of PowerShell used when editing a script. Note the clickable version in the bottom-right corner:

 [image: A screenshot of a computer screen

Description automatically generated]

 Figure 1.2: Choosing a PowerShell version

 The IntelliSense version provided by the editor will list and hint at the possible commands and parameters available. Help content is available to fill in the details.

 Getting help

 PowerShell includes a built-in help system accessible using the Get-Help command. Gaining confidence using the built-in help system is an important part of working with PowerShell. Script authors and PowerShell developers can easily write their own help content when working with functions, scripts, and script modules.

 Updatable help

 The concept of updatable help was added in Windows PowerShell 3. It allows users to obtain the most recent versions of their help documentation outside of PowerShell on a web service. Help content can be downloaded and installed using the Update-Help command in PowerShell.

 Which modules support updatable help?

 You can view a list of modules that support updatable help by running the following command:

 Get-Module -ListAvailable | Where-Object HelpInfoURI

 Help for the core components of PowerShell is not part of the PowerShell 7 installation package. Content must be downloaded before it can be viewed. The first time Get-Help is run, PowerShell prompts to update help. Update-Help requires write access to shared module directories such as Program Files. In Windows, this means using "Run as Administrator" to open a PowerShell console.

 Computers with no internet access or computers behind a restrictive proxy server may not be able to download the help content directly. You need to use the Save-Help command, which is discussed later in this section, to work around this problem.

 If PowerShell is unable to download help, it can only show a small amount of information about a command; for example, without downloading help, the content for the Out-Null command is minimal, as shown here:

 PS> Get-Help Out-Null

NAME

 Out-Null

SYNTAX

 Out-Null [-InputObject <psobject>] [<CommonParameters>]

ALIASES

 None

REMARKS

 Get-Help cannot find the Help files for this cmdlet on this computer.

 It is displaying only partial help.

 -- To download and install Help files for the module that

 includes this cmdlet, use Update-Help.

 -- To view the Help topic for this cmdlet online, type:

 "Get-Help Out-Null -Online" or go to

 http://go.microsoft.com/fwlink/?LinkID=113366.

 The help content in the preceding example is automatically generated by PowerShell. PowerShell inspects the command to determine which parameters are available.

 Updatable help as a help file can be viewed using the following command:

 Get-Help about_Updatable_Help

 Updateable help is not entirely free from issues. Internet resources change as content moves around over time, which may invalidate HelpInfoUri, the URL stored within the module and used to retrieve help files. For example, the ThreadJob module briefly had help available via Update-Help; help for the ThreadJob module was not available when this chapter was written.

 The Get-Help command

 When Get-Help is used without parameters, it shows introductory help about the help system. This content is taken from the default help file (Get-Help default); a snippet of this is as follows:

 PS> Get-Help

TOPIC

 Windows PowerShell Help System

SHORT DESCRIPTION

 Displays help about Windows PowerShell cmdlets and concepts.

LONG DESCRIPTION

 Windows PowerShell Help describes Windows PowerShell cmdlets,

 Help content can be long

 The help content, in most cases, does not fit on a single screen. The help command differs from Get-Help in that it pauses (waiting for a key to be pressed) after each page; for example:

 help default

 The previous command is equivalent to running Get-Help and piping it into the more command:

 Get-Help default | more

 Alternatively, Get-Help can be asked to show a window:

 Get-Help default -ShowWindow

 The available help content may be listed using either of the following two commands:

 Get-Help *

Get-Help -Category All

 Help for a subject can be viewed as follows:

 Get-Help -Name <Topic>

 For example, help for the Get-Variable command may be shown:

 Get-Help Get-Variable

 If a help document includes an online version link, it may be opened in a browser with the -Online parameter:

 Get-Help Get-Command -Online

 The URL used for online help can be viewed using Get-Command:

 Get-Command Get-Command | Select-Object HelpUri

 The help content is broken down into several sections: name, synopsis, syntax, description, related links, and remarks.

 Name simply includes the name of the command. Synopsis is a short description of the functionality provided by the command, often no more than one sentence. Description often provides much greater detail than synopsis. Related links and remarks are optional fields, which may include links to related content.

 Syntax is covered in the following section in more detail as it is the most complex.

 Syntax

 The syntax section lists each of the possible combinations of parameters a command accepts; each of these is known as a parameter set.

 A command that has more than one parameter set is shown by this example for the Get-Process command:

 SYNTAX

 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>]

 [-FileVersionInfo] [-Module] [<CommonParameters>]

 Get-Process [-ComputerName [<String[]>]] [-FileVersionInfo]

 [-Module] -InputObject <Process[]> [<CommonParameters>]

 The syntax elements written in square brackets are optional; for example, syntax help for Get-Process shows that all its parameters are optional, as the following code shows:

 SYNTAX

 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>] [-FileVersionInfo] [-Module] [<CommonParameters>]

 As the Name parameter is optional, Get-Process may be run without any parameters. The command may also be run by specifying a value only and no parameter name. Alternatively, the parameter name can be included as well as the value.

 Each of the following examples is a valid use of Get-Process:

 Get-Process

Get-Process pwsh

Get-Process -Name pwsh

 Get-Command can show syntax

 Get-Command may be used to view the syntax for a command. For example, running the following command will show the same output as seen in the Syntax section of Get-Help:

 Get-Command Get-Variable -Syntax

 The different parameter types and how they are used are explored later in this chapter.

 Examples

 The Examples section of help provides working examples of how a command may be used. Help often includes more than one example.

 In some cases, a command is sufficiently complex that it requires a detailed example to accompany parameter descriptions; in others, the command is simple, and a good example may serve in lieu of reading the help documentation.

 PowerShell users can update help

 Help documentation for built-in commands is open source. If a cmdlet is missing helpful examples, they can be added.

 A link to the PowerShell-Docs repository is available at the bottom of the online help page. It should send a user to the en-US version of help:

 https://github.com/MicrosoftDocs/PowerShell-Docs

 Help for other languages is available under the same GitHub organization; for example:

 https://github.com/MicrosoftDocs/powerShell-Docs.pl-pl

 Some help for other languages may be generated by translation software.

 Examples for a command can be requested by specifying the Examples parameter for Get-Help, as shown in the following example:

 Get-Help Get-Process -Examples

 The help information for most cmdlets usually includes several examples of its use, especially if the command has more than one parameter set.

 Parameter

 Parameters in PowerShell are used to supply named arguments to PowerShell commands.

 Help for specific parameters can be requested as follows:

 Get-Help Get-Command -Parameter <ParameterName>

 The Parameter parameter allows for the quick retrieval of specific help for a single parameter; for example, help for the Path parameter of the Import-Csv command may be viewed:

 PS> Get-Help Import-Csv -Parameter Path

-Path [<String[]>]

 Specifies the path to the CSV file to import. You can also pipe

 a path to `Import-Csv`.

 Required? false

 Position? 1

 Default value None

 Accept pipeline input? true (ByValue)

 Accept wildcard characters? false

 The preceding content describes the parameter, whether the parameter is mandatory (Required), its position, default value, pipeline behavior, and support for wildcards.

 Detailed and Full switches

 The Detailed switch parameter (a parameter that does not require an argument) asks Get-Help to return the most help content.

 The default sections returned by help are Name, Synopsis, Syntax, Description, Related Links, and Remarks.

 When Detailed is requested, Parameters and Examples are added, and Related Links is excluded.

 The Detailed parameter is used as follows:

 Get-Help Get-Process -Detailed

 The Full switch parameter includes all the default sections, as well as Parameters, Inputs, Outputs, Notes, and Examples.

 The following code shows the sections detailing the input and output types for Get-Process from the full help document; content before those sections has been removed from this example:

 PS> Get-Help Get-Process -Full

... <content removed> ...

INPUTS

 System.Diagnostics.Process

 You can pipe a process object to Get-Process.

OUTPUTS

 System.Diagnostics.Process, System.Diagnotics.FileVersionInfo, System.Diagnostics.ProcessModule

 By default, this cmdlet returns a System.Diagnostics.Process

 object. If you use the FileVersionInfo parameter, it returns

 a System.Diagnostics.FileVersionInfo object. If you use the

 Module parameter, without the FileVersionInfo parameter, it

 returns a System.Diagnostics.ProcessModule object.

 INPUTS is typically used to describe the value types that can be piped to a command. Pipelines are introduced in Chapter 3, Working with Objects in PowerShell.

 In addition to the extra sections, the Full switch parameter includes metadata in the parameter section, the same metadata seen when using Get-Help Get-Process -Parameter Path.

 Help content in PowerShell is extensive and a valuable resource to have on any system running PowerShell.

 Save-Help

 The Save-Help command can be used with modules that support updatable help. It allows help content for installed modules to be saved to disk.

 Help for a module can be downloaded using the following command. The destination folder must exist before running the command:

 Save-Help -Module Microsoft.PowerShell.Management -DestinationPath C:\PSHelp

 By default, Save-Help attempts to download help content for the current UI culture; that is, the current user interface language. You can use the Get-UICulture command to view the values, as the following example shows:

 PS> Get-UICulture

LCID Name DisplayName

---- ---- -----------

2057 en-GB English (United Kingdom)

 If help content is not available for that culture, Save-Help will not do anything and will not raise an error. For UI cultures other than en-US, the C:\PSHelp folder will likely be empty.

 Save-Help can be instructed to download help in a specific language by using the UICulture parameter:

 Save-Help -Module Microsoft.PowerShell.Management -DestinationPath C:\PSHelp -UICulture en-US

 If help content is available, it is downloaded as shown in the C:\PSHelp folder here:

 [image:]

 Figure 1.3: Downloaded help content for en-US

 By default, Save-Help (and Update-Help) will not download help content more often than once every 24 hours. This can be seen using the Verbose switch parameter:

 PS> Save-Help -Module Microsoft.PowerShell.Management -DestinationPath C:\PSHelp -UICulture en-US -Verbose

VERBOSE: Help was not saved for the module Microsoft.PowerShell.Management, because the Save-Help command was run on this computer within the last 24 hours.

 The Verbose switch parameter is used to make any verbose messages the command author has included visible in the console.

 If help content is available for other cultures, and that content is downloaded immediately after en-US, then you must add the Force parameter:

 Save-Help -Module Microsoft.PowerShell.Management -DestinationPath C:\PSHelp -UICulture pl-PL -Force

 However, as help content for the Microsoft.PowerShell.Management module is only available in en-US, the preceding command displays an error message describing which cultures help is available for.

 Help content for all modules supporting updateable help can be saved as follows:

 Save-Help -DestinationPath C:\PSHelp -UICulture en-US

 Saved help content can be copied to another computer and imported using Update-Help. This technique is useful for computers that do not have internet access as it means help content can be made available.

 Update-Help

 The Update-Help command performs two tasks:

 	Update help files on the local computer from the internet

 	Updates help files on the local computer from previously saved help files

 To update help from the internet for all modules that support updateable help, run the Update-Help cmdlet with no parameters:

 Update-Help

 Administrative rights are required for Update-Help

 Updating help for some modules requires administrative rights (run as administrator). This applies to modules that are stored in protected areas of the filesystem, such as those in Program Files.

 For UI cultures other than en-US, the UICulture parameter may be required:

 Update-Help -UICulture en-US

 Like Save-Help, Update-Help will not download help for a module more than once every 24 hours by default. This can be overridden by using the Force parameter:

 Update-Help -Name Microsoft.PowerShell.Management -Force -UICulture en-US

 Help content that was saved using Save-Help can be imported from a folder using the SourcePath parameter:

 Update-Help -SourcePath C:\PSHelp

 If the folder does not contain content for the current UI culture (shown with Get-UICulture), an error message will be displayed:

 PS> Update-Help -Module Microsoft.PowerShell.Management -SourcePath C:\PSHelp

Update-Help: Failed to update Help for the module(s) 'Microsoft.PowerShell.Management' with UI culture(s) {en-GB} : Unable to retrieve the HelpInfo XML file for UI culture en-GB. Make sure the HelpInfoUri property in the module manifest is valid or check your network connection and then try the command again..

 You can use the UICulture parameter again to update help content from the folder:

 Update-Help -Module Microsoft.PowerShell.Management -SourcePath C:\PSHelp -UICulture en-US

 Help content is not limited to help for specific commands. PowerShell includes a large number of topical help documents.

 About_* help files

 About_* documents describe features of a language or concepts that apply to more than one command. These items do not fit into help for individual commands.

 The list of help files can be viewed by running Get-Help with the category set to HelpFile, as demonstrated in the following code:

 Get-Help -Category HelpFile

 Alternatively, wildcards can be used with the Name parameter of Get-Help:

 Get-Help -Name About_*

 These help files cover a huge variety of topics from aliases, to modules, to WMI. A number of these are shown here. The list will vary, depending on the modules installed on the computer running the command:

 Name Category Module Synopsis

---- -------- ------ --------

default HelpFile SHORT DESCRIPTION

about_PSReadLine HelpFile

about_Configuration HelpFile The Configuration...

about_Aliases HelpFile

about_Alias_Provider HelpFile

about_Arithmetic_Operators HelpFile

about_Arrays HelpFile

about_Assignment_Operators HelpFile

about_Automatic_Variables HelpFile

about_Break HelpFile

 Using help content is an important part of working with PowerShell. Memorizing content is not necessary where instructions and reference material are easily accessible.

 Get-Help may lead to finding a command to help achieve a task; however, it is often quicker to search using Get-Command.

 Command naming and discovery

 Commands in PowerShell are formed around verb and noun pairs in the form verb-noun.

 This feature is useful when finding commands; it allows you to make educated guesses so that there is little need to memorize long lists of commands.

 Verbs

 The list of verbs is maintained by Microsoft. Verbs are words such as Add, Get, Set, and New. This formal approach to naming commands greatly assists in discovery.

 You can view the verbs available in PowerShell using the following command:

 Get-Verb

 Verbs are grouped around different areas, such as data, life cycle, and security. Complementary actions such as encryption and decryption tend to use verbs in the same group; for example, the verb Protect may be used to encrypt something and the verb Unprotect may be used to decrypt something.

 Verb descriptions

 A detailed list of verbs, along with their use cases, is available on MSDN:

 https://docs.microsoft.com/en-us/powershell/scripting/developer/cmdlet/approved-verbs-for-windows-powershell-commands?view=powershell-7

 It is possible, although not recommend, to use verbs other than those in the approved list. If a command with an unapproved verb is written and included in a module, a warning message will be displayed every time the module is imported.

 Nouns

 A noun provides a very short description of the object the command is expecting to act on. The noun part may be a single word, as is the case with Get-Process, New-Item, or Get-Help, or more than one word, as seen with Get-ChildItem, Invoke-WebRequest, or Send-MailMessage.

 Command names often include a prefix on the noun. For example, the Get-ADUser command is part of the ActiveDirectory module. Modules are explored in Chapter 2, Modules and Snap-Ins. All commands in the ActiveDirectory module use AD to prefix the noun.

 Finding commands

 The verb-noun pairing strives to make it easier to find commands without resorting to search engines.

 For example, if the goal was to list firewall rules, the following command may be used to show the Get commands that might affect the firewall:

 PS> Get-Command Get-*Firewall*

CommandType Name Version Source

----------- ---- ------- ------

Function Get-NetFirewallAddressFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallApplicationFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallInterfaceFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallInterfaceTypeFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallPortFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallProfile 2.0.0.0 NetSecurity

Function Get-NetFirewallRule 2.0.0.0 NetSecurity

Function Get-NetFirewallSecurityFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallServiceFilter 2.0.0.0 NetSecurity

Function Get-NetFirewallSetting 2.0.0.0 NetSecurity

 The list of commands returned may vary, depending on the modules installed on the computer.

 From the preceding list, Get-NetFirewallRule closely matches the requirement (to see a list of firewall rules) and should be explored.

 Once a potential command has been found, Get-Help can be used to assess whether the command is suitable.

 Aliases

 An alias in PowerShell is an alternate name for a command. A command may have more than one alias. Unlike languages like Bash, an alias cannot include parameters. The use of aliases in production code is generally discouraged.

 The list of aliases can be viewed by using Get-Alias. The first few aliases are shown in the following example:

 PS> Get-Alias

CommandType Name

----------- ----

Alias % -> ForEach-Object

Alias ? -> Where-Object

Alias ac -> Add-Content

Alias cat -> Get-Content

Alias cd -> Set-Location

 Get-Alias may be used to find the command behind an alias:

 Get-Alias dir

 Get-Alias may also be used to find the aliases for any command:

 PS> Get-Alias -Definition Get-ChildItem

CommandType Name Version Source

----------- ---- ------- ------

Alias dir -> Get-ChildItem

Alias gci -> Get-ChildItem

Alias ls -> Get-ChildItem

 Examples of aliases that are frequently used in examples on the internet include the following:

 	% for ForEach-Object

 	? for Where-Object

 	cd for Set-Location

 	gc or cat for Get-Content

 	ls or dir for Get-ChildItem

 	man for help (and then Get-Help)

 An alias does not change how a command is used. There is no difference in the result of the following two commands:

 cd $env:TEMP

Set-Location $env:TEMP

 New aliases are created with the New-Alias command. For example, an alias named grep for the Select-String command can be created as follows:

 New-Alias grep -Value Select-String

 Aliases can be removed using the Remove-Alias command, including default aliases such as ls:

 Remove-Alias grep

 Aliases may also be removed using Remove-Item as an alternative to Remove-Alias:

 Remove-Item alias:\grep

 Aliases created in one session are not remembered when a new PowerShell session is started.

 More information is available about aliases in the help file about_Aliases. You can view this help file using the following command:

 Get-Help about_Aliases

 Commands (and aliases) use parameters to pass arguments into a command.

 Parameters, values, and parameter sets

 As seen while looking at syntax in Get-Help, commands accept a mixture of parameters. The following sections show how these parameters are described in help and how to use them.

 Parameters

 When viewing help for a command, several different conventions are used to describe when a parameter is required and how it should be used. These conventions include:

 	Optional parameters, where parameter names and arguments are enclosed in a single pair of square brackets.

 	Optional positional parameters, the same as an optional parameter but with the parameter name also enclosed in square brackets.

 	Mandatory parameters, where the parameter name and argument are not bracketed.

 	Mandatory positional parameters, where the parameter name is in square brackets, but the argument is not.

 The following sections show each of these conventions in greater detail.

 Optional parameters

 Optional parameters are surrounded by square brackets. If a parameter is used, a value (or argument) must be supplied:

 SYNTAX

 Get-Process [-ComputerName <String[]>] ...

 If a value for the ComputerName parameter is to be used, the name of the parameter must also be specified. This is shown in the following example:

 Get-Process -ComputerName somecomputer

 The preceding command requests the list of processes on the computer, somecomputer.

 Optional positional parameters

 An optional positional parameter is surrounded by square brackets, like an optional parameter. In addition, the parameter name itself is enclosed in square brackets. This indicates that the parameter it optional and that if it is used, the parameter and value can be supplied, or just the value without the parameter name.

 It is not uncommon to see an optional positional parameter as the first parameter:

 SYNTAX

 Get-Process [[-Name] <String[]>] ...

 In this example, either of the following may be used:

 Get-Process -Name powershell

Get-Process powershell

 The output from the two commands is identical. This includes the parameter name, which, even when it is optional, is less ambiguous and therefore a recommended practice.

 Mandatory parameters

 A mandatory parameter must always be supplied and is written as follows:

 SYNTAX

 Get-ADUser -Filter <string> ...

 In this case, the Filter parameter name must be used, and it must be given a value. For example, to supply a Filter for the command, the Filter parameter must be explicitly written:

 Get-ADUser -Filter 'sAMAccountName -eq "SomeName"'

 The Get-ADUser command has a second parameter set that uses a different parameter name with a positional value.

 Mandatory positional parameters

 Mandatory parameters must always be supplied, but in some cases, it is possible to supply the value without using the parameter name. The parameter the value applies to is based on position.

 Parameters that are mandatory and accept values based on position are written with the parameter name only in square brackets, as shown here:

 SYNTAX

 Get-ADUser [-Identity] <ADUser> ...

 In this case, the Identity parameter name is optional, but the value is not. This command may be used as described by either of the following examples:

 Get-ADUser -Identity useridentity

Get-ADUser useridentity

 In both cases, the supplied value fills the Identity parameter.

 The Add-Content command has a parameter set that uses more than one mandatory positional parameter. The first part of the syntax for the parameter set is shown here:

 Add-Content [-Path] <String[]> [-Value] <Object[]>

 In this case, the command may be called using any of the following:

 Add-Content -Path c:\temp\file.txt -Value 'Hello world'

Add-Content -Value 'Hello world' -Path c:\temp\file.txt

Add-Content 'Hello world' -Path c:\temp\file.txt

Add-Content c:\temp\file.txt -Value 'Hello world'

Add-Content c:\temp\file.txt 'Hello world'

 The first of these is easiest to read as both parameters are explicitly named and tends to be the better style to use.

 Each of the parameters so far have required an argument, a value. PowerShell also allows parameters that do not require arguments.

 Switch parameters

 A switch parameter does not require an argument. If the switch is present, the value is equivalent to true, while if the switch parameter is absent, it is equivalent to false.

 As with the other types of parameters, optional use is denoted by using square brackets around the parameter.

 Switch parameters are typically used to toggle a behavior on. For example, Recurse is a switch parameter for Get-ChildItem:

 SYNTAX

 Get-ChildItem ... [-Recurse] ...

 Using the switch instructs Get-ChildItem to recurse when listing the content of a directory, as shown here:

 Get-ChildItem c:\windows -Recurse

 It is possible to supply a value for a switch parameter from a variable. This might be desirable if writing a script where the presence of a switch parameter is based on another variable. As switch parameters do not normally expect a value, a syntax change is required:

 # Code which determines if Recurse is required

$recurse = $false

Get-ChildItem c:\windows -Recurse:$recurse

 In some cases, a switch parameter will default to present, and it may be desirable to stop the parameter applying. The most common example is the Confirm parameter, which will be explored later in this chapter.

 Parameter values

 The syntax blocks explored in the preceding sections show the type that is expected when providing a value for a parameter. A type is a .NET concept; it describes what a value is, how it behaves, and what it can do. Types will be covered in greater detail in Chapter 7, Working with .NET.

 The Get-CimInstance command expects a string as the argument for the ClassName parameter. This is shown in the snippet taken from the syntax block:

 Get-CimInstance [-ClassName] <String>

 A string is a sequence of characters. For example, the string Win32_Service can be used as follows:

 Get-CimInstance -ClassName Win32_Service

 ClassName must always be a single value. If more than one value is supplied, an error will be displayed:

 PS> Get-CimInstance -ClassName Win32_Service, Win32_Process

Get-CimInstance: Cannot convert 'System.Object[]' to the type 'System.String' required by parameter 'ClassName'. Specified method is not supported.

 Parameters that accept more than one value use [] after the type name. This indicates that the type is an array. The Name parameter for the Get-Service command is shown here:

 Get-Service [[-Name] <String[]>]

 In this case, the parameter type is an array of strings. An array may consist of one or more strings separated by a comma:

 PS> Get-Service -Name WinDefend, WlanSvc

Status Name DisplayName

------ ---- -----------

Running WinDefend Windows Defender Antivirus Service

Running WlanSvc WLAN AutoConfig

 PowerShell will attempt to coerce any value supplied into the required type. A single string can be used as an argument for the parameter. PowerShell will convert the single value into an array of strings with one element; for example:

 Get-Service -Name WinDefend

 Each of the commands used in this section will allow the value to be entered without the parameter name. For example, for Get-Service, the Name parameter can be omitted:

 Get-Service WinDefend

Get-Service WinDefend, WlanSvc

 When using positional parameters, PowerShell can use the type to determine which parameter (and which parameter set) should be used.

 Parameter sets

 In PowerShell, a parameter set is a set of parameters that may be used together when running a command.

 Many of the commands in PowerShell have more than one parameter set. This was seen when looking at the Syntax section when using Get-Help.

 For example, the Stop-Process command has three parameter sets:

 SYNTAX

 Stop-Process [-Id] <Int32[]> [-Confirm] [-Force] [-PassThru] [-WhatIf] [<CommonParameters>]

 Stop-Process [-InputObject] <Process[]> [-Confirm] [-Force] [-PassThru] [-WhatIf] [<CommonParameters>]

 Stop-Process [-Confirm] [-Force] -Name <String[]> [-PassThru] [-WhatIf] [<CommonParameters>]

 PowerShell will attempt to find a matching parameter set based on the parameters and values it is given.

 The parameter sets for Stop-Process have two different sets that will accept a value by position:

 Stop-Process [-Id] <Int32[]>

Stop-Process [-InputObject] <Process[]>

 The first expects an ID as an integer. The second expects a Process object, an object returned by the Get-Process command.

 The variable $PID is an automatic variable that holds the process ID (an integer) of the current PowerShell console. Running the following command will stop the PowerShell process. The first parameter set for Stop-Process is chosen because an integer value is used:

 Stop-Process $PID

 The second parameter set expects a value for InputObject. Again, this may be supplied as a positional parameter (or via the pipeline). In this case, PowerShell distinguishes based on its type. The following snippet contains the three possible approaches available when using the InputObject parameter:

 $process = Start-Process notepad -PassThru

Stop-Process -InputObject $process

Stop-Process $process

$process | Stop-Process

 Pipeline input

 Get-Help shows which parameters accept pipeline input in the help for each parameter. This may be viewed using either of the following commands:

 Get-Help Stop-Process -Parameter *

Get-Help Stop-Process -Full

 Examples are likely to show how to use the parameters with a pipeline.

 If Get-Help is incomplete, Get-Command can be used to explore parameters:

 (Get-Command Stop-Process).Parameters.InputObject.Attributes

 Each of the parameter sets here also shows that the command supports common parameters.

 Common parameters

 Common parameters are used to control some of the standardized functionality PowerShell provides, such as verbose output and actions to take when errors occur.

 When looking at the syntax, most commands will end with a CommonParameters item:

 SYNTAX

 Get-Process ... [<CommonParameters>]

 The following is a list of common parameters:

 	Debug

 	ErrorAction

 	ErrorVariable

 	InformationAction

 	InformationVariable

 	OutBuffer

 	OutVariable

 	PipelineVariable

 	Verbose

 	WarningAction

 	WarningVariable

 Each is described in the about_CommonParameters document:

 Get-Help about_CommonParameters

 The help document is also available online: https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_commonparameters?view=powershell-7.

 For example, Stop-Process does not explicitly state that it has a Verbose switch parameter, but since Verbose is a common parameter, it may be used. This can be seen if notepad is started and immediately stopped:

 PS> Start-Process notepad -Verbose -PassThru | Stop-Process -Verbose

VERBOSE: Performing the operation "Stop-Process" on target "notepad (5592)".

 Not so verbose

 Just because a command supports common parameters does not mean it uses them. For example, Get-Process supports the Verbose parameter, yet it does not write any verbose output when Verbose is specified.

 In addition to common parameters, PowerShell also offers specialized parameters for commands that make changes.

 Confirm and WhatIf

 Confirm and WhatIf can be used with commands that make changes to files, variables, data, and so on. These parameters are often used with commands that use the verbs Set or Remove, but the parameters are not limited to specific verbs.

 Confirm and WhatIf have associated preference variables that are used to customize default behavior in PowerShell. Preference variables have an about file, which may be viewed using the following command:

 Get-Help about_Preference_Variables

 Confirm and ConfirmPreference

 You can use the Confirm switch parameter and the ConfirmPreference variable to decide if a command should prompt. The decision to prompt is based on a comparison of ConfirmPreference with ConfirmImpact when set by a command author.

 ConfirmPreference has four possible values:

 	High: Prompts when command impact is High (default)

 	Medium: Prompts when command impact is Medium or High

 	Low: Prompts when command impact is Low, Medium, or High

 	None: Never prompts

 ConfirmImpact uses the same four values.

 In Windows PowerShell, the default value for ConfirmImpact is Medium.

 In PowerShell 7, the default value for ConfirmImpact is None. If the command uses SupportsShouldProcess, then the default is Medium. SupportsShouldProcess is explored in greater detail in Chapter 17, Scripts, Functions, and Script Blocks.

 Finding commands with a specific impact

 The following snippet returns a list of all commands that state they have a high impact:

 Get-Command -CommandType Cmdlet, Function | Where-Object {

 $metadata = [System.Management.Automation.CommandMetadata]$_

 $metadata.ConfirmImpact -eq 'High'

}

 If the Confirm parameter is explicitly provided, the value of ConfirmPreference within the scope of the command is set to Low, which will trigger any confirmation prompts. Scoping of preference variables is explored in greater detail in Chapter 17, Scripts, Functions, and Script Blocks.

 The Confirm switch parameter therefore causes a command to prompt before an action is taken; for example, the Confirm switch parameter forces Remove-Item to prompt when a file is to be removed:

 PS> Set-Location $env:TEMP

PS> New-Item FileName.txt -Force

PS> Remove-Item FileName.txt -Confirm

Confirm

Are you sure you want to perform this action?

Performing the operation "Remove File" on target "C:\Users\whoami\AppData\Local\Temp\FileName.txt".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

 In the previous example, a confirmation prompt was explicitly requested. In a similar manner, confirmation prompts may be suppressed. For example, the value of the Confirm parameter may be explicitly set to false:

 Set-Location $env:TEMP

New-Item FileName.txt -Force

Remove-Item FileName.txt -Confirm:$false

 The ability to provide a value for the Confirm parameter is useful for commands that prompt by default; for example, Clear-RecycleBin prompts by default:

 PS> Clear-RecycleBin

Confirm

Are you sure you want to perform this action?

Performing the operation "Clear-RecycleBin" on target " All of the contents of the Recycle Bin".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

 Setting the Confirm parameter to false for Clear-RecycleBin bypasses the prompt and immediately empties the recycle bin:

 Clear-RecycleBin -Confirm:$false

 If the Confirm parameter is not set, whether a prompt is shown is determined by PowerShell. The value of the ConfirmPreference variable is compared with ConfirmImpact on a command.

 There is more than one way to prompt

 There are two ways of requesting confirmation in PowerShell. These are ShouldProcess and ShouldContinue. These are explored in Chapter 17, Scripts, Functions, and Script Blocks.

 ShouldProcess is affected by the Confirm parameter and ConfirmPreference variable.

 ShouldContinue is a forced prompt and is unaffected by the Confirm parameter and ConfirmPreference variable.

 For example, Remove-Item will always prompt when attempting to delete a directory that is not empty without supplying the Recurse parameter.

 It is not possible to easily discover commands using forced prompts. Reviewing documentation and testing is vital.

 By default, the value of ConfirmPreference is High. This means that prompts will be raised when ConfirmImpact for a command is High. The default value for ConfirmPreference may be viewed as follows:

 PS> $ConfirmPreference

High

 Finding ConfirmImpact

 In scripts and functions, the ConfirmImpact setting is part of the CmdletBinding attribute:

 [CmdletBinding(ConfirmImpact = 'High')]

 If CmdletBinding or ConfirmImpact are not present, the impact is Medium in Windows PowerShell and None in PowerShell 7.

 The impact of a function or cmdlet may be viewed using the ConfirmImpact property of a command's metadata:

 [System.Management.Automation.CommandMetadata](Get-Command Remove-Item)

 The use of CmdletBinding is explored in detail in Chapter 17, Scripts, Functions, and Script Blocks.

 A new value for ConfirmPreference may be set by assigning it in the console; for example, it can be set to Low. When the preference variable is set to Low, prompts may be raised by all commands where ConfirmImpact is Low, Medium, or High.

 $ConfirmPreference = 'Low'

 ConfirmPreference and the Confirm parameter

 When ConfirmPreference is set to None to suppress confirmation prompts, confirmation may still be explicitly requested using the Confirm parameter; for example:

 $ConfirmPreference = 'None'

New-Item NewFile.txt -Confirm

 Support for confirmation also provides support for WhatIf.

 WhatIf and WhatIfPreference

 WhatIf is typically used when testing a command. If implemented correctly by a command author, WhatIf should allow a state changing command to be run without it making the change.

 The WhatIf parameter has an associated preference variable, WhatIfPreference, which may be set to either true or false. The default value is false.

 The WhatIf parameter replaces the confirmation prompt with a simple statement describing the action the command would have taken. Using Remove-Item as an example again, a message will be displayed, and the file will not be deleted:

 PS> Set-Location $env:TEMP

PS> New-Item FileName.txt -Force

PS> Remove-Item FileName.txt -WhatIf

What if: Performing the operation "Remove File" on target "C:\Users\whoami\AppData\Local\Temp\FileName.txt".

 If both Confirm and WhatIf are used with a command, WhatIf takes precedence. WhatIf messages is shown, while confirmation is not requested.

 WhatIf can be explicitly set on a per-command basis by supplying a value in the same manner as the Confirm parameter. For example, WhatIf might be explicitly set to false:

 'Some message' | Out-File $env:TEMP\test.txt -WhatIf:$false

 Setting WhatIf in the manner used here might, for instance, be useful if a log file should be written even if other state-changing commands are ignored.

 If the preference variable is set to true, all commands that support WhatIf act as if the parameter is set explicitly. A new value may be set for the variable, as shown in the following code:

 $WhatIfPreference = $true

 The WhatIf preference variable takes precedence over the Confirm parameter. For example, the WhatIf dialog is shown when running the following New-Item, but the Confirm prompt is not:

 PS> $WhatIfPreference = $true

PS> New-Item NewFile.txt -Confirm

What if: Performing the operation "Create File" on target "Destination: C:\Users\whoami\AppData\Local\Temp\NewFile.txt".

 Restarting the console will restore preference variables to their default values.

 The behavior of Confirm and WhatIf is prescribed by PowerShell. Parameters such as Force and PassThru are commonly used in PowerShell but have less well-defined behavior.

 Force parameter

 The Force parameter is not one of the common parameters with behavior defined by PowerShell itself, but the parameter is frequently used.

 Force has no fixed usage; the effect of using Force is a choice a command author must make. Help documentation should state the effect of using Force with a command. For example, the use of Force with Remove-Item is available:

 Get-Help Remove-Item -Parameter Force

 With the Force parameter, New-Item overwrites any existing file with the same path. When used with Remove-Item, the Force parameter allows the removal of files with Hidden or System attributes.

 The error that is generated when attempting to delete a Hidden file is shown in the following code:

 PS> Set-Location $env:TEMP

PS> New-Item FileName.txt -Force

PS> Set-ItemProperty FileName.txt -Name Attributes -Value Hidden

PS> Remove-Item FileName.txt

Remove-Item: You do not have sufficient access rights to perform this operation or the item is hidden, system, or read only.RemoveFileSystemItemUnAuthorizedAccess,Microsoft.PowerShell.Commands.RemoveItemCommand

 Adding the Force parameter allows the operation to continue:

 Remove-Item FileName.txt -Force

 The Force parameter may be worth exploring if a command is prompting, and the prompts cannot be suppressed using the Confirm parameter or the ConfirmPreference variable.

 PassThru parameter

 The PassThru parameter, like Force, is frequently used, but the behavior of the parameter is not defined by PowerShell. However, PassThru tends to have predictable behavior.

 The PasThru parameter is typically used with commands that do not normally generate output and is used to force the command to return the object it was working with.

 For example, the Start-Process command does not normally return any output. If PassThru is used, it will return the process it created:

 PS> Start-Process notepad -PassThru

 NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName

 ------ ----- ----- ------ -- -- -----------

 9 1.98 6.70 0.05 22636 1 notepad

 The PassThru parameter is therefore useful if more work is to be done with the object after the first command has finished.

 For example, PassThru might be used with Set-Service, which ordinarily does not return output, allowing a service to be started immediately after another change:

 Get-Service Audiosrv |

 Set-Service -StartupType Automatic -PassThru |

 Start-Service

 Parameters in PowerShell is a complex topic, but are a vital part of working with the language.

 Introduction to providers

 A provider in PowerShell is a specialized interface to a service or dataset that presents items to the end user in the same style as a filesystem.

 All operating systems include the following providers:

 	Alias: PowerShell aliases

 	Environment: Environment variables (for the process)

 	FileSystem: Files and folders

 	Function: Any functions in the session

 	Variable: Any variables in the session

 Windows operating systems also include Windows-specific providers:

 	Registry: All loaded registry hives

 	Certificate: The LocalMachine and CurrentUser certificate stores

 	WSMan: Windows remoting configuration

 A number of modules, such as the ActiveDirectory and WebAdministration modules, add service-specific providers when imported.

 A longer description of Providers can be seen by viewing the about file:

 Get-Help about_Providers

 You can view the providers available in the current PowerShell session by running Get-PSProvider, as shown in the following example:

 PS> Get-PSProvider

Name Capabilities Drives

---- ------------ ------

Registry ShouldProcess, Transactions {HKLM, HKCU}

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess, Credentials {C, D}

Function ShouldProcess {Function}

Variable ShouldProcess {Variable}

Certificate ShouldProcess {Cert}

WSMan Credentials {WSMan}

 Each of the previous providers has a help file associated with it. In PowerShell, the help files are named about_<ProviderName>_Provider; for example:

 Get-Help -Name about_Certificate_Provider

 A list of all help files for providers in PowerShell 7 can be seen by running the following command:

 Get-Help -Name About_*_Provider

 In Windows PowerShell, the help files have a special category and are accessed using by name; for example:

 Get-Help -Name Certificate -Category Provider

 Or, the provider help files can be listed by category:

 Get-Help -Category Provider

 The provider-specific help documents describe the additional parameters added to *-Item and *-ChildItem, as well as Test-Path, Get-Content, Set-Content, Add-Content, Get-Acl, Set-Acl, and so on.

 Provider-specific parameters, when added to the preceding commands, allow provider-specific values for filtering, making changes to existing items, and creating new items.

 PowerShell offers tab completion for parameters when the Path parameter has been defined. For example, entering the following partial command, then pressing tab, will cycle through the parameters available to the Certificate provider:

 Get-ChildItem -Path cert:\LocalMachine\Root -

 For example, pressing Tab several times after the hyphen is entered offers up the CodeSigningCert parameter.

 Missing parameters for the Certificate provider

 Several parameters documented in the provider help file were temporarily removed from the certificate provider in PowerShell 6:

 	ExpiringInDays

 	DNSName

 	DocumentEncryptionCert

 	EKU

 	SSLServerAuthentication

 These are present in Windows PowerShell, but absent from PowerShell 6 to 7.0. The preceding parameters are present again in PowerShell 7.1.

 The items within a provider can be accessed by following the provider name with two colons. For example, the content of the variable provider can be shown as follows:

 Get-ChildItem variable::

 The same approach can be used to view the top-level items available in the Registry provider on Windows:

 Get-ChildItem registry::

 Child items can be accessed by adding a name; for example, a variable:

 Get-Item variable::true

 The preceding command is equivalent to running Get-Variable true.

 The FileSystem provider returns an error if you attempt to access FileSystem:: without specifying a path. A child item must be specified; for example:

 Get-ChildItem FileSystem::C:\Windows

 While it is possible to access providers directly using the preceding notation, several of the providers are given names and are presented in the same manner as a Windows disk drive.

 Drives and providers

 Drives are labels used to access data from providers by name. Drives are automatically made available for FileSystem based on the drive letters used for mounted partition in Windows.

 The output from Get-PSProvider in the previous section shows that each provider has one or more drives associated with it.

 Alternatively, the list of drives can be seen using Get-PSDrive, as shown in the following example:

 PS> Get-PSDrive

Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

Alias Alias

C 89.13 111.64 FileSystem C:\

Cert Certificate \

D 0.45 21.86 FileSystem D:\

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

Variable Variable

WSMan WSMan

 As providers present data in a similar manner to a filesystem, accessing a provider is like working with a disk drive. This example shows how Get-ChildItem changes when exploring the Cert drive. The first few certificates are shown:

 PS C:\> Set-Location Cert:\LocalMachine\Root

PS Cert:\LocalMachine\Root> Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::LocalMachine\Root

Thumbprint Subject

---------- -------

CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certif...

BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping C...

A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Author...

 By default, drives are available for the current user, HKEY_CURRENT_USER (HKCU), and local machine, HKEY_LOCAL_MACHINE (HKLM), registry hives.

 A new drive named HKCC might be created for HKEY_CURRENT_CONFIG with the following command:

 New-PSDrive HKCC -PSProvider Registry -Root HKEY_CURRENT_CONFIG

 After running the preceding command, a new drive may be used to view the content of the hive, as demonstrated by the following example:

 PS C:\> Get-ChildItem HKCC:

 Hive: HKEY_CURRENT_CONFIG

Name Property

---- --------

Software

System

 Functions for drive letters

 Running C: or D: in the PowerShell console changes to a new drive letter. This is possible because C: is a function that calls the Set-Location command. This can be seen by looking at the definition of one of the functions:

 (Get-Command C:).Definition

 Every letter of the alphabet (A to Z) has a predefined function (Get-Command *:).

 Set-Location must be explicitly used to change to any other drive; for example:

 Set-Location HKCU:

 Introduction to splatting

 Splatting is a way of defining the parameters of a command before calling it. This is an important and often underrated technique that the PowerShell team added in PowerShell 2.

 Splatting is often used to solve three potential problems in a script:

 	Long lines caused by commands that need many parameters

 	Conditional use of parameters

 	Repetition of parameters across several commands

 Individual parameters are written in a hashtable (@{}), and then the @ symbol is used to tell PowerShell that the content of the hashtable should be read as parameters.

 This example supplies the Name parameter for the Get-Process command, and is normally written as Get-Process -Name explorer:

 $getProcess = @{

 Name = 'explorer'

}

Get-Process @getProcess

 In this example, getProcess is used as the name of the variable for the hashtable. The name is arbitrary; any variable name can be used.

 Splatting can be used with cmdlets, functions, and scripts. Splatting can be used when the call operator is present; for example:

 $getProcess = @{

 Name = 'explorer'

}

& 'Get-Process' @getProcess

 The ability to use splatting with the call operator is useful if the command name itself is held in a variable.

 The uses of splatting are explored in the following sections.

 Splatting to avoid long lines

 The benefit of splatting is most obvious when working with commands that expect a larger number of parameters.

 This first example uses the module ScheduledTasks to create a basic task that runs once a day at midnight:

 $taskAction = New-ScheduledTaskAction -Execute pwsh.exe -Argument 'Write-Host "hello world"'

$taskTrigger = New-ScheduledTaskTrigger -Daily -At '00:00:00'

Register-ScheduledTask -TaskName 'TaskName' -Action $taskAction -Trigger $taskTrigger -RunLevel 'Limited' -Description 'This line is too long to read'

 Each of the commands is spread out over multiple lines; it is hard to see where one ends and the next begins.

 Commands can also be spread out using a tick, the escape character in PowerShell, as shown here:

 $taskAction = New-ScheduledTaskAction `

 -Execute pwsh.exe `

 -Argument 'Write-Host "hello world"'

$taskTrigger = New-ScheduledTaskTrigger `

 -Daily `

 -At '00:00:00'

Register-ScheduledTask `

 -TaskName 'TaskName' `

 -Action $taskAction `

 -Trigger $taskTrigger `

 -RunLevel 'Limited' `

 -Description 'This line is too long to read'

 This approach is relatively common, but it is fragile. It is easy to miss a tick from the end-of-line, or to accidentally add a space after a tick character. Both break continuation, and the command executes but with an incomplete set of parameters; afterward, an error may be displayed, or a prompt may be shown, depending on the parameter (or parameters) it missed.

 This problem is shown in the following screenshot, where a space character has been accidentally included after a tick following the Daily switch parameter:

 [image:]

 Figure 1.4: Space after the escape character

 Splatting provides a neater, generally easier to read, and more robust alternative. The following example shows one possible way to tackle these commands when using splatting:

 $newTaskAction = @{

 Execute = 'pwsh.exe'

 Argument = 'Write-Host "hello world"'

}

$newTaskTrigger = @{

 Daily = $true

 At = '00:00:00'

}

$registerTask = @{

 TaskName = 'TaskName'

 Action = New-ScheduledTaskAction @newTaskAction

 Trigger = New-ScheduledTaskTrigger @newTaskTrigger

 RunLevel = 'Limited'

 Description = 'Splatting is easy to read'

}

Register-ScheduledTask @registerTask

 Switch parameters may be treated as if they are Boolean when splatting.

 The Daily parameter that was defined in the previous example is a switch parameter.

 The same approach applies to Confirm, Force, WhatIf, Verbose, and so on.

 Conditional use of parameters

 Conditional use of parameters is one of the most important ways in which splatting can help.

 If a command must be run and the parameters for a command can change based on user input or other circumstances, then it may be tempting to repeat the entire command. For example, a Credential parameter might be conditionally used.

 The command may be repeated entirely based on there being a value for the Credential variable:

 if ($Credential) {

 Get-ADUser 'Enabled -eq $true' -Credential $Credential

} else {

 Get-ADUser 'Enabled -eq $true'

}

 The disadvantage of this approach is that any change to the command must be repeated in the second version.

 Alternatively, a splatting variable may be used, and the Credential parameter added only when it is needed:

 $params = @{}

if ($Credential) {

 $params['Credential'] = $Credential

}

Get-ADUser 'Enabled -eq $true' @params

 Using splatting in this manner ensures only one version of the command must be maintained, reducing the risk of introducing a bug when making changes.

 Splatting to avoid repetition

 Splatting may be used to avoid repetition when a parameter must be optionally passed on to several different commands. It is possible to splat more than one set of parameters.

 In this example, the ComputerName and Credential parameters are used by two different commands:

 # Parameters used to authenticate remote connections

$remoteParams = @{

 Credential = Get-Credential

 ComputerName = $env:COMPUTERNAME

}

Parameters which are specific to Test-WSMan

$testWSMan = @{

 Authentication = 'Default'

 ErrorAction = 'SilentlyContinue'

}

By default, do not pass any extra parameters to New-CimSession

$newCimSession = @{}

if (-not (Test-WSMan @testWSMan @remoteParams)) {

 # If WSMan fails, use DCOM (RPC over TCP) to connect

 $newCimSession['SessionOption'] = New-CimSessionOption -Protocol Dcom

}

Parameters to pass to Get-CimInstance

$getCimInstance = @{

 ClassName = 'Win32_Service'

 CimSession = New-CimSession @newCimSession @remoteParams

}

Get-CimInstance @getCimInstance

 This example takes advantage of several features:

 	It is possible to splat no parameters using an empty hashtable (@{}) when all the parameters are conditionally added.

 	It is possible to test conditions and dynamically add parameters at runtime (if needed).

 	It is possible to splat more than one set of parameters into a command.

 As the preceding example shows, it is possible to dynamically choose the parameters that are passed to a command without having to write the command in full more than once in a script.

 Splatting and positional parameters

 It is possible, although rare and inadvisable in production scripts, to splat positional parameters; that is, to splat a parameter without stating a parameter name.

 This can be seen with the Rename-Item command, which has two positional parameters: Path and NewName. Rename-Item may be run as follows:

 Rename-Item oldname.txt newname.txt

 An array to splat these positional parameters looks as follows:

 $renameItem = 'oldname.txt', 'newname.txt'

Rename-Item @renameItem

 A splatting variable with positional parameters may be used with executable files (.exe files), although it is often difficult to see any difference between splatting and using a normal variable. For example, both of the following commands execute in the same way:

 $argumentList = '/t', 2

timeout.exe $argumentList

timeout.exe @argumentList

 Splatting is a powerful technique and can be used to make code more readable by reducing line length or repetition.

 When using splatting, string values in the hashtable must be quoted. Conversely, when using a parameter directly, it is often unnecessary. The parser is responsible for deciding how statements and expressions should be interpreted.

 Parser modes

 The parser in PowerShell is responsible for taking what is typed into the console, or what is written in a script, and turning it into something PowerShell can execute. The parser has two different modes that explain, for instance, why strings assigned to variables must be quoted, but strings as arguments for parameters only need quoting if the string contains a space.

 The parser modes are different modes:

 	Argument mode

 	Expression mode

 Mode switching allows PowerShell to correctly interpret arguments without needing values to be quoted. In the following example, the argument for the Name parameter only needs quoting if the name contains spaces:

 Get-Process -Name pwsh

 The parser is running in Argument mode at the point the pwsh value is used and therefore literal text is treated as a value, not something to be executed.

 This means that, in the following example, the second command is interpreted as a string and not executed:

 Set-Content -Path commands.txt -Value 'Get-ChildItem', 'Get-Item'

Get-Command -Name Get-Content commands.txt

 The second command in the preceding code therefore does not do anything.

 To execute the Get-Content command, the argument must be enclosed in parentheses:

 Set-Content -Path commands.txt -Value 'Get-ChildItem', 'Get-Item'

Get-Command -Name (Get-Content commands.txt)

 The code in parentheses is executed, and the parser is in Expression mode.

 Another example of this can be seen when using an enumeration value. An enumeration is a list of constants described by a .NET type. Enumerations are explored in Chapter 7, Working with .NET:

 PS> Get-Date [DayOfWeek]::Monday

Get-Date: Cannot bind parameter 'Date'. Cannot convert value "[DayOfWeek]::Monday" to type "System.DateTime". Error: "String '[DayOfWeek]::Monday' was not recognized as a valid DateTime."

 If the value for the argument is placed in parentheses, it will run first and expand the value. Once the value is expanded, Get-Date will be able to work with it:

 Get-Date ([DayOfWeek]::Monday)

 The help document, about_parsing, explores this topic in greater detail.

 Experimental features

 PowerShell 7 uses experimental features to make some new functionality available, which is not yet considered to be a mainstream feature. Three commands are available for working with experimental features:

 	Enable-ExperimentalFeature

 	Disable-ExperimentalFeature

 	Get-ExperimentalFeature

 Get-ExperimentalFeature can be used to view the available features. The list of features changes, depending on the version of PowerShell. The following list has been taken from PowerShell 7.0.2.

 PS> Get-ExperimentalFeature

Name Enabled Source

---- ------- ------

PSCommandNotFoundSuggestion False PSEngine

PSImplicitRemotingBatching False PSEngine

PSNullConditionalOperators False PSEngine

Microsoft.PowerShell.Utility.PSMan… False C:\program files\powersh…

PSDesiredStateConfiguration.Invoke… False C:\program files\powersh…

 In addition to the output shown here, each feature has a description. Format-Table can be used to view these descriptions:

 Get-ExperimentalFeature | Format-Table Name, Description -Wrap

 The use of these commands is described in the About_Experimental_Features help file.

 If an experimental feature is enabled, PowerShell must be restarted for us to use the feature. For example, PSCommandNotFoundSuggestion can be enabled:

 Enable-ExperimentalFeature -Name PSCommandNotFoundSuggestion

 Once enabled, if a command is spelt incorrectly in the console, PowerShell will suggest possible command names alongside the error message:

 PS> Get-Procss

Get-Procss: The term 'Get-Procss' is not recognized as the name of a cmdlet, function, script file, or operable program. Check the spelling of the name, or if a path was included, verify that the path is correct and try again.

Suggestion [4,General]: The most similar commands are: Get-Process, Wait-Process, Get-Host, Get-DbaProcess.

 If the feature is no longer wanted, it can be disabled again:

 Disable-ExperimentalFeature -Name PSCommandNotFoundSuggestion

 In the past, experimental features have become permanent features in PowerShell.

 Summary

 This chapter contained several foundational topics for PowerShell, starting with picking an editor, using help content, and command discovery.

 The ability to use the help system and discover commands is vital, regardless of skill level. The availability of help content in the shell allows new commands to be quickly incorporated and used.

 Naming plays an important role in PowerShell. Strict use of a reasonably small set of verbs greatly enhances discovery and, reasonable assumptions can be made about a command before reaching for help content. PowerShell tends to use longer and descriptive command names compared with other scripting languages.

 Once a command has been found, it is important to understand how to use the help content and the parameters a command offers to use it effectively.

 Providers allow access to data in a similar manner to using a filesystem. Providers play and important role in PowerShell and are explored again later in this book when exploring the filesystem and registry.

 Splatting was introduced and will be used repeatedly throughout this book. In the context of this book, it is primarily used to reduce line length. Splatting is an incredibly useful technique when scripting. The ability to conditionally use parameters without repeating code reduces complexity and the chance of introducing bugs.

 The parser was introduced to explain command syntax, when values must be quoted, and when parentheses are required. The parser is complex and the examples in about_parsing should be reviewed.

 Finally, PowerShell 6 introduced the idea of experimental features. This continues into PowerShell 7. You can toggle on (or off again) new features that have not become mainstream. Some of these features are explored again in Chapter 4, Operators.

 Chapter 2, Modules and Snap-Ins, moves on to exploring modules and snap-ins, allowing PowerShell users to go beyond the base set of commands and include content published by others.

 2

 Modules and Snap-Ins

 Modules are packaged collections of commands that may be loaded inside PowerShell, allowing PowerShell to interact with new systems and services. Modules come from a wide variety of different sources.

 PowerShell itself is installed with a small number of modules, including ThreadJob and PSReadline.

 You can install modules by adding Windows features or enabling capabilities, for example, the ActiveDirectory and GroupPolicy modules.

 Some applications include modules; for example, Microsoft Local Administrator Password Solution (LAPS) includes a PowerShell module in the installer that you can use to manage some of the features of the application.

 The Windows platform itself includes many modules, most of these having been included since Windows 8 was released.

 Finally, you can install modules from the PowerShell Gallery or another registered repository. The PowerShell Gallery can include updated versions of PowerShell installed modules.

 The PowerShell Gallery is therefore a valuable source of modules published by Microsoft, VMware, Amazon Web Services, and many others.

 Snap-ins were included in PowerShell 1 and largely replaced with modules with the release of PowerShell 2. PowerShell 7 does not support snap-ins; snap-ins are limited to Windows PowerShell.

 The chapter covers the following topics:

 	Introducing modules

 	Using Windows PowerShell modules in PowerShell 7

 	PowerShellGet 3.0

 	PowerShell repositories

 	About snap-ins

 Introducing modules

 Modules were introduced with the release of PowerShell version 2.0. A module is a packaged set of commands that includes any required supporting content; modules often include help content.

 Modules tend to target a specific system or focus on a small set of related operations. For example, the Microsoft.PowerShell.Archive module contains a small number of commands for interacting with ZIP files.

 The modules available on a system can be discovered using the Get-Module command.

 The Get-Module command

 Get-Module is used to find the modules either in the current PowerShell session, or available on the current system.

 PowerShell itself comes with several built-in modules, including PowerShellGet, ThreadJob, PSReadLine, and the commands in the Microsoft.PowerShell.* modules.

 The Windows platform, especially the most recent versions, comes with a wide variety of modules installed. These, as well as any other available modules, can be viewed using the Get-Module -ListAvailable command.

 By default, Get-Module returns information about each module that has been imported (either automatically or by using Import-Module). For example, if the command is run from PowerShell 7, it shows that the ISE module has been loaded:

 PS> Get-Module

ModuleType Version Name ExportedCommands

---------- ------- ---- ----------------

Script 1.0.0.0 ISE {Get-IseSnippe...}

Manifest 3.1.0.0 Microsoft.PowerShell.Management {Add-Computer...}

 The ListAvailable parameter shows the list of modules that are available on the system instead of just those that have been imported:

 Get-Module -ListAvailable

 Modules are discovered using the paths in the PSModulePath environment variable, which contains a delimited list of paths for PowerShell to search.

 Get-Module will show all instances of a module regardless of the path and version when using the All parameter:

 Get-Module <ModuleName> -All -ListAvailable

 Modules that are available on a system can be imported either by running Import-Module or by running a command from the module.

 The Import-Module command

 PowerShell 3 and later attempts to automatically load modules if a command from that module is used and the module is under one of the paths in the $env:PSModulePath environment variable. Explicit use of the Import-Module command is less important than it was before Windows PowerShell 3.

 For example, if PowerShell is started and the CimCmdlets module is not imported, running the Get-CimInstance command will cause the module to be automatically imported. This is shown in the following example:

 PS> Get-Module CimCmdlets

PS> Get-CimInstance Win32_OperatingSystem | Out-Null

PS> Get-Module CimCmdlets

ModuleType Version PreRelease Name ExportedCommands

---------- ------- ---------- ---- ----------------

Binary 7.0.0.0 CimCmdlets {Get-CimAssociatedInstance,...

 The autoloader may be disabled using the $PSModuleAutoLoadingPreference variable as shown here:

 $PSModuleAutoLoadingPreference = 'None'

 You can explicitly import modules in PowerShell using the Import-Module command. Modules may be imported using a name or with a full path, as shown in the following example:

 Import-Module -Name ThreadJob

Import-Module -Name $PSHome\Modules\ThreadJob\ThreadJob.psd1

 Importing a module using a path is only required if the module is not in a discoverable path.

 Once a module has been imported, the commands within the module may be listed using Get-Command as follows:

 Get-Command -Module ThreadJob

 Modules, Get-Command, and auto-loading

 As the commands exported by a module are only identified by PowerShell importing the module, the previous command will also trigger an automatic import.

 Modules installed in Windows PowerShell 5 and later are placed in a folder named after the module version, for example, Modules\ModuleName\1.0.0\<ModuleContent>. This allows multiple versions of the same module to coexist, as shown in the following example:

 [image:]

 Figure 2.1: Side-by-side versioning

 Version 1.8.1 of PSScriptAnalyzer will be imported by default, as it is the highest version number. It is possible to import a specific version of a module using the MinimumVersion and MaximumVersion parameters:

 Import-Module PSScriptAnalyzer -MaxmimumVersion 1.7.0

 Modules that have been imported can be removed from a PowerShell session using the Remove-Module command.

 The Remove-Module command

 The Remove-Module command removes a previously imported module from the current session.

 For binary modules or manifest modules that incorporate a Dynamic Link Library (DLL), commands are removed from PowerShell but DLLs are not unloaded. DLL files used in a PowerShell session cannot be unloaded without restarting the PowerShell process.

 Remove-Module does not remove or delete the files that make up a module from a computer.

 Each of the preceding commands, by default, interacts with modules saved in the PSModulePath environment variable.

 PSModulePath in PowerShell

 PSModulePath is a delimited list of paths that can be used to store modules. You can import modules in these paths by name and they will be automatically loaded when a command from the module is used.

 PowerShell allows the value of $env:PSModulePath to be set using user- and machine-scoped environment variables. By default, the machine-scoped variable should include the following paths, which are used by Windows PowerShell and by PowerShell 7 for compatibility:

 C:\Program Files\WindowsPowerShell\Modules

C:\Windows\System32\WindowsPowerShell\v1.0\Modules

 If the environment variables do not exist, PowerShell 7 uses the default values:

 PS> $Env:PSModulePath -split ';'

C:\Users\whoami\Documents\PowerShell\Modules

C:\Program Files\PowerShell\Modules

c:\program files\powershell\7\Modules

 The default values in the preceding list are included regardless of the value of the environment variable.

 When using module paths, it is important to note that PowerShell does not search all paths for the latest version of a module. PowerShell searches the list of paths in the order they appear in the PSModulePath environment variable. If a module is listed in more than one path, the most recent version from the first discovered path is used.

 For example, if the current user path contains a module with version 1.0.0, and the program files path contains the same module but with version 2.0.0, PowerShell will prefer to load version 1.0.0 because the current user path is searched first. The Version or MinimumVersion parameter must be used with Import-Module to avoid this.

 If both Windows PowerShell and PowerShell 7 are in use in an environment, care must be taken when updating the PSModulePath environment variable. The behavior described previously differs from Windows PowerShell. In Windows PowerShell:

 	If the user environment variable is set, it completely replaces the user value, which defaults to C:\Users\whoami\Documents\WindowsPowerShell\Modules

 	If the machine environment variable is set, it replaces the system32 path: C:\windows\system32\windowspowershell\v1.0\Modules

 	In all cases, the C:\Program Files\WindowsPowerShell\Modules path remains

 The C:\windows\system32\windowspowershell\v1.0\Modules path should be included in the machine environment variable to allow PowerShell 7 to load modules, either directly or using a Windows PowerShell compatibility session.

 The value of $env:PSModulePath may be safely modified within on all PowerShell versions and all platforms, for example, by using a profile script. Changes made to $env:PSModulePath are scoped to the process and only affect the current PowerShell session and any child processes; the changes do not persist.

 PowerShell 7 can use modules intended for Windows PowerShell either directly or by using a Windows PowerShell compatibility session.

 Using Windows PowerShell modules in PowerShell 7

 Many modules available to Windows PowerShell are compatible with PowerShell 7 without requiring any changes.

 If a module is not compatible with PowerShell 7, an attempt can be made to load the module in a Windows compatibility session.

 In PowerShell 6, the following functionality discussed is part of the WindowsCompatibility module available in the PowerShell Gallery. This module is not required in PowerShell 7. In PowerShell 7, the ability to load a module in a compatibility session is built into the Import-Module command.

 The TLS module, for example, will not load PowerShell 7 by default because it does not state that it supports the Core edition of PowerShell, as shown by Get-Module:

 PS> Get-Module TLS -ListAvailable -SkipEditionCheck

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0\Modules

ModuleType Version PreRelease Name PSEdition ExportedCommands

---------- ------- ---------- ---- --------- ----------------

Manifest 2.0.0.0 TLS Desk {New-TlsSessionTic...

 The module can be loaded in two ways:

 The edition check can be skipped (the module may work, it may just lack testing, and therefore careful testing may be required before using the module in a production scenario):

 Import-Module TLS -SkipEditionCheck

 Alternatively, if the previous command fails, the module may load in a compatibility session:

 PS> Import-Module TLS -UseWindowsPowerShell

WARNING: Module TLS is loaded in Windows PowerShell using WinPSCompatSession remoting session; please note that all input and output of commands from this module will be deserialized objects. If you want to load this module into PowerShell Core please use 'Import-Module -SkipEditionCheck' syntax.

 The compatibility session can be seen using the Get-PSSession command after the module has been imported:

 Get-PSSession -Name WinPSCompatSession

 When importing the preceding TLS module, a warning message is displayed that notes the input and output is deserialized. The impact of this depends on the complexity of the objects returned by the command; typically, it will mean that methods of specialized types will not work from PowerShell 7.

 The effect of this can be demonstrated by invoking Get-WmiObject in the compatibility session. Get-WmiObject is not available in PowerShell 7 and cannot be directly used:

 $session = Get-PSSession -Name WinPSCompatSession

$process = Invoke-Command -Session $session -ScriptBlock {

 Get-WmiObject Win32_Process -Filter "ProcessID=$PID"

}

 If the Get-WmiObject command is run in Windows PowerShell without using Invoke-Command, it will have several methods available. One of these methods is GetRelated, which is typically used as follows when used in Windows PowerShell:

 $process = Get-WmiObject Win32_Process -Filter "ProcessID=$PID"

$process.GetRelated('Win32_Session')

 Because PowerShell 7 has a copy of the properties only, the method does not exist and an error will be displayed:

 PS> $session = Get-PSSession -Name WinPSCompatSession

PS> $process = Invoke-Command -Session $session -ScriptBlock {

>> Get-WmiObject Win32_Process -Filter "ProcessID=$PID"

>> }

PS> $process.GetRelated('Win32_Session')

InvalidOperation: Method invocation failed because [Deserialized.System.Management.ManagementObject#root\cimv2\Win32_Process] does not contain a method named 'GetRelated'.

 The compatibility feature is incredibly useful but does not replace native compatibility with modern versions of PowerShell.

 PowerShell on the Windows platform has a wide variety of modules available, or available through installable applications and features to interact with other systems. New modules can also be installed from resources such as the PowerShell Gallery.

 Finding and installing modules

 PowerShell includes a module named PowerShellGet, which can be used to register repositories and search for and install modules.

 By default, PowerShellGet searches the PowerShell Gallery.

 What is the PowerShell Gallery?

 The PowerShell Gallery is a Microsoft-run repository and distribution platform for PowerShell scripts and modules written by Microsoft or other users.

 The PowerShell Gallery has parallels in other scripting languages, as shown in the following examples:

 	Perl has cpan.org

 	Python has PyPI

 	Ruby has RubyGems

 Support for the gallery is included by default in PowerShell 5 and above. For Windows PowerShell 3 and 4, PowerShellGet must be installed as described in Microsoft Docs: https://docs.microsoft.com/powershell/scripting/gallery/installing-psget.

 The PowerShell Gallery may be searched using https://www.powershellgallery.com as shown in the following screenshot:

 [image:]

 Figure 2.2: Searching the PowerShell Gallery

 You can use the Find-Module command to search the PowerShell Gallery, or any registered repository, instead of using the web page.

 The Find-Module command

 Find-Module is used to search registered PowerShell repositories. Modules are identified by name, as shown in the following example:

 Find-Module Carbon

Find-Module -Name Carbon

Find-Module -Name Azure*

 You can use the Filter parameter when the name alone is not sufficient to find an appropriate module. Supplying a value for the Filter parameter is equivalent to using the search field in the PowerShell Gallery, it expands the search to include tags:

 Find-Module -Filter IIS

 The Find-Module command cannot filter based on PowerShell edition, and the result of the search does not state which version the module might work with.

 Once found, a module can be installed using the Install-Module command.

 The Install-Module command

 The Install-Module command installs modules from the PowerShell Gallery or any other configured repository. By default, Install-Module adds modules to the path for AllUsers, at C:\Program Files\PowerShell\Modules on Windows and at /usr/local/share/powershell/Modules on Ubuntu.

 Access rights

 Installing a module under the AllUsers scope requires administrative access.

 For example, the posh-git module may be installed using either of the following two commands:

 Find-Module -Name posh-git | Install-Module

Install-Module posh-git

 Modules may be installed under a user-specific path ($home\Documents\WindowsPowerShell\Modules) using the Scope parameter:

 Install-Module carbon -Scope CurrentUser

 If the most recent version of a module is already installed, the command ends without providing feedback. If a newer version is available, it will be automatically installed alongside the original.

 The Force parameter may be used to reinstall a module:

 Install-Module posh-git -Force

 Force may also be used to install a newer version of a module when the existing version was not installed from a PS repository, or when changing the scope a module is installed in.

 The Install-Module command does not provide an option to install modules under the $PSHOME directory. The $PSHOME directory is reserved for modules that are shipped with the PowerShell installer, or for Windows PowerShell, those that are shipped with the Windows operating system.

 The Update-Module command

 You can use the Update-Module command to update any module installed using the Install-Module command.

 In both Windows PowerShell and PowerShell 7, Update-Module attempts to update the specified module to the latest or specified version.

 The Save-Module command

 The Save-Module command downloads the module from the PowerShell Gallery (or any other registered repository) to a path without installing it. This is useful if you save a module to an alternate module path, or if you intend to copy the module onto a system that cannot use Install-Module.

 The following example command downloads the Carbon module into a Modules directory in the root of the C: drive:

 Save-Module -Name Carbon -Path C:\Modules

 Save-Module will download the module and overwrite any previously saved version in the specified path. The command ignores other downloaded versions of the module.

 Each of the preceding commands is part of PowerShellGet 2. PowerShellGet 3 is likely to be released in the coming months and adopts a slightly different approach to the commands.

 PowerShellGet 3.0

 PowerShellGet 2 (for example, PowerShellGet 2.2.4.1) implements the Install-Module, Update-Module, and Save-Module module commands demonstrated at the beginning of this chapter.

 PowerShellGet 3.0 is in preview at the time of writing; the following commands are based on the beta7 pre-release. One of the key features is that this new version does not depend on the PackageManagement module, allowing a simpler installation process, avoiding the need to bootstrap the NuGet provider, making upgrading the module simpler.

 The preview version also uses new command names, completely divorcing it from the previous implementations of PowerShellGet. The change in command names means the new version can safely be installed alongside any existing version.

 PowerShellGet 3.0 can be installed as follows:

 Install-Module PowerShellGet -Force -AllowPrerelease

 Once installed, you'll need to register the PowerShell Gallery or another repository:

 Register-PSResourceRepository -PSGallery

 In PowerShellGet 2.0, you implement separate commands to work with modules and scripts. PowerShellGet 3.0 does not differentiate between modules and scripts; all artifacts are termed PSResource, and all searches use the Find-PSResource command. For example, we can find a module by using the following command:

 Find-PSResource -Name Indented.Net.IP -Type Module

 The Type parameter may be omitted without affecting the search results in this case.

 Most of the commands in PowerShellGet 3.0 use the same approach as those in PowerShellGet 2.2.4 and below. Over time, the differences between the commands are likely to start to appear; for example, Install-PSResource includes a Reinstall parameter, which is somewhat like the Force parameter for Install-Module in PowerShellGet 2.

 Repositories

 Like older versions of PowerShellGet, repositories are registered on a per-user basis. In PowerShellGet 2.2.4 and below, the repository configuration file is found in the following path:

 $env:LOCALAPPDATA\Microsoft\Windows\PowerShell\PowerShellGet\PSRepositories.xml

 The PSRepositories.xml file is stored in CliXml format and may be read using the Import-CliXml command. The file is normally read and updated using Get-PSRepository, Register-PSRepository, and Unregister-PSRespository.

 PowerShellGet 3.0 uses a simpler format for the PSResourceRespository.xml file. The file may be found in the following path:

 $env:LOCALAPPDATA\PowerShellGet\PSResourceRepository.xml

 The Get-PSResourceRepository, Register-PSResourceRepository, and Unregister-PSResourceRepository commands are the expected way of interacting with this file.

 As with older versions of PowerShellGet, storing credentials for a repository is not currently supported. If a repository requires authentication, the Credential parameter must be used explicitly with each operation.

 Version ranges

 Find-PSResource allows wildcards to be used for the Version parameter; using * will return all available versions except pre-release. The Prerelease parameter may be added to include those:

 Find-PSResource -Name PowerShellGet -Version *

 A range of versions may be defined using the range syntax used by NuGet, which is described in the following document:

 https://docs.microsoft.com/nuget/concepts/package-versioning#version-ranges-and-wildcards

 For example, the highest version of PowerShellGet available between 1.0 (inclusive) and 2.0 (exclusive) may be found using this:

 Find-PSResource -Name PowerShellGet -Version '[1.0,2.0)'

 The search can be changed to be inclusive by changing the closing) to]. For example, the following command will find version 2.0.0 of PowerShellGet:

 Find-PSResource -Name PowerShellGet -Version '[1.0,2.0]'

 The same syntax will be available when declaring dependencies between modules.

 PowerShell repositories

 Each of the examples from the previous section uses the PowerShell Gallery as a source for installing modules. This is an important resource, but in a business setting, it may be desirable to restrict access to the gallery. Instead, an internal repository that holds curated or internally developed content may be implemented to share content.

 Creating an SMB repository

 A file share is a simple way to share content. Such a repository requires little effort to set up and maintain. A file share may be registered as a repository as follows:

 $params = @{

 Name = 'Internal'

 SourceLocation = '\\server\share\directory'

 InstallationPolicy = 'Trusted'

}

Register-PSRepository @params

 Existing modules can be published to the repository using the Publish-Module command. For example, if Pester 5.0.2 is installed, it may be published to the newly created internal repository:

 $params = @{

 Name = 'pester'

 RequiredVersion = '5.0.2'

 Repository = 'Internal'

}

Publish-Module @params

 The RequiredVersion parameter is mandatory if more than one version of the module (in this case Pester) exists on the system publishing the module. Once published, a nupkg file will appear in the file share. The Pester module is now available for installation by anyone else with the repository registered.

 Users installing content from an SMB share must be authenticated and must have at least read access to the share. Guest access may be granted to avoid the authentication requirement.

 NuGet repositories

 NuGet is a package manager for .NET. PowerShellGet can use a NuGet repository as a source for PowerShell modules. The PowerShell Gallery is a NuGet repository.

 NuGet offers greater flexibility when dealing with authentication, or package life cycles, when compared with SMB shares.

 At the simple end, the Chocolatey.Server package available from chocolatey.org may be used to configure an Internet Information Services (IIS) website to act as a NuGet repository:

 https://chocolatey.org/packages/chocolatey.server

 About Chocolatey

 Chocolatey is a package manager for Windows. See https://chocolatey.org for further information.

 More advanced servers include Sonatype Nexus and ProGet. Both offer free to use servers, which may be locally deployed. These services must be configured, and once configured, packages will typically be published by using an API key to authenticate.

 About snap-ins

 Snap-ins, and the commands for interacting with snap-ins, are only available in Windows PowerShell; they are not present in PowerShell 7.

 A snap-in is the precursor to a module. It was the mechanism available to extend the set of commands in PowerShell 1 and was deprecated with the release of PowerShell 2.

 You can view the list of installed snap-ins by using the following command:

 Get-PSSnapIn -Registered

 If the Registered parameter is excluded, Get-PSSnapIn will show the snap-ins that have been imported into the current PowerShell session.

 PowerShell does not automatically load commands from a snap-in. All snap-ins must be explicitly imported using the Add-PSSnapIn command:

 Add-PSSnapIn WDeploySnapin3.0

 Once a snap-in has been installed (registered) and added, you can use Get-Command to list the commands as if the snap-in was a module:

 Get-Command -Module WDeploySnapin3.0

 The snap-in shown will only be visible if the Web Deployment Toolkit 3.0 is installed.

 Summary

 Modules are a vital part of PowerShell. Modules allow users to extend the commands available within PowerShell, allowing PowerShell to work with many different systems from many different vendors.

 The commands explored in this chapter have demonstrated how to discover and use locally available modules along with the commands each module contains. The PowerShell Gallery has been introduced as a public repository of modules, extending PowerShell further still.

 PowerShellGet has been a feature of PowerShell since PowerShell 3. With the release of PowerShellGet 3 on the horizon, we demonstrated its new commands and filtering capabilities.

 SMB- and NuGet-based repositories were briefly introduced for those looking to establish private repositories for use within an organization. This allows administrators to create private repositories with curated content, reducing exposure to the unknown modules.

 Snap-ins, an artifact of PowerShell 1 that is limited to Windows PowerShell, were very briefly demonstrated for the products where snap-ins remain important.

 Chapter 3, Working with Objects in PowerShell, dives into the commands available to work with objects in PowerShell, including Where-Object and ForEach-Object.

 3

 Working with Objects in PowerShell

 Everything we do in PowerShell revolves around working with objects. Objects, in PowerShell, may have properties or methods (or both). It is difficult to describe an object without resorting to this; an object is a representation of a thing or item of data. Let's use an analogy to attempt to give meaning to the term.

 A book is an object and has properties that describe its physical characteristics, such as the number of pages, the weight, or size. It has metadata (information about data) properties that describe the author, the publisher, the table of contents, and so on.

 The book might also have methods. A method affects the state of an object. For example, there might be methods to open or close the book or methods to jump to different chapters. A method might also convert an object into a different format. For example, there might be a method to copy a page, or even destructive methods such as one to split the book.

 PowerShell has a variety of commands that work with arrays (or collections) of objects in a pipeline.

 In this chapter, we are going to cover the following topics:

 	Pipelines

 	Members

 	Enumerating and filtering

 	Selecting and sorting

 	Grouping and measuring

 	Comparing

 	Importing, exporting, and converting

 Pipelines

 The pipeline is one of the most prominent features of PowerShell. The pipeline is used to send output from one command to another command as input.

 Most of the output from a command is sent to what is known as standard output, often shortened to stdout.

 Standard output

 The term standard output is used because there are different kinds of output. Each of these different types of output is sent to a different stream, allowing each to be read separately. In PowerShell, the streams are Standard, Error, Warning, Verbose, Debug, and Information.

 When assigning the output of a command to a variable, the assigned value is taken from the standard output (the output stream) of a command. For example, the following command assigns the data from the standard output to a variable:

 $computerSystem = Get-CimInstance -ClassName Win32_ComputerSystem

 Non-standard output, such as Verbose, will not be assigned to the variable.

 Non-standard output

 In PowerShell, each of the streams has a command associated with it:

 	

 Stream

 	

 Command

 	

 Stream number

 	

 Standard output

 	

 Write-Output

 	

 1

 	

 Error

 	

 Write-Error

 	

 2

 	

 Warning

 	

 Write-Warning

 	

 3

 	

 Verbose

 	

 Write-Verbose

 	

 4

 	

 Debug

 	

 Write-Debug

 	

 5

 	

 Information

 	

 Write-Information

 	

 6

 Table 3.1: Streams and their associated commands

 In PowerShell 5 and later, the Write-Host command is a wrapper for Write-Information. It sends output to the information stream.

 Prior to Windows PowerShell 5, Write-Host did not have a dedicated stream; the output could only be captured via a transcript, that is, by using the Start-Transcript command to log console output to a file.

 For example, if you add the Verbose switch to the preceding command, more information is shown. This extra information is not held in the variable; it is sent to a different stream:

 PS> $computerSystem = Get-CimInstance Win32_ComputerSystem -Verbose

VERBOSE: Perform operation 'Enumerate CimInstances' with following parameters, ''namespaceName' = root\cimv2,'className' = Win32_ComputerSystem'.

VERBOSE: Operation 'Enumerate CimInstances' complete.

PS> $computerSystem

Name PrimaryOwnerName Domain TotalPhysicalMemory Model

---- ---------------- ------ ------------------- -----

NAME Username WORKGROUP 17076875264 Model

 The object pipeline

 Languages such as Batch scripting (on Windows) or tools on Linux and Unix often use a pipeline to pass text between commands. When the output from one command is piped to another, it is up to the next command in the pipeline to figure out what the text from the input pipeline means.

 PowerShell, on the other hand, sends objects from one command to another when using the pipeline.

 The pipe (|) symbol is used to send the standard output between commands.

 In the following example, the output of Get-Process is sent to the Where-Object command, which applies a filter. The filter restricts the list of processes to those that are using more than 50MB of memory:

 Get-Process | Where-Object WorkingSet64 -gt 50MB

 When piping commands, a line break may be added after a pipe:

 Get-Process |

 Where-Object WorkingSet64 -gt 50MB |

 Select-Object -Property Name, ID

 Or, in PowerShell 7, the pipe may be placed at the start of the following line within a script or script block. To demonstrate in the console, hold Shift and press Return at the end of each line; the prompt will change to >> for each subsequent line:

 Get-Process

 | Where-Object WorkingSet -gt 50MB

 | Select-Object Name, ID

 When the pipe is placed at the end of a line, the command can be pasted or typed in the console as-is. When using a pipe at the beginning of a new line, Shift + Return must be used in the console to add the new line without ending the code block.

 No special action is required in a script or function to use the pipe at the beginning of the line.

 Members

 At the beginning of this chapter, the idea of properties and methods was introduced. These are part of a set of items collectively known as members. These members are used to interact with an object. A few of the more frequently used members are NoteProperty, ScriptProperty, ScriptMethod, and Event.

 What are the member types?

 The list of possible member types can be viewed on MSDN, which includes a short description of each member type:

 https://docs.microsoft.com/dotnet/api/system.management.automation.psmembertypes?redirectedfrom=MSDN&view=pscore-6.2.0

 This chapter focuses on the property members Property, NoteProperty, and ScriptProperty.

 The Get-Member command

 The Get-Member command can be used to view the different members of an object. For example, it can be used to list the members of a process object returned by Get-Process. The automatic variable $PID holds the process ID of the current PowerShell process:

 Get-Process -Id $PID | Get-Member

 Get-Member offers filters using its parameters (MemberType, Static, and View). For example, to view the properties of the PowerShell process object, the following can be used:

 Get-Process -Id $PID | Get-Member -MemberType Property

 The Static parameter is covered in Chapter 7, Working with .NET.

 The View parameter is set to All by default. It has three additional values:

 	Base: This shows properties that are derived from a .NET object

 	Adapted: This shows members handled by PowerShell's Adapted Type System (ATS)

 	Extended: This shows members added by PowerShell's Extended Type System (ETS)

 ATS and ETS

 ATS and ETS make it easy to work with object frameworks other than .NET in PowerShell, for example, objects returned by ADSI, COM, WMI, or XML. Each of these frameworks is discussed later in this book.

 Microsoft published an article on ATS and ETS in 2011, which is still relevant today:

 https://docs.microsoft.com/en-us/archive/blogs/besidethepoint/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets

 Accessing object properties

 The properties of an object in PowerShell may be accessed by writing the property name after a period. For example, the Name property of the current PowerShell process may be accessed by using the following code:

 $process = Get-Process -Id $PID

$process.Name

 PowerShell also allows us to access these properties by enclosing a command in parentheses:

 (Get-Process -Id $PID).Name

 The properties of an object are objects themselves. For example, the StartTime property of a process is a DateTime object. The DayOfWeek property may be accessed using the following code:

 $process = Get-Process -Id $PID

$process.StartTime.DayOfWeek

 The variable assignment step may be skipped if parentheses are used:

 (Get-Process -Id $PID).StartTime.DayOfWeek

 If a property name has a space, it may be accessed using a number of different notation styles. For example, a property named 'Some Name' may be accessed by quoting the name or enclosing the name in curly braces:

 $object = [PSCustomObject]@{ 'Some Name' = 'Value' }

$object."Some Name"

$object.'Some Name'

$object.{Some Name}

 A variable may also be used to describe a property name:

 PS> $object = [PSCustomObject]@{ 'Some Name' = 'Value' }

PS> $propertyName = 'Some Name'

PS> $object.$propertyName

Value

 The ability to assign a property or assign a new value to a property is governed by the access modifiers for a property.

 Access modifiers

 An access modifier for a property has two possible values: Get, indicating that the property can be read; and Set, indicating that the property can be written to (changed).

 Depending on the type of object, properties may be read-only or read/write. These may be identified using Get-Member and by inspecting the access modifiers.

 In the following example, the values in curly braces at the end of each line is the access modifier:

 PS> $File = New-Item NewFile.txt

PS> $File | Get-Member -MemberType Property

 TypeName: System.IO.FileInfo

Name MemberType Definition

---- ---------- ----------

Attributes Property System.IO.FileAttributes Attributes {get;set;}

CreationTime Property datetime CreationTime {get;set;}

CreationTimeUtc Property datetime CreationTimeUtc {get;set;}

Directory Property System.IO.DirectoryInfo Directory {get;}

DirectoryName Property string DirectoryName {get;}

Exists Property bool Exists {get;}

 When the modifier is {get;}, the property value is read-only; attempting to change the value results in an error:

 PS> $File = New-Item NewFile.txt -Force

PS> $File.Name = 'NewName'

InvalidOperation: 'Name' is a ReadOnly property.

 When the modifier is {get;set;}, the property value may be read and changed. In the preceding example, CreationTime has the set access modifier. The value can be changed; in this case, it may be set to any date after January 1, 1601:

 $File = New-Item NewFile.txt -Force

$File.CreationTime = Get-Date -Day 1 -Month 2 -Year 1692

 The result of the preceding command can be seen by reviewing the properties for the file in PowerShell:

 Get-Item NewFile.txt | Select-Object -ExpandProperty CreationTime

 Alternatively, you can use File Explorer to view a file's properties, as shown in Figure 3.1:

 [image:]

 Figure 3.1: Changing the Created date

 In the preceding example, the change made to CreationTime is passed from the object representing the file to the file itself. The object used here, based on the .NET class System.IO.FileInfo, is written in such a way that it supports the change. A property may indicate that it can be changed (by supporting the set access modifier in Get-Member) and still not pass the change back to whatever the object represents.

 Using methods

 Methods effect a change in state. That may be a change to the object associated with the method, or it may take the object and convert it into something else.

 Methods are called using the following notation in PowerShell:

 <Object>.Method()

 When a method is called without parentheses, PowerShell will show the overload definitions. Overloading a method is a .NET concept; it comes into play when two or more methods share the same name but have different arguments and implementations:

 PS> 'thisString'.Substring

OverloadDefinitions

string Substring(int startIndex)

string Substring(int startIndex, int length)

 An example of a method that takes an object and converts it into something else is shown here. In this case, a date is converted into a string:

 PS> $date = Get-Date -Day 1 -Month 1 -Year 2010

PS> $date.ToLongDateString()

01 January 2010

 The string generated in the preceding command is dependent on the current culture in use by PowerShell. In the preceding example, the culture is set to en-GB (Great Britain).

 If a method expects to have arguments (or parameters), the notation becomes the following:

 <Object>.Method(Argument1, Argument2)

 An example of a method that takes arguments might be the ToString method on a DateTime object. Get-Date can be used to create a DateTime object using the current date:

 PS> (Get-Date).ToString('u')

2016-12-08 21:18:49Z

 In the preceding example, the letter u is one of the standard date and time format strings (https://docs.microsoft.com/dotnet/standard/base-types/standard-date-and-time-format-strings) and represents a universal sortable date/time pattern. The same result may be achieved by using the Format parameter of Get-Date:

 PS> Get-Date -Format u

2016-12-08 21:19:31Z

 The advantage that this method on a DateTime object has over the parameter for Get-Date is that the date can be adjusted before conversion by using some of the other properties and methods:

 (Get-Date).Date.AddDays(-1).ToString('u')

 The result of this command is the start of yesterday (midnight, one day before today).

 An example of a method that changes a state might be seen on a tcpClient object. TCP connections must be opened before data can be sent over a network. The following example creates a tcpClient object, then opens a connection to the RPC Endpoint Mapper on the current computer:

 $tcpClient = New-Object System.Net.Sockets.TcpClient

$tcpClient.Connect("127.0.0.1", 135)

 The Connect method does not return anything, although it will throw an error if the connection fails. The method affects the state of the object and is reflected by the Connected property:

 PS> $tcpClient.Connected

True

 The state of the object may be changed again by calling the Close method to disconnect:

 $tcpClient.Close()

 The Add-Member command

 Add-Member allows new members to be added to existing objects. This can be useful if the object type must be preserved. Select-Object can also add new members, but it changes the object type when doing so.

 Starting with an empty object, it is possible to add new properties:

 PS> $empty = New-Object Object

PS> $empty |

>> Add-Member -NotePropertyName New -NotePropertyValue 'Hello world'

PS> $empty

New

Hello world

 Add-Member may also add a ScriptProperty or a ScriptMethod member. When writing script-based properties and methods, the reserved variable $this is used to refer to itself:

 PS> $empty = New-Object Object

PS> $empty |

>> Add-Member -NotePropertyName New -NotePropertyValue 'Hello world'

PS> $empty |

>> Add-Member -Name Calculated -MemberType ScriptProperty -Value {

>> $this.New.Length

>> }

PS> $empty

New Calculated

--- ----------

Hello world 11

 Methods may be added as well, for example, a method to replace the word world in the new property:

 $empty = New-Object Object

$empty | Add-Member -NotePropertyName New -NotePropertyValue 'Hello world'

$params = @{

 Name = 'Replace'

 MemberType = 'ScriptMethod'

 Value = { $this.New -replace 'world', 'everyone' }

}

$empty | Add-Member @params

 Running the newly added Replace method will show the updated string:

 PS> $empty.Replace()

Hello everyone

 As well as being used to present information to an end user, the properties and methods of an object are used when enumerating and filtering collections of objects.

 Enumerating and filtering

 Enumerating, or listing, the objects in a collection in PowerShell does not need a specialized command. For example, if the results of Get-PSDrive were assigned to a variable, enumerating the content of the variable is as simple as writing the variable name and pressing Return, allowing the values to be viewed:

 PS> $drives = Get-PSDrive

PS> $drives

Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

Alias Alias

C 319.37 611.60 FileSystem C:\

Cert Certificate \

Env Environment

...

 ForEach-Object may be used to work on an existing collection or objects, or used to work on the output from another command in a pipeline.

 Where-Object may be used to filter an existing collection or objects, or it may be used to filter the output from another command in a pipeline.

 The ForEach-Object command

 ForEach-Object is used to work on each object in an input pipeline. For example, the following command works on each of the results from Get-Process in turn by running the specified script block (enclosed in { }):

 Get-Process | ForEach-Object {

 Write-Host $_.Name -ForegroundColor Green

}

 The script block, an arbitrary block of code, is used as an argument for the Process parameter. The preceding command may explicitly include the Process parameter name shown here:

 Get-Process | ForEach-Object -Process {

 Write-Host $_.Name -ForegroundColor Green

}

 The script block executes once for each object in the input pipeline, that is, once for each object returned by Get-Process. The special variable $_ is used to access the current object.

 The variable $PSItem may be used in place of $_ if desired. There is no difference between the two variable names. $_ is the more commonly used name.

 The Process parameter is accompanied by the Begin and End parameters. Begin and End are used to run script blocks before the first value is sent to the Process script block, and after the last value has been received.

 Begin and End parameters

 If ForEach-Object is given a single script block as an argument, it is passed to the Process parameter. The Process script block runs once for each object in the input pipeline.

 ForEach-Object also supports Begin and End parameters. Begin runs once before the first value in the pipeline is passed. End runs once after the last value in the input pipeline.

 The behavior of these parameters is shown in the following example:

 1..5 | ForEach-Object -Begin {

 Write-Host "Starting the pipeline. Creating value."

 $value = 0

} -Process {

 Write-Host "Adding $_ to value."

 $value += $_

} -End {

 Write-Host "Finished the pipeline. Displaying value."

 $value

}

 Positional parameters

 The ForEach-Object command is written to allow all parameters to be passed based on position. The first positional parameter is Process. However, ForEach-Object will switch parameters around based on the number of arguments:

 1 | ForEach-Object { "Process: $_" }

 If more than one script block is passed, the first position is passed to the Begin parameter:

 1 | ForEach-Object { "Begin" } { "Process: $_" }

 If a third script block is added, it will be passed to the End parameter:

 1 | ForEach-Object { "Begin" } { "Process: $_" } { "End" }

 The Parallel parameter

 In PowerShell 7, ForEach-Object gains a Parallel parameter. This, as the name suggests, can be used to run process blocks in parallel rather than one after another.

 By default, ForEach-Object runs 5 instances of the process block at a time; this is controlled by the ThrottleLimit parameter. The limit may be increased (or decreased) depending on where the bottleneck is with a given process.

 Running a simple ForEach-Object command with a Start-Sleep statement shows how the output is grouped together as each set of jobs completes:

 1..10 | ForEach-Object -Parallel {

 Start-Sleep -Seconds 2

 $_

}

 When using ForEach-Object without the Parallel parameter, variables created before the command are accessible without any special consideration:

 $string = 'Hello world'

1 | ForEach-Object {

 # The string variable can be used as normal

 $string

}

 When using Parallel, each parallel script block runs in a separate thread. Variables created outside the ForEach-Object command must be accessed by prefixing the variable name with the using: scope modifier as shown here:

 $string = 'Hello world'

1 | ForEach-Object -Parallel {

 # The $string variable is only accessible if using is used.

 $using:string

}

 For the most part, the $using scope modifier is one-way. That is, values may be read from the scope, but new values cannot be set. For example, the following attempt to write a value to $using:newString will fail:

 PS> 1 | ForEach-Object -Parallel {

>> $using:newString = $_

>> }

ParserError:

Line |

 2 | $using:newString = $_

 | ~~~~~~~~~~~~~~~~

 | The assignment expression is not valid. The input to an assignment

 | operator must be an object that is able to accept assignments,

 | such as a variable or a property.

 Advanced array types and hashtables can be changed; however, parentheses are required around the variable name. For example:

 $values = @{}

1..5 | ForEach-Object -Parallel {

 ($using:values).Add($_, $_)

}

$values

 While it is possible to store values like this, the hashtable used previously is not built to be changed from multiple threads, as it is in the example. Hashtables will be discussed in Chapter 5, Variables, Arrays, and Hashtables. Generally speaking, output from a parallel ForEach-Object should be sent to the output pipeline; for example:

 $output = 1..5 | ForEach-Object -Parallel { $_ }

 ForEach-Object is most often used to add complexity when processing the output from another command, or when working on a collection. ForEach-Object may also be used to read a single property, or execute a method of every object in a collection.

 The MemberName parameter

 ForEach-Object may also be used to get a single property or execute a single method on each of the objects. For example, ForEach-Object may be used to return only the Path property when using Get-Process:

 Get-Process | ForEach-Object -MemberName Path

 Or, ForEach-Object may be used to run the ToString method on a set of dates:

 PS> @(

>> Get-Date '01/01/2019'

>> Get-Date '01/01/2020'

>>) | ForEach-Object ToString('yyyyMMdd')

20190101

20200101

 ForEach-Object offers a great deal of flexibility.

 The Where-Object command

 Filtering the output from commands may be performed using Where-Object. For example, processes might be filtered for those started after 9am today. If there are no processes started after 9am, then the statement will not return anything:

 Get-Process | Where-Object StartTime -gt (Get-Date 9:00:00)

 The syntax shown in help for Where-Object does not quite match the syntax used here. The help text is as follows:

 Where-Object [-Property] <String> [[-Value] <Object>] -GT ...

 In the preceding example, we see the following:

 	StartTime is the argument for the Property parameter (first argument by position)

 	The comparison is greater than, as signified by the gt switch parameter

 	The date (using the Get-Date command) is the argument for the Value parameter (second argument by position)

 Based on that, the example might be written as follows:

 Get-Process |

 Where-Object -Property StartTime -Value (Get-Date 9:00:00) -gt

 However, it is far easier to read StartTime is greater than <some date>, so most examples tend to follow that pattern.

 Where-Object also accepts filters using the FilterScript parameter. FilterScript is often used to describe more complex filters, filters where more than one term is used:

 Get-Service | Where-Object {

 $_.StartType -eq 'Manual' -and

 $_.Status -eq 'Running'

}

 When a filter like this is used, the conditions are evaluated in the order they are written in. This can be used to avoid conditions that may otherwise cause errors.

 In the following example, Test-Path is used before Get-Item, which is used to test the last time a file was written on a remote computer (via the administrative share):

 $date = (Get-Date).AddDays(-90)

'Computer1', 'Computer2' | Where-Object {

 (Test-Path "\\$_\c$\temp\file.txt") -and

 (Get-Item "\\$_\c$\temp\file.txt").LastWriteTime -lt $date

}

 If Test-Path is removed, the snippet will throw an error if either the computer or the file does not exist.

 Selecting and sorting

 Select-Object acts on an input pipeline; either an existing collection of objects, or the output from another command. Select-Object can be used to select a subset of properties, to change properties, or to add new properties. Select-Object also allows a user to limit the number of objects returned.

 Sort-Object can be used to perform both simple and complex sorting based on an input pipeline.

 Using Select-Object is a key part of working with PowerShell, output can be customized to suit circumstances in a number of ways.

 The Select-Object command

 Select-Object is an extremely versatile command as shown by each of the following short examples, which demonstrate some of the simpler uses of the command.

 Select-Object may be used to limit the properties returned by a command by name:

 Get-Process | Select-Object -Property Name, Id

 Select-Object can limit the properties returned from a command using wildcards:

 Get-Process | Select-Object -Property Name, *Memory

 Select-Object can list everything but a few properties:

 Get-Process | Select-Object -Property * -ExcludeProperty *Memory*

 Select-Object can get the first few objects in a pipeline:

 Get-ChildItem C:\ -Recurse | Select-Object -First 2

 Or Select-Object can select the last few objects in a pipeline:

 Get-ChildItem C:\ | Select-Object -Last 3

 Select-Object can Skip items at the beginning – in this example, the fifth item:

 Get-ChildItem C:\ | Select-Object -Skip 4 -First 1

 Or it can Skip items at the end. This example returns the third from the end:

 Get-ChildItem C:\ | Select-Object -Skip 2 -Last 1

 Select-Object can get an object from a pipeline by index:

 Get-ChildItem C:\ | Select-Object -Index 3, 4, 5

 In PowerShell 7 and above, Select-Object can omit certain indexes:

 Get-ChildItem C:\ | Select-Object -SkipIndex 3, 4, 5

 Select-Object also offers a number of more advanced uses. The following sections describe calculated properties, the ExpandProperty parameter, the Unique parameter, and property sets.

 Calculated properties are perhaps one of the most commonly used features of Select-Object.

 Calculated properties

 Select-Object can be used to add new properties to or rename existing properties on objects in an input pipeline.

 Calculated properties are described using a hashtable with specific key names. The format is described in help for Select-Object. In addition to names, the following hashtable formats are acceptable for the Property parameter:

 @{ Name = 'PropertyName'; Expression = { 'PropertyValue' } }

@{ Label = 'PropertyName'; Expression = { 'PropertyValue' } }

@{ n = 'PropertyName'; e = { 'PropertyValue' } }

@{ l = 'PropertyName'; e = { 'PropertyValue' } }

 The expression is most often a script block, this allows other commands to be executed, mathematical operations to be performed, substitutions to be made, and so on.

 If a property is being renamed, a quoted string can be used instead of the script block. The following two examples have the same result:

 Get-Process | Select-Object @{ Name = 'ProcessID'; Expression = 'ID' }

Get-Process | Select-Object @{ Name = 'ProcessID'; Expression = { $_.ID } }

 If the list of properties is long, it can be better to enclose the list in @(), the array operator, allowing the properties to be spread across different lines:

 Get-Process | Select-Object -Property @(

 'Name'

 @{Name = 'ProcessId'; Expression = 'ID' }

 @{Name = 'FileOwner'; Expression = { (Get-Acl $_.Path).Owner }}

)

 Any number of properties might be added in this manner. The preceding example includes the output from Get-Acl; if more than one property were required, ForEach-Object might be added to the command:

 Get-Process | Where-Object Path | ForEach-Object {

 $acl = Get-Acl $_.Path

 Select-Object -InputObject $_ -Property @(

 'Name'

 @{Name = 'ProcessId'; Expression = 'ID' }

 @{Name = 'FileOwner'; Expression = { $acl.Owner }}

 @{Name = 'Access'; Expression = { $acl.AccessToString }}

)

}

 When Select-Object is used with the Property parameter, a new custom object is always created. If the existing object type must be preserved, Add-Member should be used instead. For example, if the object includes methods that must be accessible later in a script, the Property parameter of Select-Object should not be used.

 The following example shows that the object type is preserved if the Property parameter is not used. The following command shows that the type is Process, which allows any of the methods, such as WaitForExit, to be used later on in a script:

 (Get-Process | Select-Object -First 1).GetType()

 If the Property parameter is used, the output is the PSCustomObject type. The resulting object will not have any of the methods specific to the Process type:

 (Get-Process | Select-Object -Property Path, Company -First 1).GetType()

 Calculated properties are extremely flexible, allowing an object to be modified, or a more complex object to be created with a relatively small amount of code.

 The ExpandProperty parameter

 The ExpandProperty parameter of Select-Object may be used to expand a single property of an object. This might be used to expand a property containing a string, leaving the output as an array of strings:

 Get-Process | Select-Object -First 5 -ExpandProperty Name

 If ExpandProperty is omitted, the returned object will be a PSCustomObject object with a Name property rather than the simpler array of strings.

 Expanding a single property containing a string, or a numeric value, or an array of either, is the most common use of the ExpandProperty parameter.

 Occasionally, it may be desirable or necessary to expand a property containing a more complex object. The members of the expanded property are added to the custom object:

 Get-ChildItem $env:SYSTEMROOT*.dll |

 Select-Object -Property FullName, Length -ExpandProperty VersionInfo |

 Format-List *

 Conflicting member names will cause an error to be raised; the conflicting name is otherwise ignored.

 It is possible, if unusual, to use this technique to build up a single custom object based on the output from multiple commands:

 Get-CimInstance Win32_ComputerSystem |

 Select-Object -Property @(

 @{n='ComputerName';e={ $_.Name }}

 'DnsHostName'

 @{n='OSInfo';e={ Get-CimInstance Win32_OperatingSystem }}

) |

 Select-Object * -ExpandProperty OSInfo |

 Select-Object -Property @(

 'ComputerName'

 'DnsHostName'

 @{n='OperatingSystem';e='Caption'}

 'SystemDirectory'

)

 The resulting object will contain two properties from Win32_ComputerSystem and two properties from Win32_OperatingSystem.

 The Unique parameter

 Select-Object returns unique values from arrays of simple values with the Unique parameter:

 1, 1, 1, 3, 5, 2, 2, 4 | Select-Object -Unique

 About Get-Unique

 Get-Unique may also be used to create a list of unique elements. When using Get-Unique, a list must be sorted first; for example:

 1, 1, 1, 3, 5, 2, 2, 4 | Sort-Object | Get-Unique

 In the following example, an object is created with one property called Number. The value for the property is 1, 2, or 3. The result is two objects with a value of 1, two with a value of 2, and so on:

 PS> 1, 2, 3, 1, 2, 3 | ForEach-Object {

>> [PSCustomObject]@{

>> Number = $_

>> }

>> }

Number

 1

 2

 3

 1

 2

 3

 Select-Object can remove the duplicates from the set in this example using the -Unique parameter if a list of properties (or a wildcard for the properties) is set:

 PS> 1, 2, 3, 1, 2, 3 |

>> ForEach-Object {

>> [PSCustomObject]@{

>> Number = $_

>> }

>> } |

>> Select-Object -Property * -Unique

Number

 1

 2

 3

 Select-Object builds up a collection of unique objects by comparing each property of each object to every unique object that came before it in a pipeline. This allows Select-Object to work without relying on an ordered collection (as Get-Unique requires) but is consequently slower; the work of comparing increases every time a unique object is encountered.

 Property sets

 A property set is a pre-defined list of properties that might be used when exploring an object. The property set is stored with the object itself. Select-Object can be used to select the properties within a specified property set.

 In the following example, Get-Member is used to view property sets available on the objects returned by Get-Process:

 PS> Get-Process -Id $PID | Get-Member -MemberType PropertySet

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

PSConfiguration PropertySet PSConfiguration {Name, Id, ...

PSResources PropertySet PSResources {Name, Id, Hand...

 Select-Object may then be used to display one of the property sets, PSConfiguration:

 PS> Get-Process -Id $PID | Select-Object -Property PSConfiguration

Name Id PriorityClass FileVersion

---- -- ------------- -----------

pwsh 2220 Normal 7.0.0.0

 The Sort-Object command

 The Sort-Object command allows objects to be sorted. By default, Sort-Object will sort objects in ascending order:

 PS> 5, 4, 3, 2, 1 | Sort-Object

1

2

3

4

5

 Strings are sorted in ascending order, irrespective of uppercase or lowercase:

 PS> 'ccc', 'BBB', 'aaa' | Sort-Object

aaa

BBB

ccc

 When dealing with more complex objects, Sort-Object may be used to sort based on a named property. For example, processes may be sorted based on the Id property:

 Get-Process | Sort-Object -Property Id

 Objects may be sorted on multiple properties; for example, a list of files may be sorted on LastWriteTime and then on Name:

 Get-ChildItem C:\Windows\System32 |

 Sort-Object LastWriteTime, Name

 In the preceding example, items are first sorted on LastWriteTime. Items that have the same value for LastWriteTime are then sorted based on Name.

 Sort-Object is not limited to sorting on existing properties. A script block (a fragment of script, enclosed in curly braces) can be used to create a calculated value for sorting. For example, it is possible to order items based on a word, as shown in this example:

 $examResults = @(

 [PSCustomObject]@{ Exam = 'Music'; Result = 'N/A'; Mark = 0 }

 [PSCustomObject]@{ Exam = 'History'; Result = 'Fail'; Mark = 23 }

 [PSCustomObject]@{ Exam = 'Biology'; Result = 'Pass'; Mark = 78 }

 [PSCustomObject]@{ Exam = 'Physics'; Result = 'Pass'; Mark = 86 }

 [PSCustomObject]@{ Exam = 'Maths'; Result = 'Pass'; Mark = 92 }

)

$examResults | Sort-Object {

 switch ($_.Result) {

 'Pass' { 1 }

 'Fail' { 2 }

 'N/A' { 3 }

 }

}

 The result of sorting the objects is shown here:

 Exam Result Mark

---- ------ ----

Maths Pass 92

Physics Pass 86

Biology Pass 78

History Fail 23

Music N/A 0

 In the preceding example, when Sort-Object encounters a Pass result it is given the lowest numeric value (1) to sort on. As Sort-Object defaults to ascending order, this means exams with a result of Pass appear first in the list. This process is repeated to give a numeric value to each of the other possible results.

 Sorting within each Result set varies depending on the version of PowerShell. Windows PowerShell changes the order of the elements within each set, listing Maths, Physics, then Biology. PowerShell 6 and above, on the other hand, maintains the original order, listing Biology, then Physics, then Maths within the pass set.

 As Sort-Object is capable of sorting on more than one property, the preceding example can be taken further to sort on mark next. This makes the output order entirely predictable, regardless of the version of PowerShell:

 PS> $examResults | Sort-Object {

>> switch ($_.Result) {

>> 'Pass' { 1 }

>> 'Fail' { 2 }

>> 'N/A' { 3 }

>> }

>> }, Mark

Exam Result Mark

---- ------ ----

Biology Pass 78

Physics Pass 86

Maths Pass 92

History Fail 23

Music N/A 0

 Adding the Descending parameter to Sort-Object will reverse the order of both fields:

 PS> $examResults | Sort-Object {

>> switch ($_.Result) {

>> 'Pass' { 1 }

>> 'Fail' { 2 }

>> 'N/A' { 3 }

>> }

>> }, Mark -Descending

Exam Result Mark

---- ------ ----

Music N/A 0

History Fail 23

Maths Pass 92

Physics Pass 86

Biology Pass 78

 The ordering behavior can be made property-specific using the notation that is shown in the following example:

 PS> $examResults | Sort-Object {

>> switch ($_.Result) {

>> 'Pass' { 1 }

>> 'Fail' { 2 }

>> 'N/A' { 3 }

>> }

>> }, @{ Expression = { $_.Mark }; Descending = $true }

Exam Result Mark

---- ------ ----

Maths Pass 92

Physics Pass 86

Biology Pass 78

History Fail 23

Music N/A 0

 The hashtable, @{}, is used to describe an expression (a calculated property; in this case, the value for Mark) and the sorting order, which is either ascending or descending.

 In the preceding example, the first sorting property, based on the Result property, is sorted in ascending order as this is the default. The second property, Mark, is sorted in descending order.

 Once a set of data is has been prepared by selecting and sorting, grouping and measuring can be used to work on the collection.

 Grouping and measuring

 Group-Object is a powerful command that allows you to group objects together based on a property or expression.

 Measure-Object supports several simple mathematical operations, such as counting the number of objects, calculating an average, calculating a sum, and so on. Measure-Object also allows characters, words, or lines to be counted in text fields.

 The Group-Object command

 The Group-Object command shows a group and count for each occurrence of a value in a collection of objects.

 Given the sequence of numbers shown, Group-Object creates a Name that holds the value it is grouping, a Count as the number of occurrences of that value, and a Group property as the set of similar values:

 PS> 6, 7, 7, 8, 8, 8 | Group-Object

Count Name Group

----- ---- -----

 1 6 {6}

 2 7 {7, 7}

 3 8 {8, 8, 8}

 The Group property may be removed using the NoElement parameter, which simplifies the output of the command:

 PS> 6, 7, 7, 8, 8, 8 | Group-Object -NoElement

Count Name

----- ----

 1 6

 2 7

 3 8

 Group-Object can group based on a specific property. For example, it might be desirable to list the number of occurrences of a file in an extensive folder structure. In the following example, the C:\Windows\Assembly folder contains different versions of DLLs for different versions of packages, including the .NET Framework:

 Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |

 Group-Object Name

 Combining Group-Object with commands such as Where-Object and Sort-Object allows reports about the content of a set of data to be generated extremely quickly, for example, a report on the names of the top five files that appear more than once in a file tree:

 Get-ChildItem C:\Windows\Assembly -Filter *.dll -File -Recurse |

 Group-Object Name -NoElement |

 Where-Object Count -gt 1 |

 Sort-Object Count, Name -Descending |

 Select-Object Name, Count -First 5

 The output from the preceding command will vary from one computer to another; it depends on the installed software, development kits, .NET Framework version, and so on. The output from the preceding command might be similar to the following example:

 Name Count

---- -----

Microsoft.Web.Diagnostics.resources.dll 14

Microsoft.Web.Deployment.resources.dll 14

Microsoft.Web.Deployment.PowerShell.resources.dll 14

Microsoft.Web.Delegation.resources.dll 14

Microsoft.Web.PlatformInstaller.resources.dll 13

 As was seen with Sort-Object, Group-Object can group on more than one property. For example, we might group on both a filename and the size of a file (the Length property of a file):

 Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |

 Group-Object Name, Length -NoElement |

 Where-Object Count -gt 1 |

 Sort-Object Name -Descending |

 Select-Object Name, Count -First 5

 As with the previous example, the output from the command will vary from one computer to another:

 Name Count

---- -----

WindowsFormsIntegration.Package.ni.dll, 100352 2

Templates.Editorconfig.Wizard.resources.ni.dll, 9216 13

Templates.Editorconfig.Wizard.resources.ni.dll, 8192 13

System.Web.ni.dll, 16939008 2

System.Web.ni.dll, 14463488 2

 In the preceding example, System.Web.ni.dll is listed twice (with a count of two in each case). Each pair of files has the same file size.

 Like Sort-Object, Group-Object is not limited to properties that already exist. Calculated properties can be used to create a new value to group. For example, grouping on an email domain in a list of email addresses might be useful. The domain is obtained by splitting on the @ character:

 PS> 'one@one.example', 'two@one.example', 'three@two.example' |

>> Group-Object { ($_ -split '@')[1] }

Count Name Group

----- ---- -----

 2 one.example {one@one.example, two@one.example}

 1 two.example {three@two.example}

 In this example, the split operator is used to split on the @ character; everything to the left is stored in index 0, while everything to the right is stored in index 1.

 By default, Group-Object returns the collection of objects shown in each of the preceding examples. Group-Object can also return a hashtable using the AsHashtable parameter.

 When using the AsHashTable parameter, you can add the AsString parameter. For more complex values, this ensures the groups can be accessed. The AsString parameter forces the key for each entry in the hashtable to be a string; for example:

 $hashtable = @(

 [IPAddress]'10.0.0.1'

 [IPAddress]'10.0.0.2'

 [IPAddress]'10.0.0.1'

) | Group-Object -AsHashtable -AsString

$hashtable['10.0.0.1']

 If the AsString parameter was excluded from the preceding example, the value used to access the key would have to be an IPAddress type. For example:

 $hashtable = @(

 [IPAddress]'10.0.0.1'

 [IPAddress]'10.0.0.2'

 [IPAddress]'10.0.0.1'

) | Group-Object -AsHashtable

$hashtable[[IPAddress]'10.0.0.1']

 In the preceding example, attempting to access the key without the [IPAddress] type will fail; no value will be returned, and no error will be shown.

 By default, Group-Object is not case sensitive. The strings one, ONE, and One are all considered equal when grouping. The CaseSensitive parameter forces Group-Object to differentiate between items where cases differ:

 PS> 'one', 'ONE', 'One' | Group-Object -CaseSensitive

Count Name Group

----- ---- -----

 1 one {one}

 1 ONE {ONE}

 1 One {One}

 Group-Object can be used to count occurrences of a value within a collection of objects. Measure-Object is useful when it is necessary to analyze the values, such as when determining the average of a specific property.

 The Measure-Object command

 When used without any parameters, Measure-Object returns a value for Count, which is the number of items passed in using the pipeline; for example:

 PS> 1, 5, 9, 79 | Measure-Object

Count : 4

Average :

Sum :

Maximum :

Minimum :

Property :

 Each of the remaining properties is empty, unless requested using their respective parameters. For example, Sum may be requested:

 PS> 1, 5, 9, 79 | Measure-Object -Sum

Count : 4

Average :

Sum : 94

Maximum :

Minimum :

Property :

 Adding the remaining parameters adds values to the rest of the fields (except Property):

 PS> 1, 5, 9, 79 | Measure-Object -Average -Maximum -Minimum -Sum

Count : 4

Average : 23.5

Sum : 94

Maximum : 79

Minimum : 1

Property :

 The value for Property is added when Measure-Object is asked to work against a particular property (instead of a set of numbers). For example:

 PS> Get-Process | Measure-Object WorkingSet -Average

Count : 135

Average : 39449395.2

Sum :

Maximum :

Minimum :

Property : WorkingSet

 When working with text, Measure-Object can count characters, words, or lines. For example, it can be used to count the number of lines, words, and characters in a text file:

 PS> Get-Content C:\Windows\WindowsUpdate.log |

>> Measure-Object -Line -Word -Character

Lines Words Characters Property

----- ----- ---------- --------

 3 32 268

 Group-Object and Measure-Object are essential parts of a PowerShell toolkit. They can significantly simplify analyzing collections of data for repetition or performing simple mathematical operations. Each of these commands is used against a single collection of objects; when working with more than one collection of objects, it may be necessary to compare.

 Comparing

 You can use the Compare-Object command to compare collections of objects with one another.

 Compare-Object must be supplied with values for the ReferenceObject and DifferenceObject parameters, which are normally collections or arrays of objects. If either value is null, then an error will be displayed. If both values are equal, Compare-Object does not return anything by default. For example, the reference and difference objects in the following example are identical:

 Compare-Object -ReferenceObject 1, 2 -DifferenceObject 1, 2

 If there are differences, Compare-Object displays the results, as shown here:

 PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2

InputObject SideIndicator

----------- -------------

 3 <=

 4 <=

 This shows that ReferenceObject (the collection on the left, denoted by the direction of the <= arrow) has the values, but DifferenceObject (the collection on the right) does not.

 Compare-Object has several other parameters that may be used to change the output. The IncludeEqual parameter adds values that are present in both collections to the output:

 PS> $params = @{

>> ReferenceObject = 1, 2, 3, 4

>> DifferenceObject = 1, 2

>> IncludeEqual = $true

>> }

PS> Compare-Object @params

InputObject SideIndicator

----------- -------------

 1 ==

 2 ==

 3 <=

 4 <=

 ExcludeDifferent will omit the results that differ. This parameter makes sense if IncludeEqual is also set; without this, the command will always return nothing.

 The PassThru parameter is used to return the original object instead of the representation showing the differences. In the following example, it is used to select values that are common to both the reference and difference objects:

 PS> $params = @{

>> ReferenceObject = 1, 2, 3, 4

>> DifferenceObject = 1, 2

>> ExcludeDifferent = $true

>> IncludeEqual = $true

>> PassThru = $true

>> }

PS> Compare-Object @params

1

2

 Compare-Object can compare based on properties of objects, as well as the simpler values in the preceding examples. This can be a single property, or a list of properties. For example, the following command compares the contents of C:\Windows\System32 with C:\Windows\SysWOW64, returning files that have the same name and are the same size in both:

 $params = @{

 ReferenceObject = Get-ChildItem C:\Windows\System32 -File

 DifferenceObject = Get-ChildItem C:\Windows\SysWOW64 -File

 Property = 'Name', 'Length'

 IncludeEqual = $true

 ExcludeDifferent = $true

}

Compare-Object @params

 By default, Compare-Object writes an error if either the reference or difference objects are null. If Compare-Object is used when there is a chance of either being empty, the following technique can be used to avoid an error being generated provided neither contains an explicit null value:

 $reference = Get-ChildItem C:\Windows\System32\tcpmon*.ini

$difference = Get-ChildItem C:\Windows\SysWOW64\tcpmon*.ini

Compare-Object @($reference) @($difference) -Property Name

 The array operator (@()) around each parameter value will be discarded by PowerShell. If $difference is empty, it will be treated as an empty array instead of it being a null value.

 Collections of objects generated by any of the preceding commands might be exported to move data outside of PowerShell. The result of any of these operations might be exported to a file for another user, system, or program to use.

 Importing, exporting, and converting

 Getting data in and out of PowerShell is a critical part of using the language. There are several commands dedicated to this task, including:

 	Export-Csv

 	Import-Csv

 	Export-CliXml

 	Import-CliXml

 	Tee-Object

 Other PowerShell modules, such as the ImportExcel module, available in the PowerShell Gallery can be used to extend the output formats available. Commands such as ConvertTo-Html, ConvertTo-Json, and ConvertFrom-Json are explored in later chapters.

 The Export-Csv command

 The Export-Csv command writes data from objects to a text file; for example:

 Get-Process | Export-Csv processes.csv

 By default, Export-Csv writes a comma-delimited file using UTF8 encoding and completely overwrites any file using the same name.

 Export-Csv may be used to add lines to an existing file using the Append parameter. When the Append parameter is used, the input object must have each of the fields listed in the CSV header or an error will be thrown unless the Force parameter is used:

 PS> Get-Process -ID $PID |

>> Select-Object Name, Id |

>> Export-Csv .\Processes.csv

PS> Get-Process explorer |

>> Select-Object Name |

>> Export-Csv .\Processes.csv -Append

Export-Csv: Cannot append CSV content to the following file: .\Processes.csv. The appended object does not have a property that corresponds to the following column: Id. To continue with mismatched properties, add the -Force parameter, and then retry the command.

 If you use the Append parameter and the input object has more fields than the CSV, the extra fields are silently dropped when writing the CSV file. For example, the value held in Id is ignored when writing the results to the existing CSV file:

 Get-Process pwsh |

 Select-Object Name | Export-Csv .\Processes.csv

Get-Process explorer |

 Select-Object Name, Id |

 Export-Csv .\Processes.csv -Append

 Export-Csv in Windows PowerShell writes a header line to each file, which details the .NET type it has just exported. If the preceding example was used in Windows PowerShell, the header line would be as follows:

 #TYPE Selected.System.Diagnostics.Process

 This header is only included in PowerShell 7 (and PowerShell Core) when explicitly using the IncludeTypeInformation parameter.

 Export-Csv in Windows PowerShell can be instructed to exclude this header using the NoTypeInformation parameter:

 Get-Process | Export-Csv processes.csv -NoTypeInformation

 ConvertTo-Csv in Windows PowerShell is like Export-Csv, except that instead of writing content to a file, content is written as command output:

 PS> Get-Process powershell | Select-Object Name, Id | ConvertTo-Csv

#TYPE Selected.System.Diagnostics.Process

"Name","Id"

"pwsh","404"

 Both Export-Csv and ConvertTo-Csv are limited in what they can do with arrays of objects in properties. For example, ConvertTo-Csv is unable to display the values that are in an array:

 PS> [PSCustomObject]@{

>> Name = "Numbers"

>> Value = 1, 2, 3, 4, 5

>> } | ConvertTo-Csv -NoTypeInformation

"Name","Value"

"Numbers","System.Object[]"

 The value of the Value property in the CSV content is taken from the ToString method, which is called on the property named Value; for example:

 PS> $object = [PSCustomObject]@{

>> Name = "Numbers"

>> Value = 1, 2, 3, 4, 5

>> }

PS> $object.Value.ToString()

System.Object[]

 If a CSV file is expected to hold the content of an array, code must be written to convert it into a suitable format. For example, the content of the array can be written after converting it to a string:

 PS> [PSCustomObject]@{

>> Name = "Numbers"

>> Value = 1, 2, 3, 4, 5

>> } | ForEach-Object {

>> $_.Value = $_.Value -join ', '

>> $_

>> } | ConvertTo-Csv -NoTypeInformation

"Name","Value"

"Numbers","1, 2, 3, 4, 5"

 In the preceding example, the value of the property is joined using a comma followed by a space. The modified object (held in $_) is passed on to the ConvertTo-Csv command.

 The Import-Csv command

 Comma-Separated Value (CSV) files are structured text. Applications such as Microsoft Excel can work with CSV files without changing the file format, although Excel's advanced features cannot be saved to a CSV file.

 By default, Import-Csv expects the input to have a header row, be comma-delimited, and use ASCII file encoding. If any of these items are different, the command parameters may be used. For example, a tab may be set as the delimiter:

 Import-Csv TabDelimitedFile.tsv -Delimiter `t

 A tick (grave accent) followed by t (`t) is used to represent the tab character in PowerShell.

 Data imported using Import-Csv will always be formatted as a string. If Import-Csv is used to read a file containing the following text, each of the numbers will be treated as a string:

 Name,Position

Jim,35

Matt,3

Dave,5

 Attempting to use Sort-Object on the imported CSV file results in values being sorted as if they were strings, not numbers:

 PS> Import-Csv .\positions.csv | Sort-Object Position

Name Position

---- --------

Matt 3

Jim 35

Dave 5

 You can use Sort-Object to consider the value for Position as an integer by using a script block expression:

 PS> Import-Csv .\positions.csv | Sort-Object { [Int]$_.Position }

Name Position

---- --------

Matt 3

Dave 5

Jim 35

 This conversion problem exists regardless of whether the data in a CSV file is numeric, a date, or any type other than a string.

 The ConvertFrom-Csv command is similar to Import-Csv in that it reads CSV content and creates custom objects from that content. The difference is that ConvertFrom-Csv reads strings from standard input instead of a file. In the following example, a string is converted into a custom object using the ConvertFrom-Csv command with the Header parameter:

 PS> "powershell,404" | ConvertFrom-Csv -Header Name, Id

Name Id

---- --

powershell 404

 ConvertFrom-Csv expects either an array of strings or a single string with line-breaks. The following example includes a header in the string:

 "Name,Id

Powershell,404" | ConvertFrom-Csv

 CSV is a simple and accessible format. However, CSV is a pure-text format; it cannot express different value types (such as numbers and dates) – all data is a string. The CliXml format is at the other end of the spectrum: it can be used to store complex data types.

 Export-Clixml and Import-Clixml

 Export-Clixml creates representations of objects in XML files. The CLI acronym stands for Common Language Infrastructure, a technical standard developed by Microsoft. Export-Clixml is extremely useful where type information about each property must be preserved.

 For example, the following object may be exported using Export-Clixml:

 [PSCustomObject]@{

 Integer = 1

 Decimal = 2.3

 String = 'Hello world'

} | Export-Clixml .\object.xml

 The resulting XML file shows the type for each of the properties it has just exported:

 PS> Get-Content object.xml

<Objs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">

 <Obj RefId="0">

 <TN RefId="0">

 <T>System.Management.Automation.PSCustomObject</T>

 <T>System.Object</T>

 </TN>

 <MS>

 <I32 N="Number">1</I32>

 <Db N="Decimal">2.3</Db>

 <S N="String">Hello world</S>

 </MS>

 </Obj>

</Objs>

 In the preceding example, I32 is a 32-bit integer (Int32). Db is a double-precision floating-point number (double). S is a string.

 With this extra information in the file, PowerShell can rebuild the object, including the different types, using Import-Clixml, as follows:

 $object = Import-Clixml .\object.xml

 Once imported, the value types can be inspected using the GetType method:

 PS> $object.Decimal.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

 True True Double System.ValueType

 The ability to rebuild the original object allows Export-CliXml to convert credential objects to text. When it does so, password values are encrypted using Data Protection API (DPAPI) on Windows. For example, providing a username and password when prompted will create an XML file holding the encrypted password:

 Get-Credential | Export-CliXml -Path secret.xml

 The file can be opened in a text editor to view the encrypted password. The credential can be imported again using Import-CliXml:

 $credential = Import-CliXml -Path secret.xml

 The password for the credential is encrypted using the current user account (protected by the login password). The key used is held in the user profile; the resulting file can only be decrypted on the computer it was created on (without a roaming profile).

 The Tee-Object command

 The Tee-Object command is used to send output to two places at the same time. Tee-Object is used to write output to a console and a file or variable.

 For example, the following command both displays the output of Get-Process on the screen and writes the content to a $processes variable.

 Get-Process | Tee-Object -Variable processes

 Tee-Object writes file output as the console sees it (table or list) rather than writing in CSV or another format.

 Summary

 The pipeline is a key component of PowerShell. It allows data, as objects, to be sent from one command to another. Each command can act on the data it has received and, in many cases, return more data.

 PowerShell includes a variety of commands for working with objects in a pipeline. These commands are used again and again no matter how experienced a PowerShell developer might be.

 The Get-Member command allows the members (properties, methods, and so on) to be explored, which can be used to understand what an object is capable of.

 ForEach-Object is a common command used to run arbitrary code against objects in a pipeline. Where-Object may be used to filter a pipeline, returning only relevant objects.

 The Select-Object command is used to define what properties should be returned. You can also use Select-Object to include or remove objects, for example, by selecting the first few objects from a pipeline. The Sort-Object command takes pipeline input and allows it to be sorted based on property names, or more complex criteria described by a script block.

 You can perform comparisons of collections of objects using the Compare-Object command.

 Finally, content in PowerShell can be exported to and imported from files in a variety of different ways. This chapter explored exporting and importing content using the Export-Csv and Import-Csv commands as well as the more complex output created by Export-CliXml.

 The next chapter, Chapter 4, Operators, explores the wide variety of operators available in PowerShell, ranging from arithmetic and comparison operators to binary and redirection operators.

 4

 Operators

 In programming, an operator is an object that is used to manipulate an item of data. Operations include comparing values, performing replacement and split operations, mathematical operations, bitwise operations, and so on. An operator is a fundamental part of any programming language and PowerShell is no exception.

 PowerShell has a wide variety of operators; each one is explored within this chapter.

 This chapter covers the following topics:

 	Arithmetic operators

 	Assignment operators

 	Comparison operators

 	Regular expression-based operators

 	Logical operators

 	Binary operators

 	Type operators

 	Redirection operators

 	Other operators

 Arithmetic operators

 Arithmetic operators are used to perform numeric calculations. The arithmetic operators in PowerShell are as follows:

 	Addition: +

 	Subtraction: -

 	Multiplication: *

 	Division: /

 	Remainder: %

 As well as its use in numeric calculations, the addition operator may also be used with strings, arrays, and hashtables, and the multiplication operator may also be used with strings and arrays.

 The following sections explore each of the operators listed previously.

 Operator precedence

 Operations are executed in a specific order depending on the operator used. For example, consider the following two simple calculations:

 3 + 2 * 2

2 * 2 + 3

 The result of both preceding expressions is 7 (2 multiplied by 2, then add 3) because the multiplication operator has higher precedence than the addition operator.

 PowerShell includes a help document describing the precedence for each operator:

 Get-Help about_Operator_Precedence

 The help topic lists the operators in the order they are evaluated. The multiplication operator, *, is higher precedence (higher in the list) than addition, +; therefore, in an operation using both operators, * is calculated first.

 Expressions in brackets have the highest precedence and are therefore always calculated before any other. Brackets may be used to group expressions together in cases where the default operator precedence would give an incorrect result:

 (3 + 2) * 2

 The result of the preceding calculation is 10; the expression in brackets is calculated first, giving 5, and the result of that is multiplied by 2.

 Addition and subtraction operators

 The addition and subtraction operators, + and -, are most easily recognizable as arithmetic operators. The addition operator also serves as a concatenation operator.

 Addition operator

 The addition operator may be used to add numeric values. For example, the following simple addition operation will result in the value 5.14159:

 2.71828 + 3.14159

 The addition operator may also be used to concatenate strings:

 'good' + 'bye'

 If an attempt is made to concatenate a string with a number, the number will be converted into a string:

 'hello number ' + 1

 This style of operation fails if the number is used first. PowerShell expects the entire expression to be numeric if the left-hand side of the expression is numeric. PowerShell will try and convert the value on the right into a number and will fail if it can't convert the value to a number:

 PS> 1 + ' is the number I like to use'

InvalidArgument: Cannot convert value "is the number I like to use" to type "System.Int32". Error: "Input string was not in a correct format."

 The addition operator may be used to add single elements to an existing array. As arrays are of fixed size, a new array will be created containing 1, 2, and 3:

 @(1, 2) + 3

 Joining arrays with the addition operator is simple. Each of the following three examples creates an array and each array contains the values 1, 2, 3, and 4:

 @(1, 2) + @(3, 4)

(1, 2) + (3, 4)

1, 2 + 3, 4

 The last example is an array containing 1, 2, 3, and 4 because the array operator has higher precedence than addition. Therefore, two arrays are added together.

 Hashtables may be joined in a similar manner:

 @{key1 = 1} + @{key2 = 2}

 The addition operation fails if keys are duplicated as part of the addition operation:

 PS> @{key1 = 1} + @{key1 = 2}

OperationStopped: Item has already been added. Key in dictionary: 'key1' Key being added: 'key1'Subtraction operator

 Subtraction operator

 The subtraction operator may only be used for numeric expressions. The results of the following expressions are 3 and -18, respectively:

 5 - 2

2 - 20

 Subtraction is a simple but important operation used in everyday calculations. The following sections explore the multiplication, division, and remainder operators.

 Multiplication, division, and remainder operators

 Like the addition operator, the multiplication operator can act on strings. The division and remainder operators perform mathematical operations only.

 Multiplication operator

 The multiplication operator can perform simple numeric operations. For example, the result of the following expression is 5:

 2.5 * 2

 You can also use the multiplication operator to duplicate strings, such as in the following example that results in hellohellohello:

 'hello' * 3

 As with the addition operator, the multiplication operator will throw an error if a number is on the left of the expression. PowerShell will expect the entire expression to be numeric if the value on the left-hand side is numeric:

 PS> 3 * 'hello'

InvalidArgument: Cannot convert value "hello" to type "System.Int32". Error: "Input string was not in a correct format."

 The multiplication operator may also be used to duplicate arrays. Each of the following examples creates an array containing one, two, one, and two:

 @('one', 'two') * 2

('one', 'two') * 2

'one', 'two' * 2

 Division operator

 The division operator performs numeric division:

 20 / 5

 An error will be thrown if an attempt to divide by 0 is made:

 PS> 1 / 0

RuntimeException: Attempted to divide by zero.

 Division using negative numbers is permitted in PowerShell. When a positive number is divided by a negative number, the result is negative.

 Remainder operator

 The remainder operator returns the remainder of the whole-number (integer) division. For example, the result of the following operation is 1:

 3 % 2

 One possible use of the remainder operator is alternating, that is, swapping between two values repeatedly. This can be used to perform an action on every second, third, fourth, and xth increment in an iteration. For example:

 1..20 | ForEach-Object {

 if ($_ % 2 -eq 0) {

 $foregroundColor = 'Cyan'

 } else {

 $foregroundColor = 'White'

 }

 Write-Host $_ -ForegroundColor $foregroundColor

}

 The preceding example alternates the color of the text.

 Assignment operators

 Assignment operators are used to give values to variables. The assignment operators that are available are as follows:

 	Assign: =

 	Add and assign: +=

 	Subtract and assign: -=

 	Multiply and assign: *=

 	Divide and assign: /=

 	Remainder and assign: %=

 As with the arithmetic operators, add and assign may be used with strings, arrays, and hashtables. Multiply and assign may be used with strings and arrays.

 Assign, add and assign, and subtract and assign

 The assignment operator (=) is used to assign values to variables and properties; for example, it may be used to assign a value to a variable:

 $variable = 'some value'

 Or, the PowerShell console window title (or Windows Terminal tab title) might be changed by assigning a new value to the WindowTitle property:

 $host.UI.RawUI.WindowTitle = 'PowerShell window'

 The add and assign operator (+=) operates in a similar manner to the addition operator. The following example assigns the value 1 to a variable, then += is used to add 20 to that value:

 $i = 1

$i += 20

 The preceding example is equivalent to writing the following:

 $i = 1

$i = $i + 20

 You can use the += operator to concatenate strings:

 $string = 'one'

$string += 'one'

 As with the addition operator, attempting to add a numeric value to an existing string is acceptable. Attempting to add a string to a variable containing a numeric value is not:

 PS> $variable = 1

PS> $variable += 'one'

InvalidArgument: Cannot convert value "one" to type "System.Int32". Error: "Input string was not in a correct format."

 The += operator may be used to add elements to an existing array:

 $array = 1, 2

$array += 3

 You can also use it to add another array:

 $array = 1, 2

$array += 3, 4

 The += operator may be used to join two hashtables:

 $hashtable = @{key1 = 1}

$hashtable += @{key2 = 2}

 As seen when using the addition operator, the operation fails if one of the keys already exists.

 The subtract and assign operator (-=) is intended for numeric operations, as shown in the following examples:

 $i = 20

$i -= 2

 After this operation has completed, $i has a value of 18.

 Multiply and assign, divide and assign, and modulus and assign

 Numeric assignments using the multiply and assign operator may be performed using *=. The value held by the variable i is 4:

 $i = 2

$i *= 2

 The multiply and assign operator may be used to duplicate a string held in a variable:

 $string = 'one'

$string *= 2

 The value on the right-hand side of the *= operator must be numeric or must be able to convert to a number. For example, a string containing the number 2 is acceptable:

 $string = 'one'

$string *= '2'

 Using a string that PowerShell cannot convert to a number will result in an error, as follows:

 PS> $variable = 'one'

PS> $variable *= 'one'

InvalidArgument: Cannot convert value "one" to type "System.Int32". Error: "Input string was not in a correct format."

 The multiply and assign operator may be used to duplicate an array held in a variable. In the following example, the variable holds the value 1, 2, 1, 2 after this operation:

 $variable = 1, 2

$variable *= 2

 The assign and divide operator is used to perform numeric operations. The variable holds a value of 1 after the following operation:

 $variable = 2

$variable /= 2

 The remainder and assign operator assigns the result of the remainder operation to a variable:

 $variable = 10

$variable %= 3

 After the preceding operation, the variable holds a value of 1, which is the remainder when dividing 10 by 3.

 Statements can be assigned to a variable

 In PowerShell, statements can be assigned to variables. All output from that statement will be captured in the variable.

 The most common use for this is capturing arrays of results. The following example creates a custom object that includes output from both the Win32_Service CIM class and the Get-Process command. All of the generated objects are assigned to the $serviceInfo variable:

 $services = Get-CimInstance Win32_Service -Filter 'State="Running"'

$serviceInfo = foreach ($service in $services) {

 $process = Get-Process -ID $service.ProcessID

 [PSCustomObject]@{

 Name = $service.Name

 ProcessName = $process.Name

 ProcessID = $service.ProcessID

 Path = $process.Path

 MemoryUsed = $process.WorkingSet64 / 1MB

 }

}

 Assigning statements such as loops in PowerShell is the most efficient way of gathering a set of results into a variable.

 Comparison operators

 Comparison operators can be used to compare two scalar values. PowerShell has a wide variety of comparison operators, which are as follows:

 	Equal to and not equal to: -eq and -ne

 	Like and not like: -like and -notlike

 	Greater than and greater than or equal to: -gt and -ge

 	Less than and less than or equal to: -lt and -le

 	Contains and not contains: -contains and -notcontains

 	In and not in: -in and -notin

 Case sensitivity

 None of the comparison operators are case-sensitive by default. Each of the comparison operators has two additional variants, one that explicitly states it is case sensitive, and another that explicitly states it is case insensitive.

 For example, the following statement returns true:

 'Trees' -eq 'trees'

 Adding a c prefix in front of the operator name forces PowerShell to make a case-sensitive comparison. The following statement returns false:

 'Trees' -ceq 'trees'

 In addition to the case-sensitive prefix, PowerShell also has an explicit case-insensitive modifier. In the following example, the statement returns true:

 'Trees' -ieq 'trees'

 However, as case-insensitive comparison is the default, it is extremely rare to see examples of the i prefix.

 These behavior prefixes can be applied to all of the comparison operators.

 Comparison operators and arrays

 When comparison operators are used with scalar values (a single item as opposed to an array), the comparison results in true or false.

 When a comparison operator is used with an array or collection, the result of the comparison is all matching elements. That is, the array is enumerated and all successfully compared values are returned. For example:

 1, $null -ne $null # Returns 1

1, 2, 3, 4 -ge 3 # Returns 3, 4

'one', 'two', 'three' -like '*e*' # Returns one, three

 This array comparison behavior does not apply when using -contains, -notcontains, -in, or -notin.

 Comparisons to null

 Returning each matching value from an array can be problematic if a comparison is used to test whether a variable holding an array exists.

 In the following example, -eq is successfully used to test that a value has been assigned to a variable called array:

 $array = 1, 2

if ($array -eq $null) { Write-Host 'Variable not set' }

 This test is valid as long as the array does not hold two or more null values. When two or more values are present, the condition unexpectedly returns $true:

 PS> $array = 1, 2, $null, $null

PS> if ($array -eq $null) { Write-Host 'No values in array' }

No values in array

 This happens because the result of the comparison is an array with two null values. PowerShell returns matching values from the array, not just true or false. If it were a single null value, PowerShell would flatten the array. With two values, PowerShell cannot do that. The effect of two null values can be seen when casting each to Boolean:

 [Boolean]@($null) # Returns false

[Boolean]@($null, $null) # Returns true

 To avoid this problem, $null must be on the left-hand side of the expression. For example, the following Write-Host statement does not execute; the array variable is not null:

 $array = 1, 2, $null, $null

if ($null -eq $array) { Write-Host 'Variable not set' }

 In this case, the array is not enumerated; null is compared with the entire array. The result will be $false; the array variable is set.

 Equal to and not equal to

 The -eq (equal to) and -ne (not equal to) operators perform exact (and, by default, case-insensitive) comparisons. In the following example, $true is returned:

 1 -eq 1

'string' -eq 'string'

[char]'a' -eq 'A'

$true -eq 1

$false -eq 0

 Similarly, -ne (not equal) will return $true for each of the following:

 20 -ne 100

'this' -ne 'that'

$false -ne 'false'

 The last example compares $false, the Boolean, with a string containing the word false. PowerShell will attempt to convert the word, but as the word is not an empty string, the result will be $true.

 Like and not like

 The -like and -notlike operators support wildcards. * matches a string of any length (zero or more characters long) and ? matches a single character. Each of the following examples returns $true:

 'The cow jumped over the moon' -like '*moon*'

'Hello world' -like '??llo w*'

'' -like '*'

'' -notlike '?*'

 Behind the scenes, PowerShell turns expressions used with -like and -notlike into regular expressions.

 Greater than and less than

 When comparing numbers, each of the operators -ge (greater than or equal to), -gt (greater than), -le (less than or equal to), and -lt (less than) is simple to use:

 1 -ge 1 # Returns true

2 -gt 1 # Returns true

1.4 -lt 1.9 # Returns true

1.1 -le 1.1 # Returns true

 String comparison with operators places 0 first, then each lower case and upper case character in turn. For example, from least to greatest, 0123456789aAbBcCdD...xXyYzZ. Also, it is important to note the following:

 	Cultural variants of characters. For example, the character å falls between A and b in the list.

 	Other alphabets. For example, Cyrillic and Greek come after the Roman alphabet (after Z).

 Comparisons can be made in a specific culture when using commands such as Sort-Object with the Culture parameter. Comparisons are always based on en-US when using the operators:

 'apples' -lt 'pears' # Returns true

'Apples' -lt 'pears' # Returns true

'bears' -gt 'Apples' # Returns true

'å' -gt 'a' # Returns true

 When a case-sensitive operator, such as -clt, is used, B can be seen to fall between b and c:

 'bat' -clt 'Bat' # True, b before B

'Bat' -clt 'cat' # True, B before c

 The use of greater than and less than with strings may often be difficult to apply. Careful testing is recommended.

 Contains and in

 The -contains, -notcontains, -in, and -notin operators are used to test the content of arrays.

 When using -contains or -notcontains, the array must be on the left-hand side of the operator:

 1, 2 -contains 2 # Returns true

1, 2, 3 -contains 4 # Returns false

 When using -in or -notin, the array must be on the right-hand side of the operator:

 1 -in 1, 2, 3 # Returns true

4 -in 1, 2, 3 # Returns false

 Contains or in?

 When using comparison operators, I tend to write the subject (the item I want to compare) on the left and the object on the right. Comparisons to null are an exception to this rule: null is placed on the left. The subject is the variable or property I am testing; the object is the thing I am testing against. For example, I might set the subject to a user in Active Directory:

 $subject = Get-ADUser -Identity $env:USERNAME -Properties @(

 'department'

 'memberOf'

)

 I use contains, where the subject is an array, and the object is a single value:

 $subject.MemberOf -contains 'CN=Group,DC=domain,DC=example'

 I use in, where the subject is a single value, and the object is an array:

 $subject.Department -in 'Department1', 'Department2'

 Regular expression-based operators

 Regular expressions are an advanced form of pattern matching. In PowerShell, some operators have direct support for regular expressions. Regular expressions themselves are covered in greater detail in Chapter 9, Regular Expressions.

 The following operators use regular expressions:

 	Match: -match

 	Not match: -notmatch

 	Replace: -replace

 	Split: -split

 Match and not match

 The -match and -notmatch operators test whether a string matches a regular expression. If so, the operators will return $true or $false:

 'The cow jumped over the moon' -match 'cow' # Returns true

'The cow' -match 'The +cow' # Returns true

 In the preceding example, the + symbol is reserved; it indicates that The is followed by one or more spaces before cow.

 Match is a comparison operator

 Like the other comparison operators, if -match (or -notmatch) is used against an array, it returns each matching element instead of true or false. The following comparison returns the values one and three:

 "one", "two", "three" -match 'e'

 When match is used against an array, the $matches variable is not set.

 In addition to returning a $true or $false value about the state of the match, a successful match adds values to a reserved variable, $matches. For example, the following regular expression uses a character class (a set of values enclosed in square brackets) to indicate that it should match any character from 0 to 4, repeated 0 or more times:

 '1234567689' -match '[0-4]*'

 Once the match has been executed, the $matches variable (a hashtable) is populated with the part of the string that matched the expression:

 PS> $matches

Name Value

---- -----

0 1234

 Regular expressions use parentheses to denote groups. Groups may be used to capture interesting elements of a string:

 PS> 'Group one, Group two' -match 'Group (.*), Group (.*)'

True

PS> $matches

Name Value

---- -----

2 two

1 one

0 Group one, Group two

 The captured value one is held in the group named 1, and is accessible using either of the following statements:

 $matches[1]

$matches.1

 The $matches variable is an automatically filled hashtable; in the preceding example, the value 1 is being used as a key to access a capture group.

 Replace

 The -replace operator performs string replacement based on a regular expression. For example, it can be used to replace several instances of the same thing:

 PS> 'abababab' -replace 'a', 'c'

cbcbcbcb

 In the example, a is the regular expression that dictates what must be replaced. 'c' is the value any matching values should be replaced with.

 The syntax for the -replace operator can be generalized, as follows:

 <Value> -replace <Match>, <Replace-With>

 If the Replace-With value is omitted, the matches are replaced with nothing (that is, they are removed):

 PS> 'abababab' -replace 'a'

bbbb

 Regular expressions use parentheses to capture groups (a sub-string of the original). The -replace operator can use those groups. Each group may be used in the Replace-With argument. For example, a set of values can be reversed:

 'value1,value2,value3' -replace '(.*),(.*),(.*)', '$3,$2,$1'

 In the preceding regular expression, .* matches zero or more of any character. Each capture group is expected to be separated by a comma value.

 The values $1, $2, and $3 are references to each of the capture groups in the order they appear in the expression. When performing this operation, the Replace-With argument uses single quotes to prevent PowerShell from evaluating the group references as if they were variables. This problem is shown in the following example. The first attempt works as expected; the second shows an expanded PowerShell variable instead:

 PS> 'value1,value2,value3' -replace '(.*),(.*),(.*)', '$3,$2,$1'

value3,value2,value1

PS> $1 = $2 = $3 = 'Oops'

PS> 'value1,value2,value3' -replace '(.*),(.*),(.*)', "$3,$2,$1"

Oops,Oops,Oops

 Capture groups are explored in greater detail in Chapter 9, Regular Expressions.

 The -replace operator is incredibly useful and widely used.

 Split

 The -split operator splits a string into an array based on a regular expression.

 The following example splits a string into an array containing a, b, c, and d based on each of the numbers in the string:

 PS> 'a1b2c3d4' -split '[0-9]'

a

b

c

d

 The syntax for the -split operator can be generalized, as follows, only the Match argument is mandatory:

 <Value> -split <Match>, <Maximum-Number>, <Split-Options>

 The results of a split can be assigned to one or more variables. For example:

 $first, $second, $third = '1,2,3,4,5' -split ','

 The string 1 will be assigned to $first and 2 to $second. The variable $third will contain the strings 3, 4, and 5 as an array. Using $null instead would discard 3, 4, and 5:

 $first, $second, $null = '1,2,3,4,5' -split ','

 Maximum-Number can be used to limit the number of split operations performed on the string on the left-hand side. The default value is 0, meaning an unlimited number of split operations. The following example will result in an array containing two elements: the first element will be the string 1, the second element will be 2, 3, 4, 5:

 $split = '1,2,3,4,5' -split ',', 2

 The Split-Options field is used to change how the match is performed. It includes a number of options:

 	SimpleMatch

 	RegexMatch

 	CultureInvariant

 	IgnorePatternWhitespace

 	Multiline

 	Singleline

 	IgnoreCase

 	ExplicitCapture

 Microsoft Docs has descriptions of each of these possible values:

 https://docs.microsoft.com/dotnet/api/system.management.automation.splitoptions?view=powershellsdk-7.0.0

 For example, the SimpleMatch option changes -split to be explicit instead of using a regular expression as shown in the following example:

 'a?b?c?d?' -split 'b?', 0, 'SimpleMatch'

 The preceding example splits the string in two, the first value will be a?, the second c?d?. If SimpleMatch is taken away the result will be very different. In a regular expression, the ? character makes the preceding character optional.

 Multiple options can be used as a comma-separated list. For example:

 'axbxcxd' -csplit ' X ', 0, 'IgnoreCase, IgnorePatternWhiteSpace'

 The -csplit variant of the -split operator makes the match case sensitive; setting the IgnoreCase option switches back to case insensitive.

 Logical operators

 Logical operators evaluate two or more comparisons or other operations that produce a Boolean (true or false) result.

 The following logic operators are available:

 	And: -and

 	Or: -or

 	Exclusive or: -xor

 	Not: -not and !

 And

 The -and operator returns $true if the values on the left-hand and right-hand side are both $true.

 For example, each of the following returns $true:

 $true -and $true

1 -lt 2 -and "string" -like 's*'

1 -eq 1 -and 2 -eq 2 -and 3 -eq 3

(Test-Path C:\Windows) -and (Test-Path 'C:\Program Files')

 Or

 The -or operator returns true if the value on the left, or the value on the right, or both, are true.

 For example, each of the following returns $true:

 $true -or $true

2 -gt 1 -or "something" -ne "nothing"

1 -eq 1 -or 2 -eq 1

(Test-Path C:\Windows) -or (Test-Path D:\Windows)

 Exclusive or

 The -xor operator will return $true if either the value on the left is $true, or the value on the right is true, but not both.

 For example, each of the following returns $true:

 $true -xor $false

1 -le 2 -xor 1 -eq 2

(Test-Path C:\Windows) -xor (Test-Path D:\Windows)

 The -xor operator is perhaps one of the most rarely used in PowerShell.

 Not

 The -not (or !) operator may be used to negate the expression that follows it.

 For example, each of the following returns true:

 -not $false

-not (Test-Path X:\)

-not ($true -and $false)

!($true -and $false)

 Double negatives

 The -not operator has an important place, but it is worth rethinking an expression if it injects a double negative. For example, the following expression returns true:

 -not (1 -ne 1)

 The preceding expression is better written using the -eq operator:

 1 -eq 1

 Binary operators

 Binary operators are used to perform bitwise operations in PowerShell, that is, operations based around the bits that make up a numeric value. Each operator returns the numeric result of a bitwise operation.

 All numeric values can be broken down into bytes and, in turn, bits.

 Each byte is made up of 8 bits. Each bit in the byte has a value based on its position, highest value (or most significant) first. These bits can be combined to make up any number between 0 and 255.

 The possible bit values for a byte can be represented as a table:

 	

 Bit position

 	

 1

 	

 2

 	

 3

 	

 4

 	

 5

 	

 6

 	

 7

 	

 8

 	

 Bit value

 	

 128

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 Table: 6.1: Bit values of a byte

 The available operators are:

 	Binary and: -band

 	Binary or: -bor

 	Binary exclusive or: -bxor

 	Binary not: -bnot

 	Shift left: -shl

 	Shift right: -shr

 Binary and

 The result of -band is a number where each of the bits in both the value on the left and the value on the right is set.

 In the following example, the result is 2:

 11 -band 6

 This bitwise AND operation can be shown in a table. Each value is shown in binary:

 	

 Bit value

 	

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Left-hand side

 	

 11

 	

 1

 	

 0

 	

 1

 	

 1

 	

 Right-hand side

 	

 6

 	

 0

 	

 1

 	

 1

 	

 0

 	

 -band

 	

 2

 	

 0

 	

 0

 	

 1

 	

 0

 Table 6.2: 11 -band 6

 The result of -band is a number where both the value on the left-hand side and the value on the right-hand side include the bit.

 Binary or

 The result of -bor is a number where the bits are set in either the value on the left or right.

 In the following example, the result is 15:

 11 -bor 12

 This operation can be shown in a table:

 	

 Bit value

 	

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Left-hand side

 	

 11

 	

 1

 	

 0

 	

 1

 	

 1

 	

 Right-hand side

 	

 12

 	

 1

 	

 1

 	

 0

 	

 0

 	

 -band

 	

 15

 	

 1

 	

 1

 	

 1

 	

 1

 Table 6.3: 11 -bor 12

 The result is a number made up of the bits from each number where either number has the bit set.

 Binary exclusive or

 The result of -bxor is a number where the bits are set in either the value on the left or the value on the right, but not both.

 In the following example, the result is 11:

 6 -bxor 13

 This operation can be shown in a table:

 	

 Bit value

 	

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Left-hand side

 	

 6

 	

 0

 	

 1

 	

 1

 	

 0

 	

 Right-hand side

 	

 13

 	

 1

 	

 1

 	

 0

 	

 1

 	

 -band

 	

 11

 	

 1

 	

 0

 	

 1

 	

 1

 Table 6.4: 6 -bxor 13

 The -bxor operator is useful for toggling bit values. For example, -bxor might be used to toggle the AccountDisable bit of UserAccountControl in Active Directory:

 512 -bxor 2 # Result is 514 (Disabled, 2 is set)

514 -bxor 2 # Result is 512 (Enabled, 2 is not set)

 Binary not

 The -bnot operator is applied before a numeric value; it does not use a value on the left-hand side. The result is a value that's composed of all bits that are not set.

 The -bnot operator works with signed and unsigned 32-bit and 64-bit integers (Int32, UInt32, Int64, and UInt64). When working with 8-bit or 16-bit integers (SByte, Byte, Int16, and UInt16), the result is always a signed 32-bit integer (Int32).

 In the following example, the result is -123:

 -bnot 122

 As the preceding result is a 32-bit integer (Int32), it is difficult to show the effect in a small table. If this value were an SByte, the operation could be expressed in a table as follows:

 	

 Bit value

 	

 	

 Signing

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Before -bnot

 	

 122

 	

 0

 	

 1

 	

 1

 	

 1

 	

 1

 	

 0

 	

 1

 	

 0

 	

 After -bnot

 	

 -123

 	

 1

 	

 0

 	

 0

 	

 0

 	

 0

 	

 1

 	

 0

 	

 1

 Table 6.5: -bnot 122

 As shown in the preceding table, the -bnot operator reverses the value for each bit. The signing bit is not treated any differently.

 Shift left and shift right operators

 The -shl and -shr operators were introduced with PowerShell 3.0. These operators perform bit-shifting.

 The -shl and -shr operators have the lowest precedence and are only executed after all other operators. For example, the result of the following calculation is 128; the multiplication and addition operators are evaluated before -shl.

 2 * 4 -shl 2 + 2

 The effect of shift operators is best demonstrated by representing numeric values in binary. For the value of 78, the following bits must be set:

 	

 Bit value

 	

 128

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 On or off

 	

 0

 	

 1

 	

 0

 	

 0

 	

 1

 	

 1

 	

 1

 	

 0

 Table 6.6: Bit values

 When a left shift operation is performed, every bit is moved a defined number of places to the left; in the following example, one bit to the left:

 78 -shl 1

 The result is 156, which is expressed in this bit table:

 	

 Bit value

 	

 128

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Before shift

 	

 0

 	

 1

 	

 0

 	

 0

 	

 1

 	

 1

 	

 1

 	

 0

 	

 After shift

 	

 1

 	

 0

 	

 0

 	

 1

 	

 1

 	

 1

 	

 0

 	

 0

 Table 6.7: Shift left

 Shifting one bit to the right reverses the operation:

 PS> 156 -shr 1

78

 When shift left (-shl) operator converting values using left or right shifting, bits that are set and right-shifted past the rightmost bit (bit value 1) become 0. For example:

 PS> 3 -shr 1

1

 This is expressed in the following table. Bits that end up in the rightmost column are discarded; they are outside of the range of bits used by the numeric value:

 	

 Bit value

 	

 128

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Out of range

 	

 Before shift

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 1

 	

 1

 	

 	

 After shift

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 1

 	

 1

 Table 6.8: Shift right, discarded bits

 If the numeric value is of a specific numeric type, the resulting number cannot exceed the maximum value for that type. For example, a Byte has a maximum value of 255; if the value of 255 is shifted one bit to the left, the resulting value will be 254:

 PS> ([Byte]255) -shl 1

254

 Shifting out of range is shown in this table:

 	

 Bit value

 	

 Out of range

 	

 128

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Before shift

 	

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 After shift

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 0

 Table 6.9: Shift left, discarded bits

 If the value were capable of being larger, such as a 16- or 32-bit integer, the value would be allowed to increase as it no longer falls out of range:

 PS> [Int16]255 -shl 1

510

 Bit shifting like this is easiest to demonstrate with unsigned types such as Byte, UInt16, UInt32, and UInt64. Unsigned types cannot support values lower than 0 (negative numbers), they have no way of describing a negative value.

 Signed types, such as SByte, Int16, Int32, and Int64, use the highest-order bit to indicate whether the value is positive or negative. For example, this table shows the bit positions for a signed byte (SByte):

 	

 Bit position

 	

 1

 	

 2

 	

 3

 	

 4

 	

 5

 	

 6

 	

 7

 	

 8

 	

 Bit value

 	

 Signing

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 Table 6.10: Signed byte

 The preceding bit values may be used to express numbers between 127 and -128. The binary forms of 1 and -1 are shown as an example in the following table:

 	

 Bit value

 	

 Signing

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 1

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 1

 	

 -1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 	

 1

 Table 6.11: Positive and negative in bits

 For a signed type, each bit (except for signing) adds to a minimum value:

 	When the signing bit is not set, add each value to 0

 	When the signing bit is set, add each value to -128

 When applying this to left shift, if the value of 64 is shifted one bit to the left, it becomes -128:

 PS> ([SByte]64) -shl 1

-128

 The shift left into the signing bit is expressed in the following table:

 	

 Bit value

 	

 Signing

 	

 64

 	

 32

 	

 16

 	

 8

 	

 4

 	

 2

 	

 1

 	

 Before shift

 	

 0

 	

 1

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 After shift

 	

 1

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 	

 0

 Table 6.12: Shift into signing bit

 Shift operations such as these are common in the networking world. For example, the IP address 192.168.4.32 may be represented in a number of different ways:

 	In hexadecimal: C0A80420

 	As an unsigned 32-bit integer: 3232236576

 	As a signed 32-bit integer: -1062730720

 The signed and unsigned versions of an IP address are calculated using left shift. For example, the IP address 192.168.4.32 may be written as a signed 32-bit integer (Int32):

 (192 -shl 24) + (168 -shl 16) + (4 -shl 8) + 32

 Shift operations such as these can be useful but are not common. The next section explores the assignment operator.

 Type operators

 Type operators are designed to work with and test .NET types. The following operators are available:

 	As: -as

 	Is: -is

 	Is not: -isnot

 These operators may be used to convert an object of one type into another, or to test whether or not an object is of a given type.

 As

 The -as operator is used to attempt to convert a value into an object of a specified type. The operator returns null (without throwing an error) if the conversion cannot be completed.

 For example, the operator may be used to perform the following conversions:

 "1" -as [Int32]

'String' -as [Type]

 If the attempt to convert the value fails, nothing is returned and no error is raised:

 $true -as [DateTime]

 The -as operator can be useful for testing whether a value can be cast to a specific type, or whether a specific type exists.

 For example, the System.Windows.Forms assembly is not imported by default and the System.Windows.Forms.Form class does not exist. The -as operator may be used to test if it is possible to find the System.Windows.Forms.Form type:

 if (-not ('System.Windows.Forms.Form' -as [Type])) {

 Write-Host 'Adding assembly' -ForegroundColor Green

 Add-Type -Assembly System.Windows.Forms

}

 If the System.Windows.Forms assembly has not been imported, attempting to turn the string, System.Windows.Forms.Form, into a type will fail. The failure to convert will not generate an error.

 is and isnot

 The -is and -isnot operators test whether a value is of a specified type.

 For example, each of the following returns true:

 'string' -is [String]

1 -is [Int32]

[String] -is [Type]

123 -isnot [String]

 The -is and -isnot operators are especially useful for testing the exact type of a value, often in an if statement when the action taken depends on the value type.

 Redirection operators

 Chapter 3, Working with Objects in PowerShell, started exploring the different output streams PowerShell utilizes.

 Information from a command may be redirected using the redirection operator, >. Information may be sent to another stream or a file.

 For example, the output from a command can be directed to a file. The file contains the output as it would have been displayed in the console:

 PS> Get-Process -Id $pid > process.txt

PS> Get-Content process.txt

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName

 ------ ----- ----- ------ -- -- -----------

 78 144.69 186.91 12.69 15284 1 pwsh

 Each of the streams in PowerShell has a number associated with it. These are shown in the following table:

 	

 Stream name

 	

 Stream number

 	

 Standard out

 	

 1

 	

 Error

 	

 2

 	

 Warning

 	

 3

 	

 Verbose

 	

 4

 	

 Debug

 	

 5

 	

 Information

 	

 6

 Table 6.13: PowerShell streams

 Each of the preceding streams can be redirected. In most cases, PowerShell provides parameters for commands, which can be used to capture the streams when used, for example, the ErrorVariable and WarningVariable parameters.

 About Write-Host

 Before PowerShell 5, the output written using the Write-Host command could not be captured, redirected, or assigned to a variable. In PowerShell 5, Write-Host became a wrapper for Write-Information; the message is sent to the information stream.

 Information written using Write-Host is unaffected by the InformationPreference variable and the InformationAction parameter, except when either is set to Ignore.

 When InformationAction for the Write-Host command is set to Ignore, the output will be suppressed. When Ignore is set for the InformationPreference variable, an error is displayed, stating that it is not supported.

 Redirection to a file

 Output from a specific stream may be directed by placing the stream number on the left of the redirect operator.

 For example, the output written by Write-Warning can be directed to a file:

 function Test-Redirect{

 'This is standard out'

 Write-Warning 'This is a warning'

}

$output = Test-Redirect 3> 'warnings.txt'

 The $output variable will contain the string This is standard out. The warning message from stream 3 is redirected to the warnings.txt file.

 When using the redirect operator, any file of the same name is overwritten. If data is to be appended to a file, the operator is changed to >>:

 function Test-Redirect{

 Write-Warning "Warning $i"

}

$i = 1

Test-Redirect 3> 'warnings.txt' # Overwrite

$i++

Test-Redirect 3>> 'warnings.txt' # Append

 It is possible to redirect additional streams, for example, warnings and errors, by adding more redirect statements. The following example redirects the error and warning streams to separate files:

 function Test-Redirect{

 'This is standard out'

 Write-Error 'This is an error'

 Write-Warning 'This is a warning'

}

Test-Redirect 3> 'warnings.txt' 2> 'errors.txt'

 The wildcard character * may be used to represent all streams if all content was to be sent to a single file:

 $verbosePreference = 'continue'

function Test-Redirect {

 'This is standard out'

 Write-Information 'This is information'

 Write-Host 'This is information as well'

 Write-Error 'This is an error'

 Write-Verbose 'This is verbose'

 Write-Warning 'This is a warning'

}

Test-Redirect *> 'alloutput.txt'

 The preceding example starts by setting the VerbosePreference variable. Without this, or the addition of the verbose parameter to the Write-Verbose command, the output from Write-Verbose will not be shown at all.

 PowerShell and default file encoding

 The encoding of a file, including text files, can be optionally described using a BOM or Byte-Order Mark. The BOM is written to the first few bytes of a file and describes the encoding used by the content that follows, that is, how to interpret the bytes in the file to represent characters to display. The BOM is not hidden by most editors.

 The different BOM values are described on Wikipedia:

 https://wikipedia.org/wiki/Byte_order_mark

 The BOM is optional; files without a BOM that are opened in a text editor are generally assumed to be UTF8 (depending on the editor).

 In Windows PowerShell, files written using redirection are encoded using UTF-16LE. In PowerShell 7, files are written using UTF8 without a BOM at the beginning of the file.

 If PowerShell 7 uses >> to append to a file created using >, in Windows PowerShell the result will be a file with mixed encoding. The presence of the Unicode BOM renders the content unreadable in most cases.

 Streams can be redirected to other streams rather than a file.

 Redirecting streams to standard output

 Streams can be redirected to standard output in PowerShell. The destination stream is written on the right-hand side of the redirect operator (without a space). Stream numbers on the right-hand side are prefixed with an ampersand (&) to distinguish the stream from a filename.

 Only Stdout

 Each of the following examples shows redirection to Stdout, &1. It is not possible to redirect to streams other than standard output.

 For example, the output from Write-Information, stream 6, is redirected to standard output:

 PS> function Test-Redirect{

>> 'This is standard out'

>> Write-Information 'This is information'

>> }

PS> $stdOut = Test-Redirect 6>&1

PS> $stdOut

This is standard out

This is information

 It is possible to redirect additional streams, for example, warnings and errors, by adding more redirect statements. The following example redirects the error and warning streams to standard output:

 function Test-Redirect {

 'This is standard out'

 Write-Error 'This is an error'

 Write-Warning 'This is a warning'

}

$stdOut = Test-Redirect 2>&1 3>&1

 The wildcard character * may be used to represent all streams if all streams were to be sent to another stream:

 $verbosePreference = 'continue'

function Test-Redirect {

 'This is standard out'

 Write-Information 'This is information'

 Write-Host 'This is information as well'

 Write-Error 'This is an error'

 Write-Verbose 'This is verbose'

 Write-Warning 'This is a warning'

}

$stdOut = Test-Redirect *>&1

 The preceding example starts by setting the verbose preference variable. Without this, the output from Write-Verbose will not be shown at all.

 Redirection to null

 Redirecting output to null can be used as a technique used to drop unwanted output. The $null variable takes the place of the filename:

 Get-Process > $null

 The preceding example redirects standard output (stream 1) to nothing. This is equivalent to using an empty filename:

 Get-Process > ''

 Dropping unwanted output is explored further in Chapter 17, Scripts, Functions, and Script Blocks.

 The stream number or * may be included to the left of the redirect operator. For example, warnings and errors might be redirected to null:

 .\somecommand.exe 2> $null 3> $null

.\somecommand.exe *> $null

 Redirection like this is often used with native executables; redirection is rarely necessary with PowerShell commands.

 Other operators

 PowerShell has a wide variety of operators, a few of which do not easily fall into a specific category:

 	Call: &

 	Comma: ,

 	Format: -f

 	Increment and decrement: ++ and --

 	Join: -join

 Each of these operators is in common use. The call operator can run a command based on a string, to the format operator which can be used to build up complex strings, and so on.

 Call

 The call operator (&) is used to execute a string or script block. The call operator is particularly useful when running commands (executables or scripts) that have spaces in the path. The call operator is also useful if the command name changes based on circumstances, for example, the operating system running a command.

 The following example runs pwsh.exe using a full path held in a string:

 & 'C:\Program Files\PowerShell\7\pwsh.exe'

 The path to pwsh.exe is normally in the PATH environment variable, using the full path as in the example above should not be necessary.

 The command itself can also be a variable:

 $pwsh = 'C:\Program Files\PowerShell\7\pwsh.exe'

& $pwsh

 This technique can be applied to any command, including PowerShell commands, scripts, and other Windows executables.

 Any arguments required by the command can be written in-line, as if the call operator were not present. For example:

 $pwsh = 'C:\Program Files\PowerShell\7\pwsh.exe'

& $pwsh -NoProfile -NoLogo -Command "Write-Host 'Hello world'"

 Alternatively, arguments can be supplied as an array, a technique that is useful for commands expecting a large number of arguments:

 $pwsh = 'C:\Program Files\PowerShell\7\pwsh.exe'

$argumentList = @(

 '-NoProfile'

 '-NoLogo'

 '-Command'

 'Write-Host "Hello world"'

)

& $pwsh $argumentList

 The call operator may also be used to execute script blocks:

 $scriptBlock = { Write-Host 'Hello world' }

& $scriptBlock

 Parameters and arguments can be passed to the script block either in-line, as shown in the previous examples, or using splatting. Splatting is introduced in Chapter 1, Introduction to PowerShell.

 Comma

 The comma operator may be used to separate elements in an array. For example:

 $array = 1, 2, 3, 4

 If the comma operator is used before a single value, it creates an array containing one element:

 $array = ,1

 When working with functions, the comma operator can be used to emit an array as an object. PowerShell will enumerate an array by default. The Write-Output command can be used with the NoEnumerate parameter to achieve the same thing.

 Format

 The -f operator can be used to create complex formatted strings. The syntax for the format operator is taken from .NET; Microsoft Docs has a large number of examples:

 https://docs.microsoft.com/dotnet/api/system.string.format

 The -f operator uses a placeholder, a number in curly braces ({<number>}) in a string on the left of the operator. The number is the index of a value in an array on the right. For example:

 PS> '1: {0}, 2: {1}, 3: {2}' -f 'one', 'two', 'three'

1: one, 2: two, 3: three

 The format operator is one possible way to assemble complex strings in PowerShell. In addition, -f may be used to simplify some string operations. For example, a decimal may be formatted as a percentage:

 'The pass mark is {0:P}' -f 0.8

 An integer may be formatted as a hexadecimal string:

 '244 in Hexadecimal is {0:X2}' -f 244

 A number may be written as a culture-specific currency; in the UK, it will use the £ symbol, in the US, $, and so on:

 'The price is {0:C2}' -f 199

 A date may be formatted as a string, which is useful if parts of the date are used in several places in the string:

 'Today is {0:dddd} the {0:dd} of {0:MMMM}' -f (Get-Date)

 Reserved characters

 When using the -f operator, curly braces are considered reserved characters. If a curly brace is to be included in a string as a literal value, it can be escaped:

 'The value in {{0}} is {0}' -f 1

 Increment and decrement

 The ++ and -- operators are used to increment and decrement numeric values. The increment and decrement operators are split into pre-increment and post-increment versions.

 The post-increment operators are frequently seen in for loops. The value for $i is used, and then incremented by one after use. In the case of the for loop, the value is incremented after the statements inside the loop block have executed:

 for ($i = 1; $i -le 15; $i++) {

 Write-Host $i -ForegroundColor $i

}

 The post-decrement reduces the value by one after use:

 for ($i = 15; $i -ge 0; $i--) {

 Write-Host $i -ForegroundColor $i

}

 Post-increment and post-decrement operators are often seen when iterating through an array:

 $array = 1..15

$i = 0

while ($i -lt $array.Count) {

 # $i will increment after this statement has completed.

 Write-Host $array[$i++] -ForegroundColor $i

}

 Pre-increment and pre-decrement are rarely seen. Instead of incrementing or decrementing a value after use, the change happens before the value is used. For example:

 $array = 1..5

$i = 0

do {

 # $i is incremented before use, 2 will be the first printed.

 Write-Host $array[++$i]

} while ($i -lt $array.Count -1)

 The post-increment operator, ++, is common and is typically used in looping scenarios like those above.

 Join

 The -join operator joins arrays using a string. In the following example, the string is split based on a comma, and then joined based on a tab (`t):

 PS> 'a', 'b', 'c', 'd' -join "`t"

a b c d

 The -join operator may also be used in front of an array, when there is no need for a separator. For example:

 PS> -join ('hello', 'world')

hello world

 If the parentheses are excluded from the example, the statement will be considered incomplete and will not execute.

 Ternary

 The ternary operator is a conditional operator that performs a comparison and returns one of two values.

 The ternary operator can be used to replace the following statement:

 $result = if ($value) {

 1

} else {

 2

}

 When the ternary operator is used, the statement can be simplified to the following:

 $result = $value ? 1 : 2

 If $value is true, PowerShell sets $result to 1. If $value is false, PowerShell sets $result to 2.

 As the ternary operator acts on a Boolean value the values 0, null, empty strings, and empty arrays are all considered to be $false.

 You can use the ternary operator with more complex expressions if the expression is enclosed in parentheses. For example:

 $value = 1

($value -eq 2) ? 'two' : 'other number'

 Null coalescing

 The null coalescing operator in PowerShell 7 may be used to define a default for a value when the subject is null.

 For example, null coalescing is useful if the value for a variable is dependent on another. This operation might be performed using an if statement:

 $valueA = $null

if ($null -eq $valueA) {

 $valueB = 'Default value'

} else {

 $valueB = $valueA

}

 The null coalescing operator can simplify this expression:

 $valueA = $null

$valueB = $valueA ?? 'Default value'

 If $valueA is given a non-null value it will be returned as the result of the expression:

 $valueA = 'Supplied value'

$valueA ?? 'Default value'

 You can chain ternary operators build up a more complex expression. In the following example, the value of the variable will be set to the first of the functions that returns a non-null value:

 function first { }

function second { 'second' }

function third { 'third' }

(first) ?? (second) ?? (third)

 The preceding expression will return the value 'second' as the function first does not return a value. The function third will not be called in this case.

 If the value were removed from the second function, the result of the expression would be 'third' as the only non-null value in the expression:

 function first { }

function second { }

function third { 'third' }

(first) ?? (second) ?? (third)

 A default value might be added to the end to always ensure the result is never null:

 (first) ?? (second) ?? (third) ?? 'default'

 The null coalescing operator allows a complex conditional expression to be defined with a very concise statement. The operator may also be used in an assignment operation.

 Null coalescing assignment

 The null coalescing assignment operator can be used to simplify the use of the null coalescing operator when assigning values.

 In the following example, $value will only become 1 if it is null:

 $value = $null

if ($null -eq $value) {

 $value = 1

}

 The expression can be simplified by using the null coalescing assignment operator:

 $value = $null

$value ??= 1

 In the preceding example, because $value is already set, it will not be changed by the second assignment:

 $value = 1

$value ??= 2

 The value must be explicitly null (not false, or 0, or an empty string) for the assignment to complete.

 This approach might be used to ensure an object exists, for example, a specific process:

 $process = Get-Process notepad -ErrorAction SilentlyContinue

$process ??= Start-Process notepad -PassThru

 In the preceding example, Notepad will only be started if the process does not already exist.

 Null conditional

 The null conditional operator can be used to avoid errors when a property or method is used on an object, and the object itself is null.

 In PowerShell 7.1 and above, the null conditional operators are available as a mainstream feature. In PowerShell 7.0, the null conditional operators are made available by enabling the PSNullConditionalOperators experimental feature:

 Enable-ExperimentalFeature -Name PSNullConditionalOperators

 Once enabled, and after PowerShell has been restarted, the new operators can be used.

 The behavior of the operator is best described by example. The following command will raise an error if the variable has not been set or the value is null:

 PS> $someObject.ToString()

InvalidOperation: You cannot call a method on a null-valued expression.

 The null conditional operator can be used so the method is only run if the object is not null:

 ${someObject}?.ToString()

 As the ? character can be part of a normal variable name, you must use curly braces to separate the variable name from the null conditional operator.

 The same technique can be used for properties of objects that may not be set:

 $someOtherObject = [PSCustomObject]@{

 Value = $null

}

$someOtherObject.{Value}?.ToString()

 If a value for the Value property is set, the method executes and returns as normal.

 This operator cannot be used to avoid errors accessing non-existent properties when strict mode is enabled. See Get-Help Set-StrictMode to explore the features and functionality of strict mode in PowerShell.

 Pipeline chain

 The pipeline chain operators allow conditional execution of commands based on the success (or failure) of another command. Two operators are available, && and ||.

 These operators are present in cmd.exe and are also implemented in Bash on Linux.

 Evaluating success or failure is based on the value of the $? variable.

 When the && operator is used, the command on the right-hand side only runs if the command on the left-hand side is successful:

 PS> function left { 'Doing fine' }

PS> function right { 'Done!' }

PS> left && right

Doing fine

Done!

 If the left-hand side command fails, the right-hand side command will not run:

 PS> function left { throw 'Failed' }

PS> function right { 'Done!' }

PS> left && right

Exception: Failed

 A non-terminating error, such as one raised by Write-Error, is not considered a failure by PowerShell when running the function left.

 A pipeline chain may be useful if installing and then running an application, for example, using the made-up commands shown here:

 installApplication.exe && application.exe

 Without &&, the $? variable, which describes whether the last command succeeded or not, may be used:

 .\installApplication.exe

if ($?) {

 .\application.exe

}

 The || operator runs the command on the right-hand side even if the left-hand one fails:

 PS> function left { throw 'Failed' }

PS> function right { 'Done!' }

PS> left || right

Failed

Done!

 These operators are a small addition to PowerShell and may help users approaching PowerShell from other languages or shells.

 Background

 The background operator may be used to send the command preceding the operator into a job. For example, running the following command creates a background job:

 $job = Get-Process &

 The background job is visible using the Get-Job command as shown in the following example:

 PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

1 Job1 BackgroundJob Running True localhost Microsoft.Po...

 Any output from the job may be retrieved using the Receive-Job command:

 $job = Get-Process &

$job | Receive-Job

 The job commands are explored in detail in Chapter 15, Asynchronous Processing.

 Summary

 This chapter covered many of the operators PowerShell has to offer, including operators for performing arithmetic, assignment, and comparison.

 Several specialized operators that use regular expressions were introduced for matching, replacing, and splitting. Regular expressions are explored in Chapter 9, Regular Expressions. Binary, logical, and type operators were demonstrated.

 Finally, several other significant operators were introduced, including call, format, increment, decrement, and the join operator, along with the new ternary, null-coalescing, pipeline chain, and background operators.

 In Chapter 5, Variables, Arrays, and Hashtables, variables, arrays, and Hashtables are explored in detail.

 5

 Variables, Arrays, and Hashtables

 This chapter explores variables, along with a detailed look at arrays and Hashtables, as these have their own complexities.

 A variable in a programming language allows you to assign a label to a piece of information or data. A variable can be used and reused in the console, script, or function, or in any other piece of code.

 In this chapter, we're going to cover the following topics:

 	Naming and creating variables

 	Variable commands

 	Variable providers

 	Scopes and variables

 	Types and type conversion

 	Typed numeric values

 	Objects assigned to variables

 	Arrays

 	Hashtables

 	Lists, dictionaries, queues, and stacks

 A variable may be of any .NET type or object instance. The variable may contain a string such as Hello World, an integer such as 42, a decimal such as 3.141, an array, a Hashtable, a ScriptBlock, and so on. Everything a variable might refer to is considered to be an object when used in PowerShell.

 Naming and creating variables

 Variables in PowerShell are preceded by the dollar symbol ($), for example:

 $MyVariable

 The name of a variable may contain numbers, letters, and underscores. For example, each of the following is a valid name:

 $123

$x

$my_variable

$variable

$varIABle

$Path_To_File

 Variables are frequently written in either camel case or Pascal case. For example:

 	$myVariable is camel case

 	$MyVariable is Pascal case

 PowerShell does not enforce a naming convention, nor does it consistently use a convention in the automatic variables.

 One of the most commonly accepted practices is that variables used as parameters must use Pascal case. Variables used only within a script or a function must use camel case.

 I suggest making your variable names meaningful so that when you revisit your script after a long break, you can identify its purpose. I recommend choosing and maintaining a consistent style in your own code.

 It is possible to use more complex variable names using the following notation:

 ${My Variable}

${My-Variable}

 From time to time, the preceding notation appears in PowerShell, perhaps most often in dynamically generated code. This convention is otherwise rare and harder to read and therefore not desirable.

 The bracing style has at least one important use. The following example shows an attempt to embed the var variable in a string:

 $var = 'var'

"$variable" # Will not expand correctly

"${var}iable" # Will expand var

 The braces define a boundary for the variable name.

 The following notation, where a file path is written as the variable name, allows variables to be stored on the filesystem:

 ${C:\Windows\Temp\variable.txt} = "New value"

 Opening the file shows that the variable value has been set:

 PS> Get-Content -Path C:\Windows\Temp\variable.txt

New value

 As with the bracing notation, this is an uncommon practice. It may confuse or surprise anyone reading the code.

 Variables do not need to be declared prior to use, nor does a variable need to be assigned a specific type, for example:

 $itemCount = 7

$dateFormat = "ddMMyyyy"

$numbers = @(1, 9, 5, 2)

$psProcess = Get-Process -Name PowerShell

 It is possible to assign the same value to several variables in one statement. For example, this creates two variables, i and j, both with a value of 0:

 $i = $j = 0

 The value types of the values assigned to the variables above are all simple; none are complex objects.

 Objects assigned to variables

 PowerShell (and all other .NET languages) has two main categories of types, value types and reference types.

 A variable that holds a value type contains an instance of that type. Value types include numeric (int, int64, byte, and so on), characters (char), DateTime, and so on. When a value type is used, for instance, by assigning it to another variable or using the variable as an argument for a parameter, the value is copied.

 Reference types differ from value types. A variable assigned a reference type holds only the reference to that object (not the object itself). Two (or more) variables may reference the same object. Reference types are very common in PowerShell; examples include Hashtable, PSCustomObject, processes returned by Get-Process, services returned by Get-Service, and so on. When used as an argument for a parameter, the reference to the object is passed (the object is not copied).

 A string is not a value type, but it has the same behavior. Strings are immutable – any change to a string will result in the creation of a new string. Strings therefore behave in much the same way as value types.

 The following example assigns a single integer value to two variables. Each variable has an independent copy of the integer, despite this being a single statement:

 $i = $j = 5

 Changes to the value of one variable have no impact on the value held by the other variable:

 $i = $j = 5

$i++

$i += 1

$i = $i + 1

 If each statement is executed in turn, the $i variable will be 8, and the $j variable will be 5.

 The following example assigns a single PSCustomObject to two variables. Each variable has a reference to the same PSCustomObject object:

 $object1 = $object2 = [PSCustomObject]@{

 Name = 'First object'

}

 The following statement changes the value of the Name property using the $object1 variable:

 $object1.Name = 'New name'

 Because $object2 holds a reference to the same PSCustomObject, the change to the name is also visible in the $object2 variable:

 PS> $object1.Name = 'New name'

PS> Write-Host $object2.Name

New name

 Changes to reference objects apply even if the change is made in a child scope, such as inside a function.

 Variable commands

 The following commands are used to work with variables:

 	Clear-Variable

 	Get-Variable

 	New-Variable

 	Remove-Variable

 	Set-Variable

 When using the variable commands, the $ preceding the variable name is not considered part of the name; $ tells PowerShell what follows is a variable name.

 Clear-Variable

 The Clear-Variable command removes the value from any existing variable. Clear-Variable does not remove the variable itself. For example, the following example calls Write-Host twice: on the first occasion, it writes the variable value; on the second occasion, it does not write anything:

 PS> $temporaryValue = "Some-Value"

PS> Write-Host $temporaryValue -ForegroundColor Green

Some-Value

PS> Clear-Variable temporaryValue

PS> Write-Host $temporaryValue -ForegroundColor Green

 Get-Variable

 The Get-Variable command provides access to any variable that has been created in the current session as well as the default (automatic) variables created by PowerShell. For further information on automatic variables, refer to Get-Help about_Automatic_Variables.

 Default or automatic variables often have descriptions; these may be seen by using the Get-Variable command and selecting the description:

 Get-Variable | Select-Object Name, Description

 The following example shows the first few variables with descriptions:

 PS> Get-Variable | Select-Object Name, Description

Name Description

---- -----------

? Status of last command

^

$

args

ConfirmPreference Dictates when confirmation should be requested...

DebugPreference Dictates the action taken when a Debug message...

EnabledExperimentalFeatures Variable to hold the enabled experimental feat...

Error

ErrorActionPreference Dictates the action taken when an error messag...

ErrorView Dictates the view mode to use when displaying ...

ExecutionContext The run objects available to cmdlets

false Boolean False

FormatEnumerationLimit Dictates the limit of enumeration on formattin...

HOME Folder containing the current user's profile

Host A reference to the host of the current runspace

 Descriptions can be set when creating a variable using the New-Variable command.

 New-Variable

 The New-Variable command can be used to create a variable:

 New-Variable -Name today -Value (Get-Date)

 The preceding command is the equivalent of using the following assignment:

 $today = Get-Date

 New-Variable gives more control over the created variable, including adding metadata such as descriptions. For example, it may be used to create a constant, a variable that cannot be changed after creation:

 New-Variable -Name startTime -Value (Get-Date) -Option Constant

 Any attempt to modify the variable after creation results in an error message; including changing the variable value or its properties and attempts to remove the variable, as shown here:

 PS> New-Variable -Name var -Value 1 -Option Constant

PS> $var = 2

WriteError: Cannot overwrite variable var because it is read-only or constant.

 A variable cannot be changed into a constant after creation.

 Remove-Variable

 As the name suggests, the Remove-Variable command removes a variable. If this is the only variable referring to an object, the object will be removed from memory shortly afterward.

 The Remove-Variable command is used as follows:

 $psProcesses = Get-Process powershell

Remove-Variable psProcesses

 If more than one variable refers to an object, the object will not be removed, removal only occurs when all references to the object are removed. For example, the following command shows the name of the first process running (conhost.exe, in this particular case):

 PS> $object1 = $object2 = Get-Process | Select-Object -First 1

PS> Remove-Variable object1

PS> Write-Host $object2.Name

conhost

 Set-Variable

 The Set-Variable command allows certain properties of an existing variable to be changed. For example, the following sets the value of an existing variable:

 $objectCount = 23

Set-Variable objectCount -Value 42

 It is not common to see Set-Variable used in this manner; it is simpler to assign the new value directly, as was done when the variable was created.

 Set-Variable may be used to set a description for a variable:

 Set-Variable objectCount -Description 'The number of objects in the queue'

 Set-Variable can be used to change a variable scope to private:

 Set-Variable objectCount -Option Private

 Private scope

 Private scope is accessible using $private:objectCount. The Set variable may be used but is not required.

 The variable commands are one way of interacting with existing variables; the PowerShell provider for variables is another.

 Variable provider

 PowerShell includes a provider and a drive, which allows variables to be listed, created, and changed using Get-ChildItem, Test-Path, and so on.

 Get-ChildItem may be used to list all the variables in the current scope by running the command shown as follows:

 Get-ChildItem variable:

 The output will include the built-in variables, as well as any variables created by modules that might have been imported.

 As the provider behaves much like a filesystem, Test-Path may be used to determine whether a variable exists. Get-Variable may be used instead, but Get-Variable will throw an error if the variable does not exist:

 Test-Path variable:\VerbosePreference

 Set-Item may be used to change the value of a variable or create a new variable:

 Set-Item variable:\new -Value variable

 Get-Content can also be used to retrieve the content of a variable:

 Get-Content variable:\OutputEncoding

 The backslash character used in the preceding examples is optional. The output from each Get-Item command in the following example is identical:

 $new = 123

Get-Item variable:\new

Get-Item variable:new

 Variables are created in a scope, which limits access to a variable and other scoped items.

 Scopes and variables

 PowerShell uses scopes to limit access to variables (and other items, such as functions). Scopes are layered one on top of another; child scopes inherit from parent scopes. Parent scopes cannot access variables created in child scopes.

 There are three named scopes:

 	Global

 	Script

 	Local

 Global is the topmost scope; it is the scope the prompt in the console uses and is available to all child scopes.

 The Script scope, as the name suggests, is specific to a single script. Script-scoped items are available to all child scopes (such as functions) within that script. The Script scope is also available in modules, making it an ideal place to store variables that should be shared within a module.

 Local is the current scope and is therefore relative. In the console, the Local scope is also the Global scope. In a script, the Local scope is the Script scope. Functions and ScriptBlock also have a Local scope of their own.

 More about scopes

 The help document about_scopes contains further examples and details.

 By default, variables are created in the current scope, the Local scope. However, variables can be accessed from the Local scope or any parent scope.

 Accessing variables

 When PowerShell retrieves the value for a variable, it starts by looking for the variable in the Local scope. If the variable does not exist in the Local scope, it looks through parent scopes until it either finds the variable or it runs out of scopes to search.

 The following script uses two variables. The variable $local exists inside the Write-VariableValue function only. The variable $parent exists outside, in the parent scope, but can be used inside the function:

 function Write-VariableValue {

 $local = 'value from inside the function'

 Write-Host "Local: $local"

 Write-Host "Parent: $parent"

}

$parent = 'value from parent scope'

 Running the function will show both values:

 PS> Write-VariableValue

Local: value from inside the function

Parent: value from parent scope

 If the preceding content is run in the console, the parent scope is the Global scope. If the function and the call to the function are inside a script, the parent scope is Script.

 If the parent variable were explicitly added to the Write-VariableValue function, the locally scoped value would be used instead. For example:

 function Write-VariableValue {

 $local = 'value from inside the function'

 $parent = 'a new value for parent'

 Write-Host "Local: $local"

 Write-Host "Parent: $parent"

}

$parent = 'value from parent scope'

 The variable $parent inside the function is locally scoped. Assigning a value inside the function has no effect on the value of the variable outside the function. A new variable is created when a value is assigned to a variable for the first time in that scope.

 You can use scope modifiers to explicitly define the scope for a variable.

 Scope modifiers

 A scope modifier is placed before the variable name and is followed by a colon. For example, the following variable will always be created in the Global scope:

 $Global:variableName = 123

 Scope modifiers are available for the scopes defined above, Global, Local, and Script. Scope modifiers may also be used for the private variable option and provider namespaces such as alias, env, function, and variable. The private option is explored later in this topic.

 Any child scope accessing the variable may repeat the same scope modifier both to make it clear where the variable is from and to avoid using a variable of the same name in the Local (or another parent) scope.

 Non-local scoped variables in scripts and functions

 Using user-defined (not automatic) variables from other scopes in scripts and functions can make code very difficult to follow and test. Variable values must be cross-referenced with variable values from elsewhere in a piece of code.

 Adding a scope modifier improves the situation as it clearly shows the origin. However, it is still better to avoid out-of-scope variables where possible.

 The creation of a child scope is dependent on where the function or script is called, not where it is written.

 Numeric scopes

 The Get-Variable command allows a numeric value to be used for the Scope parameter. The numeric value describes how far away from the current scope the variable is. Get-Variable may be used when accessing variables in parent scopes, even when a variable of the same name exists in the Local scope.

 The following example includes three functions. first is called from the topmost scope, then first calls second, and second calls third:

 function first {

 $first = $name = 'first'

 second

}

function second {

 $second = $name = 'second'

 third

}

function third {

 $third = $name = 'third'

}

first

 Each function has a Local scope, and each function includes a variable called $name as well as a variable named after the function. The scopes for these functions are stacked one on top of the other in the order shown in the following list:

 	Global or Script

 	Local scope for first

 	Local scope for second

 	Local scope for third

 Each function can access variables defined in the parent scope. That is, the function third can access variables defined in the function second, variables defined in the function first, as well as any variables in the Global or Script scope.

 The variables $first, $second, and $third are unique in the script and are therefore accessible in any child scope. The function third can access the value of $first with no special effort as shown here:

 function first {

 $first = $name = 'first'

 second

}

function second {

 $second = $name = 'second'

 third

}

function third {

 "The value of first is $first"

}

first

 Accessing the value of the $name variable from a parent scope requires the Get-Variable command. As described previously, the Scope parameter accepts a numeric value, defined by the number of scopes the given variable is away from the current scope.

 In the function third, the value of the variable $name in second is 1 scope away; the value of the variable $name in first is 2 scopes away. The changes to the function third below show how Get-Variable can be used to access those variables:

 function first {

 $first = $name = 'first'

 second

}

function second {

 $second = $name = 'second'

 third

}

function third {

 "The value of name in first is {0}" -f @(

 Get-Variable -Name name -Scope 2 -ValueOnly

)

 "The value of name in second is {0}" -f @(

 Get-Variable -Name name -Scope 1 -ValueOnly

)

}

first

 In the preceding example, if the function second or third is run directly, an error will be displayed. For example, running third directly will show the following errors:

 PS> third

Get-Variable:

Line |

 3 | Get-Variable -Name name -Scope 2 -ValueOnly

 | ~~~

 | The scope number '2' exceeds the number of active scopes. (Parameter 'Scope')

Actual value was 2.

Get-Variable:

Line |

 6 | Get-Variable -Name name -Scope 1 -ValueOnly

 | ~~~

 | Cannot find a variable with the name 'name'.

 The technique used in the preceding is instructive but is rarely found in production code.

 The ability to access variables from parent scopes is affected by the private option, which may be used when creating a variable.

 Private variables

 A private variable is hidden from child scopes. A private variable may either be created using New-Variable or by using the private scope modifier as shown in the following examples:

 New-Variable -Name thisValue -Option Private

$private:thisValue = "Some value"

 In the following example, a $name variable is set in the first two functions. The variable is private in the function second.

 function first {

 $name = 'first'

 second

}

function second {

 $private:name = 'second'

 third

}

function third {

 "The value of name is $name"

}

first

 When the function third uses the $name variable, PowerShell searches through parent scopes since the variable does not exist in the local scope. As the variable $name is private in the function second, that variable value is ignored. PowerShell retrieves the value of the $name variable from the scope for the function first.

 It is still possible to get the value of the private variable using a numeric scope with the Get-Variable command as demonstrated in the previous section.

 Scopes are an important part of PowerShell and are used by more than variables. Functions, classes, and enums, which are explored in later chapters, are all created in the Local scope and cannot be accessed from a parent scope.

 Types and type conversion

 Type conversion in PowerShell is used to change between different types of values. Type names are written between square brackets. The type name must be a .NET type, such as a string, an integer (Int32), and a date (DateTime).

 Types may be used to convert, coerce, or cast one type into another. For example, a DateTime object returned by Get-Date can be cast to a String:

 PS> [String](Get-Date)

10/27/2016 13:14:32

 Or a string may be changed into a DateTime object:

 PS> [DateTime]"01/01/2016"

01 January 2016 00:00:00

 If the cast fails, an error will be displayed:

 [DateTime]'30/30/2016'

InvalidArgument: Cannot convert value "30/30/2016" to type "System.DateTime". Error: "String '30/30/2016' was not recognized as a valid DateTime."

 The -as operator can be used to cast types as well:

 '01/01/2016' -as [DateTime]

 If the cast fails when using -as, no error is returned and the result of the expression will be null.

 When assigning values, casting may be performed on either the left-hand side or right-hand side of the expression. The following example shows a string cast to XML on the right-hand side of an assignment:

 $xml = [Xml]'<root><child /></root>'

 The string value will be coerced into an XmlDocument object. The result is shown here:

 PS> $xml

root

root

 Casting on the right-hand side has no impact on subsequent assignments to the variable.

 If the type is placed on the left-hand side of the assignment, the type will also apply to any subsequent assignments to the variable:

 PS> [String]$thisString = "some value"

PS> $thisString = Get-Date

PS> $thisString.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 The Date is converted to a string because using a type on the left-hand side of $thisString when it was created adds an argument-type converter attribute to the variable. The presence of this converter is visible using Get-Variable, although viewing the attribute is not particularly useful beyond showing it exists:

 PS> [String]$thisString = "some value"

PS> (Get-Variable thisString).Attributes

TransformNullOptionalParameters TypeId

------------------------------- ------

 True ...ArgumentTypeConverterAttribute

 Getting the type

 The target type for a conversion is not visible from the attribute shown in the previous example, but the type can be revealed by using advanced techniques such as Reflection.

 The following script shows the type associated with the $thisString variable:

 $attribute = (Get-Variable thisString).Attributes |

 Where-Object TypeId -match 'ArgumentTypeConverterAttribute'

$attribute.GetType().

 GetProperties('Instance,NonPublic').

 GetMethod.Invoke($attribute, @())

 A variable can only have one type converter attribute at a time. The type converter can be replaced by assigning a new type:

 PS> [String]$thisString = "some value"

PS> [DateTime]$thisString = Get-Date

PS> $thisString.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True DateTime System.ValueType

 The type conversion applies for the lifetime of the variable: until the session is closed, the variable falls out of scope (when a function or script containing the variable ends), or the variable is removed using Remove-Variable.

 Setting the variable value to $null does not remove the type conversion attribute as shown here:

 PS> [String]$thisString = 'A string value'

PS> $thisString = $null

PS> $thisString = Get-Process -ID $PID

PS> $thisString.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 Scripts and typed parameters

 Variables with type converters, as shown in the preceding code, can sometimes cause unintended side-effects when writing scripts and functions.

 Variables with defined types should not be reused for other purposes in a script or function without considering the assigned type.

 Type conversion in PowerShell is exceptionally powerful. A great deal of work is hidden behind a simple cast. The PowerShell team wrote a short blog post listing the steps taken when PowerShell attempts to cast or coerce a value:

 https://devblogs.microsoft.com/powershell/understanding-powershells-type-conversion-magic/

 PowerShell also allows the use of certain suffix characters when creating numeric types. The most well-known of these are KB, MB, GB, TB, and PB, which are used to express magnitudes of sizes in bytes. For example:

 PS> 1GB

1073741824

 Several other suffixes are available in PowerShell 7.

 Typed numeric values

 In Windows PowerShell, numbers are automatically created using a type that is able to enclose the value. For example, the value 1 is automatically given the type Int32. The value 40,000,000,000, which is too large for Int32, is instead created as the type Int64.

 This automatic assignment continues in PowerShell Core and PowerShell 7, but types may also be explicitly defined without resorting to casting.

 For example, the value 1u has the type UInt32; 50l (that is, 50 followed by the letter L) is Int64. The change in type can be seen using either Get-Member or the GetType method. GetType is shown here:

 PS> (50l).GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int64 System.ValueType

 The following list shows the suffixes that can be added to numeric values to influence the resulting type:

 	s: short, Int16, or a signed 16-bit integer

 	us: ushort, UInt16, or an unsigned 16-bit integer

 	u: uint, UInt32, or an unsigned 32-bit integer

 	l: long, Int64, or a signed 64-bit integer

 	ul: ulong, UInt64, or an unsigned 64-bit integer

 	d: Decimal

 The preceding suffixes are not case-sensitive.

 If a value is too large for the requested type, an error will be displayed:

 PS> 40000000000s

ParserError:

Line |

 1 | 40000000000s

 | ~

 | At line:1 char:13 + 40000000000s + ~

The numeric constant 40000000000s is not valid.

 The value in the preceding snippet, 40000000000, is too large for the requested short, or 16-bit integer.

 Arrays

 An array contains a collection of objects. Each entry in the array is called an element, and each element has an index (position). Indexing in an array starts from 0.

 Arrays are an important part of PowerShell. When the return from a command is assigned to a variable, an array will be the result if the command returns more than one object. For example, the following command will yield an array of objects:

 $processes = Get-Process

 Array type

 In PowerShell, arrays are, by default, given the System.Object[] type (an array of objects where [] is used to signify that it is an array).

 Why System.Object?

 All object instances are derived from a .NET type or class, and, in .NET, every object instance is derived from System.Object (including strings and integers). Therefore, a System.Object array in PowerShell can hold just about anything.

 Arrays in PowerShell (and .NET) are immutable (fixed size). The size is declared on creation and cannot be changed. A new array must be created if an element is to be added or removed. The array operations described next are considered less efficient for large arrays because of the recreation overhead involved in changing the array size.

 The following sections explore creating arrays, assigning a type to the array, and selecting elements, as well as adding and removing elements.

 Creating an array

 There are several ways to create arrays. An empty array (containing no elements) can be created as follows:

 $myArray = @()

 An empty array of a specific size may be created using the New object. Using [] after the name of the type denotes that it is an array, and the number following sets the array size:

 $myArray = [Object[]]::new(10) # 10 objects

$byteArray = [Byte[]]::new(100) # 100 bytes

$ipAddresses = [IPAddress[]]::new(5) # 5 IP addresses

 An array with a few strings in it can be created as follows:

 $myGreetings = "Hello world", "Hello sun", "Hello moon"

 Or it can be created as follows:

 $myGreetings = @("Hello world", "Hello sun", "Hello moon")

 An array may be spread over multiple lines in either the console or a script, which may make it easier to read in a script:

 $myGreetings = @(

 "Hello world"

 "Hello sun"

 "Hello moon"

)

 Elements with different types can be mixed in a single array:

 $myThings = "Hello world", 2, 34.23, (Get-Date)

 Arrays with a type

 An array may be given a type in a similar manner to a variable holding a single value. The difference is that the type name is followed by [], as was the case when creating an empty array of a specific size. For example, each of these is an array type that may appear before a variable name:

 [String[]] # An array of strings

[UInt64[]] # An array of unsigned 64-bit integers

[Xml[]] # An array of XML documents

 If a type is set for the array, more care must be taken as regards assigning values. If a type is declared, PowerShell attempts to convert any value assigned to an array element into that type.

 In this example, $null will become 0 and 3.45 (a double) will become 3 (normal rounding rules apply when converting integers):

 [Int32[]]$myNumbers = 1, 2, $null, 3.45

 The following example shows an error being thrown, as a string cannot be converted into an integer:

 PS> [Int32[]]$myNumbers = 1, 2, $null, "A string"

MetadataError: Cannot convert value "A string" to type "System.Int32". Error: "Input string was not in a correct format."

 Adding elements to an array

 A single item can be added to the end of an array using the assignment by addition operator:

 $myArray = @()

$myArray += "New value"

 The preceding command is equivalent to the following:

 $myArray = $myArray + "New value"

 In the background, a new array is created with one extra element. The content of the existing array is copied, then the value for the new element is assigned. Once complete, the original array, stored in memory, is removed. The larger the array, the less efficient this operation becomes.

 It is generally better practice to avoid explicitly declaring arrays at all; PowerShell can do the work required to create an array. All statements in PowerShell can be assigned, including loops. For example, the following is a common practice:

 $array = @()

foreach ($value in 1..5) {

 $array += [PSCustomObject]@{

 Value = $value

 }

}

 A simpler and more efficient way to write the same statement is shown here:

 $array = foreach ($value in 1..5) {

 [PSCustomObject]@{

 Value = $value

 }

}

 If an array is necessary, and the size of the array might change, a List (System.Collections.Generic.List) is often a better choice. For example, this might be the case if a single loop returns data intended for more than one array. Lists are explored towards the end of this chapter.

 The addition operator can be used to join one array to another, demonstrated as follows:

 $firstArray = 1, 2, 3

$secondArray = 4, 5, 6

$mergedArray = $firstArray + $secondArray

 This addition operation can also be written as follows:

 $mergedArray = @(

 $firstArray

 $secondArray

)

 Using @() around a set of elements or expressions is often the cleanest way to merge values into a single array:

 $firstArray = 1, 2, 3

$mergedArray = @(

 Get-Process

 'someString'

 $firstArray

)

 Selecting elements from an array

 Individual elements from an array may be selected by index. The first and second elements are available using index 0 and 1:

 $myArray = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

$myArray[0]

$myArray[1]

 In a similar manner, array elements can be accessed counting backward from the end. The last element is available using -1 as the index, and the penultimate element using -2 as the index. For example:

 $myArray[-1]

$myArray[-2]

 Ranges of elements may be selected either going forward (starting from 0) or going backward (starting with -1):

 $myArray[2..4]

$myArray[-1..-5]

 More than one range can be selected in a single statement:

 $myArray[0..2 + 6..8 + -1]

 This requires some care. The first part of the index set must be an array for the addition operation to succeed; an array cannot be added to an integer. The expression in square brackets is evaluated first and converted into a single array (of indexes) before any elements are selected from the array:

 PS> $myArray[0 + 6..8 + -1]

InvalidOperation: Method invocation failed because [System.Object[]] does not contain a method named 'op_Addition'.

 The same error would be shown when running the expression within square brackets alone:

 0..2 + 6..8 + -1

 The following modified command shows three different ways to achieve the intended result:

 $myArray[@(0) + 6..8 + -1]

$myArray[0..0 + 6..8 + -1]

$myArray[@(0; 6..8; -1)]

 As well as selecting elements by index, elements may be selected by value in several different ways.

 The IndexOf method may be used to find the position of a value within the array, then the value may be accessed:

 $index = $myArray.IndexOf(5)

$myArray[$index]

 If the value of $index is -1, the value does not exist within the array.

 Comparison operators may be used to select elements from the array:

 $myArray -gt 5

$myArray -lt 3

 Comparisons can be chained together to build more complex expressions provided each part of the expression continues to return an array:

 $myArray -gt 3 -lt 7

 For more complex filtering expressions, Where-Object may be used:

 $myArray | Where-Object { $_ -gt 3 -and $_ -lt 7 }

 The Where method may also be used to filter the array:

 $myArray.Where{ $_ -gt 3 -and $_ -lt 7 }

 The Where method is faster than Where-Object but will raise an error if the variable is not an array.

 Changing element values in an array

 Elements within an array may be changed by assigning a new value to a specific index, for example:

 $myArray = 1, 2, 9, 4, 5

$myArray[2] = 3

 Elements in an array may be changed within a loop. The following example sets all elements in the array to 9:

 $myArray = 1, 2, 3, 4, 5

for ($i = 0; $i -lt $myArray.Count; $i++) {

 $myArray[$i] = 9

}

 Removing elements

 Elements cannot be removed from an array because arrays are immutable. To remove an element, a new array must be created.

 It is possible to appear to remove an element by setting it to null, for example:

 $myArray = 1, 2, 3, 4, 5

$myArray[1] = $null

$myArray

 However, observe that the count or size of the array does not decrease when a value is set to null:

 PS> $myArray.Count

5

 Loops (or pipelines) working on the array will not skip the element with the null value (extra code is needed to guard against the null value):

 $myArray | ForEach-Object { Write-Host $_ }

 The Where-Object command may be used to remove the null value, creating a new array:

 $myArray | Where-Object { $_ } | ForEach-Object { Write-Host $_ }

 Depending on usage, several ways are available to address removal.

 Removing elements by index

 Removing elements based on an index requires the creation of a new array and the omission of the value in the element in that index. In each of the following cases, an array with 100 elements will be used as an example; the element at index 49 (with the value of 50) will be removed:

 $oldArray = 1..100

 The following example uses indexes to access and add everything we want to keep:

 $newArray = $oldArray[0..48] + $oldArray[50..99]

 Using the .NET Array.Copy static method (see Chapter 7, Working with .NET), we have the following:

 $newArray = [Object[]]::new($oldArray.Count - 1)

Before the index

[Array]::Copy(

 $oldArray, # Source

 $newArray, # Destination

 49 # Number of elements to copy

)

After the index

[Array]::Copy(

 $oldArray, # Source

 50, # Copy from index of Source

 $newArray, # Destination

 49, # Copy to index of Destination

 50 # Number of elements to copy

)

 This is the outcome using a for loop:

 $newArray = for ($i = 0; $i -lt $oldArray.Count; $i++) {

 if ($i -ne 49) {

 $oldArray[$i]

 }

}

 Removing elements by value

 Removing an element with a specific value from an array can be achieved in several different ways.

 Starting with an array of 100 elements:

 $oldArray = 1..100

 Comparison operators can be used to create a new array without certain elements:

 $newArray = $oldArray -ne 50

 The Where-Object command may be used to identify and omit elements, such as the element with the value 50. If 50 were to occur more than once, all instances would be omitted:

 $newArray = $oldArray | Where-Object { $_ -ne 50 }

 The index of the element might be identified and removed using the methods explored in removing elements according to the index:

 $index = $oldArray.IndexOf(50)

 If the value of $index returned by the IndexOf method is -1, the value is not present in the array (0 would indicate that it is the first element):

 $index = $oldArray.IndexOf(50)

if ($index -gt -1) {

 $newArray = $oldArray[0..($index - 1)] +

 $oldArray[($index + 1)..99]

}

 Clearing an array

 Finally, an array may be completely emptied by calling the Clear method:

 $newArray = 1, 2, 3, 4, 5

$newArray.Clear()

 Filling variables from arrays

 It is possible to create two (or more) variables when assigning an array:

 $i, $j = 1, 2

 Assigning variables from an array can be useful when splitting a string:

 $firstName, $lastName = "First Last" -split " "

$firstName, $lastName = "First Last".Split(" ")

 If the array is longer than the number of variables, all remaining elements are assigned to the last variable. For example, the k variable will contain 3, 4, and 5, as can be seen as follows:

 $i, $j, $k = 1, 2, 3, 4, 5

 If there are too few elements, the remaining variables will not be assigned a value. In this example, k will be null:

 $i, $j, $k = 1, 2

 Multi-dimensional and jagged arrays

 Given that an array contains objects, an array can therefore also contain other arrays.

 For example, an array that contains other arrays (a multi-dimensional array) might be created as follows:

 $arrayOfArrays = @(

 @(1, 2, 3),

 @(4, 5, 6),

 @(7, 8, 9)

)

 Be careful to ensure that the comma following each of the nested arrays (except the last) is in place. If that comma is missing, the entire structure will be flattened, merging the three inner arrays.

 Elements in the preceding array are accessed by indexing into each array in turn (starting with the outermost). The element with the value 2 is accessible using the following notation:

 PS> $arrayOfArrays[0][1]

2

 This states that we wish to retrieve the first element (which is an array) and the second element of that array.

 The element with the value 6 is accessible using the following:

 PS> $arrayOfArrays[1][2]

6

 Jagged arrays are a specific form of multi-dimensional array. An example of a jagged array is as follows:

 $arrayOfArrays = @(

 @(1, 2),

 @(4, 5, 6, 7, 8, 9),

 @(10, 11, 12)

)

 As in the first example, it is an array containing arrays. Instead of containing inner arrays, which all share the same size (dimension), the inner arrays have no consistent size (hence, they are jagged).

 In this example, the element with the value 9 is accessed as follows:

 PS> $arrayOfArrays[1][5]

9

 Multi-dimensional arrays are rarely used in PowerShell. PowerShell tends to flatten arrays, which can make working with complex array structures difficult.

 Hashtables

 A Hashtable is an associative array or an indexed array. Values in the Hashtable are added with a unique key. Each key has a value associated with it; this is also known as a key-value pair. Keys cannot be duplicated within the Hashtable.

 Hashtables are important in PowerShell. They are used to create custom objects, to pass parameters into commands, to create custom properties using Select-Object, and as the type for values assigned to parameter values of many different commands, among other things.

 The following command may be used to find commands that accept a Hashtable as a parameter type:

 Get-Command -ParameterType Hashtable

 This topic explores creating a Hashtable, selecting elements, enumerating all values in a Hashtable, and adding and removing elements.

 Creating a Hashtable

 An empty Hashtable is created in the same manner as the following:

 $hashtable = @{}

 Alternatively, a Hashtable may be created with specific keys and values:

 $hashtable = @{Key1 = "Value1"; Key2 = "Value2"}

 Elements in a Hashtable may be spread across multiple lines:

 $hashtable = @{

 Key1 = "Value1"

 Key2 = "Value2"

}

 Adding and changing Hashtable elements

 Elements may be explicitly added to a Hashtable using the Add method:

 $hashtable = @{}

$hashtable.Add("Key1", "Value1")

 If the value already exists, using Add generates an error (as shown here):

 PS> $hashtable = @{ Existing = "Value0" }

PS> $hashtable.Add("Existing", "Value1")

MethodInvocationException: Exception calling "Add" with "2" argument(s): "Item has already been added. Key in dictionary: 'Existing' Key being added: 'Existing'"

 The Contains method returns true or false, depending on whether a key is present in $hashtable. This may be used to test for a key before adding:

 $hashtable = @{}

if (-not $hashtable.Contains("Key1")) {

 $hashtable.Add("Key1", "Value1")

}

 Alternatively, two different ways of adding or changing elements are available. The first option uses the key in square brackets:

 $hashtable = @{ Existing = "Old" }

$hashtable["New"] = "New" # Add this

$hashtable["Existing"] = "Updated" # Update this

 The second option uses a period to access the key as if it were a property:

 $hashtable = @{ Existing = "Old" }

$hashtable.New = "New" # Add this

$hashtable.Existing = "Updated" # Update this

 If a value only must be changed if it exists, the Contains method may be used:

 $hashtable = @{ Existing = "Old" }

 if ($hashtable.Contains("Existing")) {

 $hashtable.Existing = "New"

}

 You can use the Contains method to ensure a key is only added if it does not exist:

 $hashtable = @{ Existing = "Old" }

if (-not $hashtable.Contains("New")) {

 $hashtable.New = "New"

}

 Keys cannot be added nor can values be changed while looping through the keys in a Hashtable using the keys property. Doing so changes the underlying structure of the Hashtable, invalidating the iterator used by the loop operation:

 $hashtable = @{

 Key1 = 'Value1'

 Key2 = 'Value2'

}

foreach ($key in $hashtable.Keys) {

 $hashtable[$key] = "NewValue"

}

OperationStopped: Collection was modified; enumeration operation may not execute.

 It is possible to work around this problem by first creating an array of the keys in the Hashtable, as follows:

 $hashtable = @{

 Key1 = 'Value1'

 Key2 = 'Value2'

}

[Object[]]$keys = $hashtable.Keys

foreach ($key in $keys) {

 $hashtable[$key] = "NewValue"

}

 Notice that the highlighted keys variable is declared as an array of objects. Using the Object[] type conversion forces the creation of a new array object based on the values held in KeyCollection. Without this step, the preceding error message would repeat.

 Another approach uses the ForEach-Object to create a new array of the keys:

 $hashtable = @{

 Key1 = 'Value1'

 Key2 = 'Value2'

}

$keys = $hashtable.Keys | ForEach-Object { $_ }

foreach ($key in $keys) {

 $hashtable[$key] = "NewValue"

}

 Selecting elements from a Hashtable

 Individual elements may be selected by key. Two different formats are supported for selecting elements. Square brackets may be used around the key:

 $hashtable["Key1"]

 Or the key name may be used after a period:

 $hashtable.Key1

 The key is not case-sensitive, but it is type-sensitive and does not automatically convert. For instance, consider the following Hashtable:

 $hashtable = @{1 = 'one'}

 The value 1 can be selected if an integer is used as the key, but not if a string is used. In other words, the following works:

 $hashtable.1

$hashtable[1]

 Attempting to use a string to access the value for the key, however, does not work as the key is not a string type:

 $hashtable."1"

$hashtable["1"]

 Enumerating a Hashtable

 A Hashtable can show the information it holds in several ways. Start with the Hashtable:

 $hashtable = @{

 Key1 = 'Value1'

 Key2 = 'Value2'

}

 Keys can be returned using the Keys property of the Hashtable, which returns KeyCollection:

 $hashtable.Keys

 Values can be returned using the Values property, which returns ValueCollection. The key is discarded when using the Values property:

 $hashtable.Values

 A simple loop can be used to retain the association between key and value:

 foreach ($key in $hashtable.Keys) {

 Write-Host "Key: $key Value: $($hashtable[$key])"

}

 Alternatively, you can use the GetEnumerator method to return an array of objects with key and value properties:

 PS> $hashtable.GetEnumerator()

Name Value

---- -----

Key2 Value2

Key1 Value1

 Removing elements from a Hashtable

 Unlike arrays, removing an element from a Hashtable is straightforward. An element can be removed using the Remove method:

 $hashtable = @{ Existing = "Existing" }

$hashtable.Remove("Existing")

 If the requested key does not exist, the command does nothing (and does not throw an error).

 The Remove method cannot be used to modify the Hashtable while looping through the keys in a Hashtable using the Keys property:

 PS> $hashtable = @{

 Key1 = 'Value1'

 Key2 = 'Value2'

}

PS> foreach ($key in $hashtable.Keys) {

 $hashtable.Remove($key)

}

OperationStopped: Collection was modified; enumeration operation may not execute.

 You can use the same method mentioned in the Adding and changing Hashtable elements section.

 Finally, you can empty a Hashtable by calling the Clear method:

 $hashtable = @{one = 1; two = 2; three = 3}

$hashtable.Clear()

 Lists, dictionaries, queues, and stacks

 Arrays and Hashtables are integral to PowerShell and being able to manipulate these is critical. If these simple structures fail to provide an efficient means of working with a set of data, there are advanced alternatives.

 The following .NET collections are discussed:

 	System.Collections.Generic.List

 	System.Collections.Generic.Dictionary

 	System.Collections.Generic.Queue

 	System.Collections.Generic.Stack

 Each of these collections has detailed documentation (for .NET) available on Microsoft Docs:

 https://docs.microsoft.com/dotnet/api/system.collections.generic

 System.Collections.Generic.List

 A list is similar to an array, but with a larger set of features, such as the ability to add elements without copying into a new array. A generic list using the .NET class System.Collections.Generic.List is shown next.

 ArrayList is often used in examples requiring advanced array manipulation in PowerShell. However, ArrayList is older (.NET 2.0) and less efficient (it can use more memory), and cannot be strongly typed, as will be shown when creating a generic list. PowerShell does still make use of ArrayList internally.

 Creating a list

 A generic list must have a type declared. A generic list, in this case a list of strings, is created as follows:

 $list = [System.Collections.Generic.List[String]]::new()

 ArrayList is created in a similar manner. ArrayList cannot have the type declared:

 $arrayList = [System.Collections.ArrayList]::new()

 Once created, ArrayList may be used in much the same way as a generic list.

 Adding elements to the list

 Elements can be added to a list using the Add, AddRange, Insert, and InsertRange methods.

 Add can be used to add new elements to the end of the list:

 $list = [System.Collections.Generic.List[String]]::new()

$list.Add("David")

 AddRange can be used to add an array of new elements to the end of the list:

 $list.AddRange(@("Tim", "Robert"))

 The Insert and InsertRange methods are available to add items elsewhere in the list. For example, an element may be added at the beginning:

 $list.Insert(0, "Sarah")

$list.Insert(2, "Jane")

 Selecting elements from the list

 As with the array, elements may be selected by index:

 $list = [System.Collections.Generic.List[String]]::new()

$list.AddRange([String[]]("Tom", "Richard", "Harry"))

$list[1] # Returns Richard

 The generic list offers a variety of methods that you can use to find elements when the index is not known, such as the following:

 $index = $list.FindIndex({ $args[0] -eq 'Richard' })

 Predicates

 In the preceding example, ScriptBlock is a predicate. Arguments are passed into ScriptBlock and all list items matching the query are returned.

 The predicate is similar in syntax to Where-Object, except $args[0] is used to refer to the item in the list instead of the pipeline variable, $_.

 A param block may be declared for ScriptBlock to assign a more meaningful name to the argument ($args[0]) if desirable.

 Alternatively, you can use the IndexOf and LastIndex methods to find elements. Both methods support additional arguments (as opposed to Array.IndexOf, which only supports a restrictive search for a value) to constrain the search. For example, the search may start at a specific index:

 $list.IndexOf('Harry', 2) # Start at index 2

$list.IndexOf('Richard', 1, 2) # Start at index 1, and 2 elements

 Finally, a generic list offers a BinarySearch (half-interval) search method. This method may dramatically cut the time to search very large, sorted, datasets when compared to a linear search.

 In a binary search, the element in the middle of the list is selected first, and compared to the value. If the value is larger, the first half of the list is discarded, and the element in the middle of the new, smaller, set is selected for comparison. This process repeats (always cutting the list in half) until the value is found (or it runs out of elements to test).

 The Measure-Command command may be used to time the two searches for a number of different values:

 $list = [System.Collections.Generic.List[Int]]@(1..100000000)

[PSCustomObject]@{

 # Linear and Binary are roughly comparable

 'Linear, near start' = Measure-Command {

 $list.IndexOf(24)

 } | ForEach-Object TotalMilliseconds

 'Binary, near start' = Measure-Command {

 $list.BinarySearch(24)

 } | ForEach-Object TotalMilliseconds

 # Binary is more effective

 'Linear, near end' = Measure-Command {

 $list.IndexOf(99767859)

 } | ForEach-Object TotalMilliseconds

 'Binary, near end' = Measure-Command {

 $list.BinarySearch(99767859)

 } | ForEach-Object TotalMilliseconds

}

 The time required will vary between different computers. An example of the result is shown below:

 Linear, near start Binary, near start Linear, near end Binary, near end

------------------ ------------------ ---------------- ----------------

 1.5307 1.4244 44.3841 2.186

 The time taken to execute a binary search remains roughly constant, regardless of the element position. The time taken to execute a linear search increases as every element must be read (in sequence).

 Removing elements from the list

 You can remove elements from a list based on the index or value as shown in the following examples:

 $list = [System.Collections.Generic.List[String]]::new()

$list.AddRange([String[]]("Tom", "Richard", "Harry", "David"))

$list.RemoveAt(1) # By Richard by index

$list.Remove("Richard") # By Richard by value

 All instances of a value may be removed using the RemoveAll method:

 $list.RemoveAll({ $args[0] -eq "David" })

 Changing element values in a list

 Elements within a list may be changed by assigning a new value to a specific index, as in the following example:

 $list = [System.Collections.Generic.List[Int]]::new()

$list.AddRange([Int[]](1, 2, 2, 4))

$list[2] = 3

 System.Collections.Generic.Dictionary

 A dictionary, specifically the .NET class System.Collections.Generic.Dictionary, is similar to a Hashtable. Like a Hashtable, it is a form of associative array.

 Unlike the Hashtable, however, a dictionary implements a type for both the key and the value, which may make it easier to use.

 Creating a dictionary

 A dictionary must declare a type for the key and value when it is created. You can create a dictionary that uses a string for the key and an IP address for the value using any of the following examples:

 $dictionary = New-Object System.Collections.Generic.Dictionary"[String,IPAddress]"

$dictionary = New-Object "System.Collections.Generic.Dictionary[String,IPAddress]"

$dictionary = [System.Collections.Generic.Dictionary[String,IPAddress]]::new()

 Adding and changing elements in a dictionary

 As with the Hashtable, the Add method may be used to add a new value to a dictionary:

 $dictionary.Add("Computer1", "192.168.10.222")

 If the key already exists, using Add will generate an error, as was the case with the Hashtable.

 In a dictionary, the Contains method does not work in PowerShell. When checking for the existence of a key, the ContainsKey method should be used as follows:

 if (-not $dictionary.ContainsKey("Computer2")) {

 $dictionary.Add("Computer2", "192.168.10.13")

}

 The dictionary supports the addition of elements using dot-notation:

 $dictionary.Computer3 = "192.168.10.134"

 The dictionary leverages PowerShell's type conversion for both the key and the value. For example, if a numeric key is used, it is converted into a string. If an IP address is expressed as a string, it will be converted into an IPAddress object.

 For example, consider the addition of the following element:

 $dictionary.Add(1, 20)

 In this case, key 1 is converted into a string, and the value 20 is converted into an IP address. Inspecting the element afterward shows the following:

 PS> $dictionary."1"

Address : 20

AddressFamily : InterNetwork

ScopeId :

IsIPv6Multicast : False

IsIPv6LinkLocal : False

IsIPv6SiteLocal : False

IsIPv6Teredo : False

IsIPv4MappedToIPv6 : False

IPAddressToString : 20.0.0.0

 Selecting elements from a dictionary

 Individual elements may be selected by a key. As with the Hashtable, two different notations are supported:

 $dictionary["Computer1"] # Key reference

$dictionary.Computer1 # Dot-notation

 When using a Hashtable, the type of the key must match the type used when creating the key. With a dictionary, because the key is strongly typed, PowerShell will handle the conversion to an appropriate type.

 The following example uses a number as a string for the key:

 $dictionary = [System.Collections.Generic.Dictionary[String,IPAddress]]::new()

$dictionary.Add("1", "192.168.10.222")

$dictionary.Add("2", "192.168.10.13")

 Each of the following examples can be used to access the value:

 $dictionary."1"

$dictionary[1]

$dictionary["1"]

 Enumerating a dictionary

 You can view the information a dictionary holds in several ways. Start with this dictionary:

 $dictionary = [System.Collections.Generic.Dictionary[String,IPAddress]]::new()

$dictionary.Add("Computer1", "192.168.10.222")

$dictionary.Add("Computer2", "192.168.10.13")

 Keys can be returned using the Keys property of the dictionary, which returns KeyCollection:

 $dictionary.Keys

 Values can be returned using the Values property, which returns ValueCollection. The key is discarded when using the Values property:

 $dictionary.Values

 A simple loop can be used to retain the association between key and value:

 foreach ($key in $dictionary.Keys) {

 Write-Host "Key: $key Value: $($dictionary[$key])"

}

 Removing elements from a dictionary

 An element may be removed from a dictionary using the Remove method:

 $dictionary.Remove("Computer1")

 The Remove method cannot be used to modify the dictionary while looping through the keys in a dictionary using the Keys property.

 System.Collections.Generic.Queue

 A queue is a first-in, first-out array. Elements are added to the end of the queue and taken from the beginning.

 The queue uses the .NET class, System.Collections.Generic.Queue, and must have a type set.

 Creating a queue

 A queue of strings may be created as follows:

 $queue = [System.Collections.Generic.Queue[String]]::new()

 Enumerating the queue

 PowerShell displays the contents of a queue in the same way as it would the contents of an array. It is not possible to access elements of the queue by the index. The ToArray method may be used to convert the queue into an array if required:

 $queue.ToArray()

 The preceding command returns an array of the same type as the queue. That is, if the queue is configured to hold strings, the array will be an array of strings.

 The queue has a Peek method that allows the retrieval of the next element in the queue without it being removed:

 $queue.Peek()

 The Peek method throws an error if the queue is empty (refer to the Removing elements from the queue section).

 Adding elements to the queue

 Elements are added to the end of the queue using the Enqueue method:

 $queue.Enqueue("Tom")

$queue.Enqueue("Richard")

$queue.Enqueue("Harry")

 Removing elements from the queue

 Elements are removed from the start of the queue using the Dequeue method:

 $queue.Dequeue() # This returns Tom.

 If the queue is empty and the Dequeue method is called, an error is thrown, as shown here:

 PS> $queue.Dequeue()

MethodInvocationException: Exception calling "Dequeue" with "0" argument(s): "Queue empty."

 To avoid this, the Count property of the queue may be inspected, for example:

 # Set-up the queue

$queue = New-Object System.Collections.Generic.Queue[String]

"Tom", "Richard", "Harry" | ForEach-Object {

 $queue.Enqueue($_)

}

Dequeue until the queue is empty

while ($queue.Count -gt 0) {

 Write-Host $queue.Dequeue()

}

 System.Collections.Generic.Stack

 A stack is a collection of objects in which objects are accessed in Last-In, First-Out (LIFO) order. Elements are added and removed from the top of the stack.

 The stack uses the .NET class System.Collections.Generic.Stack and must define the type of the objects it contains when it is created.

 Stacks in PowerShell are used by commands such as Push-Location and Pop-Location.

 Creating a stack

 A stack containing strings may be created as follows:

 $stack = [System.Collections.Generic.Stack[String]]::new()

 Enumerating the stack

 PowerShell displays the content of a stack in the same way as it would the content of an array. It isn't possible to index into a stack. The ToArray method may be used to convert the stack into an array if required:

 $stack.ToArray()

 The preceding command returns an array of the same type as the stack. That is, if a stack is configured to hold strings, the array will be an array of strings.

 The stack has a Peek method that allows the retrieval of the top element from the stack without it being removed:

 $stack.Peek()

 The Peek method throws an error if the stack is empty (refer to the Removing elements from the stack section).

 Adding elements to the stack

 Elements may be added to the stack using the Push method:

 $stack.Push("Up the road")

$stack.Push("Over the gate")

$stack.Push("Under the bridge")

 Removing elements from the stack

 Elements may be removed from the stack using the Pop method:

 $stack.Pop() # This returns Under the bridge

 If the stack is empty and the Pop method is called, an error is thrown, as shown here:

 PS> $stack.Pop()

MethodInvocationException: Exception calling "Pop" with "0" argument(s): "Stack empty."

 To avoid this, the Count property of the stack may be inspected, for example:

 # Set-up the stack

$stack = [System.Collections.Generic.Stack[String]]::new()

"Up the road", "Over the gate", "Under the bridge" | ForEach-Object {

 $stack.Push($_)

}

Pop from the stack until the stack is empty

while ($stack.Count -gt 0) {

 Write-Host $stack.Pop()

}

 Summary

 In this chapter, we learned that variables can be created to contain information that is to be used in a function or a script.

 Variable commands are available to interact with variables beyond changing the value, such as setting a description, making a variable in a specific scope, or making a variable private.

 A variable scope affects how variables may be accessed. Variables are created in the local scope by default. Arrays are sets of objects of the same type. Arrays are immutable, and the size of an array cannot change after creation. Adding or removing elements from an array requires the creation of a new array. Hashtables are associative arrays. An element in a Hashtable is accessed using a unique key.

 Lists, stacks, queues, and dictionaries are advanced collections that may be used when a particular behavior is required, or if they offer a desirable performance benefit. Chapter 6, Conditional Statements and Loops, explores branching and looping in PowerShell.

 6

 Conditional Statements and Loops

 Conditional statements and loops are the backbone of any programming or scripting language. The ability to react to a state and choose a path to take or the ability to repeat instructions is vital.

 Each conditional statement or loop creates a branch in a script or piece of code. The branch represents a split in the instruction set. Branches can be conditional, such as one created by an if statement, or unconditional, such as a foreach loop. As the number of branches increases, so does the complexity. The paths through the script spread out in the same manner as the limbs of a tree.

 Statements or lines of code may be executed when certain conditions are met. PowerShell provides if and switch statements for this purpose. Loops allow code to be repeated for a set of elements or until a specific condition is met.

 In this chapter, the following topics are covered:

 	if, else, and elseif

 	switch

 	Loops

 	break and continue

 	Implicit Boolean

 Let's look at if statements first.

 if, else, and elseif

 An if statement is used to execute an action when a condition is met. The following shows the syntax for an if statement; the statements enclosed by the if statement executes if the condition evaluates to true:

 if (<condition>) {

 <statements>

}

 The else statement is optional and runs if all previous conditions evaluate to false:

 if (<first-condition>) {

 <first-statements>

} else {

 <second-statements>

}

 The elseif statement allows several conditions to be tested in order:

 if (<first-condition>) {

 <first-statements>

} elseif (<second-condition>) {

 <second-statements>

} elseif (<last-condition>) {

 <last-statements>

}

 The else statement may be added after any number of elseif statements.

 Execution of a block of conditions stops as soon as a single condition evaluates to true. For example, both the first and second condition would evaluate to true, but only the first executes:

 $value = 1

if ($value -eq 1) {

 Write-Host 'value is 1'

} elseif ($value -lt 10) {

 Write-Host 'value is less than 10'

}

 If the if statement structure becomes too complicated, a switch statement might be used instead. Switch is explored later in this chapter.

 Assignment within if statements

 Values may be assigned to variables inside if statements as shown here:

 if ($i = 1) {

 Write-Host "The variable i is $i"

}

 The condition will be true if the value of the variable evaluates to true.

 This is most used when testing for the existence of a value in a variable, for example:

 if ($interface = Get-NetAdapter | Where-Object Status -eq 'Up') {

 Write-Host "$($interface.Name) is up"

}

 In the previous example, the statement to the right of the assignment operator (=) is executed, assigned to the $interface variable, and then the value in the variable is treated as an implicit Boolean.

 Supporting this type of assignment means PowerShell does not alert the author of a script if an assignment operation is used instead of a comparison. This is most often a problem when the assignment was intended instead to be a comparison.

 switch

 A switch statement executes statements where a case evaluates to true. The case can be a number, a string, or any other value. Switch is similar in some respects to an if, elseif, or else statement. The key difference is that, in switch, more than one condition can match the value being tested.

 A switch statement uses the following generalized notation:

 switch [-regex|-wildcard|-exact][-casesensitive] (<value>) {

 <case> { <statements> }

 <case> { <statements> }

 default { <statements> }

}

 The value is the "subject" of the switch statement; it is compared to each of the cases in turn.

 The casesensitive parameter applies when the cases are strings.

 Each case is evaluated in turn and, by default, any matching cases will execute. The default case is optional and will only be executed if no other case matches as shown here:

 $value = 2

switch ($value) {

 1 { Write-Host 'value is 1' }

 default { Write-Host 'No conditions matched' }

}

 Within the switch statement, the variable $_ or $PSItem may be used to refer to the value. If switch is enclosed in ForEach-Object, for example, the value of $_ may differ from the value ForEach-Object holds in the process block.

 switch and arrays

 The switch statement can be used on both scalar (single) values and arrays of values. If the value is an array, then each case will be tested against each element of the array:

 $arrayOfValues = 1..3

switch ($arrayOfValues) {

 1 { 'One' }

 2 { 'Two' }

 3 { 'Three' }

}

 As switch is technically a loop, it does not execute at all if given an empty array (such as @()). In the following example, an empty array is the value. As the value is empty, and as switch is a loop, none of the cases run (including default):

 switch (@()) {

 default { 'this default case will not run' }

}

 switch, like other loops, executes if an explicit $null value is used. For example:

 switch ($null) {

 default { 'this default case will run' }

}

 The ability to act on an array allows switch to act on file content.

 switch and files

 The switch statement can also be used to work on the content of a file using the following notation:

 switch [-regex|-wildcard][-casesensitive] -File <Name> {

 <condition> { <statements> }

 <condition> { <statements> }

}

 The File parameter can be used to select from a text file (line by line); the content of the file is read as an array.

 wildcard and regex

 The wildcard and regex parameters are used when matching strings.

 The wildcard parameter allows the use of the characters ? (any single character) and * (any string of characters) in a condition, for example:

 switch -Wildcard ('cat') {

 'c*' { Write-Host 'The word begins with c' }

 '???' { Write-Host 'The word is 3 characters long' }

 '*t' { Write-Host 'The word ends with t' }

}

 The Regex parameter allows for the use of regular expressions to perform comparisons (Chapter 9, Regular Expressions, explains this syntax in greater detail), for example:

 switch -Regex ('cat') {

 '^c' { Write-Host 'The word begins with c' }

 '^[a-z]{3}$' { Write-Host 'The word is 3 characters long' }

 't$' { Write-Host 'The word ends with t' }

}

 The switch statement also allows the cases to be defined as a script block.

 Script block cases

 switch allows a script block to be used in place of the simpler direct comparison cases used in the preceding sections. The script block is executed, and the result determines if the case is matched. For example:

 switch (Get-Date) {

 { $_ -is [DateTime] } { Write-Host 'This is a DateTime type' }

 { $_.Year -ge 2020 } { Write-Host 'It is 2020 or later' }

}

 Script block cases like those used above may be mixed with other values. The following example uses a single ScriptBlock expression as well as a comparison with the value 5:

 $Value = 5

switch ($Value) {

 { $_ -is [Int] } { Write-Host 'This is a Int32 type' }

 5 { Write-Host 'The value is five' }

}

 Expressions like the preceding example might replace a more complex if-elseif structure or they may be used to perform more complex comparison combinations.

 For example, shared code might be established to use with more than one case:

 function Set-FileState {

 param (

 [Parameter(Mandatory)]

 [ValidateSet('Update', 'Create', 'Delete')]

 [string]$Action

)

 $params = @{

 Path = '~\test.txt'

 }

 switch ($Action) {

 { $_ -in 'Update', 'Create' } {

 $commonParams['Value'] = 'File content'

 }

 'Update' { Set-Content @params }

 'Create' { New-Item @params -ItemType File }

 'Delete' { Remove-Item @params }

 }

}

Set-FileState -Action Update

 Inside a switch statement, $_ is the value that is being tested. It is possible to re-assign the value of $_ in one case, allowing a second case (or any other cases) to be applied:

 function Set-FileState {

 param (

 [Parameter(Mandatory)]

 [ValidateSet('Update', 'Create', 'Delete')]

 [string]$Action

)

 $params = @{

 Path = '~\test.txt'

 ItemType = 'File'

 Value = 'File content'

 }

 switch ($Action) {

 { $_ -in 'Delete', 'Update' } {

 if (Test-Path -Path $params.Path) {

 Remove-Item -Path $params.Path

 }

 if ($_ -eq 'Update') {

 $_ = 'Create'

 }

 }

 'Create' {

 New-Item @params

 }

 }

}

Set-FileState -Action Update

 The switch statement will run every case that matches the value in turn until the last is reached. The break and continue keywords may be used to affect how a switch statement ends.

 Switch, break, and continue

 By default, switch executes every case where the case evaluates as true when compared with the value.

 The break and continue keywords may be used within the switch statement to control when it should stop testing a value. break ends the switch statement; continue, when the value is an array, continues to the next element in the array.

 break is often most appropriate if the value is a scalar, and continue when the value is an array. However, either may be used as needed.

 The switch statement will not stop testing conditions unless the break keyword is used, for example:

 $value = 1

switch ($value) {

 1 { Write-Host 'value is 1' }

 1 { Write-Host 'value is still 1' }

}

 In the following example, where switch is acting on an array, both statements will execute:

 switch (1, 2) {

 1 { Write-Host 'Equals 1' }

 2 { Write-Host 'Equals 2' }

}

 If the break keyword is included, as shown here, only the first executes then the switch statement stops:

 switch (1, 2) {

 1 { Write-Host 'Equals 1'; break }

 2 { Write-Host 'Equals 2' }

}

 The first example in this section has two cases that match the value 1. If continue is used, the second matching statement is skipped, and switch continues to the next element in the array.

 switch (1, 2) {

 1 { Write-Host 'Equals 1'; continue }

 1 { Write-Host 'value is still 1' }

 2 { Write-Host 'Equals 2' }

}

 Finally, break and continue can be mixed if necessary. In the following example, the condition for the value 3 will never be reached if the array contains the value 2.

 switch (1, 2, 3) {

 1 { Write-Host 'One'; continue }

 1 { Write-Host 'One again' }

 2 { Write-Host 'Two'; break }

 3 { Write-Host 'Three' }

}

 The switch statement is incredibly flexible and allows relatively complex condition structures to be described in a concise manner.

 PowerShell has several other loop keywords that may be used to repeat statements.

 Loops

 Loops may be used to iterate through collections, performing an operation against each element in the collection, or to repeat an operation (or series of operations) until a condition is met.

 The following loops will be demonstrated in this section:

 	foreach

 	for

 	do

 	while

 The foreach loop is perhaps the most common of these loops.

 Foreach loop

 The foreach loop executes against each element of a collection using the following notation:

 foreach (<element> in <collection>) {

 <statements>

}

 For example, the foreach loop may be used to iterate through each of the processes returned by Get-Process:

 foreach ($process in Get-Process) {

 Write-Host $process.Name

}

 If the collection is $null or empty, the body of the loop will not execute.

 foreach and foreach

 PowerShell comes with the alias foreach for the ForEach-Object command. When this alias acts depends on context.

 If foreach is first in a statement, then the loop keyword is used.

 foreach ($value in $array) { }

 If foreach is placed after a pipe then the alias is used, the ForEach-Object (foreach) is used.

 $array | foreach { }

 Because this can cause confusion, it is rarely a good idea to use the foreach alias.

 for loop

 The for loop is typically used to step through a collection using the following notation:

 for (<initial>; <condition>; <repeat>){

 <body-statements>

}

 <initial> runs before the loop starts and is normally used to set the initial state, normally the variables used within the loop.

 The loop continues to run as long as <condition> evaluates to true.

 The <repeat> block is executed after each iteration of the loop.

 The following example shows the most common use of the for loop:

 $processes = Get-Process

for ($i = 0; $i -lt $processes.Count; $i++) {

 Write-Host $processes[$i].Name

}

 The for loop provides a significant degree of control over the loop and is useful where the increment or the actions inside the loop need to be completed in an order other than a simple ascending order. The examples that follow show some of the possible ways in which the for loop can be used.

 For example, you can use the <repeat> criteria to execute the body for every third element:

 for ($i = 0; $i -lt $processes.Count; $i += 3) {

 Write-Host $processes[$i].Name

}

 Or you can set the <initial> parameters to start at the end and work toward the beginning of an array, for example:

 for ($i = $processes.Count - 1; $i -ge 0; $i--) {

 Write-Host $processes[$i].Name

}

 As the body of the loop in the preceding example has access to the index, it can easily access elements adjacent to the current element. The following example reads two characters at a time from $encodedString:

 $encodedString = '68656C6C6F20776F726C64'

[char[]]$characters = for ($i = 0; $i -lt $encodedString.Length; $i += 2) {

 $hex = '0x{0}{1}' -f @(

 $encodedString[$i]

 $encodedString[$i + 1]

)

 1 * $hex

}

[string]::new($characters)

 Running the preceding example will allow PowerShell to convert each pair of characters into a hexadecimal number based on $i incrementing two at a time. The result of the preceding loop is a single string.

 Each element in the for loop is optional; the following loop only ends because the body contains break:

 for (;;) {

 break

}

 Any of the three elements, initial, condition, and repeat may be included individually or in any combination to describe how the loop should act.

 The for loop can also act on more than one variable at a time although it is incredibly rare to find this used in practice. In the following example, two variables are given an initial state, and two variables are incremented after each iteration of the loop:

 for (($i = 0), ($j = 0); $i -le 10 ; $i++, ($j += 2)) {

 Write-Host "$i :: $j"

}

 The preceding condition only tests the state of one variable in the preceding example, but a more complex expression might have been used, for example:

 $i -le 10 -and $j -le 20

 The preceding example works because the different elements of the for loop, initial, condition, and repeat are arbitrary blocks of code.

 do until and do while loops

 do until and do while each execute the body of the loop at least once, as the condition test is at the end of the loop statement. Loops based on do until will exit when the condition evaluates to true; loops based on do while will exit when the condition evaluates to false.

 do loops are written using the following notation:

 do {

 <body-statements>

} <until | while> (<condition>)

 do until is suited to exit conditions that are expected to be positive. Using until avoids the need to test for a false value in the condition. For example, a script might wait for a computer to respond to a ping:

 do {

 Write-Host "Waiting for boot"

 Start-Sleep -Seconds 5

} until (Test-Connection 'SomeComputer' -Quiet -Count 1)

 The previous example can be written using do while, but the condition is slightly more complex and may be harder to read:

 do {

 Write-Host "Waiting for boot"

 Start-Sleep -Seconds 5

} while (-not (Test-Connection 'SomeComputer' -Quiet -Count 1))

 The do while loop is more suitable for exit conditions that are negative. For example, a loop might wait for a remote computer to stop responding to a ping:

 do {

 Write-Host "Waiting for shutdown"

 Start-Sleep -Seconds 5

} while (Test-Connection 'SomeComputer' -Quiet -Count 1)

 While loop

 As the condition for a while loop comes first, the body of the loop will only execute if the condition evaluates to true:

 while (<condition>) {

 <body-statements>

}

 A while loop may be used to wait for something to happen. In the following example, the loop continues until a file exists:

 while (-not (Test-Path $env:TEMP\test.txt -PathType Leaf)) {

 Start-Sleep -Seconds 10

}

 Loops, break, and continue

 The break keyword can be used to end a loop early. The loop in the following example would continue until the value of $i is 20. break is used to stop the loop when $i reaches 10:

 for ($i = 0; $i -lt 20; $i += 2) {

 Write-Host $i

 if ($i -eq 10) {

 break # Stop this loop

 }

}

 The break keyword acts on the loop it is nested inside. In the following example, the do loop breaks early—when the variable $i is less than or equal to 2 and variable $k is greater than or equal to 3:

 $i = 1 # Initial state for i

do {

 Write-Host "i: $i"

 $k = 1 # Reset k

 while ($k -lt 5) {

 Write-Host " k: $k"

 $k++ # Increment k

 if ($i -le 2 -and $k -ge 3) {

 break

 }

 }

 $i++ # Increment i

} while ($i -le 3)

 The output of the loop is:

 i: 1

 k: 1

 k: 2

i: 2

 k: 1

 k: 2

i: 3

 k: 1

 k: 2

 k: 3

 k: 4

 The continue keyword may be used to move on to the next iteration of a loop immediately. For example, the following loop executes a subset of the loop body when the value of the variable $i variable is less than 2:

 for ($i = 0; $i -le 5; $i++) {

 Write-Host $i

 if ($i -lt 2) {

 continue # Continue to the next iteration

 }

 Write-Host "Remainder when $i is divided by 2 is $($i % 2)"

}

 Break and continue outside loops

 The break and continue keywords should not be used except within a loop or a switch statement. If break is used outside a loop PowerShell will look through any parent scopes (to Global scope) until it finds a loop to stop or runs out of scopes to search.

 In the following example, break is erroneously used to end a function early.

 function Test-Value {

 [CmdletBinding()]

 param (

 [int]$Value

)

 if ($Value -eq 7) {

 break

 }

 $true

}

 A casual test may suggest that break is only stopping the function, and everything is working as it should. However, if the function is used within a loop, break will affect that loop. This happens no matter how many scopes (or other functions) there are between the scope below and the function's scope.

 foreach ($value in 1..10) {

 Write-Verbose "Working on $value" -Verbose

 if ($value -gt 5) {

 if (Test-Value $value) {

 Write-Host "$value is OK"

 }

 }

}

 The script should repeat the Write-Host statement for 6, 8, 9, and 10. However, because break is used in the function, the foreach loop stops as soon as it reaches 7.

 The continue keyword has the same problem although this will continue to the next iteration of the loop in the parent scope instead of terminating the loop.

 Return and exit

 The return and exit keywords are also the subject of misuse seen with break.

 The return keyword can be used to end a ScriptBlock early. For example, it might be used in place of continue inside the Process argument of ForEach-Object as shown here.

 1..10 | ForEach-Object {

 if ($_ -lt 5) { return }

 $_

}

 The exit keyword, when used in a script, will end the script immediately. But when exit is used in a module or function, it will close the PowerShell session. The return keyword is a safer choice when the intent is to end a script or function early.

 If break and continue are used inside a nested loop (a loop within a loop), a specific loop can be targeted by creating and using a label for a loop.

 Loops and labels

 In PowerShell, a loop can be given a label. The label may be used with break and continue to define a specific loop to break from or continue to.

 The label is written before the loop keyword (for, while, do, or foreach) and is preceded by a colon character. For example:

 :ThisIsALabel foreach ($value in 1..10) {

 $value

}

 The label may be placed directly before the loop keyword or on the line above. White space may appear between the label and the loop keyword.

 The label is used with either break or continue and can be useful when one loop is nested inside another. The label name is written after the break or continue keyword, and the colon should be excluded.

 :outerLoop for ($i = 1; $i -le 5; $i++) {

 :innerLoop foreach ($value in 1..5) {

 Write-Host "$i :: $value"

 if ($value -eq $i) {

 continue outerLoop

 }

 }

}

 The break may be used in a similar manner to end a labeled loop.

 Implicit Boolean

 A value that is not Boolean but is tested as if it were true or false is an implicit Boolean. For example, the following if statement tests the output from a command:

 if (Get-ChildItem c:\users\a*) {

 # If statement body

}

 The condition evaluates as true when the Get-ChildItem command finds one or more files or folders. The condition evaluates as false when no files or folders are found.

 An explicit version of the same comparison is shown here:

 if ($null -ne (Get-ChildItem c:\users\c*)) {

 # If statement body

}

 The previous explicit statement is clearly more complex and more difficult to read.

 A condition with no comparison operator implicitly evaluates to false if it is any of the following:

 	$null

 	An empty string

 	An empty array

 	The numeric value 0

 A variable containing a single object, or an array containing one or more elements, and so on evaluate to true.

 Summary

 This chapter explored the different conditional and looping statements available in PowerShell.

 The if statement allows statements to be run when a condition is met and may be extended to test several conditions with elseif.

 The switch statement has similarities with if, a comparison of one value against another. However, switch can test many individual cases expressed in a concise manner, allows more than one case to apply to a value, and can operate on an array.

 Looping is a vital part of any programming language and PowerShell is no exception. The foreach loop is perhaps the most used, allowing repeated code to be enclosed and executed against several objects. The foreach loop keyword can often be replaced with the ForEach-Object command (or vice versa) depending on circumstances, but the two should not be confused.

 The for loops are more complex but offer a great deal of flexibility for any operation based on a numeric sequence. The while and do loops can be used to carry on working until a condition is met, for example, waiting for a timeout, or an item is created.

 The next chapter explores how .NET Framework (and .NET Core) are used in PowerShell.

 7

 Working with .NET

 Microsoft .NET is an extensive library of APIs (Application Program Interfaces, or pre-created code) that can be used by developers when writing applications, or scripters when writing scripts. Microsoft has created several different versions of .NET over the years starting with .NET Framework 1.0 released in 2002. .NET Framework is limited to the Windows operating system.

 Windows PowerShell is built using .NET Framework. The .NET Framework version depends on the local installation and the PowerShell version. PowerShell 5.1 was built using .NET 4.5 and can make use of .NET 4.8 if it is installed: https://docs.microsoft.com/dotnet/api/?view=netframework-4.8.

 In 2016, Microsoft released .NET Core, a release of .NET that could be run across different platforms, including Windows, Linux distributions, and macOS.

 PowerShell 6 and PowerShell 7.0 were built using .NET Core, that is, .NET Core 3.1 for PowerShell 7.0. PowerShell 7.0 can therefore make use of many of the APIs in .NET Core 3.1: https://docs.microsoft.com/dotnet/api/?view=netcore-3.1.

 In November 2020, Microsoft released .NET 5. .NET 5 extends on .NET Core. "Core" was removed from the name to indicate a merging of the two distinct releases of .NET. Going forward there is no more .NET Framework (Windows only) and .NET Core (cross-platform); there is just .NET, and that is cross-platform.

 PowerShell 7.1 was built using .NET 5 and can make use of the APIs: https://docs.microsoft.com/dotnet/api/?view=net-5.0.

 The ability to consume .NET APIs adds a tremendous amount of flexibility to PowerShell over and above the commands provided by PowerShell itself or any modules that can be installed.

 The concept of working with objects was introduced in Chapter 3, Working with Objects in PowerShell. This chapter extends on working with objects, moving from objects created by commands to objects created from .NET classes.

 Working directly with .NET is important because as a PowerShell developer you do not want to be limited to the things that have been turned into neat little commands. Being able to directly use these types opens the possibility of using third-party assemblies, such as those on nuget.org: https://www.nuget.org/packages.

 It is important to understand that .NET is vast; it is not possible to cover everything about .NET in a single chapter. This chapter aims to show how .NET may be used within PowerShell based on the Microsoft Docs references: https://docs.microsoft.com/dotnet/api/?view=netcore-3.1.

 The goal is therefore not to learn everything about .NET, but to learn enough know-how to learn more.

 This chapter covers the following topics:

 	Assemblies

 	Types

 	Enumerations

 	Classes

 	Namespaces

 	The using keyword

 	Type accelerators

 	Members

 	Fluent interfaces

 	Reflection in PowerShell

 Assemblies are the starting point; they contain the types that can be used in PowerShell.

 Assemblies

 An assembly is a collection of types and any other supporting resources. .NET objects are implemented within assemblies. An assembly may be static (based on a file) or dynamic (created in memory).

 The assembly type load locations can be seen by exploring the Assembly property of the type. For example, the String type is loaded from System.Private.CoreLib.dll in PowerShell 7:

 PS> [System.String].Assembly.Location

C:\Program Files\PowerShell\7\System.Private.CoreLib.dll

 In PowerShell 7, the assemblies that are loaded by default or those that can be loaded by name are in the $PSHome directory.

 You can view the list of currently loaded assemblies in a PowerShell session using the following statement:

 [System.AppDomain]::CurrentDomain.GetAssemblies()

 The list can be quite extensive and can grow as different modules (which might depend on other .NET types) are loaded. The first few lines are shown here:

 GAC Version Location

--- ------- --------

False v4.0.30319 C:\Program Files\PowerShell\7\System.Private.CoreLib.dll

False v4.0.30319 C:\Program Files\PowerShell\7\pwsh.dll

False v4.0.30319 C:\Program Files\PowerShell\7\System.Runtime.dll

False v4.0.30319 C:\Program Files\PowerShell\7\Microsoft.PowerShell.Co...

False v4.0.30319 C:\Program Files\PowerShell\7\System.Management.Autom...

False v4.0.30319 C:\Program Files\PowerShell\7\System.Threading.Thread...

False v4.0.30319 C:\Program Files\PowerShell\7\System.Runtime.InteropS...

False v4.0.30319 C:\Program Files\PowerShell\7\System.Threading.dll

 You can use the ClassExplorer module from the PowerShell Gallery to simplify the previous command:

 Install-Module ClassExplorer

Get-Assembly

 Assemblies can be explicitly loaded with the Add-Type command. PowerShell 7 includes the System.Windows.Forms.dll file in the $PSHome folder but will only load it if told to. The DLL is used to write some graphical user interfaces. You can therefore load it using the name alone (instead of a full path to the DLL):

 Add-Type -AssemblyName System.Windows.Forms

 Once an assembly, and the types it contains, have been loaded into a session, they cannot be unloaded without completely restarting the PowerShell session. This might affect an upgrade to an existing module based on a DLL; PowerShell cannot unload the DLL and load a newer version. When a DLL is in use by an application, it is locked; attempting to delete the DLL file would fail.

 Much of PowerShell itself is implemented in the System.Management.Automation DLL. You can view details of the DLL using the following statement:

 [System.Management.Automation.PowerShell].Assembly

 In this statement, the PowerShell type is used to get information about the System.Management.Automation assembly. The PowerShell type will be used in Chapter 15, Asynchronous Processing.

 Any other type in the same assembly may be used to get the same Assembly property. The PowerShell type could be replaced with any other type implemented as part of PowerShell itself:

 [System.Management.Automation.PSCredential].Assembly

[System.Management.Automation.PSObject].Assembly

 In Windows PowerShell, assemblies are often loaded from the Global Assembly Cache (GAC). PowerShell 7 (and other .NET Core applications) cannot use the GAC, which is why the GAC property in each of the assemblies in use by PowerShell 7 is False.

 About the Global Assembly Cache

 In Windows PowerShell, most types exist in DLL files stored in %SystemRoot%\Assembly. This folder stores what is known as the Global Assembly Cache (GAC). The DLL files registered here can be used by any .NET Framework application on the computer. Each DLL may be used by name, rather than an application needing to know the exact path to a DLL.

 You can use the Gac module, in the PowerShell Gallery, to list assemblies. The versions of an assembly in the GAC will vary depending on the installed versions of .NET Framework (and any other installed components, such as Software Development Kits or SDKs):

 PS> Install-Module Gac -Scope CurrentUser

PS> Get-GacAssembly System.Windows.Forms

Name Version Culture PublicKeyToken PrArch

---- ------- ------- -------------- ------

System.Windows.Forms 2.0.0.0 b77a5c561934e089 MSIL

System.Windows.Forms 1.0.5000.0 b77a5c561934e089 None

System.Windows.Forms 4.0.0.0 b77a5c561934e089 MSIL

 If a specific version is required, you can use the full name of the assembly as it uniquely identifies the assembly:

 Add-Type -AssemblyName 'System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'

 You can use the Gac module to show the FullName value used in the previous code. The values displayed depend on the installed versions of .NET Framework:

 PS> Get-GacAssembly System.Windows.Forms | Select-Object FullName

FullName

System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

System.Windows.Forms, Version=1.0.5000.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

System.Windows.Forms, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 An assembly typically contains several different types.

 Types

 A type is used to represent the generalized functionality of an object. This description is vague, but a .NET type can be used to describe anything; it is hard to be more specific. To use this book as an example, it could have several types, including the following:

 	PowerShellBook

 	TextBook

 	Book

 Each of these types describes how an object can behave. The type does not describe how this book came to be, or whether it will do anything (on its own) to help create one.

 In PowerShell, types are written between square brackets. The [System.AppDomain] and [System.Management.Automation.PowerShell] statements, used when discussing previous assemblies, are types.

 The type of an object can be revealed by the Get-Member command (the following output is truncated):

 PS> 1 | Get-Member

 TypeName: System.Int32

Name MemberType Definition

---- ---------- ----------

CompareTo Method int CompareTo(System.Object value), int ...

Equals Method bool Equals(System.Object obj), bool Equ...

GetHashCode Method int GetHashCode()

 You can also use the GetType method, for example, by using the method on a variable:

 PS> $variable = 1

PS> $variable.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

 Methods are explored later in this chapter.

 Type descriptions are objects in PowerShell

 [System.AppDomain] is a type, but the syntax used to describe the type is itself an object. The object has properties and methods and a type of its own (RuntimeType).

 This can be seen by running the following command:

 [System.AppDomain].GetType()

 You can create types using several different keywords, including enum, struct, interface, and class. struct and interface types are beyond the scope of this chapter.

 Enumerations

 An enumeration is a specialized type that is used to express a list of constants. Enumerations are used throughout .NET and PowerShell.

 PowerShell itself makes use of enumerations for many purposes. For example, the possible values for the $VerbosePreference variable are described in an enumeration:

 PS> $VerbosePreference.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True ActionPreference System.Enum

 Notice that the BaseType is System.Enum, indicating that this type is an enumeration.

 The possible values for an enumeration can be listed in several different ways. The most convenient of these is to use the GetEnumValues() method on the enumeration type:

 PS> $VerbosePreference.GetType().GetEnumValues()

SilentlyContinue

Stop

Continue

Inquire

Ignore

Suspend

Break

 Enumerations are relatively simple types. They contain a list of constants that you can use in your code. A class is more complex.

 Classes

 A class is a set of instructions that dictates how a specific instance of an object behaves, including how it can be created and what it can do. A class is, in a sense, a recipe.

 In the case of this book, a class might include details of authoring, editorial processes, and publication steps. These steps are, hopefully, invisible to anyone reading this book; they are part of the internal implementation of the class. Following these steps will produce an instance of the PowerShellBook object.

 Once a class has been compiled, it is used as a type. The members of the class are used to interact with the object. Members are explored later in this chapter.

 Classes (and types) are arranged and categorized into namespaces.

 Namespaces

 A namespace is used to organize types into a hierarchy, grouping types with related functionality together. A namespace can be considered like a folder in a file system.

 PowerShell is for the most part implemented in the System.Management.Automation namespace. This namespace has associated documentation: https://docs.microsoft.com/dotnet/api/system.management.automation?view=powershellsdk-7.0.0.

 Similarly, types used to work with the filesystem are grouped together in the System.IO namespace: https://docs.microsoft.com/dotnet/api/system.io.

 For the following given type name, the namespace is everything before the final label. The namespace value is accessible as a property of the type:

 PS> [System.IO.File].Namespace

System.IO

 In PowerShell, the System namespace is implicit. The System.AppDomain type was used at the start of the chapter to show which assemblies PowerShell is currently using. This can be shortened to:

 [AppDomain]::CurrentDomain.GetAssemblies()

 The same applies to types with longer names, such as System.Management.Automation.PowerShell, which can be shortened to:

 [Management.Automation.PowerShell].Assembly

 PowerShell automatically searches the System namespace for these types. The using keyword can be used to look up types in longer namespaces.

 The using keyword

 The using keyword simplifies the use of namespaces and can be used to load assemblies or PowerShell modules. The using keyword was introduced with PowerShell 5.0.

 You can use the using keyword in a script, a module, or the console. In a script, the using keyword can only be preceded by comments.

 The using module statement is used to access PowerShell classes created within a PowerShell module. The using module statement is explored in Chapter 19, Classes and Enumerations.

 In the context of working with .NET, namespaces and assemblies are of interest.

 Using namespaces

 The using namespace statement instructs PowerShell to look for any type names used in an additional namespace. For example, by default, attempting to use System.IO.File without a full name will result in an error:

 PS> [File]

InvalidOperation: Unable to find type [File].

 PowerShell looked for the type in the System namespace and did not find it.

 If using namespace System.IO is added, first PowerShell will search the System.IO namespace for the type (in addition to the top-level namespace System):

 PS> using namespace System.IO

PS> [File]

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False File System.Object

 In the console, PowerShell only recognizes the last using namespace statement that was entered. In the following example, the first using namespace statement is replaced by the second when typed into the console.

 using namespace System.IO

using namespace System.Data.SqlClient

 PowerShell will be able to find the type System.Data.SqlClient.SqlConnection by name only as the following code shows:

 PS> [SqlConnection]

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False SqlConnection System.Data.Common.DbConnection

 But PowerShell will fail to find the [File] type again because the previous using namespace statement is no longer valid:

 PS> [File]

InvalidOperation: Unable to find type [File].

 A script file allows multiple using namespace statements, which are processed when the script is parsed. In the console, it is only possible to have more than one using namespace statement if they are separated by a semi-colon:

 using namespace System.IO; using namespace System.Data.SqlClient

 After which, PowerShell will search System.Data.SqlClient, System.IO, and System when a type is entered by name only.

 The namespace value used with a using namespace statement does not have to exist and PowerShell does not attempt to validate the value. This means that an assembly that implements the types in a namespace can be loaded after the using namespace statement.

 For example, if a new PowerShell session is started and the System.Windows.Forms DLL has not yet loaded, the following commands can be executed and PowerShell will find types by name from the loaded assembly:

 PS> using namespace System.Windows.Forms

PS> Add-Type -AssemblyName System.Windows.Forms

PS> [Button]

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False Button System.Windows.Forms.ButtonBase

 It is possible to load assemblies (before or after using namespace) with the using assembly statement.

 Using assemblies

 The using assembly statement is used to load assemblies into the PowerShell session.

 In PowerShell 7, using assembly can only load assemblies using a path (full or relative). In Windows PowerShell, assemblies can either be loaded using a path or from the GAC.

 For example, you can load the System.Windows.Forms assembly in Windows PowerShell with the following command:

 using assembly System.Windows.Forms

 In PowerShell 7, you have to use the full path. The path would have to be written in full as variables are not permitted in the statement:

 using assembly 'C:\Program Files\PowerShell\7\System.Windows.Forms.dll'

 PowerShell 7 may only be able to load by name in the future, but a GitHub issue about this has been open for 2 years.

 PowerShell allows you to run the using assembly statement any number of times in a script, and more than one assembly can be loaded in a single script.

 Before using namespace became available with PowerShell 5, the only way to shorten a type name was to use a type accelerator.

 Type accelerators

 A type accelerator is an alias for a type. At the beginning of this chapter, the System.Management.Automation.PowerShell type was used; this type has an accelerator available. The accelerator name is simply PowerShell. The accelerator allows the following to be used:

 [PowerShell].Assembly

 Another commonly used example is the ADSI accelerator. This represents the System.DirectoryServices.DirectoryEntry type. This means that the following two commands are equivalent:

 [System.DirectoryServices.DirectoryEntry]"WinNT://$env:COMPUTERNAME"

[ADSI]"WinNT://$env:COMPUTERNAME"

 The full type name behind a type accelerator can be seen using the FullName property:

 PS> [ADSI].FullName

System.DirectoryServices.DirectoryEntry

 PowerShell includes a lot of type accelerators; these accelerators are documented in about_Type_Accelerators:

 Get-Help about_Type_Accelerators

 Types have members; the members available depend on the type. Types derived from classes are likely to have several different members, including constructors, properties, and methods.

 Members

 All types have members. Members represent data, or dictate the behavior of the object represented by a type.

 In .NET, the members are described in the C Sharp (C#) programming guide on Microsoft Docs: https://docs.microsoft.com/dotnet/csharp/programming-guide/classes-and-structs/members.

 PowerShell also adds members; these member types are also described on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.management.automation.psmembertypes.

 This section focuses on a small number of members used when working with .NET types:

 	Constructors

 	Methods

 	Properties

 The Event member is explored in Chapter 15, Asynchronous Processing.

 The ScriptProperty and ScriptMethod property types are specific to PowerShell and may be added with the Add-Member command. These member types are outside of the scope of this chapter.

 Constructors are one possible way of creating an instance of a type.

 Constructors

 A constructor is used to create an instance of a type. For example, the System.Text.StringBuilder type can be used to build complex strings.

 The StringBuilder class is documented on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.text.stringbuilder.

 The StringBuilder Constructors section of the StringBuilder class documentation has several constructors as shown in Figure 7.1:

 [image:]

 Figure 7.1: Constructors for StringBuilder

 Each constructor has a different list of arguments. These are known as overloads, where one member has different possible sets of arguments. The class distinguishes between the overloads to call based on the number and types of the arguments supplied.

 In PowerShell, there are two different ways to use a constructor. The New-Object command can be used:

 New-Object System.Text.StringBuilder

 Or you can use the static method new, which was introduced with PowerShell 5:

 [System.Text.StringBuilder]::new()

 Static methods are explored in more detail later in this section.

 In either case, and because no arguments were supplied, the first overload from Figure 7.1 will be used. If a string were used as an argument (and it were the only argument), the third overload in the list would be used (one argument, with type String):

 [System.Text.StringBuilder]::new('This is the start of the string')

 When this constructor is used, an instance of the StringBuilder type is returned, which shows the properties of the class:

 PS> [System.Text.StringBuilder]::new('This is the start of the string')

Capacity MaxCapacity Length

-------- ----------- ------

 31 2147483647 31

 A property holds data about the object.

 Properties

 A property describes some aspect of the object. The last example shows the Capacity, MaxCapacity, and Length properties of the StringBuilder object.

 Each of the properties is described on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.text.stringbuilder?view=net-5.0#properties.

 Figure 7.2 shows the properties from Microsoft Docs:

 [image:]

 Figure 7.2: Properties for StringBuilder

 Clicking on each property will show further detail. For example, clicking on Capacity will describe the property and the property's use in far more detail. The Capacity property documentation also includes an example that uses that property. Examples tend to be available in C#, VB, or C++. Few examples are available in PowerShell.

 .NET classes also list fields as member types. Fields are indistinguishable from properties in PowerShell. In .NET, a property will implement a get or set (or both) accessor to access a value. Accessors were demonstrated in Chapter 3, Working with Objects in PowerShell.

 The class created in the following C# snippet includes both a field and a property. The property uses get and set accessors, while the field does not:

 Add-Type -TypeDefinition '

public class MyClass

{

 public string thisIsAField;

 public string thisIsAProperty { get; set; }

}

'

 Once the MyClass type has been added to the PowerShell session, you can create an instance and use Get-Member to show the members of the class:

 PS> [MyClass]::new() | Get-Member

 TypeName: MyClass

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

thisIsAField Property string thisIsAField {get;set;}

thisIsAProperty Property string thisIsAProperty {get;set;}

 It is possible to show that the thisIsAField member is indeed a field by using the GetMembers method of the type:

 PS> [MyClass].GetMembers() | Select-Object Name, MemberType

Name MemberType

---- ----------

get_thisIsAProperty Method

set_thisIsAProperty Method

GetType Method

ToString Method

Equals Method

GetHashCode Method

.ctor Constructor

thisIsAProperty Property

thisIsAField Field

 That this is a field does not really matter to PowerShell; it can be used in the same way as a property.

 To continue to add to the string in StringBuilder, the methods on the class can be used.

 Methods

 A method enacts some change on an object. Methods can be used to change the internal state of an object, such as the Append method in the StringBuilder type. Or methods can be used to return something different from the object, such as the ToString method.

 The methods available to the StringBuilder type are documented after the properties on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.text.stringbuilder?view=net-5.0#methods.

 Figure 7.3 shows the first few methods:

 [image:]

 Figure 7.3: Methods for StringBuilder

 Several of the preceding methods have the same name but different arguments. As with the constructor, these methods with the same name are overloaded. The method that will be used is based on the number and types of the arguments.

 For example, running the following will use the first of the methods in Figure 7.3:

 $stringBuilder = [System.Text.StringBuilder]::new()

$stringBuilder.Append($true)

 Running the same method name with a Byte will use the second method:

 $stringBuilder.Append([Byte]1)

 In the case of the StringBuilder type, each of the methods used to append to the string returns an instance of the same StringBuilder type.

 One possible strategy for dealing with this is to pipe each statement to Out-Null. If the output from the method call is not interesting, then this is a perfectly valid approach:

 $stringBuilder = [System.Text.StringBuilder]::new()

$stringBuilder.Append('Hello') | Out-Null

$stringBuilder.AppendLine() | Out-Null

$stringBuilder.AppendLine('World') | Out-Null

 Once the string is complete, the ToString method may be called to show the final string:

 PS> $stringBuilder.ToString()

Hello

World

 If a method name is used without brackets at the end, PowerShell will show the overloads for that method instead of executing the method:

 PS> $stringBuilder.ToString

OverloadDefinitions

string ToString()

string ToString(int startIndex, int length)

 Methods returning the instance of the type, as shown by StringBuilder, are known as fluent interfaces.

 Fluent interfaces

 A fluent interface is a particular pattern where each method call returns the instance of the object the method is affecting.

 Fluent interfaces are intended to allow a sequence of methods to be called in turn to build a complex statement that is still easy for a human to read.

 In the StringBuilder type this can be used to assemble a relatively complex string:

 $string = [System.Text.StringBuilder]::new().

 AppendLine('Hello').

 AppendLine('World').

 ToString()

 The preceding example is a simple one; however, you can use StringBuilder to build far more complex and elaborate strings. PowerShell itself includes another example of a fluent interface:

 [PowerShell]::Create().

 AddCommand('Get-Process').

 AddCommand('Where-Object').

 AddParameter('Property', 'Name').

 AddParameter('Value', 'pwsh').

 AddParameter('EQ', $true).

 Invoke()

 The preceding snippet creates a PowerShell runspace, then runs a command in that runspace. It is equivalent to the following command:

 Get-Process | Where-Object -Property Name -Value pwsh -EQ

 PowerShell runspaces are explored in Chapter 15, Asynchronous Processing.

 In the previous example, Create is a static method. The example before used new, which is also a static method; however, the new method is added by PowerShell itself.

 Static methods

 Static methods can be used without creating an instance of the object. Static methods are used in a wide variety of different contexts.

 Get-Member can be used to explore the static methods of a type in PowerShell, for example, the static methods on the DateTime type:

 [DateTime] | Get-Member -MemberType Method -Static

 IsLeapYear is one of the static methods on the System.DateTime type. It will return true when the year used as an argument is a leap year:

 PS> [DateTime]::IsLeapYear(2020)

True

 Another example of a static method is the Reverse method on the System.Array type. This method is notable because it does not return anything. It acts on an existing instance of an array:

 $array = 1, 2, 3

[Array]::Reverse($array)

 The change is directly applied to the array referenced by the $array variable. The variable's content will be reversed:

 PS> $array

3

2

1

 The list of methods on Microsoft Docs does not distinguish between static and non-static methods. For example, the Reverse method from the Methods section in Microsoft Docs is shown in Figure 7.4:

 [image:]

 Figure 7.4: Reverse method of System.Array

 Clicking into the documentation for a specific overload, for example, the first in the list above, shows that the method is static: https://docs.microsoft.com/dotnet/api/system.array.reverse?view=net-5.0#System_Array_Reverse_System_Array_.

 This is shown in Figure 7.5:

 [image:]

 Figure 7.5: Reverse method of System.Array

 Note the static keyword in Figure 7.5.

 The new method used in a few of the examples in this chapter was added in PowerShell 5 and will not appear in the documentation on Microsoft Docs.

 About the new method

 The new static method is added to .NET types by PowerShell. The method is visible when using Get-Member. Because PowerShell adds the method, it does not show in Microsoft Docs.

 The new method can be used to use any of the constructors of a class. The new method was used when exploring constructors to create an instance of a StringBuilder:

 [System.Text.StringBuilder]::new()

 Omitting the brackets from the end of the static method will show the overloads instead of creating the object:

 PS> [System.Text.StringBuilder]::new

OverloadDefinitions

System.Text.StringBuilder new()

System.Text.StringBuilder new(int capacity)

System.Text.StringBuilder new(string value)

System.Text.StringBuilder new(string value, int capacity)

System.Text.StringBuilder new(string value, int startIndex, int length, ...

System.Text.StringBuilder new(int capacity, int maxCapacity)

 While the previous list is not as detailed as the documentation on Microsoft Docs, it can serve as a useful reminder in the console.

 Properties can also be static as well as methods.

 Static properties

 Static properties are used to return values that are related to the type, but do not require an instance of the type to be created.

 Like static methods, static properties can be listed using the Get-Member command:

 PS> [DateTime] | Get-Member -MemberType Property -Static

 TypeName: System.DateTime

Name MemberType Definition

---- ---------- ----------

MaxValue Property static datetime MaxValue {get;}

MinValue Property static datetime MinValue {get;}

Now Property datetime Now {get;}

Today Property datetime Today {get;}

UnixEpoch Property static datetime UnixEpoch {get;}

UtcNow Property datetime UtcNow {get;}

 Like static methods, Microsoft Docs does not differentiate between static and non-static properties in the property list, only in the detail of a specific property as shown in Figure 7.6:

 [image:]

 Figure 7.6: System.DateTime Now static property

 Static properties are used as shown here:

 [DateTime]::Now

 The preceding property is like using the Get-Date command with no parameters.

 The types and members used above are public, that is, they are accessible outside of the assembly they were defined in.

 Reflection in PowerShell

 Types, properties, and methods can be marked as internal or private. Internal types and members are only accessible by other types and members within the same assembly. Private members are only accessible within the same class or type. Collectively these can be described as non-public types and members.

 Non-public types and members are accessible using what is known as Reflection. Microsoft Docs describes Reflection in the dynamic programming guide: https://docs.microsoft.com/dotnet/framework/reflection-and-codedom/reflection.

 PowerShell can make use of Reflection to explore and use non-public types and members. Doing so introduces a risk; such types and members are not part of a public-supported API. As code is updated, these non-public types and members may disappear or change behavior. It is therefore not recommended to make code that is to be used in production dependent on a non-public implementation.

 Even if it might not be supported, exploring is interesting and the ability to use Reflection in PowerShell is handy.

 Next up are type accelerators in PowerShell, which are described by a non-public type.

 The TypeAccelerators type

 The TypeAccelators type is used to list and add type accelerators to the PowerShell session.

 The TypeAccelerators type is not public and therefore cannot be so easily accessed. The type may be found by using the GetType method on an Assembly object. The type is part of the System.Management.Automation namespace. The following command uses the PowerShell type to get the assembly:

 [PowerShell].Assembly

 The Assembly object may be used to run the GetType method, which will find a type within an assembly:

 PS> [PowerShell].Assembly.GetType(

>> 'System.Management.Automation.TypeAccelerators'

>>)

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

False False TypeAccelerators System.Object

 The name used with the GetType method is case-sensitive; the type name must be written exactly as above.

 The IsPublic property indicates this type is not public and therefore cannot be accessed by putting the name in square brackets.

 You can use the GetType() method on the assembly object to list all of the types within that assembly.

 The type can be assigned to a variable to make it easier to work with:

 $typeAccelerators = [PowerShell].Assembly.GetType(

 'System.Management.Automation.TypeAccelerators'

)

 The TypeAccelerators type has two relevant public methods, and one relevant public property. These members, along with the Equals and ReferenceEquals methods inherited from System.Object, are shown in the following code:

 PS> $typeAccelerators | Get-Member -Static

 TypeName: System.Management.Automation.TypeAccelerators

Name MemberType Definition

---- ---------- ----------

Add Method static void Add(string typeName, type type)

Equals Method static bool Equals(System.Object objA, System...

ReferenceEquals Method static bool ReferenceEquals(System.Object obj...

Remove Method static bool Remove(string typeName)

Get Property System.Collections.Generic.Dictionary[string,...

 As the property and the two methods are static they are accessed using the static member operator, ::. For example, the Get method can be used to list the type accelerators:

 $typeAccelerators::Get

 A new type accelerator can be added with the Add method. In the following example, a type accelerator is added to make accessing this TypeAccelerators type easier:

 $typeAccelerators::Add(

 'TypeAccelerators',

 $typeAccelerators

)

 Once done, the new type accelerator can be used in place of the variable:

 [TypeAccelerators]::Get

 The newly added type accelerator will go away when PowerShell is closed.

 The properties and methods used on the TypeAccelators type are public and are therefore easy to use once an instance of the type is available. Non-public members may also be listed and used with Reflection.

 When a variable is assigned a type in PowerShell, an attribute is created to handle conversions when values are assigned.

 The ArgumentTypeConverterAttribute type

 The ArgumentTypeConverterAttribute attribute is used by PowerShell when casting a variable value. The attribute is added to a variable when the type is on the left-hand side of an assignment.

 For example, any values assigned to the following variable will be cast to a string:

 [string]$variable = 'value'

 Once the variable has been created, the presence of the attribute can be seen using Get-Variable, but the type it casts to is not visible:

 PS> (Get-Variable variable).Attributes | Format-List

TransformNullOptionalParameters : True

TypeId : System.Management.Automation.ArgumentT...

 Discovering the type used by the variable means exploring the non-public members of the attribute.

 The attribute type itself is non-public, but an existing variable can be used to get an instance of the type itself. In the following example, [0] is used to access the attribute; the Attributes property is a collection (a PSVariableAttributeCollection):

 [string]$variable = 'value'

$typeConverter = (Get-Variable variable).Attributes[0]

$typeConverterType = $typeConverter.GetType()

 The type the attribute converts values to is held in a non-public member of the attribute. The possible members, both public and non-public, can be listed using the GetMembers method on the type. Without any arguments, GetMembers will only show public members, the same information that the Get-Member command shows:

 PS> $typeConverterType.GetMembers() |

>> Select-Object Name, MemberType, IsPublic

 You can see the non-public members by using an overload for the GetMembers method. The overload accepts a System.Reflection.BindingFlags value. As a Flags enumeration, BindingFlags allows more than one value to be used. The values are supplied as a comma-separated string in the following example:

 PS> $typeConverterType.GetMembers('NonPublic,Instance') |

>> Select-Object Name, MemberType, IsPublic

Name MemberType IsPublic

---- ---------- --------

get_TargetType Method False

Transform Method False

TransformInternal Method False

MemberwiseClone Method False

Finalize Method False

.ctor Constructor False

TargetType Property

_convertTypes Field False

 The output from the command shows two members, which may show the target type of any value assigned to the variable. The property TargetType, however, looks the most promising.

 The Instance flag used in the previous example indicates that members that are present on instances of the type should be returned. If the flag Static were used instead, only static members would be returned. If Static was used in addition to Instance, both static and non-static members would be displayed.

 The following example shows the impact of changing the flag to Static:

 PS> $typeConverterType.GetMembers('NonPublic, Static') |

>> Select-Object Name, MemberType, IsPublic, IsStatic

Name MemberType IsPublic IsStatic

---- ---------- -------- --------

CheckBoolValue Method False True

ThrowPSInvalidBooleanArgumentCastException Method False True

 The IsPublic property is empty for the TargetType property. Properties allow more complex definitions of when the value can be read or written. The following snippet gets the property definition, then shows whether the Get method for the property is public or not:

 PS> $typeConverterType.GetProperty(

>> 'TargetType',

>> [System.Reflection.BindingFlags]'Instance,NonPublic'

>>).GetMethod | Select-Object Name, IsPublic

Name IsPublic

---- --------

get_TargetType False

 You can call the GetValue method on the preceding property definition to get the value. When calling the GetValue method, the instance of the attribute from Get-Variable must be passed as an argument. The original variable definition is included in the following to make the example complete:

 [string]$variable = 'value'

$typeConverter = (Get-Variable variable).Attributes[0]

$typeConverterType = $typeConverter.GetType()

$targetTypeProperty = $typeConverterType.GetProperty(

 'TargetType',

 [System.Reflection.BindingFlags]'Instance,NonPublic'

)

$targetTypeProperty.GetValue($typeConverter)

 The last line returns the type values assigned to the variable:

 PS> $targetTypeProperty.GetValue($typeConverter)

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 Reflection, as demonstrated, is complex even when the scope is as small as this single property.

 You can use the ImpliedReflection module to simplify the process. Once the module is installed, enable it by using the Enable-ImpliedReflection command:

 Install-Module ImpliedReflection

Enable-ImpliedReflection

 A confirmation message will be displayed, which should be accepted to enable the module's functionality. Once enabled, the TargetType property will display on the attribute via Get-Variable as the following shows:

 PS> [string]$variable = 'value'

PS> (Get-Variable variable).Attributes[0] | Format-List

TransformNullOptionalParameters : True

TypeId : System.Management.Automation.ArgumentT...

_convertTypes : {System.String}

TargetType : System.String

 ImpliedReflection can be disabled again either by running the Disable-ImpliedReflection command or restarting the PowerShell console.

 Summary

 Delving into .NET significantly increases the flexibility of PowerShell over using built-in commands and operators. .NET is made up of hundreds of classes and enumerations, many of which can be easily used in PowerShell.

 .NET types are arranged in namespaces, grouping types with similar purposes together. For example, the System.Data.SqlClient namespace contains types for connecting to and querying Microsoft SQL Server instances.

 The using keyword, introduced with PowerShell 5.1, allows types to be used by name only, instead of the full name that includes the namespace.

 Type accelerators have been in PowerShell since its release. PowerShell provides many built-in type accelerators allowing types to be used by a short name. Examples include Xml for System.Xml.XmlDocument, and ADSI for System.DirectoryServices.DirectoryEntry.

 Types in .NET have members including constructors, properties, and methods. These are used to hold information or enact change on an object.

 Static methods and properties are used throughout .NET to expose methods associated with a type, for example, the Reverse method of System.Array, or data that may be referenced, such as the Now property of DateTime.

 Reflection is an advanced set of types and methods used to access information about types and members of types. Reflection exposes access to non-public members and types. While working with non-public members and types is not necessarily suitable for production code, Reflection remains a valuable tool for exploring both the inner workings of PowerShell and .NET in general.

 The next chapter shows you how to work with different data types.

 8

 Strings, Numbers, and Dates

 Access to .NET Framework means that PowerShell comes with a wide variety of ways to work with simple data types, such as strings and numbers.

 This chapter covers the following topics:

 	Manipulating strings

 	Converting strings

 	Manipulating numbers

 	Manipulating dates and times

 Manipulating strings, numbers, and dates have many uses, including data cleansing, retrieving specific information, and applying calculations.

 Manipulating strings

 The .NET System.String type offers a wide array of methods for manipulating or inspecting strings. The following methods are case-sensitive but are, in many cases, faster alternatives to using regular expressions, for situations when the time it takes for a script to run is important.

 Working with data held in strings is an important part of any scripting language. The following sections explore selecting parts of a string, splitting, replacing, trimming, inserting, removing, and more.

 Indexing into strings

 In PowerShell, it is possible to access individual characters in a string by index (the zero-based position of a character) in the same way that you would access array elements using an index. Consider the following example:

 $myString = 'abcdefghijklmnopqrstuvwxyz'

$myString[0] # This is a (the first character in the string)

$myString[-1] # This is z (the last character in the string)

 Ranges of characters can be selected from the string by using a range or a list of indexes. The resulting array of characters can be joined with the -join operator. For example:

 $myString = 'abcdefghi'

-join $myString[0..5]

 The preceding example returns abcdef, the first 6 characters (indexes 0 to 5, inclusive) of the original string.

 The System.String type includes several methods that can be used to manipulate strings. The preceding operation can be performed using the Substring method.

 Substring

 The Substring method allows part of a string to be taken, either all characters starting from a certain index or a specific number of characters from an index.

 Having two different possible sets of arguments for a single method name is known as overloading. You can view the two different possible sets of arguments by running the method name without parentheses:

 PS> 'anyString'.Substring

OverloadDefinitions

string Substring(int startIndex)

string Substring(int startIndex, int length)

 The following example selects everything from index 20 to the end of the string:

 $myString = 'abcdefghijklmnopqrstuvwxyz'

$myString.Substring(20) # Start at index 20. Returns 'uvwxyz'

 The second overload for Substring selects a specific number of characters from a starting point:

 $myString = 'abcdefghijklmnopqrstuvwxyz'

$myString.Substring(3, 4) # Start at index 3, get 4 characters.

 The index starts at 0, counting from the beginning of the string.

 The Substring method raises an error if the length argument is longer than the string:

 PS> $myString = 'abcde'

PS> $myString.Substring(0, 6)

MethodInvocationException: Exception calling "Substring" with "1" argument(s): "startIndex cannot be larger than length of string. (Parameter 'startIndex')"

 When changing a set of strings, each with a different length, there are several ways to avoid this problem. A condition may be added:

 $myString = 'abcdefghi'

if ($myString.Length -gt 6) {

 $myString.Substring(0, 6)

}

 Or the smallest of two numbers might be selected by using the Min method in the Math class. The Min method chooses the smallest of two numeric arguments:

 $myString = 'abcdefghi'

$myString.Substring(0, [Math]::Min(6, $myString.Length))

 Split

 The Split method has a relative in PowerShell: the -split operator. The -split operator expects a regular expression, whereas the Split method splits using a character, an array of characters, a string, or an array of strings.

 The following example splits based on a comma:

 $myString = 'Surname,GivenName'

$myString.Split(',')

 When splitting the following string based on a comma, the resulting array will have three elements. The first element is Surname, the last is GivenName. The second element in the array (index 1) is blank:

 $string = 'Surname,,GivenName'

$array = $string.Split(',')

$array.Count # This is 3

$array[1] # This is empty

 This blank value may be discarded by setting the StringSplitOptions argument of the Split method:

 $string = 'Surname,,GivenName'

$array = $string.Split(

 ',',

 [StringSplitOptions]::RemoveEmptyEntries

)

$array.Count # This is 2

 When using the Split method in this manner, individual variables may be filled from each value as follows:

 $surname, $givenName = $string.Split(

 ',',

 [StringSplitOptions]::RemoveEmptyEntries

)

 The Split method is powerful, but care is required when using its different arguments. Each of the different sets of arguments works as follows:

 PS> 'string'.Split

OverloadDefinitions

string[] Split(char separator, System.StringSplitOptions options)

string[] Split(char separator, int count, System.StringSplitOptions options)

string[] Split(Params char[] separator)

string[] Split(char[] separator, int count)

string[] Split(char[] separator, System.StringSplitOptions options)

string[] Split(char[] separator, int count, System.StringSplitOptions options)

string[] Split(string separator, System.StringSplitOptions options)

string[] Split(string separator, int count, System.StringSplitOptions options)

string[] Split(string[] separator, System.StringSplitOptions options)

string[] Split(string[] separator, int count, System.StringSplitOptions options)

 In PowerShell, it is not always entirely clear which of these methods will be chosen when running the following example:

 $string = 'one||two||three'

$string.Split('||')

 In PowerShell 7, the argument || is treated as a string. The result is therefore the values one, two, and three.

 In Windows PowerShell, the argument || is treated as an array of characters. The result is one, an empty string, two, an empty string, and three.

 The difference between versions can be problematic if code using the method is expected to work in both versions of PowerShell. The behavior can be made consistent by using one overload that accepts string[] and StringSplitOptions. For example, the following version will behave in the same way in both PowerShell and Windows PowerShell:

 $string = 'one||two||three'

$string.Split([string[]]'||', [StringSplitOptions]::None)

 Replace

 The Replace method will substitute one string value for another:

 $string = 'This is the first example'

$string.Replace('first', 'second')

 PowerShell also has a -replace operator. The -replace operator uses a regular expression to describe the value that should be replaced.

 Regular expressions (discussed in Chapter 9, Regular Expressions) may be more difficult to work with in some cases, especially when replacing characters that are reserved in regular expressions (such as the period character, ., which matches any single character). The period character is escaped with \ to make the two replacements give the same result:

 $string = 'Begin the begin.'

$string -replace 'begin\.', 'story, please.'

$string.Replace('begin.', 'story, please.')

 The -replace operator can be replaced with -creplace to enforce case-sensitivity.

 Conversely, the Replace method is case-sensitive by default. The following replacement has no effect on the string:

 PS> 'begin'.Replace('B', '')

begin

 Extra arguments can be used to change the default behavior, using one of the following two overloads:

 string Replace(string oldValue, string newValue, bool ignoreCase, cultureinfo culture)

string Replace(string oldValue, string newValue, System.StringComparison comparisonType)

 Either of the following approaches can be used:

 'begin'.Replace('B', '', $true, (Get-Culture))

'begin'.Replace('B', '', [System.StringComparison]::OrdinalIgnoreCase)

 The value for the cultureInfo argument is obtained using the Get-Culture command in the first line.

 The second line uses an OrdinalIgnoreCase comparison, one of the possible values from the StringComparison enumeration documented on Microsoft Docs:

 https://docs.microsoft.com/dotnet/api/system.stringcomparison?view=net-5.0

 Trim, TrimStart, and TrimEnd

 The Trim method, by default, removes all white space (spaces, tabs, and line breaks) from the beginning and end of a string. Consider the following example:

 $string = "

 This string has leading and trailing white space "

$string.Length

$string.Trim().Length

 Before Trim runs, the string is 60 characters long. After Trim has been used, the string length is 48 characters.

 The TrimStart and TrimEnd methods limit their operation to either the start or end of the string.

 Each of the methods accepts a list of characters to trim. Consider the following example:

 $string = '*__This string is surrounded by clutter.--#'

$string.Trim('*_-#')

 The Trim method does not remove a string from the end of another. The string supplied in the previous example ('*_-#') is treated as an array. This can be seen in the definition of the method:

 PS> 'string'.Trim

OverloadDefinitions

string Trim(Params char[] trimChars)

string Trim()

 A failure to appreciate this can lead to unexpected behavior. The domain name in the following example ends with the suffix '.uk.net'. The goal is to trim the suffix from the end of the string. However, the method goes too far here, taking away part of the name:

 PS> $string = 'magnet.uk.net'

PS> $string.TrimEnd('.uk.net')

mag

 Trimming a string removes characters from the start and end; it is sometimes necessary to add or remove content from the middle of the string.

 Insert and Remove

 The Insert method adds one string into another. This method expects an index from the beginning of the string, counting from 0, and a string to insert, as follows:

 $string = 'The letter of the alphabet is a'

$string.Insert(4, 'first ') # Insert this before "letter", include a trailing space

 The Remove method removes characters from a string, based on a start position and the length of the string to remove:

 $string = 'This is is an example'

$string.Remove(4, 3)

 The previous statement removes the first instance of is, including the trailing space.

 IndexOf and LastIndexOf

 IndexOf and LastIndexOf may be used to locate a character or string within a string. IndexOf finds the first occurrence of a string, and LastIndexOf finds the last occurrence of the string. In both cases, the zero-based index of the start of the string is returned. If the character, or string, isn't present, the two methods will return -1:

 $string = 'abcdefedcba'

$string.IndexOf('b') # Returns 1

$string.LastIndexOf('b') # Returns 9

$string.IndexOf('ed') # Returns 6

 As -1 is used to indicate that the value is absent, the method is not suitable for statements based on an implicit Boolean. The index 0, a valid position, would be considered false. The following example correctly handles the return value from IndexOf in a conditional statement:

 $string = 'abcdef'

if ($string.IndexOf('a') -gt -1) {

 'The string contains an a'

}

 The scope of the IndexOf and LastIndexOf methods can be limited using the start index and count arguments.

 Methods that can locate a position within a string are useful when combined with other string methods, as shown here:

 PS> $string = 'First,Second,Third'

PS> $string.Substring(

>> $string.IndexOf(',') + 1, # startIndex (6)

>> $string.LastIndexOf(',') - $string.IndexOf(',') - 1 # length (6)

>>)

Second

 The IndexOf and LastIndexOf methods are frequently used alongside other string methods, including Substring, Insert, and Remove.

 PadLeft and PadRight

 The PadLeft and PadRight options endeavor to increase the length of a string up to a given maximum length. Both PadLeft and PadRight take the same arguments, as follows:

 PS> ''.PadRight

OverloadDefinitions

string PadRight(int totalWidth)

string PadRight(int totalWidth, char paddingChar)

PS> ''.PadLeft

OverloadDefinitions

string PadLeft(int totalWidth)

string PadLeft(int totalWidth, char paddingChar)

 Both methods make a new string up to the total width. If the string is already equal to or longer than the total width, it will not be changed. By default, the padding character is a space.

 The following example pads the right-hand side of strings, using "." as the padding character argument:

 PS> ('one', 'two', 'three').PadRight(10, '.')

one.......

two.......

three.....

 Padding a string on the left, in effect, aligns the string on the right:

 PS> ('one', 'two', 'three').PadLeft(10, '.')

.......one

.......two

.....three

 If a string value is being padded with spaces, the format operator can be used instead:

 PS> '"{0,10}"' -f 'one' # Pad left

" one"

PS> '"{0,-10}"' -f 'one' # Pad right

"one "

 Padding and alignment are useful when generating formatted strings.

 ToUpper, ToLower, and ToTitleCase

 ToUpper converts any lowercase characters in a string into uppercase. ToLower converts any uppercase characters in a string into lowercase:

 'aBc'.ToUpper() # Returns ABC

'AbC'.ToLower() # Returns abc

 Considering that the methods discussed here are case-sensitive, converting a string into a known case may be an important first step. Consider the following example:

 $string = 'AbN'

$string = $string.ToLower()

$string = $string.Replace('n', 'c')

 ToTitleCase is not a method of the String object. It is a method of the System.Globalization.TextInfo class. The ToTitleCase method performs limited culture-specific capitalization of words:

 PS> (Get-Culture).TextInfo.ToTitleCase('some title')

Some Title

 As this is not a static method, the TextInfo object must be created first. This object cannot be directly created. TextInfo can be obtained via the System.Globalization.CultureInfo object, and this object is returned by the Get-Culture command.

 The same TextInfo object may also be accessed using the host automatic variable:

 $host.CurrentCulture.TextInfo.ToTitleCase('another title')

 The ToTitleCase method does not convert words that are entirely uppercase as they are acronyms.

 Contains, StartsWith, and EndsWith

 The Contains, StartsWith, and EndsWith methods each return true or false, depending on whether the string contains, starts with, or ends with the specified string.

 Contains returns true if the value is found within the subject string:

 $string = 'I am the subject'

$string.Contains('the') # Returns $true

 StartsWith and EndsWith return true if the subject string starts or ends with the specified value:

 $string = 'abc'

$string.StartsWith('ab')

$string.EndsWith('bc')

 Comparisons using each of these methods are case-sensitive by default. Case-sensitivity can be controlled using the overloads for each of the methods. For example, StartsWith and EndsWith both accept a comparison type argument in the same way as used by the Replace method:

 $string = 'abc'

$string.StartsWith('ab', [System.StringComparison]::OrdinalIgnoreCase)

 The Contains and EndsWith methods support the comparison type argument used above for StartsWith.

 Many of the preceding methods can be called on an array of strings without looping.

 String methods and arrays

 In PowerShell, you can call some string methods on an array. PowerShell automatically unrolls the array and executes the method. Array unrolling applies when accessing properties as well; however, this does not apply to strings.

 The method will be executed against each of the elements in the array. For example, the Trim method is used against each of the strings as follows:

 PS> ('azzz', 'bzzz', 'czzz').Trim('z')

a

b

c

 The Split method is also capable of acting against an array, the result of the following example is a single array containing four elements:

 PS> ('a,b', 'c,d').Split(',')

a

b

c

d

 This remains true if the array object does not have a conflicting method or property. For example, the Insert method cannot be used as an array object has a version of its own.

 Properties and methods of array elements

 The array unrolling feature demonstrated here has broader scope than methods, and it applies to more than string objects.

 In the case of strings, you can view the methods that can be used as follows:

 $arrayMembers = (Get-Member -InputObject @() -MemberType Property, Method).Name

'string' |

 Get-Member -MemberType Property, Method |

 Where-Object Name -notin $arrayMembers

 Using this feature with DateTime objects, the AddDays method may be called on each element in an array:

 ((Get-Date '01/01/2017'), (Get-Date '01/02/2017')).AddDays(5)

 Likewise, the DayOfWeek property may be accessed on each element in the array, as follows:

 ((Get-Date '01/01/2017'), (Get-Date '01/02/2017')).DayOfWeek

 A similar Get-Member command reveals the list of properties and methods that may be used in this manner:

 Get-Date |

 Get-Member -MemberType Property, Method |

 Where-Object Name -notin $arrayMembers

 Chaining methods

 As many of the string methods return a string, the methods can be chained together. For example, each of the following methods returns a string, so another method can be added to the end:

 PS> ' ONe*? '.Trim().TrimEnd('?*').ToLower().Replace('o', 'O')

One

 Each method is executed in turn, each method returns a new string for the next method.

 A series of replacements might be made by using this technique. This example is contrived, it would be easier to use Replace than Remove and Insert. The approach is more useful when something else is being used to reveal position information.

 The sample string has three placeholders that should be replaced with a fixed set of values:

 $string = 'one __ three four _____ six ___'

$valuesToInsert = 'two', 'five', 'seven'

 First the location of each value to replace is found. This step is imagined to be revealed by something else:

 $position = 0

$positions = while ($position -lt $string.Length) {

 $positionInfo = [PSCustomObject]@{

 Start = $start = $string.IndexOf('_', $position)

 End = $string.IndexOf(' ', $start)

 Length = 0

 }

 if ($positionInfo.End -eq -1) {

 $positionInfo.End = $string.Length

 }

 $positionInfo.Length = $positionInfo.End - $positionInfo.Start

 $position = $positionInfo.End

 $positionInfo

}

 Viewing the value of the $positions variable shows it has recorded the start, end, and length of each placeholder string:

 PS> $positions

Start End Length

----- --- ------

 4 6 2

 18 23 5

 28 31 3

 Then the discovered values are substituted in reverse order. Reversing the order retains the value of the position information. Inserting a string of a different length would otherwise invalidate the value of Start:

 for ($i = $positions.Count - 1; $i -ge 0; $i--) {

 $positionInfo = $positions[$i]

 $string = $string.Remove(

 $positionInfo.Start,

 $positionInfo.Length

).Insert(

 $positionInfo.Start,

 $valuesToInsert[$i]

)

}

 Updating strings like this is a useful thing to be able to do. Complex replacements can be made without disturbing the overall structure of a document.

 PSKoans uses Insert and Replace

 I used the previous technique when writing the commands used to update user content in the PSKoans module:

 https://aka.ms/PSKoans

 The location information in that case is drawn from the Abstract Syntax Tree (AST) in PowerShell. AST is explored in Chapter 21, Testing. The result of the search is a series of positions in a file where text must be replaced with new string values.

 The previous methods all work on an existing string and often return a new string. It may be desirable to convert a string to another type entirely.

 Converting strings

 PowerShell has a variety of commands that can be used to convert strings into objects.

 Several commands are available specifically to work with strings:

 	The *-Csv commands

 	ConvertFrom-StringData

 	Convert-String

 	ConvertFrom-String

 The Convert-String and ConvertFrom-String commands are part of a project called Flash Extract by Microsoft Research and have never been converted for use in .NET Core. These commands are only available in Windows operating systems and only available in PowerShell 7 via a compatibility session.

 In addition to these commands, PowerShell can make use of the ToBase64String and FromBase64String methods of the Convert class to work with Base64-encoded data.

 The *-Csv commands

 ConvertTo-Csv turns objects in PowerShell into comma-separated value (CSV) strings:

 PS> Get-Process -Id $pid | Select-Object Name, Id, Path | ConvertTo-Csv

"Name","Id","Path"

"pwsh","6676","C:\Program Files\PowerShell\7\pwsh.exe"

 In the preceding example, Windows PowerShell also includes type data by default. PowerShell 7 does not include the type data line.

 ConvertFrom-Csv turns CSV-formatted strings into a custom object:

 PS> "David,0123456789,28" | ConvertFrom-Csv -Header Name, Phone, Age

Name Phone Age

---- ----- ---

David 0123456789 28

 As ConvertFrom-Csv is specifically written to read CSV-formatted data, it discards quotes that surround strings but allows fields to spread across lines and so on. Consider the following example:

 'David,0123456789,28,"1 Some street, A Lane"' | ConvertFrom-Csv -Header Name, Phone, Age, Address | Format-Table -Wrap

 If the Header parameter is not defined, the first line read by ConvertFrom-Csv is expected to be a header. If there is only one line of data, then nothing is returned:

 'Name,Age', 'David,28' | ConvertFrom-Csv

 Export-Csv and Import-Csv complement these two commands by writing and reading information to a file instead:

 Get-Process -Id $pid |

 Select-Object Name, Id, Path |

 Export-Csv 'somefile.csv'

Import-Csv somefile.csv

 ConvertFrom-StringData

 The ConvertFrom-StringData command can be used to convert key and value pairs written in a string into a Hashtable. ConvertFrom-StringData is useful when working with paired values (where each pair is on a separate line).

 The key and value pairs must be separated by the = character for ConvertFrom-StringData. However, replacing another separator is a small step.

 For example, the following string can be converted to an object:

 $string = @"

Name : John Doe

Username : jdoe

"@

$string.Replace(':', '=') | ConvertFrom-StringData

 The preceding command will return a single Hashtable. White space before and after the key or value is discarded.

 The resulting Hashtable can potentially be converted into a custom object:

 $string = @"

Name : John Doe

Username : jdoe

"@

[PSCustomObject]($string.Replace(':', '=') | ConvertFrom-StringData)

 If the lines to convert are separate elements in an array the command will create one Hashtable for each line:

 $string = @(

 'Name : John Doe'

 'Username : jdoe'

)

$hashtables = $string.Replace(':', '=') | ConvertFrom-StringData

$hashtables.GetType()

 The preceding command shows the output is object[], and in this case an array of Hashtables. If using Get-Content to read the original string, the -Raw parameter can be used to read the value as a single string.

 Out-String may be used to work with arrays of strings from other sources:

 $string = @(

 'Name : John Doe'

 'Username : jdoe'

) | Out-String

[PSCustomObject]($string.Replace(':', '=') | ConvertFrom-StringData)

 Convert-String

 The Convert-String command may be used to simplify some string conversion operations. Convert-String is not included in PowerShell 7 and therefore is not present on Linux and macOS installations.

 The conversion is performed based on an example that must be supplied. For example, Convert-String can generate account names from a list of users:

 'Michael Caine', 'Benny Hill', 'Raf Vallone' |

 Convert-String -Example 'Michael Caine=MCaine'

 The Example parameter uses the generalized syntax as follows:

 <Before>=<After>

 This example text does not have to be one of the sets being converted, it only must show the existing format (Before) and the desired format (After). For example, the following works:

 PS> 'Michael Caine', 'Benny Hill', 'Raf Vallone' |

>> Convert-String -Example 'First Second=FSecond'

MCaine

BHill

RVallone

 The following alternate syntax is also supported, the output is the same as the version above:

 'Michael Caine', 'Benny Hill', 'Raf Vallone' |

 Convert-String -Example @{

 Before = 'First Second'

 After = 'FSecond'

 }

 The Convert-String command is not without its limitations. After may only include strings, or partial strings, from Before, along with a subset of punctuation characters. Characters that aren't permitted in After include @, $, ~, `, and !. Because of these limitations, Convert-String cannot, for example, build an email address for each user in the list in a single step.

 ConvertFrom-String

 ConvertFrom-String can be used to convert strings into objects. ConvertFrom-String is part of the same module as Convert-String; it is therefore only available in Windows PowerShell.

 ConvertFrom-String performs two different styles of string to object conversion. The first behaves much as ConvertFrom-Csv does, except that it does not discard characters that make up the CSV format. In the following example, the quotation marks surrounding the first name are preserved:

 PS> '"bob",tim,geoff' | ConvertFrom-String -Delimiter ',' -PropertyNames name1, name2, name3

name1 name2 name3

----- ----- -----

"bob" tim geoff

 The default delimiter (if the parameter is not supplied) is a space. The second operating mode of ConvertFrom-String is far more complex. A template must be defined for each element that is to be pushed into a property.

 The following example uses ConvertFrom-String to convert the output from the tasklist command into a collection of custom objects:

 $template = '{Task*:{ImageName:System Idle Process} {[Int]PID:0} {SessionName:Services} {Session:0} {Memory:24 K}}'

tasklist |

 Select-Object -Skip 3 |

 ConvertFrom-String -TemplateContent $template |

 Select-Object -ExpandProperty Task

 The Task* element in the template denotes the start of an object. It allows each of the remaining fields, ImageName, PID, SessionName, Session, and Memory to be grouped together under a single object.

 An example of the output from the command is shown here:

 ImageName : System Idle Process

PID : 0

SessionName : Services

Session : 0

Memory : 8 K

ImageName : System

PID : 4

SessionName : Services

Session : 0

Memory : 3,364 K

 The ConvertFrom-String command is good at dealing with well-formatted data that is already divided correctly. In the case of the tasklist command, the end of a single task (or data record) is denoted by a line break.

 Working with Base64

 Base64 is a string encoding for arrays of bytes. The bytes can represent just about anything at all. Base64 is frequently used with network protocols to send more complex data across a network; for example, email attachments are encoded using Base64 so images and other files can be sent across a network as a string.

 The Convert type may be used to take a Base64 string and convert it to an array of bytes. In the following example, the bytes represent an ASCII string:

 PS> $bytes = [Convert]::FromBase64String('SGVsbG8gd29ybGQ=')

PS> -join ($bytes -as [char[]])

Hello world

 The ToBase64String method accepts an array of bytes and converts those to a Base64 string. The array of bytes is provided by coercing an array of characters to an array of bytes. The conversion from char[] to byte[] is implicit when using the method:

 [Convert]::ToBase64String([char[]]'Hello world')

 Base64 encoding is used by the -EncodedCommand parameter of the PowerShell executable. This allows a complex command to be passed to PowerShell without the need for a script file.

 PowerShell expects the string to be Unicode encoded; each character is represented by two bytes. The Unicode static property of System.Text.Encoding is used to convert a string in PowerShell to an array of bytes. The resulting byte array is converted to a Base64 string:

 $script = {Write-Host 'Hello world'}

$bytes = [System.Text.Encoding]::Unicode.GetBytes($script)

[Convert]::ToBase64String($bytes)

 The resulting string can be used with either powershell.exe or pwsh.exe:

 pwsh -encodedcommand VwByAGkAdABlAC0ASABvAHMAdAAgACcASABlAGwAbABvACAAdwBvAHIAbABkACcA

 Running the command will run the Write-Host command. The preceding example is simple, but the technique may be used with far longer and more complicated scripts. Base64 is used to encode special characters such as quotes, brackets, curly braces, and so on, so a complex command can be passed as a much simpler argument.

 Manipulating numbers

 Basic mathematical operations in PowerShell make use of the operators discussed in Chapter 4, Operators.

 Formatting numbers was also introduced in Chapter 4, Operators; the following examples review the use of the format operator with numeric values:

 '{0:x}' -f 24244 # Lower-case hexadecimal. Returns 5eb4

'{0:X}' -f 24244 # Upper-case hexadecimal. Returns 5EB4

'{0:P}' -f 0.28232 # Percentage. Returns 28.23%

'{0:N2}' -f 32583.122 # Culture specific number format.

 # 2 decimal places.

 # Returns 32,583.12 (in culture en-GB)

 Format operations like those above return string values. Once a number has been formatted with the format operator, -f, it will no longer sort as a numeric value.

 Large byte values

 PowerShell provides operators for working with large byte counts. These operators are as follows:

 	nKB: Kilobytes (n * 1024^1)

 	nMB: Megabytes (n * 1024^2)

 	nGB: Gigabytes (n * 1024^3)

 	nTB: Terabytes (n * 1024^4)

 	nPB: Petabytes (n * 1024^5)

 Kibibyte and mebibytes

 PowerShell uses the JEDEC memory standards for the meaning of KB, MB, and GB. Therefore, each of the values for KB, MB, and so on is 1,024 to some power rather than 1,000 to some power as documented in IEEE 1541-2002.

 These operators can be used to easily represent large values:

 PS> 22.5GB

24159191040

 The operators may also be used to convert large byte values into shorter values. For example, a shorter value might be added to a message using the format operator, as shown here:

 PS> '{0:F} TB available' -f (123156235234522 / 1TB)

112.01 TB available

 Power of 10

 PowerShell uses the e operator to represent a scientific notation (power-of-10, "* 10n") that can be used to represent large numbers. The exponent can be either positive or negative:

 2e2 # Returns 200 (2 * 10^2)

2e-1 # Returns 0.2 (2 * 10^-1)

 Hexadecimal

 Hexadecimal formats are easily accessible in PowerShell. PowerShell returns the decimal form of any given hexadecimal number when the hexadecimal value is prefixed with 0x:

 PS> 0x5eb4

24244

 Using System.Math

 While PowerShell itself comes with reasonably basic mathematical operators, the .NET System.Math type has a far wider variety.

 The System.Math type implements each operation as a static method. The static methods of the type can be shown using the Get-Member command:

 [Math] | Get-Member -Static

 The Round static method of the Math type can be used to round up to a fixed number of decimal places. In the following example, the value is rounded to two decimal places:

 [Math]::Round(2.123456789, 2)

 By default, the Round method in .NET performs what is known as banker's rounding. It always prefers to round up to an even number. For example, 1.5 will round to 2, and 2.5 will round to 2.

 Rounding behavior can be changed using the MidpointRounding enumeration, as the following shows:

 # Will return 2.22

[Math]::Round(2.225, 2)

Will return 2.23

[Math]::Round(2.225, 2, [MidpointRounding]::AwayFromZero)

 The Ceiling and Floor methods are used when performing whole number rounding:

 [Math]::Ceiling(2.1234) # Returns 3

[Math]::Floor(2.9876) # Returns 2

 Abs converts a positive or negative integer into a positive integer (and multiplies by -1 if the value is negative):

 [Math]::Abs(-45748)

 Numbers may be raised to a power using the following syntax:

 [Math]::Pow(2, 8) # Returns 256 (28)

 A square root can be calculated as follows:

 [Math]::Sqrt(9) # Returns 3

 The System.Math class also contains static properties for mathematical constants:

 [Math]::pi # π, 3.14159265358979

[Math]::e # e, 2.71828182845905

 Methods are also available to work with log, tan, sin, cos, and so on.

 Converting strings into numeric values

 In many cases, strings may be coerced to numeric values. Consider the following example:

 [Int]"2" # String to Int32

[Decimal]"3.141" # String to Decimal

[UInt32]"10" # String to UInt32

[SByte]"-5" # String to SByte

 If a value cannot be coerced, for example the string 1MB, or the value is a hexadecimal string such as a1b2, then the value can be multiplied by 1 to convert the value into a number:

 $string = '5eb4'

1 * "0x$string"

 Or the same technique can be used for a size in GB:

 $size = '1.21GB'

1 * $size

 In this case, GB is executed as if 1.21GB has been typed directly into the console.

 The string may need extraneous characters removing first; for example:

 $size = '1,024MB'

1 * ($size -replace ',') / 1GB

 For advanced conversions, the System.Convert class may be used. The Convert class includes static methods that can take a string and convert it into a number using a specified base.

 A binary (base 2) value is converted to a 32-bit integer as follows:

 [Convert]::ToInt32('01000111110101', 2) # Returns 4597

 The Convert type supports conversion using base 2 (binary), 8 (octal), 10 (denary), and 16 (hexadecimal).

 Manipulating dates and times

 DateTime objects may be created in several ways. The Get-Date command is one of these. The DateTime type has several static methods that can be used, and an instance of DateTime has methods that might be used.

 Working with dates includes converting a string representing a date into a DateTime object or finding a date that is relative to the current date and time.

 Parsing dates

 The Get-Date command is the best first stop for converting strings into dates. Get-Date deals with a reasonable number of formats.

 If, however, Get-Date is unable to help, the DateTime class has two static methods that can be used:

 	ParseExact

 	TryParseExact

 The format strings used by these methods are documented on Microsoft Docs:

 https://docs.microsoft.com/dotnet/standard/base-types/custom-date-and-time-format-strings

 The ParseExact method accepts one or more format strings, and returns a DateTime object:

 $string = '20170102-2030' # Represents 1st February 2017, 20:30

[DateTime]::ParseExact($string, 'yyyyddMM-HHmm', (Get-Culture))

 The culture returned from Get-Culture is used as the format provider argument for the ParseExact method.

 The format string uses the following syntax:

 	yyyy to represent a four-digit year

 	dd for a two-digit day

 	MM for a two-digit month

 	HH for the hours in the day (this is for 24 hour format; hh is used for 12 hour format)

 The ParseExact method can account for more than one date format. In this case, two variations of the format are accepted, the second of which expects seconds (ss):

 $strings = '20170102-2030', '20170103-0931.24'

[String[]]$formats = 'yyyyddMM-HHmm', 'yyyyddMM-HHmm.ss'

foreach ($string in $strings) {

 [DateTime]::ParseExact($string, $formats, (Get-Culture), 'None')

}

 The final argument, None, grants greater control over the parsing process. The other possible values and the effects are documented on Microsoft Docs:

 https://docs.microsoft.com/dotnet/api/system.globalization.datetimestyles

 If the ParseExact method fails, an exception is thrown.

 TryParseExact is an alternative to ParseExact. Instead of throwing an error, TryParseExact returns a Boolean, true or false. The TryParseExact method itself returns true or false, depending on whether it was able to parse the string.

 The parsed date can be extracted using a reference to an existing date variable. The method updates the value held in the variable if parsing is successful, as follows:

 $date = Get-Date 01/01/1601 # A valid DateTime object with an obvious date

$string = '20170102-2030'

if ([DateTime]::TryParseExact($string, 'yyyyddMM-HHmm', $null, 'None', [Ref]$date)) {

 $date

}

 You use the [Ref] type, a type accelerator for System.Management.Automation.PSReference, as a value that TryParseExact can change. This allows the method to return true as well as setting a variable value to the parsed date. If TryParseExact returns false, the date in the variable is not changed.

 Changing dates

 You can change a DateTime object in several ways.

 A Timespan object can be added to or subtracted from a date:

 (Get-Date) + (New-Timespan -Hours 6)

 The Date property can be used, representing the start of the day:

 (Get-Date).Date

 You can use the Add<Interval> methods to add and subtract time, as follows:

 (Get-Date).AddDays(1) # One day from now

(Get-Date).AddDays(-1) # One day before now

 Adding days to a date like this is frequently used to search a filesystem. For example, this is how to search for files edited in the last 7 days:

 Get-ChildItem -File |

 Where-Object LastWriteTime -gt (Get-Date).AddDays(-7)

 You can use a boundary by defining a start and end time for a comparison, in this case, to find all files modified between midnight 7 days ago and midnight last night:

 $start = (Get-Date).Date.AddDays(-7)

$end = (Get-Date).Date

Get-ChildItem -File | Where-Object {

 $_.LastWriteTime -gt $start -and

 $_.LastWriteTime -le $end

}

 In addition to AddDays, the DateTime object makes the following available:

 (Get-Date).AddTicks(1)

(Get-Date).AddMilliseconds(1)

(Get-Date).AddSeconds(1)

(Get-Date).AddMinutes(1)

(Get-Date).AddHours(1)

(Get-Date).AddMonths(1)

(Get-Date).AddYears(1)

 By default, dates returned by Get-Date are local (that is, within the context of the current time zone). A date may be converted into UTC as follows:

 (Get-Date).ToUniversalTime()

 The ToUniversalTime method only changes the date if the Kind property of the date is set to Local or Unspecified. This is shown in the following snippet:

 PS> Get-Date | Select-Object DateTime, Kind

DateTime Kind

-------- ----

30 October 2018 18:38:41 Local

 The ToLocalTime method adjusts the date in accordance with the system's current time zone. This operation is performed if Kind is Utc or unspecified.

 A date of a specific Kind may be created as follows, enabling the appropriate use of ToLocalTime or ToUniversalTime. When creating a date using the constructor for DateTime, the time must be provided in ticks; the number of 100-nanosecond intervals since the first day of 1601:

 $UtcDate = [DateTime]::new((Get-Date).Ticks, 'Utc')

 Dates may be converted into a string, either immediately using Get-Date with the Format parameter or using the ToString method. The Format parameter and ToString method accept the same arguments.

 The date strings created by the following statements are equal:

 Get-Date -Format 'dd/MM/yyyy HH:mm'

(Get-Date).ToString('dd/MM/yyyy HH:mm')

 The ToString method is useful, as it allows you to adjust a date by chaining properties and methods before converting it into a string. The following command finds midnight (in universal time) one week before today's date and then converts it to a string:

 (Get-Date).ToUniversalTime().

 Date.

 AddDays(-7).

 ToString('dd/MM/yyyy HH:mm')

 The ToString method used on DateTime expects the value to be in valid DateTime format characters. Literal strings, values that are not placeholders for parts of the date, can be included in the date format by enclosing literal values in double quotes (within the format string):

 PS> Get-Date -Format 'dddd" the "d" day of "MMM'

Sunday the 17 day of Jan

 A similar outcome might be achieved using the format operator; for example:

 '{0:dddd} the {0:dd} day of {0:MMM}' -f (Get-Date)

 The format operator does not correctly interpret a single d to represent the day number.

 The possible values that you can use in date format strings are listed with examples on Microsoft Docs:

 https://docs.microsoft.com/dotnet/standard/base-types/standard-date-and-time-format-strings

 https://docs.microsoft.com/dotnet/standard/base-types/custom-date-and-time-format-strings

 When storing dates, it is a good practice to store them in an unambiguous format such as a universal date-time string. Consider the following:

 (Get-Date).ToUniversalTime().ToString('u')

 Alternatively, an ISO 8601 date can be created using this:

 (Get-Date).ToUniversalTime().ToString('u').Replace(' ', 'T')

 Many commands in PowerShell accept DateTime values for parameters. A string can be passed as an argument and PowerShell will attempt to coerce these values into DateTime.

 DateTime parameters

 While most commands deal with dates in a culture-specific format, care must be taken when passing dates as strings to parameters that cast to DateTime in cultures other than en-US.

 Casting to DateTime does not account for a cultural bias. For example, in the UK, the format dd/MM/yyyy is used. Casting this format to DateTime switches the format to MM/dd/yyyy (as used in the US):

 $string = "11/10/2000" # 11th October 2000

[DateTime]$string # 10th November 2000

 If a function is created that accepts DateTime as a parameter, the result may not be as expected, depending on the local culture:

 function Test-DateTime {

 param(

 [DateTime]$Date

)

 $Date

}

Test-DateTime -Date "11/10/2000"

 It is possible to work around this problem using the Get-Date command, to ensure that the culture-specific conversion is applied before DateTime is bound to the parameter (avoiding the attempt to coerce a string when binding a parameter):

 Test-DateTime -Date (Get-Date "11/10/2000")

 Commands such as Test-Path in PowerShell 7 accept a DateTime value for the OlderThan or NewerThan parameters. For example, the following command will only return true if a file exists in the specified path, and LastWriteTime is greater than one week ago:

 Test-Path c:\temp\file.txt -NewerThan (Get-Date).AddDays(-7)

 Event log search commands also make use of DateTime; for example, the following command finds the first 10 events from the system event log that were logged yesterday:

 Get-WinEvent -MaxEvents 10 -FilterHashtable @{

 LogName = 'System'

 StartTime = (Get-Date).Date.AddDays(-1)

 EndTime = (Get-Date).Date

}

 Each of the dates used is found relative to the current date using the methods and properties explored in the previous section.

 Comparing dates

 DateTime objects may be compared using comparison operators:

 $date1 = (Get-Date).AddDays(-20)

$date2 = (Get-Date).AddDays(1)

$date2 -gt $date1

 Dates can be compared to a string; the value on the right-hand side will be converted into DateTime.

 As with casting in parameters, care is required for date formats other than en-US. For example, in Europe, conversion might produce unexpected results if the dd/mm/yyyy format is used on the right-hand side:

 PS> (Get-Date 13/01/2017) -gt '12/01/2017'

False

 The comparison will succeed if the date is in en-US format:

 PS> (Get-Date 13/01/2017) -gt '01/12/2017'

True

 The result of the preceding operation depends on the current session culture. The date on the left, 13/01/2017, is invalid if the culture is en-US and will cause Get-Date to show an error.

 Dates are frequently used in PowerShell as parameter values, for comparisons, and to generate timestamp strings. The preceding methods and approaches allow dates to be easily manipulated.

 Summary

 The .NET methods and commands demonstrated in this chapter are an important part of any scripter or developer toolkit. The .NET methods used for strings, numbers, and date extend on or offer alternatives to the operators offered by PowerShell.

 PowerShell includes tools to convert string or text formats to objects or collections of objects. For example, the CSV commands will convert a comma-delimited string into an object where columns can be worked with as properties of objects.

 ConvertFrom-StringData, and the Windows PowerShell commands Convert-String and ConvertFrom-String offer advanced text parsing capabilities without the need to resort to regular expressions.

 Base64 encoding was briefly introduced in this chapter, primarily focused on using the -EncodedCommand parameter of powershell.exe or pwsh.exe. Base64 encoding is commonly used to represent arrays of bytes.

 Numeric operators, such as +, -, %, *, and / are a foundation for mathematical operations in PowerShell. The System.Math class explored in this chapter expands the range of operations to include rounding, raising a number to a power, square root, and many others.

 Dates are an important data type; they are used by many things either as properties of objects, such as the LastWriteTime value of a file, or a parameter value, such as the OlderThan or NewerThan parameters of Test-Path.

 Chapter 9, Regular Expressions, as the name suggests, explores using regular expressions in PowerShell.

 9

 Regular Expressions

 You can use regular expressions (regex) to perform searches against a text. For the uninitiated, anything but a trivial regular expression can be a confusing mess. To make the topic more difficult, regular expressions differ slightly across different programming languages, platforms, and tools. Given that PowerShell is built on .NET, PowerShell uses .NET-style regular expressions. There are often several different ways to achieve a goal when using regular expressions.

 This chapter covers the following topics:

 	Regex basics

 	Anchors

 	Quantifiers

 	Character classes

 	Alternation

 	Grouping

 	Look-ahead and look-behind

 	The .NET Regex type

 	Regex options

 	Examples of regular expressions

 Regular expressions can be complex, but knowing a small set of basic characters provides a useful foundation to build upon.

 Regex basics

 A regular expression is a pattern consisting of literal characters, an exact match, and special characters that have a variety of different behaviors. For example, the dot character, ., matches any single character and not a literal dot.

 A few basic characters can go a long way. Several of the most widely used characters and operators introduced in this section are summarized in Table 9.1:

 	

 Character

 	

 Description

 	

 Example

 	

 Any, except: [\^$.|?*+()

 	

 Literal character

 	

 'a' -match 'a'

 	

 .

 	

 Any single character (except carriage return, line feed, \r, and \n)

 	

 'a' -match '.'

 	

 *

 	

 The preceding character repeated zero or more times

 	

 'abc' -match 'a*'

 'abc' -match '.*'

 	

 +

 	

 The preceding character repeated one or more times

 	

 'abc' -match 'a+'

 'abc' -match '.+'

 	

 \

 	

 Escape a character's special meaning

 	

 '*' -match '*'

 '\' -match '\\'

 	

 ?

 	

 Optional character

 	

 'abc' -match 'ab?c'

 'ac' -match 'ab?c'

 Table 9.1: Widely used regex characters

 Literal characters

 The best place to begin is with the simplest of expressions – expressions that contain no special characters. These expressions contain what are known as literal characters. A literal character can be anything except [\^$.|?*+(). You must escape special characters using \ to avoid errors, as the following example shows:

 '9*8'-match '*' # * is reserved

'1+5' -match '\+' # + is reserved

 Curly braces ({}) are considered literal in many contexts.

 Regex is context sensitive

 Curly braces become reserved characters if they enclose either a number, two numbers separated by a comma, or one number followed by a comma.

 In the following two examples, { and } are literal characters:

 '{string}' -match '{'

'{string}' -match '{string}'

 In the preceding example, the curly braces take on a special meaning.

 The following example looks to match the word string followed by 122 additional g characters (for a total of 123 g characters in the string):

 'string{123}' -match 'string{123}'

 Repetition using quantifiers is explored later in this chapter.

 The following statement returns True and fills the matches automatic variable with what matched. The matches variable is a Hashtable; it's only updated when something successfully matches when using the -match operator:

 PS> 'The first rule of regex club' -match 'regex'

True

PS> $matches

Name Value

---- -----

0 regex

 If a -match fails, the matches variable continues to hold the last matching value:

 PS> 'This match will fail' -match 'regex'

False

PS> $matches

Name Value

---- -----

0 regex

 Any character (.)

 The next step is to introduce the period, or dot (.). The dot matches any single character, except end-of-line characters. The dot character is therefore useful when capturing a string containing anything. The following statement returns True:

 'abcdef' -match '......'

 As the previous expression matches any six characters anywhere in a string, it will also return True when a longer string is provided. There are no implied boundaries on the length of a string, only on the number of characters matched:

 'abcdefghijkl' -match '......'

 Repetition with * and +

 + and * are two of a set of characters known as quantifiers. Quantifiers define how many times the preceding character is repeated and are discussed in detail later in this chapter.

 The * character can be used to repeat the preceding character zero or more times. Consider the following example:

 'aaabc' -match 'a*' # Returns true, matches 'aaa'

 However, zero or more means the character in question does not have to be present at all:

 'bcd' -match 'a*' # Returns true, matches nothing

 If a character must be present in a string, the + quantifier is more appropriate:

 'aaabc' -match 'a+' # Returns true, matches 'aaa'

'bcd' -match 'a+' # Returns false

 Combining * or + with . produces two very simple expressions: .* and .+. These expressions may be used as follows:

 'Anything' -match '.*' # 0 or more. Returns true

'' -match '.*' # 0 or more. Returns true

'Anything' -match '.+' # 1 or more. Returns true

 Attempting to use either * or + as a match, without a preceding character, results in an error:

 PS> '*' -match '*'

OperationStopped: Invalid pattern '*' at offset 1. Quantifier {x,y} following nothing.

 The escape character (\)

 \ is an escape character, but it is perhaps more accurate to say that \ changes the behavior of the character that follows. For example, finding a string that contains the normally reserved character * may be accomplished using \, as follows:

 '1 * 3' -match '*'

 In the following example, \ is used to escape the special meaning of \, making it a literal character:

 'domain\user' -match 'domain\\user'

'domain\user' -match '.*\\.*'

 The preceding expression matches zero or more of any character, followed by a literal \, and then zero or more of any character.

 This technique may be used with -replace to change the domain prefix:

 'domain\user' -replace 'domain\\', 'newdomain\'

 Using \ alone will result in either an invalid expression or an unwanted expression. For example, the following regular expression is valid, but it doesn't act as you might expect. The . character is treated as a literal value because it is escaped. The following -match will return false:

 'domain\user' -match 'domain\.+'

 The following string will be matched by the previous regular expression, as the string contains a literal . (repeated one or more times):

 'domain.user' -match 'domain\.+'

 The -replace operator allows you to manipulate parts of these strings as follows:

 'Domain\User' -replace '.+\\' # Everything up to and including \

 Alternatively, it can -replace everything after a character:

 'Domain\User' -replace '\\.+' # Everything including and after \

 If an expression is being dynamically created, for instance, from a list of values or a value in a variable, the .NET Regex type can be used to escape values:

 $values = @(

 'C:\Temp'

 'domain.net'

) | ForEach-Object { [Regex]::Escape($_) }

$regex = $values -join '|'

 Once the above has been run, the result will be a single regex with any special characters escaped (making them literal). For example:

 C:\\Temp|domain\.net

 Any special characters in the strings are escaped, allowing the string to be incorporated into a regular expression as a literal value.

 Optional characters

 You can use the question mark character (?) to make the preceding character optional. For example, there might be a need to look for either the singular or plural form of a certain word:

 'There are 23 sites in the domain' -match 'sites?'

 The regular expression will match the optional s if it can; the ? character is greedy. A greedy expression will match as many characters as it possibly can.

 Non-printable characters

 Regular expressions support searches for non-printable characters. The most common of these are shown in Table 9.2:

 	

 Description

 	

 Character

 	

 Tab

 	

 \t

 	

 Line feed

 	

 \n

 	

 Carriage return

 	

 \r

 Table 9.2: Common non-printable characters

 Debugging regular expressions

 Regular expressions can quickly become complicated and difficult to understand. Modifying a complex regular expression is not a particularly simple undertaking.

 While PowerShell indicates whether there is a syntax error in a regular expression, it cannot do more than that. For example, in the following expression, PowerShell announces that there is a syntax error:

 PS> 'abc' -match '*'

OperationStopped: Invalid pattern '*' at offset 1. Quantifier {x,y} following nothing.

 Fortunately, there are several websites that can help you to visualize a regular expression and lend to an understanding of how it works against a given string.

 Debuggex is one such site. This service can pick apart regular expressions, showing how each element applies to an example. Debuggex can be found at https://www.debuggex.com/.

 Debuggex uses Java regular expressions, so some of the examples used in this chapter may not be compatible.

 Online engines that are .NET-specific, but do not include visualization, are as follows:

 	https://regextester.github.io/

 	http://www.regexplanet.com/advanced/dotnet/index.html

 Finally, the website http://www.regular-expressions.info is an important learning resource that provides detailed descriptions, examples, and references.

 Anchors

 An anchor does not match a character; instead, it matches what comes before (or after) a character:

 	

 Description

 	

 Character

 	

 Example

 	

 Beginning of a string

 	

 ^

 	

 'aba' -match '^a'

 	

 End of a string

 	

 $

 	

 'cbc' -match 'c$'

 	

 Word boundary

 	

 \b

 	

 'Band and Land' -match '\band\b'

 Table 9.3: Commonly used anchors

 Anchors are useful where a character, string, or word may appear elsewhere in a string and the position is critical.

 For example, there might be a need to get values from the PATH environment variable that start with a specific drive letter. One approach to this problem is to use the start of a string anchor; in this case, retrieving everything that starts with the C drive:

 $env:PATH -split ';' | Where-Object { $_ -match '^C' }

 Given an array, the -match operator will return matching values, and Where-Object can be dropped:

 $env:PATH -split ';' -match '^C'

 Alternatively, there may be a need to get every path that is three or more directories deep from a given set:

 $env:PATH -split ';' -match '\\.+\\.+\\.+$'

 The word boundary anchor matches both before and after a word. It allows a pattern to look for a specific word, rather than a string of characters that may be a word or a part of a word.

 For example, if the intent is to -replace the word day in the following string, then attempting this without the word boundary replaces too much:

 PS> 'The first day is Monday' -replace 'day', 'night'

The first night is Monnight

PS> 'Monday is the first day' -replace 'day', 'night'

Monnight is the first night

 Adding the word boundary avoids the problem of the expression matching the end of the world Monday without significantly increasing the complexity:

 PS> 'The first day is Monday' -replace '\bday\b', 'night'

The first night is Monday

PS> 'Monday is the first day' -replace '\bday\b', 'night'

Monday is the first night

 Repeating characters of parts of a regular expression is a common requirement. Repetition is controlled using quantifiers.

 Quantifiers

 A quantifier is used to define how many times a preceding character or group is repeated. Three examples of quantifiers have already been introduced: *, +, and ?. The quantifiers are as follows:

 	

 Character

 	

 Description

 	

 Example

 	

 *

 	

 The preceding character repeated zero or more times

 	

 'abc'-match 'a*'

 'abc'-match '.*'

 	

 +

 	

 The preceding character repeated one or more times

 	

 'abc'-match 'a+'

 'abc'-match '.+'

 	

 ?

 	

 Optional character

 	

 'abc' -match 'ab?c'

 'ac' -match 'ab?c'

 	

 {exactly}

 	

 A fixed number of characters

 	

 'abbbc' -match 'ab{3}c'

 	

 {min,max}

 	

 A number of characters within a range

 	

 'abc' -match 'ab{1,3}c'

 'abbc' -match 'ab{1,3}c'

 'abbbc' -match 'ab{1,3}c'

 	

 {min,}

 	

 Specifies a minimum number of characters

 	

 'abbc' -match 'ab{2,}c'

 'abbbbbc' -match 'ab{2,}c'

 Table 9.4: Commonly used quantifiers

 Each of *, +, and ? can be described using curly brace notation:

 	* is the same as {0,}

 	+ is the same as {1,}

 	? is the same as {0,1}

 It's extremely uncommon to find examples where the functionality of special characters is replaced with curly braces. It is equally uncommon to find examples where the quantifier {1} is used, as it adds unnecessary complexity to an expression.

 Exploring the quantifiers

 Each of these different quantifiers is greedy. A greedy quantifier grabs as much as it possibly can before allowing the regex engine to move on to the next character in the expression.

 In the following example, the expression has been instructed to match everything it can, ending with a \ character. As a result, it takes everything up to the last \, because the expression is greedy:

 PS> 'C:\long\path\to\some\files' -match '.*\\'

True

PS> $matches[0]

C:\long\path\to\some\

 The repetition operators can be made lazy by adding the ? character. A lazy expression, by contrast, will get as little as it can before it ends:

 PS> 'C:\long\path\to\some\files' -match '.*?\\'

True

PS> $matches[0]

C:\

 The result of the match is everything up to the first \ character.

 A possible use of a lazy quantifier is parsing HTML. The following line describes a simple HTML table. The goal is to get the first table data (td) element:

 <table><tr><td>Value1</td><td>Value2</td></tr></table>

 Using a greedy quantifier will potentially take too much; the following expression will match all content between the first <td> and the last </td> (rather than just the first element):

 PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'

PS> $html -match '<td>.+</td>'

True

PS> $matches[0]

<td>Value1</td><td>Value2</td>

 Using a character class is one possible way to solve the problem of the expression matching too much. The character class (explored later in the chapter) is used to take all characters except >, which denotes the end of the next </td> tag:

 PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'

PS> $html -match '<td>[^>]+</td>'

True

PS> $matches[0]

<td>Value1</td>

 Another way to solve the problem of matching too much is to use a lazy quantifier:

 PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'

PS> $html -match '<td>.+?</td>'

True

PS> $matches[0]

<td>Value1</td>

 Quantifiers are a vital part of working with regular expressions. They are often used after character classes to describe repetition.

 Character classes

 A character class is used to match a single character to a set of possible characters. A character class is denoted using square brackets ([]).

 For example, a character class may contain each of the vowels:

 'get' -match 'g[aeiou]t'

'got' -match 'g[aeiou]'

 Within a character class, the special or reserved characters are as follows:

 	-: Used to define a range

 	\: Escape character

 	^: Negates the character class

 Ranges

 A hyphen is used to define a range of characters, for example, to capture any number of characters repeated one or more times in a set (using +):

 '1st place' -match '[0-9]+' # $matches[0] is "1"

'23rd place' -match '[0-9]+' # $matches[0] is "23"

 A range in a character class can be any range of ASCII characters, such as the following examples:

 	a-z

 	A-K

 	0-9

 	1-5

 	!-9 (0-9 and the ASCII characters 33 to 47)

 The following code returns true, as " is ASCII character 34, and # is ASCII character 35; that is, they're within the specified !-9 range:

 PS> '"#' -match '[!-9]+'

True

PS> $matches[0]

"#

 The range notation allows hexadecimal numbers within strings to be identified. A hexadecimal character can be identified by a character class containing 0-9 and a-f:

 PS> 'The registry value is 0xAF9B7' -match '0x[0-9a-f]+'

True

PS> $matches[0]

0xAF9B7

 If the comparison operator is case sensitive, the character class may also define A-F:

 'The registry value is 0xAF9B7' -cmatch '0x[0-9a-fA-F]+'

 Alternatively, you can use a range might to tentatively find an IP address in a string. The following example finds the IP address (or addresses) of the current Windows computer:

 PS> (ipconfig) -match 'IPv4 Address.+: *[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'

 IPv4 Address. : 172.16.255.30

 The range used to find the IP address here is simple. It matches any string containing four numbers separated by a period. For example, the following version number matches this range:

 'version 0.1.2.3234' -match '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'

 This IP address-matching regular expression will be improved as the chapter progresses.

 The hyphen is not a reserved character when it is put in a position where it does not describe a range. If it is the first character (with no start to the range), it will be treated as a literal. The following split operation demonstrates this:

 PS> 'one-two_three,four' -split '[-_,]'

one

two

three

four

 The same output is seen when - is placed at the end (that is, when there is no end to the range):

 'one-two_three,four' -split '[_,-]'

 Elsewhere in the class, the escape character may be used to remove the special meaning from the hyphen:

 'one-two_three,four' -split '[_\-,]'

 Negated character class

 Within a character class, the caret (^) is used to negate the class. The character class [aeiou] matches vowels. Negating it with the caret, [^aeiou], matches any character except a vowel (including spaces, punctuation, tabs, and everything else).

 As with the hyphen, the caret is only effective if it is in the right position. In this case, it only negates the class if it is the first character. Elsewhere in the class, it is a literal character.

 A negated character class is sometimes the fastest way to tackle a problem. If the list of expected characters is small, negating that list is a quick way to perform a match.

 In the following example, the negated character class is used with the -replace operator to remove all non-alpha characters:

 PS> 'Ba%by8 a12315t the1231 k#.,154eyboard' -replace '[^a-z]'

Baby at the keyboard

 Negated character classes are a useful technique to avoid attempting to list all the possible characters that should match. Character class subtraction adds even greater flexibility to this technique.

 Character class subtraction

 Character class subtraction is supported by .NET (and hence PowerShell). Character class subtraction is not commonly used at all.

 Inside a character class, a character class may be subtracted from another, reducing the size of the overall set. One of the best examples of this extends to the character class containing vowels. The following matches the first vowel in a string:

 'The lazy cat sat on the mat' -match '[aeiou]'

 To match the first consonant, one approach can be to list all the consonants:

 'The lazy cat sat on the mat' -match '[b-df-hj-np-tv-z]'

 Another approach to the problem is to take a larger character class, then subtract the vowels:

 'The lazy cat sat on the mat' -match '[a-z-[aeiou]]'

 Shorthand character classes

 Several shorthand character classes are available. Table 9.5 shows each of these:

 	

 Shorthand

 	

 Description

 	

 Character class

 	

 \d

 	

 Digit character

 	

 [0-9]

 	

 \s

 	

 White space (space, tab, carriage return, new line, and form feed)

 	

 [\t\r\n\f]

 	

 \w

 	

 Word character

 	

 [A-Za-z0-9_]

 	

 \D

 	

 Not a digit character

 	

 [^0-9]

 	

 \S

 	

 Not a whitespace character

 	

 [^ \t\r\n\f]

 	

 \W

 	

 Not a word character

 	

 [^A-Za-z0-9_]

 Table 9.5: Shorthand character classes

 Each of these shorthand classes can be negated by capitalizing the letter. [^0-9] may be represented using \D and \S is for any character except white space, and \W for any character except a word character.

 Unicode category class

 The \p class may be used to match specific Unicode categories and is particularly useful for matching things like punctuation characters. \p cannot be used alone; a Unicode category must be defined in curly braces.

 For example, the following expression matches any punctuation character ({P}):

 PS> 'This, and that' -match '\p{P}'

True

PS> $matches

Name Value

---- -----

0 ,

 The possible Unicode categories are documented on Microsoft Docs: https://docs.microsoft.com/dotnet/standard/base-types/character-classes-in-regular-expressions#SupportedUnicodeGeneralCategories.

 A more specific match might be created by matching and replacing dash characters, including em- and en-dash variants:

 'Get–Process' -replace '\p{Pd}', '-'

 The preceding example may be hard to copy into the console. The following version recreates the dash character in the string using its character code, allowing the replacement to be demonstrated:

 "Get$([char]8211)Process" -replace '\p{Pd}', '-'

 The difference between the different dash types is hard to spot, yet en- and em-dashes can cause problems if used in place of a hyphen in PowerShell (outside of string values).

 For instance, when a dash is used in a command name, PowerShell will not recognize the command, despite it appearing to be correct. The following example forces this problem to occur:

 PS> & "Get$([char]8211)Process"

&: The term 'Get–Process' is not recognized as a name of a cmdlet, function, script file, or executable program.

Check the spelling of the name, or if a path was included, verify that the path is correct and try again.

 Character classes are used to match a single character against a set. A character class only ever matches a single character. Alternation is used to match alternate sequences of longer strings.

 Alternation

 The alternation (OR) character in a regular expression is a pipe (|). This is used to combine several possible regular expressions. A simple example is to match a list of words:

 'one', 'two', 'three' -match 'one|three'

 The alternation character has the lowest precedence; in the previous expression, every value is first tested against the expression to the left of the pipe and then against the expression to the right of the pipe.

 The goal of the following expression is to extract strings that only contain the words one or three. Adding the start- and end-of-string anchors ensures that there is a boundary. However, because the left and right are treated as separate expressions, the result might not be as expected when using the following expression:

 PS> 'one', 'one hundred', 'three', 'eighty three' -match '^one|three$'

one

one hundred

three

eighty three

 The two expressions are evaluated as follows:

 	Look for all strings that start with one

 	Look for all strings that end with three

 There are at least two possible solutions to this problem. The first is to add the start- and end-of-string characters to both expressions:

 'one', 'one hundred', 'three', 'eighty three' -match '^one$|^three$'

 Another possible solution is to use a group:

 'one', 'one hundred', 'three', 'eighty three' -match '^(one|three)$'

 Grouping is discussed in detail in the following section.

 Grouping

 A group in a regular expression serves several different possible purposes:

 	To denote repetition (of more than a single character)

 	To restrict alternation to a part of the regular expression

 	To capture values

 Repeating groups

 Groups may be repeated using any of the quantifiers. The regular expression that tentatively identifies an IP address can be improved using a repeated group. The starting point for this expression is as follows:

 [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+

 In this expression, the [0-9]+ term followed by a literal . character is repeated three times. Therefore, the expression can become as follows:

 ([0-9]+\.){3}[0-9]+

 The expression itself is not specific, it will match much more than an IP address, but is also now more concise. This example will be explored further later in this chapter.

 If * is used as the quantifier for the group, it becomes optional. If faced with a set of version numbers ranging in formats from 1 to 1.2.3.4, a similar regular expression might be used:

 [0-9]+(\.[0-9]+)*

 The result of applying this to several different version strings is shown in the following code:

 PS> 'v1', 'Ver 1.000.232.14', 'Version: 0.92', 'Version-7.92.1-alpha' |

>> Where-Object { $_ -match '[0-9]+(\.[0-9]+)*' } |

>> ForEach-Object { $matches[0] }

1

1.000.232.14

0.92

7.92.1

 In the case of the last example, -alpha is ignored; if that were an interesting part of the version number, the expression would need to be modified to account for that.

 Restricting alternation

 Alternation is the lowest precedence operator. In a sense, it might be wise to consider it as describing an ordered list of regular expressions to test.

 Placing an alternation statement in parentheses reduces the scope of the expression.

 For example, it is possible to match a multi-line string using alternation as follows:

 PS> $string = @'

First line

second line

third line

'@

PS> if ($string -match 'First(.|\r?\n)*line') { $matches[0] }

First line

second line

third line

 In this example, as . does not match the end-of-line character, using alternation allows each character to be tested against a broader set. In this case, each character is tested to see whether it is any character, \r\n or \n.

 A regular expression might be created to look for files with specific words, or parts of words, in the name:

 Get-ChildItem -Recurse -File |

 Where-Object { $_.Name -match '(pwd|pass(word|wd)?).*\.(txt|doc)$' }

 The expression that compares filenames looks for strings that contain pwd, pass, password, or passwd, followed by anything with the .txt or .doc extensions.

 This expression will match any of the following (and more):

 pwd.txt

server passwords.doc

passwd.txt

my pass.doc

private password list.txt

 The preceding expression is rough and will match far more. It is not necessarily a great way to do more than a casual search for files.

 Capturing values

 The ability to capture values from a string is an incredibly useful feature of regular expressions.

 When using the -match operator, groups that have been captured are loaded into the matches variable (Hashtable) in the order that they appear in the expression. Consider the following example:

 PS> 'first second third' -match '(first) (second) (third)'

True

PS> $matches

Name Value

---- -----

3 third

2 second

1 first

0 first second third

 The first key, 0, is always the string that matched the entire expression. Numbered keys are added to the Hashtable for each of the groups in the order that they appear. This applies to nested groups as well, counting from the leftmost (:

 PS> 'first second third' -match '(first) ((second) (third))'

True

PS> $matches

Name Value

---- -----

4 third

3 second

2 second third

1 first

0 first second third

 When using the -replace operator, the matches variable is not filled, but the contents of individual groups are available as numbered values, which may be used in Replace-With:

 PS>'first second third' -replace '(first) ((second) (third))', '$1, $4, $2'

first, third, second third

 Use single quotes when tokens are included

 As was mentioned in Chapter 4, Operators, single quotes should be used when using capture groups in Replace-With. Tokens in double quotes will expand as if they were PowerShell variables.

 The capture groups used in the previous example are, by default, given a numeric name based on their position. A capture group can be given a specific name.

 Named capture groups

 Capture groups can be given names. The name must be unique within the regular expression.

 The following syntax is used to name a group:

 (?<GroupName>Expression)

 This may be applied to the previous simple example as follows:

 PS> 'first second third' -match '(?<One>first) (?<Two>second) (?<Three>third)'

True

PS> $matches

Name Value

---- -----

One first

Three third

Two second

0 first second third

 In PowerShell, this adds a pleasant additional capability. If the goal is to tear apart text and turn it into an object, one approach is as follows:

 if ('first second third' -match '(first) (second) (third)') {

 [PSCustomObject]@{

 One = $matches[1]

 Two = $matches[2]

 Three = $matches[3]

 }

}

 This produces an object that contains the result of each (unnamed) -match group in a named property.

 An alternative is to use named matches and create an object from the matches Hashtable. When using this approach, $matches[0] should be removed:

 PS> if ('first second third' -match '(?<One>first) (?<Two>second) (?<Three>third)') {

 $matches.Remove(0)

 [PSCustomObject]$matches

}

One Three Two

--- ----- ---

first third second

 A possible disadvantage of this approach is that the output is not ordered, as it has been created from a Hashtable.

 Named capture groups can also be used with the -replace operator. The name for the group can be used in Replace-With if the name is enclosed in curly braces:

 PS> 'first second third' -replace

>> '(?<One>first) (?<Two>second) (?<Three>third)',

>> '${Three}, ${Two}, ${One}'

third, second, first

 If a group is only present because of a quantifier or because of alternation, it can be excluded from $matches by making the group non-capturing.

 Non-capturing groups

 By default, every group is a capture group. A group can be marked as non-capturing by using ?: before the expression. In the following example, the third group has been marked as a non-capturing group:

 PS> 'first second third' -match '(?<One>first) (?<Two>second) (?:third)'

True

PS> $matches

Name Value

---- -----

Two second

One first

0 first second third

 This technique is useful when a group might need a quantifier, but when it is not desirable to include it in the $matches Hashtable.

 In the following example, a new group is added around the last two groups. This group adds another:

 PS> 'first second third' -match '(first) ((second) (third))'

True

PS> $matches

Name Value

---- -----

4 third

3 second

2 second third

1 first

0 first second third

 Groups in matches are added in the order they are written in the regular expression. If it is not desirable to capture the content of the group, for instance, if the group is used to control repetition, it can be excluded using ?::

 PS> 'first second third' -match '(first) (?:(second) (third))'

True

PS> $matches

Name Value

---- -----

3 third

2 second

1 first

0 first second third

 This technique may be useful when using -replace; it simplifies the list of values available even if an expression grows in complexity:

 PS> 'first second third' -replace '(first) (?:(second) (third))',

>> '$3, $2, $1'

third, second, first

 Grouping, whether to repeat more extensive parts of an expression or to capture content, is an important part of working with regular expressions.

 Look-ahead and look-behind

 Look-ahead and look-behind may be used to describe what happens around an expression, without affecting what is captured or what is replaced.

 You can use positive look-ahead and look-behind to match strings that begin or end with specific values. And, you can use negative look-ahead and look-behind to match strings that do not begin or end with specific values:

 	

 Expression

 	

 Description

 	

 Matches

 	

 Does not match

 	

 one(?=, two)

 	

 Positive look-ahead

 	

 one, two

 	

 one, three

 	

 (?<=three,)four

 	

 Positive look-behind

 	

 three, four

 	

 two, four

 	

 one(?!, two)

 	

 Negative look-ahead

 	

 one, three

 	

 one, two

 	

 (?!=three,)four

 	

 Negative look-behind

 	

 two, four

 	

 three, four

 Table 9.6: Look-ahead and look-behind expressions

 In each case in Table 9.6, the value in bold will be captured in $matches[0]. The value in the look-ahead or look-behind is not included in the match.

 The two assertions can be combined to find a value, when that value is between two specific values, for example, a value between two HTML tags:

 $string = @'

<table>

 <tr><td>1</td><td>One</td></tr>

 <tr><td>11</td><td>Eleven</td></tr>

 <tr><td>111</td><td>One-hundred and eleven</td></tr>

</table>

'@

$string -match '(?<=<td>\d<.+?><td>).+(?=</td>)'

 The result of the match is True and the $matches variable is set as the following shows:

 PS> $matches

Name Value

---- -----

0 One

 The expression can be broken down into smaller parts.

 The positive look-behind (?<=<td>\d<.+?><td>) matches a sequence of characters as follows:

 	<td> – A literal value

 	\d – A single-digit character

 	< – A literal value

 	.+? – One or more characters and as few characters as possible

 	> – A literal value

 	<td> – A literal value

 This expression therefore matches the following value:

 <td>1</td><td>

 The main part of the regular expression is .+, which matches any string of one or more characters long. This string must come immediately after the value matched by the positive look-behind.

 Finally, the positive look-ahead (?=</td>) matches the literal value <td> only.

 The expression will therefore match the string One as it is the only part of the string preceded by a single digit in the table data element.

 For even more complex matching scenarios, the .NET Regex class can be extremely useful.

 The .NET Regex type

 Much of this chapter has been concerned with the -match operator. The -match operator is extremely useful but has a short-coming: it returns a single contiguous string match from the value on the left-hand side of the operator; it cannot return more than one match except when using capture groups.

 It is occasionally desirable to return all matches from a string. There are two ways to tackle this:

 	Use the Select-String command with the AllMatches parameter

 	Use the static Matches method of the Regex type

 For example, the following string contains several key-value pairs:

 $string = @'

Name: Ruth

Job title: Programmer

Language: C#

Level: Senior

'@

 Each individual line can be broken down into a key and value pair using the following regular expression:

 ^(?<Key>[^:]+): (?<Value>.+)$

 For example, the first line matches the expression. The value Name is placed in the group named Key. The value Ruth is placed in the group named Value.

 If the start and end anchors are removed, and the expression is used with the -match operator, the first line only will be matched:

 PS> $string -match '(?<Key>[^:]+): (?<Value>.+)'

True

PS> $matches

Name Value

---- -----

Value Ruth

Key Name

0 Name: Ruth

 It is possible to split the line and use Where-Object to match each of the lines in turn to capture all the values. Those values might be added to an ordered dictionary before being converted to a custom object:

 $properties = [Ordered]@{}

$string -split '\n' | Where-Object {

 $_ -match '^(?<Key>[^:]+): (?<Value>.+)$'

} | ForEach-Object {

 $properties[$matches['Key']] = $matches['Value']

}

[PSCustomObject]$properties

 The result of this operation is:

 Name Job title Language Level

---- --------- -------- -----

Ruth Programmer C# Senior

 An alternative approach is to use the static Matches method of the Regex type to extract a list of key and value pairs:

 $string = @'

Name: Ruth

Job title: Programmer

Language: C#

Level: Senior

'@

$properties = [Ordered]@{}

[Regex]::Matches(

 $string,

 '^(?<Key>[^:]+): (?<Value>.+)$',

 'Multiline'

) | ForEach-Object {

 $properties[$_.Groups['Key'].Value] = $_.Groups['Value'].Value

}

[PSCustomObject]$properties

 The result of either of the two preceding examples is a custom object created based on the content of the string:

 Name Job title Language Level

---- --------- -------- -----

Ruth Programmer C# Senior

 When using the Matches static method, expressions are case-sensitive by default. The preceding example uses the Multiline option; if IgnoreCase were required too it can be added as shown here:

 [Regex]::Matches(

 $string,

 '^(?<Key>[^:]+): (?<Value>.+)$',

 'Multiline, IgnoreCase'

)

 This technique is especially useful for complex match and replace operations. The method returns a MatchCollection instance, which includes instances of the match as described in Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.match.

 In addition to Matches, the Regex type provides the Escape method, used at the beginning of this chapter, and an Unescape method, which can be used to remove regex escape characters from a string.

 The preceding Multiline and IgnoreCase options can be used with the -match operator if the options are written inside the regular expression.

 Regex options

 Regular expression options are used to control the behavior of certain characters in an expression.

 Some aspects of the behavior of a regular expression can be modified by placing a regex option either at the beginning or around part of an expression.

 In the following example, .+ will only match the first line; the result of the whole match is in the 0 key in the $matches Hashtable:

 PS> "First line`nSecond line" -match '.+'

True

PS> $matches[0]

First line

 This is because dot (.) will not match line break characters by default. You can change this by setting a single-line option for the expression:

 PS> "First line`nSecond line" -match '(?s).+'

True

PS> $matches[0]

First line

Second line

 Table 9.7 shows various regex options and their effect:

 	

 Character

 	

 Description

 	

 Effect

 	

 i

 	

 Case-insensitive matching

 	

 Allows case-insensitive matching to be toggled on or off

 	

 m

 	

 Multi-line

 	

 ^ and $ match the start and end of a line instead of the start and end of the string

 	

 s

 	

 Single-line

 	

 . also matches new-line characters

 	

 n

 	

 Ignore unnamed groups

 	

 Unnamed groups are not captured

 	

 x

 	

 Ignore unescaped white space

 	

 White space in the expression is ignored

 Table 9.7: Regex options

 You can use the case sensitivity option with both -match and -cmatch. With -match, the expression is case insensitive by default. It, or small parts of the expression, can be made case sensitive by doing the following:

 PS> 'Name (first or full): Bob' -match '^[a-z]+.*(?-i)([A-Z].+)$'

True

PS> $matches[1]

Bob

 When using -cmatch, the option might be enabled instead, for example:

 'Name (first or full): Bob' -cmatch '^(?i)[a-z]+.*(?-i)([A-Z].+)$'

 Options can be combined. In the following example, both single- and multi-line mode are enabled:

 "First line`nSecond line" -match '(?sm)^\S+\sl.+$'

 As + is greedy, the line break will be part of the matched string. If the lazy modifier is added to +, the match will stop at the end of the first line:

 "First line`nSecond line" -match '(?sm)^\S+\sl.+?$'

 You can enable options then disable them within an expression. This allows an option to apply to a small part of an expression if required:

 PS> 'The Cat in the Hat' -cmatch '[A-Z][a-z]+ (?i)[a-z]+(?-i) [a-z]+'

True

PS> $matches

Name Value

---- -----

0 The Cat in the

 Options like these are perhaps more commonly used in languages other than PowerShell.

 Perhaps one of the most useful options is the option to ignore unescaped white space. While it is not immediately obvious, it enables comments in regular expressions.

 In a regex, a comment is denoted by a hash followed by a space at the start of a line. For example:

 $regex = '(?x)# This is a comment

abc'

'abc' -match $regex

 In the next section, you'll use this feature and cement the knowledge acquired from this chapter with a few examples.

 Examples of regular expressions

 The following examples walk you through creating regular expressions for several different formats.

 MAC addresses

 Media Access Control (MAC) is a unique identifier for network interfaces with 6-byte fields normally written in hexadecimal.

 ipconfig with the /all switch parameter can show the MAC address of each interface. The address is written in hexadecimal, and each byte is separated by a hyphen, for example, 1a-2b-3c-4d-5f-6d.

 On Linux or Unix-based systems, the ip address command shows the hardware (MAC) address for interfaces. Each hexadecimal byte is separated by a :, such as 1a:2b:3c:4d:5f:6d.

 A regular expression can be created to simultaneously match these formats. The expression matches the output from the ipconfig /all command on Windows and the ip address command on Linux. In both cases, the MAC address appears after a space at the end of a line.

 Considering the preceding formats, the MAC address is made up of six groups of two hexadecimal characters.

 To match a single hexadecimal character, the following character class may be used:

 [0-9a-f]

 The first byte is two characters, so a quantifier is added:

 [0-9a-f]{2}

 After the first byte, the string includes a hyphen or a colon:

 [0-9a-f]{2}[-:]

 This pattern of a byte followed by a hyphen or colon repeats five times:

 ([0-9a-f]{2}[-:]){5}

 The final byte is not followed by a hyphen or colon; it is added to the end:

 ([0-9a-f]{2}[-:]){5}[0-9a-f]{2}

 The hexadecimal string appears at the end of a line; the $ anchor is added to describe this:

 ([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$

 Finally, the MAC address appears after a space:

 \s([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$

 To exclude the space from the match, it is moved into a positive look-behind:

 (?<=\s)([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$

 The regular expression is used in a Where-Object statement to find lines matching the MAC address. On Windows:

 PS> $regex = '(?<=\s)([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$'

PS> ipconfig /all |

>> Where-Object { $_ -match $regex } |

>> ForEach-Object { $matches[0] }

12-34-56-78-9a-bc

 Or Linux:

 PS> $regex = '(?<=\s)([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$'

PS> ip address |

>> Where-Object { $_ -match $regex } |

>> ForEach-Object { $matches[0] }

12:34:56:78:9a:bc

 IP addresses

 Validating an IPv4 address using a regular expression is not necessarily a trivial task.

 The IP address consists of four octets; each octet can be a value between 0 and 255. When using a regular expression, the values are considered strings; therefore, the following strings must be considered:

 	[0-9]: 0 to 9

 	[1-9][0-9]: 1 to 9, then 0 to 9 (10 to 99)

 	1[0-9]{2}: 1, then 0 to 9, then 0 to 9 (100 to 199)

 	2[0-4][0-9]: 2, then 0 to 4, then 0 to 9 (200 to 249)

 	25[0-5]: 2, then 5, then 0 to 5 (250 to 255)

 Each of these is an exclusive set, so alternation is used to merge all the previous small expressions into a single expression. This generates the following group, which matches a single octet (0 to 255):

 ([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

 For example, the following value will match successfully:

 '243' -match '^([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$'

 Whereas the expression will not match 256:

 PS> '256' -match '^([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$'

False

 The IP address validation expression contains repetition now; it contains four octets with a period between each of them:

 (([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

 The IPAddress type might be better than regex

 There are other, perhaps better, ways to test whether a string can be an IP address instead of using such a long regex.

 If a string is a strong candidate for being an IP address, consider using the TryParse static method on the IPAddress type. It will handle both v4 and v6 addressing, as follows:

 $ipAddress = [IPAddress]0 # Used as a placeholder

if ([IPAddress]::TryParse("::1", [ref]$ipAddress)) {

 $ipAddress

}

 The regular expression is long and complicated. It can be broken down using the ignore expression white space option (which enables comments). The last octet is the same matching sequence as the first three; it does not have extra comments in this example:

 $regex = '(?x)

 # First three octets

 ((

 # 0 to 9 OR

 [0-9]|

 # 10 to 99 OR

 [1-9][0-9]|

 # 100 to 199 OR

 1[0-9]{2}|

 # 200 to 249 OR

 2[0-4][0-9]|

 # 250 to 255

 25[0-5]

 # Trailing dot and repeat

)\.){3}

 # Last octet

 ([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])'

'10.0.0.1' -match $regex

 The preceding expression includes a lot of capture groups. These can be globally ignored since the values captured will not make a great deal of sense. You can add the ignore unnamed groups (n) option to the expression to ignore these, which saves adding ?: to each of the groups individually:

 $regex = '(?xn)

 # First three octets

 ((

 # 0 to 9 OR

 [0-9]|

 # 10 to 99 OR

 [1-9][0-9]|

 # 100 to 199 OR

 1[0-9]{2}|

 # 200 to 249 OR

 2[0-4][0-9]|

 # 250 to 255

 25[0-5]

 # Trailing dot and repeat

)\.){3}

 # Last octet

 ([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])'

 Using the expression with match will show it now only captures the one group:

 PS> '10.0.0.1' -match $regex

True

PS> $matches

Name Value

---- -----

0 10.0.0.1

 The netstat command

 The netstat command produces a tab-delimited, fixed-width table. The following example converts the active connections that list active TCP connections, as well as listening TCP and UDP ports, into an object.

 A snippet of the output that the example is intended to parse is shown in the following code:

 PS> netstat -ano

Active Connections

 Proto Local Address Foreign Address State PID

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4

 TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

 When handling text such as this, a pattern based on white space (or not white space) can be used:

 ^\s*\S+\s+\S+

 The expression breaks down as follows:

 	^ – The start of the string

 	\s* – Zero or more white space characters; any padding to the left of the table

 	\S+ – One or more characters that are not white space; represents the value in the column, such as TCP

 	\s+ – One or more white space characters; the white space between columns

 For each column, the following expression with a named group is created:

 (?<ColumnName>\S+)\s+

 The trailing \s+ is omitted for the last column (PID).

 The expression is long and benefits from the (?x) option, which ignores white space in the pattern and enables comments:

 (?x)

The left hand side of the table

^\s*

Protocol column (and white space after)

(?<Protocol>\S+)\s+

Local address column (and white space after)

(?<LocalAddress>\S+)\s+

Foreign address column (and white space after)

(?<ForeignAddress>\S+)\s+

State column (and white space after)

(?<State>\S+)\s+

PID column and the end of string

(?<PID>\d+)$

 The expression is long, but incredibly repetitive. The repetition is desirable in this case, where each column value is pushed into a differently named group.

 The expression can be applied using Where-Object:

 $regex = '(?x)

 # The left hand side of the table

 ^\s*

 # Protocol column (and white space after)

 (?<Protocol>\S+)\s+

 # Local address column (and white space after)

 (?<LocalAddress>\S+)\s+

 # Foreign address column (and white space after)

 (?<ForeignAddress>\S+)\s+

 # State column (and white space after)

 (?<State>\S+)\s+

 # PID column and the end of string

 (?<PID>\d+)$'

netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {

 $matches.Remove(0)

 [PSCustomObject]$matches

}

 The output from this command will be missing information about UDP ports. The regular expression makes having a value in the state column mandatory. Marking this group as optional will add UDP connection information to the output:

 (State>\S+)?

 Inserting it back into the regular expression is achieved as follows:

 $regex = '(?x)

 # The left hand side of the table

 ^\s*

 # Protocol column (and white space after)

 (?<Protocol>\S+)\s+

 # Local address column (and white space after)

 (?<LocalAddress>\S+)\s+

 # Foreign address column (and white space after)

 (?<ForeignAddress>\S+)\s+

 # State column (and white space after)

 (?<State>\S+)?\s+

 # PID column and the end of string

 (?<PID>\d+)$'

netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {

 $matches.Remove(0)

 [PSCustomObject]$matches

}

 Finally, if it is desirable to return the fields in the same order as netstat does, Select-Object may be used:

 $regex = '(?x)

 # The left hand side of the table

 ^\s*

 # Protocol column (and white space after)

 (?<Protocol>\S+)\s+

 # Local address column (and white space after)

 (?<LocalAddress>\S+)\s+

 # Foreign address column (and white space after)

 (?<ForeignAddress>\S+)\s+

 # State column (and white space after)

 (?<State>\S+)?\s+

 # PID column and the end of string

 (?<PID>\d+)$'

netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {

 $matches.Remove(0)

 [PSCustomObject]$matches

} | Select-Object Protocol, LocalAddress, ForeignAddress, State, PID |

 Format-Table

 The outcome is a collection of custom objects that contain the values from netstat. The following shows a snippet of the output:

 Protocol LocalAddress ForeignAddress State PID

-------- ------------ -------------- ----- ---

TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124

TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4

TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

 Formatting certificates

 It is occasionally necessary to create certificates in specific formats to appease other systems.

 A certificate may be exported as a Base64 string as the following code shows. The InsertLineBreaks option splits the string every 76 characters:

 $certificate = Get-ChildItem Cert:\LocalMachine\Root |

 Select-Object -First 1

[Convert]::ToBase64String(

 $certificate.Export('Cert'),

 [System.Base64FormattingOptions]::InsertLineBreaks

)

 If a different width is required, you can use a regular expression to tweak the format of the certificate, in this case, splitting at 64 characters wide:

 $certificate = Get-ChildItem Cert:\LocalMachine\Root |

 Select-Object -First 1

@(

 '-----BEGIN CERTIFICATE-----'

 [Convert]::ToBase64String(

 $certificate.Export('Cert')

) -split '(?<=\G.{64})'

 '-----END CERTIFICATE-----'

) | Out-String

 The previous example combines a positive look-behind with the \G anchor. The \G anchor matches from the end of the last match.

 Summary

 This chapter looked at regular expressions and their use in PowerShell.

 The Regex basics section introduced several heavily used characters. We used anchors to show how the start and end of a string or word boundary may be used to restrict the scope of an expression.

 Character classes were introduced as a powerful form of alternation, providing a range of options for matching a single character. We demonstrated alternation using different sets of expressions.

 We looked at repetition using "*", +, ?, and curly braces ({}) and discussed the notion of greedy and lazy expressions.

 Grouping was used as a means of limiting the scope of alternation to repeat larger expressions or to capture strings.

 Finally, we went through several examples, bringing together the areas covered in this chapter to solve specific problems.

 In Chapter 10, Files, Folders, and the Registry, we will discuss working with files, folders, and the registry.

 10

 Files, Folders, and the Registry

 The filesystem and the registry are two among several providers available in PowerShell. A provider represents a data store in a hierarchy of container and leaf objects.

 In the context of the filesystem, a container is a folder or directory. A leaf object is a file.

 A provider is therefore a way to access arbitrary data that has been arranged to somewhat represent a filesystem.

 This chapter covers the following topics:

 	Working with providers

 	Items

 	Item properties and attributes

 	Windows permissions

 	Transactions

 	File catalog commands

 The commands used to work with data within a provider, such as a filesystem, are common to all providers.

 Working with providers

 Each provider shares a common set of commands, such as Set-Location, Get-Item, and New-Item.

 The full list of commands that you can use when interacting with a provider can be seen by running the following snippet:

 $params = @{

 Name = @(

 '*-Item*'

 '*-ChildItem'

 '*-Content'

 '*-Acl'

 '*-Location'

)

 Module = @(

 'Microsoft.PowerShell.Management'

 'Microsoft.PowerShell.Security'

)

}

Get-Command @params

 Each group of commands (such as the *-Content commands) is used when a provider supports a certain behavior. This is indicated by the .NET type it inherits, and the interfaces it implements.

 For example, a provider that supports navigation allows the use of Get-Item, Get-ChildItem, Set-Location, and so on. This is possible because the FileSystemProvider inherits from a NavigationCmdletProvider type:

 PS> (Get-PSProvider FileSystem).ImplementingType.BaseType

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False NavigationCmdletProvider System.Management.Automatio...

 A provider that has content may allow the use of Get-Content, Set-Content, and so on. This is indicated by a provider supporting the IContentCmdletProvider interface:

 PS> (Get-PSProvider FileSystem).ImplementingType.ImplementedInterfaces

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False IResourceSupplier

True False IContentCmdletProvider

True False IPropertyCmdletProvider

True False ISecurityDescriptorCmdletProvider

True False ICmdletProviderSupportsHelp

 The preceding output also shows that the FileSystem provider implements the ISecurityDescriptorCmdletProvider interface. This indicates support for Get-Acl and Set-Acl.

 In addition to the commands each provider supports, a provider can add dynamic parameters to a command. For example, in the certificate provider (the cert: drive), the Get-ChildItem command gains parameters for CodeSigningCert, DocumentEncryptionCert, SSLServerAuthentication, and so on.

 These dynamic parameters are described in the help files for each provider. The help files are not currently available in PowerShell 7; you must use Windows PowerShell to view the content. For example:

 Get-Help certificate

Get-Help registry

 The name of the provider is taken from Get-PSProvider. Support for this help content is indicated by the ICmdletProviderSupportsHelp interface as shown for the preceding FileSystem provider.

 The most common operation, especially with a provider like FileSystem, is navigating.

 Navigating

 Set-Location, which has the alias cd, is used to navigate around a provider's hierarchy; for example:

 Set-Location \ # The root of the current drive

Set-Location Windows # A child container named Windows

Set-Location .. # Navigate up one level

Set-Location ..\.. # Navigate up two levels

Set-Location Cert: # Change to a different drive

Set-Location HKLM:\Software # Change to a specific child container under a drive

 Set-Location may only be used to switch to a container object, such as a filesystem folder.

 The print working directory ($PWD) variable shows the current location across all providers:

 PS> $PWD

Path

HKLM:\Software\Microsoft\Windows\CurrentVersion

 pwd and .NET

 .NET classes and methods are oblivious to PowerShell's current directory. When the following command is executed, the file will be created in the Start in path (if a shortcut started PowerShell):

 [System.IO.File]::WriteAllLines('file.txt', 'Some content')

 .NET constructors and methods are an ideal place to use the pwd variable:

 [System.IO.File]::WriteAllLines("$pwd\file.txt", 'Some content')

 The Set-Location command changes the working directory to a new location. PowerShell also offers two commands that allow movement into and out of locations.

 Push-Location will change the current location:

 Push-Location c:\windows

 Pop-Location returns to the previous location:

 Pop-Location

 In PowerShell 7, Push-Location and Pop-Location include a StackName parameter, which allows movement across several different lists of locations.

 PowerShell 7 simplifies and enhances this by adding two special arguments to Set-Location. PowerShell tracks the locations visited with Set-Location. Using the - symbol for the path will move backward in the list of visited locations (somewhat equivalent to Pop-Location):

 Set-Location c:\windows

Return to the previous location

Set-Location -Path -

 Using the + symbol for the path will move forward in the list of visited paths. Running the following example assumes - has been used beforehand, otherwise there will not be a location to move forward to:

 Set-Location -Path +

 These two values are synonymous with the back and forward buttons available in any web browser.

 Getting items

 The Get-Item command is used to get an instance of an object represented by a path:

 Get-Item -Path \ # The root container

Get-Item -Path . # The current container

Get-Item -Path .. # The parent container

Get-Item -Path C:\Windows\System32\cmd.exe # A leaf item

Get-Item -Path Cert:\LocalMachine\Root # A container item

 If a wildcard is used with the Get-Item command and the Path parameter, all matching items will be returned.

 When working with the filesystem, a container is a directory (or folder) and a leaf is a file. In the registry, a key is a container and there are no leaves. In a certificate provider, a store or store location is a container, and a certificate is a leaf.

 The Get-ChildItem command, which has the dir, ls, and gci aliases, is used to list the children of the current item.

 Neither Get-ChildItem nor Get-Item will show hidden files and folders by default. The following error will be returned for a hidden item:

 PS> Get-Item $env:USERPROFILE\AppData

Get-Item: Could not find item C:\Users\Chris\AppData.

 The Force parameter may be added to access hidden items:

 PS> Get-Item $env:USERPROFILE\AppData -Force

 Directory: C:\Users\Someone

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--h-- 23/09/2016 18:22 AppData

 Drives

 PowerShell will automatically create a drive for any disk with a drive letter, any existing shared drive, the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER registry hives, the certificate store, and so on.

 Additional drives may be added using New-PSDrive; for example, a network drive can be created:

 New-PSDrive -Name X -PSProvider FileSystem -Root \\Server\Share

New-PSDrive -Name HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT

 Existing drives may be removed using Remove-PSDrive. PowerShell allows filesystem drives to be removed; however, this is not a destructive operation, and it only removes the reference to the drive from PowerShell.

 The filesystem provider supports the use of credentials when creating a drive, allowing network shares to be mapped using specific credentials.

 Creating providers

 It is possible to write limited providers in PowerShell by using the SHiPS module, which is available on the PowerShell Gallery: https://github.com/PowerShell/SHiPS.

 Searching GitHub will show some projects using this: https://github.com/search?q=shipsdirectory&type=Code&utf8=%E2%9C%93.

 Creating providers is beyond the scope of this chapter as it requires extensive use of PowerShell classes.

 Items

 Support for each of the *-Item commands varies from one provider to another. The filesystem provider supports all the commands, while the Registry provider supports a smaller number.

 Testing for existing items

 The Test-Path command may be used to test for the existence of a specific item under a drive:

 Test-Path HKLM:\Software\Publisher

 Test-Path distinguishes between item types with the PathType parameter. The container and leaf terms are used across providers to broadly classify items.

 The following commands test for items of differing types:

 Test-Path C:\Windows -PathType Container

Test-Path C:\Windows\System32\cmd.exe -PathType Leaf

 Conversely, testing a path that is a file (leaf) with the container PathType will return false:

 Test-Path C:\Windows\System32\cmd.exe -PathType Container

 The Test-Path command is often used in an if statement prior to creating a file or directory to determine if creating the object is necessary:

 if (-not (Test-Path C:\Temp\NewDirectory -PathType Container)) {

 New-Item C:\Temp\NewDirectory -ItemType Directory

}

 In the preceding example, if a C:\Temp\NewDirectory file exists, the New-Item command will fail. PathType validation is perhaps more useful when validating parameters in functions and scripts than as an existence check before creating an object.

 Windows PowerShell, Get-Item, Test-Path, and pagefile.sys

 Some files in Windows are locked, with the result that Get-Item and Test-Path in Windows PowerShell are unable to correctly return results. The pagefile.sys file is one of these.

 Get-Item returns an error, indicating that the file does not exist, even when the Force parameter is used. Test-Path always returns false.

 This may be a bug in Windows PowerShell and is fixed in PowerShell 6 and above. To work around the problem, Get-ChildItem is able to get the file:

 Get-ChildItem C:\ -Filter pagefile.sys -Force

 To replace the functionality of Test-Path, the static method Exists may be used:

 [System.IO.File]::Exists('c:\pagefile.sys')

 Creating and deleting items

 The New-Item command can create files, directories, keys, and so on depending on the provider:

 New-Item $env:Temp\newfile.txt -ItemType File

New-Item $env:Temp\newdirectory -ItemType Directory

New-Item HKLM:\Software\NewKey -ItemType Key

 When creating a file using New-Item in PowerShell, the file is empty (0 bytes).

 In PowerShell 5, New-Item gained the ability to create symbolic links, junctions, and hard links:

 	A symbolic link is a link to another file or directory. Creating a symbolic link requires administrator privileges (run as administrator).

 	A hard link is a link to another file on the same drive.

 	A junction is a link to another directory on any local drive. Creating a junction does not require administrative privileges.

 You can create links as follows:

 New-Item LinkName -ItemType SymbolicLink -Value \\Server\Share

New-Item LinkName.txt -ItemType HardLink -Value OriginalName.txt

New-Item LinkName -ItemType Junction -Value C:\Temp

 Temporary files

 If a script needs a file to temporarily store data, the New-TemporaryFile command may be used.

 This command was introduced with PowerShell 5. Earlier versions of PowerShell may use the Path.GetTempFileName static method:

 [System.IO.Path]::GetTempFileName()

 Both commands create an empty file. The resulting file may be used with Set-Content, Out-File, or any commands that write data to a file.

 The Remove-Item command may be used to remove an existing item under a provider; for example:

 $file = New-TemporaryFile

Set-Content -Path $file -Value 'Temporary: 10'

Remove-Item $file

 Providers such as a filesystem and registry are reasonably flexible about removing items. When removing a directory or key with children, the recurse parameter should be used.

 The certificate provider restricts the use of Remove-Item to certificates; certificate stores cannot be added or removed.

 Invoking items

 Invoke-Item (which has an alias, ii) will open or execute an object using the default settings for that object:

 # Open the current directory in explorer

Invoke-Item .

Open test.ps1 in the default editor

Invoke-Item test.ps1

Open cmd

Invoke-Item $env:windir\system32\cmd.exe

Open the certificate store MMC for the current user

Windows PowerShell only

Invoke-Item Cert:

 The registry provider does not support Invoke-Item.

 Items in each of the different providers may have one or more properties.

 Item properties

 The Get-ItemProperty and Set-ItemProperty commands allow individual properties to be modified.

 What is meant by an item property varies from one provider to another. In the FileSystem provider, this can be an attribute of the file, such as Hidden or System. For the Registry provider, an item property is a value under a registry key.

 Properties and the filesystem

 When working with the filesystem provider, Get-ItemProperty and Set-ItemProperty are rarely needed. For example, Set-ItemProperty might be used to make a file read-only. The following example assumes that the somefile.txt file already exists:

 Set-ItemProperty .\somefile.txt -Name IsReadOnly -Value $true

 The same property may be set from a file object retrieved using Get-Item (or Get-ChildItem):

 (Get-Item 'somefile.txt').IsReadOnly = $true

 The IsReadOnly property affects the attributes of the file object, adding the ReadOnly attribute.

 Adding and removing file attributes

 The attributes of the file are used to describe if a file is hidden, or a system file, and so on.

 The attributes property of a file object is a bit field presented as a number and given an easily understandable value by the System.IO.FileAttributes enumeration.

 Bit fields

 A bit field is a means of exposing multiple settings that have two states (on or off binary states) using a single number.

 A byte, an 8-bit value, can therefore hold eight possible settings. A 32-bit integer, 4-bytes long, can hold 32 different settings.

 The following table, whose state is described by 4 bits, has four settings:

 Name: Setting4 Setting3 Setting2 Setting1

 State: On Off On Off

 Binary: 1 0 1 0

 Decimal: 8 4 2 1

 When settings 2 and 4 are toggled on, the value of the field is the conversion of 1010 to decimal. This value is the result of 8 -bor 2, that is, 10.

 Several of the possible attributes are shown in Table 10.1:

 	

 Name

 	

 Compressed

 	

 Archive

 	

 System

 	

 Hidden

 	

 Read-only

 	

 Bit value

 	

 2048

 	

 32

 	

 4

 	

 2

 	

 1

 Table 10.1: Attribute values

 When a file is hidden and read-only, the value of the Attributes property is 3 (2 + 1). The value 3 can be cast to the FileAttributes type, which shows the names of the individual flags:

 PS> [System.IO.FileAttributes]3

ReadOnly, Hidden

 While the value is numeric, the use of the enumeration means words can be used to describe each property:

 PS> [System.IO.FileAttributes]'ReadOnly, Hidden' -eq 3

True

 This opens several possible ways to set attributes on a file.

 Attributes may be replaced entirely:

 (Get-Item 'somefile.txt').Attributes = 'ReadOnly, Hidden'

 Attributes may be toggled:

 $file = Get-Item 'somefile.txt'

$file.Attributes = $file.Attributes -bxor 'ReadOnly'

 Attributes may be added:

 $file = Get-Item 'somefile.txt'

$file.Attributes = $file.Attributes -bor 'ReadOnly'

 The +, -, +=, and -= operators may be used, as this is a numeric operation. Addition or subtraction operations are not safe, as they do not account for existing flags. For example, if a file is already read-only and += was used to attempt to make the file read-only, the result would be a hidden file:

 PS> $file = Get-Item 'somefile.txt'

PS> $file.Attributes = 'ReadOnly'

PS> $file.Attributes += 'ReadOnly'

PS> $file.Attributes

Hidden

 Finally, regardless of whether a flag is present, attributes may be written as a string:

 $file = Get-Item 'somefile.txt'

$file.Attributes = "$($file.Attributes), ReadOnly"

 This is a feasible approach because casting to the enumeration type will ignore any duplication:

 PS> [System.IO.FileAttributes]'ReadOnly, Hidden, ReadOnly'

ReadOnly, Hidden

 Registry values

 Get-ItemProperty and Set-ItemProperty are most useful when manipulating registry values.

 The following method may be used to get values from the registry:

 Get-ItemProperty -Path HKCU:\Environment

Get-ItemProperty -Path HKCU:\Environment -Name Path

Get-ItemProperty -Path HKCU:\Environment -Name Path, Temp

 Individual values may be written back to the registry under an existing key:

 Set-ItemProperty -Path HKCU:\Environment -Name NewValue -Value 'New'

 A registry value may be subsequently removed:

 Remove-ItemProperty -Path HKCU:\Environment -Name NewValue

 The Set-ItemProperty command does not directly allow the value type to be influenced. The command will do as much as it can to fit the value into the existing type. For a property with type REG_SZ, numbers will be converted to a string.

 If a value does not already exist, a registry type will be created according to the value type:

 	Int32: REG_DWORD

 	Int64: REG_QWORD

 	String: REG_SZ

 	String[]: REG_MULTI_SZ (must use "[String[]]@('value', 'value')")

 	Byte[]: REG_BINARY

 	Any other type: REG_SZ

 If a value of a specific type is required, the New-ItemProperty command should be used instead, for instance, if an expanding string must be created:

 $params = @{

 Path = 'HKCU:\Environment'

 Name = 'Expand'

 Value = 'User: %USERNAME%'

 PropertyType = 'ExpandString'

}

New-ItemProperty @params

 New-ItemProperty will throw an error if a property already exists. The Force parameter may be used to overwrite an existing value with the same name.

 Windows permissions

 Windows permissions, such as NTFS Access Control Lists (ACLs), are used to describe who or what can access a resource.

 The filesystem and registry providers both support Get-Acl and Set-Acl, which allow the different ACLs to be modified.

 Working with permissions in PowerShell involves a mixture of PowerShell commands and .NET objects and methods.

 Alternatives to .NET classes

 The NtfsSecurity module found in the PowerShell Gallery may be an easier alternative to the native methods discussed in this section.

 While some values and classes differ between the different providers, many of the same concepts apply.

 The following snippet creates a set of files and folders in C:\Temp. These files and folders are used in the examples that follow:

 New-Item C:\Temp\ACL -ItemType Directory -Force

1..5 | ForEach-Object {

 New-Item C:\Temp\ACL\$_ -ItemType Directory -Force

 'content' | Out-File "C:\Temp\ACL\$_\$_.txt"

 New-Item C:\Temp\ACL\$_\$_ -ItemType Directory -Force

 'content' | Out-File "C:\Temp\ACL\$_\$_\$_.txt"

}

 The Get-Acl command is used to retrieve an existing ACL for an object. Set-Acl is used to apply an updated ACL to an object.

 If Get-Acl is used against a directory, the ACL type is DirectorySecurity; for a file, the ACL type is FileSecurity, and for a registry key, the ACL type is RegistrySecurity.

 Access and audit

 Access lists come with two different types of access controls.

 The Discretionary Access Control List (DACL) is used to grant (or deny) access to a resource. The DACL is referred to as access in PowerShell.

 The System Access Control List (SACL) is used to define which activities should be audited. The SACL is referred to as audit in PowerShell.

 Reading and setting the audit ACL requires administrator privileges (run as administrator). Get-Acl will only attempt to read the audit ACL if it is explicitly requested. The -Audit switch parameter is used to request the list:

 Get-Acl C:\Temp\ACL\1 -Audit | Format-List

 As none of the folders created have audit ACLs at this time, the -Audit property will be blank.

 Access Control Entries (ACEs) may be inherited from a parent container or may be explicitly defined. Inheritance is controlled by rule protection.

 Rule protection

 ACLs, by default, inherit rules (ACEs) from parent container objects. Access rule protection blocks the propagation of rules from a parent object.

 Rule protection can be enabled for the access ACL using the SetAccessRuleProtection method or for the audit ACL using the SetAuditRuleProtection method on the ACL.

 Setting rule protection has the same effect as disabling inheritance in the GUI.

 Each of the methods expects two arguments. The first argument, isProtected, dictates whether the list should be protected. The second argument, named preserveInheritance, dictates what should be done with existing inherited entries. Inherited entries can either be copied or discarded.

 In the following example, access rule protection is enabled (inheritance is disabled) and the previously inherited rules are copied into the ACL:

 $acl = Get-Acl C:\Temp\ACL\2

$acl.SetAccessRuleProtection($true, $true)

Set-Acl C:\Temp\ACL\2 -AclObject $acl

 Copied rules will only appear on the ACL (as explicit rules) after Set-Acl has been run.

 If access rule protection is subsequently re-enabled, copied rules are not removed. The resulting ACL will contain both inherited and explicit versions of each of the rules. Inheritance can be re-enabled as follows:

 $acl = Get-Acl C:\Temp\ACL\2

$acl.SetAccessRuleProtection($false, $false)

Set-Acl C:\Temp\ACL\2 -AclObject $acl

 The ACL will have doubled in length:

 PS> Get-Acl C:\Temp\ACL\2 |

>> Select-Object -ExpandProperty Access |

>> Select-Object FileSystemRights, IdentityReference, IsInherited

FileSystemRights IdentityReference IsInherited

---------------- ----------------- -----------

-536805376 NT AUTHORITY\Authenticated Users False

Modify, Synchronize NT AUTHORITY\Authenticated Users False

FullControl NT AUTHORITY\SYSTEM False

268435456 NT AUTHORITY\SYSTEM False

268435456 BUILTIN\Administrators False

FullControl BUILTIN\Administrators False

ReadAndExecute, Synchronize BUILTIN\Users False

FullControl BUILTIN\Administrators True

268435456 BUILTIN\Administrators True

FullControl NT AUTHORITY\SYSTEM True

268435456 NT AUTHORITY\SYSTEM True

ReadAndExecute, Synchronize BUILTIN\Users True

Modify, Synchronize NT AUTHORITY\Authenticated Users True

-536805376 NT AUTHORITY\Authenticated Users True

 Discarding access rules will result in an empty ACL:

 $acl = Get-Acl C:\Temp\ACL\3

$acl.SetAccessRuleProtection($true, $false)

Set-Acl C:\Temp\ACL\3 -AclObject $acl

 Once this operation completes, any attempt to access the directory will result in access being denied:

 PS> Get-ChildItem C:\Temp\ACL\3

Get-ChildItem: Access to the path 'C:\Temp\ACL\3' is denied.

 You can restore access to the folder provided the current user has the SeSecurityPrivilege privilege. The privilege is granted when a process is run as administrator. Re-enabling inheritance is the simplest way to restore access:

 $acl = Get-Acl C:\Temp\ACL\3

$acl.SetAccessRuleProtection($false, $false)

Set-Acl C:\Temp\ACL\3 -AclObject $acl

 In the previous example, the second argument for SetAccessRuleProtection, preserveInheritance, is set to false. This value has no impact; it only dictates behavior when access rule protection is enabled.

 Inheritance and propagation flags

 Inheritance and propagation flags dictate how individual ACEs are pushed down to child objects.

 Inheritance flags are described by the System.Security.AccessControl.InheritanceFlags enumeration. The possible values are as follows:

 	None: Objects will not inherit this ACE

 	ContainerInherit: Only container objects (such as directories) will inherit this entry

 	ObjectInherit: Only leaf objects (such as files) will inherit this entry

 Propagation flags are described by the System.Security.AccessControl.PropagationFlags enumeration. The possible values are as follows:

 	None: Propagation of inheritance is not changed

 	NoPropagateInherit: Do not propagate inheritance flags

 	InheritOnly: This entry does not apply to this object, only children

 These two flag fields are used to build the Applies to option shown in the GUI when setting security on a folder. Table 10.2 shows how each option is created:

 	

 Option

 	

 Flags

 	

 This folder only

 	

 	Inheritance: None

 	Propagation: None

 	

 This folder, subfolders, and files

 	

 	Inheritance: ContainerInherit, ObjectInherit

 	Propagation: None

 	

 This folder and subfolders

 	

 	Inheritance: ContainerInherit

 	Propagation: None

 	

 This folder and files

 	

 	Inheritance: ObjectInherit

 	Propagation: None

 	

 Subfolders only

 	

 	Inheritance: ContainerInherit

 	Propagation: InheritOnly

 	

 Files only

 	

 	Inheritance: ObjectInherit

 	Propagation: InheritOnly

 Table 10.2: GUI names and flag values

 The NoPropagateInherit propagation flag comes into play when the "Only apply these permissions to objects and/or containers within this container" tick box is used. The tick box is available regardless of the object type and the flag is only applicable on container objects.

 Removing ACEs

 Individual rules may be removed from an ACL using several different methods:

 	RemoveAccessRule: Matches IdentityReference and AccessMask

 	RemoveAccessRuleAll: Matches IdentityReference

 	RemoveAccessRuleSpecific: Exact match

 Access mask is a generic term used to refer to specific rights granted (filesystem rights for a file or directory and registry rights for a registry key).

 To demonstrate rule removal, explicit entries might be added to the ACL. Enabling and then disabling access rule protection will add new rules: the original inherited set and an explicitly set copy of the same rules.

 To enable access rule protection and copy inherited rules, do the following:

 $acl = Get-Acl C:\Temp\ACL\3

$acl.SetAccessRuleProtection($true, $true)

Set-Acl C:\Temp\ACL\3 -AclObject $acl

 When disabling protection, once committed, the inherited rules will appear alongside the copied rules:

 $acl = Get-Acl C:\Temp\ACL\3

$acl.SetAccessRuleProtection($false, $true)

Set-Acl C:\Temp\ACL\3 -AclObject $acl

 You can view the rules in the ACL:

 PS> $acl = Get-Acl C:\Temp\ACL\3

PS> $acl.Access |

>> Select-Object IdentityReference, FileSystemRights, IsInherited

IdentityReference FileSystemRights IsInherited

----------------- ---------------- -----------

NT AUTHORITY\Authenticated Users -536805376 False

NT AUTHORITY\Authenticated Users Modify, Synchronize False

NT AUTHORITY\SYSTEM FullControl False

NT AUTHORITY\SYSTEM 268435456 False

BUILTIN\Administrators 268435456 False

BUILTIN\Administrators FullControl False

BUILTIN\Users ReadAndExecute, Synchronize False

BUILTIN\Administrators FullControl True

BUILTIN\Administrators 268435456 True

NT AUTHORITY\SYSTEM FullControl True

NT AUTHORITY\SYSTEM 268435456 True

BUILTIN\Users ReadAndExecute, Synchronize True

NT AUTHORITY\Authenticated Users Modify, Synchronize True

NT AUTHORITY\Authenticated Users -536805376 True

 The following example finds each explicit rule and removes it from the ACL:

 $acl = Get-Acl C:\Temp\ACL\3

$acl.Access | Where-Object IsInherited -eq $false | ForEach-Object {

 $acl.RemoveAccessRuleSpecific($_)

}

Set-Acl C:\Temp\ACL\3 -AclObject $acl

 Copying lists and entries

 You can copy access lists from one object to another; for example, a template ACL might have been prepared:

 $acl = Get-Acl C:\Temp\ACL\4

$acl.SetAccessRuleProtection($true, $true)

$acl.Access |

 Where-Object IdentityReference -like '*\Authenticated Users' |

 ForEach-Object { $acl.RemoveAccessRule($_) }

Set-Acl C:\Temp\ACL\4 –AclObject $acl

 You can apply this ACL to another object:

 $acl = Get-Acl C:\Temp\ACL\4

Set-Acl C:\Temp\ACL\5 -AclObject $acl

 If the ACL contains a mixture of inherited and explicit entries, the inherited entries will be discarded.

 Access control rules may be copied in a similar manner:

 # Get the ACE to copy

$ace = (Get-Acl C:\Temp\ACL\3).Access | Where-Object {

 $_.IdentityReference -like '*\Authenticated Users' -and

 $_.FileSystemRights -eq 'Modify, Synchronize' -and

 $_.IsInherited

}

Get the target ACL

$acl = Get-Acl C:\Temp\ACL\5

Add the entry

$acl.AddAccessRule($ace)

Apply the change

Set-Acl C:\Temp\ACL\5 -AclObject $acl

 ACEs may be created from scratch instead of being copied.

 Adding ACEs

 ACEs must be created before they can be added to an ACL.

 Creating an ACE for the filesystem or the registry, and for access or audit purposes, uses a set of .NET classes:

 	System.Security.AccessControl.FileSystemAccessRule

 	System.Security.AccessControl.FileSystemAuditRule

 	System.Security.AccessControl.RegistryAccessRule

 	System.Security.AccessControl.RegistryAuditRule

 There are several different ways to use these classes; this section focuses on the most common one.

 Filesystem rights

 The filesystem ACE uses the System.Security.AccessControl.FileSystemRights enumeration to describe the different rights that might be granted.

 PowerShell can list each right name using the GetNames (or GetValues) static methods of the Enum type:

 [System.Security.AccessControl.FileSystemRights].GetEnumNames()

 PowerShell might be used to show the names, numeric values, and even the binary values associated with each. Several of these rights are composites, such as write, which summarizes CreateFiles, AppendData, WriteExtendedAttributes, and WriteAttributes:

 [System.Security.AccessControl.FileSystemRights].GetEnumValues() |

 Select-Object -Unique |

 ForEach-Object {

 [PSCustomObject]@{

 Name = $_

 Value = [Int]$_

 Binary = [Convert]::ToString([Int32]$_, 2).PadLeft(32, '0')

 }

 }

 Microsoft Docs is a better place to find a descriptive meaning of each of the different flags:

 https://docs.microsoft.com/dotnet/api/system.security.accesscontrol.filesystemrights

 FileSystemRights is a bit field and can therefore be treated in the same way as FileAttributes earlier in this chapter. The simplest way to present rights is in a comma-separated list. There are many possible combinations; the GUI shows a small number of these before heading into advanced options. Table 10.3 shows the main options:

 	

 GUI option

 	

 Filesystem rights

 	

 Full control

 	

 FullControl

 	

 Modify

 	

 Modify, Synchronize

 	

 Read and execute

 	

 ReadAndExecute, Synchronize

 	

 List folder contents

 	

 ReadAndExecute, Synchronize

 	

 Read

 	

 Read, Synchronize

 	

 Write

 	

 Write, Synchronize

 Table 10.3: GUI options

 Table 10.3 shows that both Read and execute and List folder contents have the same value. This is because the access mask is the same; the difference is in the inheritance flags:

 	

 GUI option

 	

 Inheritance flags

 	

 Read and execute

 	

 ContainerInherit, ObjectInherit

 	

 List folder contents

 	

 ContainerInherit

 Table 10.4: Inheritance flags

 In all other cases, the inheritance flags are set to ContainerInherit and ObjectInherit. Propagation flags are set to None for all examples.

 Using these, you can create a full control ACE using one of the constructors for FileSystemAccessRule:

 $ace = [System.Security.AccessControl.FileSystemAccessRule]::new(

 'DOMAIN\User', # Identity reference

 'FullControl', # FileSystemRights

 'ContainerInherit, ObjectInherit', # InheritanceFlags

 'None', # PropagationFlags

 'Allow' # ACE type (allow or deny)

)

 If the ACE is changed to use a valid user, the ACE can be applied to the ACL:

 $acl = Get-Acl C:\Temp\ACL\5

$acl.AddAccessRule($ace)

Set-Acl C:\Temp\ACL\5 -AclObject $acl

 Registry rights

 Creating ACEs for registry keys follows the same pattern as for filesystem rights. The rights are defined in the System.Security.AccessControl.RegistryRights enumeration.

 PowerShell can list these rights, but the descriptions on MSDN are more useful: https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.registryrights(v=vs.110).aspx.

 A rule is created in the same way as a filesystem rule:

 $ace = [System.Security.AccessControl.RegistryAccessRule]::new(

 'DOMAIN\User', # Identity reference

 'FullControl', # RegistryRights

 'ContainerInherit, ObjectInherit', # InheritanceFlags

 'None', # PropagationFlags

 'Allow' # ACE type (allow or deny)

)

 The rule can be applied to a key (in this case, a newly created key):

 $key = New-Item HKCU:\TestKey -ItemType Key -Force

$acl = Get-Acl $key.PSPath

$acl.AddAccessRule($ace)

Set-Acl $key.PSPath -AclObject $acl

 Each of the access rights, such as FullControl used above, is described by an enumeration – in the previous example, the RegistryRights enumeration.

 Numeric values in the ACL

 The FileSystemRights enumeration used in the previous examples does not quite cover all the possible values one might see when inspecting an ACL. In some cases, the rights will be shown as numeric values rather than names. The -536805376 and 268435456 values were both included in some earlier examples. The missing values are part of the generic portion of the ACE in Microsoft Docs:

 https://docs.microsoft.com/windows/desktop/SecAuthZ/access-mask-format

 This generic portion is not accounted for by the FileSystemRights enumeration. These generic values, in turn, represent summarized rights:

 https://docs.microsoft.com/windows/desktop/FileIO/file-security-and-access-rights

 Converting each of the values to binary goes a long way in showing their composition:

 PS> foreach ($value in -536805376, 268435456) {

>> '{0,-10}: {1}' -f @(

>> $value

>> [Convert]::ToString($value, 2).PadLeft(32, '0')

>>)

>> }

-536805376: 11100000000000010000000000000000

268435456 : 00010000000000000000000000000000

 This script uses a GenericAccessRights enumeration to show how these values may be deconstructed:

 using namespace System.Security.AccessControl

Define an enumeration which describes the generic access mask (only)

[Flags()]

enum GenericAccessRights {

 GenericRead = 0x80000000

 GenericWrite = 0x40000000

 GenericExecute = 0x20000000

 GenericAll = 0x10000000

}

For each value to convert

foreach ($value in -536805376, 268435456) {

 # For each enum that describes the values

 $accessRights = foreach ($enum in [GenericAccessRights], [FileSystemRights]) {

 # Find values from the enum where the value with the exact bit set.

 [Enum]::GetValues($enum) | Where-Object {

 ($value -band $_) -eq $_

 }

 }

 # Output the original value and the values from the enum (as a string)

 '{0} : {1}' -f $value, ($accessRights -join ', ')

}

 The two values discussed are therefore the following:

 	-536805376: GenericExecute, GenericWrite, GenericRead, and Delete

 	268435456: GenericAll

 The security descriptor describes the owner of the object. This owner can be changed.

 Ownership

 Ownership of a file or directory may be changed using the SetOwner method of the ACL object. Changing the ownership of a file requires administrative privileges.

 The owner of the C:\Temp\ACL\1 file is the current user:

 PS> Get-Acl C:\Temp\ACL\1 | Select-Object Owner

Owner

COMPUTER\Chris

 The owner may be changed (in this case, to the Administrator account) using the SetOwner method:

 $acl = Get-Acl C:\Temp\ACL\1

$acl.SetOwner([System.Security.Principal.NTAccount]'Administrator')

Set-Acl C:\Temp\ACL\1 -AclObject $acl

 This is not taking ownership

 Setting ownership when the current user already has full control is one thing. Specific privileges are required to take ownership without existing permissions: SeRestorePrivilege, SeBackupPrivilege, and SeTakeOwnershipPrivilege.

 Managing security in PowerShell can be complicated without the use of modules dedicated to the task. However, an understanding of how to work with ACLs in this manner is important as many different systems utilize the same generalized security objects and not all will have friendly modules.

 Transactions

 A transaction allows a set of changes to be grouped together and committed at the same time. Transactions are only supported under Windows PowerShell.

 The registry provider supports transactions in Windows, as shown in the following code:

 PS> Get-PSProvider

Name Capabilities Drives

---- ------------ ------

Registry ShouldProcess, Transactions {HKLM, HKCU}

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess, Credentials {B, C, D}

Function ShouldProcess {Function}

Variable ShouldProcess {Variable}

 You can create a transaction as follows:

 Start-Transaction

$path = 'HKCU:\TestTransaction'

New-Item $path -ItemType Key -UseTransaction

Set-ItemProperty $path -Name 'Name' -Value 'Transaction' -UseTransaction

Set-ItemProperty $path -Name 'Length' -Value 20 -UseTransaction

 At this point, you can undo the transaction:

 Undo-Transaction

 Alternatively, the transaction may be committed:

 Complete-Transaction

 A list of the commands that support transactions may be viewed, although not all of these may be used with the registry provider:

 Get-Command -ParameterName UseTransaction

 Transactions are an interesting feature, but they are only supported by the registry provider and were not available in the earliest versions of .NET Core. The latest versions of .NET Core (and .NET 5 and higher) do provide support, but the commands used above are not part of PowerShell 7 and may never return.

 File catalog commands

 The file catalog commands were added in Windows PowerShell 5.1. A file catalog is a reasonably lightweight form of File Integrity Monitoring (FIM). The file catalog generates and stores SHA1 hashes for each file within a folder structure and writes the result to a catalog file.

 About hashing

 Hashing is a one-way process; a hash is not an encryption or encoding. A hash algorithm converts data of any length to a fixed-length value. The length of the value depends on the hashing algorithm used.

 MD5 hashing is one of the more common algorithms; it produces a 128-bit hash that can be represented by a 32-character string.

 SHA1 is rapidly becoming the default; it produces a 160-bit hash that can be represented by a 40-character string.

 PowerShell has a Get-FileHash command that can be used to calculate the hash for a file.

 As the catalog is the basis for determining integrity, it should be maintained in a secure location, away from the set of files being analyzed.

 You can create a small set of directories and files to help demonstrate the commands in the proceeding subsections:

 New-Item C:\Temp\FileCatalog -ItemType Directory -Force

1..5 | ForEach-Object {

 New-Item C:\Temp\FileCatalog\$_ -ItemType Directory -Force

 'content' | Out-File "C:\Temp\FileCatalog\$_\$_.txt"

 New-Item C:\Temp\FileCatalog\$_\$_ -ItemType Directory -Force

 'content' | Out-File "C:\Temp\FileCatalog\$_\$_\$_.txt"

}

 You will modify these files to demonstrate how the FileCatalog commands show changes.

 New-FileCatalog

 The New-FileCatalog command is used to generate (or update) a catalog:

 New-FileCatalog -Path <ToWatch> -CatalogFilePath <StateFile>

 A hash can only be generated for files that are larger than 0 bytes. However, filenames are recorded irrespective of the size.

 The following command creates a file catalog from the files and folders created when exploring permissions:

 $params = @{

 Path = 'C:\Temp\FileCatalog'

 CatalogFilePath = 'C:\Temp\Security\example.cat'

}

New-FileCatalog @params

 The only output from this command is an object representing the catalog file. The Security folder used above will be created if it does not already exist.

 If the CatalogFilePath had been a directory instead of a file, New-FileCatalog would have automatically created a file named catalog.cat.

 Test-FileCatalog

 The Test-FileCatalog command compares the content of the catalog file to the filesystem. Hashes are recalculated for each file.

 If none of the content has changed, Test-FileCatalog will return Valid; this can be seen by running the following command:

 $params = @{

 Path = 'C:\Temp\FileCatalog'

 CatalogFilePath = 'C:\Temp\Security\example.cat'

}

Test-FileCatalog @params

 If a file has been added, removed, or changed, the Test-FileCatalog command will return ValidationFailed:

 Set-Content C:\Temp\FileCatalog\3\3.txt -Value 'New content'

$params = @{

 Path = 'C:\Temp\FileCatalog'

 CatalogFilePath = 'C:\Temp\Security\example.cat'

}

Test-FileCatalog @params

 At this point, the Detailed parameter can be used to see what has changed.

 Is it faster without Detailed?

 The Detailed parameter does not change the amount of work Test-FileCatalog must do. If the result is to be used, it might be better to use the Detailed parameter right away. This saves the CPU cycles and I/O operations required to list the content of a directory and generate the hashes a second time.

 The command does not provide a summary of changes; instead, it returns all files and hashes from the catalog and all files and hashes from the path being tested:

 PS> Set-Content C:\Temp\FileCatalog\3\3.txt -Value 'New content'

PS> $params = @{

>> Path = 'C:\Temp\FileCatalog'

>> CatalogFilePath = 'C:\Temp\Security\example.cat'

>> Detailed = $true

>> }

PS> Test-FileCatalog @params

Status : ValidationFailed

HashAlgorithm : SHA1

CatalogItems : {[1\1.txt, 3AC201172677076A818A18EB1E8FEECF1A04722A...}

PathItems : {[1\1.txt, 3AC201172677076A818A18EB1E8FEECF1A04722A...}

Signature : System.Management.Automation.Signature

 Before exploring the output, a few more changes should be made:

 Set-Content C:\Temp\FileCatalog\3\3-1.txt -Value 'New file'

Remove-Item C:\Temp\FileCatalog\1\1.txt

 You can use these values to find changes. First, assign the result of the command to a variable:

 $params = @{

 Path = 'C:\Temp\FileCatalog'

 CatalogFilePath = 'C:\Temp\Security\example.cat'

 Detailed = $true

}

$result = Test-FileCatalog @params

 The PathItems and CatalogItems properties are dictionary objects that contain the relative file path as a key, and the hash as the value. For example:

 PS> $result.PathItems

Key Value

--- -----

2\2.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

3\3-1.txt 74A5D5EBDB364E61A6FB15090A2009937473312F

3\3.txt 0E2126C909E867CD180E140CA501CE52533C381F

4\4.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

5\5.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

1\1\1.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

2\2\2.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

3\3\3.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

4\4\4.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

5\5\5.txt 3AC201172677076A818A18EB1E8FEECF1A04722A

 The $result variable may now be used to describe the changes. Files that have been added can be listed with the following code:

 $result.PathItems.Keys | Where-Object {

 -not $result.CatalogItems.ContainsKey($_)

}

 This will show that the file 3\3-1.txt has been created. The hash of that file can be seen from PathItems as shown here:

 PS> $result.PathItems['3\3-1.txt']

74A5D5EBDB364E61A6FB15090A2009937473312F

 Files that have been removed are listed with the following:

 $result.CatalogItems.Keys | Where-Object {

 -not $result.PathItems.ContainsKey($_)

}

 If the file was removed above, then 1\1.txt will show in the output. Since PathItems does not contain that file, the hash must be retrieved from CatalogItems if it is important:

 PS> $result.CatalogItems['1\1.txt']

3AC201172677076A818A18EB1E8FEECF1A04722A

 Files that have been added or modified are listed with the following code:

 $result.PathItems.Keys | Where-Object {

 $result.CatalogItems[$_] -ne $result.PathItems[$_]

}

 This command should show both 3\3-1.txt and 3\3.txt. To find changes only, the key must be present in both CatalogItems and PathItems:

 $result.PathItems.Keys | Where-Object {

 $result.CatalogItems.ContainsKey($_) -and

 $result.CatalogItems[$_] -ne $result.PathItems[$_]

}

 Running this command will show that the only changed file is 3\3.txt.

 As the file catalog only stores hashes, the command is unable to describe exactly what has changed about a file, only that something has.

 Summary

 This chapter looked at working with providers, focusing on filesystem and registry providers.

 Providers use a common set of commands to access data arranged in a hierarchy. Providers may choose to add extra functionality with dynamic parameters for each of the commands, for example, by adding parameters to provide filtering.

 Provider implementations can choose to support a variety of different operations, from reading and writing content to management ACLs.

 In Windows PowerShell, the Registry provider supports transactions, allowing a sequence of changes to be prepared, then either committed or undone as applicable.

 PowerShell 5 added commands to work with file catalogs. You can use a file catalog to see how a set of files is changing over time or to validate a copied folder.

 Chapter 11, Windows Management Instrumentation, will explore how to work with WMI using the CIM commands built into Windows PowerShell and PowerShell Core.

 11

 Windows Management Instrumentation

 Windows Management Instrumentation (WMI) was introduced as a downloadable component with Windows 95 and NT. Windows 2000 had WMI pre-installed, and it has since become a core part of the operating system.

 You can use WMI to access a huge amount of information about the computer system. This includes printers, device drivers, user accounts, ODBC, and so on; there are hundreds of classes to explore.

 In this chapter, we will be covering the following topics:

 	Working with WMI

 	CIM cmdlets

 	The WMI Query Language

 	WMI type accelerators

 	Permissions

 Working with WMI

 The scope of WMI is vast, which makes it a fantastic resource for automating processes. WMI classes are not limited to the core operating system; it is not uncommon to find classes created after software or device drivers have been installed.

 Given the scope of WMI, finding an appropriate class can be difficult. PowerShell itself is well equipped to explore the available classes.

 WMI classes

 PowerShell, as a shell for working with objects, presents WMI classes in a similar manner to .NET classes or any other object. There are several parallels between WMI classes and .NET classes.

 A WMI class is used as the recipe to create an instance of a WMI object. The WMI class defines properties and methods. The WMI class Win32_Process is used to gather information about running processes in a similar manner to the Get-Process command.

 The Win32_Process class has properties such as ProcessId, Name, and CommandLine. It has a terminate method that can be used to kill a process, as well as a create static method that can be used to spawn a new process.

 WMI classes reside within a WMI namespace. The default namespace is root\cimv2; classes such as Win32_OperatingSystem and Win32_LogicalDisk reside in this namespace.

 WMI commands

 PowerShell has two different sets of commands dedicated to working with WMI.

 Get-WmiObject is included with PowerShell 1.0 to 5.1 but is not present in PowerShell 6 and above.

 The CIM cmdlets were introduced with PowerShell 3.0. They are compatible with the Distributed Management Task Force (DMTF) standard DSP0004. A move toward compliance with open standards is critical as the Microsoft world becomes more diverse.

 WMI itself is a proprietary implementation of the CIM server, using the Distributed Component Object Model (DCOM) API to communicate between the client and server.

 Standards compliance and differences in approach aside, there are solid, practical reasons to consider when choosing which one to use.

 Some properties of CIM cmdlets are as follows:

 	They are available in both Windows PowerShell and PowerShell Core.

 	They handle date conversion natively.

 	They have a flexible approach to networking. They use WSMAN for remote connections by default but can be configured to use DCOM over RPC.

 	They can be used for all WMI operations.

 Some properties of WMI cmdlets are as follows:

 	They are only available in Windows PowerShell and are not in PowerShell Core

 	They do not automatically convert dates

 	They use DCOM over RPC exclusively

 	They can be used for all WMI operations

 	They have been superseded by the CIM cmdlets

 CIM cmdlets

 As mentioned in the previous section, the Common Information Model (CIM) cmdlets were introduced with PowerShell 3 and are the only commands available to access WMI in PowerShell 6 and above.

 The CIM commands are as follows:

 	Get-CimAssociatedInstance

 	Get-CimClass

 	Get-CimInstance

 	Get-CimSession

 	Invoke-CimMethod

 	New-CimInstance

 	New-CimSession

 	New-CimSessionOption

 	Register-CimIndicationEvent

 	Remove-CimInstance

 	Remove-CimSession

 	Set-CimInstance

 Each of these CIM cmdlets uses either the ComputerName or CimSession parameter to target the operation at another computer.

 Getting instances

 You can use the Get-CimInstance command to execute queries for instances of WMI objects, as the following code shows:

 Get-CimInstance -ClassName Win32_OperatingSystem

Get-CimInstance -ClassName Win32_Service

Get-CimInstance -ClassName Win32_Share

 Several different parameters are available when using Get-CimInstance. The command can be used with a filter, as follows:

 Get-CimInstance Win32_Directory -Filter "Name='C:\\Windows'"

Get-CimInstance Win32_Service -Filter "State='Running'"

 Each command will return instances matching the filter. In the case of Win32_Directory, a single object is returned, as the following output shows:

 Name Hidden Archive Writeable LastModified

---- ------ ------- --------- ------------

C:\Windows False False True 20/02/2021 09:25:20

 The Filter format is WQL and will be explored later in this chapter.

 When returning large amounts of information, the Property parameter can be used to reduce the number of fields returned by a query:

 Get-CimInstance Win32_UserAccount -Property Name, SID

 You can also use the Query parameter, although it is rare to find a use for this that cannot be served by the individual parameters:

 Get-CimInstance -Query "SELECT * FROM Win32_Process"

Get-CimInstance -Query "SELECT Name, SID FROM Win32_UserAccount"

 Getting classes

 The Get-CimClass command is used to return the details of a WMI class:

 PS> Get-CimClass Win32_Process

NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties

------------ --------------- ------------------

Win32_Process {Create, Terminate, Get...} {Caption, Description...}

 The Class object describes the capabilities of that class. By default, Get-CimClass lists classes from the root\cimv2 namespace.

 The Namespace parameter will fill using tab completion, meaning if the following partial command is entered, pressing Tab repeatedly will cycle through the possible root namespaces:

 Get-CimClass -Namespace <tab, tab, tab>

 The child namespaces of a given namespace are listed in a __Namespace class instance. For example, the following command returns the namespaces under root:

 Get-CimInstance __Namespace -Namespace root

 Extending this technique, it is possible to recursively query __Namespace to find all the possible namespace values. Certain WMI namespaces are only available to administrative users (run as administrator); the following function may display errors for some namespaces:

 function Get-CimNamespace {

 param (

 $Namespace = 'root'

)

 Get-CimInstance __Namespace -Namespace $Namespace | ForEach-Object {

 $childNamespace = Join-Path -Path $Namespace -ChildPath $_.Name

 $childNamespace

 Get-CimNamespace -Namespace $childNamespace

 }

}

Get-CimNamespace

 CIM class objects describe the methods available for a class. These methods are used to change objects.

 Calling methods

 You can use the Invoke-CimMethod command to call a method. The CIM class can be used to find details of the methods that a class supports:

 PS> (Get-CimClass Win32_Process).CimClassMethods

Name ReturnType Parameters Qualifiers

---- ---------- ---------- ----------

Create UInt32 {CommandLine...} {Constructor...}

Terminate UInt32 {Reason} {Destructor...}

GetOwner UInt32 {Domain...} {Implemented...}

GetOwnerSid UInt32 {Sid} {Implemented...}

 The method with the Constructor qualifier can be used to create a new instance of Win32_Process.

 The Parameters property of a specific WMI method can be explored to find out how to use a method:

 PS> (Get-CimClass Win32_Process).CimClassMethods['Create'].Parameters

Name CimType Qualifiers

---- ------- ----------

CommandLine String {ID, In, MappingStrings}

CurrentDirectory String {ID, In, MappingStrings}

ProcessStartupInformation Instance {EmbeddedInstance, ID, In, MappingStrings}

ProcessId UInt32 {ID, MappingStrings, Out}

 If an argument has the In qualifier, it can be passed in when you're creating an object. If an argument has the Out qualifier, it will be returned once the instance has been created. Arguments are passed in using a Hashtable.

 When creating a process, the CommandLine argument is required; the rest can be ignored until later:

 $params = @{

 ClassName = 'Win32_Process'

 MethodName = 'Create'

 Arguments = @{

 CommandLine = 'notepad.exe'

 }

}

$return = Invoke-CimMethod @params

 The return object holds three properties in the case of the Create method of Win32_Process. This includes ProcessId and ReturnValue. PowerShell adds a PSComputerName property to these:

 PS> $return

ProcessId ReturnValue PSComputerName

--------- ----------- --------------

 15172 0

 PSComputerName is blank when a request is local. ProcessId is the Out property listed under the Create method parameters. ReturnValue indicates whether the operation succeeded, and 0 indicates that it was successful.

 A nonzero return value indicates that something went wrong, but the values are not translated in PowerShell. The return values are documented in Microsoft Docs: https://docs.microsoft.com/windows/win32/cimwin32prov/create-method-in-class-win32-process.

 The Create method used here creates a new instance. The other methods for Win32_Process act against an existing instance (an existing process).

 Extending the preceding example, a process can be created and then terminated:

 $params = @{

 ClassName = 'Win32_Process'

 MethodName = 'Create'

 Arguments = @{

 CommandLine = 'notepad.exe'

 }

}

$return = Invoke-CimMethod @params

pause

Get-CimInstance Win32_Process -Filter "ProcessID=$($return.ProcessId)" |

 Invoke-CimMethod -MethodName Terminate

 The pause command will wait for return to be pressed before continuing; this allows us to show that Notepad was opened before it was terminated.

 The Terminate method has an optional argument that is used as the exit code for the terminate process. This argument may be added using a Hashtable; in this case, a (made up) value of 5 is set as the exit code:

 $invokeParams = @{

 ClassName = 'Win32_Process'

 MethodName = 'Create'

 Arguments = @{

 CommandLine = 'notepad.exe'

 }

}

$return = Invoke-CimMethod @invokeParams

$getParams = @{

 ClassName = 'Win32_Process'

 Filter = 'ProcessId={0}' -f $return.ProcessId

}

Get-CimInstance @getParams |

 Invoke-CimMethod -MethodName Terminate -Arguments @{Reason = 5}

 Invoke-CimMethod returns an object with a ReturnValue. A return value of 0 indicates that the command succeeded. A nonzero value indicates an error condition. The meaning of the value will depend on the WMI class.

 The return values associated with the Terminate method of Win32_Process are documented in Microsoft Docs: https://docs.microsoft.com/windows/win32/cimwin32prov/terminate-method-in-class-win32-process.

 Some methods require or can use instances of CIM classes as arguments. In some cases, these instances must be created.

 Creating instances

 The arguments for Win32_Process include a ProcessStartupInformation parameter. ProcessStartupInformation is described by a WMI class, Win32_ProcessStartup.

 There are no existing instances of Win32_ProcessStartup; running Get-CimInstance Win32_ProcessStartup will not find anything. The Win32_ProcessStartup class doesn't have a Create method (or any other constructor) that can be used to create an instance either.

 You can use New-CimInstance to create an instance of the class:

 $class = Get-CimClass Win32_ProcessStartup

$startupInfo = New-CimInstance -CimClass $class -ClientOnly

 You can also use New-Object:

 $class = Get-CimClass Win32_ProcessStartup

$startupInfo = New-Object CimInstance $class

 Finally, the new method may be used:

 $class = Get-CimClass Win32_ProcessStartup

$startupInfo = [CimInstance]::new($class)

 You can set properties on the created instance; the effect of each property is documented in Microsoft Docs: https://docs.microsoft.com/windows/win32/cimwin32prov/win32-processstartup.

 In the following example, properties are set to dictate the position and title of a pwsh.exe window:

 $class = Get-CimClass Win32_ProcessStartup

$startupInfo = New-CimInstance -CimClass $class -ClientOnly

$startupInfo.X = 50

$startupInfo.Y = 50

$startupInfo.Title = 'This is the window title'

$params = @{

 ClassName = 'Win32_Process'

 MethodName = 'Create'

 Arguments = @{

 CommandLine = 'pwsh.exe'

 ProcessStartupInformation = $startupInfo

 }

}

$returnObject = Invoke-CimMethod @params

 If the process starts successfully, $returnObject will have a ReturnValue of 0.

 Working with CIM sessions

 As we mentioned earlier in this chapter, a key feature of the CIM cmdlets is their ability to change how connections are formed and used.

 The Get-CimInstance command has a ComputerName parameter, and when you use this, the command automatically creates a session to a remote system using WSMAN. The connection is destroyed as soon as the command completes.

 The Get-CimSession, New-CimSession, New-CimSessionOption, and Remove-CimSession commands are optional commands that you can use to define the behavior of remote connections.

 The New-CimSession command creates a connection to a remote server. An example is as follows:

 PS> $cimSession = New-CimSession -ComputerName Remote1

PS> $cimSession

Id : 1

Name : CimSession1

InstanceId : 1cc2a889-b649-418c-94a2-f24e033883b4

ComputerName : Remote1

Protocol : WSMAN

 Alongside the other parameters, New-CimSession has a Credential parameter that can be used in conjunction with Get-Credential to authenticate a connection.

 If the remote system does not, for any reason, present access to WSMAN, it is possible to switch the protocol down to DCOM by using the New-CimSessionOption command:

 PS> $option = New-CimSessionOption -Protocol DCOM

PS> $cimSession = New-CimSession -ComputerName Remote1 –SessionOption $option

PS> $cimSession

Id : 2

Name : CimSession2

InstanceId : 62b2cb56-ec84-472c-a992-4bee59ee0618

ComputerName : Remote1

Protocol : DCOM

 The New-CimSessionOption command is not limited to protocol switching; it can affect many of the other properties of the connection, as shown in the help and the examples for the command.

 Once a session has been created, it exists in memory until it is removed. The Get-CimSession command shows a list of connections that have been formed, and the Remove-CimSession command permanently removes connections.

 Associated classes

 The Get-CimAssociatedClass command replaces the use of the ASSOCIATORS OF query type when using the CIM cmdlets.

 The following command gets the class instances associated with Win32_NetworkAdapterConfiguration. As the arguments for the Get-CimInstance command are long strings, splatting is used to pass the parameters into the command:

 $params = @{

 ClassName = 'Win32_NetworkAdapterConfiguration'

 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'

}

Get-CimInstance @params | Get-CimAssociatedInstance

 The following example uses Get-CimAssociatedClass to get the physical interface associated with the IP configuration:

 $params = @{

 ClassName = 'Win32_NetworkAdapterConfiguration'

 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'

}

Get-CimInstance @params | ForEach-Object {

 $adapter = $_ | Get-CimAssociatedInstance -ResultClassName Win32_NetworkAdapter

 [PSCustomObject]@{

 NetConnectionID = $adapter.NetConnectionID

 Speed = [Math]::Round($adapter.Speed / 1MB, 2)

 IPAddress = $_.IPAddress

 IPSubnet = $_.IPSubnet

 Index = $_.Index

 Gateway = $_.DefaultIPGateway

 }

}

 The preceding command returns details of every IP- and DHCP-enabled network adapter, merging the results of two different CIM classes into a single object.

 The WMI Query Language

 WMI Query Language, or WQL, is used to query WMI in a similar style to SQL.

 WQL implements a subset of Structured Query Language (SQL). The keywords are traditionally written in uppercase; however, WQL is not case-sensitive.

 Both the CIM and the older WMI cmdlets support the Filter and Query parameters, which accept WQL queries.

 Understanding SELECT, WHERE, and FROM

 The SELECT, WHERE, and FROM keywords are used with the Query parameter.

 The generalized syntax for the Query parameter is as follows:

 SELECT <Properties> FROM <WMI Class>

SELECT <Properties> FROM <WMI Class> WHERE <Condition>

 You can use the wildcard * to request all available properties or a list of known properties:

 Get-CimInstance -Query "SELECT * FROM Win32_Process"

Get-CimInstance -Query "SELECT ProcessID, CommandLine FROM Win32_Process"

 The WHERE keyword is used to filter results returned by SELECT; for example, see the following:

 Get-CimInstance -Query "SELECT * FROM Win32_Process WHERE ProcessID=$PID"

 WQL and arrays

 WQL cannot filter array-based properties; for example, the capabilities property of Win32_DiskDrive.

 Escape sequences and wildcards

 The backslash character, \, is used to escape the meaning of characters in a WMI query. You can use it to escape a wildcard character, quotes, or itself. For example, the following WMI query uses a path; each instance of \ in the path must be escaped:

 Get-CimInstance Win32_Process -Filter "ExecutablePath='C:\\Windows\\Explorer.exe'"

 The preceding command returns any instances of the explorer.exe process, as shown here:

 ProcessId Name HandleCount WorkingSetSize VirtualSize

--------- ---- ----------- -------------- -----------

8320 explorer.exe 3412 198606848 2204322111488

 The properties shown will vary from one computer to another.

 About Win32_Process and the Path property

 The Path script property is added to the output from the Win32_Process class by PowerShell. While it appears in the output, the property cannot be used to define a filter, nor can Path be selected using the Property parameter of either Get-CimInstance or Get-WmiObject.

 Get-Member shows that it is a ScriptProperty, as follows:

 Get-CimInstance Win32_Process -Filter "ProcessId=$pid" |

 Get-Member -Name Path

Get-WmiObject Win32_Process -Filter "ProcessId=$pid" |

 Get-Member -Name Path

 WQL defines two wildcard characters that can be used with string queries:

 	The % (percentage) character matches any number of characters and is equivalent to using * in a filesystem path or with the -like operator.

 	The _ (underscore) character matches a single character and is equivalent to using ? in a filesystem path or with the -like operator.

 The following query filters the results of Win32_Service, including services with paths starting with a single drive letter and ending with .exe:

 Get-CimInstance Win32_Service -Filter 'PathName LIKE "_:\\%.exe"'

 Logic operators

 Logic operators can be used with the Filter and Query parameters.

 The examples in the following table are based on the following command:

 Get-CimInstance Win32_Process -Filter "<Filter>"

 	

 Description

 	

 Operator

 	

 Syntax

 	

 Example

 	

 Logical and

 	

 AND

 	

 <Condition1> AND <Condition2>

 	

 ProcessID=$pid AND Name='powershell.exe'

 	

 Logical or

 	

 OR

 	

 <Condition1> OR <Condition2>

 	

 ProcessID=$pid OR ProcessID=0

 	

 Logical not

 	

 NOT

 	

 NOT <Condition>

 	

 NOT ProcessID=$pid

 Table 11.1: WQL logical operators

 Comparison operators

 Comparison operators may be used with the Filter and Query parameters.

 The examples in the following table are based on the following command:

 Get-CimInstance Win32_Process -Filter "<Filter>"

 	

 Description

 	

 Operator

 	

 Example

 	

 Equal to

 	

 =

 	

 Name='powershell.exe' AND ProcessId=0

 	

 Not equal to

 	

 <>

 	

 Name<>'powershell.exe'

 	

 Greater than

 	

 >

 	

 WorkingSetSize>$(100MB)

 	

 Greater than or equal to

 	

 >=

 	

 WorkingSetSize>=$(100MB)

 	

 Less than

 	

 <

 	

 WorkingSetSize<$(100MB)

 	

 Less than or equal to

 	

 <=

 	

 WorkingSetSize<=$(100MB)

 	

 Is

 	

 IS

 	

 CommandLine IS NULL

 CommandLine IS NOT NULL

 	

 Like

 	

 LIKE

 	

 CommandLine LIKE '%.exe'

 Table 11.2: WQL comparison operators

 Quoting values

 When building a WQL query, string values must be quoted; numeric and Boolean values do not need quotes.

 As the filter is also a string, this often means nesting quotes within one another. The following techniques may be used to avoid needing to use PowerShell's escape character.

 For filters or queries containing fixed string values, use either of the following styles. Use single quotes outside and double quotes inside:

 Get-CimInstance Win32_Process -Filter 'Name="pwsh.exe"'

 Alternatively, use double quotes outside and single quotes inside:

 Get-CimInstance Win32_Process -Filter "Name='pwsh.exe'"

 For filters or queries containing PowerShell variables or sub-expressions, use double quotes around the filter. Variables within single-quoted strings will not expand:

 Get-CimInstance Win32_Process -Filter "ProcessId=$PID"

Get-CimInstance Win32_Process -Filter "ExecutablePath LIKE '$($pshome -replace '\\', '\\')%'"

 Regex recap

 The regular expression '\\' represents a single literal '\', as the backslash is normally the escape character. Each '\' in the pshome path is replaced with '\\' to account for WQL using '\' as an escape character as well.

 In the previous example, the filter extends over a single line. If a filter is long, or contains several conditions, consider using the format operator to compose the filter string:

 $params = @{

 ClassName = 'Win32_Process'

 Filter = "ExecutablePath LIKE '{0}%'" -f @(

 $PSHOME -replace '\\', '\\'

)

}

Get-CimInstance @params

 The format operator is used to add the escaped version of the path to the string.

 The preceding command will show any instances of PowerShell that are running; for example:

 ProcessId Name HandleCount WorkingSetSize VirtualSize

--------- ---- ----------- -------------- -----------

14868 pwsh.exe 1114 243924992 2204239736832

10952 pwsh.exe 1513 180326400 2204260892672

 WQL filters are especially useful when working with CIM classes that contain many instances.

 Associated classes

 WMI classes often have several different associated or related classes; for example, each instance of Win32_Process has an associated class, CIM_DataFile.

 Associations between two classes are expressed by a third class. In the case of Win32_Process and CIM_DataFile, the relationship is expressed by the CIM_ProcessExecutable class.

 The relationship is defined by using the antecedent and dependent properties, as shown in the following example:

 PS> Get-CimInstance CIM_ProcessExecutable |

>> Where-Object Dependent -match $PID |

>> Select-Object -First 1

Antecedent : CIM_DataFile (Name = "C:\WINDOWS\System32\Windo...)

Dependent : Win32_Process (Handle = "11672")

BaseAddress : 2340462460928

GlobalProcessCount :

ModuleInstance : 4000251904

ProcessCount : 0

PSComputerName :

 This CIM_ProcessExecutable class does not need to be used directly; it is only used to express the relationship between two other classes.

 WMI object paths

 A WMI path is required to find classes associated with an instance. The WMI object path uniquely identifies a specific instance of a WMI class.

 The object path is made up of several components:

 <Namespace>:<ClassName>.<KeyName>=<Value>

 The namespace can be omitted if the class is under the default namespace, root\cimv2.

 You can discover the KeyName for a given WMI class in several ways. In the case of Win32_Process, the key name might be discovered by using any of the following methods.

 It can be discovered by using the CIM cmdlets:

 (Get-CimClass Win32_Process).CimClassProperties |

 Where-Object { $_.Flags -band 'Key' }

 It can be discovered by using the Microsoft Docs website, which provides descriptions of each property (and method) exposed by the class: https://docs.microsoft.com/windows/win32/cimwin32prov/win32-process.

 Having identified a key, only the value remains to be found. In the case of Win32_Process, key (handle) has the same value as the process ID. The object path for the Win32_Process instance associated with a running PowerShell console is, therefore, as follows:

 root\cimv2:Win32_Process.Handle=$PID

 The namespace does not need to be included if it uses the default, root\cimv2; the object path can be shortened to the following:

 Win32_Process.Handle=$PID

 Get-CimInstance and Get-WmiObject do not retrieve an instance from an object path, but the Wmi type accelerator can:

 PS> [Wmi]"Win32_Process.Handle=$PID" | Select-Object Name, Handle

Name Handle

---- ------

pwsh.exe 11672

 The preceding object is somewhat equivalent to using a filter for Handle when querying Win32_Process.

 Using ASSOCIATORS OF

 Queries using ASSOCIATORS OF are used to find instances of classes that are related to a specific object.

 The ASSOCIATORS OF query may be used for any given object path; for example, using the preceding object path results in the following command:

 Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}"

 This query will return objects from three different classes: Win32_LogonSession, Win32_ComputerSystem, and CIM_DataFile. The classes that are returned are shown in the following example:

 PS> $params = @{

>> Query = "ASSOCIATORS OF {Win32_Process.Handle=$PID}"

>> }

PS> Get-CimInstance @params | Select-Object CimClass -Unique

CimClass

root/cimv2:Win32_ComputerSystem

root/cimv2:Win32_LogonSession

root/cimv2:CIM_DataFile

 The query can be refined to filter a specific resulting class; an example is as follows:

 Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID} WHERE ResultClass = CIM_DATAFILE"

 ResultClass values must not be quoted

 The value in the ResultClass condition is deliberately not quoted.

 The result of this operation is a long list of files that are used by the PowerShell process. A snippet of this is shown as follows:

 PS> Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID} WHERE ResultClass = CIM_DATAFILE" |

>> Select-Object Name

Name

C:\Program Files\PowerShell\7\pwsh.exe

C:\WINDOWS\SYSTEM32\ntdll.dll

C:\WINDOWS\System32\KERNEL32.DLL

C:\WINDOWS\System32\KERNELBASE.dll

C:\WINDOWS\System32\USER32.dll

C:\WINDOWS\System32\win32u.dll

 While the older Get-WmiObject command has not been continued into PowerShell 6, the WMI type accelerators remain.

 WMI Type Accelerators

 The WMI cmdlets were removed in PowerShell 6 and are not going to be reinstated.

 The following type accelerators remain and can still be used:

 	Wmi: System.Management.ManagementObject

 	WmiClass: System.Management.ManagementClass

 	WmiSearcher: System.Management.ManagementObjectSearcher

 When necessary, these accelerators may be used to simulate the functionality provided by the older WMI cmdlets.

 Both the Wmi and WmiClass type accelerators can be written to use a remote computer by including the computer name. An example is as follows:

 [Wmi]"\\RemoteComputer\root\cimv2:Win32_Process.Handle=$PID"

[WmiClass]"\\RemoteComputer\root\cimv2:Win32_Process"

 You can use these classes in PowerShell 6 and higher.

 Getting instances

 You can use the type accelerator WmiSearcher to execute queries and retrieve results:

 ([WmiSearcher]"SELECT * FROM Win32_Process").Get()

 The returned object is identical to the object that would have been returned by the Get-WmiObject command.

 Working with dates

 WMI instances retrieved using type accelerators do not convert date-time properties into the DateTime type. Querying the Win32_Process class for the creation date of a process returns the date-time property as a long string:

 PS> $query = '

>> SELECT Name, CreationDate

>> FROM Win32_Process

>> WHERE ProcessId={0}

>> ' -f $PID

PS> ([WmiSearcher]$query).Get() | Select-Object Name, CreationDate

Name CreationDate

---- ------------

pwsh.exe 20200510090416.263973+060

 The .NET namespace, System.Management, includes a class called ManagementDateTimeConverter, dedicated to converting date and time formats found in WMI. This method is added to WMI objects in PowerShell as a ConvertToDateTime script method.

 The string in the preceding example may be converted as follows:

 $query = '

SELECT Name, CreationDate

FROM Win32_Process

WHERE ProcessId={0}

' -f $PID

([WmiSearcher]$query).Get() | Select-Object @(

 'Name'

 @{

 Name = 'CreationDate'

 Expression = {

 $_.ConvertToDateTime($_.CreationDate)

 }

 }

)

 WMI classes may be used via the WmiClass accelerator.

 Getting classes

 An instance of a class may be created using the WmiClass accelerator, as the following code shows:

 [WmiClass]'Win32_Process'

 The class describes the methods and properties that can be used.

 Calling methods

 Calling a method on an existing instance of an object found using WmiSearcher is like using any other .NET method call.

 The following example gets and restarts the "Print Spooler" service. The following operation requires administrative access:

 $query = '

 SELECT *

 FROM Win32_SERVICE

 WHERE DisplayName="Print Spooler"

'

$service = ([WmiSearcher]$query).Get()

$service.StopService() # Call the StopService method

$service.StartService() # Call the StartService method

 The WMI class can be used to find the details of a method; for example, the Create method of Win32_Share, as follows:

 PS> ([WmiClass]'Win32_Share').Methods['Create']

Name : Create

InParameters : System.Management.ManagementBaseObject

OutParameters : System.Management.ManagementBaseObject

Origin : Win32_Share

Qualifiers : {Constructor, Implemented, MappingStrings, Static}

 When the Invoke-CimMethod command accepts a Hashtable, methods invoked on a WMI object expect arguments to be passed in a specific order. The order is described in the documentation for the class, such as https://docs.microsoft.com/windows/win32/cimwin32prov/create-method-in-class-win32-share.

 The documentation shows which arguments are mandatory (not optional) in the syntax element at the top.

 Alternatively, the order arguments must be written like so:

 PS> ([WmiClass]'Win32_Share').Create.OverloadDefinitions -split '(?<=,)'

System.Management.ManagementBaseObject Create(System.String Path,

 System.String Name,

 System.UInt32 Type,

 System.UInt32 MaximumAllowed,

 System.String Description,

 System.String Password,

 System.Management.ManagementObject#Win32_SecurityDescriptor Access)

 To create a share, the argument list must contain an argument for Access, then Description, then MaximumAllowed, and so on. If the argument is optional, it can be ignored, or a null value may be provided:

 ([WmiClass]'Win32_Share').Create(

 'C:\Temp\Share1', # Path

 'Share2', # Name

 0 # Type (Disk Drive)

)

 The Description argument follows the MaximumAllowed argument. If Description were to be set (but not MaximumAllowed), a null value can be added for that argument:

 ([WmiClass]'Win32_Share').Create(

 'C:\Temp\Share1', # Path

 'Share3', # Name

 0, # Type (Disk Drive),

 $null, # MaximumAllowed

 'Description' # Description

)

 ReturnValue describes the result of the operation; a ReturnValue of 0 indicates success. As this operation requires administrator privileges (run as administrator), a ReturnValue of 2 is used to indicate that it was run without sufficient rights.

 If the folder used in the previous example does not exist, ReturnValue will be set to 24.

 A less well-known alternative is available compared to passing arguments in an array. You can pass arguments by setting the values of an object. The object is retrieved using the GetMethodParameters method on a WMI class:

 $class = [WmiClass]'Win32_Share'

$params = $class.GetMethodParameters('Create')

$params.Name = 'Share1'

$params.Path = 'C:\Temp\Share1'

$params.Type = 0

$class.InvokeMethod('Create', $params)

 Creating an object to represent the parameters has a clear advantage in that each property has a clear name, rather than being reliant on discovering and using positional arguments.

 Creating instances

 An instance of a WMI class can be created using the CreateInstance method of the class. The following example creates an instance of Win32_Trustee:

 ([WmiClass]'Win32_Trustee').CreateInstance()

 Associated classes

 Objects returned by WmiSearcher have a GetRelated method that can be used to find associated instances.

 The GetRelated method accepts arguments that can be used to filter the results. The first argument, relatedClass, is used to limit the instances that are returned to specific classes, as shown here:

 ([WmiSearcher]'SELECT * FROM Win32_LogonSession').Get() | ForEach-Object {

 [PSCustomObject]@{

 LogonName = $_.GetRelated('Win32_Account').Caption

 SessionStarted = [System.Management.ManagementDateTimeConverter]::ToDateTime(

 $_.StartTime

)

 }

}

 Permissions

 Working with permissions in WMI is more difficult than in .NET as the values in use are not given friendly names. However, the .NET classes can still be used, even if not quite as intended.

 The following working examples demonstrate configuring the permissions.

 Sharing permissions

 Get-Acl and Set-Acl are fantastic tools for working with filesystem permissions, or permissions under other providers. However, these commands cannot be used to affect SMB share permissions.

 The SmbShare module

 The SmbShare module has commands that affect share permissions. This example uses the older WMI classes to modify permissions. It might be used if the SmbShare module cannot be.

 The Get-SmbShareAccess command might be used to verify the outcome of this example.

 The following operations require administrative privileges; use PowerShell as an administrator if you're attempting to use these examples.

 Creating a shared directory

 The following snippet creates a directory and shares that directory:

 $path = 'C:\Temp\WmiPermissions'

New-Item $path -ItemType Directory

$params = @{

 ClassName = 'Win32_Share'

 MethodName = 'Create'

 Arguments = @{

 Name = 'WmiPerms'

 Path = $path

 Type = [UInt32]0

 }

}

Invoke-CimMethod @params

 The Create method used here will fail if the argument for Type is not correctly defined as a UInt32 value. PowerShell will set the type to Int32 if the value of 0 is used without the cast.

 The requirement for UInt32, in this case, may be viewed by exploring the parameters required for the method:

 PS> (Get-CimClass Win32_Share).CimClassMethods['Create'].Parameters |

>> Where-Object Name -eq Type

Name CimType Qualifiers ReferenceClassName

---- ------- ---------- ------------------

Type UInt32 {ID, In, MappingStrings}

 Now that the share exists, you can retrieve the security descriptor assigned to the share.

 Getting a security descriptor

 When Get-Acl is used, the object that it gets is a security descriptor. The security descriptor includes a set of control information (ownership and so on), along with the discretionary and system access control lists.

 The WMI class Win32_LogicalShareSecuritySetting is used to represent the security for each of the shares on a computer:

 $params = @{

 ClassName = 'Win32_LogicalShareSecuritySetting'

 Filter = "Name='WmiPerms'"

}

$security = Get-CimInstance @params

 The returned object has a limited number of properties:

 Caption : Security settings of WmiPerms

Description : Security settings of WmiPerms

SettingID :

ControlFlags : 32772

Name : WmiPerms

PSComputerName :

 This instance is important as it is required to use the GetSecurityDescriptor method:

 $return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor

$aclObject = $return.Descriptor

 The security descriptor held in the aclObject variable is different from the result returned by Get-Acl:

 PS> $aclObject

ControlFlags : 32772

DACL : {Win32_ACE}

Group :

Owner :

SACL :

TIME_CREATED :

PSComputerName :

 The ControlFlags value states that a DACL is present, and that the security descriptor information is stored in a contiguous block of memory. These values are described in Microsoft Docs: https://docs.microsoft.com/windows/win32/secauthz/security-descriptor-control.

 The DACL, or discretionary access control list, is used to describe the permission levels for each security principal (a user, group, or computer account). Each entry in this list is an instance of Win32_ACE:

 PS> $aclObject.DACL

AccessMask : 1179817

AceFlags : 0

AceType : 0

GuidInheritedObjectType :

GuidObjectType :

TIME_CREATED :

Trustee : Win32_Trustee

PSComputerName :

 The Win32_ACE object has a Trustee property that holds the Name, Domain, and SID properties of the security principal (in this case, the Everyone principal):

 PS> $aclObject.DACL.Trustee

Domain :

Name : Everyone

SID : {1, 1, 0, 0...}

SidLength : 12

SIDString : S-1-1-0

TIME_CREATED :

PSComputerName :

 AceFlags describes how an ACE is to be inherited. As this is a share, the AceFlags property will always be 0. Nothing can, or will, inherit this entry; .NET can be used to confirm this:

 PS> [System.Security.AccessControl.AceFlags]0

None

 AceType is either AccessAllowed (0) or AccessDenied (1). Again, .NET can be used to confirm this:

 PS> [System.Security.AccessControl.AceType]0

AccessAllowed

 Finally, the AccessMask property can be converted into a meaningful value with .NET as well. The access rights that can be granted on a share are a subset of those that might be assigned to a file or directory:

 PS> [System.Security.AccessControl.FileSystemRights]1179817

ReadAndExecute, Synchronize

 Putting this together, the entries in a shared DACL can be made much easier to understand:

 using namespace System.Security.AccessControl

$aclObject.DACL | ForEach-Object {

 [PSCustomObject]@{

 Rights = [FileSystemRights]$_.AccessMask

 Type = [AceType]$_.AceType

 Flags = [AceFlags]$_.AceFlags

 Identity = $_.Trustee.Name

 }

}

 In the preceding example, the domain of the trustee is ignored. If the trustee is something other than Everyone, the domain should be included.

 Adding an access control entry

 To add an Access Control Entry (ACE) to an existing list, you must create a Win32_ACE. Creating an ACE requires a Win32_Trustee. The following trustee is created from the current user:

 $trustee = New-CimInstance (Get-CimClass Win32_Trustee) -ClientOnly

$trustee.Domain = $env:USERDOMAIN

$trustee.Name = $env:USERNAME

 SID does not need to be set on the trustee object, but if the security principal is invalid, attempting to apply the change to security will fail.

 Then, you can create Win32_ACE. The following ACE grants full control of the share to trustee:

 using namespace System.Security.AccessControl

$ace = New-CimInstance (Get-CimClass Win32_ACE) -ClientOnly

$ace.AccessMask = [UInt32][FileSystemRights]'FullControl'

$ace.AceType = [UInt32][AceType]'AccessAllowed'

$ace.AceFlags = [UInt32]0

$ace.Trustee = $trustee

 The ACE can be added to the DACL using the += operator:

 $aclObject.DACL += $ace

 Setting the security descriptor

 Once the ACL has been changed, the modified security descriptor must be set. The instance returned by Win32_LogicalShareSecuritySetting contains a SetSecurityDescriptor method:

 $params = @{

 MethodName = 'SetSecurityDescriptor'

 Arguments = @{

 Descriptor = $aclObject

 }

}

$security | Invoke-CimMethod @params

 A return value of 0 indicates that the change to the ACL has been successfully applied. You can view this change by looking at the properties of the share in File Explorer, as shown in the following example:

 [image:]

 Figure 11.1: Modified share permissions

 In early versions of PowerShell (and earlier versions of Windows), WMI was the only option for changing configurations like share permissions. The SmbShare module is an easier-to-use set of commands than the convoluted process used here. It is also able to show the assigned share permissions:

 PS> Get-SmbShareAccess -Name WmiPerms

Name ScopeName AccountName AccessControlType AccessRight

---- --------- ----------- ----------------- -----------

WmiPerms * Everyone Allow Read

WmiPerms * TITAN\Chris Allow Full

 While share permissions have better commands available, the preceding process provides a good basis for modifying any security presented via WMI. One of these is permissions defined on namespaces in WMI.

 WMI permissions

 Getting and setting WMI security in PowerShell uses the same approach as share security. WMI permissions might be set using wmimgmt.msc if the GUI is used. The content of the DACL differs slightly.

 The __SystemSecurity class is used to access the security descriptor. Each WMI namespace has its own instance of the __SystemSecurity class; an example is as follows:

 Get-CimClass __SystemSecurity -Namespace root

Get-CimClass __SystemSecurity -Namespace root\cimv2

 Getting a security descriptor

 The security descriptor for a given namespace can be retrieved from the __SystemSecurity class. By default, administrator privileges are required to get the security descriptor:

 $security = Get-CimInstance __SystemSecurity -Namespace root\cimv2

$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor

$aclObject = $return.Descriptor

 The access mask

 The access mask defines which rights are assigned by the ACE. The values of an access mask in the DACL are documented as access right constants in Microsoft Docs: https://docs.microsoft.com/windows/win32/wmisdk/namespace-access-rights-constants.

 The standard access rights, ReadSecurity and WriteSecurity, are also relevant. The access mask is a composite of the values listed here:

 	EnableAccount: 1

 	ExecuteMethods: 2

 	FullWrite: 4

 	PartialWrite: 8

 	WriteProvider: 16

 	RemoteEnable: 32

 	ReadSecurity: 131072

 	WriteSecurity: 262144

 You can use these values to add a new ACE and set the security descriptor in the same way, just like when setting permissions on a share in the previous section.

 The WMI methods used in this subsection also allow a security descriptor to be exported to and imported from a Security Descriptor Definition Language (SDDL) string.

 WMI and SDDL

 SDDL is used to describe the content of a security descriptor as a string. The string format is described in Microsoft Docs: https://docs.microsoft.com/windows/win32/secauthz/security-descriptor-string-format.

 A security descriptor returned by Get-Acl has a method that can convert the entire security descriptor into a string, as follows:

 PS> (Get-Acl C:\).GetSecurityDescriptorSddlForm('All')

O:S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464G:S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464D:PAI(A;;LC;;;AU)(A;OICIIO;SDGXGWGR;;;AU)(A;;FA;

;;SY)(A;OICIIO;GA;;;SY)(A;OICIIO;GA;;;BA)(A;;FA;;;BA)(A;OICI;0x1200a9;;;BU)

 A security descriptor defined using SDDL can also be imported. If the sddlString variable is assumed to hold a valid security descriptor, then you can use the following command:

 $acl = Get-Acl C:\

$acl.SetSecurityDescriptorSddlForm($sddlString)

 The imported security descriptor will not apply to the directory until Set-Acl is used.

 WMI security descriptors can be converted to and from different formats, including SDDL. WMI has a specialized class for this: Win32_SecurityDescriptorHelper. The methods for this class are shown here:

 PS> (Get-CimClass Win32_SecurityDescriptorHelper).CimClassMethods

Name ReturnType Parameters Qualifiers

---- ---------- ---------- ----------

Win32SDToSDDL UInt32 {Descriptor, SDDL} {implemented, static}

Win32SDToBinarySD UInt32 {Descriptor, BinarySD} {implemented, static}

SDDLToWin32SD UInt32 {SDDL, Descriptor} {implemented, static}

SDDLToBinarySD UInt32 {SDDL, BinarySD} {implemented, static}

BinarySDToWin32SD UInt32 {BinarySD, Descriptor} {implemented, static}

BinarySDToSDDL UInt32 {BinarySD, SDDL} {implemented, static}

 You might want to convert a WMI security descriptor into SDDL to create a backup before it makes a change, as follows:

 $security = Get-CimInstance __SystemSecurity -Namespace root\cimv2

$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor

$aclObject = $return.Descriptor

$params = @{

 ClassName = 'Win32_SecurityDescriptorHelper'

 MethodName = 'Win32SDToSDDL'

 Arguments = @{

 Descriptor = $aclObject

 }

}

$return = Invoke-CimMethod @params

 If the operation succeeds (that is, if ReturnValue is 0), the security descriptor in SDDL form will be available:

 PS> $return.SDDL

O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(A;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP;;;AU)

 You can import a security descriptor expressed as an SDDL string:

 $params = @{

 ClassName = 'Win32_SecurityDescriptorHelper'

 MethodName = 'SDDLToWin32SD'

 Arguments = @{

 SDDL = 'O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(A;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP;;;AU)'

 }

}

$return = Invoke-CimMethod @params

$aclObject = $return.Descriptor

 If ReturnValue is 0, the aclObject variable will contain the imported security descriptor:

 PS> $aclObject

ControlFlags : 33028

DACL : {Win32_ACE, Win32_ACE, Win32_ACE, Win32_ACE...}

Group : Win32_Trustee

Owner : Win32_Trustee

SACL :

TIME_CREATED :

PSComputerName :

 The ACL object, like much of WMI, is not particularly descriptive. The raw information is there, and the descriptor can be set. Reading the descriptor requires work, as you must translate all the values into human-readable equivalents.

 Summary

 This chapter explored working with WMI classes, the different available commands, and the WMI Query Language. You used CIM cmdlets as a means of working with WMI.

 Since Get-WmiObject has been removed from PowerShell, the WMI type accelerators were explored as an alternative means of working with WMI. This may be useful for the few rare classes that do not work using the CIM cmdlets. You used getting and setting permissions with WMI while using shared security and WMI security as examples.

 Chapter 12, Working with HTML, XML, and JSON, will explore working with and generating and consuming data from a variety of different text-based formats.

 12

 Working with HTML, XML, and JSON

 PowerShell has several commands for working with HTML, XML, and JavaScript Object Notation (JSON). These commands, combined with some of the available .NET classes, provide a rich set of tools for creating or modifying these formats.

 This chapter covers the following topics:

 	HTML

 	XML commands

 	System.Xml

 	System.Xml.Linq

 	JSON

 HTML

 PowerShell includes the ConvertTo-Html command, which can generate HTML content.

 You can create more complex HTML documents using the PSWriteHtml module available in the PowerShell Gallery, which uses a Domain-Specific Language (DSL) to describe HTML documents in PowerShell.

 What is a Domain-Specific Language?

 A Domain-Specific Language or DSL is a specialized language used to describe something, in this case, an HTML document. Keywords are used to describe individual elements of the document. In this case, those keywords are hierarchically arranged.

 Other DSLs frequently used in PowerShell include Desired State Configuration (DSC) and Pester.

 ConvertTo-Html

 ConvertTo-Html generates an HTML document with a table based on an input object. The following example generates a table based on the output from Get-Process:

 Get-Process | ConvertTo-Html -Property Name, Id, WorkingSet

 The preceding code generates a table format by default. Table is the default value for the -As parameter. The -As parameter also accepts List as an argument to generate output like Format-List.

 Multiple tables

 You can use ConvertTo-Html to build more complex documents by using the Fragment parameter. The Fragment parameter generates an HTML table or list only (instead of a full document). Tables can be combined to create a larger document:

 # Create the body

$body = @(

 '<h1>Services</h1>'

 Get-Service |

 Where-Object Status -eq 'Running' |

 ConvertTo-Html -Property Name, DisplayName -Fragment

 '<h1>Processes</h1>'

 Get-Process |

 Where-Object WorkingSet -gt 50MB |

 ConvertTo-Html -Property Name, Id, WorkingSet-Fragment

) | Out-String

Create a document with the merged body

ConvertTo-Html -Body $body -Title Report |

 Set-Content report.html

 Adding style

 You can enhance HTML content by adding a Cascading Style Sheet (CSS) fragment. When CSS is embedded in an HTML document, it is added between style tags in the head element.

 The following style uses CSS to change the font, color the table headers, define the table borders, and justify the table content:

 $css = @'

<style>

 body { font-family: Arial; }

 table {

 width: 100%;

 border-collapse: collapse;

 }

 table, th, td {

 border: 1px solid Black;

 padding: 5px;

 }

 th {

 text-align: left;

 background-color: LightBlue;

 }

 tr:nth-child(even) {

 background-color: GainsBoro;

 }

</style>

'@

 The Head parameter of ConvertTo-Html is used to add the element to the document:

 Get-Process |

 ConvertTo-Html -Property Name, Id, WorkingSet -Head $css |

 Set-Content report.html

 The CSS language is complex and very capable. The elements that are used in the preceding code, and many more, are documented with examples on the W3Schools website: https://www.w3schools.com/css/.

 Different browsers support different parts of the CSS language, and email clients tend to support a smaller set still. Testing in the expected client is an important part of developing content.

 ConvertTo-Html and Send-MailMessage

 ConvertTo-Html outputs an array of strings, while Send-MailMessage will only accept a body as a string. Attempting to use the output from ConvertTo-Html with Send-MailMessage directly will raise an error.

 The Out-String command may be added to ensure the output from ConvertTo-Html is a string:

 $messageBody = Get-Process |

 ConvertTo-Html Name, Id, WorkingSet -Head $css |

 Out-String

 HTML and special characters

 HTML defines a number of special characters; for example, a literal ampersand (&) in HTML must be written as &.

 ConvertTo-Html will handle the conversion of special characters in input objects, but it will not work with special characters in raw HTML that are added using the Body, Head, PreContent, or PostContent parameters.

 For example, the PreContent parameter might be used in place of inline HTML in the Multiple tables example:

 # Create the body

$body = @(

 Get-Service |

 Where-Object Status -eq 'Running' |

 ConvertTo-Html -PreContent '<h1>Services</h1>' -Property @(

 'Name'

 'DisplayName'

) -Fragment

 Get-Process |

 Where-Object WorkingSet -gt 50MB |

 ConvertTo-Html -PreContent '<h1>Processes</h1>' -Property @(

 'Name'

 'Id'

 'WorkingSet'

) -Fragment

) | Out-String

Create a document with the merged body

ConvertTo-Html -Body $body -Title Report |

 Set-Content report.html

 The System.Web.HttpUtility class includes methods that are able to convert strings containing such characters.

 Before System.Web.HttpUtility can be used, the assembly must be added:

 Add-Type -AssemblyName System.Web

 The HtmlEncode static method will take a string and replace any reserved characters with HTML code. For example, the following snippet will replace > with >:

 PS>'<h1>{0}</h1>' -f [System.Web.HttpUtility]::HtmlEncode('Files > 100MB')

<h1>Files > 100MB</h1>

 The HtmlDecode static method can be used to reverse the process:

 PS> [System.Web.HttpUtility]::HtmlDecode("<h1>Files > 100MB</h1>")

<h1>Files > 100MB</h1>

 The ConvertTo-Html command can be used to very quickly build HTML documents; these can be sent as email content, or used as web pages.

 HTML is one of several text-based formats supported by PowerShell and XML is another (working with XML content is a common requirement within PowerShell).

 XML commands

 Extensible Markup Language (XML) is a plain text format that is used to store structured data. XML is written to be both human and machine readable.

 PowerShell includes Select-Xml and ConvertTo-Xml commands to work with XML content.

 Before exploring the commands, let's look at the basic structure of XML documents.

 About XML

 XML documents often begin with a declaration, as shown here:

 <?xml version="1.0" encoding="utf-8"?>

 This declaration has three possible attributes. The version attribute is mandatory when a declaration is included:

 	version: The XML version, 1.0 or 1.1

 	encoding: The file encoding, most frequently utf-8 or utf-16

 	standalone: Whether the XML file uses an internal or external Document Type Definition (DTD); permissible values are yes or no

 The use of the standalone directive with DTD is beyond the scope of this chapter.

 Elements and attributes

 XML is similar in appearance to HTML. Elements begin and end with a tag name. The tag name describes the name of an element, for example:

 <?xml version="1.0"?>

<rootElement>value</rootElement>

 An XML document can only have one root element, but an element may have many descendants:

 <?xml version="1.0"?>

<rootElement>

 <firstChild>1</firstChild>

 <secondChild>2</secondChild>

</rootElement>

 An element may also have attributes. The rootElement element in the following example has an attribute named attr:

 <?xml version="1.0"?>

<rootElement attr="value">

 <child>1</child>

</rootElement>

 Any XML document may include references to one or more schemas. When more than one schema is in use, the schemas are applied to a document (or parts of a document) using a namespace attribute.

 Namespaces

 XML documents can use one or more namespaces. A namespace is normally used to associate a node or set of nodes with a specific XML schema.

 XML namespaces are declared in an attribute with a name prefixed by xmlns:, for example:

 <?xml version="1.0"?>

<rootElement xmlns:item="http://namespaces/item">

 <item:child>1</item:child>

</rootElement>

 The XML namespace uses a URL as a unique identifier. The identifier is used to describe an element as belonging to a schema.

 Schemas

 An XML schema can be used to describe and constrain the elements, attributes, and values within an XML document.

 About DTD

 A document type definition, or DTD, may be used to constrain the content of an XML file. As a DTD has little bearing on the use of XML in PowerShell, it is considered beyond the scope of this book.

 XML schema definitions are saved with an XSD extension. Schema files can be used to validate the content of an XML file.

 The following is a simple schema that defines the elements and values permissible in the item namespace of the previous XML document:

 <?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://namespaces/item"

 xmlns="https://www.w3schools.com"

 elementFormDefault="qualified">

 <xs:element name="rootElement">

 <xs:element name="child" type="xs:string" />

 </xs:element>

</xs:schema>

 Schemas are explored again later in this chapter when validating a document or inferring a schema from an existing document.

 Select-Xml

 The Select-Xml command may be used to search XML documents using the XPath query language. PowerShell (and .NET) uses XPath 1.0.

 More about XPath

 The structure and format of XPath queries are beyond the scope of this chapter. However, web resources are available, including the reference on Microsoft Docs: https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/ms256115(v=vs.100)

 Function names, element names, and values used in XPath queries, and XML in general, are case-sensitive.

 Given the following XML snippet, Select-Xml might use an XPath expression to select the engines of green cars:

 $string = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 <doors>4</doors>

 <transmission>Automatic</transmission>

 <engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </engine>

 </car>

</cars>

"@

 The -XPath parameter and the result are shown here:

 PS> Select-Xml -XPath '//car[colour="Green"]/engine' -Content $string |

 Select-Object -ExpandProperty Node

size cylinders

---- ---------

2.0 4

 When the XML document includes namespaces, Select-Xml must include the -Namespace parameter.

 Select-Xml and namespaces

 Each of the namespaces used in an XPath expression used to search a document must be included in the -Namespace parameter as a Hashtable when performing a search:

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars xmlns:c="http://example/cars">

 <car type="Saloon">

 <c:colour>Green</c:colour>

 <c:doors>4</c:doors>

 <c:transmission>Automatic</c:transmission>

 <c:engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </c:engine>

 </car>

</cars>

"@

Select-Xml '//car' -Xml $xml -Namespace @{

 c = 'http://example/cars'

}

 In the preceding example, the document uses the prefix c to refer to the http://example/cars namespace. This prefix is repeated in the XPath search, and in the -Namespace parameter for Select-Xml.

 The prefix itself is, in this context, unimportant. The ID, or the Uniform Resource Identifier (URI), is the critical part. The prefix value can therefore be changed in the search, provided that the new prefix value uses the same URI.

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars xmlns:c="http://example/cars">

 <car type="Saloon">

 <c:colour>Green</c:colour>

 <c:doors>4</c:doors>

 <c:transmission>Automatic</c:transmission>

 <c:engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </c:engine>

 </car>

</cars>

"@

Select-Xml '//car' -Xml $xml -Namespace @{

 x = 'http://example/cars'

}

 The result of the search will show the prefix used in the search, not the prefix from the XML document:

 Node Path Pattern

---- ---- -------

engine InputStream //car/x:engine

 Select-Xml is useful for finding content within an XML document. The ConvertTo-Xml command may be useful when creating an XML representation of an object.

 ConvertTo-Xml

 The ConvertTo-XML command creates an XML representation of an object as an XmlDocument. For example, the current PowerShell process object might be converted into XML:

 Get-Process -Id $pid | ConvertTo-Xml

 XML is text

 The command used in the previous example creates an XML representation of the object. All numeric values are stored as strings. The following example shows that the WorkingSet property, an integer, is held as a string:

 $xml = Get-Process -Id $pid | ConvertTo-Xml

$property = $xml.Objects.Object.Property |

 Where-Object Name -eq WorkingSet

$property.'#text'.GetType()

 The two commands explored in this section are handy, but the commands don't account for making changes to documents. When changing documents, the System.Xml.XmlDocument type is frequently used.

 System.Xml

 PowerShell primarily uses the System.Xml.XmlDocument type to work with XML content. This type is part of the System.Xml namespace. The documentation for the types available in this namespace is available on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.xml.

 The System.Xml.XmlDocument type is normally used via a type accelerator.

 The XML type accelerator

 The XML type accelerator ([Xml]) can be used to create instances of XmlDocument, as shown in the following code:

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 <doors>4</doors>

 <transmission>Automatic</transmission>

 <engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </engine>

 </car>

</cars>

"@

 Elements and attributes of an XmlDocument object may be accessed as if they were properties. This is a feature of the PowerShell language rather than the .NET object:

 PS> $xml.cars.car

type : Saloon

colour : Green

doors : 4

transmission : Automatic

engine : engine

 If the document contains more than one car element, each of the instances will be returned. Content may be filtered using Where-Object if required, for example:

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 </car>

 <car type="Saloon">

 <colour>Blue</colour>

 </car>

</cars>

"@

$xml.cars.car | Where-Object type -eq 'Saloon'

 Treating the XML document as a PowerShell object makes opening the document very convenient and requires no specialist knowledge of the XmlDocument type.

 Searching large documents using Where-Object can be slow. For larger documents, XPath is more appropriate.

 XPath and XmlDocument

 The Select-Xml command introduced earlier in this chapter is one way of searching a document. If the document is held in a variable with the expectation that changes are to be made, then you can use the SelectNodes and SelectSingleNodes methods.

 The following SelectNodes method is used with an XPath expression to find the engine node for all car elements where the value of the colour element is Green.

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 <doors>4</doors>

 <transmission>Automatic</transmission>

 <engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </engine>

 </car>

</cars>

"@

$xml.SelectNodes('//car[colour="Green"]/engine')

 The SelectNodes method is appropriate when more than one element might be returned (or an unknown number is expected).

 SelectNodes and XPathNodeList

 If the SelectNodes method is called, and there are no results, an empty XPathNodeList object is returned. The following condition is flawed:

 $nodes = $xml.SelectNodes('//car[colour="Blue"]')

if ($nodes) {

 Write-Host "A blue car record exists"

}

 In this case, using the Count property is a better approach. The condition below will only succeed if the document contains at least one matching node:

 if ($nodes.Count -ge 1) {

 Write-Host "A blue car record exists"

}

 If a single element is expected from a search, you can use the SelectSingleNodes method instead:

 [Xml]$xml = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <numberPlate>abcd</numberPlate>

 <colour>Green</colour>

 <doors>4</doors>

 <transmission>Automatic</transmission>

 <engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </engine>

 </car>

</cars>

"@

$xml.SelectSingleNode('//car[numberPlate="abcd"]')

 This is useful when retrieving an element with a specific identity, where the match will be unique.

 XML documents often use namespaces to indicate that certain elements belong to a specific schema. These namespaces must be provided when searching a document.

 Working with namespaces

 If an XML document includes a namespace, then queries for elements within the document are more difficult. Not only must the namespace tag be included, but XmlNamespaceManager must be defined. XmlNamespaceManager is used to describe the different namespaces in use in the document.

 If you're using the SelectNodes method, XmlNamespaceManager must be built first and passed as an argument. XmlNamespaceManager itself requires the NameTable property from the XML document as an argument.

 $namespaceManager = [System.Xml.XmlNamespaceManager]::new(

 $xml.NameTable

)

$namespaceManager.AddNamespace('c', 'http://example/cars')

$xml.SelectNodes(

 '//car[c:colour="Green"]/c:engine',

 $namespaceManager

)

 XML documents, such as group policy reports, are difficult to work with as they often contain many different namespaces. Each of the possible namespaces must be added to a namespace manager for a search using those namespaces to be successful.

 Creating XML documents

 PowerShell can be used to create XML documents from scratch. One possible way to do this is by using the XmlWriter class. An instance of the XmlWriter class is created using the Create static method:

 $writer = [System.Xml.XmlWriter]::Create("$pwd\newfile.xml")

$writer.WriteStartDocument()

$writer.WriteStartElement('cars')

$writer.WriteStartElement('car')

$writer.WriteAttributeString('type', 'Saloon')

$writer.WriteElementString('colour', 'Green')

$writer.WriteEndElement()

$writer.WriteEndElement()

$writer.Flush()

$writer.Close()

 The use of the Create method of this type is described on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.xml.xmlwriter.create.

 Elements opened by WriteStartElement must be closed to maintain a consistent document.

 The XmlWriter class is a buffered writer; content is not immediately written, it is held in a buffer and periodically flushed or pushed to the underlying file (or stream). The Flush method is called at the end to ensure all content of the buffer has been written to the file.

 The format of generated XML can be changed by supplying an XmlWriterSettings object when calling the Create method. For example, it might be desirable to write line breaks and indent elements, as shown in the following example:

 $writerSettings = [System.Xml.XmlWriterSettings]@{

 Indent = $true

}

$writer = [System.Xml.XmlWriter]::Create(

 "$pwd\newfile.xml",

 $writerSettings

)

$writer.WriteStartDocument()

$writer.WriteStartElement('cars')

$writer.WriteStartElement('car')

$writer.WriteAttributeString('type', 'Saloon')

$writer.WriteElementString('colour', 'Green')

$writer.WriteEndElement()

$writer.WriteEndElement()

$writer.Flush()

$writer.Close()

 The preceding example creates a short XML document in a file named newfile.xml. The following shows the content of the file:

 <?xml version="1.0" encoding="utf-8"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 </car>

</cars>

 Modifying an existing document is a common requirement. A document can be changed in several ways.

 Modifying element and attribute values

 Existing elements in an XML document can be modified by assigning a new value. For example, the misspelling of Appliances could be corrected:

 [Xml]$xml = @"

<?xml version="1.0"?>

<items>

 <item name='Fridge'>

 <category>Appliances</category>

 </item>

 <item name='Cooker'>

 <category>Appliances</category>

 </item>

</items>

"@

($xml.items.item | Where-Object name -eq 'Fridge').category = 'Appliances'

 Attributes may be changed in the same way; the interface does not distinguish between the two value types.

 A direct assignment of a new value cannot be used if the XML document contains more than one element or attribute with the same name (at the same level). For example, the following XML snippet has two values with the same name:

 [Xml]$xml = @"

<?xml version="1.0"?>

<list>

 <name>one</name>

 <name>two</name>

</list>

"@

 The first value may be changed if it is uniquely identified and selected:

 $xml.list.SelectSingleNode('./name[.="one"]').'#text' = 'three'

 The following example shows a similar change being made to the value of an attribute:

 [Xml]$xml = @"

<?xml version="1.0"?>

 <list name='letters'>

 <name>1</name>

</list>

"@

$xml.SelectSingleNode('/list[@name="letters"]').

 SetAttribute('name', 'numbers')

 The @ symbol preceding name in the XPath expression denotes that the value type is an attribute. If the attribute referred to by the SetAttribute method does not exist, it will be created.

 Adding elements

 Elements must be created before they can be added to an existing document. Elements are created in the context of a document:

 [Xml]$xml = @"

<?xml version="1.0"?>

<list type='numbers'>

 <name>1</name>

</list>

"@

$newElement = $xml.CreateElement('name')

$newElement.InnerText = 2

$xml.list.AppendChild($newElement)

 Complex elements may be built up by repeatedly using the Create method of the XmlDocument (held in the $xml variable).

 If the new node is substantial, it may be easier to treat the new node set as a separate document and merge one into the other.

 Removing elements and attributes

 Elements may be removed from a document by selecting the node, then calling the RemoveChild method on the parent:

 [Xml]$xml = @"

<?xml version="1.0"?>

<list type='numbers'>

 <name>1</name>

 <name>2</name>

 <name>3</name>

</list>

"@

$node = $xml.SelectSingleNode('/list/*[.="3"]')

$null = $node.ParentNode.RemoveChild($node)

 The RemoveAll method is also available; however, this removes all children (and attributes) of the selected node.

 Attributes are also easy to remove from a document:

 $xml.list.RemoveAttribute('type')

 At times it is necessary to copy content between two different XML documents.

 Copying nodes between documents

 Nodes (elements, attributes, and so on) can be copied and moved between different XML documents. To bring a node from an external document into another, you must first import it.

 The following example creates two simple XML documents. The first (the xml variable) is the intended destination. The newNodes variable contains a set of elements that should be copied:

 [Xml]$xml = @"

<?xml version="1.0"?>

<list type='numbers'>

 <name>1</name>

</list>

"@

[Xml]$newNodes = @"

<root>

 <name>2</name>

 <name>3</name>

 <name>4</name>

</root>

"@

 Copying the name nodes requires each node to be selected in turn, imported into the original document, and added to the desired node:

 foreach ($node in $newNodes.SelectNodes('/root/name')) {

 $newNode = $xml.ImportNode($node, $true)

 $null = $xml.list.AppendChild($newNode)

}

 The ImportNode method requires two parameters: the node from the foreign document (newNodes) and whether the import is deep (one level or fully recursive).

 The resulting XML can be viewed by inspecting the OuterXml property of the xml variable:

 PS> $xml.OuterXml

<?xml version="1.0"?><list type="numbers"><name>1</name><name>2</name><name>3</name><name>4</name></list>

 Schema validation

 XML documents that reference a schema can be validated against that schema. The schema defines which elements and attributes may be present, the values and value types, and even the order elements can appear.

 Windows PowerShell comes with several XML files with associated schema in the help files. For example, here's the help file for ISE:

 PS> Get-Item $env:windir\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-help.xml

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 29/11/16 07:57 33969 ISE-help.xml

 This file has been chosen as it will fail schema validation.

 The schema documents used by the help content are saved in C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml.

 The following snippet may be used to load the schema files and then test the content of the document:

 $path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-help.xml'

$document = [Xml]::new()

$document.Load($path)

$document.Schemas.XmlResolver = [System.Xml.XmlUrlResolver]::new()

$document.Schemas.Add(

 'http://schemas.microsoft.com/maml/2004/10',

 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'

)

$document.Validate({

 param ($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {

 Write-Host $eventArgs.Message

 }

})

 The results of the validation are written to the console in the preceding example. The following shows the first message:

 The element 'details' in namespace 'http://schemas.microsoft.com/maml/dev/command/2004/10' has invalid child element 'verb' in namespace 'http://schemas.microsoft.com/maml/dev/command/2004/10'. List of possible elements expected: 'description' in namespace 'http://schemas.microsoft.com/maml/2004/10'.

 The XML document refers to several schema documents; MAML content is complex. The schema set will only correctly load in .NET Core if XmlSchemaSet ($document.Schemas) is given an XmlUrlResolver to use to process the schema references in the document. This property is mandatory in .NET Core and optional in .NET Framework. The documentation describing the type is available on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.xml.xmlurlresolver.

 The argument for Validate is a script block that is executed each time an error is encountered. Write-Host is used to print a message to the console. A value cannot be directly returned as the script block is executed in response to an event. A global variable can be used to collect the results for later reference:

 $document = [Xml]::new()

$document.Load($path)

$document.Schemas.XmlResolver = [System.Xml.XmlUrlResolver]::new()

$document.Schemas.Add(

 'http://schemas.microsoft.com/maml/2004/10',

 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'

)

$validateResult = [System.Collections.Generic.List[object]]::new()

$document.Validate({

 param ($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {

 $validateResult.Add($eventArgs)

 }

})

 The $validateResult list will include each of the failure messages from the validation process. The following shows the first of these:

 PS> $validateResult[0]

Severity Exception

-------- ---------

 Error System.Xml.Schema.XmlSchemaValidationException: The element...

 The line number and line position information are not available using this technique.

 Infer a schema

 Normally a schema is created before writing an XML document. It is possible to take an existing XML document and create (or infer) a schema from the document.

 Schema documents can be inferred from an existing XML document using the XmlSchemaInference type.

 The following document is based on an example used earlier in this chapter:

 $xml = [Xml]@"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 </car>

</cars>

"@

 XmlReader or XmlNodeReader is required for the InferSchema method. These reader types can be created from the previous XML document we created:

 $reader = [System.Xml.XmlNodeReader]$xml

 In the preceding example, XmlSchema is created from an existing XmlDocument in memory. XmlReader can be created using any of the options provided by the Create static method of the XmlReader class, such as providing a full path to an existing XML file: https://docs.microsoft.com/dotnet/api/system.xml.xmlreader.create?view=netcore-3.1.

 XmlReader is passed to the InferSchema method of the XmlSchemaInference type to create a SchemaSet.

 $xmlSchemaInference = [System.Xml.Schema.XmlSchemaInference]::new()

$schemaSet = $xmlSchemaInference.InferSchema($reader)

 In this example, the SchemaSet will contain a single document, which can be written to a stream or XmlWriter. StringWriter is used to write the schema in the proceeding code; the ToString method used at the end retrieves the schema that has been created.

 The following shows the complete example with all the preceding steps:

 $xml = [Xml]@"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 </car>

</cars>

"@

$reader = [System.Xml.XmlNodeReader]$xml

$xmlSchemaInference = [System.Xml.Schema.XmlSchemaInference]::new()

$schemaSet = $xmlSchemaInference.InferSchema($reader)

$writer = [System.IO.StringWriter]::new()

$schemaSet.Schemas()[0].Write($writer)

$writer.ToString()

 The result is an XML schema document describing the structure of the XML document.

 <?xml version="1.0" encoding="utf-16"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="cars">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="car">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="colour" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="type" type="xs:string" use="required" />

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

 If the XML document contains namespace declarations, a schema will be created for each namespace.

 The reader can focus on a smaller part of the document by selecting an element and creating an XmlNodeReader at that point in the document. For example, the following snippet creates a schema for the engine element only:

 $reader = [System.Xml.XmlNodeReader]$xml.SelectSingleNode('//engine')

$schemaSet = $xmlSchemaInference.InferSchema($reader)

$writer = [System.IO.StringWriter]::new()

$schemaSet.Schemas()[0].Write($writer)

$writer.ToString()

 The resultant schema can be modified as appropriate to meet the needs of the document it is intended to validate.

 The System.Xml namespace contains the classes that are most used in PowerShell. .NET also includes an alternative set of classes to work with XML documents.

 System.Xml.Linq

 The System.Xml.Linq namespace was added with .NET 3.5. This is known as LINQ to XML. Language Integrated Query (LINQ) is used to describe a query in the same language as the rest of a program. Therefore, interacting with a complex XML document does not require the use of XPath queries.

 System.Xml.Linq is loaded by default in PowerShell 7. Windows PowerShell can make use of System.Xml.Linq once the required assembly has been added:

 Add-Type -AssemblyName System.Xml.Linq

 This can also be phrased as follows:

 using assembly System.Xml.Linq

 As a newer interface, System.Xml.Linq tends to be more consistent. The same syntax is used to create a document from scratch that is used to add elements and so on.

 Opening documents

 The XDocument class is used to load or parse a document. XML content may be cast to XDocument in the same way that content is cast using the [Xml] type accelerator:

 [System.Xml.Linq.XDocument]$xDocument = @"

<?xml version="1.0"?>

<cars>

 <car type="Saloon">

 <colour>Green</colour>

 <doors>4</doors>

 <transmission>Automatic</transmission>

 <engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </engine>

 </car>

</cars>

"@

$xDocument.Save("$pwd\cars.xml")

 If the content has been saved to a file, the Load method may be used with a filename:

 $xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")

 Selecting nodes

 LINQ to XML uses PowerShell to query the content of XML files. This is achieved by combining the methods that are made available through XDocument (or XContainer or XElement). Methods are available to find attributes and elements, either as immediate children or deeper within a document:

 $xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")

$xDocument.Descendants('car').

 Where({ $_.Element('colour').Value -eq 'Green' }).

 Element('engine')

 As the query a script block encapsulated by the Where method is native PowerShell, the comparison operation (-eq) is case insensitive. The selection of the element by name is case sensitive.

 Although it is not the preferred approach, XPath can still be used by calling the XPathSelectElements static method, as shown here:

 [System.Xml.XPath.Extensions]::XPathSelectElements(

 $xDocument,

 '//car[colour="Green"]/engine'

)

 Creating documents

 System.Xml.Linq can be used to create a document from scratch, for example:

 using namespace System.Xml.Linq

$xDocument = [XDocument]::new(

 [XDeclaration]::new('1.0', 'utf-8', 'yes'),

 [XElement]::new('list', @(

 [XAttribute]::new('type', 'numbers'),

 [XElement]::new('name', 1),

 [XElement]::new('name', 2),

 [XElement]::new('name', 3)

))

)

 Using the namespace System.Xml.Linq

 The use of the namespace System.Xml.Linq is assumed in the remainder of the examples to reduce repetition of the namespace.

 Converting the xDocument object into a string shows the document without the declaration:

 PS> $xDocument.ToString()

<list type="numbers">

 <name>1</name>

 <name>2</name>

 <name>3</name>

</list>

 The Save method may be used to write the document to a file:

 $xDocument.Save("$pwd\test.xml")

 Reviewing the document shows the declaration:

 PS> Get-Content test.xml

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<list type="numbers">

 <name>1</name>

 <name>2</name>

 <name>3</name>

</list>

 Like the types in the System.Xml namespace, System.Xml.Linq must be told about any namespaces in use.

 Working with namespaces

 LINQ to XML handles the specification of namespaces by adding an XNamespace object to an XName object, for example:

 PS> [XNameSpace]'http://example/cars' + [XName]'engine'

LocalName Namespace NamespaceName

--------- --------- -------------

engine http://example/cars http://example/cars

 As XNamespace expects to have XName added to it, casting to that type can be skipped, simplifying the expression:

 [XNamespace]'http://example/cars' + 'engine'

 A query for an element in a specific namespace will use the following format:

 using namespace System.Xml.Linq

[XDocument]$xDocument = @"

<?xml version="1.0"?>

<cars xmlns:c="http://example/cars">

 <car type="Saloon">

 <c:colour>Green</c:colour>

 <c:doors>4</c:doors>

 <c:transmission>Automatic</c:transmission>

 <c:engine>

 <size>2.0</size>

 <cylinders>4</cylinders>

 </c:engine>

 </car>

</cars>

"@

$xNScars = [XNameSpace]'http://example/cars'

$xDocument.Descendants('car').ForEach({

 $_.Element($xNScars + 'engine')

})

 Modifying element and attribute values

 Modifying an existing node, whether it is an attribute or an element value, can be done by assigning a new value. In the following example, the category value is used to correct a typo in the Fridge item of the XML document:

 [XDocument]$xDocument = @"

<?xml version="1.0"?>

<items>

 <item name='Fridge'>

 <category>Appliances</category>

 </item>

 <item name='Cooker'>

 <category>Appliances</category>

 </item>

</items>

"@

$xDocument.Element('items').

 Elements('item').

 Where({ $_.Attribute('name').Value -eq 'Fridge' }).

 ForEach({ $_.Element('category').Value = 'Appliances' })

 Modifying the value of an attribute uses the same syntax:

 [XDocument]$xDocument = @"

<?xml version="1.0"?>

<list name='letters'>

 <name>1</name>

</list>

"@

$xDocument.Element('list').Attribute('name').Value = 'numbers'

 If the attribute does not exist, an error will be thrown:

 PS> $xDocument.Element('list').Attribute('other').Value = 'numbers'

InvalidOperation: The property 'Value' cannot be found on this object. Verify that the property exists and can be set.

 The changes made by the preceding assignments may be viewed in the xDocument variable:

 PS> $xDocument.ToString()

<list name="numbers">

 <name>1</name>

</list>

 New nodes (elements and attributes) may be added to an existing document.

 Adding nodes

 Nodes can be added to an existing document by using the Add methods, which include Add, AddAfterSelf, AddBeforeSelf, and AddFirst, for example:

 [XDocument]$xDocument = @"

<?xml version="1.0"?>

<list type='numbers'>

 <name>1</name>

</list>

"@

$xDocument.Element('list').

 Element('name').

 AddAfterSelf(@(

 [XElement]::new('name', 2),

 [XElement]::new('name', 3),

 [XElement]::new('name', 4)

))

 The different Add methods afford a great deal of flexibility over the content of a document; in this case, the new elements appear after the <name>1</name> element.

 Removing nodes

 The Remove method of XElement or XAttribute is used to remove the current node.

 In the following example, the first name element is removed from the document:

 [XDocument]$xDocument = @"

<?xml version="1.0"?>

<list type='numbers'>

 <name>1</name>

 <name>2</name>

 <name>3</name>

</list>

"@

$xDocument.Element('list').FirstNode.Remove()

 Schema validation

 LINQ to XML can be used to validate an XML document against a schema file.

 The ISE-help.xml XML document is validated against its schema in the following example:

 using namespace System.Xml.Linq

$path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-help.xml'

$xDocument = [XDocument]::Load(

 $path,

 [LoadOptions]::SetLineInfo

)

$xmlSchemaSet = [System.Xml.Schema.XmlSchemaSet]::new()

$xmlSchemaSet.XmlResolver = [System.Xml.XmlUrlResolver]::new()

$null = $xmlSchemaSet.Add(

 'http://schemas.microsoft.com/maml/2004/10',

 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'

)

[System.Xml.Schema.Extensions]::Validate(

 $xDocument,

 $xmlSchemaSet,

 {

 param ($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {

 Write-Host $eventArgs.Message

 Write-Host (' At {0} column {1}' -f

 $sender.LineNumber,

 $sender.LinePosition

)

 }

 }

)

 Positional information is made available by loading XDocument with the SetLineInfo option.

 XML parsing and editing is an important feature in PowerShell. XML remains a popular data format.

 JSON

 JavaScript Object Notation (JSON) is a lightweight format used to store and transport data.

 JSON is like XML in some respects. It is intended to be both human- and machine-readable. Like XML, JSON is written in plain text.

 JSON is a form of serialization. Data can be converted to and from a string that represents that data. Like a Hashtable, JSON-formatted objects are made up of key-value pairs, for example:

 {

 "key1": "value1",

 "key2": "value2"

}

 PowerShell 3 introduced the ConvertTo-Json and ConvertFrom-Json commands.

 Newtonsoft JSON is native in PowerShell 7

 PowerShell 7 (and PowerShell 6) use the JSON library from NewtonSoft to serialize and deserialize JSON content.

 Advanced JSON serialization and deserialization are available using the classes in the Newtonsoft namespace. The capabilities are documented on the Newtonsoft website: https://www.newtonsoft.com/json/help/html/Introduction.htm.

 In PowerShell 7, the ConvertTo-Json and ConvertFrom-Json commands gain several new parameters. The parameters are explored in the following sections.

 ConvertTo-Json

 The ConvertTo-Json command can be used to convert a PowerShell object (or Hashtable) into JSON:

 PS> Get-Process -Id $PID |

>> Select-Object Name, Id, Path |

>> ConvertTo-Json

{

 "Name": "pwsh",

 "Id": 3944,

 "Path": " C:\\Program Files\\PowerShell\\7\\pwsh.exe"

}

 By default, ConvertTo-Json will convert objects into a depth of two. Running the following code will show how the value for three is simplified as a string:

 @{

 one = @{ # 1st iteration (depth 1)

 two = @{ # 2nd iteration (depth 2)

 three = @{

 four = 'value'

 }

 }

 }

} | ConvertTo-Json

 The three property is present, but the value is listed as System.Collections.Hashtable, as acquiring the value would need a third iteration. Setting the -Depth parameter of ConvertTo-Json to 3 allows the properties under the key three to convert.

 Going too deep

 JSON serialization is a recursive operation. The depth may be increased, which is useful when converting a complex object.

 Some value types may cause ConvertTo-Json to apparently hang. This is caused by the complexity of those value types. Such value types may include circular references.

 A ScriptBlock object, for example, cannot be efficiently serialized as JSON. The following command takes over 15 seconds to complete and results in a string that's over 50 million characters long:

 Measure-Command { { 'ScriptBlock' } | ConvertTo-Json -Depth 6 -Compress }

 Increasing the recursion depth to 7 results in an error as keys (property names) begin to duplicate.

 EnumsAsStrings

 When ConvertTo-Json encounters an enumeration value, it writes that value as a numeric value by default. For example, DayOfWeek is written as a numeric value in the following:

 @{ Today = (Get-Date).DayOfWeek } | ConvertTo-Json

 Conversely, running (Get-Date).DayOfWeek alone will return the name of the day. This change occurs because the DayOfWeek value is taken from the System.DayOfWeek enumeration.

 In PowerShell 7, the switch parameter EnumsAsStrings may be used to write the value as a string instead of a number.

 PS> @{ Today = (Get-Date).DayOfWeek } | ConvertTo-Json -EnumsAsStrings

{

 "Today": "Sunday"

}

 In Windows PowerShell, the ConvertTo-Json command is unable to create an array when a single object is piped. This is where AsArray comes in handy.

 AsArray

 The ConvertFrom-Json command is normally used as part of a pipeline. In a pipeline, the command is unable to determine whether the input object was originally an array.

 In the following example the input is an array, but only one value is sent to the input pipeline for ConvertTo.Json.

 @(Get-Process -ID $PID | Select-Object Name, ID) | ConvertTo-Json

 To create a JSON array in Windows PowerShell, the value must be explicitly passed to the InputObject parameter:

 ConvertTo-Json -InputObject @(

 Get-Process -ID $PID | Select-Object Name, ID

)

 In PowerShell 7, the AsArray parameter can be used instead:

 Get-Process -ID $PID | Select-Object Name, ID | ConvertTo-Json -AsArray

 PowerShell 7 also offers control over how certain characters should be escaped by using the -EscapeHandling parameter.

 EscapeHandling

 PowerShell 7 includes greater control over escape characters. By default, only JSON control characters are escaped in content. Additional options are included to escape all non-ASCII content (EscapeNonAscii), and to escape HTML control characters (EscapeHtml).

 Support for these new values is provided by the Newtonsoft library: https://www.newtonsoft.com/json/help/html/T_Newtonsoft_Json_StringEscapeHandling.htm.

 For example, the following string contains an accent over one character. The accent is preserved when converting to JSON:

 PS> @{ String = 'Halló heimur' } | ConvertTo-Json

{

 "String": "Halló heimur"

}

 If the EscapeNonAscii value for the -EscapeHandling parameter is used, the resulting string will include a Unicode character sequence instead:

 PS> @{ String = 'Halló heimur' } |

>> ConvertTo-Json -EscapeHandling EscapeNonAscii

{

 "String": "Hall\u00f3 heimur"

}

 This adds flexibility, allowing PowerShell to generate JSON content for a wider variety of other languages and applications.

 PowerShell will correctly interpret either format when reading content in with the ConvertFrom-Json command.

 ConvertFrom-Json

 The ConvertFrom-Json command is used to turn a JSON document into an object, for example:

 '{ "Property": "Value" }' | ConvertFrom-Json

 ConvertFrom-Json creates a PSCustomObject from the JSON content by default.

 JSON understands several different data types, and each of these types is converted into an equivalent .NET type. The following example shows how each different type might be represented:

 $object = @"

{

 "Decimal": 1.23,

 "String": "string",

 "Int32": 1,

 "Int64": 2147483648,

 "Boolean": true

}

"@ | ConvertFrom-Json

 Once converted, the result is a custom object as the following shows:

 PS> $object

Decimal : 1.23

String : string

Int32 : 1

Int64 : 2147483648

Boolean : True

 Inspecting individual elements after conversion reflects the type, as demonstrated in the following example:

 PS> $object.Int64.GetType()

PS> $object.Boolean.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int64 System.ValueType

True True Boolean System.ValueType

 JSON serialization within PowerShell is useful, but it is not perfect. For example, consider the result of converting Get-Date:

 PS> Get-Date | ConvertTo-Json

{

 "value": "\/Date(1489321529249)\/",

 "DisplayHint": 2,

 "DateTime": "12 March 2017 12:25:29"

}

 The value includes a DisplayHintNoteProperty and a DateTimeScriptProperty, added to the DateTime object. These add an extra layer of properties when converting back from JSON:

 PS> Get-Date | ConvertTo-Json | ConvertFrom-Json

value DisplayHint DateTime

----- ----------- --------

12/03/2017 12:27:25 2 12 March 2017 12:27:25

 The DateTime property can be removed using the following code:

 Get-TypeData System.DateTime | Remove-TypeData

 Dates without type data

 Get-Date will appear to return nothing after running the previous command. The date is still present; this is an aesthetic problem only. Without the type data, PowerShell does not know how to display the date, which is ordinarily composed as follows:

 $date = Get-Date

'{0} {1}' -f $date.ToLongDateString(), $date.ToLongTimeString()

 DisplayHint is added by Get-Date, and therefore the command cannot be used when creating a date object for use in a JSON string.

 Any extraneous members such as this would have to be tested for invalid members prior to conversion, which makes the solution more of a problem:

 PS> Get-TypeData System.DateTime | Remove-TypeData

PS> [DateTime]::Now | ConvertTo-Json | ConvertFrom-Json | Select-Object *

Date : 12/03/2017 00:00:00

Day : 12

DayOfWeek : Sunday

DayOfYear : 71

Hour : 12

Kind : Utc

Millisecond : 58

Minute : 32

Month : 3

Second : 41

Ticks : 636249187610580000

TimeOfDay : 12:32:41.0580000

Year : 2017

 By default, PowerShell converts JSON data into a custom object. In some cases, it may be preferable to read JSON content as a Hashtable.

 AsHashtable

 By default, ConvertFrom-Json creates a PSCustomObject from the JSON content. This conversion includes nested objects in the JSON content.

 In PowerShell 7, you can use the AsHashtable parameter may to create a Hashtable instead of a PSCustomObject.

 $hashtable = @"

{

 "Decimal": 1.23,

 "String": "string",

 "Int32": 1,

 "Int64": 2147483648,

 "Boolean": true

}

"@ | ConvertFrom-Json -AsHashtable

 If the JSON content includes nested objects, they are also converted into Hashtables:

 $hashtable = @"

{

 "Key": "Value",

 "Nested": {

 "Key": "NestedValue"

 }

}

"@ | ConvertFrom-Json -AsHashtable

 In PowerShell, Hashtable keys are not case-sensitive by default when created using @{}. Hashtables created by ConvertFrom-Json have case-sensitive keys.

 NoEnumerate

 The NoEnumerate parameter is relevant when the root element in a document is an array, and that array contains only one element.

 By default, ConvertFrom-Json will squash the array, returning a scalar value:

 PS> $content = @"

>> [

>> { "Element": 1 }

>>]

>> "@ | ConvertFrom-Json

PS> $content.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False PSCustomObject System.Object

 If NoEnumerate is used, the resultant type will be an array, Object[].

 PS> $content = @"

>> [

>> { "Element": { "Value": 1 } }

>>]

>> "@ | ConvertFrom-Json -NoEnumerate

PS> $content.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Object[] System.Array

 JSON is an incredibly useful format, as it is available in many other languages and used by many other systems. It is an excellent way of drawing data into PowerShell or passing data along to another application or language.

 Summary

 This chapter took a brief look at working with HTML content and how HTML content is formatted.

 Working with XML content is a common requirement. This chapter introduced the structure of XML, along with two different approaches to working with XML.

 Finally, JSON serialization was introduced, along with the ConvertTo-Json and ConvertFrom-Json commands.

 Chapter 13, Web Requests and Web Services, explores working with Representational State Transfer (REST) and Simple Object Access Protocol (SOAP)-based web services in PowerShell.

 13

 Web Requests and Web Services

 Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) are often used as labels to refer to two different approaches to implementing a web-based Application Programming Interface (API).

 The growth of cloud-based services in recent years has pushed the chances of working with such interfaces from rare to almost certain.

 This chapter covers the following topics:

 	Web requests

 	Working with REST

 	Working with SOAP

 Before beginning with the main topics of the chapter, there are some technical requirements to consider.

 Technical requirements

 In addition to PowerShell and PowerShell Core, you'll need Visual Studio 2019 Community Edition or better to follow the SOAP service example.

 SOAP interfaces typically use the New-WebServiceProxy command in Windows PowerShell. This command is not available in PowerShell 7 as the assembly it depends on is not available. The command is unlikely to be available in PowerShell Core unless it is rewritten.

 Web requests, such as getting content from a website or downloading files, are a common activity in PowerShell, and this is the first topic we'll cover.

 Web requests

 A background in web requests is valuable before delving into interfaces that run over the top of the Hypertext Transfer Protocol (HTTP).

 PowerShell can use Invoke-WebRequest to send HTTP requests. For example, the following command will return the response to a GET request for the Hey, Scripting Guy blog:

 Invoke-WebRequest https://blogs.technet.microsoft.com/heyscriptingguy/

 Parsing requires Internet Explorer

 In Windows PowerShell, UseBasicParsing was an important parameter. Its use was mandatory when working on Core installations of Windows Server as Internet Explorer was not installed. It was also often used to improve the performance of a command where parsing was not actually required.

 In PowerShell Core, all requests use basic parsing. The parameter is deprecated and present to support backward compatibility only. The parameter does not affect the output of the command.

 A web request has an HTTP method. A request might use SSL, and sometimes may need to work with invalid or self-signed certificates. The web request is the foundation for working with web-based APIs.

 HTTP methods

 HTTP supports several different methods, including the following:

 	GET

 	HEAD

 	POST

 	PUT

 	DELETE

 	CONNECT

 	OPTIONS

 	TRACE

 	PATCH

 These methods are defined in the HTTP 1.1 specification: https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

 It is common to find that a web server only supports a subset of these. In many cases, supporting too many methods is deemed to be a security risk. The Invoke-WebRequest command can be used to verify the list of HTTP methods supported by a site, for example:

 PS> Invoke-WebRequest www.indented.co.uk -Method OPTIONS |

>> Select-Object -ExpandProperty Headers

Key Value

--- -----

Allow GET, HEAD

 HTTPS

 If a connection to a web service uses HTTPS (HTTP over Secure Sockets Layer (SSL)), the certificate must be validated before a connection can complete and a request can be completed. If a web service has an invalid certificate, an error will be returned.

 The badssl site can be used to test how PowerShell might react to different SSL scenarios: https://badssl.com/.

 For example, when attempting to connect to a site with an expired certificate (using Invoke-WebRequest), the following message will be displayed in Windows PowerShell:

 PS> Invoke-WebRequest https://expired.badssl.com/

Invoke-WebRequest : The underlying connection was closed: Could not establish trust relationship for the SSL/TLS secure channel.

At line:1 char:1

+ Invoke-WebRequest https://expired.badssl.com/

+ ~~~

 + CategoryInfo : InvalidOperation: (System.Net.HttpWebRequest:HttpWebRequest) [Invoke-WebRequest], WebException

 + FullyQualifiedErrorId : WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeWebRequestCommand

 In PowerShell 7, this message changes to Invoke-WebRequest: The remote certificate is invalid according to the validation procedure.

 In Windows PowerShell, Invoke-WebRequest cannot bypass or ignore an invalid certificate on its own (using a parameter). Certificate validation behavior may be changed by adjusting the CertificatePolicy on the ServicePointManager: https://docs.microsoft.com/dotnet/api/system.net.servicepointmanager?view=netframework-4.8.

 The CertificatePolicy is a process-specific policy control affecting web requests in .NET made by that process. The policy is applied using the ServicePointManager, which manages HTTP connections.

 Removing certificate handling changes

 PowerShell should be restarted to reset the certificate policies to system defaults. Changes made by ServicePointManager apply to the current PowerShell process only and do not persist once PowerShell is closed.

 In PowerShell 7, Invoke-WebRequest has a parameter that allows certificate errors to be ignored, as the following shows:

 Invoke-WebRequest https://expired.badssl.com/ -SkipCertificateCheck

 Chain of trust

 Certificates are based on a chain of trust. Authorities are trusted to carry out sufficient checks to prove the identity of the certificate holder. Skipping certificate validation is insecure and should only be used against known hosts that can be trusted.

 It may be necessary to ignore an SSL error when making a web request for any number of reasons; for example, the certificate might be self-signed. SSL errors in PowerShell 7 can be bypassed using the preceding parameter. SSL errors in Windows PowerShell are explored in the next section.

 Bypassing SSL errors in Windows PowerShell

 If a service has an invalid certificate, the best response is to fix the problem. When it is not possible or practical to address the real problem, a workaround can be created.

 The approach described here applies to Windows PowerShell only. PowerShell Core does not include the ICertificatePolicy type.

 This modification applies to the current PowerShell session and will reset to default behavior every time a new PowerShell session is opened.

 The certificate policy used by the ServicePointManager can be replaced with a customized handler by writing a class (PowerShell, version 5) that replaces the CheckValidationResult method:

 Class AcceptAllPolicy: System.Net.ICertificatePolicy {

 [Boolean] CheckValidationResult(

 [System.Net.ServicePoint] $servicePoint,

 [System.Security.Cryptography.X509Certificates.X509Certificate] $certificate,

 [System.Net.WebRequest] $webRequest,

 [Int32] $problem

) {

 return $true

 }

}

[System.Net.ServicePointManager]::CertificatePolicy = [AcceptAllPolicy]::new()

 Once the policy is in place, certificate errors will be ignored as the previous method returns true no matter its state:

 PS> Invoke-WebRequest "https://expired.badssl.com/"

StatusCode : 200

StatusDescription : OK

...

 CertificatePolicy is obsolete

 The CertificatePolicy property on the ServicePointManager is marked as obsolete in Microsoft Docs. This approach appears to be required when using Invoke-WebRequest in PowerShell 5.

 Requests made by System.Net.WebClient in Windows PowerShell are satisfied by this simpler approach, which trusts all certificates:

 [System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }

 This approach is not feasible with PowerShell 7. Requests made using WebClient may be replaced by either Invoke-WebRequest or the HttpClient.

 Capturing SSL errors

 The ServerCertificateValidationCallback property of ServicePointManager does not work as expected in PowerShell 7. Attempts to assign and use a script block may result in an error being displayed, as shown here, when making a web request:

 PS> [System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }

PS> $webClient = [System.Net.WebClient]::new()

PS> $webClient.DownloadString('https://expired.badssl.com/')

MethodInvocationException: Exception calling "DownloadString" with "1" argument(s): "The SSL connection could not be established, see inner exception. There is no Runspace available to run scripts in this thread. You can provide one in the DefaultRunspace property of the System.Management.Automation.Runspaces.Runspace type. The script block you attempted to invoke was: $true "

 The .NET SslStream type (System.Net.Security.SslStream) offers a potential alternative for capturing detailed certificate validation information. The method used in the following example works in both Windows PowerShell and PowerShell Core.

 This example converts certificate validation information using Export-CliXml. Assigning the parameters to a global variable is possible, but certain information is discarded when the callback ends, including the elements of the certificate chain. Note that the following example uses three different namespaces. If the example is pasted into the console, then these using statements must appear on a single line, each separated by a semi-colon:

 using namespace System.Security.Cryptography.X509Certificates

using namespace System.Net.Security

using namespace System.Net.Sockets

$remoteCertificateValidationCallback = {

 param (

 [Object]$sender,

 [X509Certificate2]$certificate,

 [X509Chain]$chain,

 [SslPolicyErrors]$sslPolicyErrors

)

 $psboundparameters | Export-CliXml C:\temp\CertValidation.xml

 # Always indicate SSL negotiation was successful

 $true

}

try {

 [Uri]$uri = 'https://expired.badssl.com/'

 $tcpClient = [TcpClient]::new()

 $tcpClient.Connect($Uri.Host, $Uri.Port)

 $sslStream = [SslStream]::new(

 $tcpClient.GetStream(),

 # leaveInnerStreamOpen: Close the inner stream when complete

 $false,

 $remoteCertificateValidationCallback

)

 $sslStream.AuthenticateAsClient($Uri.Host)

} catch {

 throw

} finally {

 if ($tcpClient.Connected) {

 $tcpClient.Close()

 }

}

$certValidation = Import-CliXml C:\temp\CertValidation.xml

 Once the content of the XML file has been loaded, the content may be investigated. For example, the certificate that was exchanged can be viewed:

 $certValidation.Certificate

 Or, the response can be used to inspect all the certificates in the key chain:

 $certValidation.Chain.ChainElements | ForEach-Object Certificate

 The ChainStatus property exposes details of any errors during chain validation:

 $certValidation.Chain.ChainStatus

 ChainStatus is summarized by the SslPolicyErrors property.

 The HTTP methods demonstrated can be put to use with Representational State Transfer (REST).

 Working with REST

 A REST-compliant web service allows a client to interact with the service using a set of predefined stateless operations. REST is not a protocol; it is an architectural style.

 Whether or not an interface is truly REST-compliant is not particularly relevant when the goal is to use one in PowerShell. Interfaces must be used according to any documentation that has been published.

 Invoke-RestMethod

 The Invoke-RestMethod command can execute methods exposed by web services. The name of a method is part of the Uniform Resource Identifier (URI); it is important not to confuse this with the Method parameter. The Method parameter is used to describe the HTTP method. By default, Invoke-RestMethod uses HTTP GET.

 Simple requests

 The REST API provided by GitHub may be used to list repositories made available by the PowerShell team.

 The API entry point, the common URL all REST methods share, is https://api.github.com as documented in the GitHub reference: https://docs.github.com/rest.

 When working with REST, documentation is important. The way an interface is used is common, but the way it may respond is not (as this is an architectural style, not a strict protocol).

 The specific method being called is documented on a different page of the following reference: https://docs.github.com/rest/reference/repos#list-user-repositories.

 The name of the user forms part of the URI; there are no arguments for this method. Therefore, the following command will execute the method and return detailed information about the repositories owned by the PowerShell user (or organization):

 Invoke-RestMethod -Uri https://api.github.com/users/powershell/repos

 Windows PowerShell is likely to throw an error relating to SSL/TLS when running this command. This is because the site uses TLS 1.2 whereas, by default, Invoke-RestMethod reaches as far as TLS 1.0. PowerShell 7 users should not experience this problem.

 This Windows PowerShell problem can be fixed by tweaking the SecurityProtocol property of ServicePointManager as follows:

 using namespace System.Net

[ServicePointManager]::SecurityProtocol = [ServicePointManager]::SecurityProtocol -bor 'Tls12'

 The bitwise -bor operator is used to add TLS 1.2 to the default list defined by a combination of the .NET version and the Windows version. That typically includes Ssl3 and Tls. TLS 1.1 (Tls11) may be added in a similar manner if required. The change applies to the current PowerShell process and does not persist.

 All examples use TLS 1.2

 This setting is required for the examples that follow when running Windows PowerShell.

 Older versions of Windows may require a patch from Windows Update to gain support for TLS 1.2.

 Requests with arguments

 The search code method of the GitHub REST API is used to demonstrate how arguments can be passed to a REST method.

 The documentation for the method is found in the following API reference: https://docs.github.com/rest/reference/search#search-code.

 The following example uses the search code method by building a query string and appending that to the end of the URL. The search looks for occurrences of the Get-Content term in PowerShell language files in the PowerShell repository. The search term is therefore as follows; the search string here should not be confused with a PowerShell command:

 Get-Content language:powershell repo:powershell/powershell

 Get-Content is not the PowerShell command Get-Content

 PowerShell has a Get-Content command. The Get-Content term used in the previous search string should not be confused with the PowerShell command.

 Converting the example from the documentation for the search method, the URL required is as follows. Spaces may be replaced by + when encoding the URL: https://api.github.com/search/code?q=Get-Content+language:powershell+repo:powershell/powershell.

 In Windows PowerShell, which can use the HttpUtility type within the System.Web assembly, the task of encoding the URL can be simplified:

 using assembly System.Web

$queryString = [System.Web.HttpUtility]::ParseQueryString('')

$queryString.Add(

 'q',

 'Get-Content language:powershell repo:powershell/powershell'

)

$uri = 'https://api.github.com/search/code?{0}' -f $queryString

Invoke-RestMethod $uri

 The result is a custom object that includes the search results:

 PS> Invoke-RestMethod $uri

total_count incomplete_results items

----------- ------------------ -----

 80 False {@{name=Get-Content.Tests....

 Running $queryString.ToString() shows that the colon character has been replaced by %3, and the forward-slash in the repository name has been replaced by %2. The %3 and %2 are HTTP encodings of the colon and forward-slash characters.

 The arguments for the search do not necessarily have to be passed as a query string. Instead, a body for the request may be set, as shown here:

 Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{

 q = 'Get-Content language:powershell repo:powershell/powershell'

}

 Invoke-RestMethod converts the body (a Hashtable) to JSON and handles any encoding required. The result of the search is the same whether the body or a query string is used.

 In both cases, details of the files found are held within the items property of the response. The following example shows the file name and path:

 $params = @{

 Uri = 'https://api.github.com/search/code'

 Body = @{

 q = 'Get-Content language:powershell repo:powershell/powershell'

 }

}

Invoke-RestMethod @params |

 Select-Object -ExpandProperty items |

 Select-Object name, path

 This pattern, where the actual results are nested under a property in the response, is frequently seen with REST interfaces. Exploration is often required.

 It is critical to note that REST interfaces are case-sensitive; using a parameter named Q would result in an error message, as shown here:

 PS> Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{

>> Q = 'Get-Content language:powershell repo:powershell/powershell'

>> }

Invoke-RestMethod: {"message":"Validation Failed","errors":[{"resource":"Search","field":"q","code":"missing"}],"documentation_url":"https://developer.github.com/v3/search"}

 The GitHub API returns an easily understood error message in this case. This will not be true of all REST APIs; it is common to see a generic error returned by an API. An API may return a simple HTTP 400 error and leave it to the user or developer to figure out what went wrong.

 Working with paging

 Many REST interfaces will return large result sets from searches in pages, a subset of the results. The techniques used to retrieve each subsequent page can vary from one API to another. This section explores how those pages can be retrieved from the web service.

 The GitHub API exposes the link to the next page in the HTTP header. This is consistent with RFC 5988 (https://tools.ietf.org/html/rfc5988#page-6).

 In PowerShell 7, it is easy to retrieve and view the header when using Invoke-RestMethod:

 $params = @{

 Uri = 'https://api.github.com/search/issues'

 Body = @{

 q = 'documentation state:closed repo:powershell/powershell'

 }

 ResponseHeadersVariable = 'httpHeader'

}

Invoke-RestMethod @params | Select-Object -ExpandProperty items

 Once run, the link field of the header may be inspected via the httpHeader variable:

 PS> $httpHeader['link']

 <https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3Apowershell%2Fpowershell&page=2>; rel="next",

 <https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3Apowershell%2Fpowershell&page=34>; rel="last"

 PowerShell 7 can also automatically follow this link by using the FollowRelLink parameter. This might be used in conjunction with the MaximumFollowRelLink parameter to ensure a request stays within any rate limiting imposed by the web service. See https://docs.github.com/en/rest/overview/resources-in-the-rest-api#rate-limiting for the GitHub API. The following request searches for closed documentation issues, following the paging link twice:

 $params = @{

 Uri = 'https://api.github.com/search/issues'

 Body = @{

 q = 'documentation state:closed repo:powershell/powershell'

 }

 FollowRelLink = $true

 MaximumFollowRelLink = 2

}

Invoke-RestMethod @params | Select-Object -ExpandProperty items

 Windows PowerShell, unfortunately, cannot automatically follow this link. Nor does the Invoke-RestMethod command expose the header from the response. When working with complex REST interfaces in Windows PowerShell, it is often necessary to fall back to the Invoke-WebRequest or even HttpWebRequest classes.

 The example that follows uses Invoke-WebRequest in Windows PowerShell to follow the next link in a similar manner to Invoke-RestMethod in PowerShell 7:

 # Used to limit the number of times "next" is followed

$followLimit = 2

The initial set of parameters, describes the search

$params = @{

 Uri = 'https://api.github.com/search/issues'

 # PowerShell will convert this to JSON

 Body = @{

 q = 'documentation state:closed repo:powershell/powershell'

 }

 ContentType = 'application/json'

}

Just a counter, works in conjunction with followLimit.

$followed = 0

do {

 # Get the next response

 $response = Invoke-WebRequest @params

 # Convert and leave the results as output

 $response.Content |

 ConvertFrom-Json |

 Select-Object -ExpandProperty items

 # Retrieve the links from the header and find the next URL

 if ($response.Headers['link'] -match '<([^>]+?)>;\s*rel="next"') {

 $next = $matches[1]

 } else {

 $next = $null

 }

 # Parameters which will be used to get the next page

 $params = @{

 Uri = $next

 }

 # Increment the followed counter

 $followed++

} until (-not $next -or $followed -ge $followLimit)

 Because of the flexible nature of REST, implementations of page linking may vary. For example, links may appear in the body of a response instead of the header. Exploration is a requirement when working around a web API.

 Working with authentication

 There are many authentication systems that can be used when working with web services.

 For services that expect to use the current user account to authenticate, the UseDefaultCredential parameter may be used to pass authentication tokens without explicitly passing a username and password. A service integrated into an Active Directory domain, expecting to use Kerberos authentication, is an example of such a service.

 REST interfaces written to provide automation access tend to offer reasonably simple approaches to automation, often including basic authentication.

 GitHub offers several different authentication methods, including basic and OAuth. These are shown here when attempting to request the email addresses for a user that requires authentication.

 GitHub user basic auth is deprecated

 GitHub removed basic authentication entirely in November 2020. The following basic authentication example will fail unless a personal access token is used as the password.

 https://developer.github.com/changes/2020-02-14-deprecating-password-auth/

 Using basic authentication

 Basic authentication with a username and password is the simplest method available. For the GitHub API, the password must be a personal access token, basic authentication with a username and password was discontinued in November 2020.

 You can generate personal access tokens by visiting account settings, then developer settings. Once generated, the personal access token cannot be viewed. The personal access token is used in place of a password:

 $params = @{

 Uri = 'https://api.github.com/user/emails'

 Credential = Get-Credential

}

Invoke-RestMethod @params

 In PowerShell 7, the Authentication parameter should be added:

 $params = @{

 Uri = 'https://api.github.com/user/emails'

 Credential = Get-Credential

 Authentication = 'Basic'

}

Invoke-RestMethod @params

 GitHub provides documentation showing how to add the second authentication factor, although it is not clear how SMS tokens can be requested: https://docs.github.com/rest/overview/other-authentication-methods.

 OAuth is an alternative to using a personal access token.

 OAuth

 OAuth is offered by a wide variety of web services. The details of this process will vary slightly between different APIs. The GitHub documentation describes the process that must be followed: https://docs.github.com/developers/apps/authorizing-oauth-apps#web-application-flow.

 Implementing OAuth requires a web browser, or a web browser and a web server. As the browser will likely need to run JavaScript, this cannot be done using Invoke-WebRequest alone.

 Creating an application

 Before starting with code, an application must be registered with GitHub. This is done by visiting Settings, and then Developer settings, and finally OAuth Apps.

 A new OAuth app must be created to acquire a clientId and clientSecret. Creating the application requires a homepage URL and an authorization callback URL. Both should be set to http://localhost:40000 for this example. This URL is used to acquire the authorization code.

 The values from the web page will fill the following variables, the client secret must be generated by clicking Generate a new client secret. The secret must be regenerated if lost:

 Generate a new client secret in screen text style.

 $clientId = 'FromGitHub'

$clientSecret = 'FromGitHub'

 Getting an authorization code

 Once an application is registered, an authorization code is required. Obtaining the authorization code gives the end user the opportunity to grant the application access to a GitHub account. If the user is not currently logged in to GitHub, it will also prompt them to log on.

 A URL must be created that will prompt for authorization:

 $authorize = 'https://github.com/login/oauth/authorize?client_id={0}&scope={1}' -f @(

 $clientId

 'user:email'

)

 The 'user:email' scope describes the rights the application would like to have. The web API guide contains a list of possible scopes: https://docs.github.com/developers/apps/scopes-for-oauth-apps.

 OAuth browser issues

 WPF and Windows Forms both include browser controls that can be used. However, both are based on Internet Explorer, which is not supported by GitHub. At this point, a choice must be made. Either a browser must be controlled, which is challenging, or an HTTP listener must be created to receive the response after OAuth completes. An HTTP listener is the easier path as this can leverage any browser installed on the current computer.

 Implementing an HTTP listener

 Implementing the web server has two advantages:

 	Implementing a web server does not need additional libraries

 	The web server can potentially be used on platforms other than Windows

 The HttpListener is configured with the callback URL as a prefix. The prefix must end with a forward slash. The operating system gets to choose which browser should be used to complete the request:

 $httpListener = [System.Net.HttpListener]::new()

$httpListener.Prefixes.Add('http://localhost:40000/')

$httpListener.Start()

$clientId = Read-Host 'Enter the client-id'

$authorizeUrl = 'https://github.com/login/oauth/authorize?client_id={0}&scope={1}' -f @(

 $clientId

 'user:email'

)

Let the operating system choose the browser to use for this request

Start-Process -FilePath $authorizeUrl

$context = $httpListener.GetContext()

$buffer = [Byte[]][Char[]]"<html><body>OAuth complete! Please return to PowerShell!</body></html>"

$context.Response.OutputStream.Write(

 $buffer,

 0,

 $buffer.Count

)

$context.Response.OutputStream.Close()

$httpListener.Stop()

$authorizationCode = $context.Request.QueryString['code']

 In either case, the result of the process is code held in the $authorizationCode variable. This code can be used to request an access token.

 Requesting an access token

 The next step is to create an access token. The access token is valid for a limited time.

 The clientSecret is sent with this request; if this were an application that was given to others, keeping the secret would be a challenge to overcome:

 $params = @{

 Uri = 'https://github.com/login/oauth/access_token'

 Method = 'POST'

 Body = @{

 client_id = $clientId

 client_secret = $clientSecret

 code = $authorizationCode

 }

}

$response = Invoke-RestMethod @params

$token = [System.Web.HttpUtility]::ParseQueryString($response)['access_token']

 The previous request used the HTTP method POST. The HTTP method, which should be used with a REST method, is documented for an interface in the Developer Guides.

 Each of the requests that follow will use the access token from the previous request. The access token is placed in an HTTP header field named Authorization.

 Using a token

 We can call methods that require authentication by adding a token to the HTTP header. The format of the Authorization header field is as follows:

 Authorization: token OAUTH-TOKEN

 OAUTH-TOKEN is replaced, and the Authorization head is constructed as follows:

 $headers = @{

 Authorization = 'token {0}' -f $token

}

 The token can be used in subsequent requests for the extent of its lifetime:

 $headers = @{

 Authorization = 'token {0}' -f $token

}

Invoke-RestMethod 'https://api.github.com/user/emails' -Headers $headers

 Each REST API for each different system or service tends to take a slightly different approach to authentication, authorization, calling methods, and even details like paging. However, despite the differences there, the lessons learned using one API are still useful when attempting to write code for another.

 REST is an extremely popular style these days. Before REST became prominent, services built using SOAP were common.

 Working with SOAP

 Unlike REST, which is an architectural style, SOAP is a protocol. It is perhaps reasonable to compare working with SOAP to importing a .NET assembly (DLL) to work with the types inside. As a result, a SOAP client is much more strongly tied to a server than is the case with a REST interface.

 SOAP uses XML to exchange information between the client and server.

 Finding a SOAP service

 SOAP-based web APIs have become quite rare, less popular by far than REST. The examples in this section are based on a simple SOAP service written for this book.

 The service is available on GitHub as a Visual Studio solution. The solution is also available in the GitHub repository containing the code examples used in this chapter: https://github.com/indented-automation/SimpleSOAP.

 The solution should be downloaded, opened in Visual Studio (2015 or 2017, Community Edition or better), and debugging should be started by pressing F5. A browser page will be opened, which will show the port number the service is operating on. A 403 error may be displayed; this can be ignored.

 Localhost and a port

 Throughout this section, localhost and a port are used to connect to the web service. The port is set by Visual Studio when debugging the simple SOAP web service and must be updated to use these examples.

 This service is not well-designed; it has been contrived to expose similar patterns in its method calls to those seen in real SOAP services.

 A ReadMe file accompanies the project. Common problems running the project will be noted there.

 The discovery-based approaches explored in this section should be applicable to any SOAP-based service.

 SOAP in Windows PowerShell

 The New-WebServiceProxy examples that follow apply to Windows PowerShell only. The New-WebServiceProxy command is not available in PowerShell 7.

 New-WebServiceProxy

 The New-WebServiceProxy command is used to connect to a SOAP web service. This can be a service endpoint, such as a .NET service.asmx URL, or a WSDL document.

 The web service will include methods and may also include other object types and enumerations.

 The command accesses a service anonymously by default. If the current user should be passed on, the UseDefaultCredential parameter should be used. If explicit credentials are required, the Credential parameter can be used.

 By default, New-WebServiceProxy creates a dynamic namespace. This is as follows:

 PS> $params = @{

>> Uri = 'http://localhost:62369/Service.asmx'

>> }

PS> $service = New-WebServiceProxy @params

PS> $service.GetType().Namespace

Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServiceProxy4__localhost_62369_Service_asmx

 The dynamic namespace is useful as it avoids problems when multiple connections are made to the same service in the same session.

 To simplify exploring the web service, a fixed namespace might be defined:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx'

 Namespace = 'SOAP'

}

$service = New-WebServiceProxy @params

 The $service object returned by New-WebServiceProxy describes the URL used to connect, the timeout, the HTTP user agent, and so on. The object is also the starting point for exploring the interface; it is used to expose web services' methods.

 Methods

 The methods available may be viewed in several ways. The URL used can be visited in a browser or Get-Member may be used. A subset of the output from Get-Member follows:

 PS> $service | Get-Member

Name MemberType Definition

---- ---------- ----------

GetElement Method SOAP.Element GetElement(string Name)

GetAtomicMass Method string GetAtomicMass(string Name)

GetAtomicNumber Method int GetAtomicNumber(string Name)

GetElements Method SOAP.Element[] GetElements()

GetElementsByGroup Method SOAP.Element[] GetElementsByGroup(SOAP.Group group)

GetElementSymbol Method string GetElementSymbol(string Name)

SearchElements Method SOAP.Element[] SearchElements(SOAP.SearchCondition[] searchConditions)

 The preceding GetElements method requires no arguments and may be called immediately, as shown here:

 PS> $service.GetElements() | Select-Object -First 5 | Format-Table

AtomicNumber Symbol Name AtomicMass Group

------------ ------ ---- ---------- -----

 1 H Hydrogen 1.00794(4) Nonmetal

 2 He Helium 4.002602(2) NobleGas

 3 Li Lithium 6.941(2) AlkaliMetal

 4 Be Beryllium 9.012182(3) AlkalineEarthMetal

 5 B Boron 10.811(7) Metalloid

 Methods requiring string or numeric arguments may be similarly easy to call, although the value the method requires is often open to interpretation. In this case, the Name argument may be either an element name or an element symbol:

 PS> $service.GetAtomicNumber('oxygen')

8

PS> $service.GetAtomicMass('H')

1.00794(4)

 Whether the web service is SOAP or REST, using the service effectively is dependent on being able to locate the service documentation.

 Methods and enumerations

 The GetElementsByGroup method shown by Get-Member requires an argument of type SOAP.Group as the following shows:

 PS> $service | Get-Member -Name GetElementsByGroup

Name MemberType Definition

---- ---------- ----------

GetElementsByGroup Method SOAP.Element[] GetElementsByGroup(SOAP.Group…

 SOAP.Group is an enumeration, as indicated by the BaseType:

 PS> [SOAP.Group]

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Group System.Enum

 The values of the enumeration may be shown by running the GetEnumValues method:

 PS> [SOAP.Group].GetEnumValues()

Actinoid

AlkaliMetal

AlkalineEarthMetal

Halogen

Lanthanoid

Metal

Metalloid

NobleGas

Nonmetal

PostTransitionMetal

TransitionMetal

 PowerShell will help cast to enumeration values; a string value is sufficient to satisfy the method:

 PS> $service.GetElementsByGroup('Nonmetal') | Format-Table

AtomicNumber Symbol Name AtomicMass Group

------------ ------ ---- ---------- -----

 1 H Hydrogen 1.00794(4) Nonmetal

 6 C Carbon 12.0107(8) Nonmetal

 7 N Nitrogen 14.0067(2) Nonmetal

 8 O Oxygen 15.9994(3) Nonmetal

 15 P Phosphorus 30.973762(2) Nonmetal

 16 S Sulfur 32.065(5) Nonmetal

 34 Se Selenium 78.96(3) Nonmetal

 If the real value of the enumeration must be used, it may be referenced as a static property of the enumeration:

 $service.GetElementsByGroup([SOAP.Group]::Nonmetal) | Format-Table

 It is relatively common for a method to require an instance of an object provided by the SOAP interface.

 Methods and SOAP objects

 When working with SOAP interfaces, it is common to encounter methods that need instances of objects presented by the SOAP service. The SearchElements method is an example of this type.

 The SearchElements method requires an array of SOAP.SearchCondition as an argument. This is shown in the following by accessing the definition of the method:

 PS> $service.SearchElements

OverloadDefinitions

SOAP.Element[] SearchElements(SOAP.SearchCondition[] searchConditions)

 An instance of SearchCondition may be created as follows:

 $searchCondition = [SOAP.SearchCondition]::new()

 Exploring the object with Get-Member shows that the operator property is another type from the SOAP service. This is an enumeration, as shown here:

 PS> [SOAP.ComparisonOperator]

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True ComparisonOperator System.Enum

 A set of search conditions may be constructed and passed to the method:

 $searchConditions = @(

 [SOAP.SearchCondition]@{

 PropertyName = 'AtomicNumber'

 Operator = 'ge'

 Value = 1

 }

 [SOAP.SearchCondition]@{

 PropertyName = 'AtomicNumber'

 Operator = 'lt'

 Value = 6

 }

)

$service.SearchElements($searchConditions)

 Overlapping services

 When testing a SOAP interface, it is easy to get into a situation where New-WebServiceProxy has been called several times against the same web service. This can be problematic if using the Namespace parameter.

 Consider the following example, which uses two instances of the web service:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx'

 Namespace = 'SOAP'

}

Original version

$service = New-WebServiceProxy @params

New version

$service = New-WebServiceProxy @params

$searchConditions = @(

 [SOAP.SearchCondition]@{

 PropertyName = 'Symbol'

 Operator = 'eq'

 Value = 'H'

 }

)

 In theory, there is nothing wrong with this example. In practice, the SOAP.SearchCondition object is created based on the original version of the service created using New-WebServiceProxy. The method is, on the other hand, executing against the newer version.

 As the method being called and the type being used are in different assemblies, an error is shown; this is repeated in the following:

 PS> $service.SearchElements($searchConditions)

Cannot convert argument "searchConditions", with value: "System.Object[]", for "SearchElements" to type

"SOAP.SearchCondition[]": "Cannot convert the "SOAP.SearchCondition" value of type "SOAP.SearchCondition" to type

"SOAP.SearchCondition"."

At line:1 char:1

+ $service.SearchElements($searchConditions)

+ ~~

 + CategoryInfo : NotSpecified: (:) [], MethodException

 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

 It is still possible to access the second version of SearchCondition by searching for the type, then creating an instance of that:

 $searchCondition = ($service.GetType().Module.GetTypes() |

 Where-Object Name -eq 'SearchCondition')::new()

$searchCondition.PropertyName = 'Symbol'

$searchCondition.Operator = 'eq'

$searchCondition.Value = 'H'

$searchConditions = @($searchCondition)

$service.SearchElements($searchConditions)

 However, it is generally better to avoid the problem by allowing New-WebServiceProxy to use a dynamic namespace. At which point, an instance of the SearchCondition may be created, as the following shows:

 ('{0}.SearchCondition' -f $service.GetType().Namespace -as [Type])::new()

 SOAP in PowerShell 7

 Windows PowerShell can use the New-WebServiceProxy command. In PowerShell 7, requests can be manually created and sent using Invoke-WebRequest.

 Getting the WSDL document

 The Web Services Description Language (WSDL) document for the web service contains details of the methods and enumerations it contains. The document can be requested as follows:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx?wsdl'

}

[Xml]$wsdl = Invoke-WebRequest @params | Select-Object -ExpandProperty Content

 The document shows the methods that can be executed and the arguments for those methods. Obtaining a list requires a bit of correlation.

 Discovering methods and enumerations

 You can use the WSDL document to discover the methods available from the SOAP service. The default view of the document presents a list of methods. Clicking on a method will show an example of the expected header and body values.

 It is possible to retrieve the methods in PowerShell dynamically as well. Two SOAP versions are presented by the service. SOAP 1.2 is used in the following example, although both will show the same information in this case:

 $xmlNamespaceManager = [System.Xml.XmlNamespaceManager]::new($wsdl.NameTable)

Load everything that looks like a namespace

$wsdl.definitions.PSObject.Properties |

 Where-Object Value -match '^http' |

 ForEach-Object {

 $xmlNamespaceManager.AddNamespace(

 $_.Name,

 $_.Value

)

 }

$wsdl.SelectNodes(

 '/*/wsdl:binding[@name="ServiceSoap12"]/wsdl:operation',

 $xmlNamespaceManager

).ForEach{

 [PSCustomObject]@{

 Name = $_.name

 Inputs = $wsdl.SelectNodes(

 ('//s:element[@name="{0}"]/*/s:sequence/*' -f $_.name),

 $xmlNamespaceManager

).ForEach{

 [PSCustomObject]@{

 ParameterName = $_.name

 ParameterType = $_.type -replace '.+:'

 }

 }

 Outputs = $wsdl.SelectNodes(

 ('//s:element[@name="{0}Response"]/*/*/s:element/@type' -f

 $_.name),

 $xmlNamespaceManager

).'#text' -replace '.+:'

 SoapAction = $_.operation.soapAction

 }

}

 The preceding script shows a rough list of the parameters required and value types returned for each of the methods. For example, the GetElement method expects a string argument and will return an Element object:

 Name Inputs Outputs

---- ------ -------

GetElement {@{ParameterName=Name; ParameterType=string}} Element

 Enumeration values are also exposed in the WSDL. Continuing from the previous example, they may be retrieved using the following:

 $wsdl.SelectNodes(

 '/*/*/*/s:simpleType[s:restriction/s:enumeration]',

 $xmlNamespaceManager

).ForEach{

 [PSCustomObject]@{

 Name = $_.name

 Values = $_.restriction.enumeration.value

 }

}

 The Group and ComparisonOperator enumerations will be displayed.

 Running methods

 You can use Invoke-WebRequest to execute methods by providing a SOAP envelope in the body of the request. The response is an XML document that includes the results of the method. The envelope includes the web service URI, http://tempuri.org:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx'

 ContentType = 'text/xml'

 Method = 'POST'

 Header = @{

 SOAPAction = 'http://tempuri.org/GetElements'

 }

 Body = '

 <soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>

 <GetElements />

 </soapenv:Body>

 </soapenv:Envelope>

 '

}

$webResponse = Invoke-WebRequest @params

$xmlResponse = [Xml]$webResponse.Content

$body = $xmlResponse.Envelope.Body

$body.GetElementsResponse.GetElementsResult.Element

 As the preceding code shows, the response content is specific to the method that was executed.

 If a method requires arguments, these must be passed in the body of the request. In the following example, the argument is a single string:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx'

 ContentType = 'text/xml'

 Method = 'POST'

 Header = @{

 SOAPAction = 'http://tempuri.org/GetElement'

 }

 Body = '

 <soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns="http://tempuri.org/">

 <soapenv:Body>

 <GetElement>

 <Name>Oxygen</Name>

 </GetElement>

 </soapenv:Body>

 </soapenv:Envelope>

 '

}

$webResponse = Invoke-WebRequest @params

$xmlResponse = [Xml]$webResponse.Content

$body = $xmlResponse.Envelope.Body

 The body shows the object returned by the method:

 PS> $body.GetElementResponse.GetElementResult

AtomicNumber : 8

Symbol : O

Name : Oxygen

AtomicMass : 15.9994(3)

Group : Nonmetal

Requests requiring an enumeration value, such as Get

 The name of the argument used above correlates with the name and value shown in the WSDL:

 <s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string"/>

 The preceding method expects a string. If an enumeration value is required, it can be described as a string in the XML envelope.

 More complex types can be built based on following the expected structure of the arguments, or following the examples provided when browsing the Service.asmx file. The following example includes two SearchCondition objects:

 $params = @{

 Uri = 'http://localhost:62369/Service.asmx'

 ContentType = 'text/xml'

 Method = 'POST'

 Body = '

 <soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns="http://tempuri.org/">

 <soapenv:Body>

 <SearchElements>

 <searchConditions>

 <SearchCondition>

 <PropertyName>AtomicNumber</PropertyName>

 <Value>1</Value>

 <Operator>ge</Operator>

 </SearchCondition>

 <SearchCondition>

 <PropertyName>AtomicNumber</PropertyName>

 <Value>6</Value>

 <Operator>lt</Operator>

 </SearchCondition>

 </searchConditions>

 </SearchElements>

 </soapenv:Body>

 </soapenv:Envelope>

 '

}

$webResponse = Invoke-WebRequest @params

$xmlResponse = [Xml]$webResponse.Content

$body = $xmlResponse.Envelope.Body

$body.SearchElementsResponse.SearchElementsResult.Element

 New-WebServiceProxy in Windows PowerShell took away some of the difficulty of defining the SOAP envelope, but in most cases, it is not difficult to create.

 Summary

 This chapter explored the use of Invoke-WebRequest and how to work with and debug SSL negotiation problems.

 Working with REST explored simple method calls, authentication, and OAuth negotiation, before exploring REST methods that require authenticated sessions.

 SOAP is hard to find these days; a sample project was used to show how the capabilities of a SOAP service might be discovered and used.

 Chapter 14, Remoting and Remote Management, explores remoting and remote management.

 14

 Remoting and Remote Management

 Windows remoting came to PowerShell with the release of version 2.0. Windows remoting is a powerful feature that allows administrators to move away from RPC-based remote access.

 This chapter covers the following topics:

 	WS-Management

 	PSSessions

 	Remoting on Linux

 	Remoting over SSH

 	The double-hop problem

 	CIM sessions

 	Just Enough Administration

 Before beginning with the main topics of the chapter, there are some technical requirements to consider.

 Technical requirements

 This chapter makes use of a remote Windows system named PSTest, which runs Windows 10, Windows PowerShell 5.1, and PowerShell 7.

 Remoting between Windows and Linux is demonstrated using a system that runs CentOS 7, PowerShell 7, and the PowerShell Remoting Protocol (PSRP) package.

 Windows makes use of WSMan, or WS-Management, via PSRP.

 WS-Management

 Windows remoting uses WS-Management as its communication protocol. Support for WS-Management and remoting was introduced with PowerShell 2.0. WS-Management uses Simple Object Access Protocol (SOAP) to pass information between the client and the server.

 PowerShell Remoting Protocol, PSRP, uses WS-Management as a means of communicating with a remote PowerShell instance.

 Enabling remoting

 Before remoting can be used on a desktop operating system, it must be enabled. In a domain environment, remoting can be enabled using a group policy:

 	Policy name: Allow remote server management through WinRM

 	Path: Computer configuration\Administrative Templates\Windows Components\Windows Remote Management (WinRM)\WinRM Service

 If remoting is enabled using a group policy, a firewall rule should be created to allow access to the service:

 	Policy name: Define inbound port exceptions

 	Path: Computer Configuration\Administrative Templates\Network\Network Connections\Windows Firewall\Domain Profile

 	Port exception example: 5985:TCP:*:enabled:WSMan

 You can enable Windows remoting on a per-machine basis using the Enable-PSRemoting command.

 Remoting may be disabled in PowerShell using Disable-PSRemoting. Disabling remoting will show the following warning:

 PS> Disable-PSRemoting

WARNING: Disabling the session configurations does not undo all the changes made by the Enable-PSRemoting or Enable-PSSessionConfiguration cmdlet. You might have to manually undo the changes by following these steps:

1. Stop and disable the WinRM service.

2. Delete the listener that accepts requests on any IP address.

3. Disable the firewall exceptions for WS-Management communications.

4.Restore the value of the LocalAccountTokenFilterPolicy to 0, which restricts remote access to members of the Administrators group on the computer.

 If Enable-PSRemoting is run in the PowerShell 7 console, additional session configurations will be created that allow a choice of either Windows PowerShell (the default) or PowerShell 7 when creating a remote session. Accessing PowerShell 7 sessions is explored later in this chapter.

 Get-WSManInstance

 Get-WSManInstance provides access to instances of resources at a lower level than commands such as Get-CimInstance.

 For example, Get-WSManInstance can be used to get the Win32_OperatingSystem WMI class:

 Get-WSManInstance -ResourceUri wmicimv2/win32_operatingsystem

 The response is an XmlElement that PowerShell presents as an object with properties for each child element.

 Get-WSManInstance has been superseded by Get-CimInstance, which was introduced in PowerShell 3.0.

 The Get-WSManInstance command is only supported on Windows installations of PowerShell.

 The WSMan drive

 The content of the WSMan drive is accessible when PowerShell is running as the administrator. The drive can be used to view and change the configuration of remoting.

 For example, the provider can be used to update settings such as MaxEnvelopeSize, which affects the maximum permissible size of SOAP messages sent and received by WSMan:

 Set-Item WSMan:\localhost\MaxEnvelopeSizekb 8KB

 The MaxEnvelopeSize property is defined in the WSMan protocol extension's specification:

 https://docs.microsoft.com/openspecs/windows_protocols/ms-wsman/8a6b1967-ff8e-4756-9a3b-890b4b439847

 The property is often referenced in relation to Exchange and IIS, which can require the size to be increased above the default value of 1024 bytes. The value must be some multiple of 1024; the previous example uses 8 KB, a commonly used size in response to a message where the request has exceeded the configured quota.

 You may need to restart the WinRM service after changing the values:

 Restart-Service winrm

 Remoting and SSL

 By default, Windows remoting requests are unencrypted. An HTTPS listener can be created to support encryption. Before attempting to create an HTTPS listener, a certificate is required.

 Using a self-signed certificate is often the first step when configuring SSL. Windows 10 comes with a PKI module that can be used to create a certificate. The PKI module is only available in Windows PowerShell. In the following example, a self-signed certificate is created in the computer's personal store:

 PS> New-SelfSignedCertificate -DnsName $env:COMPUTERNAME

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\MY

Thumbprint Subject

---------- -------

D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41 CN=SSLTEST

 Once the certificate has been created, you can create an HTTPS listener using the WSMan drive. Replace the thumbprint in the following code with the thumbprint of a valid certificate, such as one created using the command in the previous example:

 $params = @{

 Path = 'WSMan:\localhost\Listener'

 Address = '*'

 Transport = 'HTTPS'

 CertificateThumbprint = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'

 Force = $true

}

New-Item @params

 The Force parameter is used to suppress a confirmation prompt.

 If Windows Firewall is running, a new rule must also be created to allow inbound connections to TCP port 5986:

 $params = @{

 DisplayName = $name = 'Windows Remote Management (HTTPS-In)'

 Name = $name

 Profile = 'Any'

 LocalPort = 5986

 Protocol = 'TCP'

}

New-NetFirewallRule @params

 Set-WSManQuickConfig

 Certificates used by remoting have the following requirements:

 	The subject must contain the computer name (without a domain)

 	The certificate must support the server authentication enhanced key usage

 	The certificate must not be expired, revoked, or self-signed

 If a certificate that meets these requirements is present, the Set-WSManQuickConfig command may be used:

 Set-WSManQuickConfig -UseSSL

 HTTPS listeners may be viewed as follows:

 PS> Get-ChildItem WSMan:\localhost\Listener* |

>> Where-Object {

>> (Get-Item "$($_.PSPath)\Transport").Value -eq 'HTTPS'

>> }

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Listener

Type Keys Name

---- ---- ----

Container {Transport=HTTPS, Address=*} Listener_1305953032

 You can extend the preceding example by exploring the properties for the listener:

 Get-ChildItem WSMan:\localhost\Listener | ForEach-Object {

 $listener = $_ | Select-Object Name

 Get-ChildItem $_.PSPath | ForEach-Object {

 $listener | Add-Member $_.Name $_.Value

 }

 $listener

} | Where-Object Transport -eq 'HTTPS'

 The self-signed certificate can be assigned in this manner, but for an SSL connection to succeed, the client must trust the certificate. Without trust, the following error is shown:

 PS> Invoke-Command -ScriptBlock { Get-Process } -ComputerName $env:COMPUTERNAME -UseSSL

[SSLTEST] Connecting to remote server SSLTEST failed with the following error message : The server certificate on the destination computer (SSLTEST:5986) has the following errors:

The SSL certificate is signed by an unknown certificate authority. For more information, see the about_Remote_Troubleshooting Help topic.

+ CategoryInfo : OpenError: (SSLTEST:String) [], PSRemotingTransportException

+ FullyQualifiedErrorId : 12175,PSSessionStateBroken

 Several options are available to bypass this option:

 	Disable certificate verification

 	Add the certificate from the remote server to the local root certificate store

 Disabling certificate verification can be achieved by configuring the options of a PSSession:

 $options = New-PSSessionOption -SkipCACheck

$session = New-PSSession computerName -SessionOption $options

 Either of the preceding options will allow the connection to complete. This can be verified using Test-WSMan:

 Test-WSMan -UseSSL

 If a new certificate is obtained, you can replace the certificate for the listener using Set-Item: the listener ID and certificate thumbprint should be updated with locally relevant values:

 $params = @{

 Path = 'WSMan:\localhost\Listener\Listener_1305953032\CertificateThumbprint'

 Value = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'

}

Set-Item @params

 Remoting and permissions

 By default, PowerShell remoting (on Windows) requires administrative access or membership of the Remote Management Users. A summary of granted permissions may be viewed using Get-PSSessionConfiguration. The summary does not include the permission level.

 In PowerShell 7, the session configurations may be viewed using the following command:

 Get-PSSessionConfiguration -Name PowerShell.7*

 In Windows PowerShell, the name of the default configuration is Microsoft.PowerShell:

 Get-PSSessionConfiguration -Name Microsoft.PowerShell

 Windows PowerShell can view the session configurations for PowerShell 7, but PowerShell 7 is not able to view the session configuration for Windows PowerShell (at the time of writing).

 Remoting permissions GUI

 You can use the graphical interface to change permissions. The interface will be displayed when the following command is run:

 Set-PSSessionConfiguration -Name PowerShell.7 -ShowSecurityDescriptorUI

 Figure 14.1 displays a standard GUI for assigning permissions:

 [image:]

 Figure 14.1: Permission settings

 The session configuration defines four different permission levels:

 	Full

 	Read

 	Write

 	Execute

 Remoting permissions by script

 Permissions may also be changed using a script. The following commands retrieve the current security descriptor:

 using namespace System.Security.AccessControl

$sddl = Get-PSSessionConfiguration PowerShell.7 |

 Select-Object -ExpandProperty SecurityDescriptorSddl

$acl = [CommonSecurityDescriptor]::new(

 $false,

 $false,

 $sddl

)

$acl.DiscretionaryAcl

 Note that the name of the session configuration in the preceding example will vary depending on the version of PowerShell in use.

 The object created here does not translate access masks into meaningful names. There are a small number of possible values for the access mask (shown here as 32-bit integers):

 	Full (All operations): 268435456

 	Read (Get, Enumerate, Subscribe): -2147483648

 	Write (Put, Delete, Create): 1073741824

 	Execute (Invoke): 536870912

 Permissions may be combined by using the -bor operator. For example, read and write may be defined using the following:

 $readAndWrite = -2147483648 -bor 1073741824

 Granting Read, Write, and Execute individually should be equivalent to Full Control. However, the result of binary (or the composite of all values) is -536870912, not the expected value for Full.

 Understanding these values allows the current settings to be displayed in more detail than Get-PSSessionConfiguration displays. The function adds two script properties to each of the access control entries in the discretionary ACL. The first translates the SID into an account name; the second translates the access mask into a name (or set of names).

 The example uses an enumeration (enum) to describe the possible access rights:

 using namespace System.Security.AccessControl; using namespace System.Security.Principal

[Flags()]

enum SessionAccessRight {

 All = -536870912

 Full = 268435456

 Read = -2147483648

 Write = 1073741824

 Execute = 536870912

}

function Get-PSSessionAcl {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [String]$Name

)

 Get-PSSessionConfiguration -Name $Name | ForEach-Object {

 [CommonSecurityDescriptor]::new(

 $false,

 $false,

 $_.SecurityDescriptorSddl

)

 }

}

function Get-PSSessionAccess {

 [CmdletBinding()]

 param (

 [String[]]$Name

)

 Get-PSSessionConfiguration @PSBoundParameters | ForEach-Object {

 $sessionConfiguration = $_

 (Get-PSSessionAcl -Name $_.Name).DiscretionaryAcl |

 Select-Object -Property @(

 @{ Name = 'SessionName'; Expression = {

 $sessionConfiguration.Name

 }}

 @{ Name = 'Identity'; Expression = {

 $_.SecurityIdentifier.Translate([NTAccount])

 }}

 @{ Name = 'AccessRight'; Expression = {

 [SessionAccessRight]$_.AccessMask

 }}

 '*'

)

 }

}

 Additional access may be granted by using the AddAccess method on DiscretionaryAcl. Granting access requires the SID of an account. The SID can be retrieved using the same Translate method that was used to get an account name from a SID. For example, the security identifier of the local administrator account may be retrieved as follows:

 using namespace System.Security.Principal

([NTAccount]"Administrator").Translate([SecurityIdentifier])

 Adding to the discretionary ACL may be achieved as shown in the following snippet. The example makes use of the Get-PSSessionAcl function and the SessionAccessRight enumeration created previously to grant access to the current user. The current user is identified using environment variables. The following example modifies the ACL for the PowerShell.7 session; you can use the Get-PSSessionConfiguration command to show sessions if this is not present:

 using namespace System.Security.AccessControl

using namespace System.Security.Principal

$sessionName = "PowerShell.7"

$identity = "$env:USERDOMAIN\$env:USERNAME"

$acl = Get-PSSessionAcl -Name $sessionName

$acl.DiscretionaryAcl.AddAccess(

 'Allow',

 ([NTAccount]$identity).Translate([SecurityIdentifier]),

 [Int][SessionAccessRight]'Full',

 'None', # Inheritance flags

 'None' # Propagation flags

)

 The updated ACL must be converted back to an SDDL string to apply the change:

 $sddl = $acl.GetSddlForm('All')

Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $sddl

 User Account Control

 User Account Control (UAC) restricts local (not domain) user accounts that log on using a remote connection. By default, the remote connection will be made as a standard user account, that is, a user without administrative privileges.

 The Enable-PSRemoting command disables UAC remote restrictions. If another method has been used to enable remoting, and a local account is being used to connect, it is possible that remote restrictions are still in place.

 The current value can be viewed using the following:

 $params = @{

 Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'

 Name = 'LocalAccountTokenFilterPolicy'

}

Get-ItemPropertyValue @params

 If the key or value is missing, an error will be thrown. The impact of this is described in the help article linked below. UAC remote restrictions can be disabled as follows. Using the Force parameter will allow the creation of both the key and the value:

 $params = @{

 Path = 'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'

 Name = 'LocalAccountTokenFilterPolicy'

 Value = 1

 Force = $true

}

Set-ItemProperty @params

 The change used previously, and UAC remote restrictions, are described in the following Microsoft Knowledge Base article 951016:

 https://support.microsoft.com/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows

 Trusted hosts

 If a remote system is not part of a domain, or is part of an untrusted domain, an attempt to connect using remoting may fail. The remote system must either be listed in trusted hosts or use SSL.

 The use of trusted hosts also applies when connecting to another computer using a local user account.

 Trusted hosts are set on the client, that is, the system making the connection. The following command gets the current value:

 Get-Item WSMan:\localhost\Client\TrustedHosts

 The value is a comma-delimited list. Wildcards are supported in the list. The following function may be used to add a value to the list:

 function Add-TrustedHost {

 param (

 [String]$Hostname

)

 $item = Get-Item WSMan:\localhost\Client\TrustedHosts

 $trustedHosts = @($item.Value -split ',')

 $trustedHosts = $trustedHosts + $Hostname |

 Where-Object { $_ } |

 Select-Object -Unique

 $item | Set-Item -Value ($trustedHosts -join ',')

}

 In the next section, you will become familiar with PSSessions, which can be created from one host to another to allow commands to be executed.

 PSSessions

 PSSessions use PowerShell remoting to communicate between servers. PSSessions can be used for anything from remote commands and script execution to providing a remote shell.

 By default, PSSessions use the Microsoft.PowerShell configuration, described by the built-in $PSSessionConfigurationName variable. Remoting connections therefore always default to connecting to Windows PowerShell. Administrative rights are required to view and change session configuration information.

 If you are creating a session to the local system, the -EnableNetworkAccess parameter should be added to the following commands. This parameter is only applicable to sessions that are created from and connect to the same system.

 New-PSSession

 Sessions are created using the New-PSSession command. In the following example, a session is created on a computer named PSTEST:

 PS> New-PSSession -ComputerName PSTEST

Id Name ComputerName State ConfigurationName Availability

-- ---- ------------ ----- ----------------- ------------

1 Session1 PSTEST Opened Microsoft.PowerShell Available

 Get-PSSession

 Sessions created using New-PSSession persist until the PSSession is removed (by Remove-PSSession) or the PowerShell session ends. The following example returns sessions created in the current PowerShell session:

 PS> Get-PSSession | Select-Object Id, ComputerName, State

Id ComputerName State

-- ------------ -----

 1 PSTEST Opened

 If the ComputerName parameter is supplied, Get-PSSession will show sessions created on that computer. For example, imagine a session is created in one PowerShell console:

 $session = New-PSSession -ComputerName PSTest -Name Example

 A second administrator console session will be able to view details of that session:

 PS> Get-PSSession -ComputerName PSTest |

>> Select-Object Name, ComputerName, State

Name ComputerName State

---- ------------ -----

Example PSTest Disconnected

 Invoke-Command

 Invoke-Command may be used with a PSSession to execute a command or script on a remote system:

 $session = New-PSSession -ComputerName $env:COMPUTERNAME

Invoke-Command { Get-Process -Id $PID } -Session $session

 $env:COMPUTERNAME is localhost

 Connecting to a session requires administrative access by default. The preceding command will fail if PowerShell is not running with an administrative token (run as administrator).

 A PowerShell session with the administrator token can be started using the Start-Process powershell -Verb RunAs command.

 Invoke-Command has a wide variety of different uses, as shown in the command help. For example, a single command can be executed against a list of computers; the command is run against each computer in turn:

 Invoke-Command { Get-Process -Id $PID } -ComputerName 'first', 'second', 'third'

 This technique can be useful when combined with AsJob. Pushing the requests into the background allows each server to get on with its work, pushing it back when the work is complete.

 Once the job created by the previous command has completed, any data may be retrieved using the Receive-Job command.

 Several advanced techniques may be used with Invoke-Command, which are described in the following sections.

 Local functions and remote sessions

 The following example executes a function created on the local machine in a remote system using positional arguments:

 function Get-FreeSpace {

 param (

 [Parameter(Mandatory = $true)]

 [String]$Name

)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)

}

Invoke-Command ${function:Get-FreeSpace} -Session $session -ArgumentList C

 This technique succeeds because the body of the function is declared as a script block. ArgumentList is used to pass a positional argument into the DriveLetter parameter.

 If the function depends on other locally defined functions, the attempt will fail.

 Using splatting with ArgumentList

 The ArgumentList parameter of Invoke-Command does not offer a means of passing named arguments to a command.

 The following example uses splatting to pass parameters. The function is defined on the local system, and the definition of the function is passed to the remote system:

 # A function which exists on the current system

function Get-FreeSpace {

 param (

 [Parameter(Mandatory = $true)]

 [String]$Name

)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)

}

Define parameters to pass to the function

$params = @{

 Name = 'c'

}

Execute the function with a named set of parameters

Invoke-Command -ScriptBlock {

 param ($definition, $params)

 & ([ScriptBlock]::Create($definition)) @params

} -ArgumentList ${function:Get-FreeSpace}, $params -ComputerName $computerName

 In the preceding example, the definition of the Get-FreeSpace function is passed as an argument along with the requested parameters. The script block used with Invoke-Command converts the definition into a ScriptBlock and executes it.

 The AsJob parameter

 The AsJob parameter can be used with Invoke-Command, for example:

 $session = New-PSSession PSTest

Invoke-Command -Session $session -AsJob -ScriptBlock {

 Start-Sleep -Seconds 120 'Done sleeping'

}

 The command finishes immediately and returns the job that has been created.

 While the job is running, the session availability is set to Busy:

 PS> $session | Select-Object Name, ComputerName, Availability

Name ComputerName Availability

---- ------------ ------------

Session1 PSTest Busy

 Attempts to run another command against the same session will result in an error message.

 Once the job has completed, the Receive-Job command may be used.

 Disconnected sessions

 The InDisconnectedSession of Invoke-Command starts the requested script and immediately disconnects the session. This allows a script to be started and collected from a different console session or a different computer.

 The session parameter cannot be used with InDisconnectedSession; Invoke-Command creates a new session for a specified computer name. The session is returned by the following command:

 Invoke-Command {

 Start-Sleep -Seconds 120

 'Done'

} -ComputerName PSTest -InDisconnectedSession

 A second PowerShell session or computer can connect to the disconnected session to retrieve the results. The following command assumes that only one session exists with the PSTest computer:

 Get-PSSession -ComputerName PSTest |

 Connect-PSSession |

 Receive-PSSession

 Tasks started with AsJob will also continue to run if a session is disconnected. The following example creates a session, starts a long-running process, and disconnects the session:

 $session = New-PSSession PSTest -Name 'Example'

Invoke-Command { Start-Sleep -Seconds (60 * 60) } -Session $session -AsJob

Disconnect-PSSession $session

 Once the session has been created and disconnected, the PowerShell console can be closed. A second PowerShell console can find and connect to the existing session:

 $session = Get-PSSession -ComputerName PSTest -Name 'Example'

Connect-PSSession $session

 Reviewing the details of the session will show that it is busy running Start-Sleep:

 PS> Get-PSSession | Select-Object Name, ComputerName, State, Availability

Name ComputerName State Availability

---- ------------ ----- ------------

Example PSTest Opened Busy

 The using variable scope

 When working with Invoke-Command, PowerShell makes the using variable scope modifier available.

 The using variable scope allows access to variables created on a local machine within a script block used with Invoke-Command.

 The following example shows the use of a variable that contains parameters for Get-Process. The local variable may contain any reasonable value:

 $params = @{

 Name = 'powershell'

 IncludeUserName = $true

}

Invoke-Command -ComputerName PSTest -ScriptBlock {

 $params = $using:params

 Get-Process @params

}

 The using scope is a handy alternative to the ArgumentList parameter.

 The Enter-PSSession command

 Enter-PSSession may be employed to use a session as a remote console. By default, Enter-PSSession accepts a computer name as the first argument:

 Enter-PSSession PSTest

 In a similar way, an existing session might be used:

 $session = New-PSSession -ComputerName PSTest

Enter-PSSession -Session $session

 Enter-PSSession uses WS-Management as a means of exchanging information between the client and the server. Once a command is typed and the return key is pressed, the entire command is sent to the remote host. The result of the command is sent back using the same mechanism. This exchange can inject a small amount of latency into the shell.

 Enter-PSSession is for interactive use only; it cannot be included in scripts except as the very last command.

 Import-PSSession

 Import-PSSession brings commands from a remote computer into the current session. Microsoft Exchange uses this technique to provide remote access to the Exchange Management Shell, and PowerShell 7 uses this technique to provide access to modules compatible with Windows PowerShell only.

 The following example imports the NetAdapter module from a remote server into the current session:

 $computerName = 'PSTest'

$session = New-PSSession -ComputerName $computerName

Import-PSSession -Session $session -Module NetAdapter

 Any commands used within this module are executed against the session target, not against the local computer.

 If the session is removed, the imported module and its commands will be removed from the local session.

 Export-PSSession

 In the preceding example, Import-PSSession is used to immediately import commands from a remote system into a local session. Export-PSSession writes a persistent module that can be used to achieve the same goal.

 The following example creates a module in the current user's module path:

 $computerName = 'PSTest'

$session = New-PSSession -ComputerName $computerName

Export-PSSession -Session $session -Module NetAdapter -OutputModule "NetAdapter-$computerName"

 Once the module has been created, it can be imported by name:

 Import-Module "NetAdapter-$computerName"

 This process replaces the need to define and import a session and is useful for remote commands that are used on a regular basis.

 Copying items between sessions

 PowerShell 5 introduced the ability to copy between sessions using the Copy-Item command.

 The FromSession parameter is used to copy a file to the local system:

 $session1 = New-PSSession PSTest1

Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -FromSession $session1

 In the preceding example, Path is on PSTest1.

 The ToSession parameter is used to copy a file to a remote system:

 $session2 = New-PSSession PSTest2

Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -ToSession $session2

 In the previous example, the path used for the destination parameter is on PSTest2.

 The FromSession and ToSession parameters cannot be specified together; two separate commands are required to copy a file between two remote sessions.

 PowerShell 6 introduced the ability to use PowerShell remoting with Linux systems. Remoting must be configured on Linux before it can be used.

 Remoting on Linux

 Microsoft provides instructions for installing PowerShell on Linux; these should be followed before attempting to configure remoting:

 https://docs.microsoft.com/powershell/scripting/install/installing-powershell-core-on-linux

 Once installed, it is possible to make PowerShell the default shell. This is optional and does not affect remoting. First, check that PowerShell is listed in the shells file:

 Get-Content /etc/shells # Use cat or less in Bash

 The native chsh (change shell) command can be used to change the default shell for the current user, as shown in the following example:

 chsh -s /usr/bin/pwsh

 To configure remoting using WSMan, the OMI and PSRP packages must be installed. The following example uses yum since the operating system in use is CentOS 7:

 yum install omi.x86_64 omi-psrp-server.x86_64

 By default, CentOS has a firewall configured. The network interface in use, in this case, eth0, must be added to an appropriate zone, and WinRM must be allowed:

 firewall-cmd --zone=home --change-interface=eth0

firewall-cmd --zone=home --add-port=5986/tcp

 Once configured, it should be possible to connect to the remote host. SSL is required to form the connection. The certificate is self-signed so certificate validity tests must be skipped at this stage:

 $params = @{

 ComputerName = 'LinuxSystemNameOrIPAddress'

 Credential = Get-Credential

 Authentication = 'Basic'

 UseSsl = $true

 SessionOption = New-PSSessionOption -SkipCACheck -SkipCNCheck

}

Enter-PSSession @params

 The state of the certificate leaves the identity of the host in question, but it does ensure that traffic is encrypted. If SSL is to be used beyond testing, a valid certificate chain should be established.

 At this point, the remote computer should be accessible using both Windows PowerShell and PowerShell Core.

 Remoting over SSH

 PowerShell Core introduced the concept of remoting over SSH. This provides a useful alternative to remoting over HTTPS, avoiding the burden of managing certificates:

 https://github.com/PowerShell/PowerShell/tree/866b558771a20cca3daa47f300e830b31a24ee95/docs/new-features/remoting-over-ssh

 The SSH transport for remoting cannot be used from Windows PowerShell, only PowerShell 6 and 7.

 Connecting from Windows to Linux

 If connecting from Windows, an SSH client must be installed.

 In Windows 10 and Windows Server 2019, you can enable OpenSSH as an optional feature. For example:

 Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

 The feature is documented on Microsoft Docs:

 https://docs.microsoft.com/windows-server/administration/openssh/openssh_install_firstuse

 Alternatively, the openssh package can be installed using the Chocolatey package manager (http://chocolatey.org):

 choco install openssh

 Depending on the desired configuration, public key authentication may be enabled in the SSH daemon configuration file. A subsystem must be added to the file.

 To enable public key authentication, set PubkeyAuthentication:

 PubkeyAuthentication yes

 An existing subsystem entry will likely exist toward the end of the file; this new entry can be added beneath the existing entry (the value in the following code is a single configuration line):

 Subsystem powershell /opt/microsoft/powershell/7/pwsh -sshs -NoLogo -NoProfile

 The sshd service should be restarted after changing the configuration file:

 service sshd restart

 The connection in this example uses SSH key authentication. This requires an SSH key on Windows. If an existing key is not available, the ssh-keygen command can be used to create a new key pair. The command will prompt for any information it requires.

 The private key created by this command will be used when connecting to a remote host. The public key is used to authorize a user and will be placed on the Linux system.

 The public key can be obtained by running the following command on the system on which it was generated. This command assumes default filenames were used when generating the key:

 Get-Content ~\.ssh\id_rsa.pub | Set-Clipboard

 ~ is home

 The tilde character may be used as shorthand for the path to the home directory. On Linux it is typically /home/<username>, and on Windows it is typically similar to C:\users\<username>.

 ~ may be replaced with the $home variable, or the $env:USERPROFILE environment variable on Windows, if desired.

 The public key should be added to the authorized_keys files on Linux:

 $publicKey = 'ssh-rsa AAAABG...'

New-Item ~/.ssh -ItemType Directory

Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

 Once complete, a session can be created and used to interact with the Linux system:

 $params = @{

 HostName = 'LinuxSystemNameOrIPAddress'

 UserName = $env:USERNAME

 SSHTransport = $true

 KeyFilePath = '~\.ssh\id_rsa'

}

Enter-PSSession @params

 As remoting is encapsulated in exchanged XML requests, interactive commands such as vi will not work in the remoting session.

 Connecting from Linux to Windows

 Connecting from Linux to Windows is a harder path; it is clearly undergoing rapid change and is much less mature than connections in the other direction.

 Before moving on to configuring SSH, verify that WSMan functions. An HTTPS listener must be set up; HTTP connections are prohibited by the PSRP package. If HTTPS is not already available, a self-signed certificate may be created and used as shown in the Remoting and SSL section.

 If remoting is not yet configured for PowerShell 7, run the Enable-PSRemoting command in the Core console (as an administrator). Once enabled, find the name of the configuration entry using the Get-PSSessionConfiguration command.

 You can use the configuration name to create a session to PowerShell Core that runs on the Windows system:

 $params = @{

 HostName = 'WindowsSystemNameOrIPAddress'

 Credential = (Get-Credential)

 Authentication = 'Basic'

 UseSSL = $true

 ConfigurationName = 'PowerShell.6.1.1'

}

Enter-PSSession @params

 At the time of writing, attempting to connect from Linux to a PowerShell 5.1 session results in an "access denied" error message.

 The OpenSSH package must be installed on Windows to continue. The OpenSSH server feature can be installed using the following command:

 Add-WindowsCapability -Online -Name OpenSSH.Server~~~~0.0.1.0

 Alternatively, if the Chocolatey package was used, the server can be enabled:

 & "C:\Program Files\OpenSSH-Win64\install-sshd.ps1"

 Windows Firewall must also be opened if it is in use:

 $params = @{

 DisplayName = 'OpenSSH Server (sshd)'

 Name = 'sshd'

 Enabled = $true

 Direction = 'Inbound'

 LocalPort = 22

 Protocol = 'TCP'

 Action = 'Allow'

}

New-NetFirewallRule @params

 Once this step is complete, it should be possible to create an SSH connection from Linux to Windows:

 ssh user@WindowsSystemNameOrIPAddress

 As with configuring Linux, public key authentication may be allowed, and a subsystem must be configured, this time on the Windows system. The C:\ProgramData\ssh\sshd_config file must be edited.

 To enable public key authentication, set PubkeyAuthentication:

 PubkeyAuthentication yes

 Add a subsystem to the file. This may be specified in addition to any existing subsystem:

 Subsystem powershell C:/progra~1/PowerShell/7/pwsh.exe -sshs -NoLogo -NoProfile

 PowerShell 7 may be configured as the default shell for incoming SSH connections:

 $params = @{

 Path = 'HKLM:\SOFTWARE\OpenSSH'

 Name = 'DefaultShell'

 Value = Join-Path -Path $pshome -ChildPath 'pwsh.exe'

 Force = $true

}

New-ItemProperty @params

 The sshd service should be restarted after changing the configuration file or the default shell:

 Restart-Service sshd

 At this point, it will be possible to create a remoting session using SSH, by entering a password when prompted:

 $params = @{

 HostName = 'WindowsSystemNameOrIPAddress'

 UserName = $env:USERNAME

 SSHTransport = $true

}

Enter-PSSession @params

 Public key authentication may be configured in the same way as was done for Linux. A key can be generated on Linux using the ssh-keygen command.

 The public key, by default ~/.ssh/id_rsa.pub, may be added to an authorized_keys file on Windows. The following command, when run on Linux, displays the public key:

 Get-Content ~/.ssh/id_rsa.pub

 This public key may be added to an authorized_keys file for a user on the Windows system:

 $publicKey = 'ssh-rsa AAAABG...'

Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

 At this point, the Linux system will be able to use public key authentication to access the Windows system:

 $params = @{

 HostName = 'WindowsSystemNameOrIPAddress'

 UserName = 'username'

 SSHTransport = $true

 KeyFilePath = '~\.ssh\id_rsa'

}

Enter-PSSession @params

 Extending this further, Windows systems running PowerShell 7 and the SSH daemon may use SSH as a remoting transport to access other Windows systems.

 One of the most common problems when using remoting is accessing remote resources from within a remoting session.

 The double-hop problem

 The double-hop problem describes a scenario in PowerShell where remoting is used to connect to a host and the remote host tries to connect to another resource. In this scenario, the second connection, the second hop, fails because authentication cannot be implicitly passed.

 Over the years, there have been numerous articles that discuss this problem. Ashley McGlone published a blog post in 2016 that describes the problem and the possible solutions:

 https://docs.microsoft.com/archive/blogs/ashleymcglone/powershell-remoting-kerberos-double-hop-solved-securely

 This section briefly explores using CredSSP, as well as how to pass explicit credentials to a remote system. Neither of these options is considered secure, but they require the least amount of work to implement.

 These two options are useful in the following situations:

 	The remote endpoint is trusted and has not been compromised

 	Critical authentication tokens can be extracted by an administrator on the remote system

 	They are not used for wide-scale regular or scheduled automation, as the methods significantly increase exposure

 CredSSP

 Credentials passed using CredSSP are sent in clear text. CredSSP is not considered secure.

 A session can be created using CredSSP as the authentication provider:

 $params = @{

 ComputerName = 'PSTest'

 Credential = Get-Credential

 Authentication = 'CredSSP'

}

New-PSSession @params

 CredSSP must be enabled on the client to support passing credentials to a remote system. The DelegateComputer parameter can be used with either a specific name or a wildcard (*):

 Enable-WSManCredSSP -Role Client -DelegateComputer PSTest

 CredSSP must also be enabled on the server to receive credentials:

 Enable-WSManCredSSP -Role Server

 If this approach is used as a temporary measure, the CredSSP roles might be removed afterward.

 On the server making the connection, the Client role can be disabled:

 Disable-WSManCredSSP -Role Client

 On the remote system, the Server role can be disabled:

 Disable-WSManCredSSP -Role Server

 Passing credentials

 Passing credentials into a remote session means the second hop can authenticate without being dependent on authentication tokens from the original system.

 In this example, the using variable scope is used to access a credential variable. The credential is used to run a query against Active Directory from a remote system:

 $Credential = Get-Credential

Invoke-Command -ComputerName PSTest -ScriptBlock {

 Get-ADUser -Filter * -Credential $using:Credential

}

 Passing credentials in this manner works around the problem but cannot be considered a secure solution. The article quoted at the beginning of this session properly explores the alternatives available.

 PSSessions are not the only thing to use Windows remoting. Common Information Model (CIM) sessions also use Windows remoting but are only used to access WMI.

 CIM sessions

 CIM sessions are used to work with CIM services, predominantly WMI or commands that base their functionality on WMI. Such commands include those in the NetAdapter and Storage modules available on Windows 2012 and Windows 8. A list of commands that support CIM sessions may be viewed by entering the following:

 Get-Command -ParameterName CimSession

 The list will only include commands from modules that have been imported.

 The CIM commands are only available in Windows installations of PowerShell. The CIM implementation is specific to the Microsoft platform, and is not implemented only in .NET.

 New-CimSession

 CIM sessions are created using the New-CimSession command. The following example creates a CIM session using the current system as the computer name and using WSMan as the protocol:

 PS> New-CimSession -ComputerName $env:COMPUTERNAME

Id : 1

Name : CimSession1

InstanceId : bc03b547-1051-4af1-a41d-4d16b0ec0402

ComputerName : PSTEST

Protocol : WSMAN

 If the computer name parameter is omitted, the protocol will be set to DCOM:

 PS> New-CimSession

Id : 2

Name : CimSession2

InstanceId : 804595f4-0144-4590-990a-92b2f22f894f

ComputerName : localhost

Protocol : DCOM

 New-CimSession can be used to configure operation timeout settings and whether an initial network test should be performed.

 The protocol used by New-CimSession can be changed using New-CimSessionOption. Changing the protocol can be useful if there is a need to interact with systems where WinRM is not running or configured:

 PS> $params = @{

>> ComputerName = $env:COMPUTERNAME

>> SessionOption = New-CimSessionOption -Protocol DCOM

>> }

PS> New-CimSession @params

Id : 3

Name : CimSession3

InstanceId : 29bba117-c899-4389-b874-5afe43962a1e

ComputerName : PSTEST

Protocol : DCOM

 Get-CimSession

 Sessions created using New-CimSession persist until the CIM session is removed (by Remove-CimSession) or the PowerShell session ends:

 PS> Get-CimSession | Select-Object Id, ComputerName, Protocol

Id ComputerName Protocol

-- ------------ --------

 1 PSTEST WSMAN

 2 localhost DCOM

 3 PSTEST DCOM

 Using CIM sessions

 Once a CIM session has been created, it can be used for one or more CIM requests. In the following example, a CIM session is created and then used to gather disk and partition information:

 $ErrorActionPreference = 'Stop'

try {

 $session = New-CimSession -ComputerName $env:COMPUTERNAME

 Get-Disk -CimSession $session

 Get-Partition -CimSession $session

} catch {

 throw

}

 In the preceding script, if the attempt to create the session succeeds, the session will be used to get disk and partition information.

 Error handling with try and catch is discussed in Chapter 22, Error Handling. The block is treated as a transaction; if a single command fails, the block will stop running. If the attempt to create a new session fails, Get-Disk and Get-Partition will not run.

 Just Enough Administration

 Just Enough Administration (JEA) leverages PowerShell remoting to allow administrative delegation via a remoting session.

 JEA consists of:

 	A session configuration file that describes the commands to be made available and language modes

 	A registered PSSession configuration that is created based on that file

 	Access control that is set on the PSSession configuration

 JEA documentation can be found on Microsoft Docs:

 https://docs.microsoft.com/powershell/scripting/learn/remoting/jea/overview?view=powershell-7

 JEA configuration is defined in a session configuration file. The file is saved as a PowerShell Data File (a PSSC file, the same format as psd1 files) and is used to define and register the JEA remoting endpoint.

 Microsoft has a couple of small examples that can be viewed on GitHub:

 https://github.com/PowerShell/JEA

 JEA can be configured manually, as shown in the following sections, or using a DSC configuration in Windows PowerShell.

 Session configuration

 Session configuration files can be created using the New-PSSessionConfigurationFile command.

 The session configuration file determines which commands are available to anyone importing the session.

 A session configuration file should be restrictive. Commands such as Invoke-Expression and Add-Type should not be permitted; they allow arbitrary code execution, which defeats the point of a restricted endpoint. The language mode will ideally be set to restricted or none.

 The following example is a simple session configuration that allows access to the Get-ComputerInfo command. Each of the commands is executed in an administrative session in PowerShell 7:

 if (-not (Test-Path c:\jea)) {

 New-Item c:\jea -ItemType Directory

}

$params = @{

 Path = 'c:\jea\jea.pssc'

 LanguageMode = 'NoLanguage'

 SessionType = 'RestrictedRemoteServer'

 VisibleCmdlets = @(

 'Get-ComputerInfo'

 'Export-Csv'

)

}

New-PSSessionConfigurationFile @params

 Once the configuration file has been created the session configuration can be registered:

 $params = @{

 Name = 'JEATest'

 Path = 'c:\jea\jea.pssc'

}

Register-PSSessionConfiguration @params

 The file that describes the session can be deleted once the session is registered.

 You can use the new session immediately, for example, by entering the possession:

 Enter-PSSession -ComputerName localhost -ConfigurationName JEATest

 By default, the session configuration allows administrators or members of the local group Remote Management Users. Additional rights may be granted as seen when exploring remoting permissions.

 Once inside the session, several default commands will be available, such as Get-Command. These are permitted because of the SessionType. Export-Csv and Get-ComputerInfo are available because they have been explicitly permitted.

 If the endpoint is no longer required, it can be removed as shown in the following code:

 Unregister-PSSessionConfiguration -Name 'JEATest'

 Careful consideration should be given to which commands are exposed by JEA. The default account configuration used in the preceding example grants administrative rights to the system hosting the endpoint.

 Role capabilities

 Role capabilities add a lot of flexibility to the endpoint. Different commands can be made available via an endpoint depending on the user or a group the user belongs to. If a user belongs to more than one role the user will be granted access to the commands from each role.

 Role capabilities must be maintained in a file. A role capabilities file can be created using the New-PSRoleCapabilityFile command:

 $params = @{

 Path = 'c:\jea\group.psrc'

 VisibleCmdlets = @(

 'Get-ComputerInfo'

 'Export-Csv'

)

}

New-PSRoleCapabilityFile @params

 This file may be used when creating a session configuration in place of the simple list of commands:

 $params = @{

 Path = 'c:\jea\jea.pssc'

 LanguageMode = 'NoLanguage'

 SessionType = 'RestrictedRemoteServer'

 RoleDefinitions = @{

 'DOMAIN\Group' = @{

 RoleCapabilityFiles = 'c:\jea\group.psrc'

 }

 }

}

New-PSSessionConfigurationFile @params

 The role capability file must be retained after the session has been registered.

 With careful consideration, JEA can be an effective delegation tool. Thought must be given to the permitted language features and the permissions assigned to accounts.

 Summary

 In this chapter, we delved into remoting in PowerShell, starting with WS-Management, and looked at the SSH transport features in PowerShell 7.

 The double-hop problem was introduced, along with several possible ways to work around the issue. Finally, we explored CIM sessions and JEA.

 The next chapter explores asynchronous processing.

 15

 Asynchronous Processing

 PowerShell prefers to run things synchronously, that is, sequentially, or one after another. However, it is frequently necessary to run many things simultaneously, without waiting for another command to complete. This is known as an asynchronous operation.

 Operations of this nature may be local to the current machine or might run queries or code against remote systems.

 PowerShell includes several different commands and classes that can do more than one thing at a time. The most obvious of these are the job commands.

 In addition to the job commands, PowerShell can react to .NET events and use runspaces and runspace pools.

 This chapter explores the following topics:

 	Working with jobs

 	Reacting to events

 	Using runspaces and runspace pools

 PowerShell jobs, using commands like Start-Job, are the simplest starting point for executing code asynchronously.

 Working with jobs

 The Start-Job command in PowerShell provides a means of executing code asynchronously by creating a new PowerShell process for each job.

 As each job executes within a new process, data cannot be shared between jobs. Any required modules, functions, or variables all need to be imported into each job.

 Additionally, jobs might be considered resource heavy as each job must start both a PowerShell process and a console window's host process.

 PowerShell provides several commands to create and interact with jobs. In addition to the following commands, you can use Invoke-Command with the AsJob parameter when acting against remote systems.

 The Start-Job, Get-Job, and Remove-Job commands

 You can use the Start-Job command to execute a script block in a similar manner to Invoke-Command, as shown in Chapter 14, Remoting and Remote Management. Also, you can use Start-Job to execute a script using the FilePath parameter.

 When Start-Job is executed, a job object, System.Management.Automation.PSRemotingJob is created. The job object continues to be available using the Get-Job command regardless of whether the output from Start-Job is assigned:

 PS> Start-Job -ScriptBlock { Start-Sleep -Seconds 10 }

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Running True localhost Start-Sleep -Seconds 10

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command

-- ---- ------------- ----- ----------- -------- -------

 1 Job1 BackgroundJob Running True localhost Start-Sleep -Seconds 10

 When you work with a script using jobs, the common practice is to capture the jobs created instead of relying entirely on Get-Job. This avoids problems if the module used in a script also creates jobs. The state of the job is reflected on the job object; Get-Job is not required to update the status.

 Job objects and any data the job has returned remain available until you remove them using the Remove-Job command.

 Start-Job includes a RunAs32 parameter to run code on the 32-bit version of PowerShell if required.

 Start-Job does not offer a throttling capability, that is, limiting the number of concurrent activities. PowerShell will simultaneously execute every job. Each job will compete for system resources. A while or do loop may be implemented to maintain a pool of running jobs:

 $listOfJobs = 1..50

foreach ($job in $listOfJobs) {

 while (@(Get-Job -State Running).Count -gt 10) {

 Start-Sleep -Seconds 10

 }

 Start-Job {

 Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)

 }

}

 The jobs created here do not return any data and can therefore be removed as soon as they have been completed. Data must be retrieved from a job before it is removed.

 The Receive-Job command

 Receive-Job is used to retrieve data from a job. Receive-Job may be used when a job is executing, or when the job is finished. If Receive-Job is run before a job is finished, any existing values will be returned. Running Receive-Job again will get any new values that have been added since it was last run. This is shown in the following example:

 $job = Start-Job {

 1..10 | ForEach-Object {

 $_

 Start-Sleep -Seconds 2

 }

}

Write-Host 'Sleeping 2'

Start-Sleep -Seconds 2

$job | Receive-Job

Write-Host 'Sleeping 5'

Start-Sleep -Seconds 5

$job | Receive-Job

 The results from the script are received as they become available:

 Sleeping 2

1

2

Sleeping 5

3

4

 The remaining results will be available to Receive-Job as they are returned, or when the job has completed.

 The -Wait parameter of Receive-Job will receive data from the job as it becomes available and send it to the output pipeline.

 The Wait-Job command

 The Wait-Job command waits for all the jobs in the input pipeline to complete. Wait-Job supports a degree of filtering and offers a timeout parameter to determine the length of time to wait for a job to complete before the job is run in the background.

 In some cases, it is desirable to pull off output from jobs as they complete. This can be solved by creating a while or do loop in PowerShell, reacting to jobs as the state changes:

 while (Get-Job -State Running) {

 $jobs = Get-Job -State Completed

 $jobs | Receive-Job

 $jobs | Remove-Job

 Start-Sleep -Seconds 1

}

 A while loop does not have an output pipeline; if output is to be piped to another command, it would need to be piped within the loop. For example, if the job output were filling a CSV file, Export-Csv would be added inside the loop and the Append parameter would be used:

 while (Get-Job -State Running) {

 $jobs = Get-Job -State Completed

 $jobs | Receive-Job | Export-Csv output.csv -Append

 $jobs | Remove-Job

 Start-Sleep -Seconds 1

}

 This technique is useful if the job is returning a large amount of data. Streaming output to a file as jobs complete will potentially help manage memory usage across a larger number of jobs.

 This approach can be combined with the snippet, which limits the number of concurrent jobs. The tweak is shown as follows:

 $listOfJobs = 1..50

$jobs = foreach ($job in $listOfJobs) {

 while (@(Get-Job -State Running).Count -gt 10) {

 Start-Sleep -Seconds 10

 }

 Start-Job {

 Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)

 }

 Get-Job -State Completed | Receive-Job | Export-Csv output.csv -Append

}

$jobs | Wait-Job | Receive-Job | Export-Csv output.csv -Append

 The final line is required to wait for and then receive the jobs that were still running when the last job was started.

 Jobs and the using scope modifier

 The $using scope modifier was introduced in Chapter 3, Working with Objects in PowerShell, while exploring the new Parallel parameter for the ForEach-Object command.

 All commands that use jobs can make use of the $using scope modifier to access variables created in the parent scope. Invoke-Command is also able to leverage $using, even if it is not using a job.

 For example, the following job uses the value of a variable from the scope that started the job:

 PS> $message = 'Hello world'

PS> Start-Job -ScriptBlock { Write-Host $using:message } |

>> Receive-Job -Wait

Hello world

 You can use the $using scope modifier to access variables in other scopes. For example, a variable explicitly created in the global scope:

 function Test-UsingScope {

 # A variable in the functions local scope

 $Variable = 2

 Start-Job -ScriptBlock {

 $using:Global:Variable

 }

}

A variable in global scope

$Variable = 1

Test-UsingScope | Receive-Job -Wait

 The $using scope modifier acts in one direction only. Jobs can read from it, but never write to it. This limitation applies when attempting to write to collections as well as any attempts to create new variables:

 PS> $hashtable = @{}

PS> Start-Job { $using:hashtable.Add('newValue', 1) } |

>> Receive-Job -Wait

ParserError:

Line |

 1 | Start-Job { $using:hashtable.Add('newValue', 1) } |

 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 | Expression is not allowed in a Using expression.

 Values returned from a job must use the output pipeline and be retrieved using Receive-Job.

 The background operator

 PowerShell 7 introduces the background operator feature. You can implement the background operator using an ampersand (&), which must be placed at the end of a statement. The placement of the operator is important. If placed at the beginning of a statement, & is the call operator. & must be the last thing in the statement; it cannot be used as an intermediate step in a pipeline, for example.

 The following statement places the preceding statement into a job:

 Get-Process &

 The preceding command is therefore equivalent to the following Start-Job command:

 Start-Job -ScriptBlock { Get-Process }

 In both cases, the jobs are started in the current PowerShell working directory.

 When using Start-Job, the working directory is implicitly inherited from the session starting the job.

 When using the background operator, the working directory is explicitly set as the following shows:

 PS> $job = Get-Process &

PS> $job.Command

Microsoft.PowerShell.Management\Set-Location -LiteralPath $using:pwd ; Get-Process

 The preceding example shows that assignments can be used to capture the job object; they are not part of the background job.

 The ThreadJob module

 The ThreadJob module is shipped with PowerShell 7. Start-ThreadJob provides a faster alternative to Start-Job. It leverages PowerShell runspaces, which are explored at the end of this chapter to execute scripts.

 You can use Start-ThreadJob in much the same way as Start-Job. Once a job has started, the remaining job commands can be used to interact with it. For example, Receive-Job will be used to retrieve output:

 Start-ThreadJob { Write-Host 'Hello world' } | Receive-Job -Wait

 Help for the ThreadJob module is not available in PowerShell itself; the online reference must be used: https://docs.microsoft.com/powershell/module/threadjob/start-threadjob?view=powershell-7.1.

 The Start-ThreadJob command allows a user to define an initialization script; this script runs in the runspace before the rest of the command starts. The initialization script cannot make use of the using scope modifier at this time. You can use this parameter to separate the components a job requires from the job script block itself.

 Batching jobs

 When working with the preceding commands, as well as runspaces, mentioned at the end of this chapter, it is important to consider what constitutes a job.

 For example, if the task involves running a single command on 100 remote hosts, then there is little harm in allowing 100 to run at once. The system hosting the jobs only has to worry about connecting to the remote system and instructing it to get on with things.

 If, on the other hand, the task is local and needs access to local resources, it may be more appropriate to run as many jobs as there are CPU cores on the host.

 The same argument applies to jobs that have expensive setup steps, such as connecting to a remote service. It may be better to create batches of content rather than pushing everything into a job of its own.

 Given an array of objects to process, you can create batches using a for loop:

 $objects = foreach ($value in 1..1000) {

 [PSCustomObject]@{ Value = $value }

}

$batchSize = 100

$ScriptBlock = {

 # Long job set-up step

 Start-Sleep -Seconds 120

 foreach ($object in $using:batch) {

 # Perform action and create output

 $object

 }

}

for ($i = 0; $i -lt $objects.Count; $i += $batchSize) {

 $batch = $objects[$i..($i + $batchSize)]

 Start-Job -ScriptBlock $ScriptBlock

}

 If each job is created using $batch, then each will act on 100 elements; a total of 10 jobs are created in this example.

 Throttling might be added to ensure that the host is not overloaded by the request. Throttling techniques outside of the ThrottleLimit parameter were demonstrated earlier in this section.

 Jobs provide a means of proactively executing code in an asynchronous manner. It is also possible to react to events.

 Reacting to events

 Events in .NET occur when something of interest happens to an object. For instance, System.IO.FileSystemWatcher can be used to monitor a filesystem for changes; when something changes, an event will be raised.

 Many different types of objects raise events when changes occur. You can use Get-Member to explore an instance of an object for Event members. For example, a Process object returned by the Get-Process command includes several events, shown as follows:

 PS> Get-Process | Get-Member -MemberType Event

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

Disposed Event System.EventHandler Disposed(System.Ob…

ErrorDataReceived Event System.Diagnostics.DataReceivedEventHa…

Exited Event System.EventHandler Exited(System.Obje…

OutputDataReceived Event System.Diagnostics.DataReceivedEventHa…

 PowerShell can react to these events, executing code when an event occurs.

 This section uses the events raised by FileSystemWatcher to demonstrate working with events. FileSystemWatcher can react to a number of different events:

 PS> [System.IO.FileSystemWatcher]::new() |

>> Get-Member -MemberType Event |

>> Select-Object Name

Name

Changed

Created

Deleted

Disposed

Error

Renamed

 The following examples will use Changed and Created.

 The Register-ObjectEvent and *-Event commands

 Register-ObjectEvent is used to register interest in an event raised by a .NET object. The command creates a PSEventSubscriber object.

 The Register-ObjectEvent command expects at least the name of the object that will be raising the event and the name of the event.

 The following FileSystemWatcher instance watches the C:\Data folder. By default, the watcher will only watch for changes at that level; the IncludeSubDirectories property might be changed if this must change. Subscribers are created for the Changed and Created events in the following example:

 $watcher = [System.IO.FileSystemWatcher]::new('C:\Data')

Register-ObjectEvent -InputObject $watcher -EventName Changed

Register-ObjectEvent -InputObject $watcher -EventName Created

 If a file is created in the folder specified, an event will be raised. The Get-Event command can be used to view the event data:

 PS> New-Item C:\Data\new.txt | Out-Null

PS> Get-Event

ComputerName :

RunspaceId : 46d2a562-2d07-4c58-9416-f82a3e9da5b8

EventIdentifier : 3

Sender : System.IO.FileSystemWatcher

SourceEventArgs : System.IO.FileSystemEventArgs

SourceArgs : {System.IO.FileSystemWatcher, new.txt}

SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e

TimeGenerated : 19/02/2019 17:29:53

MessageData :

 The SourceEventArgs property contains a FileSystemEventArgs object. This object includes the type of change, the path, and the filename.

 The event remains until it is removed using Remove-Event, or the PowerShell session is closed. If another event is raised, it will be returned by Get-Event in addition to the existing event.

 Depending on the operation performed, FileSystemWatcher may return more than one event. When using Add-Content, a single event will be raised as follows:

 PS> Get-Event | Remove-Event

PS> Add-Content C:\Data\new.txt -Value value

PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name

---------- -------- ----

 Changed C:\Data\new.txt new.txt

 Set-Content is used when two events are raised. Set-Content makes two changes to the file, directly or indirectly. This will often be the case, depending on how an application interacts with the filesystem, which is shown as follows:

 PS> Get-Event | Remove-Event

PS> Set-Content C:\Data\new.txt -Value value

PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name

---------- -------- ----

 Changed C:\Data\new.txt new.txt

 Changed C:\Data\new.txt new.txt

 Whether an event will trigger once or twice depends on the type in use, the event raised, and the subsystem that caused the event to be raised in the first place. Repeated events can potentially be ignored.

 If events are being handled in the foreground using Get-Event, you can use Wait-Event to wait until an event is raised.

 Wait-Event does not return any output

 Wait-Event stops as soon as an event is raised. Wait-Event does not return the event; any raised events must be retrieved using Get-Event.

 The Get-EventSubscriber and Unregister-Event commands

 The Get-EventSubscriber command may be used to view any existing event handlers created using Register-ObjectEvent. For example, Get-EventSubscriber will display the subscribers created for FileSystemWatcher:

 PS> Get-EventSubscriber

SubscriptionId : 4

SourceObject : System.IO.FileSystemWatcher

EventName : Changed

SourceIdentifier : 6516aebc-d191-44b5-a38f-60314f606102

Action :

HandlerDelegate :

SupportEvent : False

ForwardEvent : False

SubscriptionId : 5

SourceObject : System.IO.FileSystemWatcher

EventName : Created

SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e

Action :

HandlerDelegate :

SupportEvent : False

ForwardEvent : False

 If the subscribers are no longer required, they can be removed using the Unregister-Event command. The following command removes all registered event subscribers:

 Get-EventSubscriber | Unregister-Event

 The Action, Event, EventArgs, and MessageData parameters

 The Action parameter of Register-ObjectEvent allows a script block to be automatically executed when an event is raised.

 The script block can use a reserved variable, $event, which is equivalent to the output from Get-Event. In the following example, the event subscriber includes an action, which creates a log message. The log messages are written to file in a different folder; if they were written to the same folder, a loop would be created:

 New-Item C:\Audit -ItemType Directory

$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')

$params = @{

 InputObject = $watcher

 EventName = 'Changed'

 Action = {

 $event.SourceEventArgs |

 Export-Csv C:\Audit\DataActivity.log -Append

 }

}

Register-ObjectEvent @params

 If a file is created in the C:\Data folder, an event will be raised, and an entry will be created in C:\Audit\DataActivity.log:

 PS> Set-Content C:\Data\new.txt -Value new

PS> Import-Csv C:\Audit\DataActivity.log

ChangeType FullPath Name

---------- -------- ----

Changed C:\Data\new.txt new.txt

Changed C:\Data\new.txt new.txt

 Additional information can be passed to the Action script block using the MessageData parameter. MessageData is an arbitrary object that contains user-defined information. Before continuing to the example, the event subscriber that was just created should be removed. The log file is also deleted as the format of the file will be changed:

 Get-EventSubscriber | Unregister-Event

Remove-Item C:\Audit\DataActivity.log

 The following example adds a date stamp to the log entry and a custom message, which is supplied via MessageData. The values passed in using the MessageData parameter are made available as a MessageData property on the $event variable:

 $watcher = [System.IO.FileSystemWatcher]::new('C:\Data')

$params = @{

 InputObject = $watcher

 EventName = 'Changed'

 Action = {

 $user = $event.MessageData |

 Where-Object {

 $event.SourceEventArgs.Name -match $_.Expression

 } |

 Select-Object -ExpandProperty User -First 1

 $event.SourceEventArgs |

 Select-Object -Property @(

 @{Name = 'Date'; Expression = { Get-Date -Format u }}

 'ChangeType'

 'FullPath'

 @{Name = 'Responsible Person'; Expression = { $user }}

) |

 Export-Csv C:\Audit\DataActivity.log -Append

 }

 MessageData = @(

 [PSCustomObject]@{ Expression = '\.txt$'; User = 'Sarah' }

 [PSCustomObject]@{ Expression = '\.mdb'; User = 'Phil' }

)

}

Register-ObjectEvent @params

 Setting the content of a file in the C:\Data folder will trigger the event subscriber. An entry will be written to the log file using the entry from MessageData:

 PS> Set-Content C:\Data\test.mdb 1

PS> Import-Csv C:\Audit\DataActivity.log

Date ChangeType FullPath Responsible Person

---- ---------- -------- ------------------

2019-02-19 18:30:04Z Changed C:\Data\test.mdb Phil

 Event subscribers are globally scoped; they should be removed if they are no longer required. Closing the PowerShell session will remove all event subscribers.

 Whether running jobs or reacting to events, the commands demonstrated in the previous sections are a great part of any PowerShell developer's toolkit. However useful they are, the commands lack fine control of the sessions they create and use. When greater control is required, PowerShell runspaces and runspace pools can be used directly via .NET types.

 Using runspaces and runspace pools

 Runspaces and runspace pools are an efficient way of asynchronously executing PowerShell code. Runspaces are far more efficient than jobs created by Start-Job as they execute in the same process. The main disadvantage is complexity: PowerShell does not include native commands to simplify working with these classes.

 These days, the lack of native tooling is less of a problem. PowerShell 7 includes several alternatives that execute code in efficient runspaces, including ForEach-Object with the -Parallel parameter, and the Start-ThreadJob command.

 In addition to these, the (now older) PoshRSJob module remains available on the PowerShell Gallery: https://www.powershellgallery.com/packages/PoshRSJob.

 The PoshRSJob module is very mature and has a rich set of features. It was the most frequently recommended module, providing an alternative to the Start-Job command.

 When more flexibility or efficiency is needed, it is helpful to understand how PowerShell can use runspaces directly.

 Creating a PowerShell instance

 PowerShell instances, runspaces in which PowerShell code can be executed, are created using the Create static method of the System.Management.Automation.PowerShell type. A type accelerator exists for this type and the name can be shortened:

 $psInstance = [PowerShell]::Create()

 System.Management.Automation.PowerShell or PowerShell

 The usage is slightly confusing as both the console host and the type used here are normally referred to as PowerShell.

 References to instances of System.Management.Automation.PowerShell as PowerShell are highlighted in this section.

 The object created by the Create method has a fluent interface. Methods can be chained one after another without assigning a value. The following example adds a single command and a parameter, and then runs the command:

 [PowerShell]::Create().

 AddCommand('Get-Process').

 AddParameter('Name', 'powershell').

 Invoke()

 A complex script can be built in this manner. If two commands are chained together, they are assumed to be part of the same statement, implementing a pipeline. The AddStatement method is used to start a new statement, ending the current command pipeline:

 [PowerShell]::Create().

 AddCommand('Get-Process').AddParameter('Name', 'powershell').

 AddStatement().

 AddCommand('Get-Service').

 AddCommand('Select-Object').AddParameter('First', 1).

 Invoke()

 The result of the preceding example is equivalent to the following script:

 Get-Process -Name powershell

Get-Service | Select-Object -First 1

 The AddCommand, AddParameter, and AddStatement methods demonstrated so far are particularly useful when assembling a script programmatically. If the script content is already known, the script can be added using the AddScript method:

 $script = @'

 Get-Process -Name powershell

 Get-Service | Select-Object -First 1

'@

[PowerShell]::Create().AddScript($script).Invoke()

 The script is added as a string, not as a script block. When creating the script, be mindful of variable expansion in double-quoted strings. Variable expansion is avoided in the previous example by enclosing the script content in single quotes.

 The AddScript method can be used in conjunction with any of the other methods used here to build a complex set of commands.

 The Invoke and BeginInvoke methods

 The Invoke method used with each of the following examples executes the code immediately and synchronously. The BeginInvoke method is used to execute asynchronously, that is, without waiting for the last operation to complete.

 Both the PowerShell instance object and the IASyncResult returned by BeginInvoke must be captured. Assigning the values allows continued access to the instances and is required to retrieve output from the commands:

 $psInstance = [PowerShell]::Create().

 AddCommand('Start-Sleep').AddParameter('Seconds', 300)

$asyncResult = $psInstance.BeginInvoke()

 While the job is running, the InvocationStateInfo property of the PowerShell object will show as Running:

 PS> $psInstance.InvocationStateInfo

State Reason

----- ------

Running

 This state is reflected on the IASyncResult object held in the $asyncResult variable:

 PS> $asyncResult | Format-List

CompletedSynchronously : False

IsCompleted : False

AsyncState :

AsyncWaitHandle : System.Threading.ManualResetEvent

 When the command completes, both objects will reflect that state:

 PS> $psInstance.InvocationStateInfo.State

Completed

PS> $asyncResult.IsCompleted

True

 Setting either (or both) of these variables to null does not stop the script from executing in the PowerShell instance. Doing so only removes the variables assigned, making it impossible to interact with the runspace:

 $psInstance = [PowerShell]::Create().AddScript('

 1..60 | ForEach-Object {

 Add-Content -Path c:\temp\output.txt -Value $_

 Start-Sleep -Seconds 1

 }

')

$asyncResult = $psInstance.BeginInvoke()

$psInstance = $null

$asyncResult = $null

 The script continues to execute, filling the output file. The following file may be using Get-Content:

 Get-Content c:\temp\output.txt -Wait

 If the work of the script is no longer required, the Stop method should be called instead of setting variables to null:

 $psInstance = [PowerShell]::Create()

$psInstance.AddCommand('Start-Sleep').AddParameter('Seconds', 120).BeginInvoke()

$psInstance.Stop()

 A terminating error is raised when the Stop method is called. If the output from the instance is retrieved using the EndInvoke method, a The pipeline has been stopped error message will be displayed.

 The EndInvoke method and the PSDataCollection object

 EndInvoke is one of two possible ways to get output from a PowerShell instance. The EndInvoke method may be called as follows:

 $psInstance = [PowerShell]::Create()

$asyncResult = $psInstance.AddScript('1..10').BeginInvoke()

$psInstance.EndInvoke($asyncResult)

 If the invocation has not finished, EndInvoke will block execution until it has completed.

 The second possible method involves passing a PSDataCollection object to the BeginInvoke method:

 $instanceInput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()

$asyncResult = $psInstance.AddScript('

 1..10 | ForEach-Object {

 Start-Sleep -Seconds 1

 $_

 }

').BeginInvoke(

 $instanceInput,

 $instanceOutput

)

 The $psInstance and $asyncResult variables are still used to determine whether the script has completed. Results are available in $instanceOutput as they become available. Attempting to access $instanceOutput in the console will block execution until the script completes. New values added to the collection will be displayed as they are added.

 The unused $instanceInput variable in the preceding example may be populated with values for an input pipeline if required, for example:

 $instanceInput = [System.Management.Automation.PSDataCollection[PSObject]](1..10)

$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()

$asyncResult = $psInstance.

 AddCommand('ForEach-Object').

 AddParameter('Process', { $_ }).

 BeginInvoke(

 $instanceInput,

 $instanceOutput

)

 The AddCommand method was used in the preceding example as ForEach-Object will act on an input pipeline. A script can accept pipeline input within a process block; pipeline input is not implicitly passed to the commands within the script. The following example implements an input pipeline and uses the built-in $_ variable to repeat the numbers from the input pipeline:

 $instanceInput = [System.Management.Automation.PSDataCollection[PSObject]](1..10)

$instanceOutput = [System.Management.Automation.PSDataCollection[PSObject]]::new()

$asyncResult = $psInstance.AddScript('

 process {

 $_

)

').BeginInvoke(

 $instanceInput,

 $instanceOutput

)

 Each of the examples so far has concerned itself with running a single script or a set of commands.

 Running multiple instances

 As an individual instance is executing asynchronously with BeginInvoke, several may be started. In each case, both the PowerShell object and the IASyncResult object should be preserved:

 $jobs = 1..5 | ForEach-Object {

 $instance = [PowerShell]::Create().AddScript('

 Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)

 ')

 [PSCustomObject]@{

 Id = $instance.InstanceId

 Instance = $instance

 AsyncResult = $instance.BeginInvoke()

 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {

 $this.Instance.InvocationStateInfo.State

 }

}

 Each job will continue for a random number of seconds and then complete. As each job completes, the State property created by Add-Member will change to reflect that:

 PS> $jobs | Select-Object Id, State

Id State

-- -----

de79dcc3-8092-4592-a89e-271fc2b8b65e Completed

85de5d4d-f754-461d-88da-ac5c7948c546 Running

eb8e0b84-2a47-4379-bd89-e7e523201033 Running

6357a4c3-b6d1-4a9f-8f88-ee3ac0891eb1 Running

3dc050fe-8ff9-4f93-afa9-86768bd3b407 Completed

 The following snippet might be used to wait for all of the jobs to complete:

 while ($jobs.State -eq 'Running') {

 Start-Sleep -Milliseconds 100

}

 If the number of jobs is significantly larger, the system running the jobs might well become overwhelmed.

 Using the RunspacePool object

 RunspacePool can be used to overcome the problem of overwhelming a system. The pool can be configured with a minimum and maximum number of threads to execute at any point in time.

 The RunspacePool object is created using the RunspaceFactory type, as follows:

 [RunspaceFactory]::CreateRunspacePool(1, 5)

 RunspacePool must be opened before it can be used. The same pool is set for each of the PowerShell instances that expects to use the pool:

 $runspacePool = [RunspaceFactory]::CreateRunspacePool(1, 2)

$runspacePool.Open()

$jobs = 1..10 | ForEach-Object {

 $instance = [PowerShell]::Create().AddScript('Start-Sleep -Seconds 10')

 $instance.RunspacePool = $runspacePool

 [PSCustomObject]@{

 Id = $instance.InstanceId

 Instance = $instance

 AsyncResult = $instance.BeginInvoke()

 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {

 $this.Instance.InvocationStateInfo.State

 }

}

 Each of the jobs will show as running, but only two will complete at a time, based on the maximum set for the pool in the following example. After 10 seconds, the state of the jobs will be like the following:

 PS> $jobs | Select-Object Id, State

Id State

-- -----

63e2ab2d-613a-4c9c-8f21-d93c8a126008 Completed

781e4a08-04d6-4927-986a-e116fb16a852 Completed

1d80c45d-326b-423b-93d9-21703e747a93 Running

6840dfb1-f47d-4977-868f-697fcbb8af7e Running

6f3aa668-f680-40b6-8a94-c9d04693b1ad Running

868f324c-7ba5-4913-83a9-345d8f356aec Running

318a44ec-b390-45a5-a2cc-0272c1e2ad20 Running

ced0f017-1a1c-42d0-9c53-9e09f9c8ace9 Running

9d003c91-6a2b-4d6f-820e-975fffeb57d8 Running

71818997-b55e-41d6-bdf2-e62426036863 Running

 When all processing is finished, all objects should be explicitly disposed of to ensure they are closed:

 $jobs.Instance | ForEach-Object Dispose

$runspacePool.Dispose()

 After Dispose has been run, the variables might be set to null. Objects that are no longer referenced will be removed by garbage collection. Garbage collection can be run immediately using the following command if a large amount of memory was committed when running the jobs:

 [GC]::Collect()

 Runspace pools are incredibly useful. To improve the utility of the pool, it can be seeded with modules, functions, and variables before the pool is opened.

 About the InitialSessionState object

 InitialSessionState is used by Runspace or RunspacePool to describe a starting point. The InitialSessionState object may have modules, functions, or variables added.

 PowerShell provides several different options for creating InitialSessionState. This is achieved using a set of static methods. The most used are CreateDefault and CreateDefault2. For example, CreateDefault2 is used as follows:

 $initialSessionState = [InitialSessionState]::CreateDefault2()

 The difference between CreateDefault and CreateDefault2 is that CreateDefault includes engine snap-ins, while CreateDefault2 does not.

 PowerShell Core does not use snap-ins

 PowerShell Core does not include support for snap-ins. The difference between the two methods is therefore not apparent on PowerShell Core.

 CreateDefault2 is therefore slightly more lightweight and is more appropriate for more recent versions of PowerShell, that is, PowerShell 6 and greater.

 In Windows PowerShell, the difference may be shown by creating and comparing the list of snap-ins in each case:

 PS> [PowerShell]::Create([InitialSessionState]::CreateDefault()).AddCommand('Get-PSSnapIn').Invoke().Name

Microsoft.PowerShell.Diagnostics

Microsoft.PowerShell.Host

Microsoft.PowerShell.Core

Microsoft.PowerShell.Utility

Microsoft.PowerShell.Management

Microsoft.PowerShell.Security

Microsoft.WSMan.Management

 In Windows PowerShell, CreateDefault2 only adds the Microsoft.PowerShell.Core snap-in, as follows:

 PS> [PowerShell]::Create([InitialSessionState]::CreateDefault2()).

>> AddCommand('Get-PSSnapIn').Invoke().Name

Microsoft.PowerShell.Core

 Items can be added to InitialSessionState before Runspace (or RunspacePool) is opened.

 Adding modules and snap-ins

 You add modules using the ImportPSModule method of InitialSessionState:

 $initialSessionState = [InitialSessionState]::CreateDefault2()

$initialSessionState.ImportPSModule('Pester')

 Several modules can be added with the same method. Modules can be specified by name, in which case the most recent will be used. You can specify a module using a Hashtable that describes the name and version information:

 $initialSessionState.ImportPSModule(@(

 'NetAdapter'

 @{ ModuleName = 'Pester'; ModuleVersion = '4.6.0' }

))

 You can also use MaximumVersion and RequiredVersion with the Hashtable.

 A snap-in may be imported in Windows PowerShell using the ImportPSSnapIn method. The method requires the name of a single snap-in, and a reference to a variable to hold any warnings raised during import:

 $warning = [System.Management.Automation.Runspaces.PSSnapInException]::new()

$initialSessionState.ImportPSSnapIn('WDeploySnapin3.0', [Ref]$warning)

 If multiple snap-ins are required, you must call the ImportPSSnapIn method once for each snap-in.

 Adding variables

 InitialSessionState objects created using CreateDefault2 will include all of the built-in variables with default values. The value of these variables cannot be changed before the session is opened.

 Additional variables can be added using the Add method of the Variables property. Variables are defined as a SessionStateVariableEntry object. An example of adding a variable is shown here:

 $variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 'Variable',

 'Value',

 'Optional description'

)

$initialSessionState = [InitialSessionState]::CreateDefault2()

$initialSessionState.Variables.Add($variableEntry)

 Several overloads are available, each allowing the variable to be defined in greater detail. For example, a variable with the Private scope may be created:

 $variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 'PrivateVariable',

 'Value',

 'Optional description',

 [System.Management.Automation.ScopedItemOptions]::Private

)

$initialSessionState.Variables.Add($variableEntry)

 Defining a fixed type for a variable is more difficult; the ArgumentTypeConverterAttribute needed to do this is private and difficult to create in PowerShell. To work around this problem, you can create a variable with the required attributes, then SessionStateVariableEntry can be created from the variable:

 [ValidateSet('Value1', 'Value2')][String]$ComplexVariable = 'Value1'

$variable = Get-Variable ComplexVariable

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 $variable.Name,

 $variable.Value,

 $variable.Description,

 $variable.Options,

 $variable.Attributes

)

$initialSessionState.Variables.Add($variableEntry)

 Using this approach allows complex variables to be defined within the session.

 Adding functions

 You can add functions and other commands to the InitialSessionState object in much the same way as variables. If a function is within a module, the module should be imported instead.

 Functions, as SessionStateFunctionEntry objects, are added to the Commands property of the InitialSessionState object.

 Simple functions can be added by defining the body of the function inline, as follows:

 $functionEntry = [System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(

 'Write-Greeting',

 'Write-Host "Hello world"'

)

$initialSessionState.Commands.Add($functionEntry)

 You can add functions with scope options in the same way as with variables. Scoping is rarely used with functions.

 If the function already exists in the current session, the output of Get-Command might be used to fill the SessionStateFunctionEntry object:

 function Write-Greeting {

 Write-Host 'Hello world'

}

$function = Get-Command Write-Greeting

$functionEntry = [System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(

 $function.Name,

 $function.Definition

)

$initialSessionState.Commands.Add($functionEntry)

 Once the InitialSessionState object is filled with the required objects, it may be used to create a PowerShell instance or a RunspacePool.

 Using the InitialSessionState and RunspacePool objects

 The RunspacePool object can be created using RunspaceFactory. RunspacePool can be created with either the minimum and maximum number of concurrent threads, or an InitialSessionState object.

 Creating the pool using an InitialSessionState object is shown here:

 $initialSessionState = [InitialSessionState]::CreateDefault2()

$runspacePool = [RunspaceFactory]::CreateRunspacePool($initialSessionState)

 Any extra entries required in the InitialSessionState must either be added using the $intialSessionState variable before RunspacePool is created, or extra entries must be added using $runspacePool.InitialSessionState after RunspacePool is created. Changes cannot be made after RunspacePool has been opened.

 If RunspacePool is created with InitialSessionState, the SetMinRunspaces and SetMaxRunspaces methods can be used to adjust the minimum and maximum number of threads. The default value for both the minimum and maximum is 1. The following example changes the maximum:

 $runspacePool.SetMaxRunspaces(5)

 The GetMinRunspaces and GetMaxRunspaces methods may be used to retrieve the current values.

 RunspacePool is then used as shown in the Using the RunspacePool object section.

 Using Runspace-synchronized objects

 Several classes in .NET offer runspace synchronization. This means that an instance of an object can be made accessible from runspaces that share a common parent.

 The most commonly used runspace-synchronized object is a Hashtable. The Hashtable is created using the Synchronized static method of the Hashtable type:

 $synchronizedHashtable = [Hashtable]::Synchronized(@{

 Key = 'Value'

})

 The synchronized Hashtable can be added to an InitialSessionState object and then used within a script or command that is running in a runspace. The changes made to the Hashtable within the runspace are visible outside:

 $variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 'synchronizedHashtable',

 $synchronizedHashtable,

 ''

)

$runspace = [RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())

$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()

$psInstance.Runspace = $runspace

$runspace.Open()

$psInstance.AddScript(

 '$synchronizedHashtable.Add("NewKey", "NewValue")'

).Invoke()

 After the script has completed, the key added by the script will be visible in the parent runspace in the current PowerShell session.

 In addition to the runspace-synchronized Hashtable, an ArrayList might be created in a similar manner, as follows:

 [System.Collections.ArrayList]::Synchronized(

 [System.Collections.ArrayList]::new()

)

 .NET also offers classes in the System.Collections.Concurrent namespace, which offers similar cross-runspace access: https://docs.microsoft.com/dotnet/api/system.collections.concurrent.

 For example, you can use ConcurrentStack as follows:

 $stack = [System.Collections.Concurrent.ConcurrentStack[PSObject]]::new()

$stack.Push('Value')

$variableEntry = [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 'stack',

 $stack,

 ''

)

$runspace = [RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())

$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()

$psInstance.Runspace = $runspace

$runspace.Open()

$psInstance.AddScript('

 $value = 0

 if ($stack.TryPop([Ref]$value)) {

 $value

 }

').Invoke()

 Each of the collection types in the System.Collections.Concurrent namespace offers similar Try methods to access elements.

 Summary

 This chapter explored the job commands built into PowerShell; since they are built-in, they are a solid starting point for running asynchronous operations. Newer modules such as ThreadJob can be used to improve the efficiency of jobs.

 You used event subscribers and commands to react to and work with events on .NET objects.

 The final section detailed working with runspaces and runspace pools. These provide the greatest flexibility when working asynchronously.

 The next chapter explores the creation of graphical user interfaces in PowerShell.

 16

 Graphical User Interfaces

 PowerShell is first and foremost a language built to work on the command line. Since PowerShell is based on .NET, it can use several different assemblies to create graphical user interfaces.

 This chapter explores WPF, a common choice for writing graphical user interfaces in Windows. WPF is not cross-platform; the content of this chapter will only work on Windows.

 Avalonia is a possible choice for a cross-platform framework, but the use of this is unfortunately beyond the capacity of this chapter: http://avaloniaui.net/.

 The following topics are explored in this chapter:

 	About Windows Presentation Foundation (WPF)

 	Designing a UI

 	About XAML

 	Displaying the UI

 	Layout

 	Naming and locating elements

 	Handling events

 	Responsive interfaces

 Windows Presentation Foundation is available in both Windows PowerShell and PowerShell 7, although the interfaces it creates can only be used on Windows.

 About Windows Presentation Foundation (WPF)

 Windows Presentation Foundation, or WPF, is a user interface framework. The components of a user interface are referred to as controls and include Label, TextBox, Button, and so on.

 Before you can use WPF, you must load the PresentationFoundation assembly. The assembly can be loaded using Add-Type. This command is required once in each PowerShell session that intends to use WPF:

 Add-Type -AssemblyName PresentationFramework

 A WPF user interface typically defines all or most of the visible components in an Extensible Application Markup Language (XAML) document.

 Designing a UI

 It is difficult, but not impossible, to design a user interface in code alone. This chapter focuses on a small number of simple UI elements, which you can combine to build a more complex user interface. The examples in this chapter do not require a visual designer.

 There are several options available for visual designers:

 	Visual Studio – Free when using Community edition: https://visualstudio.microsoft.com/vs/community/

 	PoshGUI – Web-based, requires a subscription: https://poshgui.com/

 	PowerShell Pro Tools – Visual Studio Code extension, requires a subscription: https://ironmansoftware.com/powershell-pro-tools-for-visual-studio-code/

 In the case of Visual Studio, it can be used to generate the XAML content in the designer, and that XAML content can be reused in PowerShell.

 About XAML

 XAML is an XML document. XAML is used to describe the components or elements of a user interface. The following example describes a 350 by 350-pixel Window containing a Label:

 <?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Label Content="Hello world" />

</Window>

 The two namespace declarations in the xmlns and xmlns:x attributes are mandatory and cannot be omitted.

 The document must first be read into an XmlDocument; you can use the Xml type accelerator to do this. Then you must create a XmlNodeReader; this can be created by casting an XmlDocument. Finally, the document is parsed using the XamlReader to create the user interface controls from the document:

 $xaml = [xml]'<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Label Content="Hello world" />

</Window>'

$window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$xaml

)

 The $Window variable contains the Window and all child elements it implements. The Window can be explored and changed in PowerShell before it is displayed, or it can be displayed immediately.

 Displaying the UI

 You can open the UI using the ShowDialog method of the Window:

 $Window.ShowDialog()

 In each of the examples in each of the following sections, the following short function can be used to view the Window:

 function Show-Window {

 param (

 [Xml]$Xaml

)

 Add-Type -AssemblyName PresentationFramework

 $Window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$Xaml

)

 $Window.ShowDialog()

}

 Examples and Show-Window

 The preceding function is reused in the examples that follow. If it is not present in the PowerShell session the examples will fail.

 You can now use the function with the first XAML example:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Label Content="Hello world" />

</Window>'

Show-Window $Xaml

 If the first example has been added to the console it will display as follows:

 [image: Graphical user interface, text, application

Description automatically generated]

 Figure 16.1: Showing the user interface

 The properties and methods available for the Window are documented in Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.windows.window.

 In the preceding example, the Window contains a single Label. A Window can only directly contain a single child control, which is held in the Content property. The first few properties of the Label are shown here:

 PS> $Window.Content

Target :

Content : Hello world

HasContent : True

ContentTemplate :

ContentTemplateSelector :

ContentStringFormat :

BorderBrush :

BorderThickness : 0,0,0,0

Background : #00FFFFFF

Foreground : #FF000000

 WPF has a wide variety of layout controls that can be added to contain more controls. For example, a Grid control might be used to position Label and TextBox controls to create a simple form.

 Layout

 The layout of a WPF form is described by the elements it contains. Several controls are dedicated to positioning others. For example, a layout control may contain two Label controls.

 Three of the different layout controls are explored:

 	Grid

 	StackPanel

 	DockPanel

 These three positioning controls can be used to create advanced layouts by specifying an absolute position for every single control by hand.

 Layout controls such as those above can be nested inside one another to create more advanced interfaces.

 A Grid can be used to arrange controls in rows and columns.

 Using the Grid control

 You can add a Grid control within the Window control in the Xaml document:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid>

 <Label Content="Hello world" />

 </Grid>

</Window>'

Show-Window $xaml

 By default, Grid has one row and one column: a single cell. To add a second control to the grid, either the number of columns or the number of rows must be increased (or both). Rows and columns are numbered from 0 in the Grid control. Child controls are, by default, placed in row 0, column 0.

 The following example adds a second column; the two controls are placed side by side by using Grid.Row and Grid.Column to explicitly define where each should appear:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Label Content="Row 1, Column 1"

 Grid.Row="0" Grid.Column="0" />

 <Label Content="Row 1, Column 2"

 Grid.Row="0" Grid.Column="1" />

 </Grid>

</Window>'

Show-Window $xaml

 You can add rows to the grid in a similar manner. The next code snippet adds a second row to the grid:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <Label Content="Row 1, Column 1"

 Grid.Row="0" Grid.Column="0" />

 <Label Content="Row 1, Column 2"

 Grid.Row="0" Grid.Column="1" />

 <Label Content="Row 2, Column 1"

 Grid.Row="1" Grid.Column="0" />

 <Label Content="Row 2, Column 2"

 Grid.Row="1" Grid.Column="1" />

 </Grid>

</Window>'

Show-Window $xaml

 The rows and columns in the grid are equally distributed. The Width and Height of each column or row can be changed by setting those properties in the ColumnDefinition or the RowDefinition.

 The UI created by the preceding XAML document should look like this:

 [image: Graphical user interface, text

Description automatically generated]

 Figure 16.2: Grid with 2 columns and 2 rows

 You can define column and row widths either in pixels or by fractional values based on the size of the parent (in this case, Window).

 A fraction is described by following a numeric value with *. If * is used alone, the value is 1. In the following example, the first column takes three-quarters of the width, and the last column one-quarter. ShowGridLines has been enabled in the grid to more easily show the effect of the width control:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Grid ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="3*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Label Content="Row 1, Column 1"

 Grid.Row="0" Grid.Column="0" />

 <Label Content="Row 1, Column 2"

 Grid.Row="0" Grid.Column="1" />

 </Grid>

</Window>'

Show-Window $xaml

 This creates a window:

 [image: Graphical user interface, text

Description automatically generated]

 Figure 16.3: Grid control with fractional column width

 The Grid control needs the number of rows and columns to be defined in advance. Each child control is placed within the grid using the Grid.Row and Grid.Column attributes as shown in the preceding examples.

 A StackPanel can be used to arrange controls in a vertical or horizontal stack.

 Using the StackPanel control

 A StackPanel control allows one control to be placed next to another. The StackPanel can be arranged horizontally or vertically. Controls can be added from left to right, or right to left. When the orientation is vertical, left to right is equivalent to top to bottom.

 A StackPanel is an ideal choice for a list of controls, such as a list of buttons. In the following example, the buttons are arrays vertically (the default) within the StackPanel:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel>

 <Button Content="Button1" />

 <Button Content="Button2" />

 <Button Content="Button3" />

 </StackPanel>

</Window>'

Show-Window $xaml

 The orientation can be changed with an attribute on the StackPanel element in the XAML document:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Orientation="Horizontal">

 <Button Content="Button1" />

 <Button Content="Button2" />

 <Button Content="Button3" />

 </StackPanel>

</Window>'

Show-Window $xaml

 If a Height or Width is set, the StackPanel will limit the size of the elements it contains. In the following example, the Width of the StackPanel is reduced to 50 pixels; it now only takes up a small part of the Window:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Width="50">

 <Button Content="Button1" />

 <Button Content="Button2" />

 <Button Content="Button3" />

 </StackPanel>

</Window>'

Show-Window $xaml

 The result of setting the width is shown next. As there is no code behind this user interface, pressing the buttons will have no effect:

 [image: Graphical user interface, text

Description automatically generated]

 Figure 16.4: StackPanel positioned in the top center of a window

 Elements within the StackPanel cannot exceed the Width and Height of that StackPanel.

 The StackPanel is not especially useful where it is; the buttons are in the middle of the Window, which makes it hard to place more controls (Label, TextBox, Button, and so on). The StackPanel would be better placed within another control. A Grid is one option, but it is potentially difficult to arrange differently sized elements within a Grid. A DockPanel offers an easier alternative for putting together controls of different sizes.

 Using the DockPanel control

 A DockPanel is used to arrange elements around the edge of a rectangle. Each element is positioned using the DockPanel.Dock attribute, and the possible values are Top, Bottom, Left, and Right.

 By default, the last control in the DockPanel uses up the rest of the available space. The StackPanel with the list of buttons might be positioned within a DockPanel, perhaps aligning it to the left, and a Label is added as a placeholder after this to use up the remaining space:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <DockPanel>

 <StackPanel Width="50" DockPanel.Dock="Left">

 <Button Content="Button1" />

 <Button Content="Button2" />

 <Button Content="Button3" />

 </StackPanel>

 <Label />

 </DockPanel>

</Window>'

Show-Window $xaml

 The outcome is shown here:

 [image: Graphical user interface, text

Description automatically generated]

 Figure 16.5: DockPanel and StackPanel

 DockPanel allows elements to be arranged like a sliding puzzle. The following example includes each of the following elements:

 	A Label at the top

 	A StackPanel to the left

 	A ComboBox at the top

 	A StackPanel at the bottom

 	A Label to use up all remaining space

 The order of the elements determines how much of the remaining space is available:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="800" Height="500">

 <DockPanel>

 <Label Height="50" Background="Gainsboro"

 DockPanel.Dock="Top" />

 <StackPanel Background="LightBlue" Width="250"

 DockPanel.Dock="Left" />

 <ComboBox Margin="5" DockPanel.Dock="Top" />

 <StackPanel Height="30"

 Orientation="Horizontal"

 FlowDirection="RightToLeft"

 DockPanel.Dock="Bottom">

 <Button Content="Exit" Width="50" Margin="5" />

 <Button Content="Cancel" Width="50" Margin="5" />

 <Button Content="OK" Width="50" Margin="5" />

 </StackPanel>

 <Label Background="LightCoral" DockPanel.Dock="Top" />

 </DockPanel>

</Window>'

Show-Window $xaml

 The top-most Label and StackPanel have a background color set to show how each of the elements takes up space. The final Label is also colored, highlighting the unused space in the interface.

 The resulting interface is shown in Figure 16.6. As before, the user interface has no code behind it, so none of the buttons work:

 [image: A picture containing graphical user interface

Description automatically generated]

 Figure 16.6: Multi-element docking

 Each element of the user interface might be filled with different content.

 The preceding example also makes use of several other layout properties, such as Margin and Padding.

 About Margin and Padding

 The Margin of a control is the space around the outside of that control. Most controls can use the Margin property. Notable exceptions include the RowDefinition and ColumnDefinition types. Margins for elements in a Grid must be defined on each nested element.

 Margin and Padding are often used together to space out a user interface, preventing elements from running into each other, which results in a crowded user interface.

 Padding is the space between the edge of a control and the Content. Controls like Button, Label, TextBox, and ComboBox all have a Padding property.

 Both Padding and Margin can be defined on Left, Right, Top, and Bottom. Ultimately this creates a System.Windows.Thickness object after the XAML has been read into PowerShell.

 If a single value is used, as is the case with the ComboBox control used in the last example, the value will be applied to all four margins. The XAML element is shown here:

 <ComboBox Margin="5" DockPanel.Dock="Top" />

 It is possible to see the impact of this value by casting the Margin value to the Thickness type in PowerShell:

 PS> [System.Windows.Thickness]'5'

Left Top Right Bottom

---- --- ----- ------

 5 5 5 5

 The Thickness type is only available if the Add-Type command to load the PresentationFoundation assembly at the beginning of this section has been run in the PowerShell session.

 If a control requires different margins, a comma-separated list of values can be set. For instance, if Margin is set as shown below then only the Top and Bottom margins will be set:

 <ComboBox Margin="0,5,0,5" DockPanel.Dock="Top" />

 As before, you can test the effect of these values by casting the comma-separated string to the Thickness type:

 PS> [System.Windows.Thickness]'0,5,0,5'

Left Top Right Bottom

---- --- ----- ------

 0 5 0 5

 The same approach used with Margin can be used with Padding values.

 The following example attempts to show the impact of setting a Margin and Padding in a control:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <TextBox Text="No margin, no padding"

 Grid.Row="0" />

 <TextBox Text="Margin, no padding" Margin="5"

 Grid.Row="1" />

 <TextBox Text="Padding, no margin" Padding="5"

 Grid.Row="2" />

 <TextBox Text="Padding and margin" Padding="5" Margin="5"

 Grid.Row="3" />

 </Grid>

</Window>'

Show-Window $xaml

 A Grid is displayed with grid lines to show the boundary of each cell, and the TextBox is used as it has a border. The Margin is shown to affect the space around the outside of the TextBox; between the Grid cell edge and the TextBox edge. Padding is shown to affect the space between the TextBox edge and the text within the TextBox:

 [image: Graphical user interface, text, chat or text message

Description automatically generated]

 Figure 16.7: Margins and padding

 The elements in the preceding XAML documents are only accessible by working down through the properties from the $Window variable.

 Naming and locating elements

 It is only possible to perform actions on elements in the UI if they can be located. None of the controls in the preceding examples have been given names. Locating one of the buttons in a StackPanel, for example, is difficult as it stands.

 Returning to the StackPanel example, it has three buttons:

 $xaml = [xml]'<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Width="50">

 <Button Content="Button1" />

 <Button Content="Button2" />

 <Button Content="Button3" />

 </StackPanel>

</Window>'

$window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$xaml

)

 Accessing the Text property of Button3 as it stands requires the following relatively complex statement (in comparison to the complexity of the UI):

 $button3 = $window.Content.Children[2].Content

 This statement will potentially break if another button is added; it can therefore be said to be a bad practice.

 Instead of locating controls by position, a control can be given a name, and the name used to find that control in the UI:

 $xaml = [xml]'<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Width="50">

 <Button Name="Button1" Content="Button1" />

 <Button Name="Button2" Content="Button2" />

 <Button Name="Button3" Content="Button3" />

 </StackPanel>

</Window>'

$window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$xaml

)

 Now it has a name, each button (or any other named control) can be located by using a FindName method on any other element in the UI. For example:

 PS> $button1 = $window.FindName('Button1')

PS> $button1.Name

Button1

PS> $button1.FindName('Button2').Name

Button2

 FindName, when used in an event handler, can create difficult-to-resolve scoping problems in PowerShell; properties that are expected to be set may appear to be empty. Instead, each of the named controls can be gathered into a Hashtable so each is easily accessible wherever it might be needed:

 $xaml = [xml]'<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Width="50">

 <Button Name="Button1" Content="Button1" />

 <Button Name="Button2" Content="Button2" />

 <Button Name="Button3" Content="Button3" />

 </StackPanel>

</Window>'

$window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$xaml

)

$controls = @{}

foreach ($control in $xaml.SelectNodes('//*[@Name]')) {

 $controls[$control.Name] = $Window.FindName($control.Name)

}

$controls['Button1']

 The preceding SelectNodes method (used on the XmlDocument) finds all the elements in the XML document that have been given a name. It is therefore important to ensure that all names uniquely identify a single control.

 You can create a short function to provide access to the top-level Window and all named child controls:

 function Import-Xaml {

 param (

 [Xml]$Xaml

)

 Add-Type -AssemblyName PresentationFramework

 $window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$Xaml

)

 $controls = @{}

 foreach ($control in $Xaml.SelectNodes('//*[@Name]')) {

 $controls[$control.Name] = $window.FindName($control.Name)

 }

 [PSCustomObject]@{

 MainWindow = $Window

 Controls = $controls

 }

}

 Examples and Import-Xaml

 The preceding function is reused in the examples that follow. If it is not present in the PowerShell session, the examples will fail.

 The preceding function is shown below with the example used earlier in this section:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel Width="50">

 <Button Name="Button1" Content="Button1" />

 <Button Name="Button2" Content="Button2" />

 <Button Name="Button3" Content="Button3" />

 </StackPanel>

</Window>'

$ui = Import-Xaml $Xaml

 The Controls property contains the three buttons used in the interface:

 PS> $ui.Controls

Name Value

---- -----

Button2 System.Windows.Controls.Button: Button2

Button1 System.Windows.Controls.Button: Button1

Button3 System.Windows.Controls.Button: Button3

 The MainWindow property can be used to access the Window itself and show the UI:

 [image: Text

Description automatically generated]

 Figure 16.8: Using Import-Xaml

 The ability to locate individual elements in code allows changes to be made to individual elements, which is essential when adding working with event handlers.

 Handling events

 An event is raised in a UI when a button is pressed, when a selection changes, when a key is pressed, and so on.

 To react to an event, an event handler must be created and attached to the control that raises the event.

 Event handlers must be added before ShowDialog() is run.

 The list of possible events for the Window is extensive. Microsoft Docs lists the events and briefly describes each: https://docs.microsoft.com//dotnet/api/system.windows.window#events.

 One possible event is pressing the Escape key while the UI has focus. It might be desirable to close the UI in this case. This is the KeyDown event and can be attached to the Window object.

 For example, a KeyDown handler can be added to the following UI:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Label Content="Hello world" />

</Window>'

$ui = Import-Xaml $xaml

 Event handlers are added by running a method named after the event. The method name is prefixed with add_. Get-Member can be used to show the methods, but the -Force parameter is required. For example:

 PS> $ui.MainWindow | Get-Member add_KeyDown -Force

 TypeName: System.Windows.Window

Name MemberType Definition

---- ---------- ----------

add_KeyDown Method void add_KeyDown(System.Windows.Input.K...

 Two arguments are automatically made available to every event handler: the control that raised the event ($sender) and any event arguments ($eventArgs).

 In the case of the KeyDown event, the $sender is the Window object, and $eventArgs includes the Key property describing which key was pressed.

 Therefore, an event handler that allows the Escape key (ESC) to close the window can be added:

 $ui.MainWindow.add_KeyDown({

 param ($sender, $eventArgs)

 if ($eventArgs.Key -eq 'ESC') {

 $sender.Close()

 }

})

 Adding the event handler alone like this has no visual impact. The change is only relevant when the UI is started.

 With this event handler added, pressing Escape at any time after the UI has opened and with the UI having focus will close the UI:

 $ui.MainWindow.ShowDialog()

 This event handler is easy to implement as the only object it needs to act on is the Window itself. The Window is available in both the $Window variable and the $sender parameter; either variable can be used to run the Close method.

 A similar approach can be taken to make an Exit button work.

 Buttons and the Click event

 The Click event on buttons can be used by adding an event handler. In the following example, the Exit button is used to close the parent window. First a UI is defined with an Exit button, and the button is given a name:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Button Name="Button" Content="Exit" />

</Window>'

$ui = Import-Xaml $xaml

 Once created, the event handler for Click is added to the Button:

 $ui.Controls['Button'].add_Click({

 param ($sender, $eventArgs)

 $ui.MainWindow.Close()

})

$ui.MainWindow.ShowDialog()

 The controls in the UI are subject to default styling; moving the mouse over the button, for example, will cause the button to be highlighted. A detailed exploration of styling is beyond the scope of this chapter.

 Controls in the UI can also read from and write to other controls.

 In the following example, the Click event for the button is changed to update the content of another Label:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel>

 <Button Name="Button" Content="Run" />

 <Label Name="Label" />

 </StackPanel>

</Window>'

$ui = Import-Xaml $xaml

$ui.Controls['Button'].add_Click({

 param ($sender, $eventArgs)

 $ui.Controls['Label'].Content = 'Hello world'

})

$ui.MainWindow.ShowDialog()

 In the preceding example, the StackPanel is the only element without a name. In the case of this particular UI, it does not need a name as it is not referenced by any of the code.

 The result of pressing the button in the UI is shown in the following example. Before the button is pushed, the area below the button will contain a blank Label:

 [image: Text

Description automatically generated]

 Figure 16.9: UI after pressing the Run button

 Like Button, a ComboBox has specific events associated with the possible behavior of that control.

 ComboBox and SelectionChanged

 SelectionChanged can be used in a similar way to the Click event on a button. When the selection changes, the selection is available via the SelectedItem property of the ComboBox control.

 The value in SelectedItem is a ComboBoxItem type; the actual value selected is held in the Content property of the item:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel>

 <ComboBox Name="ComboBox">

 <ComboBoxItem>Apple</ComboBoxItem>

 <ComboBoxItem>Orange</ComboBoxItem>

 </ComboBox>

 <Label Name="Label" />

 </StackPanel>

</Window>'

$ui = Import-Xaml $xaml

$ui.Controls['ComboBox'].add_SelectionChanged({

 param ($sender, $eventArgs)

 $ui.Controls['Label'].Content = (

 'Selected a {0}' -f $sender.SelectedItem.Content

)

})

$ui.MainWindow.ShowDialog()

 Each control has different events available. Microsoft Docs and Get-Member can be used to explore the capabilities of that control.

 Each of the values above has set a simple text value in the UI. If the content retrieved is more complex, dynamically creating controls to describe the output might be desirable.

 Adding elements programmatically

 One control might add more values to the UI when an event is triggered. For example, clicking a button might cause the results of a command to be displayed.

 The previous examples can already deal with simple text output, but PowerShell rarely returns a simple string as the output from a command. You can use a ListView control to display more complex values.

 The following Window is the starting point for this example:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <DockPanel>

 <Button Name="Button" Content="Get-Process"

 DockPanel.Dock="Top" />

 <ListView Name="ListView">

 <ListView.View>

 <GridView />

 </ListView.View>

 </ListView>

 </DockPanel>

</Window>'

$ui = Import-Xaml $xaml

 The UI includes a button that will run a command. The Click event for the button updates the columns and items in the ListView:

 $ui.Controls['Button'].add_Click({

 param ($sender, $eventArgs)

 $data = Get-Process | Select-Object Name, ID

 $listView = $ui.Controls['ListView']

 # Clear any previous content

 $listView.View.Columns.Clear()

 foreach ($property in $data[0].PSObject.Properties) {

 $column = [System.Windows.Controls.GridViewColumn]@{

 DisplayMemberBinding = (

 [System.Windows.Data.Binding]$property.Name

)

 Header = $property.Name

 }

 $listView.View.Columns.Add($column)

 }

 $listView.ItemsSource = $data

})

$ui.MainWindow.ShowDialog()

 When the UI is opened, and the button is clicked, the Name and ID of each running process will be displayed in the ListView.

 The hidden member, PSObject, is used to dynamically discover the properties of whatever objects are held in the $data variable. In this case, those will only be Name and ID as Select-Object was used. The filtered output from the preceding example should look like this:

 [image: Text

Description automatically generated]

 Figure 16.10: Updating ListView

 The dynamically added content might be extended further to include an event handler that acts when a header is clicked.

 Sorting a ListView

 Each of the columns in a ListView can be sorted by adding a Click handler to the column header.

 The sorting handler is relatively complex; it should account for any existing sorting if it is to sort in either direction:

 To begin, a UI is created with a ListView:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="450" Height="800">

 <DockPanel>

 <Button Name="Button" Content="Get-Process"

 DockPanel.Dock="Top" />

 <ListView Name="ListView">

 <ListView.View>

 <GridView />

 </ListView.View>

 </ListView>

 </DockPanel>

</Window>'

$ui = Import-Xaml $xaml

 Each column header is going to use the same event handler code; a script block is used to isolate that code. The script block begins with a param block, which allows the clicked header to be identified:

 $sortHandler = {

 param ($sender, $eventArgs)

}

 Building the sort handler

 The code in the following snippets is going to be placed inside the event handler; it will not be able to run independently.

 For example, the $dataView variable used in the following example will be empty.

 To begin, the default sort direction for each column is set to Ascending:

 $direction = 'Ascending'

 Sorting is performed on the default view of the ItemsSource collection; the collection contains the results of the Get-Process command. The view is acquired from the ListView control:

 $listView = $ui.Controls['ListView']

$dataView = [System.Windows.Data.CollectionViewSource]::GetDefaultView(

 $listView.ItemsSource

)

 The $dataView object exposes a SortDescriptions property, which defines any sorting acting on the view of the collection; it is an array of SortDescription. The handler will ensure that there is only ever one SortDescription. The column that is currently sorted can be identified by getting the first element in the SortDescriptions collection:

 $sortDescription = $dataView.SortDescriptions[0]

 If the clicked header name matches the currently sorted property, the direction will be reversed. The direction is an enumeration that has the value 0 (Descending) or 1 (Ascending). The -bxor operator can be used to toggle between 0 and 1:

 if ($sortDescription.PropertyName -eq $sender.Content) {

 $direction = $sortDescription.Direction -bxor 1

}

 Once the desired direction has been set all sort descriptions are removed from the view:

 $dataView.SortDescriptions.Clear()

 The new SortDescription can be added to the view, which will cause the column to sort:

 $dataView.SortDescriptions.Add(@{

 Direction = $direction

 PropertyName = $sender.Content

})

 The preceding non-functional examples can now be placed inside the event handler. Each of the preceding actions runs in turn every time a column header is clicked. The complete event handler script block is shown here:

 $sortHandler = {

 param ($sender, $eventArgs)

 $direction = 'Ascending'

 $listView = $ui.Controls['ListView']

 $dataView = [System.Windows.Data.CollectionViewSource]::GetDefaultView(

 $listView.ItemsSource

)

 if ($dataView.SortDescriptions) {

 $sortDescription = $dataView.SortDescriptions[0]

 if ($sortDescription.PropertyName -eq $sender.Content) {

 $direction = $sortDescription.Direction -bxor 1

 }

 $dataView.SortDescriptions.Clear()

 }

 $dataView.SortDescriptions.Add(@{

 Direction = $direction

 PropertyName = $sender.Content

 })

}

 The event handler is added to each of the columns as it is created and added to the ListView. As an event handler is being added, the header for the column must be described using a GridViewColumnHeader object, and the name of the header is placed in the Content property:

 $ui.Controls['Button'].add_Click({

 param ($sender, $eventArgs)

 $data = Get-Process | Select-Object Name, ID, StartTime

 $listView = $ui.Controls['ListView']

 $listView.ItemsSource = $data

 $listView.View.Columns.Clear()

 foreach ($property in $data[0].PSObject.Properties) {

 $column = @{

 DisplayMemberBinding = (

 [System.Windows.Data.Binding]$property.Name

)

 Header = (

 [System.Windows.Controls.GridViewColumnHeader]@{

 Content = $property.Name

 }

)

 }

 $listView.View.Columns.Add($column)

 $column.Header.add_Click($sortHandler)

 }

})

$ui.MainWindow.ShowDialog()

 The outcome of the sort is shown in Figure 16.11:

 [image: Graphical user interface

Description automatically generated with low confidence]

 Figure 16.11: Adding column sorting to ListView

 It is possible to see that the content of the list is sorted by ID by looking at the content of the list; however, normally such lists would show a visual clue in the header showing which column is sorted or which direction the property is sorted in. Adding such functionality would be a great enhancement to the UI.

 One of the biggest challenges when writing user interfaces in PowerShell is maintaining a responsive interface.

 Responsive interfaces

 The interfaces used in all the examples so far used short-running commands that have no significant impact on the user interface.

 If an event handler in the user interface carries out a longer-running activity, the entire interface will freeze. This problem is simulated by using Start-Sleep in the following example:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <Button Name="Button" Content="Start" />

</Window>'

$ui = Import-Xaml $xaml

$ui.Controls['Button'].add_Click({

 param ($sender, $eventArgs)

 Start-Sleep -Seconds 60

})

$ui.MainWindow.ShowDialog()

 Once the button is clicked, the user interface will freeze. It is not possible to move or close the window or interact with any of the controls until the script that is started by clicking the button completes.

 This is clearly an undesirable problem; the UI appears to have crashed and it might leave anyone using the UI wondering what has gone wrong.

 Solving this problem requires the techniques used in Chapter 15, Asynchronous Processing, such as using runspaces, the InitialSessionState, and synchronized Hashtables as a means of sharing data across runspaces.

 Long-running actions must be moved into the background, and the task running in the background must update the user interface running in the foreground. A PowerShell runspace will be used to carry out long-running activities.

 Import-Xaml and Runspace support

 The Import-Xaml function can be changed to better support UIs that run long-running commands.

 The following changes are going to be made to the Import-Xaml function:

 	A runspace synchronized Hashtable is created holding each of the named controls

 	An InitialSessionState is created to share the Hashtable with the background runspace

 	A PowerShell runspace is created and added as a property from the InitialSessionState

 One final change to the function requires more of an explanation.

 The background Runspace cannot directly interact with the UI; either to read properties from controls or to make changes. Interaction with the UI is performed via the Dispatcher property. The Dispatcher is available as a property on every single UI element and can be used to interact with elements of the UI in the UI thread.

 For convenience, the Dispatcher property from the Window is added to the Controls Hashtable:

 function Import-Xaml {

 param (

 [Xml]$Xaml

)

 Add-Type -AssemblyName PresentationFramework

 $window = [System.Windows.Markup.XamlReader]::Load(

 [System.Xml.XmlNodeReader]$Xaml

)

 $controls = [Hashtable]::Synchronized(@{

 Dispatcher = $window.Dispatcher

 })

 foreach ($control in $Xaml.SelectNodes('//*[@Name]')) {

 $controls[$control.Name] = $window.FindName($control.Name)

 }

 $initialSessionState = [InitialSessionState]::CreateDefault2()

 $initialSessionState.Variables.Add(

 [System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(

 'ui',

 [PSCustomObject]@{ Controls = $controls },

 'UI controls'

)

)

 [PSCustomObject]@{

 MainWindow = $Window

 Controls = $controls

 PSHost = [PowerShell]::Create($initialSessionState)

 }

}

 Examples and Import-Xaml

 This version of Import-Xaml replaces the previous version. The examples that follow expect to be able to use this version of the function.

 The Dispatcher property can be used from a runspace to read from and write to the UI.

 Using the Dispatcher

 As mentioned previously, the Dispatcher must be used in the background thread to read from the UI.

 The following example writes the content of a TextBox to the Information stream using the Write-Host command:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <StackPanel>

 <TextBox Name="TextBox" Text="Hello world" />

 <Button Name="Button" Content="Start" />

 </StackPanel>

</Window>'

$ui = Import-Xaml $xaml

$ui.Controls['Button'].add_Click({

 $ui.PSHost.Commands.Clear()

 $ui.PSHost.AddScript({

 $value = $ui.Controls['Dispatcher'].Invoke(

 [Func[object]]{ $ui.Controls['TextBox'].Text }

)

 Write-Host $value

 }).BeginInvoke()

})

$ui.MainWindow.ShowDialog()

 In the preceding example, AddScript uses a script block to enclose the content to run in the background. This is cast to a string by the AddScript method. The ScriptBlock is only used to make it easier to use different quotes inside the string.

 The Click event handler also omits the param block used in many of the previous examples; the Sender and EventArgs values are not used in the handler and the param block can be safely removed.

 After the button is clicked and the UI is closed, you can use the following command to show the Information stream:

 PS> $ui.PSHost.Streams.Information

Hello world

 Errors in the background

 Errors that occur in the background runspace will not be displayed in the PowerShell console.

 The $ui.PSHost object can be used to explore any output written by the runspace.

 $ui.PSHost.Streams includes Error, Debug, Warning, Verbose, and Information output.

 Errors that completely stop processing are written to $ui.PSHost.InvocationStateInfo.

 The previous example makes use of the Dispatcher, which was added to the Controls Hashtable by the Import-Xaml function.

 When requesting information from a control on the form, the following style of command may be used. This only works within the context of a running UI, and will need the body of the Func to be more than a comment:

 $ui.Controls['Dispatcher'].Invoke(

 [Func[object]]{ <# Code to get UI values #> }

)

 In the previous example, the script block is cast to the Func[object] type, which is used to indicate that output (of type object) is expected when running the script block. By default, no output is returned (even if the script block would normally have output). When setting a value in the UI, the cast to Func[object] can therefore be omitted if the output from the script block is not required elsewhere:

 $ui.Controls['Dispatcher'].Invoke(

 { <# Code to set a UI value #> }

)

 Setting a value includes any actions that make changes to the UI.

 The next example updates a counter in the UI. The Start button is disabled while the counter is running. The UI remains relatively responsive while the loop executes; it may freeze momentarily while the Dispatcher executes code in the UI thread.

 As before, a UI is created from a XAML document. The following UI combines some of the different layout elements used in this chapter:

 $xaml = '<?xml version="1.0" encoding="utf-8"?>

<Window

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="350" Height="350">

 <DockPanel>

 <Grid DockPanel.Dock="Top">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="2*" />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <Label Content="Start" Margin="5,5,5,0"

 Grid.Row="0" Grid.Column="0" />

 <TextBox Name="TextBoxStart" Text="1" Margin="5,5,5,0"

 Grid.Row="0" Grid.Column="1" />

 <Label Content="End" Margin="5,5,5,0"

 Grid.Row="1" Grid.Column="0" />

 <TextBox Name="TextBoxEnd" Text="30" Margin="5,5,5,0"

 Grid.Row="1" Grid.Column="1" />

 </Grid>

 <Button Name="Button" Margin="5" Padding="5"

 Content="Go" DockPanel.Dock="Bottom" />

 <Label Name="Label"

 Margin="5" HorizontalContentAlignment="Center"

 VerticalContentAlignment="Center" FontSize="32"

 />

 </DockPanel>

</Window>'

$ui = Import-Xaml $xaml

 The event handler for the Click event on the button describes how the form is changed:

 $ui.Controls['Button'].add_Click({

 $ui.PSHost.Commands.Clear()

 $ui.PSHost.AddScript({

 $dispatcher = $ui.Controls['Dispatcher']

 $dispatcher.Invoke({

 $ui.Controls['Button'].IsEnabled = $false

 })

 $start = $dispatcher.Invoke([Func[object]]{

 $ui.Controls['TextBoxStart'].Text -as [int]

 })

 $end = $dispatcher.Invoke([Func[object]]{

 $ui.Controls['TextBoxEnd'].Text -as [int]

 })

 foreach ($number in $start..$end) {

 $ui.Controls['Dispatcher'].Invoke({

 $ui.Controls['Label'].Content = $number

 })

 Start-Sleep -Seconds 1

 }

 $ui.Controls['Dispatcher'].Invoke({

 $ui.Controls['Button'].IsEnabled = $true

 })

 }).BeginInvoke()

})

$ui.MainWindow.ShowDialog()

 Implemented in this way, the UI will remain generally responsive. The preceding UI is shown in Figure 16.12 after the Go button has been clicked:

 [image: Graphical user interface, text, application

Description automatically generated]

 Figure 16.12: Counter UI

 It is important to keep long-running activities outside of the code running in the Dispatcher.

 The Dispatcher can be used on either side of the process to enable and disable controls, to write status messages and output, and so on.

 Summary

 User interfaces are a common requirement in PowerShell, and even though PowerShell is written to run as a shell it is still possible to create advanced user interfaces.

 WPF includes a wide variety of different controls that can be combined to build a user interface. The initial layout of a WPF UI can be described in a XAML document, reducing the amount of code required to create the interface. A designer can be used to help generate the XAML content if required.

 Simple controls such as Grid, StackPanel, and DockPanel can be used to place controls without a need to resort to absolute or coordinate-based positioning within an interface.

 Controls can be given names within the XAML document allowing PowerShell to find controls to attach event handlers or change values at runtime.

 Elements of the user interface can be added or changed in event handlers. A ListView control was used to demonstrate a dynamically created view of an object created in PowerShell.

 Making a responsive user interface is challenging in PowerShell. The Dispatcher in WPF can be used to interact with the UI thread from a Runspace running in the background. The Dispatcher is used to read from and write to the user interface.

 The next chapter explores scripts, functions, and script blocks.

 17

 Scripts, Functions, and Script Blocks

 In PowerShell, scripts and functions are commands. They have overlapping capabilities and often only differ by common use.

 Scripts tend to be used to implement well-defined processes; such scripts often run on a schedule of some kind. A script may include functions or run other scripts, and a script will often use commands from other modules. A script is convenient as it consists of a single .ps1 file.

 You can also use a function to implement a single process in the same way as a script. The function might be part of a script, implementing a process, or part of a module. When automating a process, writing a module to host a function might be regarded as slightly less convenient and less simple than writing a script.

 Whether a function is in a script or a module, the function should strive to be simple. It should aim to be great at one job, and, if possible, reusable. Functions are the building blocks of more complex code, including scripts and other functions.

 A script block also has overlapping capabilities with scripts and functions. A script block is an anonymous or unnamed function; this is also known as lambda.

 Filters are briefly discussed in this chapter while exploring the named blocks, begin, process, and end. A filter is a specialized function, a throwback to PowerShell 1. Filters are rarely used and are not recommended for general use because of their rarity.

 This chapter explores the following topics:

 	About style

 	Capabilities of scripts, functions, and script blocks

 	Parameters and the param block

 	The CmdletBinding attribute

 	The Alias attribute

 	begin, process, end, and cleanup

 	Managing output

 	Working with long lines

 	Comment-based help

 Style in PowerShell is a very subjective topic, but an important one when writing code that will be maintained over a long period of time.

 About style

 Style in the context of a scripting language is all about aesthetics; it describes how variables are named, how code is indented, where opening and closing brackets are placed, and so on. Style is an easy thing to disagree with; the topic is full of opinions, many of which come down to what an individual feels is right.

 PowerShell does not have an official style, nor does it have an official best practice.

 PowerShell does have a set of guidelines for cmdlet development (commands typically written in a compiled language like C#): https://docs.microsoft.com/powershell/scripting/developer/cmdlet/cmdlet-development-guidelines?view=powershell-7.

 It has been left to the community of PowerShell users and developers to provide further guidance. The community-created PowerShell Practice and Style repository describes many of the most widely accepted conventions: https://github.com/poshcode/powershellpracticeandstyle.

 Many of these conventions, for example, warnings about the use of aliases in production code, are implemented in the PSScriptAnalyzer module. The PSScriptAnalyzer module is integrated with the PowerShell extension in Visual Studio Code and will show warnings as code is written:

 [image:]

 Figure 17.1: Warning from PSScriptAnalyzer in Visual Studio Code

 A warning from PSScriptAnalyzer in Visual Studio Code often provides a link to fix the perceived problem. Not everyone will agree with all the rules and this is fine. The PSScriptAnalyzer repository includes instructions for suppressing rules: https://github.com/PowerShell/PSScriptAnalyzer/blob/master/README.md.

 The guidance on styling is therefore simple:

 	Choose a style and use that style consistently. Remember that code will likely need to be maintained in the future.

 	If contributing to a project started by somebody else, be considerate of any existing style; use that style in any changes.

 Personal style may change over time. This too is normal.

 Establishing a style when writing code as a team can be difficult. Style choices can be a very personal topic. Compromise may be needed to find an approach that works. Having established something of a style, scripts and functions can be written, starting with an exploration of the capabilities of scripts and functions. Ideally, the style chosen should be documented and enforced using the styling rules available with PSScriptAnalyzer.

 Capabilities of scripts, functions, and script blocks

 Scripts, functions, and script blocks share many of the same capabilities. These capabilities are explored during this and the next few chapters. Scripts, functions, and script blocks can each:

 	Define parameters

 	Support pipeline input

 	Support common parameters, including support for Confirm and WhatIf

 	Allow other functions to be nested inside

 Scripts, but not functions or script blocks, support the using assembly and using namespace directives. Scripts also support the #Requires statement.

 Scripts and using statements

 using statements, introduced with PowerShell 5, were described in Chapter 7, Working with .NET. A short example of a using statement is shown here:

 using namespace System.Xml.Linq

 A function may benefit from using statements declared in a parent scope. The parent scope includes code run on the console, a script that contains a function, or a module (.psm1 file) that contains a function.

 The order in which the statements appear is not important, meaning the order of the commands in the previous example can be reversed with no change in the result. using namespace is a passive statement and is only important when code utilizing a shortened namespace is run.

 Scripts and Requires

 The Requires statement is valid only in scripts and can be used to restrict a script from running if certain conditions are not met. For example, a script may require administrative rights or certain modules.

 The Requires statement must be the first line in the script; comments and other code may not appear before it. You can use more than one Requires statement may if required.

 An example of a Requires statement is shown here:

 #Requires -RunAsAdministrator

#Requires -Modules @{ ModuleName = 'TLS'; ModuleVersion = '2.0.0' }

 Notice that there is no space between the comment character, #, and the Requires keyword.

 PowerShell includes help for the Requires statement that describes the possible parameters:

 Get-Help about_Requires

 In a script, the Requires statement may be used to declare a need for administrative rights, a certain version of PowerShell, or the presence of certain modules.

 Nesting functions

 In the same way that a script can contain functions, a function can contain other functions. The following function contains two other functions; those functions are only available within the scope of function Outer:

 function Outer {

 param (

 $Parameter1

)

 function Inner1 {

 }

 function Inner2 {

 }

 Write-Host 'Hello world'

}

 Nested functions allow an author to isolate repeated sections of code with a function.

 Nested functions must appear before they are used, but otherwise can appear anywhere in the body of the function.

 The disadvantage of nesting a function is that it becomes harder to debug. The function only exists in the context of its parent function; it cannot be called and tested from the scope above that. This is an important consideration when developing a function as part of a larger work and it is therefore advisable to avoid nesting one function within another.

 Script blocks and closures

 A script block is an anonymous function. Script blocks are used a great deal in PowerShell; for example, they are used with:

 	Where-Object as FilterScript

 	ForEach-Object for the begin, process, and end parameters

 	Select-Object as an Expression for a calculated property

 Like a function, when a script block is run, it can use variables from a parent scope. The following example will return the string "first value", the value of the $string variable at the point in time it is run:

 $string = "first value"

$scriptBlock = { $string }

& $scriptBlock

 If the string changes before scriptBlock is run, the output of scriptBlock will change, in this case to "second value":

 $scriptBlock = { $string }

$string = "second value"

& $scriptBlock

 The GetNewClosure method can be used to copy the values of variables from the current session into the scriptBlock session. The following example will therefore return the value 'first value', despite the variable being updated afterward:

 $string = 'first value'

$scriptBlock = { $string }.GetNewClosure()

$string = 'second value'

& $scriptBlock

 Closures are an interesting facet of script blocks in PowerShell, but it is difficult to find an instructive use that can be easily demonstrated without a great deal of design context.

 The capabilities listed in this section are less frequently used than the following major features, such as our next topic on parameters.

 Parameters and the param block

 You can use parameters to describe and give names to the values a command is willing to accept when it is run. The list of parameters is separated by a comma.

 Parameters can be defined as a block using the param keyword, which is the most popular approach as parameter blocks in PowerShell can become quite large. Using the param keyword is the only way to describe parameters for scripts and script blocks:

 param (

 $Parameter1,

 $Parameter2

)

 When used in a function, the param block is used as follows:

 function New-Function {

 param (

 $parameter1,

 $parameter2

)

}

 The param block is required if CmdletBinding, Alias, or any other attributes are applied to the function. The CmdletBinding and Alias attributes are explored later in this chapter.

 Functions also allow parameters to be defined immediately after the function name. For example:

 function New-Function($Parameter1, $Parameter2) {

 # Function body

}

 When used, the param block must appear before all other code. An exception to this is using statements in a script, which must be written before param.

 By default, parameters have the System.Object type. This means that any value type can be passed into a parameter. It may be desirable to restrict values to those of a specific type.

 Parameter types

 The type assigned to a parameter is written before the parameter name. A line break may appear after the type if desired.

 For example, if the function expects a string, the parameter type might be set to [string]:

 param (

 [string]$Parameter1

)

 Any value passed as an argument will be converted into a string regardless of the original type.

 When assigning a type to a parameter, the type persists until a new type is assigned or the variable is removed (for example, with Remove-Variable). Any values assigned to $Parameter1 from the preceding example will be converted to a string.

 Parameters that are given a type will be initialized with a default value or may be given an explicit default value.

 Default values

 Default values are used when a parameter value is not explicitly passed when calling the script, function, or script block.

 Value types, such as Boolean or Int (or Int32), and other numeric types are initialized with a default value for that type. A parameter of the Boolean type can never be null; it will default to false. Numeric values will default to 0, a String parameter will default to an empty string, and so on.

 Conversely, parameters using types such as DateTime, TimeSpan, and Hashtable will default to null.

 You can give parameters explicit default values by assigning a value in the param block; for example:

 function Test-Parameter {

 param (

 [string]$Parameter1 = 'DefaultValue'

)

}

 If the assignment is the result of a command, the command must be placed in parentheses:

 function Test-Parameter {

 param (

 [string]$ProcessName = (Get-Process -Id $PID |

 Select-Object -ExpandProperty Name)

)

}

 Assigning a default value was the basis for making parameters mandatory in PowerShell 1. The parameter would be assigned a throw statement by default. This is rarely seen in modern code; for example:

 function Test-Parameter {

 param (

 [string]$Parameter1 = $(throw 'This parameter is mandatory')

)

}

 This method of making parameters mandatory was replaced in PowerShell 2 by the Mandatory property of the Parameter attribute. The Parameter attribute is used to define behavior for a parameter and is explored in detail in Chapter 18, Parameters, Validation, and Dynamic Parameters.

 It is possible to provide a default value for a parameter based on the value of another within the param block.

 Cross-referencing parameters

 When using a param block, it is possible to cross-reference parameters. That is, the default value of a parameter can be based on the value of another parameter as shown in the following example:

 function Get-Substring {

 param (

 [string]$String,

 [int]$Start,

 [int]$Length = ($String.Length - $Start)

)

 $String.Substring($Start, $Length)

}

 The value of the Length parameter will use the default, derived from the first two parameters, unless the user of the function supplies their own value. The order of the parameters is important: the Start parameter must be declared in the param block before it can be used in the default value for Length.

 Parameters in PowerShell are complex, and an exploration of their capabilities is covered in Chapter 18, Parameters, Validation, and Dynamic Parameters. This chapter focuses on the structure of strings and functions starting at the top with CmdletBinding.

 The CmdletBinding attribute

 The CmdletBinding attribute is used to turn a function into an advanced function and is placed immediately above a param block. The attribute is used to add extra functionality, such as access to common parameters, control over the impact level, and so on. Scripts are not referred to as advanced scripts, but the same principle applies.

 CmdletBinding may be used to do the following:

 	Add common parameters, such as ErrorAction, Verbose, Debug, ErrorVariable, WarningVariable, and so on

 	Enable use of the built-in $PSCmdlet variable

 	Declare support for WhatIf and Confirm and define the impact level of the command

 If a script or function has no parameters, and wishes to make use of the capabilities provided by CmdletBinding, an empty param block must be declared:

 function Test-EmptyParam {

 [CmdletBinding()]

 param ()

}

 One of the most important features added by CmdletBinding are the common parameters.

 Common parameters

 With CmdletBinding in place, a script or function may use common parameters. The common parameters are listed here:

 	Debug

 	ErrorAction

 	ErrorVariable

 	InformationAction

 	InformationVariable

 	OutVariable

 	OutBuffer

 	PipelineVariable

 	Verbose

 	WarningAction

 	WarningVariable

 PowerShell provides a description of each of the common parameters in the about_CommonParameters help file:

 Get-Help about_CommonParameters

 For example, the Verbose parameter is made available. The following function will display the verbose message when it is run with the Verbose parameter:

 function Show-Verbose {

 [CmdletBinding()]

 param ()

 Write-Verbose 'Verbose message'

}

 In a similar way, parameters such as ErrorAction will affect Write-Error if it is used within the function.

 CmdletBinding itself provides several properties used to influence the behavior of a function or script.

 CmdletBinding properties

 The full set of possible values that may be assigned can be viewed by creating an instance of the CmdletBinding object:

 PS> [CmdletBinding]::new()

PositionalBinding : True

DefaultParameterSetName :

SupportsShouldProcess : False

SupportsPaging : False

SupportsTransactions : False

ConfirmImpact : Medium

HelpUri :

RemotingCapability : PowerShell

TypeId : System.Management.Automation.CmdletBindingAttribute

 For example, the output from the preceding command shows the existence of a PositionalBinding property. Setting this to false disables automatic position binding:

 function Test-Binding {

 [CmdletBinding(PositionalBinding = $false)]

 param (

 $Parameter1

)

}

 When the preceding function is called, and a value for Parameter1 is given by position, an error is thrown:

 PS> Test-Binding 'value'

Test-Binding : A positional parameter cannot be found that accepts argument 'value'.

 The most used properties of CmdletBinding are SupportsShouldProcess and DefaultParameterSetName. DefaultParameterSetName are explored in Chapter 18, Parameters, Validation, and Dynamic Parameters. ShouldProcess and ShouldContinue offer the ability to raise a prompt for a user to confirm an action.

 ShouldProcess and ShouldContinue

 Setting the SupportsShouldProcess property of CmdletBinding enables the ShouldProcess parameters, Confirm and WhatIf. These two parameters are used in conjunction with the ShouldProcess method, which is exposed on the $PSCmdlet variable, an automatically created variable available in the body of an advanced function or script.

 Both the ShouldProcess and ShouldContinue methods of the $PSCmdlet variable become available when a script or function has the CmdletBinding attribute and the SupportsShouldProcess property is set. The following example enables the SupportsShouldProcess setting:

 function Enable-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

}

 The ShouldProcess method is more commonly used than ShouldContinue.

 ShouldProcess

 ShouldProcess is used to support WhatIf and is responsible for raising confirmation prompts based on the impact level of a command.

 The following example will display a message instead of running the Write-Host statement when the WhatIf parameter is used:

 function Test-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 When run using the WhatIf parameter, the command will show the following message:

 PS> Test-ShouldProcess -WhatIf

What if: Performing the operation "Test-ShouldProcess" on target "SomeObject".

 The name of the operation, which defaults to the command name, can be changed using a second overload for ShouldProcess:

 function Test-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 if ($pscmdlet.ShouldProcess('SomeObject', 'delete')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 This would change the message to the following:

 PS> Test-ShouldProcess -WhatIf

What if: Performing the operation "delete" on target "SomeObject".

 The whole message can be changed by adding one extra argument:

 function Test-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 if ($pscmdlet.ShouldProcess(

 'Message displayed using WhatIf',

 'Warning: Deleting SomeObject',

 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 Using the Confirm parameter instead of WhatIf forces the appearance of the second two messages and adds a prompt:

 PS> Test-ShouldProcess -Confirm

Question: Are you sure you want to do continue?

Warning: Deleting SomeObject

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

 The different responses are automatically available without further code. If the request is within a loop, Yes to All may be used to bypass additional prompts. Replying Yes to All applies to all instances of ShouldProcess in the script or function:

 function Test-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 foreach ($value in 1..2) {

 if ($pscmdlet.ShouldProcess(

 "Would delete SomeObject $value",

 "Warning: Deleting SomeObject $value",

 'Question: Are you sure you want to do continue?')) {

 Write-Host "Deleting SomeObject $value" -ForegroundColor Cyan

 }

 }

}

 Whether or not the confirmation prompt is displayed depends on the comparison between ConfirmImpact (Medium by default) and the value in the $ConfirmPreference variable, which is High by default.

 If the impact of the function is raised to High, the prompt will display by default instead of on-demand. This is achieved by modifying the ConfirmImpact property of the CmdletBinding attribute:

 function Test-ShouldProcess {

 [CmdletBinding(SupportsShouldProcess, ConfirmImpact = 'High')]

 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 When the function is executed, the confirmation prompt will appear unless the user either uses -Confirm:$false or sets $ConfirmPreference to None.

 ShouldContinue is available as an alternative to ShouldProcess.

 ShouldContinue

 The ShouldContinue method is also made available when the SupportsShouldProcess property is set in CmdletBinding.

 ShouldContinue differs from ShouldProcess in that it always prompts. This technique is used by commands such as Remove-Item to force a prompt when attempting to delete a directory without supplying the Recurse parameter.

 As the prompt for ShouldContinue is forced, it is rarely a better choice than ShouldProcess. It is available for cases where a function must have a confirmation prompt that cannot be bypassed. Using ShouldContinue may make it impossible to run a function without user interaction unless another means of bypassing the prompt is created.

 The use of the ShouldContinue method is like the ShouldProcess method. The most significant difference is that the Yes to All and No to All options are not automatically implemented. The following example does not offer Yes to All and No to All options:

 function Test-ShouldContinue {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 if ($pscmdlet.ShouldContinue(

 "Warning: Deleting SomeObject $value",

 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 The prompt displayed is shown as follows:

 PS> Test-ShouldContinue

Question: Are you sure you want to do continue?

Warning: Deleting SomeObject

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

 Adding support for Yes to All and No to All means using three extra arguments for the ShouldContinue method. The first of these new arguments, hasSecurityImpact, affects whether the default option presented is Yes (when hasSecurityImpact is false) or No (when hasSecurityImpact is true).

 Boolean variables must be created to hold the Yes to All and No to All responses. These are passed as reference arguments to the ShouldContinue method as shown in the following example:

 function Test-ShouldContinue {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 $yesToAll = $noToAll = $false

 if ($pscmdlet.ShouldContinue(

 "Warning: Deleting SomeObject $value",

 'Question: Are you sure you want to do continue?',

 $false,

 [Ref]$yesToAll,

 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 The confirmation prompt will now include the Yes to All and No to All options:

 PS> Test-ShouldContinue

Question: Are you sure you want to do continue?

Warning: Deleting SomeObject

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

 It is possible to provide a means of bypassing the prompt by implementing another switch parameter. For example, a Force parameter might be added:

 function Test-ShouldContinue {

 [CmdletBinding(SupportsShouldProcess)]

 param (

 [Switch]$Force

)

 $yesToAll = $noToAll = $false

 if ($Force -or $pscmdlet.ShouldContinue(

 "Warning: Deleting SomeObject $value",

 'Question: Are you sure you want to do continue?',

 $false,

 [Ref]$yesToAll,

 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan

 }

}

 As the value of Force is evaluated before ShouldContinue, the ShouldContinue method will not run if the Force parameter is supplied.

 You can add other attributes to the preceding the param block in addition to CmdletBinding, such as Alias.

 The Alias attribute

 Like CmdletBinding, the Alias attribute may be placed preceding the param block. It may be used before or after CmdletBinding; the ordering of attributes does not matter.

 The Alias attribute is used to optionally create aliases for a function. A function can have one or more aliases; the attribute accepts either a single value or an array of values. For example, you can create an alias gsm for the function Get-Something via the following attribute:

 function Get-Something {

 [CmdletBinding()]

 [Alias('gsm')]

 param ()

}

 The body of a function may use named blocks, such as begin, process, and end, to control how code executes.

 begin, process, end, and cleanup

 A script or function often begins with comment-based help, followed by a param block. Following this, one or more named blocks may be used.

 The named blocks are:

 	begin

 	process

 	end

 	dynamicparam

 	cleanup

 The dynamicparam block is explored in Chapter 18, Parameters, Validation, and Dynamic Parameters, as it is more complex and ties to more advanced parameter usage than covered by this chapter.

 The cleanup block is also briefly introduced although this has still not found its way into the preview versions of PowerShell 7 at the time of writing.

 In a script or function, if none of these blocks are declared, content is in the end block.

 The named blocks refer to a point in a pipeline and therefore make the most sense if the command is working on pipeline input.

 In a filter, if none of these blocks are declared, content is in the process block. This is the only difference between a function and a filter.

 This difference in a default block is shown in the following pipeline example. The function must explicitly declare a process block to use the $_ variable. The filter can leverage the default block:

 PS> function first { process { $_ } } # end block by default

PS> filter second { $_ } # process block by default

PS> 1..2 | first # explicit process

1

2

PS> 1..2 | second # implicit process

1

2

 Using named blocks is optional. If a command is not expected to work on a pipeline, the content can be left to fall into the default block.

 begin

 The begin block runs before pipeline processing starts. A pipeline that contains several commands will run each of the begin blocks for each command in turn before taking any further action.

 The following example shows a short function with a begin block:

 function Show-Pipeline {

 begin {

 Write-Host 'Pipeline start'

 }

}

 Pipeline input, or values from parameters accepting pipeline input, is not available within the begin block as pipeline input has not been passed into the function yet.

 begin can be used to create things that are reused by the process block, setting up the initial conditions for a loop perhaps.

 process

 The process block runs once for each value received from the pipeline. The built-in variable $_ or $PSItem may be used to access objects in the pipeline within the process block. In the following example, the automatic variable $MyInvocation is used to show the position in a pipeline of the command:

 function Show-Pipeline {

 begin {

 $position = $MyInvocation.PipelinePosition

 Write-Host "Pipeline position ${position}: Start"

 }

 process {

 Write-Host "Pipeline position ${position}: $_"

 $_

 }

}

 When an object is passed to the pipeline, the start message will be shown before the numeric value:

 PS> $result = 1..2 | Show-Pipeline

Pipeline position 1: Start

Pipeline position 1: 1

Pipeline position 1: 2

 Adding Show-Pipeline to the end of the pipeline will show that begin executes twice before process runs:

 PS> $result = 1..2 | Show-Pipeline | Show-Pipeline

Pipeline position 1: Start

Pipeline position 2: Start

Pipeline position 1: 1

Pipeline position 2: 1

Pipeline position 1: 2

Pipeline position 2: 2

 The $result variable will contain the output of the last Show-Pipeline command.

 end

 The end block executes after process has acted on all objects in the input pipeline.

 In the end block, $_ will be set to the last value received from a pipeline. Any other parameters that accept pipeline input will be filled with the last value from the process block:

 function Show-Pipeline {

 begin {

 $position = $myinvocation.PipelinePosition

 Write-Host "Pipeline position ${position}: Start"

 }

 process {

 Write-Host "Pipeline position ${position}: $_"

 $_

 }

 end {

 Write-Host "Pipeline position ${position}: End"

 }

}

 Running this command in a pipeline shows end executing after all items in the input pipeline have been processed:

 PS> $result = 1..2 | Show-Pipeline

Pipeline position 1: Start

Pipeline position 1: 1

Pipeline position 1: 2

Pipeline position 1: End

 Commands that make extensive use of the end block include Measure-Object, ConvertTo-Html, and ConvertTo-Json. Such commands cannot return output until the end because the output is only valid when complete. The same is true of any other command that must gather input during a process block, and output something on completion.

 A simple command to count the number of elements in an input pipeline is shown here. The process block is unable to determine this; it must run again and again until the input pipeline is exhausted:

 function Measure-Item {

 begin {

 $count = 0

 }

 process {

 $count++

 }

 end {

 $count

 }

}

 The end block will run after all values in a pipeline have been received unless a terminating error is thrown by an earlier block.

 cleanup

 The cleanup block is coming to PowerShell, although it is not quite clear when.

 Not in PowerShell 7 yet? Then why here?

 The cleanup block will be an incredibly useful feature once it finally finds a way into PowerShell.

 https://github.com/PowerShell/PowerShell/pull/9900

 The pull request, a request to make a change to PowerShell itself, has been open for over a year at the time of writing. The author of the pull request is actively responding to issues raised by the PowerShell team.

 This section is here first and foremost because I expected it to be merged by now.

 I still have every confidence it will be merged and find a way into a future preview release. It is, unfortunately, just not quite clear when that might happen.

 The cleanup block addresses a long-standing problem when using pipelines with persistent streams or connections in PowerShell.

 The following example is implemented in such a way that the Remove-Item command will occasionally fail:

 function Invoke-Something {

 begin {

 $fileStream = [System.IO.File]::OpenWrite((

 Join-Path -Path $pwd -ChildPath NewFile.txt

))

 $count = 0

 }

 process {

 if ((++$count) -eq 3) {

 throw 'Oh no! Something unexpected went wrong'

 }

 }

 end {

 $fileStream.Close()

 }

}

1..5 | Invoke-Something

Remove-Item NewFile.txt

 Remove-Item fails because the $fileStream stream is not properly closed by the function unless the end block executes. The end block will not execute if a terminating error is raised inside the process block, prematurely stopping the command. .NET garbage collection must run to destroy the unreferenced file stream object before Remove-Item can act.

 The cleanup block addresses this problem as it will always run, even if a terminating error is raised during the normal operation of the command:

 function Invoke-Something {

 begin {

 $fileStream = [System.IO.File]::OpenWrite((

 Join-Path -Path $pwd -ChildPath NewFile.txt

))

 $count = 0

 }

 process {

 if ((++$count) -eq 3) {

 throw 'Oh no! Something unexpected went wrong'

 }

 }

 end {

 # Any actions end needs to perform

 }

 cleanup {

 $fileStream.Close()

 }

}

 The cleanup block can therefore be used to properly close any open streams or connections, even if the command itself fails for some reason.

 begin, process, and end can each emit values to the output pipeline. dynamicparam and cleanup cannot send values to an output pipeline. The return keyword is sometimes mistaken as being capable of limiting the output of a command.

 Named blocks and return

 You can use the return keyword to gracefully end the execution of a piece of a script block.

 The return keyword is often confused with return in C#, where it explicitly returns an object from a method. In PowerShell, return has a slightly different purpose.

 When a named block is executing, the return keyword may be used to end the execution of a script block immediately without stopping the rest of the pipeline.

 For example, a return statement in the process block might be used to end early in certain cases. The end block will continue to execute as normal:

 function Invoke-Return {

 process {

 if ($_ -gt 2 -and $_ -lt 9) {

 return

 }

 $_

 }

 end {

 'All done'

 }

}

 When run, the process block will end early when the condition is met:

 PS> 1..10 | Invoke-Return

1

2

9

10

All done

 The return keyword may have a value to return; however, there is no effective difference between the two examples here:

 function Test-Return { return 1 }

function Test-Return { 1; return }

 In each case, 1 is sent to the output pipeline and then the function ends. return does not constrain or dictate the output from a function or a script.

 begin, process, and end may all send output that has to be managed.

 Managing output

 PowerShell does not have a means of strictly enforcing the output from a script or function.

 Any statement, composed of any number of commands, variables, properties, and method calls, may generate output. This output will be automatically sent to the output pipeline by PowerShell as it is generated. Unanticipated output can cause bugs in code.

 The following function makes use of the StringBuilder type. Many of the methods in StringBuilder return the StringBuilder instance. This is shown here:

 PS> using namespace System.Text

PS> $stringBuilder = [StringBuilder]::new()

PS> $stringBuilder.AppendLine('First')

Capacity MaxCapacity Length

-------- ----------- ------

 16 2147483647 7

 This is useful in that it allows chaining to build up a more complex string in a single statement. The following function makes use of that chaining to build up a string:

 using namespace System.Text

function Get-FirstService {

 $service = Get-Service | Select-Object -First 1

 $stringBuilder = [StringBuilder]::new()

 $stringBuilder.AppendFormat('Name: {0}', $service.Name).

 AppendLine().

 AppendFormat('Status: {0}', $service.Status).

 AppendLine().

 AppendLine()

 $stringBuilder.ToString()

}

 When the function is run, both the StringBuilder object and the assembled string will be written to the output pipeline:

 PS> Get-FirstService

Capacity MaxCapacity Length

-------- ----------- ------

 64 2147483647 37

Name: aciseagent

Status: Running

 This example is contrived and writing the function slightly differently would resolve the problem of it emitting unwanted output. However, this problem is not unique to the type used here.

 When writing a function or script, it is important to be aware of the output of the statements used. If a statement generates output, and that output is not needed, it must be explicitly discarded. PowerShell will not automatically discard output from commands in functions and scripts.

 There are several techniques available for dropping unwanted output; the following subsections show the common approaches.

 The Out-Null command

 The Out-Null command can be used at the end of a pipeline to discard the output from the preceding pipeline.

 The Out-Null command is relatively unpopular in Windows PowerShell as it is slow. As a command in Windows PowerShell, it must still act on input passed to it, which has a processing cost.

 In PowerShell 6 and 7, the speed issue is resolved; Out-Null is no longer quite what it seems. The Out-Null command acts as a keyword for the parser. When the parser encounters the keyword, any output piped to the command is discarded without invoking Out-Null as a command. This change in implementation makes Out-Null one of the fastest, if not the fastest, of the available options for discarding unwanted output.

 Sticking with the StringBuilder example, the unwanted value might have dropped by appending Out-Null, as the following shows:

 using namespace System.Text

$service = Get-Service | Select-Object -First 1

$stringBuilder = [StringBuilder]::new()

$stringBuilder.

 AppendFormat('Name: {0}', $service.Name).AppendLine().

 AppendFormat('Status: {0}', $service.Status).AppendLine().

 AppendLine() | Out-Null

$stringBuilder.ToString()

 Piping output to Out-Null is a robust choice for discarding unwanted output. As a pipeline-style operation, values are not held in memory while the pipeline runs.

 Alternatives to Out-Null include assigning output to the $null variable.

 Assigning to null

 Assigning a statement to the $null variable is a popular way of dropping unwanted output. It has the advantage of being obvious, in that it appears at the beginning of the statement:

 using namespace System.Text

$service = Get-Service | Select-Object -First 1

$stringBuilder = [StringBuilder]::new()

$null = $stringBuilder.

 AppendFormat('Name: {0}', $service.Name).

 AppendLine().

 AppendFormat('Status: {0}', $service.Status).

 AppendLine().

 AppendLine()

$stringBuilder.ToString()

 Assigning output to $null is reasonably fast in all versions of PowerShell. The downside when assigning to $null is that memory is allocated to the value on the right-hand side of the assignment; it is only released when the assignment completes.

 Redirecting to null

 Redirection to $null can be added at the end of a statement to discard output. An example of redirection is shown here:

 using namespace System.Text

$service = Get-Service | Select-Object -First 1

$stringBuilder = [StringBuilder]::new()

$stringBuilder.

 AppendFormat('Name: {0}', $service.Name).AppendLine().

 AppendFormat('Status: {0}', $service.Status).AppendLine().

 AppendLine() > $null

$stringBuilder.ToString()

 Redirection to $null is a relatively popular approach. Like assignment to $null, it will assign memory for an object before redirecting output.

 Casting to Void

 It is possible to cast to System.Void to discard output. When using the StringBuilder example, this is a clean approach:

 using namespace System.Text

$stringBuilder = [StringBuilder]::new()

[Void]$stringBuilder.

 AppendFormat('Name: {0}', $service.Name).AppendLine().

 AppendFormat('Status: {0}', $service.Status).AppendLine().

 AppendLine()

$stringBuilder.ToString()

 However, when used with a command, it requires the use of extra parentheses, which can make the option less appealing. This example uses Void to suppress the output from the Get-Command command:

 [Void](Get-Command Get-Command)

 Like assignment and redirection, casting cannot take place until the command in the value being cast is completely assembled. Memory will be consumed by the statement until the cast is complete.

 .NET garbage collection must also run for the consumed memory to be finally released. Although it should not be necessary, garbage collection can be run immediately using the following statement:

 [GC]::Collect()

 Any of the preceding methods of disposing of unwanted output used are viable, although in PowerShell 6 and 7, Out-Null is the better approach. Personal preference often dictates which to use, especially for code intended to run in both Windows PowerShell and PowerShell 6 or 7.

 Working with long lines

 There are several techniques you can use when writing scripts to avoid excessively long lines of code. The goal is to avoid needing to scroll to the right when reviewing code. A secondary goal is to avoid littering a script with the backtick (grave accent) character, `.

 Adding extra line breaks is often a balancing act. Both too many and too few can make it harder to read a script.

 The first chapter of this book introduced you to splatting as a means of dealing with commands that require more than a couple of parameters. It remains an important technique for avoiding excessively long lines.

 Line break after a pipe

 The most obvious technique is perhaps to add a line break after a pipe; for example:

 Get-Process |

 Where-Object Name -match 'po?w(er)?sh(ell)?'

 This is useful for long pipelines but may be considered unnecessary for short pipelines. For example, the following short pipeline ends with ForEach-Object. The statement is not necessarily long enough to need extra line breaks:

 Get-Service | Where-Object Status -eq Running | ForEach-Object {

 # Do work on the service

}

 A pipe is only one of many opportunities to add a line break without needing an escape character.

 Line break after an operator

 It is possible to add a line break after any of the operators. The most useful place for a line break is often after a logic operator is used to combine several comparisons; for example:

 Get-Service | Where-Object {

 $_.Status -eq 'Running' -and

 $_.StartType -eq 'Manual'

}

 One of the less obvious operators is the property dereference operator, ".". A line break may be added after calling a method of accessing a property. This is shown in the following example:

 { A long string in a script block }.

 ToString().

 SubString(0, 15).

 Trim().

 Length

 It is not entirely common to find long chains of method calls within PowerShell. A more common scenario makes use of the array operator.

 Using the array operator to break up lines

 The array operator, @(), can break up arrays that are used as arguments into operators, or values for parameters.

 For example, the format operator, -f, may be used in place of sub-expressions or variable interpolation. @() may be used to define an array to hold the arguments for the operator. The following example shows two different ways of creating the same string:

 $item = Get-Item C:\Windows\explorer.exe

Sub-expressions and variable interpolation

"The file, $($item.Name), with path $item was last written on $($item.LastWriteTime)"

The format operator

'The file, {0}, with path {1} was last written on {2}' -f @(

 $item.Name

 $item

 $item.LastWriteTime

)

 The same approach may be used for -replace operations that use particularly long regular expressions. For example, the following -replace operation attempts to apply a standard format to a UK telephone number. The regular expression benefits from being on a new line:

 $ukPhoneNumbers = '+442012345678', '0044(0)1234345678', '+44 (0) 20 81234567', '01234 456789'

$ukPhoneNumbers -replace @(

 '^(?:(?:\+|00)\d{2})?[-]*(?:\(?0\)?[-]*)?([138]\d{1,3}|20)[-]*(\d{3,4})[-]*(\d{3,4})$'

 '+44 $1 $2 $3'

)

 The preceding command converts each of the phone numbers into a consistent format:

 +44 20 1234 5678

+44 1234 345 678

+44 20 8123 4567

+44 1234 456 789

 In the previous example, the regular expression itself is still extremely long. The approach may be extended further still to break up a complex regular expression:

 $ukPhoneNumbers = '+442012345678', '0044(0)1234345678', '+44 (0) 20 81234567', '01234 456789'

$ukPhoneNumbers -replace @(

 -join @(

 '^(?:(?:\+|00)\d{2})?[-]*' # Country code

 '(?:\(?0\)?[-]*)?' # Area code prefix

 '([138]\d{1,3}|20)[-]*' # Area code

 '(\d{3,4})[-]*(\d{3,4})$' # Number

)

 '+44 $1 $2 $3'

)

 @() may also be used with arguments for commands, such as Select-Object:

 Get-NetAdapter | Select-Object @(

 'Name'

 'Status'

 'MacAddress'

 'LinkSpeed'

 @{ Name = 'IPAddress'; Expression = {

 ($_ | Get-NetIPAddress).IPAddress

 }}

)

 It is possible to add more line breaks to the Hashtable that describes the IPAddress property in the preceding example. Doing so may be beneficial if the Expression script is more complex.

 Comment-based help

 Comment-based help was introduced with PowerShell 2 and allows the author of a script or function to provide content for Get-Help without needing to understand and work with more complex MAML help files.

 PowerShell includes help for authoring comment-based help:

 Get-Help about_Comment_Based_Help

 Comment-based help uses a series of keywords that match up to the different help sections. The following list shows the most used ones:

 	.SYNOPSIS

 	.DESCRIPTION

 	.PARAMETER <Name>

 	.EXAMPLE

 	.INPUTS

 	.OUTPUTS

 	.NOTES

 	.LINK

 .SYNOPSIS and .DESCRIPTION are mandatory when writing help. Each of the other sections is optional.

 .PARAMETER, followed by the name of a parameter, will be included once for each parameter.

 .EXAMPLE may be used more than once, describing as many examples as desired.

 The tag names are not case-sensitive; uppercase is shown here as it is one of the most widely adopted practices. Spelling mistakes in these section names may prevent help from appearing altogether; it is important to be careful when writing comment-based help.

 Comment-based help may be used with scripts, functions, and filters and is most often placed first before the param block in a script. The synopsis and description sections are shown in the following example:

 <#

.SYNOPSIS

Briefly describes the main action performed by script.ps1

.DESCRIPTION

A detailed description of the activities of script.ps1.

#>

 In a function, help is often written inside the body of the function, before the param block:

 function Get-Something {

 <#

 .SYNOPSIS

 Briefly describes the main action performed by Get-Something

 .DESCRIPTION

 A detailed description of the activities of Get-Something.

 #>

}

 Help for individual parameters can be defined in two different ways when using comment-based help.

 Parameter help

 Parameter help is most often written using the .PARAMETER tag, as shown in the following example:

 function Get-Something {

 <#

 .SYNOPSIS

 Briefly describes the main action performed by Get-Something

 .DESCRIPTION

 A detailed description of the activities of Get-Something.

 .PARAMETER Parameter1

 Describes the purpose of Parameter1.

 .PARAMETER Parameter2

 Describes the purpose of Parameter2.

 #>

 param (

 $Parameter1,

 $Parameter2

)

}

 Help for a parameter may also be written as a comment above the parameter:

 function Get-Something {

 <#

 .SYNOPSIS

 Briefly describes the main action performed by Get-Something

 .DESCRIPTION

 A detailed description of the activities of Get-Something.

 #>

 param (

 # Describes the purpose of Parameter1.

 $Parameter1,

 # Describes the purpose of Parameter2.

 $Parameter2

)

}

 One possible advantage of this approach is that it is easy to see which parameters have help and which do not.

 Regardless of where help is written for a parameter, Get-Help will read the value:

 PS> Get-Help Get-Something -Parameter Parameter1

-Parameter1 <Object>

 Describes the purpose of Parameter1.

 Required? false

 Position? 1

 Default value

 Accept pipeline input? false

 Accept wildcard characters? false

 Examples of how to use a script or function are helpful, and more than one example can be added.

 Examples

 Get-Help expects examples to start with one or more lines of code, followed by a description of the example; for example:

 function Get-Something {

 <#

 .SYNOPSIS

 Briefly describes the main action performed by Get-Something

 .DESCRIPTION

 A detailed description of the activities of Get-Something.

 .EXAMPLE

 $something = Get-Something

 $something | Do-Something

 Gets something from somewhere.

 #>

 param (

 # Describes the purpose of Parameter1.

 $Parameter1,

 # Describes the purpose of Parameter2.

 $Parameter2

)

}

 The help parser is quite simple when it comes to comment-based help. Only the very first line of an example is code. This can be demonstrated by exploring the object returned by Get-Help based on the preceding example:

 PS> (Get-Help Get-Something -Examples).examples[0].example.code

$something = Get-Something

 The rest of the code is part of the remark. An open pull request strives to improve this part of the help parser; it may improve in time.

 Summary

 This chapter introduced writing scripts and functions, including brief guidance on establishing a style, followed by an exploration of the small differences between scripts, functions, and script blocks.

 You can use parameters to accept user input for scripts, functions, and script blocks. The param block can be used to define the list of parameters.

 Named blocks are used when acting on pipeline input. Each block executes at a different point in the pipeline lifecycle. The function and filter keywords use a different default named block, but otherwise have identical functionality. The begin block in all commands in a pipeline executes before a pipeline starts, the process block executes once for each value passed from one function to another, and the end block executes once for each function after the last pipeline value is passed.

 The cleanup block was very briefly introduced as an up-and-coming feature, hopefully one that will make it into PowerShell 7 soon.

 Output must be managed when writing code; it is important to appreciate that all statements that can generate output will send values to the output pipeline unless action is taken to prevent this. The return keyword was briefly explored as a means of ending a function or script early.

 It is sometimes difficult, when writing code, to make a long statement easy to read. Several strategies for breaking up long lines of code were explored, such as using the array operator, or adding a line break after an operator.

 The final section covered the structure of commend-based help, including parameter help and examples. Documentation plays a vital role in writing maintainable code.

 The next chapter, Chapter 18, Parameters, Validation, and Dynamic Parameters, builds on this chapter, exploring the extensive capabilities of the param block in much greater detail.

 18

 Parameters, Validation, and Dynamic Parameters

 PowerShell has an extensive parameter handling and validation system that you can use in scripts and functions. The system allows a developer to make parameters mandatory; to define what, if any, positional binding is allowed; to fill parameters from the pipeline; to describe different parameter sets; and to validate the values passed to a parameter. The wealth of options available makes parameter handling an incredibly involved subject.

 This chapter explores the following topics:

 	The Parameter attribute

 	Validating input

 	Pipeline input

 	Defining parameter sets

 	Argument completers

 	Dynamic parameters

 Parameters in PowerShell can make use of the Parameter attribute to define how the parameter should behave.

 The Parameter attribute

 The Parameter attribute is an optional attribute that you can use to define some of the behavior of a parameter, such as making a parameter mandatory.

 Creating an instance of the Parameter object shows the different properties that you can set:

 PS> [Parameter]::new()

ExperimentName :

ExperimentAction : None

Position : -2147483648

ParameterSetName : __AllParameterSets

Mandatory : False

ValueFromPipeline : False

ValueFromPipelineByPropertyName : False

ValueFromRemainingArguments : False

HelpMessage :

HelpMessageBaseName :

HelpMessageResourceId :

DontShow : False

TypeId : System.Management.Automation.Pa…

 A few of these properties should be ignored as they are not intended to be set directly, such as HelpMessageBaseName, HelpMessageResourceId, and TypeId.

 ExperimentName and ExperimentAction are for use with experimental features in PowerShell 7; the properties are not available in Windows PowerShell. These properties allow parameters to be made available on commands if a corresponding experimental feature is enabled. These properties do not appear to be in use at the time of writing.

 Several other complex properties are explored in other sections in this chapter, such as ParameterSetName, ValueFromPipeline, and ValueFromPipelineByPropertyName.

 The Parameter attribute is placed before the parameter itself. The following example shows the simplest use of the Parameter attribute:

 [CmdletBinding()]

param (

 [Parameter()]

 $Parameter1

)

 Using the Parameter attribute has the side effect of turning a basic function or script into an advanced function or script, even when the CmdletBinding attribute itself is missing. You can use Get-Command to explore whether CmdletBinding is present:

 PS> function Test-CmdletBinding {

>> param (

>> [Parameter()]

>> $Parameter1

>>)

>> }

PS> Get-Command Test-CmdletBinding | Select-Object CmdletBinding

CmdletBinding

 True

 This means that the common parameters, including Verbose and ErrorAction, are available to any function that uses the Parameter attribute (for any parameter).

 Starting with PowerShell 3, Boolean properties, such as Mandatory and ValueFromPipeline, may be written without providing an expression. For example, Parameter1 is made mandatory in the following code:

 function Test-Mandatory {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 $Parameter1

)

}

 Use of Mandatory = $false

 The default value for the Mandatory property is false; setting an explicit value of default may reduce readability.

 Mandatory is significant and stands out, but the value assigned is less significant and, when reading rapidly, it might be assumed to be true simply because the property is present.

 Position and positional binding

 Position defaults to -2147483648, the smallest possible value for Int32 (see [Int32]::MinValue). Unless an explicit permission is set, parameters may be bound in the order they are written in the parameter block. Setting the PositionalBinding property of CmdletBinding to false can disable this behavior.

 Automatic positional binding is shown in the following example:

 function Test-Position {

 [CmdletBinding()]

 param (

 [Parameter()]

 $Parameter1,

 [Parameter()]

 $Parameter2

)

 '{0}-{1}' -f $Parameter1, $Parameter2

}

 When called, the command shows that Parameter1 and Parameter2 have been filled with the values supplied using position only:

 PS> Test-Position 1 2

1-2

 Automatic positional binding is available by default; the Parameter attribute is not required. An explicit definition of position allows greater control and effectively disables automatic positional binding:

 function Test-Position {

 param (

 [Parameter(Position = 1)]

 $Parameter1,

 $Parameter2

)

}

 Automatic positional binding is disabled when using parameter sets. Parameter sets are explored later in this chapter.

 Exploring command metadata shows that positional binding is still enabled, but as this is an ordered operation, the default position no longer has meaning. The command metadata shows that positional binding is still enabled:

 PS> [System.Management.Automation.CommandMetadata](

>> Get-Command Test-Position

>>)

Name : Test-Position

CommandType :

DefaultParameterSetName :

SupportsShouldProcess : False

SupportsPaging : False

PositionalBinding : True

SupportsTransactions : False

HelpUri :

RemotingCapability : PowerShell

ConfirmImpact : Medium

Parameters : {[Parameter1, System.Management.Automation.ParameterMetadata], [Parameter2,

System.Management.Automation.ParameterMetadata]}

 Attempting to pass a value for Parameter2 by position will raise an error:

 PS> Test-Position 1 2

Test-Position: A positional parameter cannot be found that accepts argument '2'.

 PowerShell orders parameters based on the position value. The value must be greater than -2147483648. It is possible, but not advisable, to set Position to a negative value. The accepted practice has numbering starting at either 0 or 1.

 The DontShow property

 You can use DontShow to hide a parameter from tab completion and IntelliSense. DontShow is rarely used but may occasionally be useful for short recursive functions. The following function recursively calls itself, comparing MaxDepth and CurrentDepth. The CurrentDepth parameter is owned by the function and a user is never expected to supply a value:

 function Show-Property {

 [CmdletBinding()]

 param (

 # Show the properties of the specified object.

 [Parameter(Mandatory)]

 [PSObject]$InputObject,

 # The maximum depth when expanding properties

 # of child objects.

 [Int32]$MaxDepth = 5,

 # Used to track the current depth during recursion.

 [Parameter(DontShow)]

 [Int32]$CurrentDepth = 0

)

 $width = $InputObject.PSObject.Properties.Name |

 Sort-Object { $_.Length } -Descending |

 Select-Object -First 1 -ExpandProperty Length

 foreach ($property in $InputObject.PSObject.Properties) {

 '{0}{1}: {2}' -f @(

 ' ' * $CurrentDepth

 $property.Name.PadRight($width, ' ')

 $property.TypeNameOfValue

)

 if ($CurrentDepth -lt $MaxDepth -and

 $property.Value -and

 -not $property.TypeNameOfValue.IsPrimitive) {

 $params = @{

 InputObject = $property.Value

 CurrentDepth = $CurrentDepth + 1

 }

 Show-Property @params

 }

 }

}

 Marking a parameter as DontShow hides the parameter to a degree, but it does nothing to prevent a user from providing a value for the parameter. In this preceding case, a better approach might be to move the body of the function into a nested function. Alternatively, if the function is part of a module, the recursive code might be moved to a function that is not exported from a module and exposed by a second, tidier, function.

 The ValueFromRemainingArguments property

 Setting the ValueFromRemainingArguments property allows a parameter to consume all the other arguments supplied for a command. You can use this to make an advanced function act similarly to a basic function.

 For example, this basic function will fill the Parameter1 parameter with the first argument and ignore all others. The extra values are added to the $args automatic variable and are listed in the UnboundArguments property of the $MyInvocation automatic variable:

 function Test-BasicBinding {

 param (

 $Parameter1

)

 $MyInvocation.UnboundArguments

}

 Calling the function with non-existent parameters will not raise an error. The additional values are added to the UnboundArguments array (and the $args variable):

 PS> Test-BasicBinding -Parameter1 value1 -Parameter2 value2

-Parameter2

Value2

 Without a declared parameter in the param block, Parameter2 is just another value, it is not parsed as the name of a parameter. You can use the ValueFromRemainingArguments property to make an advanced function behave in much the same way as the preceding basic function:

 function Test-AdvancedBinding {

 [CmdletBinding()]

 param (

 $Parameter1,

 [Parameter(ValueFromRemainingArguments)]

 $OtherArguments

)

 $OtherArguments

}

 If the $OtherArguments parameter is not for the normal use of the function, the DontShow property might be added to make it less obvious and intrusive.

 The HelpMessage property

 HelpMessage is only applied to Mandatory parameters and is not particularly useful. If a parameter is mandatory and is not passed when a command is called, a prompt for the parameter value will appear. Typing !? in the prompt, instead of a value, will display the help message text:

 PS> function Test-HelpMessage {

>> param (

>> [Parameter(

>> Mandatory,

>> HelpMessage = 'Help text for Parameter1'

>>)]

>> $Parameter1

>>)

>> }

PS> Test-HelpMessage

cmdlet Test-HelpMessage at command pipeline position 1

Supply values for the following parameters:

(Type !? for Help.)

Parameter1: !?

Help text for Parameter1

Parameter1:

 Given that HelpMessage is only visible when explicitly requested in this manner, it is most often ignored entirely. It is better to spend time writing help content for a parameter than writing values for HelpMessage.

 Beyond making Parameter mandatory, the Parameter attribute does not control the values that can be used with a parameter. PowerShell offers attributes for validating parameter arguments.

 Validating input

 PowerShell provides a variety of different ways to tightly define the content for a parameter. Assigning a .NET type to a parameter is the first of these. If a parameter is set as [String], it will only ever hold a value of that type. PowerShell will attempt to coerce any values passed to the parameter into that type.

 The PSTypeName attribute

 The PSTypeName attribute can test the type name assigned to a custom object.

 It is not uncommon in PowerShell to want to pass an object created in one command, as a PSObject (or PSCustomObject), to another.

 Type names are assigned by setting (or adding) a value to the hidden PSTypeName property. There are several ways to tag PSCustomObject with a type name.

 The simplest is to set a value for a PSTypeName property, shown as follows:

 $object = [PSCustomObject]@{

 Property = 'Value'

 PSTypeName = 'SomeTypeName'

}

 The PSTypeName property does not exist on the resulting object, but Get-Member will now show the new type name:

 PS> $object | Get-Member

TypeName: SomeTypeName

Name MemberType Definition

---- ---------- ----------

Equals Method bool Equals(System.Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Property NoteProperty string Property=Value

 The type name will show at the top of the hidden PSTypeNames property:

 PS> $object.PSTypeNames

SomeTypeName

System.Management.Automation.PSCustomObject

System.Object

 It is also possible to add to the PSTypeNames array directly:

 $object = [PSCustomObject]@{ Property = 'Value' }

Add to the end of the existing list

$object.PSTypeNames.Add('SomeTypeName')

Or add to the beginning of the list

$object.PSTypeNames.Insert(0, 'SomeTypeName')

 Finally, Add-Member can add to PSTypeNames. If used, it adds the new type name at the top of the existing list:

 $object = [PSCustomObject]@{ Property = 'Value' }

$object | Add-Member -TypeName 'SomeTypeName'

 These tagged types may be tested using the PSTypeName attribute of a parameter, for example:

 function Test-PSTypeName {

 [CmdletBinding()]

 param (

 [PSTypeName('SomeTypeName')]

 $InputObject

)

}

 This technique is used by many of the WMI-based commands implemented by Microsoft. For example, the Set-NetAdapter command uses a PSTypeName attribute for its InputObject parameter:

 $command = Get-Command Set-NetAdapter

$command.Parameters['InputObject'].Attributes |

 Where-Object TypeId -eq ([PSTypeNameAttribute])

 In the case of the WMI-based commands, this is used in addition to a .NET type name, an array of CimInstance. This type of parameter is like the following example:

 function Test-PSTypeName {

 [CmdletBinding()]

 param (

 [Parameter(

 Mandatory,

 ValueFromPipeline,

 ParameterSetName = 'InputObject (cdxml)'

)]

 [PSTypeName('Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter')]

 [CimInstance[]]$InputObject

)

}

 This technique is incredibly useful when the .NET object type is not sufficiently detailed to restrict input, as is the case with the CimInstance type just used. This is true of PSCustomObject input as much as the CimInstance array type used before.

 Validation attributes

 PowerShell offers several validation attributes to test the content of arguments passed to parameters. There are two general classes of validation attribute; the first validates the argument as a single object, which tests the value as a whole:

 	ValidateNotNull

 	ValidateNotNullOrEmpty

 	ValidateCount

 	ValidateDrive

 	ValidateUserDrive

 The second validates enumerated arguments. These validation attributes can be applied to parameters that accept arrays. The validation step applies to each element in the array. The enumerated argument validation attributes are:

 	ValidateLength

 	ValidatePattern

 	ValidateRange

 	ValidateScript

 	ValidateSet

 The validation attributes are documented in about_Functions_Advanced_Parameters, except for the newer ValidateDrive attribute, which was introduced with PowerShell 5. The online version of the about document is available at: https://docs.microsoft.com/powershell/module/microsoft.powershell.core/about/about_functions_advanced_parameters.

 The constructor for a validation attribute can be explored to determine the arguments it supports. This may be discovered using the ::new static method in PowerShell 5 and later, for example, ValidateDrive:

 PS> [ValidateDrive]::new

OverloadDefinitions

ValidateDrive new(Params string[] validRootDrives)

 Each of the available attributes, including ValidateDrive, is demonstrated as follows.

 The ValidateNotNull attribute

 ValidateNotNull may be used with parameters that are not flagged as mandatory. It is applicable where an object type can accept null input. Such types include object, CimInstance, and array types. The following is the simplest example of ValidateNotNull:

 function Test-ValidateNotNull {

 [CmdletBinding()]

 param (

 [ValidateNotNull()]

 $Parameter1

)

}

 As Parameter1 is, by default, set to the Object type, it would ordinarily accept a null value. When applied to an array, it prohibits null values but retains the ability to pass an empty array into a function, for example:

 function Test-ValidateNotNull {

 [CmdletBinding()]

 param (

 [ValidateNotNull()]

 [String[]]$Parameter1

)

}

 If a null value is explicitly passed, an error will be raised:

 PS> Test-ValidateNotNull -Parameter1 $null

Test-ValidateNotNull: Cannot validate argument on parameter 'Parameter1'. The argument is null. Provide a valid value for the argument, and then try running the command again.

 The ValidateNotNull attribute has no effect on String or numeric types (such as Byte, Int, or Int64).

 The ValidateNotNullOrEmpty attribute

 ValidateNotNullOrEmpty extends ValidateNotNull to disallow empty arrays and empty strings:

 function Test-ValidateNotNullOrEmpty {

 [CmdletBinding()]

 param (

 [ValidateNotNullOrEmpty()]

 [String]$Parameter1,

 [ValidateNotNullOrEmpty()]

 [Object[]]$Parameter2

)

}

 An error will be thrown if either an empty string is supplied for Parameter1, or an empty array is supplied for Parameter2. Like ValidateNotNull, ValidateNotNullOrEmpty has no effect on numeric types.

 The ValidateCount attribute

 You can use ValidateCount to test the size of an array supplied to a parameter. The attribute expects a minimum and maximum length for the array.

 ValidateCount only has meaning when applied to an array-type parameter, for example:

 function Test-ValidateCount {

 [CmdletBinding()]

 param (

 [ValidateCount(1, 1)]

 [String[]]$Parameter1

)

}

 You can also apply ValidateCount to parameters that accept collection types such as System.Collections.ArrayList or System.Collections.Generic.List.

 The ValidateDrive attribute

 ValidateDrive may be used to test the drive letter provided for a parameter that accepts a path. ValidateDrive handles both relative and absolute paths. A relative path is resolved to a full path before it is tested against the supplied drive letters. When using the ValidateDrive attribute, the parameter type must be String. The parameter cannot be omitted:

 function Test-ValidateDrive {

 [CmdletBinding()]

 param (

 [ValidateDrive('C')]

 [String]$Parameter1

)

}

 ValidateDrive cannot act on an array of paths; if the parameter type is an array, an error will be thrown stating that the path argument is invalid.

 The ValidateUserDrive attribute

 The ValidateUserDrive attribute is written for use within Just Enough Administration (JEA) configurations. The attribute validates that the specified drive is the User drive, as specified in a session configuration.

 Just Enough Administration, or JEA, was briefly explored in Chapter 14, Remoting and Remote Management. The User drive configuration is described on Microsoft Docs: https://docs.microsoft.com/powershell/scripting/learn/remoting/jea/session-configurations.

 It is used to validate that the root drive for a path is the JEA User Drive:

 function Test-ValidateDrive {

 [CmdletBinding()]

 param (

 [ValidateUserDrive()]

 [String]$Parameter1

)

}

 The ValidateUserDrive attribute is equivalent to using ValidateDrive with User as an argument:

 [ValidateDrive('User')]

[String]$Parameter1

 As noted above, the definition of a User drive is part of the JEA session configuration.

 The ValidateLength attribute

 ValidateLength can be applied to a String parameter or a parameter that contains an array of strings. Each string will be tested against the minimum and maximum length:

 function Test-ValidateLength {

 [CmdletBinding()]

 param (

 [ValidateLength(2, 6)]

 [String[]]$Parameter1

)

}

 Any string with a length below the minimum or above the maximum will trigger an error.

 The ValidatePattern attribute

 You use ValidatePattern to test that a string, or the elements in an array of strings, matches the supplied pattern:

 function Test-ValidatePattern {

 [CmdletBinding()]

 param (

 [ValidatePattern('^Hello')]

 [String]$Parameter1

)

}

 In addition to the pattern argument, ValidatePattern accepts RegexOptions using the Options named parameter, for example:

 function Test-ValidatePattern {

 [CmdletBinding()]

 param (

 [ValidatePattern('^Hello', Options = 'Multiline')]

 [String]$Parameter1

)

}

 The possible values for Options are described by the System.Text.RegularExpressions.RegexOptions enumeration, which is documented on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.text.regularexpressions.regexoptions.

 Further information on each option is available in the Regular Expression Options document: https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expression-options.

 You can include multiple options as a comma-separated list, for example:

 [ValidatePattern('^Hello', Options = 'IgnoreCase, Multiline')]

 By default, the IgnoreCase option is set. If you want to make a pattern case-sensitive, Options can be set to None:

 [ValidatePattern('^Hello', Options = 'None')]

 A criticism that might be leveled against ValidatePattern is that there is no way to customize or define the error message in Windows PowerShell.

 PowerShell 6 and above adds an optional ErrorMessage parameter to tackle this problem. The default error message written by ValidatePattern is shown as follows:

 function Test-ValidatePattern {

 [CmdletBinding()]

 param (

 [ValidatePattern(

 '^[A-Z]',

 Options = 'None'

)]

 [String]$Greeting

)

}

 The error message generated by the attribute is shown here:

 PS> Test-ValidatePattern -Greeting 'hello Jim.'

Test-ValidatePattern: Cannot validate argument on parameter 'Greeting'. The argument "hello Jim." does not match the "^[A-Z]" pattern. Supply an argument that matches "^[A-Z]" and try the command again.

 You may see an alternative message in PowerShell 6 and above:

 function Test-ValidatePattern {

 [CmdletBinding()]

 param (

 [ValidatePattern(

 '^[A-Z]',

 Options = 'None',

 ErrorMessage = 'Must start with a capital letter.'

)]

 [String]$Greeting

)

}

 Running the new command with an invalid string shows the new error message:

 PS> Test-ValidatePattern -Greeting 'hello Jim.'

Test-ValidatePattern: Cannot validate argument on parameter 'Greeting'. Must start with a capital letter.

 The new error message is far nicer than showing an end user a regular expression, even a relatively simple regular expression.

 The ValidateRange attribute

 ValidateRange tests whether a value, or an array of values, fall within a specified range. ValidateRange is most used to test numeric ranges. However, it is also able to test strings. For example, the "z" string can be said to be within the "A" to "Z" range. This approach is slightly harder to apply when testing strings as the "Zz" string is greater than "Z".

 The following example uses ValidateRange to test an integer value:

 function Test-ValidateRange {

 [CmdletBinding()]

 param (

 [ValidateRange(1, 20)]

 [Int]$Parameter1

)

}

 The ValidateScript attribute

 ValidateScript executes an arbitrary block of code against each of the arguments for a parameter. If the argument is an array, each element is tested. One common use for ValidateScript is to test whether a path exists, for example:

 function Test-ValidateScript {

 [CmdletBinding()]

 param (

 [ValidateScript({ Test-Path $_ -PathType Leaf })]

 [String]$Path

)

}

 ValidateScript can contain just about anything a developer desires, although it is generally recommended to keep validation scripts short.

 In PowerShell 6 and above, ValidateScript gains an optional ErrorMessage parameter that replaces the default message, which repeats the failed script to the end user:

 function Test-ValidateScript {

 [CmdletBinding()]

 param (

 [ValidateScript(

 { Test-Path $_ -PathType Leaf },

 ErrorMessage = 'Path must be an existing file'

)]

 [String]$Path

)

}

 In Windows PowerShell, you can use throw within the script to write a more friendly error message at the cost of a more complex script:

 function Test-ValidateScript {

 [CmdletBinding()]

 param (

 [ValidateScript({

 if (Test-Path $_ -PathType Leaf) {

 $true

 } else {

 throw 'Path must be an existing file'

 }

 })]

 [String]$Path

)

}

 The ValidateSet attribute

 ValidateSet tests whether the specified argument, or each of an array of arguments, exists in a set of possible values:

 function Test-ValidateSet {

 [CmdletBinding()]

 param (

 [ValidateSet('One', 'Two', 'Three')]

 [String]$Value

)

}

 The set of values must be hardcoded in the attribute and cannot be derived from a variable or another command. By default, the set is not case-sensitive. If desirable, you can make the set case-sensitive by using the IgnoreCase named parameter:

 function Test-ValidateSet {

 [CmdletBinding()]

 param (

 [ValidateSet('One', 'Two', 'Three', IgnoreCase = $false)]

 [String]$Value

)

}

 Like ValidatePattern and ValidateSet, ValidateSet gains an optional ErrorMessage parameter in PowerShell 6 and above.

 PowerShell 6 also added the ability to dynamically define the values that ValidateSet can use. The values are defined in a class that implements a GetValidValues method. An example of this class is available in the next chapter, Chapter 19, Classes and Enumerations.

 The Allow attributes

 The Allow attributes are most frequently used when a parameter is mandatory. If a parameter is mandatory, PowerShell will automatically disallow the assignment of empty values, that is, empty strings and empty arrays. The Allow attributes can be used to modify that behavior. The attributes make it possible to require a parameter, but still allow empty values.

 The AllowNull attribute

 AllowNull is used to permit explicit use of $null as a value for a Mandatory parameter:

 function Test-AllowNull {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [AllowNull()]

 [Object]$Parameter1

)

}

 AllowNull is effective for array parameters, and for parameters that use Object as a type. AllowNull is not effective for string parameters as the null value is cast to an empty string, and an empty string is still not permitted.

 The AllowEmptyString attribute

 AllowEmptyString fills the gap, allowing both null and empty values to be supplied for a mandatory string parameter. In both cases, the resulting assignment will be an empty string. It is not possible to distinguish between a value passed as null and a value passed as an empty string:

 function Test-AllowEmptyString {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [AllowEmptyString()]

 [String]$Parameter1

)

}

 The AllowEmptyCollection attribute

 AllowEmptyCollection, as the name suggests, allows an empty array to be assigned to a mandatory parameter:

 function Test-AllowEmptyCollection {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [AllowEmptyCollection()]

 [Object[]]$Parameter1

)

}

 This will allow the command to be called with an explicitly empty array:

 Test-AllowEmptyCollection -Parameter1 @()

 PSReference parameters

 Many of the object types used in PowerShell are reference types. When an object is passed to a function, any changes made to that object will be visible outside the function, irrespective of the output generated by the command. For example, the following function accepts an object as input and then changes the value of a property on that object:

 function Set-Value {

 [CmdletBinding()]

 param (

 [PSObject]$Object

)

 $Object.Value = 2

}

 When the function is passed an object, the change can be seen on any other variables that reference that object:

 PS> $myObject = [PSCustomObject]@{ Value = 1 }

PS> Set-Value $myObject

PS> $myObject.Value

2

 Strings, numeric values, and dates, on the other hand, are all examples of value types. Changes made to a value type inside a function will not be reflected in variables that reference that value elsewhere; a new value is created.

 Occasionally, it is desirable to make a function affect the content of a value type without either returning the value as output or changing the value of a property of an object. The PSReference type, [Ref], can be used to achieve this. The following function normally returns True or False depending on whether Get-Date successfully parsed the date string into a DateTime object:

 function Test-Date {

 [CmdletBinding()]

 param (

 [String]$Date,

 [Ref]$DateTime

)

 if ($value = Get-Date $Date -ErrorAction SilentlyContinue) {

 if ($DateTime) {

 $DateTime.Value = $value

 }

 $true

 } else {

 $false

 }

}

 When the function is run, a variable that holds an existing DateTime object might be passed as an optional reference. PowerShell can update the date via the reference, changing the value outside of the function:

 PS> $dateTime = Get-Date

PS> Test-Date 01/01/2019 -DateTime ([Ref]$dateTime)

True

PS> $dateTime

01 January 2019 00:00:00

 The same behavior can be seen with Boolean, string, and numeric types.

 PowerShell offers a wide variety of attributes that help to validate user input without writing bespoke checks in the body of a function.

 Moving back to the Parameter attribute again, the Parameter attribute can be used to define how a parameter behaves in a pipeline.

 Pipeline input

 Using the Parameter attribute to set either ValueFromPipeline or ValueFromPipelineByPropertyName sets a parameter up to fill from the input pipeline.

 The pipeline is a complex topic and requires a background in the use of named blocks. Named blocks, along with a broader set of examples for pipeline usage, are available in Chapter 17, Scripts, Functions, and Script Blocks.

 About ValueFromPipeline

 ValueFromPipeline allows the entire object to be passed into a parameter from an input pipeline. The following function implements an InputObject parameter, which accepts pipeline input by using the ValueFromPipeline property of the Parameter attribute:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 $InputObject

)

 process {

 'Input object was of type {0}' -f @(

 $InputObject.GetType().FullName

)

 }

}

 Remember that values read from an input pipeline are only available in the process block of a script or function. As the default type assigned to a parameter is Object, this will accept any kind of input that might be passed. This behaves in a similar manner to the InputObject parameter for Get-Member or Select-Object, for example.

 Accepting null input

 Commands such as Where-Object allow an explicit null value in the input pipeline. To allow null in an input pipeline, the [AllowNull()] attribute would be added to the InputObject parameter. There is a difference between supporting $null | Get-InputObject and implementing pipeline support originating from a command that returns nothing: AllowNull is only needed when an explicit null is in the input pipeline.

 In the following example, the Get-EmptyOutput function has no body and will not return anything. This simulates a command that returns nothing because all the output is filtered out. The Get-InputObject function can take part in a pipeline with Get-EmptyOutput without using AllowNull:

 function Get-EmptyOutput { }

function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 $InputObject

)

}

No output, no error

Get-EmptyOutput | Get-InputObject

 If Get-EmptyOutput were to explicitly return null, which is not a good practice, Get-InputObject would raise a parameter binding error:

 PS> function Get-EmptyOutput { return $null }

PS> Get-EmptyOutput | Get-InputObject

Get-InputObject: Cannot bind argument to parameter 'InputObject' because it is null.

 Adding AllowNull would sidestep this error, but Get-InputObject would have to handle a null value internally:

 function Get-EmptyOutput { return $null }

function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 [AllowNull()]

 $InputObject

)

 if ($InputObject) {

 # Do work

 }

}

No output, no error

Get-EmptyOutput | Get-InputObject

 If this were real output from a function, it may be better to consider the output from Get-EmptyOutput to be a bug and pass it through Where-Object to sanitize the input, which avoids the need to add AllowNull, for example:

 Get-EmptyOutput | Where-Object { $_ } | Get-InputObject

 Input object types

 If a type is defined for the InputObject variable, the command will only work if the input pipeline contains that object type. An error will be thrown when a different object type is passed. The following example modifies the command to accept pipeline input from Get-Process; it expects objects of the System.Diagnostics.Process type only:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 [System.Diagnostics.Process]$InputObject

)

 process {

 'Process name {0}' -f $InputObject.Name

 }

}

 Attempting to pipe a value that is something other than a System.Diagnostics.Process value will result in an error:

 PS> 1 | Get-InputObject

Get-InputObject: The input object cannot be bound to any parameters for the command either because the command does not take pipeline input or the input and its properties do not match any of the parameters that take pipeline input.

 Using ValueFromPipeline for multiple parameters

 If more than one parameter uses ValueFromPipeline, PowerShell will attempt to provide values to each. The parameter binder can be said to be greedy in this respect. The following function can be used to show that both parameters are filled with the same value if the parameters accept the same type, or if the value can be coerced into that type:

 function Test-ValueFromPipeline {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [Int]$Parameter1,

 [Parameter(ValueFromPipeline)]

 [Int]$Parameter2

)

 process {

 'Parameter1: {0}:: Parameter2: {1}' -f @(

 $Parameter1

 $Parameter2

)

 }

}

 Providing an input pipeline for the command shows the values assigned to each parameter:

 PS> 1..2 | Test-ValueFromPipeline

Parameter1: 1 :: Parameter2: 1

Parameter1: 2 :: Parameter2: 2

 Filling variables is the job of the parameter binder in PowerShell. Using Trace-Command will show the parameter binder in action:

 Trace-Command -PSHost -Name ParameterBinding -Expression {

 1 | Test-ValueFromPipeline

}

 The bind-pipeline section will display messages that show that the value was successfully bound to each parameter. If the two parameters expected different types, the parameter binding will attempt to coerce the value into the requested type. If that is not possible, it will give up on the attempt to fill the parameter. The next example declares two different parameters; both accept values from the pipeline and neither is mandatory:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [System.Diagnostics.Process]$ProcessObject,

 [Parameter(ValueFromPipeline)]

 [System.ServiceProcess.ServiceController]$ServiceObject

)

 process {

 if ($ProcessObject) {

 'Process: {0}' -f $ProcessObject.Name

 }

 if ($ServiceObject) {

 'Service: {0}' -f $ServiceObject.Name

 }

 }

}

 The command will, at this point, accept pipeline input from both Get-Process and Get-Service. Each command will fill the matching parameter, Get-Process fills ProcessObject, and Get-Service fills ServiceObject.

 This design is unusual and perhaps confusing; it is only demonstrated here because it is possible. A parameter set can be used to make sense of the pattern, which is explored in the Defining parameter sets section.

 Using PSTypeName

 You can use the PSTypeName attribute to tightly define the acceptable objects for a parameter from a pipeline:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [PSTypeName('CustomTypeName')]

 $InputObject

)

 process {

 $InputObject.Name

 }

}

 This function would accept input from an object that declares the matching type name:

 [PSCustomObject]@{

 Name = 'Value'

 PSTypeName = 'CustomTypeName'

} | Get-InputObject

 The more specific the type name, the better. You can use PSTypeName to validate .NET type names, but this is typically better handled by assigning a .NET type to the parameter directly.

 About ValueFromPipelineByPropertyName

 ValueFromPipelineByPropertyName attempts to fill a parameter from the property of an object in the input pipeline. When filling a value by property name, the name and type of the property is important, but not the object that implements the property.

 For example, you might create a function to accept a string value from a Name property:

 function Get-Name {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]

 [String]$Name

)

 process {

 $Name

 }

}

 Any command that returns an object that contains a Name property in a string is acceptable input for this function. Additional parameters might be defined, which would further restrict the input object type, assuming the new properties are mandatory:

 function Get-Status {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]

 [String]$Name,

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]

 [String]$Status

)

 process {

 '{0}: {1}' -f $Name, $Status

 }

}

 This new function would accept pipeline input from Get-Service, as the output from Get-Service has both Name and Status properties. Using Get-Member against Get-Service would show that the Status property is an enumeration value described by System.ServiceProcess.ServiceControllerStatus. This value is acceptable to the Get-Status function as it can be coerced into a string, which satisfies the Status parameter.

 The previous function is not limited to a specific input object type. A PSCustomObject can be created with properties to satisfy the parameters for the Get-Status function:

 [PSCustomObject]@{ Name = 'Name'; Status = 'Running' } |

 Get-Status

 As with the ValueFromPipeline input, the parameter binder will attempt to fill as many of the parameters as possible from the input pipeline. Trace-Command, as used when exploring ValueFromPipeline, shows the behavior of the parameter binder.

 ValueFromPipelineByPropertyName and parameter aliases

 Any parameter may be given one or more aliases using the Alias attribute, as shown in the following example:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipelineByPropertyName)]

 [Alias('First', 'Second', 'Third')]

 $InputObject

)

}

 The alias name is considered when determining whether a property on an input object is suitable to fill a parameter when filling a parameter by property name.

 One of the more common uses of this is to provide support for a Path parameter via a pipeline from Get-Item or Get-ChildItem. For example, the following pattern might be used to expose a Path parameter. This is used in the short helper function that imports JSON content from a file:

 function Import-Json {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]

 [Alias('PSPath')]

 [String]$Path

)

 process {

 Get-Content $Path | ConvertFrom-Json

 }

}

 The PSPath property of the object returned by Get-Item or Get-ChildItem is used to fill the Path parameter from a pipeline. FullName is a possible alternative to PSPath, depending on how the path is to be used.

 Converting relative paths to full paths

 When using a path parameter, such as the one in the previous example, you can use the following method on the PSCmdlet object to ensure that a path is fully qualified, whether it exists or not:

 $Path = $PSCmdlet.GetUnresolvedProviderPathFromPSPath($Path)

 This technique is useful if working with .NET types, which require a path as these are not able to resolve PowerShell paths (either relative or via a PS drive).

 The New-TimeSpan command is an example of an existing command that uses the alias to fill a parameter from the pipeline. The Start parameter has an alias of LastWriteTime. When Get-Item is piped into New-TimeSpan, the time since the file or directory was last written will be returned as a TimeSpan via the aliased parameter.

 Defining parameter sets

 A parameter set in PowerShell groups different parameters together. In some cases, this is used to change the output of a command; in others, it provides a different way of supplying a piece of information.

 For example, the output from the Get-Process command changes if the Module parameter or, to a lesser extent, the IncludeUserName parameter are supplied.

 The Get-ChildItem command also has two parameter sets: one that accepts a Path with wildcard support and another that accepts a LiteralPath that does not support wildcards.

 Parameter sets are declared using the ParameterSetName property of the Parameter attribute.

 The following example has two parameter sets; each parameter set contains a single parameter:

 function Get-InputObject {

 [CmdletBinding()]

 param (

 [Parameter(ParameterSetName = 'FirstSetName')]

 $Parameter1,

 [Parameter(ParameterSetName = 'SecondSetName')]

 $Parameter2

)

}

 As neither parameter set is the default, attempting to run the command using a positional parameter only will result in an error:

 PS> Get-InputObject value

Get-InputObject: Parameter set cannot be resolved using the specified named parameters. One or more parameters issued cannot be used together or an insufficient number of parameters were provided.

 This can be resolved by setting a value for the DefaultParameterSetName property in the CmdletBinding attribute:

 [CmdletBinding(DefaultParameterSetName = 'FirstSetName')]

 Alternatively, an explicit position might be defined for one of the parameters; the set will be selected based on explicit position:

 [Parameter(Position = 1, ParameterSetName = 'FirstSetName')]

$Parameter1

 The name of the parameter set within a function is visible using the ParameterSetName property of the PSCmdlet automatic variable, which is $PSCmdlet.ParameterSetName. You can use the value to choose actions within the body of a function.

 The following example shows a possible implementation that tests the value of ParameterSetName. The function accepts the name of a service as a string, a service object from Get-Service, or a service returned from the Win32_Service class. The function finds the process associated with that service or fails if the service is not running:

 function Get-ServiceProcess {

 [CmdletBinding(DefaultParameterSetName = 'ByName')]

 param (

 [Parameter(

 Mandatory,

 Position = 1,

 ParameterSetName = 'ByName'

)]

 [String]$Name,

 [Parameter(

 Mandatory,

 ValueFromPipeline,

 ParameterSetName = 'FromService'

)]

 [System.ServiceProcess.ServiceController]$Service,

 [Parameter(

 Mandatory,

 ValueFromPipeline,

 ParameterSetName = 'FromCimService'

)]

 [PSTypeName('Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win32_Service')]

 [CimInstance]$CimService

)

 process {

 if ($pscmdlet.ParameterSetName -eq 'FromService') {

 $Name = $Service.Name

 }

 if ($Name) {

 $params = @{

 ClassName = 'Win32_Service'

 Filter = 'Name="{0}"' -f $Name

 Property = 'Name', 'ProcessId', 'State'

 }

 $CimService = Get-CimInstance @params

 }

 if ($CimService.State -eq 'Running') {

 Get-Process -Id $CimService.ProcessId

 } else {

 Write-Error ('The service {0} is not running' -f @(

 $CimService.Name

))

 }

 }

}

 The previous function accepts several different parameters. Each parameter is ultimately used to get to a value for the $CimService variable (or parameter), which has a ProcessID property associated with the service.

 Each of the examples so far has shown a parameter that is a member of a single explicitly declared set.

 A parameter that does not describe a ParameterSetName is automatically part of every set.

 In the following example, Parameter1 is part of every parameter set, while Parameter2 is in a named set only:

 function Test-ParameterSet {

 [CmdletBinding(DefaultParameterSetName = 'Default')]

 param (

 [Parameter(Mandatory, Position = 1)]

 $Parameter1,

 [Parameter(ParameterSetName = 'NamedSet')]

 $Parameter2

)

}

 Get-Command may be used to show the syntax for the command; this shows that there are two different parameter sets, both of which require Parameter1:

 PS> Get-Command Test-ParameterSet -Syntax

Test-ParameterSet [-Parameter1] <Object> [<CommonParameters>]

Test-ParameterSet [-Parameter1] <Object> [-Parameter2 <Object>] [<CommonParameters>]

 Parameters that do not use the Parameter attribute are also automatically part of all parameter sets.

 A parameter may also be added to more than one parameter set. This is achieved by using more than one Parameter attribute:

 function Test-ParameterSet {

 [CmdletBinding(DefaultParameterSetName = 'NamedSet1')]

 param (

 [Parameter(Mandatory)]

 $Parameter1,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]

 $Parameter2,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet3')]

 $Parameter3,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]

 [Parameter(ParameterSetName = 'NamedSet3')]

 $Parameter4

)

}

 In the preceding example:

 	Parameter1 is in all parameter sets

 	Parameter2 is in NamedSet2 only

 	Parameter3 is in NamedSet3 only

 	Parameter4 is mandatory in NamedSet2, and optional in NamedSet3

 This interplay of parameter sets is complex and difficult to describe without a complex command to use the parameters.

 Many existing commands use complex parameter sets and their parameter sets may be explored. For example, the parameter block for the Get-Process command may be shown by running the following command:

 [System.Management.Automation.ProxyCommand]::GetParamBlock((

 Get-Command Get-Process

))

 Parameter sets are a powerful feature, allowing a command to handle different combinations of input values without resorting to complex logic in the body of a script or function.

 Argument completers

 The tab completion system uses argument completers to provide an argument for a parameter when Tab is pressed. For example, the Get-Module command cycles through module names when Tab is pressed after the command name.

 Argument completers have been around in several different forms since PowerShell 2. This section focuses on the implementation of argument completers available in Windows PowerShell 5 and above.

 An argument completer does not restrict the values that may be supplied for a parameter. It is used to offer values, to make it easier for an end user to figure out what to enter.

 An argument completer is a script block; the script block can expect the following parameters (by position, in the order listed as follows):

 	commandName

 	parameterName

 	wordToComplete

 	commandAst

 	fakeBoundParameter

 You can use any of these parameters, but the most important and the most frequently used is wordToComplete.

 The following example suggests words from a fixed list:

 {

 param (

 $commandName,

 $parameterName,

 $wordToComplete,

 $commandAst,

 $fakeBoundParameter

)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'

 $possibleValues -like "$wordToComplete*"

}

 Notice that a wildcard, *, has been added to the end of wordToComplete. Tab completion expects the user to have typed part of a word, but a user would not normally include a wildcard character for matching against possible values.

 Arguably, ValidateSet might be a better option in this case as it also implicitly provides tab completion. However, where ValidateSet enforces, ArgumentCompleter suggests.

 The list of possible values used in an argument completer can be dynamic. That is, the list of possible values can be the result of running another command.

 PowerShell provides two different ways to assign an argument completer: the ArgumentCompleter attribute or the Register-ArgumentCompleter command.

 The ArgumentCompleter attribute

 The ArgumentCompleter attribute is used much like ValidateScript. You place the attribute before the parameter variable it is providing completion for.

 The script block in the introduction is used as an argument for the attribute, as the following code shows:

 function Test-ArgumentCompleter {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [ArgumentCompleter({

 param (

 $commandName,

 $parameterName,

 $wordToComplete,

 $commandAst,

 $fakeBoundParameter

)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'

 $possibleValues -like "$wordToComplete*"

 })]

 $Action

)

}

 When the user types Test-ArgumentCompleter and then presses Tab, the completer offers up each of the possible values with no filtering. If the user were to type Test-ArgumentCompleters, only Start and Stop would be offered when pressing Tab.

 Using Register-ArgumentCompleter

 Whereas you can use the ArgumentCompleter attribute to add an argument completer to a single parameter in a single command, you can use the Register-ArgumentCompleter command to add completion to a parameter in more than one command; this reduces code repetition.

 In addition to being able to add a completer to several commands, Register-ArgumentCompleter can create argument completers for native commands (.exe files).

 For example, when used as an alternative to the ArgumentCompleter attribute, the command is used as follows:

 function Test-ArgumentCompleter {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 $Action

)

}

$params = @{

 CommandName = 'Test-ArgumentCompleter'

 ParameterName = 'Action'

 ScriptBlock = {

 param (

 $commandName,

 $parameterName,

 $wordToComplete,

 $commandAst,

 $fakeBoundParameter

)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'

 $possibleValues -like "$wordToComplete*"

 }

}

Register-ArgumentCompleter @params

 The CommandName parameter used for Register-ArgumentCompleter accepts an array of command names. In one step, the completer can be added to several different commands that share a parameter.

 You can also use Register-ArgumentCompleter to add argument completion to native commands. The following example offers a user of the wmic command automatic alias completion:

 Register-ArgumentCompleter -CommandName wmic -Native -ScriptBlock {

 param ($wordToComplete, $commandAst, $cursorPosition)

 wmic /?:BRIEF |

 Where-Object { $_ -cmatch '^([A-Z]{2}\S+)+' } |

 ForEach-Object { $matches[1] } |

 Where-Object {

 $_ -notin 'CLASS', 'PATH', 'CONTEXT', 'QUIT/EXIT' -and

 $_ -like "$wordToComplete*"

 }

}

 When using the -Native parameter, the arguments passed to the completer differ; the first argument becomes the word to complete.

 Listing registered argument completers

 While it is possible to register argument completers, PowerShell does not provide a way of listing them. This is somewhat frustrating as it makes exploration and finding examples more difficult.

 The following script makes extensive use of reflection in .NET to explore classes that are not made publicly available, eventually getting to a property that holds the argument completers:

 using namespace System.Reflection

$localPipeline = [PowerShell].Assembly.GetType(

 'System.Management.Automation.Runspaces.LocalPipeline'

)

$getExecutionContextFromTLS = $localPipeline.GetMethod(

 'GetExecutionContextFromTLS',

 [BindingFlags]'Static, NonPublic'

)

$internalExecutionContext = $getExecutionContextFromTLS.Invoke(

 $null,

 [BindingFlags]'Static, NonPublic',

 $null,

 $null,

 $psculture

)

$customArgumentCompletersProperty = $internalExecutionContext.GetType().GetProperty(

 'CustomArgumentCompleters',

 [BindingFlags]'NonPublic, Instance'

)

$customArgumentCompletersProperty.GetGetMethod($true).Invoke(

 $internalExecutionContext,

 [BindingFlags]'Instance, NonPublic, GetProperty',

 $null,

 @(),

 $psculture

)

 Native argument completers are held in a different property and will not be shown by the previous snippet.

 A more refined version of the previous snippet, which also supports the retrieval of native argument completers, is available as a function at:

 https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b

 Argument completers are a fantastic way to suggest values for parameters without constraining the possible input values.

 So far in this chapter, all the parameters have been explicitly defined in a param block, and any attributes have been explicitly added. In PowerShell, it is possible to define parameters dynamically.

 Dynamic parameters

 Dynamic parameters allow a developer to define the behavior of parameters when a function or script is run, rather than hardcoding that behavior in advance in a param block.

 Dynamic parameters can be used to overcome some of the limitations inherent in a param block. For example, it is possible to change the parameters presented by a command based on the value of another parameter. It is also possible to dynamically write validation, such as dynamically assigning a value for the ValidateSet attribute.

 Dynamic parameters remain unpopular in the PowerShell community. They are relatively complex; that is, they are hard to define and difficult to troubleshoot as they tend to silently fail rather than raising an error.

 Dynamic parameters have a named block: dynamicparam. If you use dynamicparam in a script or function, the implicit default blocks for a script or function cannot be used; all code must be contained within an explicitly named block.

 The CmdletBinding attribute must be explicitly declared when using dynamicparam; you cannot create parameters without CmdletBinding, nor will an error message be shown to explain that.

 The following example includes an empty dynamicparam block as well as an end block, which would have been implicit if dynamicparam were not present:

 function Test-DynamicParam {

 [CmdletBinding()]

 param ()

 dynamicparam { }

 end {

 Write-Host 'Function body'

 }

}

 If the end block declaration is missing, a syntax error will be displayed.

 The following example will cause an error if pasted into the console or if the code is executed via an editor:

 function Test-DynamicParam {

 [CmdletBinding()]

 param ()

 dynamicparam { }

 Write-Host 'Function body'

}

 In PowerShell 7, the first error message will explicitly state that Write-Host is unexpected and that a named block is expected:

 ParserError:

Line |

 7 | Write-Host 'Function body'

 | ~~~~~~~~~~

 | unexpected token 'Write-Host', expected 'begin', 'process', 'end', or 'dynamicparam'.

 Windows PowerShell is less clear; it states that a closing brace is missing:

 At line:1 char:28

+ function Test-DynamicParam {

+ ~

Missing closing '}' in statement block or type definition.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException

 + FullyQualifiedErrorId : MissingEndCurlyBrace

 The dynamicparam block must create and return a RuntimeDefinedParameterDictionary object. The dictionary can contain zero or more RuntimeDefinedParameter objects.

 Creating a RuntimeDefinedParameter object

 A RuntimeDefinedParameter object describes a single parameter. The definition includes the name of the parameter, the parameter type, and any attributes that should be set for that parameter. PowerShell does not include type accelerators for creating RuntimeDefinedParameter; the full name, System.Management.Automation.RuntimeDefinedParameter, must be used.

 The constructor for RuntimeDefinedParameter expects three arguments: a string, which is the parameter name, a .NET type for the parameter, and a collection or array of attributes that should be assigned. The attribute collection must contain at least one Parameter attribute.

 The following example, which creates a parameter named Action, makes use of a using namespace statement to shorten the .NET type names:

 using namespace System.Management.Automation

$parameter = [RuntimeDefinedParameter]::new(

 'Action',

 [String],

 [Attribute[]]@(

 [Parameter]@{ Mandatory = $true; Position = 1 }

 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')

)

)

 The previous parameter is the equivalent of using the following in the param block:

 param (

 [Parameter(Mandatory, Position = 1)]

 [ValidateSet('Start', 'Stop', 'Create', 'Delete')]

 [String]$Action

)

 As the attributes are not being placed directly above a variable, each must be created as an independent object instance:

 	The shorthand used for the Parameter attribute in the param block cannot be used; expressions cannot be omitted when describing properties.

 	The ValidateSet attribute, and other validation attributes, must also be created as a new object rather than using the attribute syntax.

 The Parameter attribute declaration takes advantage of PowerShell's ability to assign property values to an object using a Hashtable. This is feasible because a Parameter attribute can be created without supplying any arguments, that is, [Parameter]::new() can be used to create a Parameter attribute with default values. This technique cannot be used for the validation attributes, as each requires one or more arguments, therefore, you must use ::new or New-Object.

 As with a normal parameter, RuntimeDefinedParameter can declare more than one parameter attribute. Each Parameter attribute is added to the attribute collection:

 using namespace System.Management.Automation

$parameter = [RuntimeDefinedParameter]::new(

 'Action',

 [String],

 [Attribute[]]@(

 [Parameter]@{

 Mandatory = $true

 Position = 1

 ParameterSetName = 'First'

 }

 [Parameter]@{

 ParameterSetName = 'Second'

 }

)

)

 You can create any number of parameters in this manner. Each parameter must have a unique name. Each parameter must be added to a RuntimeDefinedParameterDictionary.

 Using RuntimeDefinedParameterDictionary

 RuntimeDefinedParameterDictionary is the expected output from the dynamicparam block. The dictionary must contain all the dynamic parameters a function is expected to present.

 The following example creates a dictionary and adds a single parameter:

 using namespace System.Management.Automation

function Test-DynamicParam {

 [CmdletBinding()]

 param ()

 dynamicparam {

 $parameters = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new(

 'Action',

 [String],

 [Attribute[]]@(

 [Parameter]@{ Mandatory = $true; Position = 1 }

 [ValidateSet]::new(

 'Start',

 'Stop',

 'Create',

 'Delete'

)

)

)

 $parameters.Add($parameter.Name, $parameter)

 $parameters

 }

}

 Using dynamic parameters

 Dynamic parameters must be accessed using the PSBoundParameters variable within a function or script; dynamic parameters do not initialize variables of their own.

 The value of the Action parameter used in the previous examples must be retrieved by using Action as a key, shown as follows:

 using namespace System.Management.Automation

function Test-DynamicParam {

 [CmdletBinding()]

 param ()

 dynamicparam {

 $parameters = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new(

 'Action',

 [String],

 [Attribute[]]@(

 [Parameter]@{ Mandatory = $true; Position = 1 }

 [ValidateSet]::new(

 'Start',

 'Stop',

 'Create',

 'Delete'

)

)

)

 $parameters.Add($parameter.Name, $parameter)

 $parameters

 }

 end {

 Write-Host $PSBoundParameters['Action']

 }

}

 As with parameters from the param block, the $PSBoundParameters.ContainsKey method may be used to find out whether a user has specified a value for the parameter. Dynamic parameters cannot have a default value; any default values must be created in begin, process, or end.

 A dynamic parameter that accepts pipeline input, like a normal parameter that accepts pipeline input, will only have a value within the process and end blocks. The end block will only see the last value in the pipeline. The following example demonstrates this:

 using namespace System.Management.Automation

function Test-DynamicParam {

 [CmdletBinding()]

 param ()

 dynamicparam {

 $parameters = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new(

 'InputObject',

 [String],

 [Attribute[]]@(

 [Parameter]@{

 Mandatory = $true

 ValueFromPipeline = $true

 }

)

)

 $parameters.Add($parameter.Name, $parameter)

 $parameters

 }

 begin {

 'BEGIN: Input object is present: {0}' -f @(

 $PSBoundParameters.ContainsKey('InputObject')

)

 }

 process {

 'PROCESS: Input object is present: {0}; Value: {1}' -f @(

 $PSBoundParameters.ContainsKey('InputObject')

 $PSBoundParameters['InputObject']

)

 }

 end {

 'END: Input object is present: {0}; Value: {1}' -f @(

 $psboundparameters.ContainsKey('InputObject')

 $psboundparameters['InputObject']

)

 }

}

 The function can be used with arbitrary input values, for example:

 PS> 1..2 | Test-DynamicParam

BEGIN: Input object is present: False

PROCESS: Input object is present: True; Value: 1

PROCESS: Input object is present: True; Value: 2

END: Input object is present: True; Value: 2

 The $PSBoundParameters variable, and any other parameters, may be referenced inside the dynamicparam block.

 Conditional parameters

 One possible use of dynamic parameters is to change validation based on the value supplied for another parameter. Another use is to change which parameters are available, again based on the value of another parameter.

 The following example changes validValues into ValidateSet depending on the value supplied for the Type parameter:

 using namespace System.Management.Automation

function Test-DynamicParam {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, Position = 1)]

 [ValidateSet('Service', 'Process')]

 [String]$Type,

 [Parameter(Mandatory, Position = 3)]

 [String]$Name

)

 dynamicparam {

 $parameters = [RuntimeDefinedParameterDictionary]::new()

 [String[]]$validValues = switch ($Type) {

 'Service' { 'Get', 'Start', 'Stop', 'Restart' }

 'Process' { 'Get', 'Kill' }

 }

 $parameter = [RuntimeDefinedParameter]::new(

 'Action',

 [String],

 [Attribute[]]@(

 [Parameter]@{ Mandatory = $true; Position = 2 }

 [ValidateSet]::new($validValues)

)

)

 $parameters.Add($parameter.Name, $parameter)

 $parameters

 }

}

 Changing validation in this manner is entirely reliant on the user having typed a value for the Type parameter before attempting to type Action. You can make other comparisons in dynamic parameter blocks; for example, a parameter might only appear when a certain condition is met. RuntimeDefinedParameterDictionary is valid even if it is empty and no extra parameters need to be added.

 Summary

 You can set attributes on parameters in PowerShell to quickly and easily define the behavior, acceptable values, and usage for a parameter. These attributes greatly simplify the validation that may be required in the body of a script or function.

 PowerShell comes with a wide range of built-in validators, and each of the existing validators is briefly demonstrated in this chapter. As well as validation, extra controls can be placed around the content of a parameter, such as whether empty strings or collections may be used as a value.

 The Parameter attribute is incredibly important in PowerShell as it allows pipeline input support to be declared for a parameter, and for parameters to be placed in different parameter sets.

 Argument completers have changed a great deal as PowerShell has progressed through each version. In PowerShell 5 and above, you can use the ArgumentCompleter attribute and the Register-ArgumentCompleter command to add tab completion support to a parameter.

 Dynamic parameters are an interesting feature of PowerShell, although a feature that should be used with care as it is easy to break. The examples in this chapter presented the creation of dynamic parameters using the simplest syntax possible.

 The next chapter, Classes and Enumerations, explores the features available to classes that were introduced with PowerShell 5.

 19

 Classes and Enumerations

 PowerShell 5 introduced support for creating classes and enumerations within PowerShell directly. Prior to this, you had to import classes from an assembly written in a language such as C# or create them dynamically, which is complex and beyond the scope of this chapter.

 Classes and enumerations have only changed a little in PowerShell 6 and 7. There are numerous enhancement issues open in the PowerShell project on GitHub, but these are slow to make their way into PowerShell. Examples include support for writing interfaces and the ability to define getters and setters for properties.

 This chapter explores the following topics:

 	Defining an enumeration

 	Creating a class

 	Argument transformation attribute classes

 	Validation attribute classes

 	Classes and DSC

 Defining an enumeration

 An enumeration is a set of named constants. .NET is full of examples of enumerations. For example, the System.Security.AccessControl.FileSystemRights enumeration describes all of the numeric values that are used to define access rights for files or directories.

 Enumerations are also used by PowerShell itself. For example, System.Management.Automation.ActionPreference contains the values for the preference variables, such as ErrorActionPreference and DebugPreference.

 You create enumerations by using the enum keyword followed by a list of names and values:

 enum MyEnum {

 First = 1

 Second = 2

 Third = 3

}

 Each name must be unique within the enumeration and must start with a letter or an underscore. The name may contain numbers after the first character. The name cannot be quoted and cannot contain the hyphen character.

 The value does not have to be unique. One or more names in an enumeration can share a single value:

 enum MyEnum {

 One = 1

 First = 1

 Two = 2

 Second = 2

}

 By default, enumeration values are Int32, which is the underlying type.

 Enum and underlying types

 In languages such as C#, enumerations can be given an underlying type, such as Byte or Int64. In PowerShell 5 and PowerShell Core 6.1 and older, the enumeration type is fixed to Int32. This type is shown using the following command:

 PS> enum MyEnum {

>> First = 1

>> }

PS> [MyEnum].GetEnumUnderlyingType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

 In PowerShell 7, you may specify the underlying type for an enumeration:

 enum MyEnum : UInt64 {

 First = 0

 Last = 18446744073709551615

}

 You can use any integer type as the value type, including byte, short (Int16), uint, and (UInt32).

 An enumeration value may be cast to its underlying type to reveal the number behind the name:

 [Int][MyEnum]::First

 Alternatively, you can use the -as operator:

 [MyEnum]::First -as [MyEnum].GetEnumUnderlyingType()

 The numeric value is also accessible using the value__ property:

 [MyEnum]::First.value__

 The preceding example enumerations have explicit values defined for each name. Enumerations support automatic numbering as the next section shows.

 Automatic value assignment

 An enumeration may be created without defining a value for a name. PowerShell will automatically allocate a sequence of values starting from 0. In the following example, the names Zero and One are automatically created with the values 0 and 1, respectively:

 enum MyEnum {

 Zero

 One

}

 If a value is assigned to a name, the sequence will continue from that point. The following example starts with the value 5. The name Six will automatically be given the value 6:

 enum MyEnum {

 Five = 5

 Six

}

 Automatic value assignment supports non-contiguous values. The sequence may be restarted at any point, or values may be skipped. The following example demonstrates both restarting a sequence and skipping values in a sequence:

 enum MyEnum {

 One = 1

 Two

 Five = 5

 Six

 First = 1

 Second

}

 The previous example mixes two potentially different name sets in a single enumeration to demonstrate restarting the numeric sequence. It is rarely desirable to mix names and values in this manner. If a distinct set of constant names is needed for a set of names, a second enumeration is a better approach.

 You can use enumerations to restrict arguments for parameters in a similar manner to the ValidateSet attribute.

 Enum or ValidateSet

 It is common to create functions or scripts with parameters that accept a fixed set of values. ValidateSet can be used to limit the possible arguments for a parameter.

 The following example uses the values Absent and Present, for a parameter named Ensure. This parameter and these values are commonly used when writing Desired State Configuration (DSC) resources, which are explored further at the end of this chapter:

 function Test-ParameterValue {

 param (

 [Parameter(Mandatory)]

 [ValidateSet('Absent', 'Present')]

 [string]$Ensure

)

}

 The ValidateSet attribute used in the preceding example restricts the parameter to one of the two different values. As many values as required can be used with ValidateSet.

 Alternatively, you can use an enumeration to restrict values. This has the benefit that the same set of values can be shared across several different functions in a script or module.

 The following enumeration describes the same possible values used in ValidateSet above:

 enum Ensure {

 Absent

 Present

}

function Test-ParameterValue {

 param (

 [Parameter(Mandatory)]

 [Ensure]$Ensure

)

}

 In some cases, the numeric value may be irrelevant, which can be true of the values for preference variables in PowerShell for instance. The value for a preference variable can be numeric but it is far more common to use a string. For example, the following two preference variable assignments are equivalent:

 $VerbosePreference = 'Continue'

$VerbosePreference = 2

 The origin of the numeric value used above is shown in the following line of code:

 [System.Management.Automation.ActionPreference]::Continue.value__

 The numeric value may be considered important again when it has a parallel with another value type. In the case of the Ensure enumeration it is most logical to have Absent represented by 0, and Present by 1.

 The enumerations used previously are used as single values. The name used with the parameter is either Absent or Present, never a combination of the two. Enumerations that support more than one name being used are created using the Flags attribute.

 The Flags attribute

 An enumeration that uses the Flags attribute allows you to use more than one name when describing a value. In Chapter 10, Files, Folders, and the Registry, the System.Security.AccessControl.FileSystemRights enumeration was used to describe access rights. Access rights are described as a combination of several enumeration values. The names are written as a comma-separated list. For example:

 [System.Security.AccessControl.FileSystemRights]'ReadData, Delete'

 This is only possible because the enumeration has the Flags attribute set:

 PS> $enumType = [System.Security.AccessControl.FileSystemRights]

PS> $enumType.CustomAttributes.AttributeType.Name

FlagsAttribute

 The Flags attribute can be used when creating enumerations in PowerShell. The attribute is placed before the enum keyword as shown here:

 [Flags()]

enum MyEnum {

 First = 1

 Second = 2

 Third = 4

}

 Each numeric value in the enumeration has a distinct combination of (binary) bits set to make the value unique:

 [Flags()]

enum MyEnum {

 First = 1 # 001

 Second = 2 # 010

 Third = 4 # 100

}

 The value of the flag will therefore double each time: 1, 2, 4, 8, 16, 32, 64, 128, and so on. Enumeration values, especially flags, are frequently written in hexadecimal:

 [Flags()]

enum MyEnum {

 First = 0x001 # 1

 Second = 0x002 # 2

 Third = 0x004 # 4

 Fourth = 0x008 # 8

 Fifth = 0x010 # 16

 Sixth = 0x020 # 32

}

 In many respects it is easier to read the value in hexadecimal. The unique values are always 1, 2, 4, and 8, with a shift in position each time the value appears: 0x001 the first time, 0x010 the second, 0x100 the third, and so on.

 As each number doubles, automatic value assignment does not create useful values (beyond the 1 and 2) if the Flags attribute is used.

 PowerShell will cast a numeric value into a set of names if it can be matched in a Flags enumeration. A value of 6 can be used to represent the Second and Third flags for example:

 PS> [MyEnum]6

Second, Third

 Several enumerations that use the Flags attribute also provide named composite values. For example, System.Security.AccessControl.FileSystemRights defines several permissions as combinations of other values. The ReadAndExecute right is made up of the individual flags ReadData, ReadExendedAttributes, and ReadPermissions. You can use the following function to reveal these individual flag values from a combined or composite value:

 function Get-FlagName {

 [CmdletBinding()]

 param (

 $Value

)

 $enumType = $Value.GetType()

 $i = 0

 do {

 $bit = $Value -as [Int64] -band 1 -shl $i++

 if ($bit) {

 [PSCustomObject]@{

 Name = $bit -as $enumType

 Integer = $bit

 Hexadecimal = '0x{0:X8}' -f $bit

 BitPosition = $i

 }

 }

 } until (1 -shl $i -ge $value)

}

 The function works by taking the value 1 then bit-shifting it one place to the left with each iteration of the loop. That is, it compares the value 1, then 2, 4, 8, 16, and so on. If that exact bit in the composite value is set, the custom object describing that value is returned.

 Running the function with the ReadAndExecute enumeration value shows the individual flags that make up the composite value:

 PS> using namespace System.Security.AccessControl

PS> Get-FlagName -Value ([FileSystemRights]::ReadAndExecute)

 Name Integer Hexadecimal BitPosition

 ---- ------- ----------- -----------

 ReadData 1 0x00000001 1

ReadExtendedAttributes 8 0x00000008 4

 ExecuteFile 32 0x00000020 6

 ReadAttributes 128 0x00000080 8

 ReadPermissions 131072 0x00020000 18

 You can create composite values in a PowerShell enumeration by setting a value that has more than one flag set. For example, the tweak to the example enumeration adds a composite value for the First and Third flags:

 [Flags()]

enum MyEnum {

 First = 1 # 001

 Second = 2 # 010

 Third = 4 # 100

 FirstAndThird = 5 # 101

}

 As FirstAndThird explicitly matches the value 5, any value the enumeration converts will use the FirstAndThird name instead of the individual values:

 PS> [MyEnum]7

Second, FirstAndThird

PS> [MyEnum]'First, Second, Third'

Second, FirstAndThird

 You can use the preceding function on the tweaked enumeration to show the individual values:

 PS> Get-FlagName -Value ([MyEnum]::FirstAndThird)

Name Integer Hexadecimal BitPosition

 ---- ------- ----------- -----------

First 1 0x00000001 1

Third 4 0x00000004 3

 As enumerations associate a name with a number, you can use enumerations to convert different related names.

 Using enumerations to convert a value

 Enumerations are lists of names, each assigned a numeric value. You can use a pair of enumerations to convert between two lists of names, linked by a common number.

 The following example defines two enumerations. The first is a list of values the end user will see; the second holds the internal name required by the code. This simulates, in part, the type of aliasing performed by the wmic command:

 enum AliasName {

 OS

 Process

}

enum ClassName {

 Win32_OperatingSystem

 Win32_Process

}

 A function can use the AliasName enumeration, as shown here:

 function Get-CimAliasInstance {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, Position = 1)]

 [AliasName]$AliasName

)

 Get-CimInstance -ClassName ([ClassName]$AliasName)

}

 The command may now be used with the OS argument for the AliasName parameter as demonstrated in the following trimmed output:

 PS> Get-CimAliasInstance -AliasName OS

SystemDirectory Organization BuildNumber

--------------- ------------ -----------

C:\WINDOWS\system32 19042

 This will be converted to Win32_OperatingSystem by way of the enumeration. Get-CimInstance handles converting that value into a string.

 Creating a class

 A class is used to describe an object. This may be any object, which means that a class in PowerShell might be used for any purpose.

 Classes in PowerShell are created using the class keyword. The following class contains a single property:

 class MyClass {

 [string]$Value = 'My value'

}

 You can create the class by using either the New-Object command or the ::new() method:

 PS> New-Object MyClass

Value

My value

PS> [MyClass]::new()

Value

My Value

 This example creates an instance of the class and displays the property that was defined for the class.

 Properties

 The properties defined in a class may define a .NET type and may have a default value if required. The following class has a single property with the String type:

 class MyClass {

 [string]$Value = 'My value'

}

 PowerShell automatically adds hidden get and set methods used to access the property; these cannot be overridden or changed at this time (within the class itself). The get and set methods may be viewed using Get-Member with the Force parameter:

 PS> [MyClass]::new() | Get-Member get_*, set_* -Force

 TypeName: MyClass

Name MemberType Definition

---- ---------- ----------

get_Value Method string get_Value()

set_Value Method void set_Value(string)

 You can access the property, and any other properties, on an instance of the class:

 PS> $instance = [MyClass]::new()

PS> $instance.Value

My value

 Classes are created with a default constructor that requires no arguments unless a constructor is explicitly defined.

 Constructors

 A constructor is executed when either New-Object or ::new() is used to create an instance of a class. The implicit or default constructor does not require arguments.

 An explicit constructor may be created to handle more complex actions when creating an object.

 The constructor has the same name as the class. The reserved variable $this is used to refer to properties and methods within the class. The following constructor sets a value for Value when an instance of the class is created:

 class MyClass {

 [string]$Value

 MyClass() {

 $this.Value = 'Hello world'

 }

}

 The constructor may require arguments to create an instance of the class. The following example requires a string, updates the value, then sets it as the value of the Value property:

 class MyClass {

 [string]$Value

 MyClass(

 [string] $Argument

) {

 $culture = Get-Culture

 $this.Value = $culture.TextInfo.ToTitleCase(

 $Argument

)

 }

}

 The argument for the constructor is passed when creating the instance of the object. The result is:

 PS> [MyClass]::new('hello world')

Value

Hello World

 The preceding ToTitleCase method has capitalized the first characters of each word in the string before assigning it to the Value property.

 So far it can be said that:

 	Default values may be assigned to properties as required

 	If work is required to fill a property (or properties) when an object is created, a constructor with no arguments can be used

 	If work is required to fill a property (or properties), and an argument should be supplied by the consumer (end user, or another piece of code) of the class, a constructor can be created that accepts arguments

 Constructors may be overloaded to allow the class to accept different arguments or combinations of arguments when the class is created.

 The following example has two constructors, first a default constructor that sets a default value for the Value property. The second constructor allows the consumer of the class to define a value:

 class MyClass {

 [string]$Value

 MyClass() {

 $this.Value = 'Hello world'

 }

 MyClass(

 [string] $Argument

) {

 $culture = Get-Culture

 $this.Value = $culture.TextInfo.ToTitleCase(

 $Argument

)

 }

}

 Each constructor must have a unique signature. The signature for the constructor is based on the number of arguments, and the types (such as String as used above) of those arguments. Each combination must be unique.

 If you need to enclose shared functionality or want to allow a consumer to enact a change in a class, then you'll need to create a method.

 Methods

 A method causes a change to the object. This may be an internal change, such as opening a connection or stream, or it may take the object and change it into a different form as is the case with the ToString method.

 With the class above, if ToString is called the name of the class is returned.

 PS> class MyClass {

>> [string]$Value = 'Hello world'

>> }

PS> [MyClass]::new().ToString()

MyClass

 This is the default implementation for the ToString method. The method can be replaced in the class so that it returns the value of the property:

 class MyClass {

 [string]$Value = 'Hello world'

 [string] ToString() {

 return $this.Value

 }

}

 Running the ToString method this time shows the value of the Value property:

 PS> [MyClass]::new().ToString()

Hello world

 When working with methods, and unlike functions in PowerShell, the return keyword is mandatory. Methods do not return output by default. An error will be raised if a method has an output type declared and it does not return output from each code path.

 Methods can accept arguments in the same way as constructors. Methods can also be overloaded. For example, the ToString method might be overloaded, providing support for output formatting. An example of this is shown here:

 class MyClass {

 [string]$Value = 'Hello world'

 [string] ToString() {

 return '{0} on {1}' -f @(

 $this.Property

 (Get-Date).ToShortDateString()

)

 }

 [string] ToString(

 $dateFormat

) {

 return '{0} on {1}' -f @(

 $this.Property

 Get-Date -Format $format

)

 }

}

 The arguments supplied will dictate which method implementation is used.

 Properties and methods in a class can be hidden from casual viewing using the Hidden modifier.

 The Hidden modifier

 You can use the Hidden modifier to hide a property from tab completion and Get-Member.

 Members marked as Hidden can still be seen if the -Force parameter is used with Get-Member and Hidden members may still be accessed or invoked. In many respects, Hidden is similar to the DontShow property of the Parameter attribute.

 In the following example, the Initialize method is hidden:

 class MyClass {

 [string]$Property

 MyClass() {

 $this.Initialize()

 }

 hidden [void] Initialize() {

 $this.Property = 'defaultValue'

 }

}

 You can use Get-Member to show this method:

 PS> [MyClass]::new() | Get-Member Initialize -Force

 TypeName: MyClass

Name MemberType Definition

---- ---------- ----------

Initialize Method void Initialize()

 The properties and methods in the classes demonstrated so far require an instance of the type to be created before they can be used.

 The Static modifier

 All of the members demonstrated so far have required the creation of an instance of a type using either New-Object or ::new().

 You can execute static members without creating an instance of a type (based on a class).

 Classes may implement static properties and static methods using the Static modifier keyword:

 class MyClass {

 static [string] $Property = 'Property value'

 static [string] Method() {

 return 'Method return'

 }

}

 The static members are invoked as follows:

 [MyClass]::Property

[MyClass]::Method()

 The Hidden modifier may be used in conjunction with the Static modifier. The modifiers may be used in either order.

 Classes can inherit properties and methods from other classes.

 Inheritance

 Classes in PowerShell can inherit from other classes, from classes in PowerShell and .NET. The properties and methods in a base class are available to an inheriting class.

 The following example defines two classes – the second inherits from the first:

 class MyBaseClass {

 [string]$BaseProperty = 'baseValue'

}

class MyClass : MyBaseClass {

 [string]$Property = 'Value'

}

 The BaseProperty property is made available on instances of the child class:

 PS> [MyClass]::new()

Property BaseProperty

-------- ------------

Value baseValue

 Members may be overridden by redeclaring the member on the inheriting class. The GetString method implementation from the base class is overridden in the following example:

 class MyBaseClass {

 [string] GetString() { return 'default' }

}

class MyClass : MyBaseClass {

 [string] GetString() { return 'new' }

}

 Each class can inherit from one other class only, but there is no limit to how deep inheritance can go. However, the depth should be limited to a sensible degree, perhaps no more than 5 or so classes deep.

 Constructors are also accessible via inherited classes, but each constructor must be defined in a child class. Constructor inheritance is not entirely automatic.

 Constructors and inheritance

 Constructors in an inheritance hierarchy are not overridden, but instead executed in sequence.

 In the following example, both classes have a default constructor (a constructor that does not require any arguments):

 class ParentClass {

 ParentClass() {

 Write-Host 'Default parent constructor'

 }

}

class ChildClass : ParentClass {

 ChildClass() {

 Write-Host 'Default child constructor'

 }

}

 When an instance of ChildClass is created, the constructor on the parent class executes first, followed by the constructor on the child class:

 PS> $instance = [ChildClass]::new()

Default parent constructor

Default child constructor

 If an overload is added to the constructor on ChildClass, PowerShell will run the new constructor, and the default constructor on ParentClass. The changed classes are as follows:

 class ParentClass {

 ParentClass() {

 Write-Host 'Default parent constructor'

 }

}

class ChildClass : ParentClass {

 ChildClass() {

 Write-Host 'Default child constructor'

 }

 ChildClass([string]$value) {

 Write-Host 'Overloaded child constructor'

 }

}

 Creating an instance of ChildClass shows that both constructors are called:

 PS> $instance = [ChildClass]::new('value')

Parent constructor

Overloaded child constructor

 Automatic execution of the default constructor in an inherited class works provided the inherited class has a default constructor. In the following example, the default constructors are removed from both classes:

 class ParentClass {

 ParentClass([string]$value) {

 Write-Host 'Overloaded parent constructor'

 }

}

class ChildClass : ParentClass {

 ChildClass([string]$value) {

 Write-Host 'Overloaded child constructor'

 }

}

 Attempting to create a new instance of ChildClass will now result in an error. PowerShell expects to be able to invoke the default constructor in ParentClass and that no longer exists.

 PS> $instance = [ChildClass]::new('value')

MethodException:

Line |

 2 | ChildClass([string]$value) {

 | ~

 | Cannot find an overload for "new" and the argument count: "0".

 Without the default constructor, ChildClass must be told how it is to build an instance of ParentClass. The base keyword is used to achieve this:

 class ParentClass {

 ParentClass([string]$value) {

 Write-Host 'Non-default parent constructor'

 }

}

class ChildClass : ParentClass {

 ChildClass([string]$value) : base($value) {

 Write-Host 'Non-default child constructor'

 }

}

 The base keyword can only be used with constructors, not methods.

 Creating an instance of ChildClass this time shows both constructors run again:

 PS> $instance = [ChildClass]::new('value')

Non-default parent constructor

Non-default child constructor

 In the previous example, the variable $value is accepted by the constructor on the ChildClass, and explicitly passed as an argument to the constructor in ParentClass.

 Extending on the preceding example, the constructor in the ChildClass can be changed again, this time removing the argument. The base keyword is used with a string to invoke the constructor in ParentClass.

 class ParentClass {

 ParentClass([string]$value) {

 Write-Host 'Non-default parent constructor'

 }

}

class ChildClass : ParentClass {

 ChildClass() : base('Any string value') {

 Write-Host 'Default child constructor'

 }

}

 Once again, creating an instance of ChildClass shows which constructors are being used:

 PS> $instance = [ChildClass]::new()

Non-default parent constructor

Default child constructor

 The constructor in the parent class is matched by the names and types of the arguments for the base keyword.

 Using this, it can be said that:

 	By default, all constructors in a child class call the default constructor in a parent class

 	If a default constructor does not exist in a parent class, the base keyword must be used with every constructor in a child class to specify a constructor in the parent class

 The base keyword cannot be applied to methods in classes. A different technique must be used when invoking methods of the same name in a parent class.

 Calling methods in a parent class

 Methods declared in a child class override the method defined in a parent class. Methods in a parent class are not implicitly called.

 It is possible to invoke methods in a child class by casting to the parent class type. This is useful if, for example, the method in the child class adds more specialized functionality than the original method.

 class ParentClass {

 [string] GetString() {

 return 'Hello world'

 }

}

class ChildClass : ParentClass {

 [string] GetString() {

 $string = ([ParentClass]$this).GetString()

 return '{0} on {1}' -f @(

 $string

 Get-Date -Format 'dddd'

)

 }

}

 The method is invoked on an instance of ChildClass:

 PS> [ChildClass]::new().GetString()

Hello world on Sunday

 If the cast to ParentClass were omitted, the method would start an infinite loop.

 The inheritance notation can be used to implement an interface.

 Working with interfaces

 An interface is a set of instructions for implementing a specific behavior in a class. .NET includes many different interfaces; some of the more common examples include IComparable and IEquatable.

 Implementing IComparable defines how an instance of a class should be compared using the -gt, -ge, -lt, and -le operators. IComparable also provides support for sorting.

 Implementing IEquatable defines how an instance of a class should be compared using the -eq and -ne operators. While at first glance, the two might seem to overlap, the sections that follow show this is not the case.

 Declaring support for an interface uses the same notation as inheritance; however, unlike class inheritance a class can implement more than one interface.

 To demonstrate these interfaces, a simple class with a single property that has a numeric value is used:

 class MyClass {

 [int] $Number

}

 The numeric value will be used as the basis for the comparisons used below. The choice of value (and value type) is otherwise arbitrary.

 Each interface defines the methods a class must implement to support that interface.

 Implementing IComparable

 As mentioned above, the IComparable interface makes it possible to usefully compare two instances of a class using -gt, -ge, -lt, and -le. It also makes it possible to sort instances of a class without naming a property to sort on.

 IComparable must be implemented as described on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.icomparable.

 Classes implementing IComparable must therefore define a CompareTo method that returns a single integer value, 1, -1, or 0.

 Microsoft Docs includes a second version of IComparable, IComparable<T>. Limitations in the class implementation in PowerShell make the two indistinguishable so the simpler version is used.

 Support for IComparable in the class is therefore added as shown here:

 class MyClass : IComparable {

 [int] $Number

 [int] CompareTo([object] $object) {

 if ($this.Number -gt $object.Number) {

 return 1

 } elseif ($this.Number -lt $object.Number) {

 return -1

 } else {

 return 0

 }

 }

}

 Once the method and the interface declaration exist, one instance of the class can be compared to another:

 PS> $first = [MyClass]@{ Number = 1 }

PS> $second = [MyClass]@{ Number = 2 }

PS> $first -lt $second

True

PS> $first -gt $second

False

 If the value of the Number property in both instances of the class is the same, then -ge and -le will return true:

 PS> $first = [MyClass]@{ Number = 1 }

PS> $second = [MyClass]@{ Number = 1 }

PS> $first -ge $second

True

PS> $first -le $second

True

 However, because IComparable does not specifically allow the testing of equality, using the -eq operator will return false:

 PS> $first -eq $second

False

 The IEquatable interface is used to support equality comparisons.

 Implementing IEquatable

 You can use the IEquatable interface to support comparisons using -eq and -ne.

 Microsoft Docs shows IEquatable with a type argument, indicated by the <T> in the type name: https://docs.microsoft.com/dotnet/api/system.iequatable-1.

 The documentation shows that any class implementing the IEquatable interface must implement an Equals method that returns a Boolean value and a GetHashCode method.

 The type used is expected to be the same type as the class IEquatable is being implemented for. That is, an implementation of IEquatable would normally expect to start as follows:

 class MyClass : IEquatable[MyClass] {

 PowerShell is not able to support this. The following error will be shown if the preceding approach is used:

 ParentContainsErrorRecordException: An error occurred while creating the pipeline.

 To allow PowerShell to create the class, we'll use [object] as the type in place of the more specific MyClass. This is shown in the following example, which also implements GetHashCode.

 GetHashCode should provide a unique value describing the object. As the basis for all comparisons with this object is the value of the Number property, the value of the property is also used as the hash code. The number 1, after all, uniquely identifies the number 1 when compared with all other numbers.

 GetHashCode is a complex and involved topic; Microsoft Docs dives into far greater detail: https://docs.microsoft.com/dotnet/api/system.object.gethashcode#remarks.

 This example extends the existing class that supports IComparable to support IEquatable. Note that IEquatable uses [object] instead of [MyClass]:

 class MyClass : IComparable, IEquatable[object] {

 [int] $Number

 [int] CompareTo([object] $object) {

 if ($this.Number -gt $object.Number) {

 return 1

 } elseif ($this.Number -lt $object.Number) {

 return -1

 } else {

 return 0

 }

 }

 [int] GetHashCode() {

 return $this.Number

 }

 [bool] Equals(

 [object] $equalTo

) {

 return $this.Number -eq $equalTo.Number

 }

}

 Note that the argument type for the Equals method must be [object] in the preceding example; it must match the type used in IEquatable[object].

 Once the interface has been implemented, two instances of the class may be compared using the -eq operator.

 PS> $first = [MyClass]@{ Number = 1 }

PS> $second = [MyClass]@{ Number = 1 }

PS> $first -eq $second

True

 PowerShell lacks language support to implement every available interface; in some cases it is possible to work around the limitations, as is the case with IEquatable. In others, such as IFormattable, PowerShell is simply not capable enough yet.

 Supporting casting between value types requires another technique.

 Supporting casting

 The simplest way to support casting between PowerShell classes is to create a constructor that will accept the incoming type.

 For example, it is possible to cast from Int to MyClass by implementing a constructor that accepts Int as an argument.

 class MyClass {

 [int] $Number

 MyClass() { }

 MyClass([int] $value) {

 $this.Number = $value

 }

}

 With the constructor in place, PowerShell will allow Int32 values to be cast to the class:

 PS> [MyClass]1

Number

 1

 If PowerShell can convert a value into Int32, then the assignment will succeed. Therefore short (Int16), byte, and other values smaller than Int32 will succeed.

 Attempting to cast larger types, long (Int64), will fail:

 PS> [MyClass][long]1

InvalidArgument: Cannot convert the "1" value of type "System.Int64" to type "MyClass".

 PowerShell is also capable of coercing a value to a type using a Parse static method. In the following example, the method accepts any object, and if it can coerce that to Int32, it will return an instance of MyClass:

 class MyClass {

 [int] $Number

 static [MyClass] Parse(

 [object] $value

) {

 if ($value -as [int]) {

 return [MyClass]@{ Number = $value }

 } else {

 throw 'Unsupported value'

 }

 }

}

 As this version parses values of type [object] (or anything) it will accept larger value types, if the actual value can be reduced into an Int32:

 PS> [MyClass][long]2312

Number

 2312

 The preceding methods support casting from a specific value to an instance of MyClass. It is possible for the class to support casting to another type by implementing an implicit conversion operator. The operator is implemented as a static method named op_Implicit:

 class NewClass {

 [string] $DayOfWeek

}

class MyClass {

 [int] $Number

 hidden static [NewClass] op_Implicit(

 [MyClass] $instance

) {

 return [NewClass]@{

 DayOfWeek = [DayOfWeek]$instance.Number

 }

 }

}

 The advantage of this approach is that the conversion logic is part of MyClass. NewClass does not have to know anything about MyClass or how to perform the conversion:

 PS> [NewClass][MyClass]@{ Number = 1 }

DayOfWeek

Monday

 The disadvantage of this approach is that a maximum of two op_Implicit methods can be added. Each method requires a unique signature (name and arguments), and the return type is not part of that signature.

 You can add a second signature by changing the argument type to [object]; in this case it supports casting to the [DayOfWeek] enumeration:

 class NewClass {

 [string] $DayOfWeek

}

class MyClass {

 [int] $Number

 hidden static [NewClass] op_Implicit(

 [MyClass] $instance

) {

 return [NewClass]@{

 DayOfWeek = [DayOfWeek]$instance.Number

 }

 }

 hidden static [DayOfWeek] op_Implicit(

 [object] $instance

) {

 return [DayOfWeek]$instance.Number

 }

}

 Classes can be used for a variety of existing purposes in PowerShell. Classes can be used to implement parameter transformation and validation.

 Classes for parameters

 PowerShell includes several attributes that you can use on parameters. Each of these classes inherits from another .NET type. The classes include:

 	Argument transformation attributes

 	Validation attributes

 	Classes for use with ValidateSet

 You can implement each of these using classes in PowerShell.

 Argument transformation attributes are used to test and potentially change the value being assigned to a variable before the assignment completes.

 Argument-transformation attribute classes

 An argument-transformation attribute is used to convert the value of an argument for a variable. The transformation operation is carried out before PowerShell completes the assignment to the variable, giving the opportunity to avoid type mismatch errors.

 You can add argument-transformation attributes to any variable, including parameters in functions and scripts and properties in classes.

 Classes for argument transformation must implement a Transform method. The Transform method must accept two arguments, a System.Object and a System.Management.Automation.EngineIntrinsics. The argument names are arbitrary; the names used follow the example on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.management.automation.argumenttransformationattribute.transform.

 The class must therefore inherit from System.Management.Automation.ArgumentTransformationAttribute.

 Abstract classes like the ArgumentTransformationAttribute type are somewhat like interfaces. However, where a class may implement one or more interfaces, a class can only inherit from one abstract type. In essence this ensures that the class implements the required functionality.

 The following example is an argument-transformation attribute that converts a date string in the format yyyyMMddHHmmss to DateTime before the assignment to the parameter is completed:

 using namespace System.Management.Automation

class DateTimeStringTransformationAttribute :

 ArgumentTransformationAttribute {

 [object] Transform(

 [EngineIntrinsics] $engineIntrinsics,

 [object] $inputData

) {

 if ($inputData -is [DateTime]) {

 return $inputData

 }

 if ($inputData -is [string]) {

 $date = Get-Date

 $isValidDate = [DateTime]::TryParseExact(

 $inputData,

 'yyyyMMddHHmmss',

 $null,

 'None',

 [ref]$date

)

 if ($isValidDate) {

 return $date

 }

 }

 throw 'Unexpected date format'

 }

}

 The class does not need to contain anything other than the Transform method implementation. If the transformation is more complex, it may implement other helper methods. The following example moves [DateTime]::TryParseExact into a new method:

 using namespace System.Management.Automation

class DateTimeStringTransformationAttribute :

 ArgumentTransformationAttribute {

 hidden [DateTime] $date

 hidden [bool] tryParseExact(

 [string] $value

) {

 $parsedDate = Get-Date

 $parseResult = [DateTime]::TryParseExact(

 $value,

 'yyyyMMddHHmmss',

 $null,

 'None',

 [Ref]$parsedDate

)

 $this.date = $parsedDate

 return $parseResult

 }

 [object] Transform(

 [EngineIntrinsics] $engineIntrinsics,

 [object] $inputData

) {

 if ($inputData -is [DateTime]) {

 return $inputData

 }

 if ($inputData -is [string]) {

 if ($this.tryParseExact($inputData)) {

 return $this.date

 }

 }

 throw 'Unexpected date format'

 }

}

 The new class may be used with a parameter, as shown here. Note that the Attribute string at the end of the class name may be omitted when it is used:

 function Test-Transform {

 param (

 [DateTimeStringTransformation()]

 [DateTime] $Date

)

 Write-Host $Date

}

 With this attribute in place, the function can be passed a date and time in a format that would not normally convert:

 PS> Test-Transform -Date '20210102090000'

02/01/2021 09:00:00

 Classes can also be used to implement customized validation.

 Validation attribute classes

 You can use PowerShell classes to build custom validation attributes. This offers an alternative to ValidateScript.

 Validation attributes must inherit from either ValidateArgumentsAttribute or ValidateEnumeratedArgumentsAttribute.

 Validators are most often used with parameters in scripts and functions, but they may be used with any variable.

 ValidateArgumentsAttribute

 Validators that inherit from ValidateArgumentsAttribute are somewhat difficult to define. The existing validators, such as ValidateNotNullOrEmpty and ValidateCount, catch most of the possible uses. Validation is more often interested in testing whether the value of a parameter is an array.

 Classes that inherit from ValidateArgumentsAttribute act on an argument as a single entity. If an argument is an array, the validation step applies to the array object rather than the individual elements of the array.

 Classes that implement ValidateArgumentsAttribute must inherit from System.Management.Automation.ValidateArgumentsAttribute. The class must implement a Validate method that is marked as abstract in the ValidateArgumentsAttribute class.

 The Validate method accepts two arguments with the System.Object and System.Management.Automation.EngineIntrinsics types. This is shown on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.management.automation.validateargumentsattribute.validate.

 The following example tests that the argument is not null or whitespace:

 using namespace System.Management.Automation

class ValidateNotNullOrWhitespaceAttribute :

 ValidateArgumentsAttribute {

 [void] Validate(

 [object] $arguments,

 [EngineIntrinsics] $engineIntrinsics

) {

 if ([String]::IsNullOrWhitespace($arguments)) {

 throw 'The value cannot be null or white space'

 }

 }

}

 The attribute is placed on top of a parameter and will run for every assignment statement:

 function Test-Validate {

 [CmdletBinding()]

 param (

 [ValidateNotNullOrWhitespace()]

 [String]$Value

)

 Write-Host $Value

}

 If an empty string is passed as an argument for the Value parameter, an error will be displayed:

 PS> Test-Validate -Value ' '

Test-Validate: Cannot validate argument on parameter 'Value'. The value cannot be null or white space

 This validator example will be more effective when defined as a validator that inherits from ValidateEnumeratedArguments and is implemented in the ValidateElement method.

 ValidateEnumeratedArgumentsAttribute

 Classes that inherit from ValidateEnumeratedArgumentsAttribute may be used to test each of the elements in an array (when associated with an array-based parameter), or a single item (when associated with a scalar parameter).

 Classes that implement ValidateEnumeratedArgumentsAttribute must inherit from System.Management.Automation.ValidateEnumeratedArgumentsAttribute. The class must implement a Validate method that is marked as abstract in the ValidateEnumeratedArgumentsAttribute class.

 The ValidateElement method accepts one argument with the System.Object type. This is shown on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement.

 The ValidateElement method does not return any output; it either runs successfully or throws an error. The error will be displayed to the end user.

 The next code block validates that an IP address used as an argument falls in a private address range.

 There are many different methods for determining if an address range is private. The following class tests the first 3 octets of the IP address. For instance, if the first octet is 10, the address is private. If the first octet is 172, and the second is between 16 and 31, the address is private, and so on.

 If the address is not part of a private range, or not a valid IP address, the ValidateElement method will throw an error:

 using namespace System.Management.Automation

class ValidatePrivateIPAddressAttribute :

 ValidateEnumeratedArgumentsAttribute {

 hidden [bool] IsPrivateIPAddress(

 [IPAddress] $address

) {

 $bytes = $address.GetAddressBytes()

 $isPrivateIPAddress = switch ($null) {

 { $bytes[0] -eq 10 } { $true; break }

 { $bytes[0] -eq 172 -and

 $bytes[1] -ge 16 -and

 $bytes[1] -le 31 } { $true; break }

 { $bytes[0] -eq 192 -and

 $bytes[1] -eq 168 } { $true; break }

 default { $false }

 }

 return $isPrivateIPAddress

 }

 [void] ValidateElement(

 [object] $element

) {

 $ipAddress = $element -as [IPAddress]

 if (-not $ipAddress) {

 throw '{0} is an invalid IP address format' -f @(

 $element

)

 }

 if (-not $this.IsPrivateIPAddress($element)) {

 throw '{0} is not a private IP address' -f @(

 $element

)

 }

 }

}

 You can use the preceding attribute with any parameter to validate IP addressing, as shown in the following short function:

 function Test-Validate {

 [CmdletBinding()]

 param (

 [ValidatePrivateIPAddress()]

 [IPAddress]$IPAddress

)

 Write-Host $IPAddress

}

 When used, the function will only allow the address as an argument for the parameter if it is in one of the reserved private ranges:

 PS> Test-Validate -IPAddress 10.0.0.11

10.0.0.11

 When a public IP address is specified, binding will fail:

 PS> Test-Validate -IPAddress 50.0.0.11

Test-Validate: Cannot validate argument on parameter 'IPAddress'. 50.0.0.11 is not a private IP address

 If something other than an IP address is supplied, the error will state the IP address is invalid:

 PS> Test-Validate -IPAddress someString

Test-Validate: Cannot process argument transformation on parameter 'IPAddress'. Cannot convert value "someString" to type "System.Net.IPAddress". Error: "An invalid IP address was specified."

 Validation like this can be implemented with ValidateScript, which also inherits from ValidateEnumeratedArgumentsAttribute. ValidateScript can call functions, centralizing the validation code where necessary.

 Classes for ValidateSet

 ValidateSet in Windows PowerShell will test the value assigned to a variable (often a parameter) against a hard-coded list of values.

 In PowerShell 7, you can use ValidateSet with a class to dynamically determine the values to validate against. This is achieved by writing a class that implements the IValidateSetValuesGenerator interface: https://docs.microsoft.com/dotnet/api/system.management.automation.ivalidatesetvaluesgenerator.

 The interface requires the class to implement a GetValidValues method, which should return an array of strings. The class can use any method it needs to generate the list of values. In the following example, the list is derived from the list of environment variable names in the current process.

 using namespace System.Management.Automation

class EnvironmentVariable : IValidateSetValuesGenerator {

 [string[]] GetValidValues() {

 return Get-ChildItem env: -Name

 }

}

 You can use the class for tab completion and to validate the values for a parameter of a function:

 function Get-EnvironmentVariable {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [ValidateSet([EnvironmentVariable])]

 [string]$Name

)

 Get-Item env:$Name

}

 The preceding classes are mostly used with parameters, but you can use them with any variable, including properties in classes.

 Microsoft Desired State Configuration is perhaps the most important use for classes in PowerShell.

 Classes and DSC

 Microsoft DSC, or Desired State Configuration, is one of several different configuration management systems available. Individual items are configured idempotently, that is, they only change when change is required.

 Classes in PowerShell exist because of DSC. DSC resources written as PowerShell classes are very succinct; they avoid the repetition inherent in a script-based resource. Script-based resources must at least duplicate a param block.

 Class-based DSC resources in a module must be explicitly exported using the DscResourcesToExport key in a module manifest document.

 The class must include a DscResource attribute. Each property a user is expected to set must have a DscProperty attribute. At least one property must be the Key property of the DscProperty attribute set. The class must implement the Get, Set, and Test methods.

 Class-based resources may use inheritance to simplify an implementation as required; this is especially useful if a group of resources uses the same code to act out changes.

 A basic DSC resource is defined as follows:

 enum Ensure {

 Absent

 Present

}

[DscResource()]

class MyResource {

 [DscProperty(Key)]

 [Ensure] $Ensure

 [MyResource] Get() { return $this }

 [void] Set() { }

 [bool] Test() { return $true }

}

 This resource implements all the required methods, but it performs no actions.

 Like a good function, a good DSC resource should strive to be good at one thing and one thing only. If a particular item has a variety of configuration options, it is often better to have a set of similar resources than a single resource that attempts to do it all.

 The sections that follow will focus on the creation of a short resource that sets the computer description.

 This resource will need to make a change to a single registry value. The computer description is set under the HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters key using the svrcomment string value.

 The starting point for the resource is shown here:

 enum Ensure {

 Absent

 Present

}

[DscResource()]

class ComputerDescription {

 [DscProperty(Key)]

 [Ensure]$Ensure

 [DscProperty()]

 [string]$Description

 $path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 $valueName = 'svrcomment'

 [ComputerDescription] Get() { return $this }

 [void] Set() { }

 [bool] Test() { return $true }

}

 Each of the methods in the class must be implemented for the resource to function.

 Implementing Get

 The Get method should evaluate the current state of the resource. The registry key will exist, but the registry value may be incorrect, or may not exist.

 The Get method will act as follows:

 	If the value is present, it will set the Ensure property to Present and update the value of the Description property

 	If the value is not present, it will set the Ensure property to Absent only

 The following snippet implements these actions:

 class ComputerDescription {

 [ComputerDescription] Get() {

 $key = Get-Item $this.Path

 if ($key.GetValueNames() -contains $this.valueName) {

 $this.Ensure = 'Present'

 $this.Description = $key.GetValue($this.valueName)

 } else {

 $this.Ensure = 'Absent'

 }

 return $this

 }

}

 The Get method must return an instance of the class. It can either return the existing instance, return $this, or generate a new instance, for instance by returning a hashtable:

 class ComputerDescription {

 [ComputerDescription] Get() {

 $properties = @{}

 $key = Get-Item $this.Path

 if ($key.GetValueNames() -contains $this.valueName) {

 $properties.Ensure = 'Present'

 $properties.Description = $key.GetValue($this.valueName)

 } else {

 $properties.Ensure = 'Absent'

 }

 return $properties

 }

}

 The hashtable returned by the preceding function is automatically cast to the class, creating a new instance.

 The Get method is only used when explicitly invoked. It is not used by either Set or Test.

 Implementing Set

 The Set method deals with making a change if a change is required. Set can ordinarily assume that Test has been run, and therefore that a change is required.

 As the resource allows a user to ensure a value is either present or absent, it must handle the creation and deletion of the value:

 class ComputerDescription {

 [Void] Set() {

 $commonParams = @{

 Path = $this.path

 Name = $this.valueName

 }

 if ($this.Ensure -eq 'Present') {

 $newParams = @{

 Value = $this.Description

 Type = 'String'

 Force = $true

 }

 New-ItemProperty @newParams @commonParams

 } else {

 $key = Get-Item $this.Path

 if ($key.GetValueNames() -contains $this.valueName) {

 Remove-ItemProperty @commonParams

 }

 }

 }

}

 This version of Set uses the Force parameter of New-ItemProperty to overwrite any existing values of the same name. Using Force also handles cases where the value exists, but the value type is incorrect.

 Implementing Test

 You can use the Test method to determine whether Set should be run. DSC invokes Test before Set. The Test method returns a Boolean value.

 The Test method must perform the following tests to ascertain the state of this configuration item:

 	When Ensure is present, fail if the value does not exist

 	When Ensure is present, fail if the value exists, but the description does not match the requested value

 	When Ensure is absent, fail if the value name exists

 	Otherwise, pass

 The following snippet implements these tests:

 class ComputerDescription {

 [bool] Test() {

 $key = Get-Item $this.Path

 if ($this.Ensure -eq 'Present') {

 if ($key.GetValueNames() -notcontains $this.valueName) {

 return $false

 }

 return $key.GetValue($this.valueName) -eq

 $this.Description

 } else {

 return $key.GetValueNames() -notcontains $this.valueName

 }

 return $true

 }

}

 Each of these methods must be copied back into the resource class.

 Using the resource

 The complete class, ComputerDescription, incorporating each of the preceding methods, is shown here:

 enum Ensure {

 Absent

 Present

}

[DscResource()]

class ComputerDescription {

 [DscProperty(Key)]

 [Ensure] $Ensure

 [DscProperty()]

 [string] $Description

 $path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 $valueName = 'svrcomment'

 [ComputerDescription] Get() {

 $key = Get-Item $this.Path

 if ($key.GetValueNames() -contains $this.valueName) {

 $this.Ensure = 'Present'

 $this.Description = $key.GetValue($this.valueName)

 } else {

 $this.Ensure = 'Absent'

 }

 return $this

 }

 [void] Set() {

 $commonParams = @{

 Path = $this.path

 Name = $this.valueName

 }

 if ($this.Ensure -eq 'Present') {

 $newParams = @{

 Value = $this.Description

 Type = 'String'

 Force = $true

 }

 New-ItemProperty @newParams @commonParams

 } else {

 $key = Get-Item $this.Path

 if ($key.GetValueNames() -contains $this.valueName) {

 Remove-ItemProperty @commonParams

 }

 }

 }

 [bool] Test() {

 $key = Get-Item $this.Path

 if ($this.Ensure -eq 'Present') {

 if ($key.GetValueNames() -notcontains $this.valueName) {

 return $false

 }

 return $key.GetValue($this.valueName) -eq

 $this.Description

 } else {

 return $key.GetValueNames() -notcontains

 $this.valueName

 }

 return $true

 }

}

 DSC will only find the class using Get-DscResource if the following are true:

 	The class is saved in a module

 	The module exports the DSC resource

 	The module is in one of the paths in $env:PSMODULEPATH

 	The module path is system-wide, accessible by the Local Configuration Manager (LCM)

 The following script creates the files and folders required to achieve under Program Files. The script will require administrative rights:

 $modulePath = 'C:\Program Files\WindowsPowerShell\Modules'

$newItemParams = @{

 Path = Join-Path $modulePath 'LocalMachine\1.0.0\LocalMachine.psm1'

 ItemType = 'File'

 Force = $true

}

New-Item @newItemParams

$joinPathParams = @{

 Path = $modulePath

 ChildPath = 'LocalMachine\1.0.0\LocalMachine.psd1'

}

$newModuleManifestParams = @{

 Path = Join-Path @joinPathParams

 RootModule = 'LocalMachine.psm1'

 DscResourcesToExport = 'ComputerDescription'

}

New-ModuleManifest @newModuleManifestParams

 The LocalMachine.psm1 file should be edited, adding the Ensure enumeration and the ComputerDescription class.

 Once the class is in a module, it can be used with the using module command:

 using module LocalMachine

$class = [ComputerDescription]@{

 Ensure = 'Present'

 Description = 'Computer description'

}

 Individual methods may be invoked; for example, you can run Get:

 PS> $class.Get()

Ensure Description

------ -----------

Absent Computer description

 As the module is under a known module path, Get-DscResource should be able to find it immediately:

 PS> Get-DscResource ComputerDescription

ImplementedAs Name ModuleName Version

------------- ---- ---------- -------

PowerShell ComputerDescription LocalMachine 1.0

 You can use the Invoke-DscResource command to run individual methods without creating a DSC configuration document:

 $params = @{

 Name = 'ComputerDescription'

 ModuleName = 'LocalMachine'

 Method = 'Test'

 Property = @{

 Ensure = 'Present'

 Description = 'Some description'

 }

 Verbose = $true

}

Invoke-DscResource @params

 Running Invoke-DscResource will require administrative rights. Invoke-DscResource interacts with the LCM to execute the resource and will report back whether the configuration item is in the desired state.

 Summary

 Enumerations in PowerShell are useful for defining customized lists of constant values for use within a script, function, or module. The values in the enumeration can be used if required, or the enumeration can be used as little more than a list of names.

 Flag-based enumerations are used when managing flag-based fields. The FileSystemRights enumeration was used as a basis for demonstrating capabilities.

 You can use classes in PowerShell to describe any object. Classes include members such as properties and methods. The Hidden keyword can be used to hide either properties or methods from view.

 Class inheritance is a vital part of working with classes. One class can inherit properties and methods from another, allowing a layered approach to class implementation with shared code in underlying classes.

 Inheritance-style notation is the basis for implementing interfaces from .NET in a class in PowerShell. The IComparable and IEquatable interfaces and the operator support they add were demonstrated.

 Casting and coercing types in PowerShell is a complex process. Constructors and the Parse static method allow PowerShell to cast from a fixed type to a class defined in PowerShell. The implicit conversion operator can be implemented as a static method named op_Implicit in a PowerShell class to allow casting to one or two other types.

 You can use classes in PowerShell to implement custom argument transformation and validation attributes. The validation and transformation classes are derived from abstract classes in the System.Management.Automation namespace.

 In PowerShell 6, ValidateSet gained the ability to use a dynamic set provided by a class implementing the IValidateSetValuesGenerator interface. The creation and use of the validator were demonstrated.

 Microsoft Desired State Configuration is one of the driving forces behind the existence of classes in PowerShell. A simple DSC resource that allows a computer description to be set via the registry was created and demonstrated.

 In the next chapter, you will build modules in PowerShell.

 20

 Building Modules

 A module groups a set of commands together, most often around a common system, service, or purpose. Modules were introduced with PowerShell 2.

 A module written in PowerShell can contain functions, classes, enumerations, and DSC resources, and it may define aliases and include variables to include in the global scope.

 There are several different common styles or layouts used when authoring modules. This chapter explores these different approaches, starting with the simplest.

 This chapter explores the following topics:

 	Creating a module

 	Publishing a module

 	Multi-file module layout

 	Module scope

 	Initializing and removing modules

 Technical requirements

 This chapter uses the following modules, which can be installed from the PowerShell Gallery:

 	PowerShellGet version 2.2.5

 	ModuleBuilder version 2.0.0

 The module created in this chapter is available on GitHub: https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Fourth-Edition/tree/master/Chapter20/LocalMachine.

 The repository includes the different layouts discussed in this chapter.

 Creating a module

 A module most often consists of one or more functions. Typically, you create modules in one or more files starting with a psm1 file. The psm1 file is known as the root module.

 The root module

 The root module has a psm1 extension and is otherwise like any other script file in PowerShell. The root module file is named after the module.

 The psm1 file can contain all the module content directly; nothing else is required to create a module.

 A module requires content. Chapter 19, Classes and Enumerations, ended by creating a class-based DSC resource to manage the computer description property. You'll rebuild this content of the resource and use it as the basis for creating a module during this chapter.

 Here is the first command to add to a file named LocalMachine.psm1:

 function Get-ComputerDescription {

 [CmdletBinding()]

 [OutputType([string])]

 param ()

 $getParams = @{

 Path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 Name = 'srvcomment'

 }

 Get-ItemPropertyValue @getParams

}

 Once saved, you can import the module file. The following command assumes the file is in the current directory in PowerShell:

 Import-Module .\LocalMachine.psm1

 The command will be displayed in the ExportedCommands property when running Get-Module:

 PS> Get-Module LocalMachine

ModuleType Version PreRelease Name ExportedCommands

---------- ------- ---------- ---- ----------------

Script 0.0 LocalMachine Get-ComputerDescription

 The ModuleType shows as Script because the module is defined by a psm1 file. If ExportedCommands is empty, there may be an error in the module file. Attempting to import the module should show any errors.

 You can run the command if the module is imported. If a computer description is set, it will be displayed, otherwise an error will be displayed. You can optionally set a description by running the following command as administrator:

 $params = @{

 Path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 Name = 'srvcomment'

 Value = 'Computer description'

}

New-ItemProperty @params

 As you add more functions to the psm1 file, additional commands will be displayed in ExportedCommands. By default, all functions are exported from the module, making them available to anyone using the module.

 Export-ModuleMember

 You can use the Export-ModuleMember command inside a psm1 file to explicitly define what is exported from a module.

 At this point, the LocalMachine module only contains one command, and that command is expected to be visible to the end user.

 As the module grows, some of the code will start to repeat, and functions might be added to the module to reduce repetition. Such functions might be expected to be internal to the module, not visible to a user of the module.

 Functions that are exported are often referred to as public functions; functions that are not exported are known as private functions.

 The following change to LocalMachine.psm1 introduces a function that will be shared inside the module and is not intended to be seen by users of the module.

 The private function anticipates that the registry path and value name parameters will be used by other functions in the module later:

 function GetRegistryParameter {

 [CmdletBinding()]

 [OutputType([Hashtable])]

 param ()

 @{

 Path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 Name = 'srvcomment'

 }

}

 The private function GetRegistryParameter is used by the Get-ComputerDescription command, as the following shows:

 function Get-ComputerDescription {

 [CmdletBinding()]

 [OutputType([string])]

 param ()

 $getParams = GetRegistryParameter

 Get-ItemPropertyValue @getParams

}

 GetRegistryParameter is also used by both Set-ComputerDescription and Remove-ComputerDescription. The short Remove-ComputerDescription function is:

 function Remove-ComputerDescription {

 [CmdletBinding(SupportsShouldProcess)]

 param ()

 $removeParams = GetRegistryParameter

 if ($PSCmdlet.ShouldProcess(

 'Removing computer description')) {

 Remove-ItemProperty @removeParams

 }

}

 And finally, you can add the Set-ComputerDescription command to complete the functions for this version of the module. Note that Set-ComputerDescription requires administrator rights to execute:

 function Set-ComputerDescription {

 [CmdletBinding(SupportsShouldProcess)]

 [OutputType([string])]

 param (

 [Parameter(Mandatory, Position = 1, ValueFromPipeline)]

 [string]$Description

)

 process {

 if ($pscmdlet.ShouldProcess(

 'Removing computer description')) {

 $setParams = GetRegistryParameter

 $params = @{

 Type = 'String'

 Value = $Description

 Force = $true

 }

 try {

 New-ItemProperty @setParams @params

 } catch {

 $PSCmdlet.ThrowTerminatingError($_)

 }

 }

 }

}

 The Set-ComputerDescription command adds a few features first explored in Chapter 17, Scripts, Functions, and Script Blocks. First it has a mandatory parameter for the new description. That Description parameter accepts values from the pipeline.

 Both the Remove-ComputerDescription and Set-ComputerDescription commands implement SupportsShouldProcess, enabling the use of the -WhatIf switch parameter. Implementing SupportsShouldProcess is an encouraged practice for commands that change state.

 If the functions are saved to LocalMachine.psm1, and the module is imported, then the new command will show in ExportedCommands:

 PS> Import-Module .\LocalMachine.psm1 -Force -Verbose

VERBOSE: Loading module from path 'C:\workspace\LocalMachine.psm1'.

VERBOSE: Importing function 'Get-ComputerDescription'.

VERBOSE: Importing function 'Remove-ComputerDescription'.

VERBOSE: Importing function 'Set-ComputerDescription'.

PS> Get-Module -Name LocalMachine |

>> ForEach-Object ExportedCommands

Key Value

--- -----

Get-ComputerDescription Get-ComputerDescription

GetRegistryParameters GetRegistryParameters

Remove-ComputerDescription Remove-ComputerDescription

Set-ComputerDescription Set-ComputerDesciption

 You used the Force parameter with Import-Module in the previous example to overwrite the previously imported version of the module. If a module is already imported, Import-Module will not, by default, reimport that module.

 Naming private commands

 GetRegistryParameters follows my own convention for naming private commands. Private commands always use an approved verb (see Get-Verb) but omit the hyphen.

 This convention is not mandatory; the naming of private commands is a personal preference.

 Adding the Export-ModuleMember command to the end of the LocalMachine.psm1 file will hide the GetRegistryParameters function from view:

 Export-ModuleMember -Function @(

 'Get-ComputerDescription'

 'Remove-ComputerDescription'

 'Set-ComputerDescription'

)

 Importing the module again shows the change to ExportedCommands:

 PS> Import-Module .\LocalMachine.psm1 -Force

PS> Get-Module -Name LocalMachine |

>> ForEach-Object ExportedCommands

Key Value

--- -----

Get-ComputerDescription Get-ComputerDescription

Remove-ComputerDescription Remove-ComputerDescription

Set-ComputerDescription Set-ComputerDesciption

 Export-ModuleMember can be used to define which functions, cmdlets, variables, and aliases are exported from a module. You can also define these options by using a module manifest.

 Module manifests

 The module manifest is a PowerShell data file (psd1 file, a Hashtable stored in a file) that contains metadata for a module.

 The manifest includes information such as the module description, PowerShell version and edition compatibility, version number, commands, aliases, variables that should be exported, and so on.

 Help for either the New-ModuleManifest or Update-ModuleManifest commands will show the possible keys. A manifest created using New-ModuleManifest includes comments describing the purpose of each field.

 The use of a manifest is mandatory if a module is published on the PowerShell Gallery or any other repository when using the Publish-Module command.

 The following code creates a module manifest for the LocalMachine module:

 $params = @{

 Path = '.\LocalMachine.psd1'

 Description = 'Local machine configuration'

 RootModule = 'LocalMachine.psm1'

 ModuleVersion = '1.0.0'

 FunctionsToExport = @(

 'Get-ComputerDescription'

 'Remove-ComputerDescription'

 'Set-ComputerDescription'

)

 PowerShellVersion = '5.1'

 CompatiblePSEditions = @(

 'Core'

 'Desktop'

)

}

New-ModuleManifest @params

 In the preceding example, RootModule is the full name of the psm1 file. This path, and all other paths used in the manifest, are relative to the module manifest file.

 RootModule is used to determine the module type displayed when running the Get-Module command:

 	If RootModule is set to a psm1 file (as in our example), the module type will be script

 	If RootModule is set to a dll file, the module type will be binary

 	If RootModule is not set or is set to a value with any other file extension, the module type will be manifest

 The RootModule property is not the only value that affects the module type. A module in PowerShell can have other modules nested inside. Nested modules are loaded via a NestedModules property in the manifest:

 	If NestedModules is set, the module type will be manifest (regardless of the RootModule value)

 Other than affecting the module type value, NestedModules is beyond the scope of this chapter.

 The newly created module manifest will, by default, set CmdletsToExport, VariablesToExport, and AliasesToExport to *. You can set these values to @() if automatically exporting everything is not desirable.

 You can use wildcards for any of the ToExport properties, including FunctionsToExport. For example, you could use the value *-* to export public functions in the LocalMachine module. Using a specific list helps the module autoloader in PowerShell import the module if one of the commands is used and the module has never been imported before.

 This manifest replaces the functionality of the Export-ModuleMember command.

 PowerShell and PowerShellGet include several commands for working with the content of the module manifest.

 Test-ModuleManifest

 The Test-ModuleManifest command attempts to read and perform basic checks of the values used in the module manifest.

 The command returns an object that represents data in the manifest. Import-PowerShellDataFile can also be used to read the manifest if required.

 If the PowerShellVersion property in the manifest is reduced to 5.0 in LocalMachine.psd1, Test-ModuleManifest will raise an error pointing out that the CompatiblePSEditions key is not available before PowerShell 5.1:

 PS> Test-ModuleManifest .\LocalMachine.psd1

Test-ModuleManifest: The module manifest 'C:\Workspace\LocalMachine\LocalMachine\LocalMachine.psd1' is specified with the CompatiblePSEditions key which is supported only on PowerShell version '5.1' or higher. Update the value of the PowerShellVersion key to '5.1' or higher, and try again.

ModuleType Version PreRelease Name ExportedCommands

---------- ------- ---------- ---- ----------------

Script 1.0.0 LocalMachine Get-ComputerDescription

 Test-ModuleManifest will also test paths used in the manifest. For example, if an absolute path is used for RootModule, such as C:\LocalMachine.psm1, an error will be displayed. The RootModule path must be a relative path.

 The New-ModuleManifest command can, but should not, be used to update the content of an existing manifest. Instead, you should use the Update-ModuleManifest command.

 Update-ModuleManifest

 You can use the Update-ModuleManifest command from the PowerShellGet module to update the content of an existing manifest. However, you cannot use Update-ModuleManifest to create a new manifest.

 The advantage of using Update-ModuleManifest is that it correctly handles writing to the PrivateData section of the manifest. New-ModuleManifest is unable to set values in this section.

 You can use Update-ModuleManifest to add a project URL and license information to the manifest, as shown here:

 Update-ModuleManifest -Path .\LocalMachine.psd1 -PrivateData @{

 ProjectUri = 'https://github.com/indented-automation/LocalMachine'

 LicenseUri = 'https://opensource.org/licenses/MIT'

}

 Similarly, you can update the version number in the manifest; in this case, the major version is updated:

 $path = '.\LocalMachine.psd1'

$manifest = Test-ModuleManifest -Path $path

$newVersion = [Version]::new(

 $manifest.Version.Major + 1,

 $manifest.Version.Minor,

 $manifest.Version.Build

)

Update-ModuleManifest -Path $path -ModuleVersion $newVersion

 You may want to publish the module to a PowerShell repository at this point.

 Publishing a module

 Use the Publish-Module command to publish a module to a PowerShell repository.

 The most common repository types are a NuGet feed (like the PowerShell Gallery), or a directory (often a file share). There are several free options available for creating a dedicated private PowerShell repository, including:

 	Chocolatey Server: https://community.chocolatey.org/packages/chocolatey.server

 	Nexus OSS: https://www.sonatype.com/products/repository-oss-download

 	ProGet: https://inedo.com/proget/pricing

 Each of these allows you to create a private repository for use within an organization. The repository would typically contain internally developed content or curated content that has been approved for internal use copied from public repositories.

 To test publishing the LocalMachine module, create a repository in a local directory:

 New-Item ~\PSLocal -ItemType Directory

Register-PSRepository -Name PSLocal -Source ~\PSLocal

 Repositories such as the PowerShell Gallery require an API key to authenticate the request.

 Removing the PSLocal repository

 When it is no longer required, the repository can be removed:

 Unregister-PSRepository -Name PSLocal

 You can now publish the module with the Publish-Module command:

 Publish-Module -Path . -Repository PSLocal

 The Path used with Publish-Module, the current working directory in the preceding example, has a constraint: the path must be a directory and it must be named after the module.

 That is, if the module is LocalMachine.psd1, and the manifest's parent directory is named LocalMachine, then publishing will likely succeed, showing a directory structure like the following:

 ProjectRoot

| -- LocalMachine

 | -- LocalMachine.psd1

 | -- LocalMachine.psm1

 Once published, a nupkg file will be created in the PSLocal directory, like in this example:

 PS> Get-ChildItem ~\PSLocal

 Directory: C:\Users\Chris\PSLocal

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 11/04/2021 12:00 3856 LocalMachine.2.0.0.nupkg

 A versioned directory is also permitted, provided the parent of that is named after the module. This is part of the side-by-side versioning support introduced with PowerShell 5.0.

 Publishing and side-by-side versioning

 Before PowerShell 5, only one version of a module could be installed under each module path. The content of a Modules directory was as shown below, which is like the structure used in the project repository:

 Modules

| -- LocalMachine

 | -- LocalMachine.psd1

 | -- LocalMachine.psm1

 Side-by-side versioning stores each version of a module in a versioned directory:

 Modules

| -- LocalMachine

 | -- 1.0.0

 | -- LocalMachine.psd1

 | -- LocalMachine.psm1

 This allows more than one version of a module to be installed. Commands such as Import-Module include parameters used to select a version.

 This affects publishing a module in that a versioned directory is also permitted as the value for the Path parameter of Publish-Module. That is, if the project were laid out as the following illustrates:

 ProjectRoot

| -- LocalMachine

 | -- 1.0.0

 | -- LocalMachine.psd1

 | -- LocalMachine.psm1

 Then the following command would succeed if executed from the ProjectRoot directory:

 $params = @{

 Path = '.\LocalMachine\1.0.0'

 Repository = 'PSLocal'

}

Publish-Module @params

 Embedding a version number as shown in the previous example will satisfy the path constraint for Publish-Module, but it is an unlikely directory structure to use when writing a module.

 The LocalMachine module only includes three functions and a module manifest at this point. As the module grows in complexity, attempting to keep writing the module in a single file becomes more difficult.

 Multi-file module layout

 Multi-file layouts typically aim to split the content of a project up into smaller and easier to maintain files. The most common strategy is to create one file for each function, class, or enumeration.

 Files are categorized and grouped together to make it easier to find parts of the module. For example, the LocalMachine module might split up as follows:

 ProjectRoot

| -- LocalMachine

 | -- public

 | | -- Get-ComputerDescription.ps1

 | | -- Set-ComputerDescription.ps1

 |

 | -- private

 | | -- GetRegistryParameter.ps1

 | | -- TestComputerDescriptionValue.ps1

 |

 | -- LocalMachine.psd1

 | -- LocalMachine.psm1

 When split like this, LocalMachine.psm1 needs to change to load the content from those separate files.

 Dot sourcing module content

 Dot sourcing is used to load the content of a target file into the current scope. If used inside the psm1 file, each individual file will be loaded into the same scope as the psm1 file.

 When the psm1 file runs, the $PSScriptRoot variable (introduced in PowerShell 3) will be set to the directory the psm1 file is saved in. This can be used to create an expression to find the files that make up the module content:

 'public', 'private' |

 Resolve-Path -Path $PSScriptRoot -ChildPath { $_ } |

 Get-ChildItem -Recurse -File -Filter *.ps1

 Note that this cannot be run outside of a script (or script module); the $PSScriptRoot variable will not exist.

 Getting the module base

 $PSScriptRoot is specific to the file it is used in. Therefore, if one of the dot sourced files from a sub-directory requires access to the module base directory, it is less useful.

 Instead, a property of the reserved variable, $MyInvocation, can be used from any script or function within a module to get the folder for the module manifest file:

 $MyInvocation.MyCommand.Module.ModuleBase

 Each of the discovered files needs to be dot sourced. You can use the result of the preceding command in a loop or with ForEach-Object:

 'public', 'private' |

 Resolve-Path -Path $PSScriptRoot -ChildPath { $_ } |

 Get-ChildItem -Recurse -File -Filter *.ps1 |

 ForEach-Object {

 . $_.FullName

 }

 Explicitly naming the directories at the top level, that is, public and private, ensures that some control is maintained over the loading order of the parts of the module. For functions, this is unlikely to be required, but if classes are introduced, the order may become important.

 This approach has a small risk in that it will load any other ps1 files present in the module directory regardless of whether they belong to the module.

 An alternative, but a higher maintenance approach is to name the files to import instead of allowing any file at all to load. For example:

 $private = 'GetRegistryParameter'

foreach ($item in $private) {

 . '{0}\private\{1}.ps1' -f $PSScriptRoot, $item

}

$public = @(

 'Get-ComputerDescription'

)

foreach ($item in $public) {

 . '{0}\public\{1}.ps1' -f $PSScriptRoot, $item

}

Export-ModuleMember -Function $public

 With this version, module content is loaded with an explicit name. Additional files that are erroneously placed in the module directory are not processed.

 Dot sourcing module content is useful when a module is being developed. It allows a developer to realize the benefits of having module content split into separate files: content is easier to find, files are easier to read, and when source control is in use, changes are easier to review.

 Conversely, modules split into lots of files are a little slower to load; potentially a lot slower if code signing is used. Code signing itself is beyond the scope of this chapter as few publicly available modules are signed. The topic is explored in the about_Signing help topic.

 Merging module content

 Merging module content using a build process of some kind offers the best of both worlds. The module is split into files, making it easy to write and edit; the module is merged into a single file, making it quick to load and easy to sign.

 The ModuleBuilder module is capable of merging module content into a single file. The ModuleBuilder module requires a build.psd1 file in the root of the module (adjacent to LocalMachine.psd1). The build.psd1 file does not need to contain more than an empty Hashtable; it can be used to customize the merge process.

 The following example instructs Build-Module to place merged content in a build directory and includes a versioned directory that might be used with Publish-Module:

 @{

 ModuleManifest = 'LocalMachine.psd1'

 OutputDirectory = '../build'

 VersionedOutputDirectory = $true

}

 With the file present, you can use the following command to merge the module content:

 Install-Module ModuleBuilder -Scope CurrentUser

Build-Module -SourcePath .\LocalMachine

 If the command is run from the same directory as build.psd1, the SourcePath argument can be omitted. For example:

 Set-Location .\LocalMachine

Build-Module

 The resulting module file is placed in the output directory under the project directory. The output path is configurable.

 ModuleBuilder will generate a new module manifest based on the existing manifest. It will update FunctionsToExport based on the content of the public directory, and it will fill AliasesToExport if any of the commands use aliases.

 As a module grows in complexity, it may be desirable to perform additional tasks during the build step. For example, you might add extra metadata to the module manifest, run tests, regenerate help files, or publish the module.

 ModuleBuilder and DSC resources

 ModuleBuilder will, by default, merge content from a subdirectory named classes into the generated root module. However, ModuleBuilder will not update the DscResourcesToExport property in the module manifest.

 The classes directory in the module contains a version of the DSC class created in Chapter 19, Classes and Enumerations. The simplified version of the class is available on GitHub: https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Fourth-Edition/blob/master/Chapter20/LocalMachine/MultiFileWithModuleBuilder/LocalMachine/classes/ComputerDescription.ps1.

 It is possible to dynamically update DscResourcesToExport but finding the resources in the module requires an advanced technique. The following snippet uses the Abstract Syntax Tree or AST, which is explored in more detail in Chapter 21, Testing.

 The snippet is saved in a build.ps1 file in the preceding repository in the MultiFileWithModuleBuilder directory, the project root for this module layout. The build.ps1 file runs Build-Module and then updates the missing information in the module manifest based on the search below. The Update-ModuleManifest command from PowerShellGet is used to fill in the missing values in the manifest.

 The snippet can be run from the MultiFileWithModuleBuilder directory:

 using namespace System.Management.Automation.Language

Find the root module

$rootModulePath = @{

 Path = $pwd

 ChildPath = 'build***.psm1'

}

$rootModule = Join-Path @rootModulePath | Resolve-Path

These values do not need to be captured for this search process

$tokens = $errors = $null

$ast = [Parser]::ParseFile(

 $rootModule,

 [ref]$tokens,

 [ref]$errors

)

$dscResourcesToExport = $ast.FindAll({

 param ($node)

 $node -is [TypeDefinitionAst] -and

 $node.IsClass -and

 $node.Attributes.TypeName.FullName -contains 'DscResource'

}, $true).Name

 The preceding code reads the content of the psm1 file generated by ModuleBuilder, parses that file, and searches for every PowerShell class that has the DscResource attribute. It outputs the names of the classes, which can then be used with the Update-ModuleManifest command:

 $moduleManifestPath = @{

 Path = $pwd

 ChildPath = 'build***.psd1'

}

Find the module manifest

$moduleManifest = Join-Path @moduleManifestPath |

 Get-Item |

 Where-Object { $_.BaseName -eq $_.Directory.Parent.Name }

$updateParams = @{

 Path = $moduleManifest

 DscResourcesToExport = $dscResourcesToExport

}

Update-ModuleManifest @updateParams

 The technique above is complex but shows how PowerShell can be used to create a generic process that can be used to work on different kinds of modules without building a specialized process every time.

 Module scope

 Script modules loaded from psm1 files have a shared scope that you can access using the $Script: scope modifier.

 You can create variables in the module scope, which is the same as the script scope. Functions within the module may consume those variables. You can create such variables in the root module or when a command is run.

 Helper functions can be created to provide obvious access to the variable content.

 This approach is illustrated in the following example. This pattern can be used for modules that interact with services that require a connection or authentication. For example, a REST web service might require an explicit authentication step to acquire a time-limited token or key.

 First, a function styled like the following Connect-Service function establishes a script-scoped variable. The connection can capture an authentication token rather than representing a truly connected service (for instance, a connection to an SQL server). The implementation of the command depends on the needs of the service and the module:

 function Connect-Service {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [String]$Server

)

 $Script:connection = [PSCustomObject]@{

 Server = $Server

 PSTypeName = 'ServiceConnectionInfo'

 }

}

 You can create a command to allow either another command in the module or the end user to get the stored connection object:

 function Get-ServiceConnection {

 [CmdletBinding()]

 param ()

 if ($Script:connection) {

 $Script:connection

 } else {

 throw [InvalidOperationException]::new(

 'Not connected to the service'

)

 }

}

 Finally, the stored connection can be used by another function in the module to carry out the actions it needs:

 function Get-ServiceObject {

 [CmdletBinding()]

 param (

 [PSTypeName('ServiceConnectionInfo')]

 $Connection = (Get-ServiceConnection)

)

}

 Defining the connection as a parameter allows the user of the function to provide an explicit connection if more than one connection is to be used. The Connect-Service function would have to be adjusted to accommodate such a scenario.

 Accessing module scope

 All functions and classes within a module can access script-scoped variables by using the scope modifier.

 The script scope of a module can be accessed from outside the module to aid debugging by using the call operator.

 The following snippet is used to demonstrate accessing module scope. The module consists of one public function, one private function, and a module-scoped variable.

 The module is created in memory using the New-Module command, which avoids the need to create a file to demonstrate the feature. Note that the newly created module is piped to Import-Module, which ensures the module is accessible after import using Get-Module:

 New-Module SomeService {

 function GetServiceConnection {

 [CmdletBinding()]

 param ()

 $Script:connection

 }

 function Connect-Service {

 [CmdletBinding()]

 param (

 [String]$Name

)

 $Script:connection = $Name

 }

 $Script:connection = 'DefaultConnection'

 Export-ModuleMember -Function Connect-Service

} | Import-Module

 By default, only the Connect-Service function is available, as shown here:

 PS> Get-Command -Module SomeService

CommandType Name Version Source

----------- ---- ------- ------

Function Connect-Service 0.0 SomeService

 The value of the script-scoped connection variable may be retrieved as follows. The module used in this manner must be imported prior to use:

 PS> & (Get-Module SomeService) { $connection }

DefaultConnection

 This technique can be used with any module, but it likely only makes sense when used with a script module (or a manifest module that includes script modules).

 If the Connect-Service command is used, the value returned by the preceding command will change. The same approach may be used to interact with functions that are not normally exported by the module. For example, the GetServiceConnection function can be called:

 & (Get-Module SomeService) { GetServiceConnection }

 Finally, as the command is executing in the scope of the module, this technique may be applied to list the commands within the module, as follows:

 PS> & (Get-Module SomeService) { Get-Command -Module SomeService }

CommandType Name Version Source

----------- ---- ------- ------

Function Connect-Service 0.0 SomeService

Function GetServiceConnection 0.0 SomeService

 This technique is useful when debugging modules that heavily utilize module scope.

 Module scope is also used when creating classes and enumerations within a module.

 Modules, classes, and enumerations

 PowerShell classes and enumerations are not exported from a module and are not made available to an end user when Import-Module is used, meaning they cannot be used outside of the module scope by default.

 Classes and enumerations are only available outside of the module scope if a using module statement is used.

 You can use classes as return values from functions within a module without changing scope. Enumeration values can be supplied as arguments for function parameters via the value name without needing direct access to the enumeration type. This is shown in the following example:

 New-Module ModuleWithEnum {

 enum ParameterValues {

 ValueOne

 ValueTwo

 }

 function Get-Something {

 [CmdletBinding()]

 param (

 [ParameterValues]$Parameter

)

 }

} | Import-Module

Get-Something -Parameter ValueOne

 The preceding Get-Something function offers tab completion with names from the enumeration. A string, such as ValueOne, can refer to a value in the enumeration. The enumeration itself does not have to be made available to the global (or the caller) scope.

 An instance of a PowerShell class can be returned as objects from functions within a module. This is shown in the following example:

 New-Module ModuleWithClass {

 class ModuleClass {

 [string] $Property = 'value'

 }

 function Get-Something {

 [ModuleClass]::new()

 }

} | Import-Module

 Running the Get-Something command will show that it returns an instance of the class:

 PS> Get-Something

Property

value

 However, an instance of the class cannot be created in the global scope by default:

 PS> [ModuleClass]::new()

InvalidOperation: Unable to find type [ModuleClass].

 The using module is required to directly work with a class inside a module. Unfortunately, this is not possible with a module created by New-Module. The content below should be saved into a ModuleWithClass.psm1 file so it can be imported:

 @'

class ModuleClass {

 [string] $Property = 'value'

}

function Get-Something {

 [ModuleClass]::new()

}

'@ | Set-Content -Path ModuleWithClass.psm1

 Once the file is created, the module can be imported with a using module statement.

 using module .\ModuleWithClass.psm1

 The using module statement can import either a module using a path or a module by name. Once the module has been imported this way, you can use the class:

 PS> [ModuleClass]::new()

Property

value

 It is possible to work around this limitation by moving class definitions into ScriptsToProcess. This is explored in the next section.

 Initializing and removing modules

 The content of the root module executes every time a module is imported. You can use a root module file to perform initialization steps, for example, initializing a cache, importing static data, or setting a default configuration.

 These steps are extra code that you must add to the root module at the beginning or end of the file.

 In some cases, it is desirable to execute actions before a module is imported or when a module is removed.

 You can use the ScriptsToProcess property in a module manifest to execute code in the caller scope before a module is imported.

 The ScriptsToProcess property

 You can use the ScriptsToProcess property in the module manifest to run scripts in the caller scope before importing the module. The caller is the entity importing the module; if that is an end user in the global scope, then ScriptsToProcess is executed in the global scope. If the module is imported by another script, ScriptsToProcess is executed in that script scope.

 There are no limitations on what actions can be performed in ScriptsToProcess, but it is important to remember that it affects the global scope. Using the Remove-Module command will not remove content added to the caller scope.

 The ScriptsToProcess property can be used, or abused, to make classes available to a module user without requiring the use of the using module.

 Since ScriptsToProcess acts in the caller scope, this is not always ideal. The following snippet sets up a module with a class in a script that is executed in the caller scope to demonstrate this limitation:

 @'

class ModuleClass {

 [string] $Property = 'value'

}

'@ | Set-Content -Path 'Script.ps1'

@'

function Get-Something {

 [ModuleClass]::new()

}

'@ | Set-Content -Path Module.psm1

$manifestParams = @{

 Path = 'Module.psd1'

 RootModule = 'Module.psm1'

 ScriptsToProcess = 'Script.ps1'

}

New-ModuleManifest @manifestParams

 You can import this module in the current scope to use the class:

 PS> Import-Module -Name .\Module.psd1

PS> [ModuleClass]::new()

Property

value

 PowerShell must be restarted to show the change in behavior when running the same command inside a function:

 function Import-Something {

 Import-Module -Name .\Module.psd1 -Scope Global

}

 Running Import-Something will, as the command says, import the module in the global scope. However, ScriptsToProcess still executes in the caller scope, that is, the scope of the function. Therefore, the class, exposed only via ScriptsToProcess, is still not available in the global scope, as the following shows:

 PS> Import-Something

PS> Get-Module Module

ModuleType Version PreRelease Name ExportedCommands

---------- ------- ---------- ---- ----------------

Script 0.0.1 Module Get-Something

PS> [ModuleClass]::new()

InvalidOperation: Unable to find type [ModuleClass].

 ScriptsToProcess can be useful in the right circumstances, but it is not a fix for every problem with module content.

 Remove-Module will attempt to remove module content from the session. If explicit actions are required when a module is removed, the OnRemove event can be used.

 The OnRemove event

 The OnRemove event is raised when you use Remove-Module. Any script block assigned to the event as a handler will be invoked. The event handler may be used to trigger a cleanup of the artifacts created by the module (if required).

 The ModuleInfo object provides access to the OnRemove event handler via the $executionContext variable when it is used in the psm1 file:

 $executionContext.SessionState.Module.OnRemove

 The following module creates a file named log.txt when the module is imported. An OnRemove handler is added to the module to attempt to release a lock created by the StreamWriter on the file when the module is removed:

 @'

using namespace System.IO

$path = Join-Path $PSScriptRoot -ChildPath 'OnRemove.log'

$stream = [StreamWriter][File]::OpenWrite($path)

$stream.WriteLine('Initialising module')

$executionContext.SessionState.Module.OnRemove = {

 $stream.WriteLine('Closing log')

 $stream.Flush()

 $stream.Close()

}

'@ | Set-Content OnRemove.psm1

 The file is created when the module is imported, and a StreamWriter is created:

 PS> Import-Module -Name .\OnRemove.psm1

PS> Get-ChildItem -Path OnRemove.log

 Directory: C:\Workspace

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 17/04/2021 10:19 0 OnRemove.log

 Commands such as Get-Content cannot read the file; it is locked by the StreamWriter.

 PS> Get-Content .\OnRemove.log

Get-Content: The process cannot access the file 'C:\Workspace\OnRemove.log' because it is being used by another process.

 Running Remove-Module triggers the OnRemove event. The OnRemove event writes one final line, flushes the buffer (StreamWriter does not immediately write to the file), and closes the stream.

 Once the stream is closed, Get-Content is able to read the file content:

 PS> Get-Content -Path OnRemove.log

Initialising module

Closing log

 This event only runs when Remove-Module is used; it does not trigger if the PowerShell console is closed. In this case, the only difference is that the Closing log line is not written.

 Summary

 Modules are an important part of PowerShell as they encapsulate related functions (and other content). You can publish modules to public repositories such as the PowerShell Gallery, or any internal PowerShell repositories that may be in use.

 Module layout in PowerShell is flexible beyond the creation of a psm1 file (or a dll file in the case of a binary module).

 You can optionally include a psd1 file to describe information about the module, including versions, what should be made available to anyone importing the module, and other metadata such as project information.

 Multi-file module layouts are common as they allow authors to manage content in separate files rather than a single monolithic root module. Some module authors choose to merge content into a single file as part of a publishing process, while others are happy to load individual files via the root module.

 You can use module scope to store the information a module needs to work; for example, authentication tokens used with a remote service.

 You can use PowerShell classes within a module and return instances of classes via functions to users of a module. Directly using classes within a module requires the use of the using module statement.

 You can perform actions before importing a module via the ScriptsToProcess property in a module manifest and when removing a module using Remove-Module via the OnRemove event.

 In the next chapter, Chapter 21, Testing, you'll explore static analysis and unit testing in PowerShell.

 21

 Testing

 The goal of testing in PowerShell is to ensure that the code works as intended. Automatic testing ensures that this continues to be the case as code is changed over time.

 Testing often begins before code is ready to execute. PSScriptAnalyzer can look at code and provide advice on possible best practices that help prevent common mistakes. PSScriptAnalyzer uses what is known as static analysis.

 Unit testing, the testing of the smallest units of code, starts when the code is ready to execute. Tests can be created before the code when following practices such as Test-Driven Development (TDD). A unit test focuses on the smallest parts of a module, the functions and classes. A unit test strives to validate the inner workings of a unit of code, ensuring that conditions evaluate correctly, that it terminates or returns where it should, and so on.

 Testing might extend into systems and acceptance testing, although this often requires a test environment to act against. Acceptance testing may include black-box testing, used to verify that a command accepts known parameters and generates an expected set of results. Black-box testing, as the name suggests, does not concern itself with understanding how a block of code arrives at a result.

 This chapter covers the following topics:

 	Static analysis

 	Testing with Pester

 Before beginning with the main topics of the chapter, there are some technical requirements to consider.

 Technical requirements

 The following modules are used in this chapter:

 	PSScriptAnalyzer 1.19.1

 	Pester 5.1.1

 	ShowPSAst 1.0

 Static analysis

 Static analysis is the process of evaluating code without executing it. PSScriptAnalyzer uses static analysis.

 In PowerShell, static analysis most often makes use of an Abstract Syntax Tree (AST): a tree-like representation of a piece of code. In PowerShell, an element of a script is represented by a node in the syntax tree. AST was introduced with PowerShell 3.

 The largest elements represent the script itself, the root of the tree in effect. Each element added to the script is represented by a child node. For example, the parameter block is described by a ParamBlockAst object, an individual parameter by a ParameterAst, and so on.

 Evaluating elements of the AST is the basis for many of the rules implemented in PSScriptAnalyzer.

 PSScriptAnalyzer

 The PSScriptAnalyzer module is used to run a series of rules against a file or string containing a script. You can install the tool can using the following code:

 Install-Module PSScriptAnalyzer

 You can use PSScriptAnalyzer to inspect a script with the Invoke-ScriptAnalzyer command. For example, the tool will raise one error and one warning for the following script:

 @'

[CmdletBinding()]

param (

 [Parameter(Mandatory)]

 [String]$Password

)

$credential = [PSCredential]::new(

 '.\user',

 ($Password | ConvertTo-SecureString -AsPlainText -Force)

)

$credential.GetNetworkCredential().Password

'@ | Set-Content Show-Password.ps1

 When Invoke-ScriptAnalyzer is run on the file, two rule violations are shown, one for the use of ConvertTo-SecureString, and one for the $Password parameter using plain text:

 PS> Invoke-ScriptAnalyzer .\Show-Password.ps1 | Format-List

RuleName : PSAvoidUsingConvertToSecureStringWithPlainText

Severity : Error

Line : 9

Column : 18

Message : File 'Show-Password.ps1' uses ConvertTo-SecureString

 with plaintext. This will expose secure information.

 Encrypted standard strings should be used instead.

RuleName : PSAvoidUsingPlainTextForPassword

Severity : Warning

Line : 3

Column : 5

Message : Parameter '$Password' should use SecureString,

 otherwise this will expose sensitive information. See

 ConvertTo-SecureString for more information.

 This is one of many best-practice style rules that you can use to test a script.

 Configurable rules

 PSScriptAnalyzer includes 64 default rules. Most of these rules are automatically evaluated when a script is analyzed. Several rules require configuration before they can be used; these are not enabled by default.

 The following command shows the rules that must be explicitly configured before they can be applied:

 Get-ScriptAnalyzerRule | Where-Object {

 $_.ImplementingType.BaseType.Name -eq 'ConfigurableRule'

}

 Conversely, the rules that are evaluated by default (without extra configuration) are shown with the following command:

 Get-ScriptAnalyzerRule | Where-Object {

 $_.ImplementingType.BaseType.Name -ne 'ConfigurableRule'

}

 Configurable rules may be configured using either a settings file or a Hashtable that describes the configuration for a rule. The following example shows how to use the PSUseCorrectCasing rule against a script read from a string:

 $params = @{

 ScriptDefinition = 'get-process'

 Settings = @{

 Rules = @{

 PSUseCorrectCasing = @{

 Enable = $true

 }

 }

 }

}

Invoke-ScriptAnalyzer @params

 Once the configuration for the rule is added, the rule will execute according to the settings for that rule. The settings for the rule are documented in the PSScriptAnalyzer repository. The document for PSUseCorrectCasing is: https://github.com/PowerShell/PSScriptAnalyzer/blob/master/RuleDocumentation/UseCorrectCasing.md.

 Note that the rule documentation omits the PS prefix on the rule name. Several other rules, such as PlaceOpenBrace require configuration in a similar manner.

 PSScriptAnalyzer includes several built-in settings files, which will tab complete when using the Settings parameter. For example:

 Invoke-ScriptAnalyzer .\Show-Password.ps1 -Settings CodeFormatting

 The settings used by each are not documented in Help for the module, but the content of each file can be viewed in the module directory. You can either use these files or as an example to build a customized settings file.

 You can view the settings files shipped with PSScriptAnalyzer on GitHub: https://github.com/PowerShell/PSScriptAnalyzer/tree/master/Engine/Settings.

 It is sometimes hard to meet the requirements of all rules in PSScriptAnalyzer. Rules can be suppressed globally in the settings file, or rules can be suppressed in code.

 Suppressing rules

 It is rarely realistic to expect any significant piece of code to pass all the tests that PSScriptAnalyzer will throw at it.

 Individual tests can be suppressed at the function, script, or class level. The following demonstrative function creates a PSCustomObject:

 @'

function New-Message {

 [CmdletBinding()]

 param (

 $Message

)

 [PSCustomObject]@{

 Name = 1

 Value = $Message

 }

}

'@ | Set-Content New-Message.ps1

 Running PSScriptAnalyzer against a file containing the function will show the following warning:

 PS> Invoke-ScriptAnalyzer -Path .\New-Message.ps1 | Format-List

RuleName : PSUseShouldProcessForStateChangingFunctions

Severity : Warning

Line : 1

Column : 10

Message : Function 'New-Message' has verb that could change

 system state. Therefore, the function has to support

 'ShouldProcess'.

 Given that this function creates a new object in the memory, and does not change the system state, the message might be suppressed. This is achieved by adding a SuppressMessage attribute before a param block:

 function New-Message {

 [Diagnostics.CodeAnalysis.SuppressMessage(

 'PSUseShouldProcessForStateChangingFunctions',

 ''

)]

 [CmdletBinding()]

 param (

 $Message

)

 [PSCustomObject]@{

 Name = 1

 Value = $Message

 }

}

 PSScriptAnalyzer leverages an existing class from .NET to express suppressed rules. Visual Studio Code will offer to create an attribute when you start to type "suppress." The second argument, set to an empty string in the preceding example, is required but will be empty in most cases.

 Once added, Invoke-ScriptAnalyzer will cease to warn of the rule failure for this function only.

 AST is the basis for the majority of the rules used by PSScriptAnalyzer.

 Using AST

 The AST in PowerShell is available for any script block; an example is as follows:

 PS> { Write-Host 'content' }.Ast

Attributes : {}

UsingStatements : {}

ParamBlock :

BeginBlock :

ProcessBlock :

EndBlock : Write-Host 'content'

DynamicParamBlock :

ScriptRequirements :

Extent : { Write-Host 'content' }

Parent : { Write-Host 'content' }

 The object returned describes each of the elements of the script (or script block in this case). It shows that the command in the script block is in the end block, the default block.

 The script block that defines a function can be retrieved via Get-Command:

 function Write-Content { Write-Host 'content' }

(Get-Command Write-Content).ScriptBlock

 Or the script block defining a function can be retrieved using Get-Item:

 function Write-Content { Write-Host 'content' }

(Get-Item function:\Write-Content).ScriptBlock

 The preceding approaches have one thing in common, PowerShell is immediately parsing the script and will stop if there are any parser errors. The impact of this can be seen if an error is inserted into a script block; the syntax tree will not be accessible:

 PS> {

 Write-Host

 --String--

}

ParserError:

Line |

 3 | --String--

 | ~

 | Missing expression after unary operator '--'.

 To allow access to the AST, regardless of errors in the script, you can use the Parser class to read content either from a file or from a string.

 The Parser class is accessed under the System.Management.Automation.Language namespace. The following example uses the ParseInput method to read PowerShell content from a string:

 using namespace System.Management.Automation.Language

$script = @'

Write-Host

--String--

'@

$ast = [Parser]::ParseInput($script, [ref]$null, [ref]$null)

 The ParseFile method can be used in place of ParseInput. The same arguments are used but the string containing the script can be replaced for a path to a file (a full path, not a relative path).

 Two of the method arguments to the ParseInput method in the previous example are set as references to $null. This essentially means they are ignored at this point. Ordinarily, the first would be used to fill an existing array of tokens, the second an array of errors. Tokens are explored in more detail later in this section.

 The errors array reference can be used to capture parse-time errors, such as the error shown when attempting to create the script block.

 using namespace System.Management.Automation.Language

$errors = $tokens = @()

$script = @'

Write-Host

--String--

'@

$ast = [Parser]::ParseInput($script, [ref]$tokens, [ref]$errors)

 You can view the content of the array after the ParseInput method has completed:

 PS> $errors | Format-List

Extent :

ErrorId : MissingExpressionAfterOperator

Message : Missing expression after unary operator '--'.

IncompleteInput : False

Extent : String--

ErrorId : UnexpectedToken

Message : Unexpected token 'String--' in expression or statement.

IncompleteInput : False

 The original script block only showed one error, but parsing stopped at the first error. This approach shows all syntax errors. If attempting to fix such errors, a top-down approach is required; one syntax error can easily cause another.

 Returning to the AST object, the object represents a tree, therefore it is possible to work down through the list of properties getting to more specific elements of the script. Each element has a different type. The following example includes ScriptBlockAst, StatementAst, NamedBlockAst, PipelineAst, and CommandAst (and more as the more detailed elements of the script are explored).

 The following example gets the CommandAst for the Get-Process command. That is the part of the script that represents just the Get-Process -ID $PID:

 $ast = { Get-Process -ID $PID | Select-Object Name, Path }.Ast

$ast.EndBlock.Statements[0].PipelineElements[0]

 All named blocks, such as the EndBlock here, can contain zero or more statements. Each statement can contain one or more pipeline elements. The Select-Object command in this example is in index 1 of the PipelineElements property.

 You can use a module called ShowPSAst to visualize the tree; the module uses Windows Forms to draw a GUI and is therefore only compatible with Windows systems.

 Visualizing the AST

 The ShowPSAst module, available in the PowerShell Gallery, may be used to visualize the AST tree. Install the module with:

 Install-Module ShowPSAst -Scope CurrentUser

 Once it's installed, you can use the Show-Ast command on a string, a function, a module, a script block, and so on. Running the following command will show the AST tree in an Ast Explorer window.

 Show-Ast 'Get-Process -ID $PID | Select-Object Name, Path'

 Figure 21.1 shows the explorer window:

 [image:]

 Figure 21.1: The Ast Explorer window

 This tiny script with just one short line of code has 12 separate AST nodes in the tree. Attempting to access individual elements of a script by expanding each property and array index quickly becomes impractical in large scripts.

 It is possible to search the AST tree using Find and FindAll methods on any AST node.

 Searching the AST

 Searches against the AST can use the Find, which finds the first match only, and FindAll methods of any AST node. The methods find descendant nodes of the current node. Therefore, a search on a PipelineAst instance will only find results beneath that node.

 An earlier example found the CommandAst for Get-Process by expanding properties in the AST:

 $ast = { Get-Process -ID $PID | Select-Object Name, Path }.Ast

$ast.EndBlock.Statements[0].PipelineElements[0]

 This can be rewritten to use the Find method instead. The key to the Find method is a predicate. The predicate is a script block that returns true or false. Each node is tested against the predicate and returned if the result is true.

 The simplest predicate is therefore as follows:

 $predicate = { $true }

 When used with the Find method, the first matching node is returned. This will be the ScriptBlockAst, the top-most node in the tree. The second argument states whether the Find (or FindAll) method should search nested script blocks. More on this shortly:

 using namespace System.Management.Automation.Language

$ast = { Get-Process -ID $PID | Select-Object Name, Path }.Ast

$predicate = { $true }

 Find will show the ScriptBlockAst object and is therefore equal to the content of the $ast variable:

 PS> $ast.Find($predicate, $true)

Attributes : {}

UsingStatements : {}

ParamBlock :

BeginBlock :

ProcessBlock :

EndBlock : Get-Process -ID $PID | Select-Object Name, Path

DynamicParamBlock :

ScriptRequirements :

Extent : { Get-Process -ID $PID | Select-Object Name,

 Path }

Parent : { Get-Process -ID $PID | Select-Object Name,

 Path }

 Finding the node for the Get-Process command requires a more complex predicate. Each node in the AST is passed as an argument into the predicate. This can either be accessed using $args[0] or by defining a parameter to accept that value (as the following code shows). The AST type required is CommandAst. CommandAst has a GetCommandName method, which can be used to separate the command name from the arguments. Here is the updated predicate:

 using namespace System.Management.Automation.Language

$ast = { Get-Process -ID $PID | Select-Object Name, Path }.Ast

$predicate = {

 param ($node)

 $node -is [CommandAst] -and

 $node.GetCommandName() -eq 'Get-Process'

}

 This time the result of the search is the node describing Get-Process:

 PS> $ast.Find($predicate, $true)

CommandElements : {Get-Process, ID, $PID}

InvocationOperator : Unknown

DefiningKeyword :

Redirections : {}

Extent : Get-Process -ID $PID

Parent : Get-Process -ID $PID | Select-Object Name, Path

 As shown in the preceding example, each AST node returns an Extent property. The Extent property describes information about the position of a node within the larger script, such as where it begins and ends.

 PS> $ast.Find($predicate, $true).Extent

File :

StartScriptPosition : System.Management.Automation.Language.Int...

EndScriptPosition : System.Management.Automation.Language.Int...

StartLineNumber : 1

StartColumnNumber : 10

EndLineNumber : 1

EndColumnNumber : 30

Text : Get-Process -ID $PID

StartOffset : 9

EndOffset : 29

 Line and column numbers may vary depending on the source script.

 This information can potentially be used to selectively edit a script if required. This technique is used by several commands in the PSKoans module (https://github.com/vexx32/PSKoans) to replace or update content in existing scripts.

 As mentioned at the start of this section, searches like this are the basis for many of the rules in PSScriptAnalyzer. PSScriptAnalyzer supports a second type of rule, a rule based on tokens within a script.

 Tokenizer

 In addition to the AST, PowerShell can also convert a script into a series of tokens, each representing an element of a script with no hierarchy.

 One of the advantages of the tokenizer is that it will return tokens representing comments, whereas the AST ignores comments entirely:

 using namespace System.Management.Automation.Language

$errors = $tokens = @()

$script = @'

A short script

Write-Host 'Hello world'

'@

$ast = [Parser]::ParseInput($script, [ref]$tokens, [ref]$errors)

 Once executed, the tokens that make up the script can be examined. The first two tokens are shown here:

 PS> $tokens | Select-Object -First 2

Text : # A short script

TokenFlags : ParseModeInvariant

Kind : Comment

HasError : False

Extent : # A short script

Text :

TokenFlags : ParseModeInvariant

Kind : NewLine

HasError : False

Extent :

 Tokens are less useful than the AST when it comes to defining rules. The lack of context makes it more difficult to relate one token to another beyond the order in the array. Tokens might be used in a rule to validate the content of comments if necessary.

 The AST and tokens are used by PSScriptAnalyzer to implement rules.

 Custom script analyzer rules

 PSScriptAnalyzer allows custom rules to be defined and used. Custom rules might be used to test for personal or organization-specific conventions when striving for a consistent style; such conventions may not necessarily be widely adopted best practices, but instead locally established best practices.

 Script analyzer rules must be defined in a module psm1 file. The path to the module file may be passed in by using the CustomRulePath parameter or may be defined in a script analyzer configuration file.

 Creating a custom rule

 A script analyzer rule is a function within a module. The PSScriptAnalyzer module allows rules to be written to evaluate AST nodes or tokens.

 The name of the function is arbitrary. The community examples use the verb measure; however, the use of this verb is not mandatory and does not affect discovery. The community example is linked here for reference: https://github.com/PowerShell/PSScriptAnalyzer/blob/master/ScriptRuleDocumentation.md.

 The following examples use a much more lightweight format. This does not sacrifice functionality.

 The script analyzer engine examines each function in the custom rule module, looking for parameters with a particular naming style. If a parameter is found, the function is deemed to be a rule.

 If a rule is expected to act based on an AST node, the first parameter name must end with ast. The parameter must use one of the AST types, such as System.Management.Automation.Language.ScriptBlockAst.

 If a rule is expected to act based on a token, the first parameter name must end with token and must accept an array of tokens.

 AST-based rules

 Script analyzer rules are often simple; it is not always necessary for a rule to perform complex AST searches.

 The following example evaluates the named blocks dynamicparam, begin, process, and end. If one of the blocks is declared in a function, script, or script block, and it is empty, the rule will respond.

 The rule only accepts NamedBlockAst nodes, the smallest scope for the rule to effectively evaluate the script. The script analyzer only passes nodes of that type to the rule, and therefore, the rule itself does not have to worry about handling other node types or performing searches itself.

 The rule simply looks to see if the number of statements in the block is 0. If it is 0, then the rule triggers.

 The following rule is expected to be placed in a psm1 file. For the sake of this example, that file can be named CustomRules.psm1:

 using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic

using namespace System.Management.Automation.Language

function PSAvoidEmptyNamedBlocks {

 [CmdletBinding()]

 param (

 [NamedBlockAst]$ast

)

 if ($ast.Statements.Count -eq 0) {

 [DiagnosticRecord]@{

 Message = 'Empty {0} block.' -f $ast.BlockKind

 Extent = $ast.Extent

 RuleName = $myinvocation.MyCommand.Name

 Severity = 'Warning'

 }

 }

}

 The rule returns DiagnosticRecord when it is triggered. The record is returned by the script analyzer provided the rule is not suppressed. The next command shows the rule in action:

 @'

[CmdletBinding()]

param ()

begin { }

process { }

end {

 Write-Host 'Hello world'

}

'@ | Set-Content script.ps1

$params = @{

 Path = 'script.ps1'

 CustomRulePath = '.\CustomRules.psm1'

}

Invoke-ScriptAnalyzer @params

 The output from the command flags the begin and process blocks as they are empty:

 PS> Invoke-ScriptAnalyzer @params

RuleName Severity ScriptName Line Message

-------- -------- ---------- ---- -------

PSAvoidEmptyNamedBlocks Warning script.ps1 4 Empty Begin ...

PSAvoidEmptyNamedBlocks Warning script.ps1 5 Empty Process...

 Token-based rules are written in a similar manner.

 Token-based rules

 Rules based on tokens evaluate an array of tokens. The following example looks for empty single-line comments in a block of code. Comments are not a part of the syntax tree, so using tokens is the only option. This new rule can be added to the CustomRules.psm1 file created in the previous section:

 using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic

using namespace System.Management.Automation.Language

function PSAvoidEmptyComments {

 [CmdletBinding()]

 param (

 [Token[]]$token

)

 $ruleName = $myinvocation.MyCommand.Name

 $token.Where{

 $_.Kind -eq 'Comment' -and

 $_.Text.Trim() -eq '#'

 }.ForEach{

 [DiagnosticRecord]@{

 Message = 'Empty comment.'

 Extent = $_.Extent

 RuleName = $ruleName

 Severity = 'Information'

 }

 }

}

 As the name suggests, the rule will trigger when it encounters an empty line comment. This is demonstrated by the following example:

 @'

[CmdletBinding()]

param ()

#

Comment

Write-Host 'Hello world'

'@ | Set-Content script.ps1

 The output from Invoke-ScriptAnalyzer shows the line that failed:

 PS> $params = @{

>> Path = 'script.ps1'

>> CustomRulePath = '.\CustomRules.psm1'

>> }

PS> Invoke-ScriptAnalyzer @params

RuleName Severity ScriptName Line Message

-------- -------- ---------- ---- -------

PSAvoidEmptyComments Information script.ps1 4 Empty comment.

 More custom rules

 For more examples of custom rules, please see:

 https://github.com/indented-automation/Indented.ScriptAnalyzerRules

 PSScriptAnalyzer is a fantastic tool that can attempt to enforce a specific style or help fix common problems.

 Testing with Pester

 Pester is a framework for executing tests. It includes tools to define and execute test cases against anything that can be written in PowerShell.

 This chapter focuses on Pester 5, the latest major release. Pester 5 is not installed by default; Windows ships with Pester 3.4. This pre-installed version can be ignored:

 Install-Module Pester -Force -SkipPublisherCheck

 The -SkipPublisherCheck parameter is required as Pester has changed maintainer since the version shipped with Windows was released. The certificate issued to the pre-installed version differs from the certificate issued to the current version.

 You can use Pester to write tests for code and systems and everything in between. Pester is implemented as what is known as a Domain-Specific Language. It has specific functions that are implemented to behave like language keywords. For example, function is a language-specific keyword. Pester tests are written using PowerShell, but for the most part, the language, the keywords, and so on, are defined by and specific to Pester.

 The following example creates a test that asserts PowerShell 7 or greater should be in use. If the test runs in Windows PowerShell, the test will fail, and the results of that failure will be displayed to someone running the test. Pester tests must be saved in a file in Pester 5 so the following snippet saves content to a file before running Invoke-Pester:

 @'

Describe 'PS developer workstation' {

 It 'PowerShell 7 is installed' {

 $PSVersionTable.PSVersion |

 Should -BeGreaterOrEqual 7.0.0

 }

}

'@ | Set-Content workstation.tests.ps1

Invoke-Pester -Path workstation.tests.ps1

 The outcome of running the test is displayed in the console, although the results of the test are summarized by default. Times to perform discovery and execute tests may vary:

 PS> Invoke-Pester -Path workstation.tests.ps1

Starting discovery in 1 files.

Discovery finished in 5ms.

[+] C:\workspace\workstation.tests.ps1 91ms (2ms|86ms)

Tests completed in 93ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 Setting the -Output parameter to Detailed will show the results of each of the tests performed in the script. This test script only has one test. The difference is relatively small:

 PS> Invoke-Pester -Path workstation.tests.ps1 -Output Detailed

Starting discovery in 1 files.

Discovering in C:\workspace\workstation.tests.ps1.

Found 1 tests. 9ms

Discovery finished in 13ms.

Running tests from 'C:\workspace\workstation.tests.ps1'

Describing PS developer workstation

 [+]PowerShell 7 is installed 4ms (1ms|3ms)

Tests completed in 104ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 Tests must be saved to a file

 This section focuses on test file content and not on the process of saving that content to a file. Test content should be saved to a file and run in the same manner as the preceding examples.

 Note that the Invoke-Pester command specifically looks for .tests.ps1 in file names.

 The previous example uses three of the major keywords used in Pester:

 	Describe – Groups tests for a particular subject together

 	It – Defines a single test that should be executed

 	Should – Asserts what the value or result of an expression should be

 The condition used with the Should keyword simply states that the major version number should be 7 or greater.

 Testing methodologies

 Testing is a complex topic; it encompasses a wide range of different methodologies and concepts. The majority of these are beyond the scope of this chapter. Further reading is available on sites such as Wikipedia: https://en.wikipedia.org/wiki/Software_testing.

 Two methodologies are of interest in this chapter. They are:

 	Acceptance testing

 	Unit testing

 Acceptance testing is used to validate that the subject of the tests conforms to a pre-defined state. The test for the version of PowerShell at the start of this section might be part of an acceptance test for a developer workstation.

 Acceptance testing in relation to PowerShell development strives to test the outcome of actions performed by a command (or script) without having any knowledge of how that script works. Acceptance testing is, therefore, a form of black-box testing and requires a system that code can be run against.

 Unit testing aims to test the smallest units of code and is a form of white-box testing. The author of a unit test must be familiar with the inner workings of the subject of the tests.

 Unit testing is most relevant in PowerShell when testing that the components of a module behave as they are expected to behave; that the different paths through a function, based on if statements and loops, are used correctly. Unit testing does not require a live service to act on. External calls are mocked, a fake response is returned. Mocking is explored later in this chapter.

 The advantage of putting tests in code is that they can be run whenever the state of the subject changes. It is possible to continue to prove that the subject of a set of tests is working as expected.

 One of the most challenging aspects of any testing process is figuring out what should be tested.

 What to test

 When testing systems, or performing acceptance testing, the following are rough examples of things that might be tested:

 	Installed software packages

 	File system paths or environment variables

 	Application or service configuration

 	Responses from remote systems the subject is expected to interact with

 	Network access and network configuration.

 When testing a module, or performing unit testing, consider testing the following:

 	Parameters (and parameter binding)

 	Any complex conditions and branches (conditional statements and loops) in the code

 	Acceptance of different input or expected values, including complex parameter validation

 	Exit conditions, especially raised errors or exceptions

 When writing a unit test, resist the temptation to test other functions or commands called by the unit of code. A unit test is not responsible for making sure that every command that it calls works.

 How extensive tests should be is debatable. Enough to ensure the functionality of a given script or module is perhaps the only real definition.

 Code coverage is one of the measures that is often used. It is the percentage of code that is visited when executing a set of tests. Pester is capable of measuring code coverage. The details of this are shown later in this section. However, while this is an interesting indicator, it does not prove that code has been effectively tested.

 Perhaps the most important keywords in Pester are Describe, It, and Should. They are the backbone of any set of tests.

 Describing tests

 Pester includes keywords that are used to enclose and group tests together. This section explores the keywords that are used to enclose tests. They are:

 	Describe

 	Context

 	It

 The Describe and Context keywords are both used to enclose or group together sets of tests. The tests themselves are defined within an It statement.

 All test documents will include the Describe keyword and one or more It statements.

 About the Describe and Context keywords

 Describe is the top-most keyword used in a test document. It most often describes the subject of the tests.

 Context is essentially the same as Describe. It has the same capabilities and will contain one or more It statements. Context is typically used under Describe to group together small sets of tests, typically where the tests have a similar purpose or require similar start conditions.

 A test document might have a broadly defined subject, and several more specifically defined components. For example, a set of tests might be developed to describe the expected state of a developer workstation. The tests are broken down into more detailed sub-sections:

 Describe 'PS developer workstation' {

 Context 'PowerShell' {

 }

 Context 'Packages' {

 }

}

 The use of Context will become clear as tests grow in complexity and unit tests against PowerShell code are introduced later in this chapter.

 Describe, or each Context, can include one or more It blocks, which describe the expected outcome.

 About the It keyword

 The It keyword is used to define a single test. The test title should describe the purpose and potentially the expected outcome of the test:

 Describe 'PS developer workstation' {

 Context 'PowerShell' {

 It 'PowerShell 7 is installed' {

 }

 }

 Context 'Packages' {

 It 'git is installed' {

 }

 It 'Terraform is installed' {

 }

 }

}

 The It keyword will contain one or more assertions using the Should keyword.

 Should and assertions

 The Should keyword is used to assert the state of the thing it is testing.

 Should has 25 different parameter sets, one for each of the assertions it supports. The different assertions are documented in the Pester wiki along with an example: https://pester.dev/docs/assertions/assertions.

 The example used at the start of this section uses one of the possible assertions, the -BeGreaterOrEqual assertion. Assertions have unsurprising options for the most part. If testing a Boolean value, -BeTrue or -BeFalse are appropriate.

 Comparisons are achieved using -Be, -BeLessThan, -BeLessOrEqual, -BeGreaterThan, -BeGreaterOrEqual, and so on.

 The first of the tests, the test for the installation of PowerShell 7, can be changed to allow it to run in Windows PowerShell as well. The point is to prove the system is in the expected state, not that the current runtime is PowerShell 7. The second Context is temporarily removed to focus on this one assertion.

 Describe 'PS developer workstation' {

 Context 'PowerShell' {

 It 'PowerShell 7 is installed' {

 Get-Command pwsh -ErrorAction SilentlyContinue |

 ForEach-Object Version |

 Should -BeGreaterOrEqual '7.0.0'

 }

 }

}

 Testing for errors is perhaps one of the most complex assertions and benefits from more extensive exploration. You can use a Should -Throw assertion to test whether a specific error is raised (or not) when running a command.

 Testing for errors

 The -Throw assertion is used to test whether a block of code throws a terminating error such as one raised when ErrorAction is set to Stop or when the throw keyword is used.

 The assertion can be used for several of the tests above, but for the sake of variety, it is only used to test for the installation of Chocolatey, a package manager for Windows:

 Describe 'PS developer workstation' {

 Context 'PowerShell' {

 It 'PowerShell 7 is installed' {

 Get-Command pwsh -ErrorAction SilentlyContinue |

 ForEach-Object Version |

 Should -BeGreaterOrEqual '7.0.0'

 }

 }

 Context 'Packages' {

 It 'Chocolatey is installed' {

 { Get-Command choco -ErrorAction Stop } |

 Should -Not -Throw

 }

 }

}

 Notice how the expression being tested is defined as a script block, and that the script block is piped to the Should keyword.

 The assertion used in the preceding example expects there to be no error. There is therefore no need to test anything else about the error.

 If an error is expected to be thrown, then further tests might be beneficial. For example, attempting to divide 1 by 0 will raise an error:

 Describe Division {

 It 'Throws an error when 1 is divided by 0' {

 { 1/0 } | Should -Throw

 }

}

 This type of test is not specific; it does not differentiate between the actual problem and any other error that might occur. Changing the assertion, as the following shows, will still correctly identify that an error is thrown, but the error is no longer consistent with the descriptive name for the It statement:

 Describe Division {

 It 'Throws an error when 1 is divided by 0' {

 { throw } | Should -Throw

 }

}

 If this is saved to a division.tests.ps1 file, it can be run to show that the test passes:

 PS> Invoke-Pester -Path .\division.tests.ps1

Starting discovery in 1 files.

Discovery finished in 5ms.

[+] C:\workspace\division.tests.ps1 100ms (4ms|93ms)

Tests completed in 102ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 Adding the -ExpectedMessage parameter is one way to tackle this. Testing for a specific message will greatly improve the accuracy of the test:

 Describe Division {

 It 'Throws an error when 1 is divided by 0' {

 { 1/0 } | Should -Throw -ExpectedMessage 'Attempted to divide by zero.'

 }

}

 For the preceding exception, testing the message is potentially as good as it gets. However, since error messages are often written in a user's language, testing the message is a weak test as it demands the tests are run in a specific culture.

 The -Throw assertion allows both the error type and the fully qualified error ID to be tested instead. These are far more robust if the expression raising the error reveals them. The following example tests the fully qualified error ID:

 Describe ErrorID {

 It 'Raises an error with a fully-qualified error ID' {

 { Write-Error error -ErrorID SomeErrorID -ErrorAction Stop } |

 Should -Throw -ErrorId SomeErrorID

 }

}

 This type of testing is far more accurate, it may be possible to attribute the ErrorID to a single statement in the code being tested rather than testing for any error anywhere.

 It is frequently necessary to perform setup actions prior to executing tests. Pester includes several named blocks for this purpose.

 Iteration with Pester

 It is often desirable to repeat the same test or tests for a different subject. Pester offers two different styles of iteration:

 	The It keyword has the TestCases parameter

 	The Describe and Context keywords have the ForEach parameter

 The TestCases parameter for an It statement allows a single test to be executed against a set of predefined cases.

 Using the TestCases parameter

 The packages context of the "PS developer workstation" acceptance tests are a good candidate for test cases. A few packages were listed in the example context. The following tests assert that each of these should have been installed using Chocolatey, a package manager for Windows that can be downloaded from https://chocolatey.org.

 With Chocolatey, the installation of a package can be tested using the following command:

 choco list -e terraform -l -r

 If the exact package name (-e) is installed locally (-l) it will be included in the output from the command. The -r parameter is used to limit output to essential information only, in this case just the package name and version.

 The version of the installed package is not relevant as far as the following tests are concerned. The tests might be extended to ensure a specific version in a real-world implementation:

 Describe 'PS developer workstation' {

 Context 'Packages' {

 It 'Chocolatey is installed' {

 { Get-Command choco -ErrorAction Stop } |

 Should -Not -Throw

 }

 It '<Name> is installed' -TestCases @(

 @{ Name = 'terraform' }

 @{ Name = 'git' }

) -Test {

 choco list -e $Name -l -r | Should -Match $Name

 }

 }

}

 Each test case is defined as a Hashtable, and all keys in the Hashtable are available as variables inside the It statement automatically. This contrasts with Pester 4, which required a param block inside It.

 The keys in the Hashtable can be used in the It description by enclosing the name in < >.

 Pester allows the expansion of properties of values in the description. For instance, using <Name.Length> in the description would show the length of the string in the Name key. Not a very practical use in this case.

 The outcome of running the tests can be viewed by saving the previous example to a file, such as workstation.tests.ps1, and using Invoke-Pester:

 PS> Invoke-Pester -Path .\workstation.tests.ps1 -Output Detailed

Running tests from 'C:\workspace\workstation.tests.ps1'

Describing PS developer workstation

 Context Packages

 [+] Chocolatey is installed 20ms (15ms|5ms)

 [+] terraform is installed 802ms (799ms|3ms)

 [+] git is installed 786ms (786ms|1ms)

Tests completed in 1.79s

Tests Passed: 3, Failed: 0, Skipped: 0 NotRun: 0

 The preceding tests are executed against a single subject, the local machine. You can use the -ForEach parameter of Describe or Context to run a set of tests against more than one subject.

 Using the ForEach parameter

 The -ForEach parameter can be used to execute either a Describe or Context block against an array of values. Continuing with the theme of acceptance testing, it might be desirable to run a set of tests against several different servers.

 The following tests assert that the DNS service exists on a set of Windows servers. The names of the servers are made up. The tests will potentially work if a meaningful set of names is provided:

 Describe "DNS servers" -ForEach @(

 'dns01'

 'dns02'

) -Fixture {

 It "The DNS service is running on $_" {

 $params = @{

 ClassName = 'Win32_Service'

 Filter = 'Name="dns"'

 ComputerName = $_

 }

 Get-CimInstance @params | Should -Not -BeNullOrEmpty

 }

}

 The $_ variable used in the preceding example is created by Pester and is used to access each of the values in the -ForEach array in turn.

 Get-CimInstance is used in the preceding example but Invoke-Command and Get-Service might be used instead if appropriate. You should implement tests in a way that is appropriate to the environment the test executes in.

 All the tests used in this section have the potential to fail and raise errors that are not handled within the test. In the cases of the tests using choco, the tests will raise an error if Chocolatey is not actually installed. In the case of the last example, the tests will raise an error if the server does not exist or Get-CimInstance fails for any other reason.

 Problems of this kind can potentially be handled by skipping tests or marking a test as inconclusive.

 Conditional testing

 There are two possible approaches for dealing with tests that cannot be executed:

 	The result of It can be forcefully set by using Set-ItResult

 	The test can be skipped entirely using the -Skip parameter

 Set-ItResult can be used with the <Name> is installed test, enabling the test to account for situations where the choco command is not available.

 Using Set-ItResult

 The Set-ItResult command can be used inside any It statement. In the following example, it is used to change the result of the It statement based on the availability of the choco command:

 Describe 'PS developer workstation' {

 Context 'Packages' {

 It '<Name> is installed' -TestCases @(

 @{ Name = 'terraform' }

 @{ Name = 'git' }

) -Test {

 if (Get-Command choco -ErrorAction SilentlyContinue) {

 choco list -e $Name -l -r | Should -Match $Name

 } else {

 Set-ItResult -Skipped

 }

 }

 }

}

 The name of the test is changed in the result to show it has been skipped if the choco command is not available:

 PS> Invoke-Pester -Path .\workstation.tests.ps1 -Output Detailed

Starting discovery in 1 files.

Discovering in C:\workspace\workstation.tests.ps1.

Found 2 tests. 27ms

Discovery finished in 31ms.

Running tests from 'C:\workspace\workstation.tests.ps1'

Describing PS developer workstation

 Context Packages

 [!] terraform is installed is skipped 14ms (9ms|5ms)

 [!] git is installed is skipped 2ms (1ms|1ms)

Tests completed in 217ms

Tests Passed: 0, Failed: 0, Skipped: 2 NotRun: 0

 Set-ItResult allows the result to be set to Inconclusive, Pending, or Skipped.

 The advantage of using Set-ItResult, in this case, is that the test cases are still processed. The Name value is expanded in the output of the tests. The -Skip parameter will stop Pester from expanding this value.

 You can use the -Skip parameter on any It block that is not using -TestCases.

 Using Skip

 You can use -Skip, a switch parameter, to bypass one or more tests.

 You can set an explicit value to the parameter such as a value based on a variable. The following example changes the test for the installation of Chocolatey. It will be skipped if the current operating system is not Windows:

 Describe 'PS developer workstation' {

 Context 'Packages' {

 It 'Chocolatey is installed' -Skip:(-not $IsWindows) {

 { Get-Command choco -ErrorAction Stop } |

 Should -Not -Throw

 }

 }

}

 The $IsWindows, $IsMacOS, and $IsLinux variables are all automatically available in PowerShell 6 and above.

 Values used with the -Skip parameter must be available during the Discovery phase in Pester.

 Pester phases

 Pester 5 introduces the concept of different phases when executing tests. This is visible in the output of the tests run in this section:

 Starting discovery in 1 files.

Discovering in C:\workspace\workstation.tests.ps1.

Found 2 tests. 27ms

Discovery finished in 31ms.

Running tests from 'C:\workspace\workstation.tests.ps1'

Describing PS developer workstation

 First, the Discovery phase is run. During the Discovery phase, Pester attempts to find all the tests it will be running. Each test is defined by an It statement.

 The Run phase will execute only those tests found during the Discovery phase.

 This concept is new in Pester 5; it means that everything used to define what will be tested must be in place before discovery occurs, which affects the dynamic creation of tests.

 Pester provides a BeforeDiscovery block, which may be placed either before or inside Describe. The code in BeforeDiscovery is, as the name suggests, executed before the Discovery run starts.

 The last example used the predefined $IsWindows variable. As this is built-in, it is automatically available during the Discovery phase.

 If the tests were instead to be executed based on a user-defined variable, this variable would need creating in BeforeDiscovery. The same limitation applies to any test cases used with the -TestCases parameter, and any arrays used with -ForEach parameters.

 An earlier example used -ForEach to attempt to execute tests on an array of server names. If the server names had to be read from an external system, then that discovery action would be placed in the BeforeDiscovery block.

 The following example uses the Get-ADComputer command from the ActiveDirectory module to get the list of servers to query. These tests will only succeed if the ActiveDirectory module is installed, and it is able to find server names to test:

 BeforeDiscovery {

 $dnsServers = Get-ADComputer -Filter 'name -like "dns*"'

}

Describe "DNS servers" -ForEach $dnsServers -Fixture {

 It "The DNS service is running on $($_.Name)" {

 $params = @{

 ClassName = 'Win32_Service'

 Filter = 'Name="dns"'

 ComputerName = $_.DnsHostName

 }

 Get-CimInstance @params | Should -Not -BeNullOrEmpty

 }

}

 BeforeDiscovery is therefore useful to ensure that the values needed to define which tests are present are in place when Pester is attempting to discover which tests are going to be executed.

 Pester provides other named blocks to execute code at certain points during the Run phase. These can be used to define variables and set up conditions for tests. They should avoid defining which tests are executed.

 Before and After blocks

 Pester offers several blocks that you can use to perform actions before and after tests execute. Such blocks may be used to set up an environment or tear it down afterwards.

 The blocks are:

 	BeforeAll

 	BeforeEach

 	AfterAll

 	AfterEach

 The All blocks execute once, before (or after) any of the tests in that block. The Each blocks execute before (or after) individual It blocks.

 Each block can exist once in any Describe or Context block. If a Describe block contains BeforeAll, and a nested Context also contains BeforeAll then both blocks will be executed (the Describe instance first, then the Context instance).

 The BeforeAll and BeforeEach blocks are frequently used when defining a Mock for a command in unit testing.

 Mocking commands

 Mocking is used to reduce the scope of a set of tests and a vital part of unit testing. Mocking allows the implementation of a command to be replaced with one defined in a test. Mocked commands are created using the Mock keyword.

 The Mock keyword may be used in BeforeAll, BeforeEach, or It.

 The following command reads a CSV file, then either starts or stops a service based on whether that service matches the state in the file.

 @'

function Set-ServiceState {

 [CmdletBinding()]

 param (

 [string]$Path

)

 Import-Csv $Path | ForEach-Object {

 $service = Get-Service $_.Name

 if ($service.Status -ne $_.ExpectedStatus) {

 if ($_.ExpectedStatus -eq 'Stopped') {

 Stop-Service -Name $_.Name

 } else {

 Start-Service -Name $_.Name

 }

 }

 }

}

'@ | Set-Content -Path module.psm1

 Place this function in a file named module.psm1; it will be used as the subject of the first set of unit tests.

 To effectively test this command, the system running the tests would need to have all the services listed in the CSV file, and it would have to be possible to change the state of those services.

 Instead, depending on a complete system to execute on, the results of the code can be tested by mocking each of the commands external to the function.

 Two of the commands (Import-Csv and Get-Service) must return information, and two (Start-Service and Stop-Service) return nothing at all.

 Using Mock for Start-Service and Stop-Service is therefore straightforward:

 Mock Start-Service

Mock Stop-Service

 The output from Import-Csv and Get-Service needs to resemble the output from those real commands. The output can be simplified depending on what the command is expecting to do with that.

 Import-Csv is expected to output an object with a Name and ExpectedStatus property:

 Mock Import-Csv {

 [PSCustomObject]@{

 Name = 'service1'

 ExpectedStatus = 'Running'

 }

}

 Get-Service is expected to return an object with a Status property, but no other properties from Get-Service are used. Mocking Get-Service allows the tests to run even if the current computer does not have the service being tested:

 Mock Get-Service {

 [PSCustomObject]@{

 Status = 'Stopped'

 }

}

 The name of the service is a parameter value for Get-Service and it is not used by the function. The name of the service can therefore be ignored in the object the mock emits.

 Given the outputs that have been defined above, the expectation is that when running Set-ServiceStatus, you will use the Start-Service command to start service1.

 Execution of the mock can be tested by using a Should -Invoke assertion:

 @'

BeforeDiscovery {

 Import-Module .\module.psm1 -Force

}

Describe Set-ServiceState {

 BeforeAll {

 Mock Get-Service -MockWith {

 [PSCustomObject]@{

 Status = 'Stopped'

 }

 }

 Mock Import-Csv -MockWith {

 [PSCustomObject]@{

 Name = 'service1'

 ExpectedStatus = 'Running'

 }

 }

 Mock Start-Service

 Mock Stop-Service

 }

 It 'When ExpectedStatus is running, starts the service' {

 Set-ServiceState -Path file.csv

 Should -Invoke Start-Service

 }

}

'@ | Set-Content Set-ServiceState.tests.ps1

 The previous command saves the tests in a Set-ServiceState.tests.ps1 file. The content of this file is modified during this section; the size of the file prohibits repeating the content in full for each change.

 As Import-Csv is being mocked in the tests, the name used for the file (the Path parameter) is not relevant and you can use a made-up value.

 The result of running the tests is shown here:

 PS> Invoke-Pester -Path .\Set-ServiceState.tests.ps1

Starting discovery in 1 files.

Discovery finished in 10ms.

[+] C:\workspace\Set-ServiceState.tests.ps1 127ms (16ms|102ms)

Tests completed in 130ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 In this function, there are three possible paths through the code for each service:

 	The service is in the expected state and neither Start-Service or Stop-Service run.

 	The service is stopped but was expected to be running, and Start-Service should run.

 	The service is running but was expected to be stopped, and Stop-Service should run.

 A parameter filter for the Get-Service mock can be created to allow a different output based on the service name, which will allow each of the paths to be tested.

 Parameter filtering

 You can apply parameter filters to define when that mock should be used. Parameter filters are added using the -ParameterFilter parameter for Mock. The parameter filter is a script block that is most often used to test a parameter value used when calling the mock.

 First, the mock for Import-Csv can be extended by adding two more services:

 Mock Import-Csv -MockWith {

 [PSCustomObject]@{

 Name = 'service1'

 ExpectedStatus = 'Running'

 }

 [PSCustomObject]@{

 Name = 'service2'

 ExpectedStatus = 'Running'

 }

 [PSCustomObject]@{

 Name = 'service3'

 ExpectedStatus = 'Stopped'

 }

}

 Then the original mock for Get-Service is replaced with three new mocks. Each uses a -ParameterFilter and tests a different service name:

 Mock Get-Service -ParameterFilter {

 $Name -eq 'service1'

} -MockWith {

 [PSCustomObject]@{

 Status = 'Running'

 }

}

Mock Get-Service -ParameterFilter {

 $Name -eq 'service2'

} -MockWith {

 [PSCustomObject]@{

 Status = 'Stopped'

 }

}

Mock Get-Service -ParameterFilter {

 $Name -eq 'service3'

} -MockWith {

 [PSCustomObject]@{

 Status = 'Running'

 }

}

 Finally, the It block is adjusted. For this version, Start-Service will run once, and Stop-Service will run once. The previous assertion simply stated that Start-Service would run, which implicitly means it runs one or more times:

 It 'Ensures all services are in the desired state' {

 Set-ServiceState -Path file.csv

 Should -Invoke Start-Service -Times 1

 Should -Invoke Start-Service -Times 1

}

 Once the changes are made to the tests file, the single test will pass. However, while this test passes, it remains difficult to explicitly relate cause to effect. A failure in any one or more of the comparisons will cause the preceding tests to fail, but it will not indicate which value caused the failure.

 Instead of using -ParameterFilter, a more robust approach, in this case, might be to use Context to change the values provided by Import-Csv or the values returned by Get-Service.

 Overriding mocks

 You can use Mock in either an It or a Context block to override an existing mock or create new mocks which are specific to a specific branch of code. Mock is scoped to the block it is created in, therefore a Mock created in It only applies to that single It block.

 Generally, the safest approach is to define default mocks under a BeforeAll in Describe, then to override those as needed. The presence of the default mocks acts as a safeguard. Running the subject of the tests, Set-ServiceState, in the following example, will only ever call a mocked command. It will never accidentally call the real command because something has been missed from a specific context:

 @'

BeforeDiscovery {

 Import-Module .\module.psm1 -Force

}

Describe Set-ServiceState {

 BeforeAll {

 Mock Get-Service -MockWith {

 [PSCustomObject]@{

 Status = 'Running'

 }

 }

 Mock Import-Csv -MockWith {

 [PSCustomObject]@{

 Name = 'service1'

 ExpectedStatus = 'Running'

 }

 }

 Mock Start-Service

 Mock Stop-Service

 }

}

'@ | Set-Content Set-ServiceState.tests.ps1

 The first path through the code, when the service is already in the expected state and neither Start-Service or Stop-Service will be called, can be tested using the default mocks established above. The It block can explicitly assert that Start-Service and Stop-Service were not called:

 It 'Service is running, expected running' {

 Set-ServiceState -Path file.csv

 Should -Invoke Start-Service -Times 0

 Should -Invoke Stop-Service -Times 0

}

 The second path, when the service is stopped and should be started, can be achieved by overriding the mock for Get-Service. Note that the Set-ServiceState command is called again after overriding the mock:

 It 'Service is stopped, expected running' {

 Mock Get-Service -MockWith {

 [PSCustomObject]@{

 Status = 'Stopped'

 }

 }

 Set-ServiceState -Path file.csv

 Should -Invoke Start-Service -Times 1

 Should -Invoke Stop-Service -Times 0

}

 Finally, the last path runs when the service is running, but the expected state is stopped. This time the mock for Import-Csv is replaced:

 It 'Service is running, expected stopped' {

 Mock Import-Csv -MockWith {

 [PSCustomObject]@{

 Name = 'service1'

 ExpectedStatus = 'Stopped'

 }

 }

 Set-ServiceState -Path file.csv

 Should -Invoke Start-Service -Times 0

 Should -Invoke Stop-Service -Times 1

}

 These new tests should be added to the Describe block of Set-ServiceState.tests.ps1. Once added, the tests file can be run with detailed output:

 PS> $params = @{

>> Path = '.\Set-ServiceState.tests.ps1'

>> Output = 'Detailed'

>> }

PS> Invoke-Pester @params

Starting discovery in 1 files.

Discovering in C:\workspace\Set-ServiceState.tests.ps1.

Found 3 tests. 11ms

Discovery finished in 16ms.

Running tests from 'C:\workspace\Set-ServiceState.tests.ps1'

Describing Set-ServiceState

 [+] Service is running, expected running 16ms (13ms|3ms)

 [+] Service is stopped, expected running 15ms (15ms|1ms)

 [+] Service is running, expected stopped 24ms (22ms|1ms)

Tests completed in 188ms

Tests Passed: 3, Failed: 0, Skipped: 0 NotRun: 0

 These new tests provide a granular view of the different behaviors of the function. If a test fails, it is extremely easy to attribute cause to effect without having to spend extra time figuring out where either the tests or the subject failed.

 The examples used to demonstrate mocking so far assume that the command being mocked is available on the current system. Commands that are not locally installed cannot be mocked.

 Mocking non-local commands

 If a command is not available on the system running tests, the attempt to create a mock will fail.

 It is possible to work around this limitation with a small part of the command required by the tests. This can be referred to as a stub and typically consists of a function with only a parameter block.

 The stub is used to provide something to mock, and the mock is used to track the execution of the function and ensure a subject behaves as intended.

 For example, consider a function that creates and configures a DNS zone with a predefined set of parameter values:

 function New-DnsZone {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [String]$Name

)

 $params = @{

 Name = $Name

 DynamicUpdate = 'Secure'

 ReplicationScope = 'Domain'

 }

 $zone = Get-DnsServerZone $Name -ErrorAction SilentlyContinue

 if (-not $zone) {

 Add-DnsServerPrimaryZone @params

 }

}

 It may not be desirable to install the DnsServer tools on a development system to run unit tests. To mock and verify that Add-DnsServerPrimaryZone is called, a function must be created first:

 Describe CreateDnsZone {

 BeforeAll {

 function Get-DnsServerZone { }

 function Add-DnsServerPrimaryZone { }

 Mock Get-DnsServerZone

 Mock Add-DnsServerPrimaryZone

 }

 It 'When the zone does not exist, creates a zone' {

 New-DnsZone -Name name

 Assert-MockCalled Add-DnsServerPrimaryZone

 }

}

 Creating the function as shown here is enough to satisfy the tests, but the approach is basic. The test will pass even if parameter names are incorrect or missing.

 A more advanced function to mock may be created by visiting a system with the command installed and retrieving the param block. The ProxyCommand type in PowerShell to get the param block from a system with the DnsServer module installed, for example:

 using namespace System.Management.Automation

$command = Get-Command Add-DnsServerPrimaryZone

[ProxyCommand]::GetParamBlock(

 $command

)

 For Add-DnsServerPrimaryZone the result is long. A command such as Select-Object has a simpler param block and is therefore easier to view. The first two parameters for Select-Object are shown here after running the GetParamBlock method:

 PS> using namespace System.Management.Automation

PS> [ProxyCommand]::GetParamBlock((Get-Command Select-Object))

 [Parameter(ValueFromPipeline=$true)]

 [psobject]

 ${InputObject},

 [Parameter(ParameterSetName='DefaultParameter', Position=0)]

 [Parameter(ParameterSetName='SkipLastParameter', Position=0)]

 [System.Object[]]

 ${Property},

 You can use this technique to create a stub of many modules, allowing tests to run even if the module is not locally installed.

 The following snippet combines the GetParamBlock with GetCmdletBindingAttribute to create an accurate copy of the basics of the module to use as the basis for mocking a command.

 using namespace System.Management.Automation

$moduleName = 'DnsServer'

Get-Command -Module $moduleName | ForEach-Object {

 $param = [ProxyCommand]::GetParamBlock($command)

 $param = $param -split '\r?\n' -replace '^\s{4}', '$0$0'

 'function {0} {{' -f $_.Name

 ' {0}' -f [ProxyCommand]::GetCmdletBindingAttribute($_)

 ' param ('

 $param

 ')'

 '}'

 ''

} | Set-Content "$moduleName.psm1"

 This approach works for the DnsServer module because the module is based on CIM classes; it only depends on assemblies that are already available in PowerShell.

 Adding a copy of a module will improve the overall quality of the tests for a command. Tests will fail if a non-existent parameter is used, or if an invalid parameter combination is used.

 Each of the mocks used so far has emitted a PSCustomObject, and in many cases a PSCustomObject is enough to use within a set of tests.

 Mocking objects

 Mocking allows the result of running another command to be faked. The examples in the previous section have returned a PSCustomObject where output is required.

 It is not uncommon for a command to expect to work with the properties and methods of another object. This might be a value returned by another command, or it might be the value of a parameter the test subject requires.

 The ability to mock objects or a specific type or objects that implement methods is important in testing.

 Two approaches can be taken when testing:

 	Methods can be added to a PSCustomObject

 	.NET types can be disarmed and returned

 PowerShell includes many modules that are based on CIM classes. These modules often expect CIM instances as input to work. Testing code that uses CIM-based commands may need to create values that closely resemble the real command output.

 Methods can be added to a PSCustomObject, allowing code that uses those methods to be tested without needing to use a more specific .NET type.

 Adding methods to PSCustomObject

 Objects with specific properties can be simulated by creating a PSCustomObject object:

 [PSCustomObject]@{

 Property = "Value"

}

 If the subject of a test takes the result of a mocked command and invokes a method, it will fail unless the method is available. You can add methods to a PSCustomObject using Add-Member:

 $object = [PSCustomObject]@{} |

 Add-Member MethodName -MemberType ScriptMethod -Value { }

$object

 If the method used already exists, such as the ToString method, then the -Force parameter must be used:

 $object = [PSCustomObject]@{}

$object |

 Add-Member ToString -MemberType ScriptMethod -Force -Value { }

$object

 As many methods as needed can be added to the PSCustomObject as required.

 The method added to the PSCustomObject may return nothing (as in the preceding examples), return a specific value, or set a variable in script scope which can be tracked or tested. This idea is explored when disarming an existing .NET object.

 Disarming .NET types

 A piece of code being tested may interact with a specific .NET type. The .NET type may (by default) need to interact with other systems in a way that is not desirable when testing.

 The following simple function expects to receive an instance of a SqlConnection object and expects to be able to call the Open method:

 using namespace System.Data.SqlClient

function Open-SqlConnection {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [SqlConnection]$SqlConnection

)

 if ($sqlConnection.State -eq 'Closed') {

 $SqlConnection.Open()

 }

}

 As the value of the SqlConnection parameter is explicitly set to accept an instance of System.Data.SqlClient.SqlConnection, you cannot use a PSCustomObject as a substitute.

 When running the function in a test, an instance of SqlConnection must be created to pass to the function.

 The following It block creates such an instance and passes it to the function:

 It 'Opens an SQL connection' {

 $connection = [System.Data.SqlClient.SqlConnection]::new()

 Open-SqlConnection -SqlConnection $connection

}

 This It block does not contain any assertions yet. It can assert that no errors should be thrown, but the test can only succeed if the computer running the tests is running an SQL server instance. By extension, the test can only fail if the computer running the tests is not a SQL server.

 Each of the following tests can be added to a sql.tests.ps1 file. The Describe block has been omitted from the examples to reduce indentation. The following command creates the tests file. All the content of the Describe block should be replaced with each example.

 @'

BeforeDiscovery {

function Script:Open-SqlConnection {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory)]

 [System.Data.SqlClient.SqlConnection]$SqlConnection

)

 if ($sqlConnection.State -eq 'Closed') {

 $SqlConnection.Open()

 }

}

}

Describe Open-SqlConnection {

}

'@ | Set-Content sql.tests.ps1

 PowerShell code will prefer to call a ScriptMethod on an object over a Method provided by the .NET type. Therefore, a you can create a disarmed version of the SqlConnection object using Add-Member:

 BeforeAll {

 $connection = [System.Data.SqlClient.SqlConnection]::new()

 $connection |

 Add-Member Open -MemberType ScriptMethod -Value { } -Force

}

It 'Opens an SQL connection' {

 Open-SqlConnection -SqlConnection $connection

}

 This step solves the problem of needing a SQL server to run Open, but it does not solve the problem of testing if Open was called. After all, the command does not return the connection object; there is no output to test.

 You can solve the problem by making the Open method do something. Possible actions include:

 	Return a value

 	Set a scoped variable

 	Set a property on the SqlConnection object

 The Open method, by default, does not return a value, and the statement that calls Open in the function is not assigned. A value could simply be returned by the method and tested:

 BeforeAll {

 $connection = [System.Data.SqlClient.SqlConnection]::new()

 $connection |

 Add-Member Open -MemberType ScriptMethod -Force -Value {

 $true

 }

}

It 'Opens an SQL connection' { Open-SqlConnection -SqlConnection $connection |

 Should -BeTrue

}

 In some cases, such an approach might fail or become overly complex. For instance, if this is only one small step the command takes and there are other outputs to consider.

 Setting a variable in script scope in the mocked method will allow a test to see if the method is executed. In this case, the scoped value might be reset in a BeforeEach block, ensuring it is accurately recorded in each test:

 BeforeAll {

 $connection = [System.Data.SqlClient.SqlConnection]::new()

 $connection |

 Add-Member Open -MemberType ScriptMethod -Force -Value {

 $Script:Opened = $true

 }

}

BeforeEach {

 $Script:Opened = $false

}

It 'Opens an SQL connection' {

 Open-SqlConnection -SqlConnection $connection

 $Script:Opened | Should -BeTrue

}

 Finally, a property of the SqlConnection object might be set. The real Open method sets the value of the State property. This property is read-only and cannot be set directly. A NoteProperty must be added for Open to change.

 BeforeAll {

 $connection = [System.Data.SqlClient.SqlConnection]::new()

 $connection |

 Add-Member Open -MemberType ScriptMethod -Force -Value {

 $this.State = 'Open'

 }

 $connection |

 Add-Member State -NotePropertyValue Closed -Force

}

It 'Opens an SQL connection' {

 Open-SqlConnection -SqlConnection $connection

 $connection.State | Should -Be 'Open'

}

 Any of the preceding options might be used when mocking methods and properties on .NET objects.

 The approach can be taken further still by using the New-MockObject command in Pester. New-MockObject creates an instance of a .NET type with no code behind it at all.

 New-MockObject is not appropriate in all cases. If you use this command to create the SqlConnection object used above, attempting to call the real Open method will always raise an error:

 PS> $connection = New-MockObject System.Data.SqlClient.SqlConnection

PS> $connection.Open()

MethodInvocationException: Exception calling "Open" with "0" argument(s): "Object reference not set to an instance of an object."

 You can apply the techniques used in the previous examples to a wide variety of .NET objects. CimInstance objects are a special case when it comes to mocking.

 Mocking CIM objects

 Many modules in PowerShell are based on CIM classes. For example, the Net modules, such as NetAdapter, NetSecurity, and NetTCPIP, are all based on CIM classes.

 The commands in these modules either return CIM instances or include parameters that require a specific CIM instance as an argument.

 For example, the following function uses two of the commands in a pipeline. Any tests would have to account for the CIM classes when mocking commands:

 function Enable-PhysicalAdapter {

 Get-NetAdapter -Physical | Enable-NetAdapter

}

 When these commands act in a pipeline, Enable-NetAdapter fills the InputObject parameter from the pipeline. Get-Help shows that the parameter accepts an array of CimInstance from the pipeline:

 PS> Get-Help Enable-NetAdapter -Parameter InputObject

-InputObject <CimInstance[]>

 Specifies the input to this cmdlet. You can use this parameter, or you can pipe the input to this cmdlet.

 Required? true

 Position? named

 Default value

 Accept pipeline input? true (ByValue)

 Accept wildcard characters? false

 However, this is not the whole story. The parameter value is further constrained by a PSTypeName attribute. This can be seen using Get-Command:

 $command = (Get-Command Enable-NetAdapter)

$parameter = $command.Parameters['InputObject']

$attribute = $parameter.Attributes |

 Where-Object TypeId -match 'PSTypeName'

$attribute.PSTypeName

 The result is the PSTypeName the command expects to receive from the pipeline:

 Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter

 Any mock for Get-NetAdapter must therefore return an MSFT_NetAdapter CimInstance object. Before the instance can be created, one final piece of information is required: the namespace of the CIM class.

 The namespace can be taken from any object returned by Get-NetAdapter:

 PS> Get-NetAdapter | Select-Object CimClass -First 1

CimClass

ROOT/StandardCimv2:MSFT_NetAdapter

 Finally, the CimInstance object can be created using the New-CimInstance command as shown here:

 $params = @{

 ClassName = 'MSFT_NetAdapter'

 Namespace = 'ROOT/StandardCimv2'

 ClientOnly = $true

}

New-CimInstance @params

 This instance can be added to a mock for Get-NetAdapter when testing the Enable-PhysicalAdapter command:

 BeforeDiscovery {

 function Script:Enable-PhysicalAdapter {

 Get-NetAdapter -Physical | Enable-NetAdapter

 }

}

Describe Enable-PhysicalAdapter {

 BeforeAll {

 Mock Enable-NetAdapter

 Mock Get-NetAdapter {

 $params = @{

 ClassName = 'MSFT_NetAdapter'

 Namespace = 'ROOT/StandardCimv2'

 ClientOnly = $true

 }

 New-CimInstance @params

 }

 }

 It 'Enables a physical network adapter' {

 { Enable-PhysicalAdapter } | Should -Not -Throw

 Should -Invoke Enable-NetAdapter -Times 1

 }

}

 The commands used in each of the tests in this section are expected to be available in the global scope so that Pester can mock and run the commands. Pester is also able to test commands and classes that are not exported from a module.

 InModuleScope

 The InModuleScope command and the -ModuleName parameter of Should and Mock are important features of Pester. The command and parameters allow access to content that is normally in the module scope and inaccessible outside.

 The following two commands were first introduced in Chapter 20, Building Modules:

 @'

function GetRegistryParameter {

 [CmdletBinding()]

 param ()

 @{

 Path = 'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'

 Name = 'srvcomment'

 }

}

function Get-ComputerDescription {

 [CmdletBinding()]

 param ()

 $getParams = GetRegistryParameter

 Get-ItemPropertyValue @getParams

}

Export-ModuleMember Get-ComputerDescription

'@ | Set-Content LocalMachine.psm1

 The function GetRegistryParameter can be tested in Pester by using InModuleScope:

 @'

BeforeDiscovery {

 Import-Module .\LocalMachine.psm1 -Force

}

Describe GetRegistryParameter {

 It 'Returns a hashtable' {

 InModuleScope -ModuleName LocalMachine {

 GetRegistryParameter

 } | Should -BeOfType [Hashtable]

 }

}

'@ | Set-Content GetRegistryParameter.tests.ps1

 If the InModuleScope command is omitted, the test will fail and the GetRegistryParameter function is not exported from the module and is therefore not normally accessible.

 The result of running the tests is shown here:

 PS> Invoke-Pester -Script .\GetRegistryParameter.tests.ps1

Starting discovery in 1 files.

Discovery finished in 227ms.

Running tests.

[+] C:\workspace\GetRegistryParameter.tests.ps1 1.04s (152ms|702ms)

Tests completed in 1.06s

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 A test document may include more than one use of InModuleScope, but it is advisable to keep the size of these blocks as small as possible. InModuleScope should not be used to enclose Describe, Context, and It.

 In the same way, if it were desirable to mock that command when testing the Get-ComputerDescription command, the -ModuleName parameter is required for the Mock keyword:

 BeforeAll {

 Mock GetRegistryParameter -ModuleName LocalMachine

}

 InModuleScope can be used to access anything in the module scope, including private commands, classes, and enumerations, and any module-scoped variables.

 Pester in scripts

 Using InModuleScope can add complexity when running Invoke-Pester from a script.

 When Invoke-Pester is run from a global scope, -ModuleName is only required to access private components of a module.

 When Invoke-Pester is run from a script, problems may surface because the script scope breaks Pester's scoping.

 Consider the following tests:

 @'

BeforeDiscovery {

 Import-Module .\LocalMachine.psm1 -Force

}

Describe Get-ComputerDescription {

 BeforeAll {

 Mock Get-ItemPropertyValue {

 'Mocked description'

 }

 }

 It 'Returns the mocked description' {

 Get-ComputerDescription |

 Should -Be 'Mocked description'

 Should -Invoke Get-ItemPropertyValue

 }

}

'@ | Set-Content Get-ComputerDescription.tests.ps1

 When Invoke-Pester is run from the console, the tests pass provided the LocalMachine module was successfully imported:

 PS> Invoke-Pester -Path .\Get-ComputerDescription.tests.ps1

Starting discovery in 1 files.

Discovery finished in 7ms.

[+] C:\workspace\Get-ComputerDescription.tests.ps1 98ms (6ms|86ms)

Tests completed in 99ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 If instead the Invoke-Pester command is put in a script, and the script is run the mock is completely ignored:

 @'

Invoke-Pester -Path .\Get-ComputerDescription.tests.ps1

'@ | Set-Content script.ps1

 This is shown here when running the script:

 PS> .\script.ps1

Starting discovery in 1 files.

Discovery finished in 7ms.

[-] Get-ComputerDescription.Returns the mocked description 5ms (4ms|1ms)

 PSArgumentException: Property srvcomment does not exist at path HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters.

 at Get-ComputerDescription, C:\workspace\LocalMachine.psm1:16

 at <ScriptBlock>, C:\workspace\Get-ComputerDescription.tests.ps1:12

Tests completed in 117ms

Tests Passed: 0, Failed: 1, Skipped: 0 NotRun: 0

 To work around this problem, the -ModuleName parameter must be added to all Mock commands and all Should -Invoke assertions. In the following example, a splat is used:

 Describe Get-ComputerDescription {

 BeforeAll {

 $module = @{

 ModuleName = 'LocalMachine'

 }

 Mock Get-ItemPropertyValue @module {

 'Mocked description'

 }

 }

 It 'Returns the mocked description' {

 Get-ComputerDescription |

 Should -Be 'Mocked description'

 Should -Invoke Get-ItemPropertyValue @module

 }

}

 In all cases the module name is the scope the mock should be created in, so the subject module, not the module the mocked command belongs to.

 With this in place, Invoke-Pester can be run from a script:

 PS> .\script.ps1

Starting discovery in 1 files.

Discovery finished in 23ms.

[+] C:\workspace\Get-ComputerDescription.tests.ps1 135ms (25ms|88ms)

Tests completed in 137ms

Tests Passed: 1, Failed: 0, Skipped: 0 NotRun: 0

 Pester is a wonderful tool for writing tests for a variety of different purposes. The tools above offer an introduction to the capabilities of the module.

 Summary

 This chapter explored the complex topic of testing in PowerShell.

 Static analysis is one part of testing and is the approach used by modules like PSScriptAnalyzer. Static analysis makes use of the Abstract Syntax Tree and tokenizers in PowerShell.

 The Abstract Syntax Tree or AST describes the content of a block of code as a tree of different elements, starting with a ScriptBlockAst at the highest level. You can use the ParseInput and ParseFile methods of the Parser type to get either an instance of the AST for a piece of code or the tokens that make up a script that includes comments.

 The ShowPSAst module can be used to visualize and explore the AST tree. ShowPSAst is a useful tool when starting to work with AST as the tree can quickly become complex.

 PSScriptAnalyzer uses either AST or tokens to define rules. Rules can be used to test and enforce personal or organization-specific practices.

 Pester is a testing framework and this chapter explored both acceptance and unit testing.

 Acceptance testing is commonly used to assess the state of systems and services. You can use Pester to define tests, which can be saved and shared. Such tests can be used to validate a system is configured or behaving as it should be.

 Pester is a rich tool that supports iteration with the -ForEach or -TestCases parameters. Conditional testing can be achieved using the Set-ItResult and -Skip parameters.

 Mocking is an exceptionally useful feature of Pester and is often used when writing unit tests to reduce the amount of code that must be tested when the subject is a single command.

 The next chapter explores error handling in PowerShell, including terminating and non-terminating errors and the use of try, catch, finally, and the trap statement.

 22

 Error Handling

 Errors communicate unexpected conditions and exceptional circumstances. Errors often contain useful information that you can use to diagnose a condition.

 PowerShell has two different types of errors, terminating and non-terminating, and several different ways to raise and handle them.

 Error handling in PowerShell is a complex topic, which is not helped by incorrect assertions in help documentation surrounding terminating errors. These challenges are explored in this chapter.

 Self-contained blocks of code are described as scripts in this chapter. That is, functions, script blocks, and scripts can be considered interchangeable in the context of error handling.

 This chapter covers the following topics:

 	Error types

 	Error actions

 	Raising errors

 	Catching errors

 Error types

 As mentioned above, PowerShell defines two different types of errors: terminating and non-terminating errors.

 Each command in PowerShell may choose to raise either of these, depending on the operation.

 Non-terminating errors

 A non-terminating error, a type of informational output, is written without stopping a script. Non-terminating errors exist to allow a command to continue in the event of a partial failure. For example, if a command is acting on a pipeline and one item fails, the command can write an error and continue to process the remaining items.

 Non-terminating errors can be written using the Write-Error command, although a deeper analysis of this approach and alternatives are explored later in this chapter.

 The following example demonstrates how a non-terminating error can be used in a function accepting pipeline input:

 function Update-Value {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 [string]$Value

)

 process {

 if ($Value.Length -lt 5) {

 Write-Error ('The value {0} is unacceptable' -f $Value)

 } else {

 'Updated value: {0}' -f $Value

 }

 }

}

 When executed on a pipeline containing words, the command will write an error and continue every time it encounters a word with a length less than 5:

 PS> 'value', 'val', 'longvalue' | Update-Value

Updated value: value

Update-Value: The value val is unacceptable

Updated value: longvalue

 Scenarios like this are why non-terminating errors exist. It is then up to the consumer of the command to decide if a script should continue.

 Non-terminating errors should be used when a script acts on more than one input, and an error for a single item does not affect success or failure for subsequent items.

 Terminating errors are used to stop a script in the event of a problem.

 Terminating errors

 Terminating errors are used to stop an operation from continuing.

 Terminating errors split in two depending on how the error is raised; this leads to some inconsistent behavior, which is explored in the Raising errors section later in this chapter.

 A terminating error stops a script once an error is thrown. No further commands will execute after the error is thrown.

 When running the following command, the second Write-Host statement will never execute:

 function Stop-Command {

 Write-Host 'First'

 throw 'Error'

 Write-Host 'Second'

}

 Running the function will show that the second Write-Host command does not execute:

 PS> $ErrorActionPreference = 'Continue'

PS> Stop-Command

First

Exception:

Line |

 3 | throw 'Error'

 | ~~~~~~~~~~~~~

 | Error

 The assertion that the second statement will never run has a caveat, terminating errors raised by throw are affected by the $ErrorActionPreference variable. This is the reason for ensuring $ErrorActionPreference is set to Continue before running the last example.

 Setting the ErrorAction to SilentlyContinue shows that the error is ignored:

 PS> $ErrorActionPreference = 'SilentlyContinue'

PS> Stop-Command

First

Second

 This contradicts the statements in the PowerShell documentation:

 	Get-Help about_Throw asserts that the throw keyword causes a terminating error

 	Get-Help about_Preference_Variables asserts that $ErrorActionPreference and -ErrorAction do not affect terminating errors

 Exactly how this affects code and how to create code that behaves consistently are explored in this chapter.

 Before exploring raising errors in PowerShell, the ErrorActionPreference variable and -ErrorAction parameters should be introduced.

 Error actions

 The -ErrorAction parameter and the ErrorActionPreference variable are used to control what happens when a non-terminating error is encountered, subject to the previous notes about throw.

 The -ErrorAction parameter is made available on a command when the CmdletBinding attribute is present. The CmdletBinding attribute is implicitly added if one or more parameters in a script use the Parameter attribute.

 By default, -ErrorAction is set to Continue. Non-terminating errors will be displayed, but a script will continue to run.

 $ErrorActionPreference is a scoped variable, which you can use to affect all commands in a particular scope and any child scopes. By default, $ErrorActionPreference is set to Continue. You can override the variable in child scopes (such as a function inside a script).

 All errors in a session are implicitly added to the reserved variable $Error unless the error action is set to Ignore. Now, $Error is an ArrayList and contains each error in the session with the newest first (at index 0).

 If -ErrorAction is set to SilentlyContinue, errors will still be added to the $Error automatic variable, but the error will not be displayed in the host.

 The following function writes a non-terminating error using Write-Error:

 function Start-Task {

 [CmdletBinding()]

 param ()

 Write-Error 'Something went wrong'

}

Start-Task -ErrorAction SilentlyContinue

 The error is not displayed in the host or console, the error may be viewed as the latest entry in the $Error variable:

 PS> $Error[0]

Start-Task: Something went wrong

 If the error action is set to Stop, a non-terminating error becomes a terminating error. In the console, the output in either case is similar. However, a terminating error is displayed differently when viewing $Error[0]:

 PS> Start-Task -ErrorAction Stop

Start-Task: Something went wrong

PS> $Error[0]

ErrorRecord : Something went wrong

WasThrownFromThrowStatement : False

TargetSite : System.Collections.ObjectModel.Coll

 ection`1[System.Management.Automati

 on.PSObject] Invoke(System.Collecti

 ons.IEnumerable)

StackTrace : at System.Management.Automation.

 Runspaces.PipelineBase.Invoke(IEnum

 erable input)

 at System.Management.Automation.

 Runspaces.Pipeline.Invoke()

 at Microsoft.PowerShell.Executor

 .ExecuteCommandHelper(Pipeline

 tempPipeline, Exception&

 exceptionThrown, ExecutionOptions

 options)

Message : The running command stopped

 because the preference variable

 "ErrorActionPreference" or common

 parameter is set to Stop:

 Something went wrong

Data : {System.Management.Automation.Inter

 preter.InterpretedFrameInfo}

InnerException :

HelpLink :

Source : System.Management.Automation

HResult : -2146233087

 The content of the object is difficult to read, especially in a narrow console.

 PowerShell 7 includes a Get-Error command, which you can use to explore errors that have been raised in greater detail.

 About Get-Error

 The Get-Error command was introduced with PowerShell 7. When used without any parameters, it gets the latest error from the $Error variable and provides a summary of the content of that error.

 If the Start-Task function above is executed, Get-Error can be used to explore the details of the error it raised.

 The output differs between terminating and non-terminating errors, more information is shown for terminating errors.

 Figure 22.1 shows the output of the command when a non-terminating error has been written; the content does not display well in a narrow console:

 [image:]

 Figure 22.1: Get-Error command

 You can use Get-Error to view the last error, a user-defined number of the newest errors, and a specific error using ErrorRecord.

 For example, if $Error contained 10 errors, and only one of those from the middle of the set was of interest, Get-Error would accept one or more errors as pipeline input:

 $Error[4] | Get-Error

 If there were fewer than 4 errors, another error would be written.

 When writing scripts, it is often desirable to write or raise an error.

 Raising errors

 When writing a script, it may be desirable to use errors to notify the person running the script of a problem. The severity of the problem will dictate whether an error is non-terminating or terminating.

 If a script makes a single change to many diverse, unrelated objects, a terminating error might be frustrating for anyone using the script.

 On the other hand, if a script fails to read a critical configuration file, a terminating error is likely the right choice.

 Error records

 When an error is raised in PowerShell, an ErrorRecord object is created (explicitly or implicitly).

 An ErrorRecord object contains several fields that are useful for diagnosing an error. ErrorRecord can be explored using Get-Member or by using the Get-Error command.

 For example, an ErrorRecord will be generated when attempting to divide by 0:

 100 / 0

$record = $Error[0]

 The ErrorRecord object that was generated includes ScriptStackTrace, which includes the script names that were called and the position where an error occurred. ScriptTrackTrace is extremely useful when debugging problems in larger scripts:

 PS> $record.ScriptStackTrace

at <ScriptBlock>, <No file>: line 1

 A bespoke ErrorRecord can be created within a script to more clearly describe a problem to the user. The error record might include additional information to assist with debugging.

 For example, if the values for a division operation were dynamically set, an ErrorRecord might be created to include those values in the TargetObject to assist with debugging:

 using namespace System.Management.Automation

$numerator = 10

$denominator = 0

try {

 $numerator / $denominator

} catch {

 $errorRecord = [ErrorRecord]::new(

 [Exception]::new($_.Exception.Message),

 'InvalidDivision', # ErrorId

 'InvalidOperation', # ErrorCategory

 [PSCustomObject]@{ # TargetObject

 Numerator = $numerator

 Denominator = $denominator

 }

)

 Write-Error -ErrorRecord $errorRecord

}

 The ErrorRecord object and the constructor in the preceding example are described on Microsoft Docs: https://docs.microsoft.com/dotnet/api/system.management.automation.errorrecord.-ctor?view=powershellsdk-7.0.0#System_Management_Automation_ErrorRecord__ctor_System_Exception_System_String_System_Management_Automation_ErrorCategory_System_Object_.

 The values added to the ErrorRecord may be viewed by exploring the TargetObject property:

 PS> $Error[0].TargetObject

Numerator Denominator

--------- -----------

 10 0

 The try-catch statement used in the previous example is covered in detail while exploring try, catch, and finally later in this chapter.

 Raising non-terminating errors

 You can use the Write-Error command to write a non-terminating error message.

 The Write-Error command can display a simple message:

 Write-Error -Message 'Message'

 Or the error might include additional information, such as a category and error ID to aid diagnosis by the person using the script:

 $params = @{

 Message = 'Message'

 Category = 'InvalidOperation'

 ErrorID = 'UniqueID'

}

Write-Error @params

 The following example shows a non-terminating error that was raised while running a loop:

 function Test-Error {

 [CmdletBinding()]

 param ()

 for ($i = 0; $i -lt 3; $i++) {

 Write-Error -Message "Iteration: $i"

 }

}

 When the function runs, an error is displayed three times without stopping execution:

 PS> Test-Error

Test-Error: Iteration: 0

Test-Error: Iteration: 1

Test-Error: Iteration: 2

 Setting the value of ErrorAction to Stop will cause Write-Error to throw a terminating error, ending the function within the first iteration of the loop:

 PS> Test-Error -ErrorAction Stop

Test-Error: Iteration: 0

 Alternatively, the error can be silenced (SilentlyContinue) or ignored (Ignore), depending on the importance of the error to the user of the function.

 One disadvantage of using the Write-Error command is that it does not set the value of the automatic variable $? unless ErrorAction is set to Stop. The variable $? is set to True if the last command was successful, or False if the last command failed:

 PS> Test-Error

Test-Error: Iteration: 0

Test-Error: Iteration: 1

Test-Error: Iteration: 2

PS> $?

True

 The WriteError method may be used as an alternative to the Write-Error command.

 Using the WriteError method

 The WriteError method is used by binary commands and can optionally be used by scripts, provided the script includes the CmdletBinding attribute.

 The presence of the CmdletBinding attribute makes the $PSCmdlet variable available for use within a script. The $PSCmdlet variable provides access to the WriteError method.

 The WriteError method requires an ErrorRecord as an argument as shown in the following example:

 using namespace System.Management.Automation

function Test-Error {

 [CmdletBinding()]

 param ()

 for ($i = 0; $i -lt 3; $i++) {

 $errorRecord = [ErrorRecord]::new(

 [Exception]::new('Iteration {0}' -f $i),

 'InvalidOperation',

 'InvalidOperation',

 $i

)

 $PSCmdlet.WriteError($errorRecord)

 }

}

 When running the command, the value of $? correctly reflects that one or more errors occurred in the last command:

 PS> Test-Error

Test-Error: Iteration 0

Test-Error: Iteration 1

Test-Error: Iteration 2

PS> $?

False

 You can raise terminating errors by setting -ErrorAction to Stop when using the Write-Error command. However, it is often more appropriate to explicitly raise a terminating error.

 Raising terminating errors

 The throw keyword raises a terminating error, as in the following example:

 throw 'Error message'

 Existing exception types are documented in .NET Framework; each is ultimately derived from the System.Exception type found in the .NET reference: https://docs.microsoft.com/dotnet/api/system.exception.

 throw may be used with a string or a message, as shown previously. throw may also be used with an exception object:

 throw [ArgumentException]::new('Unsupported value')

 Or you can use throw with ErrorRecord:

 using namespace System.Management.Automation

throw [ErrorRecord]::new(

 [InvalidOperationException]::new('Invalid operation'),

 'AnErrorID',

 [ErrorCategory]::InvalidOperation,

 $null

)

 Commands in binary modules cannot use throw; it has a different meaning in the languages that might be used to author a cmdlet (such as C#, VB, or F#). Cmdlets use the ThrowTerminatingError method instead.

 Using the ThrowTerminatingError method

 Like the WriteError method, ThrowTerminatingError is made available to scripts that use the CmdletBinding attribute. The ThrowTerminatingError method is available on the $PSCmdlet variable.

 The ThrowTerminatingError method requires an ErrorRecord object as shown in the following example:

 using namespace System.Management.Automation

function Invoke-Something {

 [CmdletBinding()]

 param ()

 $errorRecord = [ErrorRecord]::new(

 [InvalidOperationException]::new('Failed'),

 'AnErrorID',

 [ErrorCategory]::OperationStopped,

 $null

)

 $PSCmdlet.ThrowTerminatingError($errorRecord)

}

 Running the command will show this simple error message:

 PS> Invoke-Something

Invoke-Something: Failed

 More detailed error information can be viewed using the Get-Error command.

 An error may only exist to communicate a problem to an end user, but it is common to need to capture and handle errors in another script.

 Catching errors

 Capturing an error so that a script can react to that error depends on the error type.

 	Non-terminating errors can be captured by using ErrorVariable

 	Terminating errors can be captured using either a try, catch, and finally statement, or by using a trap statement

 The -ErrorVariable parameter can be used to create a scoped alternative to the $Error variable.

 ErrorVariable

 The $Error variable is a collection (ArrayList) of handled and unhandled errors raised in the PowerShell session.

 You can use the -ErrorVariable parameter to name a variable that should be used for a specific script. The ErrorVariable accepts the name of a variable and is created as an ArrayList.

 The following function writes a single error using the Write-Error command:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 Write-Error 'Invoke-Something Failed'

}

 The command can be run using the -ErrorVariable parameter. The -ErrorAction parameter below is used to suppress the normal error output:

 $params = @{

 ErrorVariable = 'MyErrorVariable'

 ErrorAction = 'SilentlyContinue'

}

Invoke-Something @params

 Nothing is displayed in the console, but the error is added to $MyErrorVariable:

 PS> $MyErrorVariable

Invoke-Something: Invoke-Something Failed

 Error messages written to an -ErrorVariable are duplicated in $Error.

 An -ErrorVariable is never null

 If no errors occur, a variable will still be created as an ArrayList, but the list will contain no elements.

 The Count property might be inspected to see if any errors occurred:

 $MyErrorVariable.Count -eq 0

 A single -ErrorVariable can be shared by several different scripts; by default the content of the variable is overwritten. If + is added to the beginning of the variable name, then new errors will be added without overwriting the content of the variable. The following command is run twice: the first run creates a new error variable, and the second adds to that existing variable:

 Invoke-Something -ErrorVariable MyErrorVariable

Invoke-Something -ErrorVariable +MyErrorVariable

 Once the two commands have finished, $MyErrorVariable will contain two errors, one from each command.

 Terminating errors are most frequently handled using try, catch, and finally.

 try, catch, and finally

 PowerShell 2.0 introduced try, catch, and finally as a means of handling terminating errors.

 try cannot be used alone; it must be used with either catch, finally, or both.

 The most used statement is a try followed by a single catch:

 try {

 throw 'An error'

} catch {

 Write-Host 'Caught an error'

}

 The catch block only executes if an error is raised; a terminating error will stop the script enclosed by try at the point the error is thrown.

 Inside the catch block, the variable $_ (or $PSItem) is set to the ErrorRecord that caused catch to trigger. This is important if a command such as ForEach-Object is used; the original pipeline variable is not accessible inside the catch block.

 The ErrorRecord has an Exception property, and the Exception has a Message property. These values were seen when looking at the output from Get-Error. These values, and any other properties of the ErrorRecord, may be accessed using the $_ variable as the following code shows:

 try {

 1/0

} catch {

 Write-Host $_.Exception.Message

}

 In this example, the catch statement reacts if any exception type is thrown. The statement is equivalent to the following:

 try {

 1/0

} catch [Exception] {

 Write-Host $_.Exception.Message

}

 catch can be used to react to a more specific exception type instead:

 try {

 throw [ArgumentException]::new('Invalid argument')

} catch [ArgumentException] {

 Write-Host 'Caught an argument exception'

}

 More than one catch statement can be supplied, allowing different reactions to different types of error:

 try {

 throw [ArgumentException]::new('Invalid argument')

} catch [InvalidOperationException] {

 Write-Host 'Caught an invalid operation exception'

} catch [ArgumentException] {

 Write-Host 'Caught an argument exception'

}

 The catch statements are evaluated in the order they are written. The most specific handlers should be written before more general error types:

 try {

 throw [ArgumentException]::new('Invalid argument')

} catch [ArgumentException] {

 Write-Host 'Caught an argument exception'

} catch {

 Write-Host 'Something else went wrong'

}

 Each catch statement can be triggered by one or more exception types:

 try {

 throw [ArgumentException]::new('Invalid argument')

} catch [InvalidOperationException], [ArgumentException] {

 Write-Host 'Argument or InvalidOperation exception'

}

 The finally block and be used either alongside or instead of catch. The finally block always executes, even if an error occurred during try. The finally block is therefore an ideal place to clean up anything that might otherwise cause a problem.

 In the following example, finally is used to close a potentially open connection to an SQL server:

 using namespace System.Data.SqlClient

$connectionString = 'Data Source=dbServer;Initial Catalog=dbName'

try {

 $sqlConnection = [SqlConnection]::new($connectionString)

 $sqlConnection.Open()

 $sqlCommand = $sqlConnection.CreateCommand()

 $sqlCommand.CommandText = 'SELECT * FROM Employee'

 $reader = $sqlCommand.ExecuteReader()

} finally {

 if ($sqlConnection.State -eq 'Open') {

 $sqlConnection.Close()

 }

}

 When catch is used with finally, the content of finally is executed before errors are returned, but after the body of catch has executed. This is demonstrated by the following example:

 try {

 Write-Host "Try"

 throw 'Error'

} catch {

 Write-Host "Catch, after Try"

 throw

} finally {

 Write-Host "Finally, after Catch, before the exception"

}

 An error raised in try can be repeated in a catch block.

 Rethrowing errors

 Errors may be caught using try, then thrown again (or rethrown) in a catch block. This technique can be useful if a try block performs several dependent steps in a sequence where one or more might fail.

 Rethrowing an error raised by a script can be as simple as using throw in a catch block:

 try {

 'Statement1'

 throw 'Statement2'

 'Statement3'

} catch {

 throw

}

 The previous example will display Statement1, then the error. Statement3 will never run in this case.

 You can use ThrowTerminatingError to emit the error record that catch is handling:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 try {

 'Statement1'

 throw 'Statement2'

 'Statement3'

 } catch {

 $pscmdlet.ThrowTerminatingError($_)

 }

}

 When an error is rethrown in the manner shown above, the second instance of the error (within the catch block) is not written to either $Error or a user-defined error variable. If the error is not modified, this is not a problem.

 If information is added to the error before it is rethrown, such as an error ID, the modified error record will not be available to error variables. This is shown in the following example:

 try {

 throw 'Error'

} catch {

 $params = @{

 Exception = $_.Exception

 ErrorID = 'SomeErrorID'

 Category = 'InvalidOperation'

 }

 Write-Error @params

}

 Get-Error can be used to show that the category and ErrorID are not set as defined in the catch block for the last error raised:

 PS> Get-Error |

>> Select-Object CategoryInfo, FullyQualifiedErrorId |

>> Format-List

CategoryInfo : OperationStopped: (Error:String) [],

 RuntimeException

FullyQualifiedErrorId : Error

 The preceding problem can be resolved by creating a new error record with the original exception as an inner exception:

 try {

 throw 'Error'

} catch {

 $params = @{

 Exception = [InvalidOperationException]::new(

 $_.Exception.Message,

 $_.Exception

)

 ErrorID = 'SomeErrorID'

 Category = 'InvalidOperation'

 }

 Write-Error @params

}

 In the case of the preceding exception and most exception types, the first argument of the constructor is a message, and the second (optional) argument is an inner exception.

 Inner exception types cannot be used with catch statements in PowerShell except when a MethodInvocationException is raised.

 A MethodInvocationException is a generic error that is raised when PowerShell executes a method on a .NET type or object:

 [DateTime]::DaysInMonth(2019, 13)

Get-Error | ForEach-Object {

 $_.Exception.GetType().Name

}

 PowerShell can react to the MethodInvocationException type:

 using namespace System.Management.Automation

try {

 [DateTime]::DaysInMonth(2019, 13)

} catch [MethodInvocationException] {

 Write-Host 'Caught a method invocation exception'

}

 However, this exception type is not particularly useful. In the case of a MethodInvocationException PowerShell can catch the inner exception, in this case an ArgumentOutOfRange exception:

 try {

 [DateTime]::DaysInMonth(2019, 13)

} catch [ArgumentOutOfRangeException] {

 Write-Host 'Out of range'

}

 When a command raises an error, the actual problem may be nested under one or more inner exceptions. When only the inner exception is interesting, you can use InnerException. It allows access to each inner exception in turn. In the following example, the property is used to access the exception in the middle:

 try {

 throw [InvalidOperationException]::new(

 'OuterException',

 [ArgumentException]::new(

 'IntermediateException',

 [UnauthorizedAccessException]::new('InnerException')

)

)

} catch {

 Write-Host $_.Exception.InnerException.Message

}

 The Exception class (and all derived classes) include a GetBaseException method. This method provides simple access to the inner-most exception and is useful when the number of nested exceptions is unknown:

 try {

 throw [InvalidOperationException]::new(

 'OuterException',

 [ArgumentException]::new(

 'IntermediateException',

 [UnauthorizedAccessException]::new('InnerException')

)

)

} catch {

 Write-Host $_.Exception.GetBaseException().Message

}

 In cases where the exception type is not sufficient, the catch block can be expanded to include if or switch statements, allowing decisions to be made based on values like the message in an exception.

 At the start of this chapter, a reference was made to incorrect documentation surrounding terminating errors.

 Inconsistent error handling

 The different methods PowerShell exposes to create a terminating error are not consistent and can be extremely confusing.

 The behavior of the different types of error is explored in detail in an issue in the PowerShell Docs repository: https://github.com/MicrosoftDocs/PowerShell-Docs/issues/1583.

 Unfortunately, the content of the thread is yet to find a home in released documents.

 When throw is used to raise a terminating error, the current script, and anything that called the current script, is stopped. The preceding link refers to errors raised by throw as a script-terminating error.

 A script-terminating error is shown in the following example:

 $ErrorActionPreference = 'Continue'

function caller {

 first

 second

}

function first {

 throw 'Failed'

 'first'

}

function second {

 'second'

}

 The error raised in the function named first stops all commands in the chain. The function named second is never executed. This is shown when the function caller is run:

 PS> caller

Exception:

Line |

 2 | throw 'Failed'

 | ~~~~~~~~~~~~~~

 | Failed

 This differs from the behavior when ThrowTerminatingError is called. ThrowTermatingError is used by binary modules that want to stop execution; this introduces a rift in error handling between script and binary modules.

 The article linked at the beginning of this section refers to an error raised by ThrowTerminatingError as a statement-terminating error:

 using namespace System.Management.Automation

function caller {

 first

 second

}

function first {

 [CmdletBinding()]

 param ()

 $errorRecord = [ErrorRecord]::new(

 [Exception]::new('Failed'),

 'ID',

 'OperationStopped',

 $null

)

 $pscmdlet.ThrowTerminatingError($errorRecord)

 'first'

}

function second {

 'second'

}

 Running the function first shows a different result to the version that used a throw statement instead:

 PS> caller

first:

Line |

 2 | first

 | ~~~~~

 | Failed

Second

 The ThrowTerminatingError statement stops the function first from completing, but it does not stop the function caller from continuing.

 This second version is therefore consistent with a script that runs a command from a binary module. In the following example, ConvertFrom-Json raises a terminating error but does not stop the function that called it from executing:

 function caller {

 ConvertFrom-Json -InputObject '{{'

 second

}

function second {

 'second'

}

 The output when running caller is:

 PS> caller

ConvertFrom-Json:

Line |

 2 | ConvertFrom-Json -InputObject '{{'

 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 | Conversion from JSON failed with error: Invalid property identifier character: {. Path '', line 1, position 1.

second

 The same behavior is seen when calling .NET methods. The static method, IPAddress.Parse, will raise an exception because the use of the method is not valid. The function continues from this error and calls the function second:

 function caller {

 [IPAddress]::Parse('this is not an IP')

 child1

}

function second {

 'second'

}

caller

 Not only do errors raised by throw differ from those raised by ThrowTerminatingError, but throw statements are also influenced by the error action preference despite the documentation for PowerShell having stated the opposite for the last decade.

 throw and ErrorAction

 The throw keyword raises a terminating error; terminating errors are described in about_Preference_Variables as not being affected by the ErrorActionPreference.

 Unfortunately, errors raised by throw are affected by ErrorAction when ErrorAction is set to SilentlyContinue. This behavior is an important consideration when designing commands for others to use.

 The following function throws a terminating error; the second statement should never run:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 throw 'Error'

 Write-Host 'No error'

}

 Running the function with an error action set to the default, continue, shows that the error is thrown and the second command does not execute:

 PS> Invoke-Something

Exception:

Line |

 5 | throw 'Error'

 | ~~~~~~~~~~~~~

 | Error

 If ErrorAction is set to SilentlyContinue, throw will be ignored:

 PS> Invoke-Something -ErrorAction SilentlyContinue

No error

 The same problem exhibits of the $ErrorActionPreference variable is set in the parent scope:

 PS> $ErrorActionPreference = 'SilentlyContinue'

PS> Invoke-Something

No error

 You can still use a throw statement in a script, but because it does not behave as described in the documentation it must be used with great care.

 Enclosing a throw statement in a try block will cause it to trigger catch, ending the script as it should regardless of the ErrorAction setting:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 try {

 throw 'Error'

 Write-Host 'No error'

 } catch {

 Write-Host 'An error occurred'

 }

}

 When the function is called, the content of the catch block executes as it should:

 PS> Invoke-Something -ErrorAction SilentlyContinue

An error occurred

 The problem described here also applies when throw is used within the catch block, although, in this case, the script still terminates.

 The following script should result in an error being displayed as the error is terminating; however, no error is displayed if you set -ErrorAction to SilentlyContinue. The error raised in try does still prevent the script from progressing to the Write-Host command:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 try {

 throw 'Error'

 Write-Host 'No error'

 } catch {

 throw 'An error occurred'

 }

}

 In this version, any statements that appear after the throw statement in the catch block will not execute. When -ErrorAction is set to SilentlyContinue, this function runs and returns nothing at all. The only evidence of an error is in the $Error variable:

 PS> $Error.Clear()

PS> Invoke-Something -ErrorAction SilentlyContinue

PS> $Error[0]

Exception:

Line |

 9 | throw 'An error occurred'

 | ~~~~~~~~~~~~~~~~~~~~~~~~~

 | An error occurred

 For scripts that use the CmdletBinding attribute, ThrowTerminatingError can be used. The ThrowTerminatingError method is not affected by the -ErrorAction parameter or $ErrorActionPreference variable:

 function Invoke-Something {

 [CmdletBinding()]

 param ()

 try {

 throw 'Error'

 Write-Host 'No error'

 } catch {

 $PSCmdlet.ThrowTerminatingError($_)

 }

}

 Running the command shows will reliably show the error. The error can be handled by using a try statement in the script calling this command:

 PS> Invoke-Something -ErrorAction SilentlyContinue

Exception: Error

 To establish consistent behavior, the following recommendations can be made:

 	Prefer to use CmdletBinding with functions, scripts, and ScriptBlocks

 	When using throw, only use throw inside try block

 	Use the ThrowTerminatingError method to stop a script from executing

 	Prefer the WriteError method when creating non-terminating errors as this correctly sets the value for $?

 	Any script that calls another that may raise an error should expect and handle errors using a try block

 To provide more granular error handling in a script, you can nest try blocks.

 Nesting try, catch, and finally

 One try statement can be inside another to provide granular error handling of small operations.

 A script that performs setup actions and then works on several objects in a loop is a good example of a script that might benefit from more than one try statement. The script should terminate cleanly if something goes wrong during setup, but it might only notify if an error occurs within the loop.

 The following functions can be used as a working example of such a script. The setup actions might include connecting to a management server or a data source of some kind:

 function Connect-Server {}

 Once the connection is established, a set of objects might be retrieved:

 function Get-ManagementObject {

 1..10 | ForEach-Object {

 [PSCustomObject]@{

 Name = $_

 Property = "Value$_"

 }

 }

}

 These objects might be modified by another function, which occasionally goes wrong:

 function Set-ManagementObject {

 [CmdletBinding()]

 param (

 [Parameter(Mandatory, ValueFromPipeline)]

 $Object,

 $Property

)

 process {

 try {

 if (Get-Random -Maximum 2) {

 throw 'something went wrong!'

 }

 $Object.Property = $Property

 } catch {

 $PSCmdlet.ThrowTerminatingError($_)

 }

 }

}

 The following script uses the previous functions. If a terminating error is raised during either the Connect or Get commands, the script will stop. If a terminating error is raised when executing the Set command, the script writes a non-terminating error and moves onto the next object:

 try {

 Connect-Server

 Get-ManagementObject | ForEach-Object {

 try {

 $_ | Set-ManagementObject -Property 'NewValue'

 } catch {

 Write-Error -ErrorRecord $_

 }

 }

} catch {

 throw

}

 A throw is used in the catch block of the statement above as it does not include a CmdletBinding attribute and a param block.

 Before try, catch, and finally were introduced handling exceptions in PowerShell required the use of a trap statement.

 About trap

 All the way back in PowerShell 1.0, a trap statement was the only way to handle terminating errors in a script.

 As trap very occasionally finds its way into modern scripts, it is beneficial to understand the use of the statement.

 trap is used to catch errors raised anywhere within the scope of the trap declaration, that is, the current scope and any child scopes.

 The PowerShell engine finds trap statements anywhere within a script before beginning execution of the script. It deviates from the line-by-line approach one might expect when running a PowerShell script.

 Using trap

 A trap statement is declared in a similar manner to the catch block. A trap statement can be created to handle any exception type:

 trap {

 Write-Host 'An error occurred'

}

 A trap statement can also be created to handle a specific exception type:

 trap [ArgumentException] {

 Write-Host 'Argument exception'

}

 A script may contain more than one trap statement; for example:

 trap [InvalidOperationException] {

 Write-Host 'An invalid operation'

}

trap {

 Write-Host 'Catch all other exceptions'

}

 The ordering of the preceding trap statements does not matter; the statement with the most specific error type is always used to handle a given error.

 The following example uses a trap statement at the end of the script to illustrate that the location of the statement is unimportant:

 & {

 Write-Host 'Statement1'

 throw 'Statement2'

 Write-Host 'Statement3'

 trap { Write-Host 'An error occurred' }

}

 The error raised by throw causes the trap statement to execute, and then execution stops; Statement3 is never written.

 trap, scope, and continue

 By default, if an error is handled by trap, script execution stops.

 You can use the continue keyword to resume a script at the next statement.

 The following example handles the error raised by throw and continues onto the next statement:

 & {

 Write-Host 'Statement1'

 throw 'Statement2'

 Write-Host 'Statement3'

 trap {

 Write-Host 'An error occurred'

 continue

 }

}

 The behavior of continue is dependent on the scope the trap statement is written in. In the preceding example, continue moves onto writing Statement3 as the trap statement, and the statements being executed are in the same scope.

 The following script declares a function that throws an error. trap is declared in the parent scope of the function:

 & {

 function Invoke-Something {

 Write-Host 'Statement1'

 throw 'Statement2'

 Write-Host 'Statement3'

 }

 Invoke-Something

 Write-Host 'Done'

 trap {

 Write-Host 'An error occurred'

 continue

 }

}

 The continue keyword is used, but Statement3 is not displayed. Execution can only continue in the same scope as the trap statement.

 Summary

 Error handling in PowerShell is a complex topic, perhaps made more so by inconsistencies in the documentation that can trip up new and experienced PowerShell users.

 PowerShell includes the concept of non-terminating errors. Non-terminating errors allow a script, such as one acting on a pipeline, to carry on in the event of an error.

 Error handling cannot be said to be consistently implemented in PowerShell. It is not always true that a problem that prevents an action from continuing will be described as a terminating error. The reverse is also true: not all actions that allow an action to continue are described as non-terminating errors. Great care must therefore be taken when writing code to correctly handle error conditions.

 Non-terminating errors should be used when writing commands that expect to act on more than one object if the error is restricted to that one object and does not prevent a broader activity from completing.

 You use terminating errors when execution absolutely cannot continue.

 PowerShell includes several different ways to raise both terminating and non-terminating errors. Write-Error, $PSCmdlet.WriteError, throw, and $PSCmdlet.ThrowTerminatingError were all introduced in this chapter.

 The problems associated with the use of throw were explored, and there were general recommendations that throw should be confined to try and $PSCmdlet.ThrowTerminatingError should be used to end a script in the event of a terminal problem.

 Finally, trap statements were demonstrated. trap came along with PowerShell 1 and is rarely used in modern scripts. trap was largely superseded by try, catch, and finally, which were introduced with PowerShell 2.

 The next chapter explores the debugging options available in PowerShell.

 23

 Debugging and Troubleshooting

 Debugging is the art of discovering, isolating, and fixing bugs in code. The complexity of debugging increases with the complexity of the code.

 To a degree, the need to debug complex scripts can be reduced by adopting certain development strategies:

 	Scripts should be broken down into discreet units by using functions

 	Each unit of code should strive to excel at one thing only

 	Each unit of code should strive to be as short as it can reasonably be without sacrificing clarity

 	Tests should be developed to ensure that each unit of code acts as it should

 	Use commands such as Write-Verbose or Write-Debug to write identifiable messages, perhaps including values of variables

 Debugging is an inevitable part of the development process. Fortunately, the debugger itself is not difficult to use.

 This chapter explores the following topics:

 	Common problems

 	Debugging in the console

 	Debugging in Visual Studio Code

 Before looking at specific debugging tools, some of the more common problems can be explored.

 Common problems

 When supporting PowerShell development, some problems appear again and again. No one is immune from writing a bug into code, no matter how experienced. All experience brings is the ability to find and fix bugs more quickly.

 This section explores the following relatively common problems:

 	Dash characters

 	Operator usage

 	Use of named blocks

 	Problems with variables

 The dash character is a relatively common problem when a piece of code is copied from a blog article or when any code has been corrected by a word processor.

 Dash characters

 In PowerShell, a hyphen is used to separate the verb from the noun in command names and is also used to denote a parameter name after a command.

 When looking for examples on the internet, it is common to bump into PowerShell code that has been formatted into rich text. That is, where the hyphen character has been replaced by a dash character, such as an em or en dash.

 In printed text, this problem is difficult to show, which is why it is a problem in the first place.

 The command may appear ordinary:

 Get–Process | Where-Object WorkingSet64 –gt 100MB

 If you paste it into the PowerShell console, the dash characters disappear and PowerShell will complain that the command does not exist:

 [image:]

 Figure 23.1: Pasting into a console

 If you run the command in either ISE (under PowerShell 5.1) or the Visual Studio integrated terminal, the dash character stays, but PowerShell still raises an error about the command name. This error message is even less useful because the dash is still present, and the command name appears correct:

 [image: Text

Description automatically generated with medium confidence]

 Figure 23.2: Error when running a selection in ISE

 The same error shows in Visual Studio Code. This time, the code is executed in PowerShell 7.1.3:

 [image: Graphical user interface, text, email

Description automatically generated]

 Figure 23.3: Error when running a selection in VS Code

 The syntax highlighter in Visual Studio Code hints at the problem. The Get-Process command in the script has two different colors (the actual colors will depend on which themes are enabled). The Get-Process command should have the same highlighting as the Where-Object command in this example.

 The color difference is because the dash character used is not a hyphen, it is an en dash, and this confuses PowerShell new and old.

 Fixing the dash in the Get-Process command (by retyping the character) fixes the Get-Process command, but despite the filter appearing to be correct, the filter will still fail to apply.

 The same dash appears again in the -gt parameter, and it must also be fixed for the code to work as intended.

 If the problem described previously does not show when pasting the preceding example, the example can be recreated from the following string:

 "Get$([char]8211)Process | Where-Object WorkingSet64 $([char]8211)gt 100MB"

 It takes a sharp eye to spot a problem based only on a tiny difference in the length of a dash character. Syntax highlighting helps a lot, but this does not clearly point out that there is a problem.

 PSScriptAnalyzer

 The default rules in PSScriptAnalyzer do not warn about this problem, but it is possible to create a rule. My module, Indented.ScriptAnalyzerRules, includes a rule for this problem, AvoidDashCharacters: https://github.com/indented-automation/Indented.ScriptAnalyzerRules.

 Operators in PowerShell are another opportunity for bugs to creep into code.

 Operator usage

 Bugs in code can easily be caused by the incorrect usage of an operator. This can be a logical error, such as using -gt, where -ge was a better choice (or vice versa).

 Operators were explored in detail in Chapter 4, Operators.

 Problems can also be caused if = is accidentally used instead of -eq.

 Assignment instead of equality

 Accidentally using the assignment operator, =, in place of the equality operator, -eq, is a common problem.

 When an assignment operation is enclosed in brackets, PowerShell performs the assignment and returns the value that was assigned, for example:

 PS> ($variable = $true)

True

 The same applies if the assignment statement is part of an if statement:

 if ($variable = $true) {

 Write-Host 'The condition is true'

} else {

 Write-Host 'The condition is false'

}

 In this example, the variable will always have the value $true because of the assignment inside the if statement.

 PowerShell will not highlight this assignment as being an error. It is a legitimate use of the assignment operator. The following example captures the output from the Get-Process command at the same time as testing it:

 $params = @{

 Name = 'notepad'

 ErrorAction = 'SilentlyContinue'

}

if ($process = Get-Process @params) {

 Write-Host "$($process.Name) is running, ID is $($process.ID)"

} else {

 Write-Host "$($params.name) is not running"

}

 It would be easy to argue that this is not a great practice. However, there is a difference between what is possible and what might be considered a good practice. Since PowerShell will not warn you when this feature is erroneously used, it is important to be mindful of attempts to compare values in this manner.

 Comparison operators are not the only type of operator that can occasionally cause confusion.

 -or instead of -and

 The logical operators -and and -or are occasionally easy to confuse. This typically exhibits when converting a thought in a natural language directly into code.

 For example, the following statement can be translated into code:

 I want all names which do not start with a or b.

 When writing the code to implement the statement, it is tempting to use the same logical expression as used in natural language; in this case, that is "or":

 @(

 'Anna'

 'Ben'

 'Chris'

 'David'

) | Where-Object { $_ -notlike 'a*' -or $_ -notlike 'b*' }

 Each comparison is evaluated without considering the other. The preceding code will return Anna, because Anna does not start with the letter "b", and it will return Ben, because Ben does not begin with the letter "a".

 Using -and in place of -or will fix the problem in the code, as shown here:

 @(

 'Anna'

 'Ben'

 'Chris'

 'David'

) | Where-Object { $_ -notlike 'a*' -and $_ -notlike 'b*' }

 A less common problem can be seen when using a comparison operator on an array.

 Negated array comparisons

 Each of the comparison operators includes a negated version, that is, -eq and -ne, -match and -notmatch, and so on.

 When performing a comparison on an array, it can be tempting to use the negative version of the operator to make an assertion.

 In this example, the -notmatch operator is erroneously used to assert that there are no names in the array that start with "a" or "b":

 $array = @(

 'Anna'

 'Ben'

 'Chris'

 'David'

)

if ($array -notmatch '^[ab]') {

 Write-Host "No names starting A or B"

}

 When acting on an array, the comparison operator does not return a simple $true or $false; it returns the elements in the array that satisfy the comparison. In the preceding example, the result of the comparison is the strings Chris and David.

 If you use the -not operator in conjunction with the -match operator instead, the statement in the body of the if statement becomes more accurate:

 $array = @(

 'Anna'

 'Ben'

 'Chris'

 'David'

)

if (-not ($array -match '^[ab]')) {

 Write-Host "No names starting A or B"

}

 It is easy to make a mistake with a comparison operator and, at times, it can be difficult to spot such problems. Testing is an important part of any development process.

 PowerShell uses named blocks to support pipeline operations.

 Use of named blocks

 The named blocks begin, process, and end are used to support pipeline operations in PowerShell. Named blocks are also used if dynamic parameters are in use.

 Named blocks are explored in Chapter 17, Scripts, Functions, and Script Blocks.

 Dynamic parameters are explored in Chapter 18, Parameters, Validation, and Dynamic Parameters.

 When a named block is used, all code must be placed inside named blocks.

 Code outside of a named block

 Placing code outside of a named block when named blocks are in use can result in several different errors.

 In the following example, a verbose statement has erroneously been placed before the process block. The function uses a brace style where the opening brace is placed on the line after the statement:

 function Get-Something

{

 [CmdletBinding()]

 param

 (

 [Parameter(ValueFromPipeline)]

 [string]$InputObject

)

 Write-Verbose 'Starting Get-Something'

code

 process

 {

 Write-Verbose "Working on $InputObject"

 }

}

 It would be easy to expect an editor to regard this script as invalid; however, it is not. When it is run, the following happens:

 	The Write-Verbose statement will run (showing a message using -Verbose)

 	A list of processes will be displayed

 	The script block containing the second Write-Verbose statement will be emitted, but not executed

 These actions happen because the first statement after param defines the block that is used. Write-Verbose means all content is placed in the end block (the default for the function).

 The process statement is considered a command and implicitly aliased to Get-Process. PowerShell attempts to find and run a Get- command for all bare words that do not explicitly resolve to another command; for example, running service will cause Get-Service to execute.

 If the braces were placed on the same line as the preceding statement, the outcome would be slightly different:

 function Get-Something {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [string]$InputObject

)

 Write-Verbose 'Starting Get-Something'

 process {

 Write-Verbose "Working on $InputObject"

 }

}

 This time, when the function is run, the output is as follows:

 	The Write-Verbose statement will run (showing a message using -Verbose)

 	Get-Process attempts to run, but an error is thrown because the script block containing Write-Verbose is not a valid parameter

 The error is:

 PS> Get-Something

Get-Process:

Line |

 10 | process {

 | ~

 | Cannot evaluate parameter 'Name' because its argument is specified as a script block and there is no input. A script block cannot be evaluated without input.

 When one named block is used, all code must be placed inside a named block. Moving the initial Write-Verbose statement into a begin block will fix the problem with the function.

 If no blocks are defined, PowerShell uses the default block. For functions, scripts, and script blocks, the default block is end. For functions created using the filter keyword, the default block is process.

 Pipeline without process

 You can create functions with parameters that accept pipeline input. If the body of the function is not placed inside a named block, then PowerShell will use the default block, end.

 When you add a pipeline parameter to a function that only implements an end block, the body of the function will only ever be able to use the last value in the pipeline:

 function Write-Number {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [int]$Number

)

 Write-Host $Number

}

 When running in a pipeline, only the last of the input values will be displayed:

 PS> 1..5 | Write-Number

5

 Moving the body of the function into a process block will allow it to act on all values from the input pipeline:

 function Write-Number {

 [CmdletBinding()]

 param (

 [Parameter(ValueFromPipeline)]

 [int]$Number

)

 process {

 Write-Host $Number

 }

}

 Perhaps one of the most obvious causes of bugs is a problem with a variable.

 Problems with variables

 Variables are a critical part of almost every script. Potential problems with variables include:

 	Typing errors

 	Incorrectly assigned types

 	Accidental use of reserved variables

 It is difficult to solve the problems above using tools; context plays a large part in determining what is correct. Understanding context often requires a human actor. Humans are particularly good at spotting patterns, while computers must be taught based on large sample sets.

 One possible technical solution you can use to reduce the risk impact of typing errors is strict mode in PowerShell.

 About strict mode

 Strict mode in PowerShell is used to add several additional parser rules when evaluating scripts. Strict mode is enabled using the Set-StrictMode command. The mode is applied to the current scope and all child scopes.

 Set-StrictMode can be used in a module without affecting global scope or any other modules.

 You can set strict mode to three (effective) values:

 	1.0

 	2.0

 	Latest

 For example, the following command sets strict mode to Latest:

 Set-StrictMode -Version Latest

 The effect of each of these modes is described in the help file for Set-StrictMode. When you use Latest as the mode, the effect in PowerShell is that it:

 	Prohibits the use of uninitialized variables

 	Prohibits references to non-existent properties of objects

 	Prohibits function calls that use the syntax for calling methods

 	Prohibits out of bounds or unresolvable array indexes

 For example, when enabled in the following function, strict mode causes an error because of the mistake in a variable name:

 function Test-StrictMode {

 Set-StrictMode -Version Latest

 $names = 'pwsh', 'powershell'

 foreach ($name in $naems) {

 Write-Host $name

 }

}

 When the function runs, an error relating to the variable name is displayed:

 PS> Test-StrictMode

InvalidOperation:

Line |

 5 | foreach ($name in $naems) {

 | ~~~~~~

 | The variable '$naems' cannot be retrieved because it has not been set.

 It is important to note that Set-StrictMode does not enforce scope, so if, for some reason, the $naems variable were to exist in a parent scope, the error would not be displayed.

 Set-StrictMode has a mixed reputation in the PowerShell community. On the one hand, it offers some small protection against errors. On the other hand, it prohibits certain simple patterns, for instance, testing for a non-existent property on an object.

 Without strict mode, it is possible to test for a null, empty, false, or non-existent property in an if statement, as the following shows:

 $object = [PSCustomObject]@{

 ValueA = 1

}

if ($object.ValueB) {

 Write-Host "ValueB is set"

}

 Enabling strict mode will instead show an error:

 PS> Set-StrictMode -Version Latest

PS>if ($object.ValueB) {

>> Write-Host "ValueB is set"

>> }

PropertyNotFoundException: The property 'ValueB' cannot be found on this object. Verify that the property exists.

 To accommodate strict mode, the condition must become much more complex, making use of the hidden PSObject member of objects in PowerShell:

 Set-StrictMode -Version Latest

$object = [PSCustomObject]@{

 ValueA = 1

}

if ($object.PSObject.Properties.Item('ValueB') -and

 $object.ValueB) {

 Write-Host "ValueB is set"

}

 Strict mode can be disabled at any time by using the following command:

 Set-StrictMode -Off

 Perhaps most important of all is the fact that the protection strict mode brings is displayed at runtime. As a developer, the problem with the variable ideally needs to be shown in an editor when writing code. By the time a script is handed to someone else to run, it is far too late to show warnings about variable usage. It is up to each developer to decide whether strict mode is appropriate.

 Beyond typing mistakes, one of the most common errors with variables is caused by assigning a type to a variable.

 Variables and types

 Variables in PowerShell may be assigned a type on creation by placing the type on the left-hand side of the variable. For example, the variable in the following code is defined as having a string type:

 [string]$string = 'Hello world'

 Any subsequent assignment to the variable will be coerced into a string:

 PS> $string = @{}

PS> $string

System.Collections.Hashtable

PS> $string.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 The type applies to all assignments made to that variable until either another type is assigned (on the left-hand side of the variable) or the variable is destroyed using the Remove-Variable command.

 This is most commonly a problem where a parameter for a command is created with a type, and an attempt is made to reuse the variable in the body script or function.

 Assigning a type to a variable can have interesting consequences when applied to an automatic variable.

 Types and reserved variables

 PowerShell includes many built-in variables; these variables are described in the about_automatic_variables help file:

 Get-Help about_automatic_variables

 Several of these variables only exist in a specific context. For example, the $foreach variable only exists inside a foreach loop.

 If you accidentally use a reserved variable, for instance, as a parameter, and the parameter has an associated type, this can break functionality in PowerShell.

 For example, the following switch statement will act on either true or false:

 switch ($true) {

 $true { 'The value is true' }

 $false { 'The value is false' }

}

 If a type is erroneously assigned to a variable called $switch, the statement will no longer function as the iterator it requires is broken. Instead, an error will be displayed:

 [switch]$Switch = $true

switch ($true) {

 $true { 'The value is true' }

 $false { 'The value is false' }

}

 The following System.SZArrayEnumerator error is the type the $switch variable should have but no longer does because of the previous assignment statement:

 MetadataError: Cannot convert value "System.SZArrayEnumerator" to type "System.Management.Automation.SwitchParameter". Boolean parameters accept only Boolean values and numbers, such as $True, $False, 1 or 0.

 PowerShell will not prevent this from happening; it is up to a developer to avoid this problem in the first place.

 The problem with switch in the preceding example will persist until either PowerShell is restarted or the variable is removed:

 Remove-Variable switch

 It is important to be mindful of and avoid using automatic variables in code.

 Being aware of potential problems avoids the need for extensive debugging. When the problem is less obvious, the debugger can be used.

 Debugging in the console

 The PowerShell debugger allows code execution to be paused and the state of a script to be analyzed at a specific point.

 These points are known as breakpoints and are set using the Set-PSBreakpoint command.

 PowerShell describes the following operations in the about_Debuggers help file:

 Get-Help about_Debuggers

 You can use the Set-PSBreakpoint command to set a breakpoint when a command is run, when a variable is used, or on a specific line in a saved script.

 Setting a command breakpoint

 Setting a breakpoint on a command will trigger the debugger when that command is run.

 In the next example, a breakpoint is created that triggers when the Get-Process command runs. As Get-Process is inside a loop, it will be possible to inspect the state of variables inside the loop in the debugger:

 Set-PSBreakpoint -Command Get-Process

$names = 'powershell', 'pwsh', 'code'

foreach ($name in $names) {

 Get-Process $name -ErrorAction SilentlyContinue

}

 When the example is run, the DBG prompt will appear:

 Hit Command breakpoint on 'Get-Process'

At line:2 char:5

+ Get-Process $name -ErrorAction SilentlyContinue

+ ~~~

[DBG]: PS C:\workspace>>

 Pressing ? at the DBG prompt will show the possible debug actions. The output is shown in Figure 23.4:

 [image: Text

Description automatically generated]

 Figure 23.4: Error when running a selection in VS Code

 In addition to these actions, any variable values may be inspected at this point in the loop simply by typing the variable name into the prompt:

 [DBG]: PS C:\workspace>> $name

powershell

 The current script may be displayed using the list command inside the debug prompt. By default, it will list the entire script. A range of lines may be displayed by specifying optional start and end line numbers for the list command:

 [DBG]: PS C:\workspace>> list 1 2

 1: foreach ($name in $names) {

 2:* Get-Process $name -ErrorAction SilentlyContinue

 If the end line is not specified, the command will display all script lines from the start to the end of the script.

 Pressing c, to continue, will move to the next iteration in the loop. If any of the processes are not running, an error will be displayed by Get-Process. This time, the $name variable will show the second item in the loop.

 [DBG]: PS C:\workspace>> $name

pwsh

 If the process is running, the process objects will be returned. Once the script completes, the debug prompt will close.

 Breakpoints in a session can be viewed using the Get-PSBreakpoint command, and any existing breakpoint can be removed using Remove-PSBreakpoint. The following command removes all breakpoints in the session:

 Get-PSBreakpoint | Remove-PSBreakpoint

 Confusing breakpoints

 Breakpoints should be removed after running any examples to avoid confusing results.

 Breakpoints may also be set on variables.

 Using variable breakpoints

 When a breakpoint is set on a variable, it will, by default, only trigger when the variable is set (written to).

 Writing to a variable means changing the value held by the variable. In the following example, the value of the $newValue variable is set five times, once per iteration of the loop:

 foreach ($value in 1..5) {

 $newValue = $value

}

 Setting a breakpoint based on this variable will therefore cause the debugger to pause execution five times:

 Set-PSBreakpoint -Variable newValue

foreach ($value in 1..5) {

 $newValue = $value

}

 If a variable holds a collection, such as a Hashtable, it is important to note that adding a key is not a write operation with respect to the variable. In this example, the debugger will only trigger when $values is created:

 Set-PSBreakpoint -Variable values

$values = @{}

foreach ($value in 1..5) {

 $values[$value] = $value

}

 The operation to add a key to the Hashtable is performed on the value of the variable, which is read from the variable object.

 The -Mode parameter, which has the default value Write, may be used to trigger the debugger when a variable is read by setting the argument to either Read or ReadWrite.

 If the last breakpoint is removed, and a new breakpoint added, the debugger will trigger five times again:

 Set-PSBreakpoint -Variable values -Mode Read

$values = @{}

foreach ($value in 1..5) {

 $values[$value] = $value

}

 The most common use of the debugger is a line breakpoint.

 Setting a line breakpoint

 A line breakpoint can only be set if a script is saved to a file. The debugger will trigger when the line in the script is executed. The debugger may be used to explore the current state:

 @'

$names = 'powershell', 'pwsh', 'code'

foreach ($name in $names) {

 Get-Process $name -ErrorAction SilentlyContinue

}

'@ | Set-Content script.ps1

Set-PSBreakpoint -Script script.ps1 -Line 3

.\script.ps1

 When accessing script variables inside the debugger, several automatic variables cannot be viewed:

 	$Args

 	$Input

 	$MyInvocation

 	$PSBoundParameters

 These variables are used by the debugger and are therefore overwritten by the debugger, hiding any values the script might use.

 The value of an automatic variable should be assigned to another named variable in the script to view the content of that variable. For example, the $PSBoundParameters variable value is assigned to another variable in the following example:

 @'

param (

 [string[]]$Name

)

$boundParameters = $PSBoundParameters

foreach ($processName in $Name) {

 Get-Process $name -ErrorAction SilentlyContinue

}

'@ | Set-Content script.ps1

Set-PSBreakpoint -Script script.ps1 -Line 7

 When the debugger starts, you can inspect the value of the $boundParameters variable, but the value of $PSBoundParameters is not available. This is shown in the following snippet:

 PS C:\workspace> .\script.ps1 -Name 'pwsh'

Hit Line breakpoint on 'C:\workspace\script.ps1:7'

At C:\workspace\script.ps1:7 char:5

+ Get-Process $name

+ ~~~~~~~~~~~~~~~~~

[DBG]: PS C:\workspace>> $PSBoundParameters

[DBG]: PS C:\workspace>> $boundParameters

Key Value

--- -----

Name {pwsh}

 Setting breakpoints using line numbers in the console is possible, but is not the easiest way to work with the debugger.

 The Visual Studio Code editor includes a debugger interface, which is a lot easier to work with than the command line.

 Debugging in Visual Studio Code

 Visual Studio Code and other interactive editors greatly simplify working with the debugger. The debugger is accessed via a button on the left-hand side of the editor.

 Using the debugger

 The debugging options in Visual Studio Code, by default, will run a script and stop at any defined breakpoint.

 The param block is removed from script.ps1 for this example, making the content:

 $names = 'powershell', 'pwsh', 'code'

foreach ($name in $names) {

 Get-Process $name -ErrorAction SilentlyContinue

}

 You can add breakpoints to a script by clicking to the left of the line number. A breakpoint has been added to script.ps1, as shown in Figure 23.5:

 [image: Graphical user interface, application, Word

Description automatically generated]

 Figure 23.5: Debugging in Visual Studio Code

 The breakpoint appears as a red dot next to the line. When the Run and Debug button is pressed, Visual Studio Code will execute the script. The script in this case is run in PowerShell 7.1 based on the version in the bottom-left corner of the editor.

 When run, the VARIABLES and CALL STACK boxes will fill as shown in Figure 23.6:

 [image: Graphical user interface, application, Word

Description automatically generated]

 Figure 23.6: Accessible variables in the debugger

 The icons in the bar at the top of the window present the different options for the debugger:

 [image: Graphical user interface, application, chat or text message

Description automatically generated]

 Figure 23.7: Debugger controls

 Pressing the left-most icon, Continue, will move on to the next breakpoint.

 The VARIABLES box on the left-hand side shows the state of each of the variables in PowerShell at the point the debugger stopped. The values of the $name and $names variables are visible and can be inspected.

 Viewing the CALL STACK

 The CALL STACK is used to record the path taken to a specific point in code. The CALL STACK includes a record of each command, script, or script block that was called.

 A script that contains a single command with a breakpoint, such as the following script, will only contain itself in the CALL STACK:

 Write-Host 'Hello world'

 This is shown in Figure 23.8:

 [image: Graphical user interface, application

Description automatically generated]

 Figure 23.8: Viewing the CALL STACK

 Each script, function, or script block that is called to get to the breakpoint is added to the CALL STACK. In the following script, getting to the breakpoint means calling the first function, then the second, and then the third:

 function first {

 second

}

function second {

 third

}

function third {

 Write-Host 'Hello world'

}

first

 Each time a function is called from inside an existing function (or script, or script block), a new value is added to the CALL STACK:

 [image: Graphical user interface, application

Description automatically generated]

 Figure 23.9: Viewing the CALL STACK with nested functions

 Clicking on each of the entries in the CALL STACK will show what was called to get to the breakpoint. The final entry in the CALL STACK will highlight line 10.

 This allows a developer to follow the path to the breakpoint even if a script is more complex.

 The functions in the previous example do not make use of any variables. The Auto section of the VARIABLES window is therefore empty.

 Using launch configurations

 A launch configuration is a JSON file that describes how debugging should be performed. Launch configurations are valuable if a script requires arguments. Without a launch configuration, you would have to edit a script so that it wouldn't require arguments.

 Launch configurations are only available when Visual Studio Code has a directory open. If the editor was used to open a file path, the Run and Debug option will show the need to open a folder:

 [image: Graphical user interface, application, Word, Teams

Description automatically generated]

 Figure 23.10: Opening a folder dialog

 Selecting open a folder will offer a prompt for the directory containing the current script. Clicking OK will open that directory, and the Explorer option will contain all the files in that folder.

 Returning to the Run and Debug option will now offer an option to create a launch configuration JSON file:

 [image: Graphical user interface, application

Description automatically generated]

 Figure 23.11: Creating a launch configuration

 Clicking on the new option will open a new menu. Selecting Launch Current File will create a launch.json file in a .vscode folder in the current directory.

 The launch.json file can be edited, adding a configuration that can be used to run a specific script.

 Each configuration is written in JSON. In the following example, the existing entry is copied and used to create a new launch configuration. The configuration includes the "args" property, and a value is set to satisfy the script:

 {

 "version": "0.2.0",

 "configurations": [

 {

 "name": "PowerShell: Launch Current File",

 "type": "PowerShell",

 "request": "launch",

 "script": "${file}",

 "cwd": "${file}"

 },

 {

 "name": "PowerShell: Launch with arguments",

 "type": "PowerShell",

 "request": "launch",

 "script": "${file}",

 "cwd": "${file}",

 "args": [

 "-Name pwsh"

]

 }

]

}

 A script requiring arguments can now be run in the debugger by choosing the new PowerShell: Launch with arguments configuration:

 [image: Graphical user interface, text, application

Description automatically generated]

 Figure 23.12: Launch with arguments

 A complex script may include many variables, which can make attempting to track values using the VARIABLES window difficult.

 Using WATCH

 You can use the WATCH window to track a smaller number of variables or expressions as breakpoints are triggered.

 The next example script sets two variables with every iteration of a loop:

 $AValue = $ZValue = 0

for ($i = 0; $i -lt 10; $i++) {

 $AValue = $i

 $ZValue = $i * 2

}

 The names of the variables mean they will appear at opposite ends of the VARIABLES window.

 Each variable can be added to the WATCH window and the debugger will show the current value of those variables. Before the debugger runs, the value is shown as not available:

 [image:]

 Figure 23.13: WATCH expressions

 Once the debugger is started, the variables will be given their initial values as defined by the script. Then, each time Continue is pressed, the values will update to reflect that iteration of the loop.

 For example, after the fifth press of Continue, the updated state of the variables is as follows:

 [image: Graphical user interface, text, application

Description automatically generated]

 Figure 23.14: WATCH in action

 The expression added to WATCH can be any command or statement that returns a simple value. Complex values, such as custom objects, will not display well in the WATCH window.

 The debugging in Visual Studio Code is an especially useful tool that simplifies debugging complex scripts.

 Summary

 Some errors in PowerShell come up again and again, and being able to spot and identify such errors can reduce the amount of time spent attempting to isolate a problem. Several common problems were introduced based on real-world bugs.

 Not every bug can be attributed to a common error, and sometimes a more extensive investigation is required. PowerShell includes a debugger that you can use from either the command line or an editor to isolate bugs.

 Visual Studio is a PowerShell editor that simplifies using the PowerShell debugger. It makes it easier for a developer to use line-based debugging.

 This chapter brings this book to a close. PowerShell is full of rabbit holes to dive down and explore, more than is possible to include in this book.

 Perhaps one of the most prominent features of PowerShell is consistency. Each command, each module, is presented consistently, and each has help immediately available.

 The move to .NET Core and open source has opened interesting avenues for exploring the inner workings of PowerShell, fixing bugs, and extending the language.

 PowerShell is supported by a fantastic friendly community, willing to help and chat regardless of experience level. User groups exist in many parts of the world, and the virtual PowerShell user group is always available: https://poshcode.org/

 All these things combine to make PowerShell a fun language to learn and use.

 [image:]

 packt.com

 Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

 	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

 	Improve your learning with Skill Plans built especially for you

 	Get a free eBook or video every month

 	Fully searchable for easy access to vital information

 	Copy and paste, print, and bookmark content

 At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Other Books You May Enjoy

 If you enjoyed this book, you may be interested in these other books by Packt:

 [image:]

 C# 9 and .NET 5 – Modern Cross-Platform Development - Fifth Edition

 Mark J. Price

 ISBN: 9781800568105

 	Build your own types with object-oriented programming

 	Query and manipulate data using LINQ

 	Build websites and services using ASP.NET Core 5

 	Create intelligent apps using machine learning

 	Use Entity Framework Core and work with relational databases

 	Discover Windows app development using the Universal Windows Platform and XAML

 	Build rich web experiences using the Blazor framework

 	Build mobile applications for iOS and Android using Xamarin.Forms

 [image:]

 Software Architecture with C# 9 and .NET 5 - Second Edition

 Gabriel Baptista

 Francesco Abbruzzese

 ISBN: 9781800566040

 	Use different techniques to overcome real-world architectural challenges and solve design consideration issues

 	Apply architectural approaches such as layered architecture, service-oriented architecture (SOA), and microservices

 	Leverage tools such as containers, Docker, Kubernetes, and Blazor to manage microservices effectively

 	Get up to speed with Azure tools and features for delivering global solutions

 	Program and maintain Azure Functions using C# 9 and its latest features

 	Understand when it is best to use test-driven development (TDD) as an approach for software development

 	Write automated functional test cases

 	Get the best of DevOps principles to enable CI/CD environments

 Packt is searching for authors like you

 If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Share your thoughts

 Now you've finished Mastering PowerShell Scripting, Fourth Edition, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

 Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

 Index

 Symbols

 $Error variable 694, 695

 -and operator 109

 -as operator 116

 *-Csv commands 226, 227

 -isnot operator 117

 -is operator 117

 -join operator 125

 .NET Regex type 262, 264

 -not (or !) operator 110

 -or operator 109

 -replace operator 106, 107

 -Skip command

 using 659

 -split operator 107, 108

 -xor operator 109

 A

 Abstract Syntax Tree (AST) 225, 634

 searching 641, 642, 643

 using 638, 639, 640

 visualizing 640, 641

 acceptance testing

 performing, considerations 650

 access 286

 Access Control Entries (ACEs) 287

 adding 292

 filesystem rights 292, 293

 registry rights 293, 294

 removing 290, 291

 access control entry (ACE)

 adding 326, 327

 Access Control Lists (ACLs) 286

 numeric values 294, 295

 access mask 290

 access modifier 62

 Action parameter 437, 438, 439

 Adapted Type System (ATS) 60

 add and assign operator (+=) 98

 addition operators 94

 Add-Member command 65

 Alias attribute 505

 aliases 16, 17, 18

 alternation 255

 restricting 256

 anchors 247, 248

 any character (.) 243

 argument completers 553, 554

 Argument Completer attribute 554, 555

 Register-ArgumentCompleter, using 555, 556

 registered argument completers, listing 557

 ArgumentTypeConverterAttribute type 208, 209, 210, 211

 arithmetic operators 93, 94

 precedence 94

 array 147

 clearing 154

 creating 148

 elements, adding 149, 150

 elements, removing 152

 elements, removing by index 153, 154

 elements, removing by value 154

 elements, selecting 150, 151

 element value, changing 152

 jagged arrays 155, 156

 multi-dimensional arrays 155, 156

 variables, filling 155

 with type 148, 149

 array operator

 used, for breaking up lines 517, 518

 array parameter 174

 arrays 223

 assembly 188, 189, 190

 assertions 652, 653

 reference link 652

 assign and divide operator 99

 assignment operators 97

 add and assign operator (+=) 98

 assign 97

 multiply and assign operator 99

 subtract and assign operator (-=) 99

 ASSOCIATORS OF

 using 317, 318

 ATS and ETS, Microsoft

 reference link 61

 audit 287

 authentication

 working with 380

 B

 background operator 432

 background operators 129, 130

 badssl site

 URL 371

 Base64 230

 working with 230, 231

 begin block 507

 BeginInvoke methods 440, 442

 binary and (-band) operator 111

 binary exclusive or (-bxor) operator 112

 binary not (-bnot) operator 112, 113

 binary operators 110

 binary and (-band) operator 111

 binary exclusive or (-bxor) operator 112

 binary not (-bnot) operator 112

 binary or (-bor) operator 111

 shift left (-shl) operator 113, 114, 115

 shift right (-shr) operator 113, 114, 115

 binary or (-bor) operator 111

 bit field 283

 Boolean 185, 186

 break keyword 177, 178, 182

 avoiding in loop 183, 184

 breakpoints 726

 built-in help system, PowerShell 5

 About_* help files 14

 Get-Help command 7

 Save-Help command 11, 12

 updatable help 6, 7

 updatable help, supporting modules 6

 Update-Help command 13

 Byte-Order Mark (BOM) 119

 URL 119

 C

 call operator (&) 122

 Cascading Style Sheet (CSS) 335

 reference link 335

 casting

 supporting 589, 590, 591

 casting, to Void

 example 515

 catch block 695, 696, 697

 nesting 707, 708

 CertificatePolicy property 373

 certificate provider 32

 certificates

 formatting 273, 274

 chaining method 224, 225

 chain of trust 372

 character class 250

 character class subtraction 253

 negated character class 252

 ranges 251, 252

 shorthand character classes 253

 Unicode category class 253, 254

 character class subtraction 253

 chocolatey

 URL 55

 Chocolatey Server

 reference link 617

 Chocolatey.Server package 55

 CIM objects

 mocking 674, 675, 676

 CIM sessions 422

 Get-CimSession 423

 New-CimSession 422

 using 423

 class 193

 constructors 576, 577, 578

 creating 575

 Hidden modifier 580

 methods 578, 579

 properties 576

 Static modifier 580, 581

 classes 627

 classes, for implementing parameter 592

 argument-transformation attribute classes 592, 593, 594

 ValidateSet, classes 598, 599

 validation attribute classes 594

 cleanup block 506, 509, 510, 511

 closures 495

 CmdletBinding attribute 498, 499

 common parameters 499

 properties 500

 ShouldContinue method 501, 503, 504, 505

 ShouldProcess method 500, 501, 502, 503

 cmdlet development guidelines, PowerShell

 reference link 492

 command breakpoint

 setting 726, 727, 728

 commands

 discovering 16

 mocking 661, 662, 663

 commands, mocking 661, 662, 663

 parameters, filtering 664, 665

 comma operator 123

 comma-separated value (CSV) 226

 Comma-Separated Value (CSV) files 88

 comment-based help 518, 519

 Common Information Model (CIM) 422

 Common Information Model (CIM) cmdlets 305

 associated classes 312

 classes, obtaining 306

 instances, creating 309, 310

 instances, obtaining 305, 306

 methods, calling 307, 308, 309

 properties 304

 working, with sessions 310, 311

 community-created PowerShell Practice and Style repository

 reference link 492

 Compare-Object command 84, 85, 86

 comparing 84

 comparison operators

 and arrays 101

 case sensitivity 101

 -contains 104

 equal to (-eq) 102

 greater than (-gt) 103

 -in 104

 less than (-lt) 103

 -like operator 103

 not equal to (-ne) 102

 -notlike operator 103

 null value 101

 using 100

 conditional parameters 564, 565

 conditional testing

 about 657

 Set-ItResult command, using 658

 -Skip command, using 659

 Confirm 25, 26, 27, 28

 ConfirmPreference 25, 26, 27, 28

 constructor 197, 198, 199

 Contains method 222

 Context keyword

 tests, describing with 652

 continue keyword 177, 178, 183

 avoiding in loop 183, 184

 using 709, 710

 ConvertFrom-Csv command 89

 ConvertFrom-Json command 363, 364

 AsHashtable 365, 366

 NoEnumerate 366

 ConvertFrom-String command 229

 ConvertFrom-StringData command 227

 converting 86

 Convert-String command 228

 ConvertTo-Csv command 87, 88

 ConvertTo-Html command 333, 334, 336

 ConvertTo-Json command 360, 361

 AsArray 362

 EnumsAsStrings 362

 EscapeHandling 362

 ConvertTo-XML command 342

 C Sharp (C#) programming guide

 reference link 197

 current script 689, 701

 custom script analyzer rules

 AST-based rules 645, 646

 custom rule, creating 645

 token-based rules 647, 648

 D

 Data Protection API (DPAPI) 91

 dates

 comparing 239

 modifying 235, 236, 237, 238

 parsing 234, 235

 dates and times

 manipulating 234

 DateTime parameters 238, 239

 Debuggex

 URL 246

 debugging 713

 in console 726

 in Visual Studio Code 730

 debugging, in Visual Studio Code 730

 call stack, viewing 733, 734

 debugger, using 731, 732

 launch configurations, launching 734, 736, 737

 WATCH window, using 737, 738

 decrement operator (--) 124

 default values 497

 Describe keyword

 tests, describing with 652

 Desired State Configuration (DSC) 334, 599, 600

 development strategies 713

 discretionary access control list (DACL) 325

 Discretionary Access Control List (DACL) 286

 Dispatcher

 using 485, 486, 487, 488

 Distributed Component Object Model (DCOM) 304

 Distributed Management Task Force (DMTF) 304

 division operator 96

 DockPanel control

 using 463, 464, 465, 466

 Document Type Definition (DTD) 337, 339

 Domain-Specific Language 648

 Domain-Specific Language (DSL) 334

 DontShow property 527, 528

 double-hop problem 420

 credentials, passing 421

 CredSSP 421

 do until loop 181

 do while loop 181

 drive letters

 functions 34

 drives 33, 34, 279

 DSC resources 622, 624

 Dynamic Link Library (DLL) 46

 dynamicparam block 506

 dynamic parameters

 about 558, 559

 RuntimeDefinedParameterDictionary, using 561

 RuntimeDefinedParameter object, creating 559, 560, 561

 using 561, 562, 564

 E

 elseif statement 172

 else statement 172

 end block 508, 509

 EndInvoke method 442, 443

 EndsWith method 222

 Enter-PSSession command 413

 entries

 copying 291

 enumerating 66

 enumeration 192, 627

 automatic value assignment 569, 570

 defining 567, 568

 enum 568, 569

 Flags attribute 571, 572, 573, 574

 underlying types 568, 569

 using, to convert value 574, 575

 ValidateSet 570

 enumerations 627

 ErrorAction 704, 705, 706

 error actions 686, 687

 Get-Error command 688

 errors

 catching 694

 inconsistent handling 701, 703

 raising 689

 records 689, 690

 rethrowing 698, 699, 700, 701

 testing for 653, 654, 655

 error types 683

 non-terminating error 684

 terminating error 685, 686

 escape character (\) 244, 245

 EventArgs parameter 437, 438, 439

 Event commands 435, 436

 event handling 472, 473

 buttons and click event 474, 475

 ComboBox and SelectionChanged 476

 elements programmatically, adding 476, 477, 478

 ListView, sorting 478, 480, 482

 Event parameter 437, 438, 439

 events

 reacting to 434

 existing items

 testing 280

 Export-Clixml command 90

 Export-Csv command 86, 87, 88

 exporting 86

 Export-PSSession 414

 Extended Type System (ETS) 60

 Extensible Application Markup Language (XAML) 454, 455

 Extensible Markup Language (XML) 337

 attributes 338

 ConvertTo-XML command 342

 elements 338

 namespaces 338

 schemas 339

 Select-Xml command 339, 340

 F

 file attributes

 adding 283, 284, 285

 removing 283, 284, 285

 file catalog commands 297

 New-FileCatalog command 298

 Test-FileCatalog command 298, 299, 300, 301

 File Integrity Monitoring (FIM) 297

 file parameter 174

 filesystem 283

 filesystem rights 292, 293

 filtering 66

 finally block 695, 696, 697

 nesting 707, 708

 Find-Module command 51

 fluent interface 202, 203

 force parameter 29, 30

 foreach loop 178, 179

 ForEach-Object command 66, 67

 Begin parameter 67

 End parameter 67

 MemberName parameter 70

 Parallel parameter 68, 69

 positional parameters 68

 ForEach parameter

 using 657

 for loop 179, 180, 181

 format (-f) operator 123, 124

 functions 493

 G

 Get

 implementing 601

 Get-Command 9

 Get-Content command 377

 Get-Error command 688

 Get-EventSubscriber command 436

 Get-Help

 examples 521, 522

 Get-Help command 7, 8

 Detailed switch parameter 10

 examples 9

 Full switch parameter 11

 parameters 10

 syntax 8, 9

 Get-Item command 278

 Get-ItemProperty 283

 Get-Job command

 using 428, 429

 Get-Member command 60

 Get method

 implementing 601

 Get-Module command 44

 Get-PSSession command

 using 408, 409

 Get-Unique 75

 Get-WSManInstance 399

 Global Assembly Cache (GAC) 190

 greedy quantifier 249

 Grid control

 using 458, 459, 460, 461

 grouping 79, 255

 Group-Object command 79, 80, 81, 82

 groups

 named capture groups 258, 259

 non-capturing groups 260, 261

 purpose 255

 repeating 256

 H

 hard link 281

 hashing 297

 Hashtables 156

 creating 157

 elements, adding 157, 158, 159

 elements, changing 157, 158, 159

 elements, removing from 160

 elements, selecting 159

 enumerating 160

 HelpMessage property 529

 HTML 333

 ConvertTo-Html command 334

 multiple tables 334

 special characters 336, 337

 style, adding 335

 HTTP over Secure Sockets Layer (SSL) 371

 Hypertext Transfer Protocol (HTTP) 370

 methods 370

 I

 IComparable interface

 implementing 586, 587, 588, 589

 if statement 172

 assignment 172

 Import-Clixml command 90, 91

 Import-Csv command 88

 Import-Module command 45

 importng 86

 Import-PSSession 413

 Import-Xaml function 483

 increment operator (++) 124

 IndexOf method 219, 220

 inheritance

 about 581, 582

 and constructors 582, 583, 584

 methods, calling in parent class 585

 inheritance flags 289

 InitialSessionState object 446, 447

 functions, adding 449

 snap-ins, adding 447

 using 449

 variables, adding 447, 448

 InModuleScope command 677, 678

 InputObject variable 544, 545

 input pipeline 542

 input validation

 about 530

 PSReference parameters 541, 542

 PSTypeName attribute, using 530, 531, 532

 Insert method 219

 Install-Module command 51

 interfaces

 working with 585

 Internet Information Services (IIS) 55

 Invoke-Command

 AsJob parameter 411

 Disconnected sessions 411, 412

 local functions and remote sessions 410

 splatting, using with ArgumentList 410, 411

 using 409

 using variable scope 412

 Invoke methods 440, 442

 Invoke-RestMethod command 375

 Invoke-WebRequest 370, 371

 IP addresses 268, 269, 270

 IsReadOnly property 283

 item properties 283

 Get-ItemProperty 283

 IsReadOnly property 283

 Set-ItemProperty 283

 items 280

 creating 281, 282

 deleting 281, 282

 invoking 282

 iteration, with Pester

 ForEach parameter, using 657

 styles 655

 TestCases parameter, using 655, 656

 It keyword

 using 652

 J

 JavaScript Object Notation (JSON) 360, 367

 ConvertFrom-Json command 363, 364

 ConvertTo-Json command 360, 361

 JEA documentation

 reference link 424

 jobs 431

 batching 433, 434

 working with 427, 428

 JSON serialization 361

 junction link 281

 Just Enough Administration (JEA) 424

 role capabilities 426

 session configuration file 424, 425

 L

 label 184, 185

 Language Integrated Query (LINQ) 354

 large byte values 231, 232

 LastIndexOf method 219, 220

 Last-In, First-Out (LIFO) 168

 layout 457

 DockPanel control, using 463, 465, 466

 Grid control, using 458, 459, 460, 461

 Margin 466, 468

 Padding 466, 468

 StackPanel control, using 461, 463

 lazy quantifier 249

 line break

 adding, after operator 516

 adding, after pipe 516

 line breakpoint

 setting 729, 730

 LINQ to XML

 namespaces 356, 357

 lists

 copying 291

 literal characters 242

 Local Configuration Manager (LCM) 605

 locating elements 468, 469, 470, 471, 472

 logical operators

 about 109

 -and operator 109

 -not (or !) operator 110

 -or operator 109

 -xor operator 109

 long lines

 working with 516

 look-ahead 261

 look-behind 261

 loop 178

 break keyword 182

 continue keyword 183

 foreach loop 178, 179

 for loop 179, 180

 while loop 182

 loops

 do until loop 181

 do while loop 181

 M

 Margin 466, 468

 match operator 105, 106

 MD5 hashing 297

 Measure-Object command 79, 82, 83, 84

 measuring 79

 Media Access Control (MAC) addresses 267, 268

 members 60, 197

 constructor 197, 198, 199

 methods 201, 202

 properties 199, 200

 static methods 203, 204

 static properties 205, 206

 member types, MSDN

 reference link 60

 MessageData parameter 437, 438, 439

 methods 201, 202

 using 63, 64

 methods, HTTP 1.1 specification

 reference link 370

 mocking

 using 661

 Mock keyword 661

 mocks

 overriding 665, 666, 667

 module

 creating 610

 Export-ModuleMember command, using 611, 612, 613, 614

 publishing, with Publish-Module command 617, 618

 root module 610, 611

 ModuleBuilder 622, 624

 module content

 dot sourcing 620, 621

 merging 621, 622

 module manifests

 about 614, 615

 Test-ModuleManifest 616

 Update-ModuleManifest command 616, 617

 modules 44

 finding 49

 Get-Module command 44, 45

 Import-Module command 45

 initializing 628, 629

 installing 49

 Remove-Module command 46

 removing 628, 629

 module scope

 about 624

 accessing 625, 626

 multi-file module layout 619

 multiple instances

 running 444

 multiplication operator 96

 multiply and assign operator 99

 N

 named block 511

 named blocks

 code, placing outside 719, 720

 pipeline, without process 721

 using 719

 named capture groups 258, 259

 namespace 193

 naming elements 468, 469, 470, 471, 472

 negated character class 252

 nesting functions 494, 495

 netstat command 270, 272, 273

 New-FileCatalog command 298

 New-PSSession command

 using 408

 New-WebServiceProxy command 386

 Nexus OSS

 reference link 617

 non-capturing groups 260, 261

 non-local commands

 mocking 667, 668, 669

 Non-local scoped variables 140

 non-standard output 58

 non-terminating errors 684, 685

 raising 690, 691

 raising, with WriteError method 692

 notmatch operator 105, 106

 nouns 15

 NtfsSecurity module 286

 NuGet repositories 55

 null

 output, assigning to 514

 statement, assigning to 514

 null coalescing assignment operator 127

 null coalescing operator 125, 126

 null conditional operator 127, 128

 null input

 accepting 543, 544

 numbers

 manipulating 231

 numeric scopes 141, 142, 143

 numeric values

 in Access Control Lists (ACLs) 294, 295

 O

 OAuth 382

 access token, requesting 384

 application, creating 382

 authorization code, obtaining 382

 browser issues 383

 HTTP listener, implementing 383, 384

 token, using 384

 object pipeline 59, 60

 object properties

 accessing 61

 objects

 mocking 670

 objects, mocking

 methods, adding to PSCustomObject 670, 671

 .NET types, disarming 671, 672, 673, 674

 OnRemove event 630, 631

 operator usage 716

 assignment, instead of equality 716

 negated array comparisons 718

 -or, using 717

 Out-Null command 513, 514

 output

 assigning, to null 514

 managing 512, 513

 Out-String command 336

 ownership 295, 296

 P

 Padding 466, 468

 PadLeft options 220, 221

 PadRight options 220, 221

 paging

 working with 378, 379, 380

 param block 496

 Parameter attribute

 about 523, 524, 525

 DontShow property 527, 528

 HelpMessage property 529

 position 525, 526, 527

 positional binding 525, 527

 ValueFromRemainingArguments property 528

 parameter filters

 applying 664, 665

 parameter help 520, 521

 parameters 18, 496

 common parameters 23, 24

 Confirm 24

 cross-referencing 498

 mandatory parameters 19

 mandatory positional parameters 19

 optional parameters 18, 19

 optional positional parameters 19

 sets 22, 23

 switch parameters 20

 values 21, 22

 WhatIf 24

 parameter set 8

 parameter sets

 defining 550, 552, 553

 parameter types 496

 parser modes 39

 argument modes 39

 expression modes 39, 40

 parsing 370

 PassThru parameter 30

 permissions, in WMI

 access control entry (ACE), adding 326, 327

 security descriptor, obtaining 324, 325, 326

 security descriptor, setting 327, 328

 shared directory, creating 323

 sharing 323

 working with 323

 Pester

 AfterAll block 661

 AfterEach block 661

 assertions 652

 BeforeAll block 661

 BeforeEach block 661

 Discovery phase 659

 phases 659, 660

 Run phase 659

 testing methodologies 650

 testing with 648, 649, 650

 using, for iteration 655

 using, in scripts 678, 679

 pipeline 58

 pipeline chain operators 128, 129

 positive look-ahead 261, 262

 power 627

 power of 10 232

 PowerShell 3

 ArgumentTypeConverterAttribute type 208, 209, 210, 211

 built-in help system 5

 command naming 15

 editors 3, 4, 5

 PSModulePath 47

 Reflection in 206

 TypeAccelerators type 207, 208

 PowerShell 7

 experimental features 40, 41

 Windows PowerShell modules, using in 48, 49

 PowerShell classes 627

 PowerShell development

 issues 714

 PowerShell development, issues

 dash characters 714, 715

 issue, with variables 721

 named blocks usage 719

 operator usage 716

 PowerShell Gallery 49, 50

 reference link 50

 PowerShellGet

 installation link 50

 PowerShellGet 3.0 52, 53

 repositories 53

 version ranges 54

 PowerShell instance

 creating 439, 440

 PowerShell remoting

 enabling 398

 on Linux 414, 415

 over SSH 415

 PowerShell remoting and permissions 402

 by script 403, 404, 406

 GUI, using 402, 403

 PowerShell remoting, over SSH

 connecting, from Linux to Windows 417, 419, 420

 connecting, from Windows to Linux 416, 417

 PowerShell Remoting Protocol (PSRP) package 397

 PowerShell repositories 54

 print working directory (PWD) 277

 private functions 611

 private variables 143

 process block 507

 ProGe

 reference link 617

 propagation flags 289

 properties 199, 200

 property set 76

 providers 31, 32

 creating 280

 drives 279

 Get-Item command 278

 in operating systems 30

 navigating 277, 278

 Windows-specific providers 31

 working with 275, 276

 PSDataCollection object 442, 443

 PSKoans module

 reference link 225

 PSLocal repository

 removing 618

 PSMemberTypes Enum

 reference link 197

 PSModulePath

 in PowerShell 46, 47

 PSScriptAnalyzer module 492, 493

 configurable rules 635, 636

 suppressing rules 636, 637

 using 634, 635

 PSScriptAnalyzer repository instructions, for suppressing rules

 reference link 493

 PSSessions 408

 Enter-PSSession command 413

 Export-PSSession 413

 Get-PSSession command, using 408, 409

 Import-PSSession 413

 Invoke-Command, using 409

 items, copying between sessions 414

 New-PSSession command, using 408

 PSTypeName attribute

 using 546

 public functions 611

 Publish-Module command

 used, for publishing module 617

 Q

 quantifiers 244, 248, 249, 250

 greedy quantifier 249

 lazy quantifier 249

 R

 ranges 251, 252

 Receive-Job command

 using, to retrieve data from job 429

 redirection operators 117

 streams, redirecting to standard output 120

 used, for redirecting output to null 121

 used, for redirecting to file 118, 120

 redirection, to null

 example 514

 Reflection 206

 in PowerShell 206

 regex parameter 175

 Register-ObjectEvent 435, 436

 registry rights 293, 294

 registry values

 manipulating 285

 regular expression-based operators 104

 match operator 105, 106

 notmatch operator 105, 106

 -replace operator 106, 107

 -split operator 107, 108

 regular expression (regex)

 any character (.) 243

 basics 241, 242

 characters 242

 debugging 246

 escape character (\) 244, 245

 literal characters 242, 243

 non-printable characters 246

 operators 242

 optional characters 246

 options 265, 266

 quantifiers 244

 reference link 247

 regular expression (regex), examples 267

 certificates, formatting 273, 274

 IP addresses 268, 269, 270

 MAC addresses 267, 268

 netstat command 270, 272, 273

 remainder operator 97

 Remove-Job command

 using 428, 429

 Remove method 219

 Remove-Module command 46

 Replace method 217

 Representational State Transfer (REST)

 authentication 380

 basic authentication, using 381

 Invoke-RestMethod command 375

 paging 378, 379, 380

 requests, with arguments 376, 377, 378

 simple requests 375, 376

 working with 375

 Requires statement 494

 reserved characters 124

 reserved variables 725, 726

 resource

 using 603, 604, 605, 606

 responsive interfaces 482, 483

 Dispatcher, using 485, 486, 487, 488

 Import-Xaml function 483

 Runspace 483

 return keyword 511, 512

 role capabilities 426

 root module 610

 rule protection 287, 288

 Runspace 483

 RunspacePool object

 using 444, 446

 RunspacePool objects

 using 449

 runspace pools

 using 439

 runspaces

 using 439

 Runspace-synchronized objects

 using 450, 451

 S

 Save-Module command 52

 scope modifier

 using 431

 scope modifiers 140

 scopes

 and variables 138, 139

 script block 495

 script block cases 175, 176

 script blocks 493

 scripts 493

 nesting functions 494

 Requires statement 494

 using statements 493, 494

 ScriptsToProcess property 629, 630

 security descriptor definition language (SDDL) 329, 330, 331

 selecting 71

 Select-Object command 71

 calculated properties 72, 73

 ExpandProperty parameter 74

 property sets 76

 Unique parameter 75, 76

 Select-Xml command 339

 namespaces 340, 341

 Send-MailMessage command 336

 session configuration file 424, 425

 Set-ItemProperty 283

 Set-ItResult command

 using 658

 Set method

 implementing 602

 Set-WSManQuickConfig 400, 401, 402

 SHA1 297

 shift left (-shl) operator 113, 114, 115

 shift right (-shr) operator 113, 114, 115

 shorthand character classes 253

 Should keyword

 using 652

 side-by-side versioning 618, 619

 Simple Object Access Protocol (SOAP) 398

 working with 385

 SMB repository

 creating 54

 snap-ins 55

 SOAP, in PowerShell 7 391

 enumerations, discovering 391, 392

 methods, discovering 391, 392

 methods, executing 393, 394, 395

 WSDL document, obtaining 391

 SOAP, in Windows PowerShell 386

 methods 386, 387

 methods, and enumerations 387, 388, 389

 methods, and SOAP objects 389

 New-WebServiceProxy command 386

 services, overlapping 390

 SOAP service

 finding 385

 Software Development Kits (SDKs) 190

 software testing

 URL 650

 sorting 71

 Sort-Object command 71, 76, 77, 78, 79, 89

 splatting 34

 and positional parameters 38, 39

 conditional use, of parameters 37

 used, for avoiding long lines 35, 36, 37

 used, for avoiding repetition 38

 using 35

 Split method 215, 216, 217

 SSL errors

 bypassing, in Windows PowerShell 372

 capturing 373, 375

 StackPanel control

 using 461, 462

 standard output (stdout) 58

 Start-Job command

 using 428, 429

 StartsWith method 222

 statement

 assigning, to null 514

 static analysis 633, 634

 custom script analyzer rules 644

 PSScriptAnalyzer module, using 634, 635

 tokenizer 644

 static methods 203, 204

 new method 204, 205

 static properties 205, 206

 streams 58

 StringBuilder type, methods

 reference link 201

 string method 222, 224

 strings

 Base64, working with 230, 231

 chaining method 224, 225

 Contains method 222

 ConvertFrom-String command 229

 ConvertFrom-StringData command 227, 228

 converting 226

 converting, into numeric values 233

 Convert-String command 228

 *-Csv commands 226, 227

 EndsWith method 222

 indexing into 214

 IndexOf method 219, 220

 Insert method 219

 LastIndexOf method 219, 220

 manipulating 213

 PadLeft options 220, 221

 PadRight options 220, 221

 Remove method 219

 Replace method 217, 218

 Split method 215, 216, 217

 StartsWith method 222

 Substring method 214, 215

 ToLower method 221

 ToTitleCase method 221

 ToUpper method 221

 TrimEnd method 218

 Trim method 218

 TrimStart method 218

 Structured Query Language (SQL) 312

 style 492, 493

 Substring method 214, 215

 subtract and assign operator (-=) 99

 subtraction operators 94, 95

 switch statement 173

 array parameter 174

 break keyword 177, 178

 continue keyword 177, 178

 file parameter 174

 regex parameter 175

 script block cases 175, 176

 wildcard parameter 175

 symbolic link 281

 System Access Control List (SACL) 287

 System.Collections.Generic.Dictionary 164

 creating 164

 elements, adding 165

 elements, changing 165

 elements, removing 167

 elements, selecting 166

 enumerating 166

 System.Collections.Generic.List 161, 162

 creating 162

 elements, adding 162

 elements, removing 164

 elements, selecting 162, 163, 164

 element values, changing 164

 System.Collections.Generic.Queue 167

 creating 167

 elements, adding 167

 elements, elements 168

 enumerating 167

 System.Collections.Generic.Stack 168

 creating 168

 elements, adding 169

 elements, removing 169

 enumerating 168, 169

 System.Math

 using 232

 System.Xml.Linq namespace 354

 attribute values, modifying 357, 358

 documents, creating 355, 356

 documents, opening 354

 element, modifying 357, 358

 nodes, adding 358

 nodes, removing 359

 nodes, selecting 355

 schema validation 359

 System.Xml namespace 342

 T

 target type 145

 Tee-Object command 91

 terminating errors 685, 686

 raising 693

 raising, with ThrowTerminatingError method 693, 694

 ternary operator 125

 TestCases parameter

 using 655, 656

 Test-Driven Development (TDD) 633

 Test-FileCatalog command 298, 299, 300, 301

 Test method

 implementing 602

 tests

 describing 651

 describing, with Context keyword 651

 describing, with Describe keyword 651

 ThreadJob module 432

 throw keyword 704, 705, 706

 ThrowTerminatingError method

 using 693, 694

 ToLower method 221

 ToTitleCase method 221

 ToUpper method 221

 transaction 296, 297

 trap

 about 708

 using 708, 709

 TrimEnd method 218

 Trim method 218

 TrimStart method 218

 trusted hosts 407

 try block 695, 696, 697

 nesting 707, 708

 type 191

 type accelerator 196, 197

 TypeAccelerators type 207, 208

 type conversion 143, 144, 145, 146

 typed numeric values 146, 147

 type operators 116

 -as operator 116

 -isnot operator 116, 117

 -is operator 116

 types 144, 145, 146

 U

 Unicode categories, documented on Microsoft Docs

 reference link 254

 Unicode category class 253, 254

 Uniform Resource Identifier (URI) 341, 375

 unit test 633

 unit testing

 performing, considerations 651

 Unregister-Event commands 436

 Update-Module command 52

 UseBasicParsing parameter 370

 User Account Control (UAC) 406

 User Interfaces (UI)

 designing 454

 displaying 455, 456, 457

 using assembly 195, 196

 using keyword 194

 using module 628

 using namespace 194, 195

 using statements 493, 494

 V

 validation attribute classes 594

 ValidateArgumentsAttribute 595, 596

 ValidateEnumeratedArgumentsAttribute 596, 598

 validation attributes

 about 532

 Allow attributes 540

 AllowEmptyCollection attribute 540

 AllowEmptyString attribute 540

 AllowNull attribute 540

 ValidateCount attribute 534

 ValidateDrive attribute 534

 ValidateLength attribute 535

 ValidateNotNull attribute 533

 ValidateNotNullOrEmpty attribute 533

 ValidatePattern attribute 536, 537

 ValidateRange attribute 537

 ValidateScript attribute 538

 ValidateSet attribute 539

 ValidateUserDrive attribute 535

 ValueFromPipeline 542, 543

 using, for multiple parameters 545, 546

 ValueFromPipelineByPropertyName 547, 548, 549

 ValueFromRemainingArguments property 528

 values

 capturing 257, 258

 variable breakpoints

 using 728, 729

 variable commands 134

 Clear-Variable command 135

 Get-Variable command 135

 New-Variable command 136

 Remove-Variable command 136

 Set-Variable command 137

 variable issues 722

 strict mode 722, 723, 724

 variable provider 137, 138

 variables 724

 accessing 139, 140

 creating 132, 133

 naming 132, 133

 objects assigned 133, 134

 statements, assigning to 100

 type, assigning 724

 verbs 15

 reference link 15

 Visual Studio Code (VS Code) 3

 Extension installer 4

 reference link 3

 W

 Wait-Job command 430

 web requests 370

 HTTP methods 370, 371

 HTTPS 371

 Web Services Description Language (WSDL) 391

 WhatIf 28, 29

 WhatIfPreference 28, 29

 Where-Object command 67, 70

 while loop 182

 wildcard parameter 175

 Windows Management Instrumentation (WMI) 329, 330, 331

 classes 304

 commands 304

 working with 303

 Windows permissions 286

 access 286

 Access Control Entries (ACEs), removing 290, 291

 audit 287

 entries, copying 291

 inheritance flags 289

 lists, copying 291

 propagation flags 289

 rule protection 287, 288

 Windows PowerShell

 SSL errors, bypassing 372

 Windows PowerShell modules

 using, in PowerShell 7 48, 49

 Windows Presentation Foundation (WPF) 454

 Windows remoting

 and SSL 399, 400

 WMI cmdlets

 properties 304

 WMI permissions 328

 access mask 328, 329

 security descriptor, obtaining 328

 WMI Query Language (WQL) 312

 associated classes 316

 ASSOCIATORS OF, using 317, 318

 comparison operators 314

 FROM parameter 313

 logic operators 314

 object paths 317

 SELECT parameter 313

 sequences and wildcards character, escaping 313, 314

 values, quoting 315, 316

 WHERE parameter 313

 WMI type accelerators 319

 associated classes 322

 classes, obtaining 320

 instances, creating 322

 instances, obtaining 319

 methods, calling 320, 321, 322

 working, with dates 319, 320

 WriteError method

 using 692

 Write-Host 118

 WS-Management 398

 Get-WSManInstance 399

 PowerShell remoting and permissions 402

 PowerShell remoting, enabling 398

 trusted hosts 407

 User Account Control (UAC) 406

 Windows remoting and SSL 399, 400

 WSMan drive 399

 WSMan drive 399

 X

 XML commands 337

 XmlDocument 344

 XML documents

 attributes, removing 348, 349

 attribute values, modifying 347

 creating 346, 347

 elements, adding 348

 elements, modifying 347

 elements, removing 348, 349

 namespaces 345

 nodes, copying between 349, 350

 schema, inferring 352, 353

 schema validation 350, 351

 XML type accelerator 342, 343

 XPath 339, 344

OEBPS/Images/B16355_23_05.png
create a launch json file. |

Show all automatic debug
configurations,

 BREAKPOINTS
© Bscriptpst 3
®0AO0 £ Live Share Ln5Col1 Spaces:4 UTF-8 LF PowerShell

X

fille Edit Selection View Go Run Terminal Help scriptps1 - workspace - Visual Studio Code - O
RUN AND DEBUG w0 B scriptpsl X >> QR M-
~ RUN B scriptpst >
1 $names = 'powershell', 'push', 'code' -
* 3 Get-Process $name -ErrorAction SilentlyContinue
To customize Run and Debug PR

OEBPS/Images/B16355_23_06.png
RU.. D> No Configurat v &%

'V VARIABLES
~ Auto
$n: a(”
981)"

$ConfirmPreference: High
$DebugPreference: SilentlyC..

> $Error: [Arr:

$ErrorActionPreference: Con..

$Errorview:

> $foreach: [SZArrayEnumerato..

ayList: @]

ConciseView

$FormatEnumerationLimit: 4

$InformationPreference: Sil..

$LASTEXITCODE: 128

> WATCH
/ CALL STACK
<scriptBlock>

PAUSED ON BREAKPOINT

scriptps1

35

B s

®

BY scriptpst >
$names = 'powershell’, 'pwsh', 'code’
foreach ($name in $names) |

1

2
3
4

GRS

}

[Get-Process $name -ErrorAction Sil

OEBPS/Images/B16355_23_07.png
Run Terminal Help script.ps1 - workspace -

B #ID 2 ¥ T OO0

BY scriptpst >

OEBPS/Images/B16355_23_08.png
R. D PowerShel:lev €& -+ ¥ scriptpsl

> VARIABLES B scriptpsl
> WATCH ® 1 Write-Host 'Hello world'
v CALLSTACK PAUSED ON BREAKPOINT (3

<scriptBlock> scriptpsl (i

OEBPS/Images/B16355_17_01.png
%) File Edit Selection View Go Run Terminal Help e scriptpsl - workspace - Visual Studio C.. — [u] X

B scriptps1 2 @ O N

B scriptpst

1 1s ci\temp | foreach|® o a

function foreach

‘foreach’ is an alias of 'Forkach-object'. Alias can introduce
possible problems and make scripts hard to maintain. Please
consider changing alias to its full
content. PsscriptAnalyzer(PSAvoidusingcnd

View Problem (AIt+F8) Quick Fix...(Ctrl+)

®0A2 # LiveShare Ln1,Col21 Spaces:i4 UTF-8 LF PowerShell &2 0

OEBPS/Images/B16355_23_01.png
*\workspace> GetProcess

here-Object Workingseto4 gt 100MB

PS C:\workspace>

OEBPS/Images/B16355_23_02.png
1 Get-Process | Where-Object WorkingSet64 -gt 100MB

PS C:\workspace> Get-Process | Where-object Workingset64 gt 100M

OEBPS/Images/B16355_23_03.png
) Ele Edit Selection View Go Run Ieminal Help dashps1 -Visual Studio Code. - o X
B dashpst X >R @

€:> workspace > B dashps1
1 Get-Process | Where-Object WorkingSet64 -gt 100MB

TERMINAL ~ PROBLEMS ~ OUTPUT DEBUG CONSOLE 1: Powershell Integratec v+~ (0 @ ~ X

Line
11 Get-Process | Where-Object WorkingSet64 —gt 100MB

|
1
1
| The term 'Get-Process' is not recognized as a name of a
|
1
|

cmdlet, function, script file, or executable program.
Check the spelling of the name, or if a path vas
included, verify that the path is correct and try again.

OEBPS/Images/B16355_23_04.png
PS C:\workspace> foreach ($name in Snames) { .
E Get-Process $name -ErrorAction SilentlyContinue

> }
ntering debug mode. Use h or ? for help.
Hit Command breakpoint on 'Get-Process'

At Tline:2 char:$5
+ Get-Process $name -ErrorAction SilentlyContinue

[DBG]: PS C:\workspace>> ?

s, stepInto Single step (step into functions, scripts, etc.)
v, stepOver Step to next statement (step over functions, scripts, etc.)
o, stepOut Step out of the current function, script, etc.
c, continue Continue operation
a, uit Stop operation and exit the debugger
, detach Continue operation and detach the debugger.

k, Get-Pscallstack Display call stack

1, list List source code for the current script. .
Use "list" to start from the current line, "list <m>"
to start from Tine <m>, and "list <m> <n>" to list <n>
Tines starting from Tine <m>

<enter> Repeat last command if it was stepInto, stepOver or list

?, h displays this help message.

Lor instructions about how to customize your debugger prompt, type "help about_prompt".

OEBPS/Images/B16355_14_01.png
7 Permissions for http://schemas.microsoft.com/powers... X

Alow Deny.
Full Control (Al Operations) %] a
Read(Get Enumerate. Subscribe)] o
Wite(Put Delete Create) O a
Execute(invoke) O a

Forspecil pemissons o advanced seings. | aganced |
clck Advanced. =

[0k] [concel | [0

OEBPS/Images/B16355_23_09.png
R. D PowerShell:lev €%

> VARIABLES

> WATCH

~ CALL STACK PAUSED ON BREAKPOINT
third scriptps1 (@5
second scriptpsl (5
first scriptpsl (2
<ScriptBlock> scriptps (10

X scriptpsl H DI

scriptps > @ third ()

1 reference
function first {
second

}

1 reference

- function second {

third
}

1 reference

v function third

| Dwurite-Host 'Hello world’

3
first

OEBPS/Images/B16355_16_01.png
>S C:\workspace>
>
>
>
>

>]

>
> C:\workspace> Show-Window Hello world

OEBPS/Images/B16355_01_04.png
PS> New-ScheduledTaskTrigger -Daily °

cndlet New-ScheduledTaskTrigger at command pipeline position 1
Supply values for the following parameters:
t:

OEBPS/Images/B16355_23_12.png
) Ele Edit Selection View Go Run ITerminal Help

RUNAND OESUG D Powershelk: Launch Current File

Powershel: Luunch Current File
Powershel: Launch with arguments

 VARIBLES

Node s
Add Configuration

@

scriptps1 - workspace - Visual Studio Code:

B sciptpsi 1 X

B sciptpst >
1 param
[string!) sName

)

Sboundparansters = SPsSoundparameters
foreach (Sprocesshane in SName)
Get-Process $nane -ErrorAction silentlyContinue

In3,Coll Spacesd UTF8 LF

Powershell

OEBPS/Images/B16355_16_02.png
PS C:\workspace> =
>>

>>]

>> Row 1, Column 1 Row 1, Column 2

>> Row 2, Column 1 Row 2, Column 2

orkspace> Show-window

OEBPS/Images/B16355_22_01.png
PS ! !un(t1on Start; as! !

>> [cmdletBinding()]

o> param ()

>>

>> Write-Error 'Something went wrong'

>>
PS C:\> Start-Task

Start-Task: Something went wrong
PS C:\> Get-Error

Exception 8
Type : Microsoft.PowerShell.Commands.WriteErrorException
Messa?e : Something went wrong
HResult : -2146233087
CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException

FullyQualifiederrorid : Microsoft.PowerShell.Commands.WriteErrorException,Start-Task
InvocationInfo

MyCommand 8 Start—Task
scriptLineNumber : 1
offsetInLine 8 d
HistoryId 12}
Line : Start-Task
PositionMessage : At line:1 char:1
+ start-Task
InvocationName : Start-Task
CommandOrigin : Internal
ScriptStackTrace : at Start-Task, <No file>: line 5

. . at <scriptBlock>, <No file>: line 1
PipelineIterationInfo :

OEBPS/Images/B16355_01_03.png
PC > Local Disk (C) > PSHelp Search PSHelp

Name Datemodified Size

] Microsoft Powershell.Management _eefcb306-b326-4¢39-9154-babbGef3ctd_en-US_HelpContentcab 04/07/2020 12:07 Cabinet File.
8 MicrosoftPowershellManagement_eefcb§06-5326-499-9154-8b4bb6ef3c5d_Halplnfoaxml 007720201207 XML Source File

OEBPS/Images/B16355_23_13.png
\ WATCH

$Avalue: not available
$zvalue

OEBPS/Images/B16355_23_14.png
%) FEile Edit Selection View Go Run

R. D Powershell:lev &% -

 VARIABLES B scriptps >

$n:ve(”

$8:)"

$AValua: 5
$ConfirmPreferenc

~ WATCH
$Avalue: 5
$zvalue: 8

2
3 $AvValue
oi |
500

High

> CALL STACK

 BREAKPOINTS

® & scriptpsl 4

X ®O0A2 g Powershell: Launch Current File (workspace) 4 Live Share

scriptps1 - workspace - Visual Stu.. — O

P> Y T o0

X

bR m -

v Auto 1 $Avalue = $zvalue = ©

for ($i = 0; $i -1t 10; $i++) {

= $i

D $zvalue = $i * 2

LF PowerShell &

|

OEBPS/Images/B16355_16_03.png
PS C:\workspace>
>>
>>
>>
>>
>
>>
>> .
53 Column 1
>>
>>
>>
>>
>>
>>

>
S C:\workspace> Show-Window

OEBPS/Images/B16355_01_02.png
% File Edit

Selection View Go script.ps1 - workspace - V...

B script > @ m --

BY scrip Current session: PowerShell (x64)

Switch to: PowerShell Preview (x64)
Switch to: Windows PowerShell (x64)
Switch to: Windows PowerShell (x86)
Restart Current Session

Open Session Logs Folder

X ®O0AO0 # LiveShare Spaces:4 UTF-8 LF PowerShell

OEBPS/Images/B16355_01_01.png
EXTENSIONS: MARKETPLACE

powershell

PowerShell 202122 ®aM x4
Develop Powershell scripts in Visual Studio Code!

Microsoft &
PowerShell Pro Tools 5251 DK K4

Powerful extensions for PowerShell development.
Ironman Software

PowerShell Previ K %
d Develop S| e 2

Microsoft

PowerShell Universal 152 DEK K5

Visual Studio Code tools for PowerShell Universal

Ironman Software

Azure PowerShell Tools 0.1.0 DI10K kS

(preview) Automate the migration of Azure PowerShell sc...

Microsoft instail }

OEBPS/Images/B16355_16_04.png
>>
PS C:\workspace> Show-Window

OEBPS/Images/B16355_16_05.png
PS C:\workspace>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

>>
PS C:\workspace> Show-Window

OEBPS/Images/B16355_16_06.png
/5chemas. mwicrosoft con/winfx/2006/xan /pr esentat on”
e+)/ Schemas i r osGFt Com/winfx/2006/xan
800" Height="500">

<DockPanel>
“Label Height-"50" Background-"Gainsboro"
Dockpanel 2
<stackpan:
DockPane]
<ComboBox

_</Dockpanel>
</indon>"
workspace> Sho

OEBPS/Images/B16355_16_07.png
kspace> Show-Window

L]

No margin, no padding

Margin, no padding

Padding, no margin

Padding and margin

OEBPS/Images/B16355_23_10.png
RUN AND DEBUG: RUN

Run and Debug

To customize Run and Debug, open

a folder and create a launchjson
file.

Show all automatic debug
configurations.

scriptpsl X

> workspace > BY scriptps1 > (€] $names
$names = 'powershell’, 'pus
foreach ($name in $names) |
Get-Process $name -Erro

OEBPS/Images/B16355_16_08.png
'S Ci\workspace> tunction Import-Xaml i

> param (

>> [Dxm1]$xam]

>>)

>

> Add-Type -AssenblyName PresentationFramework

>

>> Swindow = [System.Windows.Markup.XamlReader] : :Load(

> [System. Xnl .XmINodeReader] $xan]

>

> Scontrols = a{}

> foreach (Scontrol in $xaml.SelectNodes('//*[@Name]')) {
> " Scontrols[Scontrol .Name] = Swindow.FindName(Scontrol .Name)
>> [PSCustombaect]@(

> Mainiin Swindow,

> Controls. Scontrols

>> }

PS C:\workspace> Sxaml = '<?xml version="1.0" encoding="utf-§"?>
>

=
>>
>

tp://schemas .microsoft. com/winfx/2006/xam1/ /gresentat\on
as .microsoft . com/winfx/2006/xam

>
> <Stackpanel Widtl

>> <Button Name: Buttonl’ />
>> <Button Name: Button2” />
>> <Button_Name=" Button3" />
>> </stackPanel>

> </stindow>"
pS C:\workspace> Sui = Import-Xaml Sxam]
PS C:\workspace> S$ui.MainWindow.ShowDialog()

OEBPS/Images/B16355_23_11.png
RUN AND DEBUG

 RUN

Run and Debu

To customize Run and Debug
create a launch json file.

Show all automatic debug
configurations.

B script.ps

BY script.ps
1

2
3
a

OEBPS/Images/B16355_16_09.png
workspace> =

Hello world
wiorkspace> = Import-Xaml
workspace> .
workspace> $ui.Controls[7.add_click({
(.)
-Controls[].cContent

>> 1)
PS C:\workspace> .MainWindow. Showdialog)

OEBPS/Images/Image60596.jpg

OEBPS/Images/B16355_11_01.png
I Permissions for WmiPerms

Share Pemissions

Pemissions for Chris Alow Deny
Ful Control O
Change %] [m}
Read Y] O

o 1 coneel | [emy

OEBPS/Images/B16355_21_01.png
o st Explorer

& CommandAst.

& Commandast.

ConmandPor-
VarisbleExpressionast [16,20)

& ScriptdlockAst [0,47)
& NamedBlockast [0,47)
& Pipelinehst [0,47)

[e,20)

StringConstantExprassiondst [0,11)

eterast [12,15)

[23,47)

StringConstantExpressiondst [23,36)

& ArrayLiteraldst [37,47)
StringConstantExpressionist [37,41)
StringConstantExpressiondst [43,47)

Parent

UsingStatements System.Collections.Obje. .. UsingStatementst[]
ParanBlock [ParanBlockast
Boginslock HamadBlockast
ProcessBlock | NamedBlockAst
EndBlock Get-Process -ID $PID | ... NamedBlockAst
DynamicParanBlock [NamedBlockast
ScriptRequirements. | ScriptRequiraments
Extent (1,1)-(1,48) | I5criptextent

[ast

Get-Process -10 $PID | Select-Object Neme, Path

OEBPS/Images/B16355_16_10.png
workspace> Sxam <7xm
> window

>> xmlns="http://schemas.microsoft.com/winfx/2006/xaml /presentation"
S e n /S ch st oo FVe /20 Do a1

>> Width="350" Height="350">

>

>> <DockPanel>

>> <Button Name="Button’ Content="Get-Process"
>> DockPanel .Dock="Top" />
>

>> <ListView Name="ListView">
> <ListView.View>

>> <Gridview />

>> </Listview.View>

>> </Listview

> </Dockpanel>

>> </Window>"
:\workspace> $ui = Import-xaml S$xanl
workspace> Sui.Controls| Button’].add_Click({
paran (Ssender, SeventArgs)

Sdata = Get-Process | Select-Object Name, ID
$listview = $ui.Controls['Listvien']
Clear any previous content
$1i5tView.View.Columns.Clear ()
Foreach_(iproperty in $data[0].PSobject.Properties) {
Scolunn = [System.Windows.Controls. GridVienColumn]a{
DisplayMemberBinding
[System. Windows.Data.Binding] Sproperty.Name
Header Sproperty.Name

$1listview.View.Columns . Add(Scolunn)

$1istView.ItemsSource = Sdata

workspace> Sui.MainWindow. ShowbialogO)

OEBPS/Images/B16355_16_11.png
s ¢ .Sortbescriptions) {
= “sortdescriptions[0]

> & .PropertyName e
> = .Dire]

>> } . Get-Process.
>> .SortDescriptions.Clear ()
> } Neme

>> .SortDescriptions.Add(@{
>> Direction =
> p LTI .Content conhost

20 Registey
°S Coworkspaces Sui.Controls(Button’). add c1ick UMM
> .

>> Get-Process | Select-Object Name, [

>> .Controls[] winlogon
> .ItemsSource swchost

>> .View.Columns.Clear () R

[0].Psobject.pr|

@
> Displaydenberinding = senvices
> [Systen. windows .Data.Binding] s [ENENNY

. Header = @
. [Systen. windous.Controls. cridy[ERMERANN
> Content - “Name.

fontdrvhost
>>) WUDFHost

> .View.Columns . Add()

>> veh
>> Header .add_Click(: o
>> wchost

> D
ps C:\workspace> Sui.MainWindow.Showdialog()

OEBPS/Images/B16355_16_12.png
>> />

>> <TextBox Name="TextBoxStart" Text="1" Margin="5,5,5,0"
> Grid.Row="0" Grid.Column="1" />

- <Label Content-"nd" Margin-"5,5,5,0"

> Grid.Rol id.Colum

> <TextBox "5,5,5,0"
>

> " padding

> Botton” />

>

> Margin="5"_HorizontalContentAlignment="Center"

> VerticalContentalignment="Center" Fontsize="32"

> />

>> </bockpanel>

>> </Window>'
C:\workspace> $ui = Import-Xaml $xanl
workspace> Sui.Controls['Button'].add_Click({
$ui.PSHost . Conmands .Clear O
Sui PSHost . Addscript ({
Sdispatcher = Sui.Controls['Dispatcher ']

Sdispatcher . Invoke({
Sui.Controls['Button'].Isknabled = Sfalse

Start = Sdispatcher . Invoke([Funclobject]]{
Sui.Controls['TextBoxStart'].Text -as [int]

Send = Sdispatcher . Invoke([Func[object]11{
Sui.Controls['TextBoxend'].Text -as [int]

foreach (Snumber in Sstart..Send) {
Sui.Controls['Dispatcher’].Invoke({
Sui.Controls['Label'].Content = Snumber

2]
Start-sleep -Seconds 1

Sui.Controls['Dispatcher]. Invoke({
Sui.Controls['Button’].IsEnabled = Strue

1) Begintnuoke)

“\workspace> Sui .MainWindow.ShonDialog()

OEBPS/Images/Image17257.png
Packt

OEBPS/Images/9781800568105.jpg
C#9 and .NET5

Modern Cross-Platform
Development

B

Mark 3. Price Packt>

OEBPS/Images/B16355_02_01.png
ram Files\Windo erShel\Modules\PSScriptAnalyze]

ol

Include in library v Share with v New folder

E

“ Name Date modified

Q170
B8

23/08/2016 10:15
21/11/201615:27

Type

File folder
File folder

OEBPS/Images/B16355_02_02.png
PowerShell Gallery

Register | Signin

Publish Statistics Documentation Support

. Search for /IS returned 17 items
Filter By

Displaying results 1 - 17. Sort By Relevance
Item Types

@ moaue Carbon gy spiaercabivc

@ script Carbon s 2 PowerShell module for automating the configuration Windorws 7, 8 2008, and 201

i Module automation the nstallation and configuration of Windows appiications, webstes and service. I can
Categories configure and manage: * Local users and groups * IS websites, virtual directories, and applications * i
system, registy. and certificate p... e information

Cmdlet
DSC Resource 73,880 downloads Tags .net acl actve-directory certificates com compression computer
function credentil cyptography directory dic dicresources encyption. environment fle-system frewal
Role Capabilty groups host-fe hitp. identity s ini installers . Functions Add-Groupember Adc

Werkdon TsDefaulDocument Adc-TrustecHost Asset-AdminPrlege. Assert FrewalConfigurable AssetSenvice

Clear-DsclocalResourceCache Clear-MofAuthoringMetadata Clear-TrustedHost Complete-Job .. DSC
ReSOUrces Carbon_tnvironmentVarable. Carbon,Frewallkule Carbon_Group. Carbon.Inihle
Carbon_Permission Carbon_Prvilege Carbon_ScheduledTask Carbon Service

g xWebDeploy sy posersheieam

Module D5 Tesoutees fo instllng an 5 st usingthe WetDeploy IS extension
iodule
4,461 downloads Tags DesiredStateConfiguration DSC DSCResourceKit DSCResource DSC

Resources xWebDeploy xWebPackageDepioy

E cAspNetlisRegistration ey osberginhsres

Module with DSC Resources for ASP.NET IS registration in Windos

Jersions prior to Wind

OEBPS/Images/cover.png
EXPERT INSIGHT

Mastering

PowerShell

ing

ipt

Scr

Automate and manage your environment

using PowerShell 7.1

fil
NN
L ,,,/
AAAOAAROANGOARKY
,,”,,.,&&%".“..“.........,ﬁ,.’

//. ,.........é\

S
I

Fourth Edition

Packt>

Chris Dent

OEBPS/Images/B16355_07_01.png
Namespace: System.Text
Assembly: System Runtime.dil

StringBuilder Constructors

Initializes a new instance of the StringBuilder class.

Overloads

StringBuider)
StringBuider(int32)
StringBuider(String)

StringBuilder(Int32. Int32)

StringBuilder(String, Int32)

StringBuilder(String, Int32, Int32, Int32)

Initalizes a new instance of the StringBuilder class.
Initalizes a new instance of the StringBuilder class using the specified capacity.
Initializes a new instance of the StringBuilder class using the spedified string.

Initializes a new instance of the StringBuiider class that starts with a specified capacity and can
‘grow to a spediied maximum.

Initializes a new instance of the StringBuilder class using the specified string and capacity.

Initializes a new instance of the StringBuilder class from the specied substring and capacity.

OEBPS/Images/B16355_07_02.png
Properties

Capacity

Chars[Int32]

Length

MaxCapacity

Gets or sets the maximum number of characters that can be contained in the memory allocated
by the current instance.

Gets or sets the character at the specified character position in this instance.

Gets or sets the length of the current StringBuilder object.

‘Gets the maximum capacity o this instance.

OEBPS/Images/9781800566040.png
Software
Architecture with
C# 9 and .NET 5

P

[
Second Edition

Fmeane POICKDY

OEBPS/Images/B16355_07_05.png
Reverse(Array)

Reverses the sequence of the elements in the entire one-dimensional Array.
c#

public static void Reverse (Array array);

OEBPS/Images/B16355_07_06.png
DateTime.Now Property

Namespace: System

Assemblies: mscorlib.dll, System.Runtime.dll

Gets a DateTime object that is set to the current date and time on this computer, expressed as
the local time.

Cc# Iy copy

public static DateTime Now { get; }

OEBPS/Images/B16355_07_03.png
Methods

Append(Boolear)

Append(Byte)

Append(Char]

Append(Char*, Int32)

Append(Char, Int32)

Append(Charl))

Appends the string representation of a spediied Boolean value to this instance.
Appends the string representation of a spedied 8-bit unsigned integer to this instance.
Appends the string representation of a spediied Char object to this instance.

Appends an array of Unicode characters starting at a speciied address to this instance.

Appends a specified number of copies of the string representation of a Unicode character to this
instance.

Appends the string representation of the Unicode characters in a specified array to this instance.

OEBPS/Images/B16355_03_01.png
NewFile.bt Properties X

Generel Securty Details Previous Versions

[NewFiene [
Typeoffile: Text Document (tx)

Opens with: [7]] Notepad]
Location: C:\Development

Size: Obytes
Sizeondisk: Obytes

Created: 01 February 1692, 13:24:29
Modfied: 26 November 2016, 13:20:13
Accessed: 26 November 2016, 13:08:00

Mtibutes: [JReadonly []Hidden [Advanced...

OEBPS/Images/B16355_07_04.png
Reverse(Array)

Reverse(Array, Int32, Int32)

Reverse<T>(T()

Reverse<T> (T[], Int32, Int32)

Reverses the sequence of the elements in the entire one-
dimensional Array.

Reverses the sequence of a subset of the elements in the one-
dimensional Array.

Reverses the sequence of the elements in the one-dimensional
generic array.

Reverses the sequence of a subset of the clements in the one:
dimensional generic array.

