

Learning Helm

Managing Apps on Kubernetes

Matt Butcher, Matt Farina, and Josh Dolitsky

 Learning Helm

 by
 Matt
 Butcher,
 Matt
 Farina, and
 Josh
 Dolitsky

 Copyright © 2021 Matt Butcher, Innovating Tomorrow, and Blood
 Orange. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 John Devins

 	
 Development Editor:
 Jeff Bleiel

 	
 Production Editor:
 Christopher Faucher

 	
 Copyeditor:
 Tom Sullivan

 	
 Proofreader:
 Kim Cofer

 	
 Indexer:
 Sue Klefstad

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 January 2021:
 First Edition

 Revision History for the First Edition

 	
 2021-01-20:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781492083658
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
 Learning Helm, the cover image, and related trade dress are trademarks of
 O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-492-08365-8

 [LSI]

Preface

Helm is the package manager for Kubernetes, the popular open source container management platform.

Package managers make platforms more accessible to those who use them. In order to use a platform like Kubernetes, you need to run software on it, and much of that software will be off-the-shelf or shared. Package managers like Helm enable you to install and start using the software quickly without needing to figure out how to make it run or run well on the platform, because it has already been packaged up in an easy-to-use manner.

If you have software you want to share with others, package managers make it easy to do. Platforms are more useful when there is a wide variety of software to run on them; open source projects and companies both like to make their software easy to install on the platforms it runs on, and Helm makes this possible for Kubernetes.

Package managers aren’t just for sharing and consuming others’ software, however. They are often an integral part of other systems, such as DevOps tooling, and they are used as a building block.

Virtually every modern platform has a package manager. Operating systems, programming languages, and cloud platforms all have package managers of some form.

In this book you will learn about Helm, which provides modern package management for Kubernetes, and the packages, called charts, that you can use with it. You will learn how to use Helm, how to create packages, and how to share those packages with other platforms.

Who Should Read This Book

There are a few situations where you will find this book useful.

If you’re new to Kubernetes or want to learn how to install off-the-shelf applications, this book will help you learn how to do that with Helm. It is much easier and faster to install applications through Helm than it is to learn how to do so by hand with Kubernetes.

If you work for a company (or a project) that wants to distribute your applications to Kubernetes users in an easy-to-consume manner, this book will teach you how to do that with Helm. Being able to quickly install your application makes getting started easier, and Helm can help you with that.

This book is also for DevOps professionals who want to learn to use Kubernetes package management as part of their DevOps toolchains. Helm provides powerful and advanced features that can be used as building blocks for other automation. These have been used to deploy large and complex applications onto Kubernetes, and this book will teach you how to leverage those features.

Why We Wrote This Book

We, the authors, are maintainers of Helm, so we set out to write a book to help those who have questions about it. We didn’t just want to supply the technical details that are often found in the documentation; we wanted to provide context and insight into what Helm does and why.

Navigating This Book

The first three chapters introduce you to Helm and show you how to use the Helm client. This begins in Chapter 1 with an overview of where Helm sits within the cloud native ecosystem along with an overview of its architecture. Chapters 2 and 3 address using the Helm client, beginning with installing Helm and progressing to advanced usage.

Chapters 4 through 6 cover creating packages for Helm. This begins with how to create a package (Chapter 4), moves into learning the template syntax (Chapter 5), and finishes with advanced features (Chapter 6). If you want to create packages for Helm, these chapters are for you.

Sharing packages, including their individual release versions, is covered in Chapter 7. Sharing is important if you are distributing software to others or sharing it between systems while using DevOps processes.

Helm can be extended, which is covered in Chapter 8. There are opportunities to customize Helm without needing to fork or contribute functionality to Helm.

Two appendixes are provided with reference material. Appendix A provides an overview of differences between current and legacy packages, while Appendix B covers the repository API used for sharing packages.

Conventions Used in This Book

The following typographical conventions are used in this book:

	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/masterminds/learning-helm.

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Learning Helm by Matt Butcher, Matt Farina, and Josh Dolitsky (O’Reilly). Copyright 2021 Matt Butcher, Innovating Tomorrow, and Blood
 Orange, 978-1-492-08365-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/learning-helm.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments

This book has benefited from the attention of our official technical reviewers: Taylor Thomas, Jonathan Johnson, and Michael Hausenblas.

We would like to express our appreciation for everyone at O’Reilly who helped bring this project together. This is especially true of John Devins and Jeff Bleiel. The process of writing the book was delightful.

The Helm ecosystem was created by a legion of contributors from all around the globe. Individuals, nongovernmental organizations, and corporations have cooperated to build a technology that meets a broad array of needs. From building charts to contributing fixes to helping others learn Helm, individuals have devoted time and energy to improving the community and code for all. We deeply appreciate their work.

Most of all, we want to thank our wives and children for their patience and love throughout the process.

Chapter 1. Introducing Helm

Helm is the package manager for Kubernetes. That is the way the Helm developers have described Helm since the very first commits to the Git repository. And that sentence is the topic of this chapter.

In this chapter, we will start with a conceptual look at the cloud native ecosystem, in which Kubernetes is a key technology. We will take a fresh look at what Kubernetes has to offer to set the stage for describing Helm.

Next, we will look at the problems Helm sets out to solve. In this section, we will look at the concept of package management and why we have modeled Helm this way. We will also visit some of the unique facets of installing packages into a cluster management tool like Kubernetes.

Finally, we will finish the chapter with a high-level look at Helm’s architecture, focusing on the concepts of charts, templates, and releases. By the end of the chapter, you will understand how Helm fits into the broader ecosystem of tools, and you will be familiar with the terminology and concepts we will be using throughout this book.

The Cloud Native Ecosystem

The emergence of cloud technologies has clearly changed the way the industry looks at hardware, system management, physical networking, and so on. Virtual machines replaced physical servers, storage services displaced talk of hard drives, and automation tools rose in prominence. This was perhaps an early change in the way the industry conceptualized the cloud. But as the strengths and weaknesses of this new approach became clearer, the practices of designing applications and services also began to shift.

Developers and operators began to question the practice of building large single-binary applications that executed on beefy hardware. They recognized the difficulty of sharing data across different applications while retaining data integrity. Distributed locking, storage, and caching became mainstream problems instead of points of academic interest. Large software packages were broken down into smaller discrete executables. And, as Kubernetes founder Brendan Burns often puts it, “distributed computing went from an advanced topic to Computer Science 101.”

The term cloud native captures this cognitive shift in what one might call our architectural view of the cloud. When we design our systems around the capabilities and constraints of the cloud, we are designing cloud native systems.

Containers and Microservices

At the very heart of cloud native computing is this philosophical perspective that smaller discrete standalone services are preferable to large monolithic services that do everything. Instead of writing a single large application that handles everything from generating the user interface to processing task queues to interacting with databases and caches, the cloud native approach is to write a series of smaller services, each relatively special purpose, and then join these services together to serve a higher-level purpose. In such a model, one service might be the sole user of a relational database. Services that wish to access the data will contact that service over (typically) a representational state transfer (REST) API. And, using JavaScript Object Notation (JSON) over HTTP, these other services will query and update data.

This breakdown allows developers to hide the low-level implementation and instead offer a set of features specific to the business logic of the broader application.

Microservices

Where once an application consisted of a single executable that did all of the work, cloud native applications are distributed applications. While separate programs each take responsibility for one or two discrete tasks, together these programs all form a single logical application.

With all this theory, a simple example may better explain how this works. Imagine an ecommerce website. We can think of several tasks that jointly comprise this sort of website. There is a product catalog, user accounts and shopping carts, a payment processor that handles the security-sensitive process of monetary transactions, and a frontend through which customers view items and select their purchases. There is also an administrative interface where the store owners manage inventory and fulfill orders.

Historically, applications like this were once built as one single program. The code responsible for each of these units of work was all compiled together into one large executable, which was then often run on a single large piece of hardware.

The cloud native approach to such an application, though, is to break this ecommerce application into multiple pieces. One handles payment transactions. Another tracks the product catalog. Yet another provides the administrative, and so on. These services then communicate with each other over the network using well-defined REST APIs.

Taken to an extreme, an application is broken down into its smallest constituent parts, and each part is a program. This is the microservice architecture. Standing at the opposite end of the spectrum of a monolithic application, a microservice is responsible for handling only one small part of the overall application’s processing.

The microservice concept has had an outsized influence on the evolution of cloud native computing. And nowhere is this more evident than in the emergence of container computing.

Containers

It is common to compare and contrast a container and a virtual machine. A virtual machine runs an entire operating system in an isolated environment on a host machine. A container, in contrast, has its own filesystem, but is executed in the same operating system kernel as the host.

But there is a second way of conceptualizing the container—one that may prove more beneficial for the present discussion. As its name suggests, a container provides a useful way of packaging up the runtime environment for a single program so that the executable is guaranteed to have all of its dependencies satisfied when it is moved from one host to another.

This is a more philosophical approach, perhaps, because it imposes some non-technical restrictions on a container. For example, one could package a dozen different programs in a single container and execute them all at the same time. But containers, at least as they were designed by Docker, were intended as a vehicle for one top-level program.

Note

When we talk about programs here, we’re really thinking at a higher level of abstraction than “a binary.” Most Docker containers have at least a few executables that are there merely to assist the main program. But these executables are auxiliary to the primary function of the container. For example, a web server may require a few other local utilities for starting up or performing low-level tasks (Apache, for example, has tools for modules), but it is the web server itself that is the primary program.

Containers and microservices are, by design, a perfect match. Small discrete programs can be packaged, along with all their dependencies, into svelte containers. And those containers can be moved around from host to host. When executing a container, the host need not have all the tools required to execute the program because all of those tools are packaged within the container. The host merely must have the ability to run containers.

For example, if a program is built in Python 3, the host does not need to install Python, configure it, and then install all the libraries that the program requires. All of that is packaged in the container. When the host executes the container, the correct version of Python 3 and each required library is already stored in the container.

Taking this one step further, a host can freely execute containers with competing requirements. A containerized Python 2 program can run in the same host as a containerized Python 3 requirement, and the host’s administrators need not do any special work to configure these competing requirements!

These examples illustrate one of the features of the cloud native ecosystem: administrators, operators, and site reliability engineers (SREs) are no longer in the business of managing program dependencies. Instead, they are free to focus on a higher level of resource allocation. Rather than fretting over which versions of Python, Ruby, and Node are running on different servers, operators can focus on whether network, storage, and CPU resources are correctly allocated for these containerized workloads.

Running a program in complete isolation is sometimes useful. But more often, we want to expose some aspects of this container to the outside world. We want to give it access to storage. We want to allow it to answer network connections. And we want to inject tidbits of configuration into the container based on our present needs. All of these tasks (and more still) are provided by the container runtime. When a container declares that it has a service that is internally listening on port 8080, the container runtime may grant it access on the host port 8000. Thus, when the host gets a network request on port 8000, the container sees this as a request on its port 8080. Likewise, a host can mount a filesystem into the container, or set specific environment variables inside of the container. In this way, a container can participate in the broader environment around it—including not just other containers on that host, but remote services on the local network or even the internet.

Container images and registries

Container technology is a sophisticated and fascinating space in its own right. But for our purposes, we only need to understand a few more things about how containers work before be can proceed to the next layer of the cloud native stack.

As we discussed in the previous section, a container is a program together with its dependencies and environment. This whole thing can be packaged together into a portable representation called a container image (often just referred to as an image). Images are not packaged into one large binary; instead, they are packaged into discrete layers, each of which has its own unique identifier. When images are moved around, they are moved as a collection of layers, which provides a huge advantage. If one host has an image with five layers and another host needs the same image, it only needs to fetch the layers that it doesn’t already have. So if it has two of the five layers already, it only needs to fetch three layers to rebuild the entire container.

There is a crucial piece of technology that provides the ability to move container images around. An image registry is a specialized piece of storage technology that houses containers, making them available for hosts. A host can push a container image to a registry, which transfers the layers to the registry. And then another host can pull the image from the registry to the host’s environment, after which the host can execute the container.

The registry manages the layers. When one host requests an image, the registry lets the host know which layers compose that image. The host can then determine which layers (if any) are missing and subsequently download just those layers from the
registry.

A registry uses up to three pieces of information to identify a particular image:

	Name

	
An image name can range from simple to complex, depending on the registry that stores the image: nginx, servers/nginx, or example.com/servers/nginx.

	Tag

	
The tag typically refers to the version of the software installed (v1.2.3), though tags are really just arbitrary strings. The tags latest and stable are often used to indicate “the most recent version” and “the most recent production-ready version,” respectively.

	Digest

	
Sometimes it is important to pull a very specific version of an image. Since tags are mutable, there is no guarantee that at any given time a tag refers to exactly a specific version of the software. So registries support fetching images by digest, which is a SHA-256 or SHA-512 digest of the image’s layer information.

Throughout this book, we will see images referenced using the three preceding pieces of information. The canonical format for combining these is name:tag@digest, where only name is required. Thus, example.com/servers/nginx:latest says “give me the tag latest for the image named example.com/servers/nginx.” And

example.com/my/app@sha256:
a428de44a9059feee59237a5881c2d2cffa93757d99026156e4ea544577ab7f3

says “give me example.com/my/app with the exact digest given here.”

While there is plenty more to learn about images and containers, we have enough knowledge now to move on to the next important topic: schedulers. And in that section, we’ll discover Kubernetes.

Schedules and Kubernetes

In the previous section we saw how containers encapsulate individual programs and their required environment. Containers can be executed locally on workstations or remotely on servers.

As developers began packaging their applications into containers and operators began using containers as an artifact for deployment, a new set of questions emerged. How do we best execute lots of containers? How do we best facilitate a microservice architecture where lots of containers need to work together? How do we judiciously share access to things like network attached storage, load balancers, and gateways? How do we manage injecting configuration information into lots of containers? And perhaps most importantly, how do we manage resources like memory, CPU, network bandwidth, and storage space?

Moving even one level beyond, people began asking (based on their experiences with virtual machines) how one might manage distributing containers across multiple hosts, spreading the load equitably while still judiciously using resources? Or, more simply, how do we run the fewest possible hosts while running as many containers as we need?

In 2015, the time was right: Docker containers were making inroads into the enterprise. And there was a clear need for a tool that could manage container scheduling and resource management across hosts. Multiple technologies landed on the scene: Mesos introduced Marathon; Docker created Swarm; Hashicorp released Nomad; and Google created an open source sibling to its internal Borg platform, and named this technology Kubernetes (the Greek word for a ship’s captain).

All of these projects were providing an implementation of a clustered container management system that could schedule containers and wire them up for hosting sophisticated microservice-like distributed applications.

Each of these schedulers had strengths and weaknesses. But Kubernetes introduced two concepts that set it apart from the crowd: declarative infrastructure and the reconciliation loop.

Declarative infrastructure

Consider the case of deploying a container. One might approach the process of deploying a container like this: I create the container. I open a port for it to listen on, and then I attach some storage at this particular place on the filesystem. Then I wait for everything to be initialized. Then I test it to see if the container is ready. Then I mark it as available.

In this approach, we are thinking procedurally by focusing on the process of setting up a container. But Kubernetes’ design is that we think declaratively. We tell the scheduler (Kubernetes) what our desired state is, and Kubernetes takes care of converting that declarative statement into its own internal procedures.

Installing a container on Kubernetes, then, is more a matter of saying, “I want this container running on this port with this amount of CPU and some storage mounted at this location on the filesystem.” Kubernetes works behind the scenes to wire everything up according to our declaration of what we want.

The reconciliation loop

How does Kubernetes work behind the scenes to do all of this? When we viewed things procedurally, there was a certain order of operations there. How does Kubernetes know the order? This is where the idea of the reconciliation loop comes into play.

In a reconciliation loop, the scheduler says “here is the user’s desired state. Here is the current state. They are not the same, so I will take steps to reconcile them.” The user wants storage for the container. Currently there is no storage attached. So Kubernetes creates a unit of storage and attaches it to the container. The container needs a public network address. None exists. So a new address is attached to the container. Different subsystems in Kubernetes work to fulfill their individual part of the user’s overall declaration of desired state.

Eventually, Kubernetes will either succeed in creating the user’s desired environment or will arrive at the conclusion that it cannot realize the user’s desires. Meanwhile, the user takes a passive role in observing the Kubernetes cluster and waiting for it to achieve success or mark the installation as failed.

From containers to pods, services, deployments, etc.

While concise, the preceding example is a little misleading. Kubernetes doesn’t necessarily treat the container as the unit of work. Instead, Kubernetes introduces a higher-level abstraction called a pod. A pod is an abstract envelope that describes a discrete unit of work. A pod describes not just a container, but one or more containers (as well as their configuration and requirements) that together perform one unit of work:

apiVersion: v1 [image: 1]
kind: Pod
metadata:
 name: example-pod
spec:
 containers: [image: 2]
 - image: "nginx:latest"
 name: example-nginx

	[image: 1]

	The first two lines define the Kubernetes kind (v1 Pod).

	[image: 2]

	A pod can have one or more containers.

Most frequently, a pod only has one container. But sometimes they have containers that do some preconfiguration for the main container, exiting before the main container comes online. These are called init containers. Other times, there are containers that run alongside the main container and provide auxiliary services. These are called sidecar containers. These are all considered part of the same pod.

Note

In the preceding code, we have written a definition of a Kubernetes Pod resource. These definitions, when expressed as YAML or JSON, are referred to as manifests. A manifest can contain one or more Kubernetes resources (also called objects or resource definitions). Each resource is associated with one of the Kubernetes types, such as a Pod or
Deployment. In this book, we typically use resource because the word object is overloaded: YAML defines the word object to mean a named key/value structure.

A Pod describes what configuration the container or containers need (such as network ports or filesystem mount points). Configuration information in Kubernetes may be stored in ConfigMaps or, for sensitive information, Secrets. And the Pod’s definition may then relate those ConfigMaps and Secrets to environment variables or files within each container. As Kubernetes sees those relationships, it will attempt to attach and configure the configuration data as described in the Pod definition:

apiVersion: v1 [image: 1]
kind: ConfigMap
metadata:
 name: configuration-data
data: [image: 2]
 backgroundColor: blue
 title: Learning Helm

	[image: 1]

	In this case, we have declared a v1 ConfigMap object.

	[image: 2]

	Inside of data, we declare some arbitrary name/value pairs.

A Secret is structurally similar to a ConfigMap, except that the values in the data section must be Base64 encoded.

Pods are linked to configuration objects (like ConfigMap or Secret) using volumes. In this example, we take the previous Pod example and attach the Secret above:

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
spec:
 volumes: [image: 1]
 - name: my-configuration
 configMap:
 name: configuration-data [image: 2]
 containers:
 - image: "nginx:latest"
 name: example-nginx
 env: [image: 3]
 - name: BACKGROUND_COLOR [image: 4]
 valueFrom:
 configMapKeyRef:
 name: configuration-data [image: 5]
 key: backgroundColor [image: 6]

	[image: 1]

	The volumes section tells Kubernetes which storage sources this pod needs.

	[image: 2]

	The name configuration-data is the name of our ConfigMap we created in the previous example.

	[image: 3]

	The env section injects environment variables into the container.

	[image: 4]

	The environment variable will be named BACKGROUND_COLOR inside of the
container.

	[image: 5]

	This is the name of the ConfigMap it will use. This map must be in volumes if we want to use it as a filesystem volume.

	[image: 6]

	This is the name of the key inside the data section of the ConfigMap.

A pod is the “primitive” description of a runnable unit of work, with containers as part of that pod. But Kubernetes introduces higher-order concepts.

Consider a web application. We might not want to run just one instance of this web application. If we ran just one, and it failed, our site would go down. And if we wanted to upgrade it, we would have to figure out how to do so without taking down the whole site. Thus, Kubernetes introduced the concept of a Deployment. A Deployment describes an application as a collection of identical pods. The Deployment is composed of some top-level configuration data as well as a template for how to construct a replica pod.

With a Deployment, we can tell Kubernetes to create our app with a single pod. Then we can scale it up to five pods. And back down to three. We can attach a HorizontalPodAutoscaler (another Kubernetes type) and configure that to scale our pod based on resource usage. And when we upgrade the application, the Deployment can employ various strategies for incrementally upgrading individual pods without taking down our entire application:

apiVersion: apps/v1 [image: 1]
kind: Deployment
metadata:
 name: example-deployment
 labels:
 app: my-deployment
spec:
 replicas: 3 [image: 2]
 selector:
 matchLabels:
 app: my-deployment
 template: [image: 3]
 metadata:
 labels:
 app: my-deployment
 spec:
 containers:
 - image: "nginx:latest"
 name: example-nginx

	[image: 1]

	This is an apps/v1 Deployment object.

	[image: 2]

	Inside of the spec, we ask for three replicas of the following template.

	[image: 3]

	The template specifies how each replica pod should look.

When it comes to attaching a Kubernetes application to other things on the network, Kubernetes provides Service definitions. A Service is a persistent network resource (sort of like a static IP) that persists even if the pod or pods attached to it go away. In this way, Kubernetes Pods can come and go while the network layer can continue to route traffic to the same Service endpoint. While a Service is an abstract Kubernetes concept, behind the scenes it may be implemented as anything from a routing rule to an external load balancer:

apiVersion: v1 [image: 1]
kind: Service
metadata:
 name: example-service
spec:
 selector:
 app: my-deployment [image: 2]
 ports:
 - protocol: TCP [image: 3]
 port: 80
 targetPort: 8080

	[image: 1]

	The kind is v1 Service.

	[image: 2]

	This Service will route to pods with the app: my-deployment label.

	[image: 3]

	TCP traffic to port 80 of this Service will be routed to port 8080 on the pods that match the app: my-deployment label.

The Service described will route traffic to the Deployment we created earlier.

We’ve introduced a few of the many Kubernetes types. There are dozens more that we could cover, but the most frequently used by far are Pod, Deployment, ConfigMap, Secret, and Service. In the next chapter we will begin working with these concepts more directly. But for now, armed with some generic information, we can introduce Helm.

Helm’s Goals

Up to this point, we have focused on the broader cloud native ecosystem and on Kubernetes’ role within that ecosystem. In this section, we will change focus to Helm.

In the previous section, we saw several distinct Kubernetes resources: A Pod, a
ConfigMap, a Deployment, and a Service. Each of these performs some discrete role. But an application typically requires more than one of these.

For example, the WordPress CMS system can be run inside of Kubernetes. But typically it would need at least a Deployment (for the WordPress server), a ConfigMap for configuration and probably a Secret (to keep passwords), a few Service objects, a StatefulSet running a database, and a few role-based access control (RBAC) rules. Already, a Kubernetes description of a basic WordPress site would span thousands of lines of YAML. At the very core of Helm is this idea that all of those objects can be packaged to be installed, updated, and deleted together.

When we wrote Helm, we had three main goals:

	
Make it easy to go from “zero to Kubernetes”

	
Provide a package management system like operating systems have

	
Emphasize security and configurability for deploying applications to Kubernetes

We will look at each of these three goals, and then take a look at one other aspect of Helm’s usage: its participation in the life cycle management story.

From Zero to Kubernetes

The Helm project started in 2015, a few months before the inaugural KubeCon. Kubernetes was difficult to set up, often requiring new users to compile the Kubernetes source code and then use some shell scripts to get Kubernetes running. And once the cluster was up, new users were expected to write YAML (as we did in previous sections) from scratch. There were few basic examples and no production-ready examples.

We wanted to invert the learning cycle: instead of requiring users to start with basic examples and try to construct their own applications, we wanted to provide users with ready-made production-ready examples. Users could install those examples, see them in action, and then learn how Kubernetes worked.

That was, and still is to this day, our first priority with Helm: make it easier to get going with Kubernetes. In our view, a new Helm user with an existing Kubernetes cluster should be able to go from download to an installed application in five minutes or less.

But Helm isn’t just a learning tool. It is a package manager.

Package Management

Kubernetes is like an operating system. At its foundation, an operating system provides an environment for executing programs. It provides the tools necessary to store, execute, and monitor the life cycle of a program.

Instead of executing programs, it executes containers. But similar to an operating system, it provides the tools necessary to store, execute, and monitor those containers.

Most operating systems are supported by a package manager. The job of the package manager is to make it easy to find, install, upgrade, and delete the programs on an operating system. Package managers provide semantics for bundling programs into installable applications, and they provide a scheme for storing and retrieving packages, as well as installing and managing them.

As we envisioned Kubernetes as an operating system, we quickly saw the need for a Kubernetes package manager. From the first commit to the Helm source code repository, we have consistently applied the package management metaphor to Helm:

	
Helm provides package repositories and search capabilities to find what Kubernetes applications are available.

	
Helm has the familiar install, upgrade, and delete commands.

	
Helm defines a method for configuring packages prior to installing them.

	
Additionally, Helm has tools for seeing what is already installed and how it is configured.

We initially modeled Helm after Homebrew (a package manager for macOS) and Apt (the package manager for Debian). But as Helm has matured, we have sought to learn from as many different package managers as we can.

There are some differences between typical operating systems and Kubernetes.
One of them is that Kubernetes supports running many instances of the same application. While I may only install the database MariaDB once on my workstation, a Kubernetes cluster could be running tens, hundreds, or even thousands of MariaDB
installations—each with a different configuration or even a different version.

Another notion that is rare in typical operating systems, but is central to Kubernetes, is the idea of a namespace. In Kubernetes, a namespace is an arbitrary grouping mechanism that defines a boundary between the things inside the namespace and the things outside. There are many different ways to organize resources with namespaces, but oftentimes they are used as a fixture to which security is attached. For example, perhaps only specific users can access resources inside of a namespace.

These are just a few ways that Kubernetes differs from traditional operating systems. These and other differences have presented challenges in the design of Helm. We have had to build Helm to take advantage of these differences, but without giving up on our package management metaphor.

For example, the Helm installation command requires not only the name of the package, but also a user-supplied name by which the installed version of that package will be referenced. In the next chapter, we’ll see examples of this.

Likewise, operations in Helm are namespace-sensitive. One can install the same application into two different namespaces, and Helm provides tools to manage these different instances of the application.

In the end, though, Helm remains firmly in the package management class of tools.

Security, Reusability, and Configurability

Our third goal with Helm was to focus on three “must haves” for managing applications in a cluster:

	
Security

	
Reusability

	
Configurability

In short, we wanted to make Helm aware enough about these principles that Helm users can have confidence in the packages they use. A user should be able to verify that a package came from a trustworthy source (and was not tampered with), reuse the same package multiple times, and configure the package to fit their needs.

Whereas Helm’s developers have direct control over the previous two design goals, this one is unique: Helm can only provide the right tools for package authors and hope that these creators choose to realize these three “must haves.”

Security

Security is a broad category. In this context, though, we are referring to the idea that when a user examines a package, the user has the ability to verify certain things about the package:

	
The package comes from a trusted source.

	
The network connection over which the package is pulled is secured.

	
The package has not been tampered with.

	
The package can be easily inspected so the user can see what it does.

	
The user can see what configuration the package has, and see how different inputs impact the output of a package.

Throughout this book, and especially in Chapter 6, we will cover security in more detail. But these five capabilities are things we believe we have provided with Helm.

Helm provides a provenance feature to establish verification about a package’s origin, author, and integrity. Helm supports Secure Sockets Layer/Transport Layer Security (SSL/TLS) for securely sending data across the network. And Helm provides dry-run, template, and linting commands to examine packages and their possible
permutations.

Reusability

A virtue of package management is its ability to install the same thing repeatedly and predictably. With Helm, this idea is extended slightly: we may want to even install the same thing (repeatedly and predictably) into the same cluster or even same namespace in a cluster.

Helm charts are the key to reusability. A chart provides a pattern for producing the same Kubernetes manifests. But charts also allow users to provide additional configuration (which we will talk about in the next chapter). So Helm provides patterns for storing configuration so that the combination of a chart plus its configuration can even be done repeatedly.

In this way, Helm encourages Kubernetes users to package their YAML into charts so that these descriptions can be reused.

In the Linux world, each Linux distribution has its own package manager and repositories. This is not the case in the Kubernetes world. Helm was constructed so that all Kubernetes distributions could share the same package manager, and (with very, very few exceptions) the same packages as well. When there are differences between two different Kubernetes distributions, charts can accommodate this using templates (discussed more thoroughly in Chapter 5) coupled with configuration.

Configurability

Helm provides patterns for taking a Helm chart and then supplying some additional configuration. For example, I might install a website with Helm, but want to set (at installation time) the name of that website. Helm provides tools to configure packages at installation time, and to reconfigure installations during upgrades. But a word of caution is in order.

Helm is a package manager. Another class of software handles configuration management. This class of software, typified by Puppet, Ansible, and Chef, focuses on how a given piece of software (often packaged) is specifically configured for its host environment. Its responsibility is to manage configuration changes over time.

Helm was not designed to be a configuration management tool, though there is at least some overlap between package management and configuration management.

Package management is typically confined to implementing three verbs: install, upgrade, and delete. Configuration management is a higher-order concept that focuses on managing an application or applications over time. This is sometimes called “day-two ops.”

While Helm did not set out to be a configuration management tool, it is sometimes used as one. Organizations rely upon Helm not just to install, upgrade, and delete, but also to track changes over time, to track configuration, and to determine whether an application as a whole is running. Helm can be stretched this way, but if you want a strong configuration management solution, you may want to leverage other tools in the Helm ecosystem. Many tools like Helmfile, Flux, and Reckoner have filled in details in the larger configuration management story.

Note

The Helm community has created a wealth of tools that interoperate with or augment Helm. The Helm project maintains a list of those tools in the official documentation.

One of the common themes you will notice in Helm charts is that configuration options are often set up so that you can take the same chart and release a minimal version of it into your development environment, or (with different configuration options) a sophisticated version into your production environment.

Helm’s Architecture

In the final section of this chapter, we will briefly turn to the high-level architecture of Helm. As well as rounding out the conceptual discussion of cloud native Kubernetes applications and package management, this section paves the way for Chapter 2, where we will dive into using Helm.

Kubernetes Resources

We have had a look at several kinds of Kubernetes resources. We saw a couple of Pod definitions, a ConfigMap, a Deployment, and a Service. There are dozens more provided by Kubernetes. You can even use custom resource definitions (CRDs) for defining your own custom resource types. The main Kubernetes documentation provides both accessible guides and detailed API documentation on each kind.

Throughout this book, we will use many different Kubernetes resource types. While we discuss them in context, you may find it beneficial to skim through the main Kubernetes document as you run across new resource definitions.

As we discussed earlier, resource definitions are declarative. You, the user, describe for Kubernetes the desired state of a resource. For example, you can read the Pod definition we created earlier in the chapter as a statement that, “I want Kubernetes to make me a Pod that has these features.” It is up to Kubernetes to figure out how to configure and run a pod according to your specification.

All Kubernetes resource definitions share a common subset of elements. The following manifest uses a Deployment to illustrate the main structural elements of a resource definition:

apiVersion: apps/v1 [image: 1]
kind: Deployment [image: 2]
metadata: [image: 3]
 name: example-deployment [image: 4]
 labels: [image: 5]
 some-name: some-value
 annotations: [image: 6]
 some-name: some-value
resource-specific YAML

	[image: 1]

	The API family and version for this resource.

	[image: 2]

	The kind of resource. Combined with apiVersion, we get the “resource type”.

	[image: 3]

	The metadata section contains top-level data about the resource.

	[image: 4]

	A name is required for almost every resource type.

	[image: 5]

	Labels are used to give Kubernetes query-able “handles” to your resources.

	[image: 6]

	Annotations provide a way for authors to attach their own keys and values to a resource.

Of particular note, a resource type in Kubernetes is composed of three pieces of
information:

	API group (or family)

	
Several base resource types like Pod and ConfigMap omit this name.

	API version

	
Expressed as a v, followed by a major version and an optional stability marker. For example, v1 is a stable “version 1,” while v1alpha indicates an unstable “version 1 alpha 1.”

	Resource kind

	
The (capitalized) name of the specific resource within the API group.

Note

While a full resource type name is something like apps/v1 Deployment or v1 Pod (for core types), Kubernetes users will often omit the group and version when talking or writing about well-known types. For example, in this book we simply write Deployment instead of apps/v1 Deployment. Fully qualified names are used when specifying an exact version or when discussing a resource type defined in a CRD.

Thus, apps/v1 Deployment indicates that the API group “apps” has a “version 1” (stable) resource kind called “Deployment.”

Kubernetes supports two main formats for declaring the resources you want: JSON and YAML. Strictly speaking, YAML is a superset of JSON. All JSON documents are valid YAML, but YAML adds a number of additional features.

In this book, we stick to the YAML format. We find it easier to read and write, and almost all Helm users choose YAML over JSON. However, should your preferences differ, both Kubernetes and Helm support plain JSON.

Earlier, we introduced the term manifest. A manifest is just a Kubernetes resource serialized to either its JSON or YAML format. It would be fair to call our earlier Pod, ConfigMap, Deployment, and Service examples each a Kubernetes manifest, since they are resources expressed in YAML.

Charts

We have already talked about Helm packages in this chapter. In Helm’s vocabulary, a package is called a chart. The name is a play on the nautical nature of Kubernetes (which means “ship’s captain” in Greek) and Helm (which is the steering mechanism of a ship). A chart plots the way a Kubernetes application should be installed.

A chart is a set of files and directories that adhere to the chart specification for describing the resources to be installed into Kubernetes. Chapter 4 explains the chart structure in detail, but there are a few high-level concepts we will introduce here.

A chart contains a file called Chart.yaml that describes the chart. It has information about the chart version, the name and description of the chart, and who authored the chart.

A chart contains templates as well. These are Kubernetes manifests (like we saw earlier in this chapter) that are potentially annotated with templating directives. We will cover these in detail in Chapter 5.

A chart may also contain a values.yaml file that provides default configuration. This file contains parameters that you can override during installation and upgrade.

These are the basic things you will find in a Helm chart, though there are others that we will cover in Chapter 4. When you see a Helm chart, though, it may be presented in either unpacked or packed form.

An unpacked Helm chart is just a directory. Inside, it will have a Chart.yaml, a
values.yaml, a templates/ directory, and perhaps other things as well. A packed Helm chart contains the same information as an unpacked one, but it is tarred and gzipped into a single file.

An unpacked chart is represented by a directory with the name of the chart. For example, the chart named mychart will be unpacked into a directory named mychart/. In contrast, a packed chart has the name and version of the chart, as well as the tgz suffix: mychart-1.2.3.tgz.

Charts are stored in chart repositories, which we will cover in Chapter 7. Helm knows how to download and install charts from repositories.

Resources, Installations, and Releases

To tie together the terminology introduced in this section, when a Helm chart is installed into Kubernetes, this is what happens:

	
Helm reads the chart (downloading if necessary).

	
It sends the values into the templates, generating Kubernetes manifests.

	
The manifests are sent to Kubernetes.

	
Kubernetes creates the requested resources inside of the cluster.

When a Helm chart is installed, Helm will generate as many resource definitions as it needs. Some may create one or two, others may create hundreds. When Kubernetes receives these definitions, it will create resources for them.

A Helm chart may have many resource definitions. Kubernetes sees each of these as a discrete thing. But in Helm’s view all of the resources defined by a chart are related. For example, my WordPress application may have a Deployment, a ConfigMap, a
Service, and so on. But they are all part of one chart. And when I install them, they are all part of the same installation. The same chart can be installed more than once (with a different name each time). Thus, I may have multiple installations of the same chart, just as I might have multiple resources of the same Kubernetes resource type.

And this brings us to one final term. Once we install our WordPress chart, we have an installation of that chart. Then we upgrade that chart using helm upgrade. Now, that installation has two releases. A new release of an installation is created each time we use Helm to modify the installation.

A release is created when we install a new version of WordPress. But a release is also created when we merely change the configuration of an installation, or when we rollback an installation. This is an important feature of Helm that we will see again in Chapter 7.

A Brief Note About Helm 2

Those familiar with Helm 2 may notice certain concepts missing from this book. There is no mention of Tiller or gRPC. These things were removed from Helm 3, which is the subject of the present book. Also, this version of the book focuses on version 2 Helm charts. As confusing as it is, the Helm chart version increments separately from the Helm version. So Helm v2 used Helm Charts v1, and Helm v3 uses Helm Charts v2. These differ in a few important ways from version 1 Helm Charts—most notably in the way dependencies are declared. Helm 2 and Helm Charts v1 are considered deprecated.

Conclusion

The material here should prepare you for the coming chapters. But we hope it also provided insight into why we built Helm the way we did. Helm is only successful if it makes Kubernetes more usable both for the first-time users and for the long-time operations teams and SREs that use Helm day to day. The remainder of this book is dedicated to explaining (with lots of examples) how to get the most out of Helm—and how to do so securely and idiomatically.

Chapter 2. Using Helm

Helm provides a command-line tool, named helm, that makes available all the features necessary for working with Helm charts. In this chapter, we will discover the primary features of the helm client. Along the way, we’ll learn how Helm interacts with Kubernetes.

We will start by looking at how to install and configure Helm, and work our way through the main command groups in Helm. Then we will cover finding and learning about packages, and how to install, upgrade, and delete them.

Installing and Configuring the Helm Client

Helm provides a single command-line client that is capable of performing all of the main Helm tasks. This client is, appropriately enough, named helm. While there are many other tools that can work with Helm charts, this one is the official general-purpose tool maintained by the Helm core maintainers, and it is the subject of this chapter as well as the next.

The helm client is written in a programming language called Go. Unlike Python, JavaScript, or Ruby, Go is a compiled language. Once a Go program is compiled, you do not need any of the Go tools to run or otherwise work with the binary.

So we will first cover downloading and installing the static binary, and then we will briefly introduce the process for fetching and compiling from the Go source code, should you so desire.

Installing a Prebuilt Binary

Each time the Helm maintainers issue a new release of helm, the project provides new signed binary builds of helm for a number of common operating systems and
architectures. At the time of this writing, prebuilt versions of Helm are available for Linux, Windows, and macOS on architectures ranging from 64-bit Intel/AMD to ARM, to s390 and PPC. This means you can run Helm on anything from a Raspberry Pi to a supercomputer.

The definitive list of Helm releases is at the Helm release page. The release page will show a chronological list of releases, with the latest release at the top.

Install with a Package Manager

Many operating system package managers, including Homebrew for macOS, Snap for Linux, and Chocolatey for Windows, can install Helm for you. We are big package management fans. Package managers make it easy to install, update, and delete your software, so we encourage you let your operating system package manager install Helm for you. But it is often wise to check whether the version in your package manager of choice is the same version that is currently marked stable on the Helm site.

A note on Helm version numbers

Until November 2020, two different major versions of Helm were actively maintained. The current stable major version of Helm is version 3. When you visit the Helm download pages, you may see both versions available for download. Because the versions are chronologically listed, it is even possible that a Helm 2 release will be newer than the latest Helm 3 release. You should use Helm 3.

Helm follows a versioning convention known as Semantic Versioning (SemVer). In Semantic Versioning, the version number conveys meaning about what you can expect in the release. Because Helm follows this specification, users can expect certain things out of releases simply by carefully reading the version number.

At its core, a semantic version has three numerical components and an optional stability marker (for alphas, betas, and release candidates). Here are some examples:

	
v1.0.0

	
v3.3.2

	
v2.4.22-alpha.2

Let’s talk about the numerical components first.

We often generalize this format to talk about X.Y.Z, where X is a major version, Y is a minor version and Z is a patch release:

	
The major release number tends to be incremented infrequently. It indicates that major changes have been made to Helm, and that some of those changes may break compatibility with previous versions. The difference between Helm 2 and Helm 3 is substantial, and there is work necessary to migrate between the
versions.

	
The minor release number indicates feature additions. The difference between 3.2.0 and 3.3.0 might be that a few small new features were added. However, there are no breaking changes between versions. (With one caveat: a security fix might necessitate a breaking change, but we announce boldly when that is the case.)

	
The patch release number indicates that only backward compatible bug fixes have been made between this release and the last one. It is always recommended to stay at the latest patch release.

When you see a release with a stability marker, like alpha.1, beta.4, or rc.2, appended to the release number, that means the release is considered to be a pre-release, and is not ready for mainstream production usage. In particular, Helm frequently issues release candidates before a major or minor update. These give the community a chance to give us some feedback on stability, compatibility, and new features before we issue a final release.

With this in mind, we are ready to proceed with the actual installation.

Downloading the binary

The easiest way to install Helm from the repository is to simply go to the releases page and download the latest Helm 3 version.

On Windows, the download file is a ZIP archive containing a README.md text file, a LICENSE text file, and helm.exe.

On macOS and Linux, the download will be in a gzipped tar archive (.tar.gz) that can be extracted with the tar -zxf command. Like the Windows version, it will contain a README.md text file, a LICENSE text file, and the helm binary. If you are using Windows Subsystem for Linux (WSL), you should install the Linux AMD64 version into your WSL instance.

Regardless of which operating system you use, the binary is the only file you need to run Helm, and you can put it wherever you prefer on your system. It should be pre-marked as an executable, but on rare occasions in UNIX-like environments, you may also need to run the command chmod helm +x to set Helm to be an executable.

Note

When installing with package managers like Homebrew (macOS), Snap (Linux), or Chocolatey (Windows), helm will be installed in a standard location and be made immediately available to you via the command line.

Once you have helm installed, you should be able to run the command helm help and see the Helm help text.

Using the get script to install

On macOS and Linux, you may prefer to run a shell script that will determine which version of Helm to install and do it automatically for you.

The usual sequence of commands for installing this way is as follows:

$ curl -fsSL -o get_helm.sh \
https://raw.githubusercontent.com/helm/helm/master/scripts/get-helm-3
$ chmod 700 get_helm.sh
$./get_helm.sh

The preceding commands fetch the latest version of the get_helm.sh script, and then use that to find and install the latest version of Helm 3.

For systems that automatically install Helm, such as continuous integration (CI) systems, we recommend using this method if it is important to always have the latest Helm version.

Guidance on Building from Source

Unless you are already familiar with Go development, building Helm from source can be a daunting task. You will need a version of the make command. Because Makefile-style build scripts do not follow a single standard, not all versions of make will work to build Helm. Gnu Make, the one most frequently used on Linux and Mac, is the one most Helm core developers use, so it is a safe bet. You will also need the gcc compiler and the entire Go toolchain.

In addition to these, Helm needs several auxilliary tools. Fortunately, when you run make the first time, it will attempt to install any additional tools that are missing.

While they are not strictly necessary, you will probably also want the git tool and the kubectl command. The git tool will allow you to work directly with the Helm source code repository instead of downloading source code bundles. kubectl, of course, is for interacting with your Kubernetes cluster. While that’s not necessary for building Helm, it’s certainly necessary when checking to see whether Helm is doing what you want it to do.

Once you have the tools installed and configured, you can simply change directories in the folder that contains Helm’s source code (the directory with the README.md and Makefile files) and run make build. The first time you run this command, it will take at least several minutes. The build system must fetch lots of dependencies, including much of the Kubernetes source code, and compile it all.

Tip

Compiling Helm for the first time can be daunting, especially if you are new to the Go programming language. Kubernetes is a sophisticated platform, and thus the Helm source code is large and difficult to build. Plan on spending at least an hour or two to get a fresh environment prepared to install Helm.

To verify that Helm is functioning correctly (especially if you have modified the source code), you can run make test. This will build the code, run a variety of checkers and linters, and then run the unit tests for Helm. If you plan on contributing any changes to Helm, this command must pass before Helm’s core maintainers will even look at your requested change.

When Helm is compiled, it will be located alongside the source code in a subdirectory called bin/. It will not automatically be added to your executable path, so to execute the version you just built, you may need to specify the relative or exact path (e.g., ./bin/helm or $GOPATH/src/helm.sh/helm/bin/helm).

If the command helm version correctly executes, you can be assured that you correctly compiled Helm.

From here, you can follow the detailed Developer Guide to learn more. As always, if you run into problems, the helm-users channel on the Kubernetes Slack server is a great place to ask for help.

Working with Kubernetes Clusters

Helm interacts directly with the Kubernetes API server. For that reason, Helm needs to be able to connect to a Kubernetes cluster. Helm attempts to do this automatically by reading the same configuration files used by kubectl (the main Kubernetes command-line client).

Helm will try to find this information by reading the environment variable
$KUBECONFIG. If that is not set, it will look in the same default locations that kubectl looks in (for example, $HOME/.kube/config on UNIX, Linux, and macOS).

You can also override these settings with environment variables (HELM_KUBECONTEXT) and command-line flags (--kube-context). You can see a list of environment variables and flags by running helm help.

The Helm maintainers recommend using kubectl to manage your Kubernetes credentials and letting Helm merely autodetect these settings. If you have not yet installed kubectl, the best place to start is with the official Kubernetes installation documentation.

Getting Started with Helm

Whether you built Helm from source or installed using one of the aforementioned methods, at this point you should have the helm command available on your system. From here on, we will assume that Helm can be executed with the command helm (as opposed to a full or relative path, as discussed in the previous section).

In what follows, we are going to take a look at the most common workflow for starting out with Helm:

	
Add a chart repository.

	
Find a chart to install.

	
Install a Helm chart.

	
See the list of what is installed.

	
Upgrade your installation.

	
Delete the installation.

Then, in the next chapter we will dive into some of the additional features of Helm and in so doing learn more about how Helm works.

Adding a Chart Repository

Chart repositories are a topic in their own right, and in Chapter 7 we will examine them in detail. But anyone using Helm must know a few basics about chart
repositories.

A Helm chart is an individual package that can be installed into your Kubernetes cluster. During chart development, you will often just work with a chart that is stored on your local filesystem.

But when it comes to sharing charts, Helm describes a standard format for indexing and sharing information about Helm charts. A Helm chart repository is simply a set of files, reachable over the network, that conforms to the Helm specification for indexing packages.

Note

Helm 3 introduced an experimental feature for storing Helm charts in a different kind of repository: Open Container Initiative (OCI) registries (sometimes called Docker registries). In this backend, a Helm chart can be stored alongside Docker images. While this feature is not yet broadly supported, it may become the future of Helm package storage. This is discussed more in Chapter 7.

There are many—perhaps thousands of—chart repositories on the internet. The easiest way to find the popular repositories is to use your web browser to navigate to the Artifact Hub. There you will find thousands of Helm charts, each hosted on an appropriate repository.

To get started, we will install the popular Drupal content management system. This makes a good example chart because it exercises many of Kubernetes’ types, including Deployments, Services, Ingress, and ConfigMaps.

Helm 2 came with a Helm repository installed by default. The stable chart repository was at one time the official source of production-ready Helm charts. But we realized that centralizing the charts into one repository was overly taxing to a small group of maintainers and frustrating for chart contributors.

In Helm 3, there is no default repository. Users are encouraged to use the Artifact Hub to find what they are looking for and then add their preferred repositories.

Drupal’s Helm chart is located in one of the most well-curated chart repositories available: Bitnami’s official Helm charts. You can take a look at the Artifact Hub’s entry for the Drupal chart for more information.

Note

A handful of Bitnami developers were among the core contributors who designed the Helm repository system. They have contributed to the establishment of Helm’s best practices for chart development and have written many of the most widely used charts.

Adding a Helm chart is done with the helm repo add command. Several Helm repository commands are grouped under the helm repo command group:

$ helm repo add bitnami https://charts.bitnami.com/bitnami
"bitnami" has been added to your repositories

The helm repo add command will add a repository named bitnami that points to the URL https://charts.bitnami.com/bitnami.

Now we can verify that the Bitnami repository exists by running a second repo
command:

$ helm repo list
NAME URL
bitnami https://charts.bitnami.com/bitnami

This command shows us all of the repositories installed for Helm. Right now, we see only the Bitnami repository that we just added.

Once we have added a repository, its index will be locally cached until we next update it (see Chapter 7). And one important thing that we can now do is search the
repository.

Searching a Chart Repository

Although we know, having looked at the Artifact Hub, that the Drupal chart exists in this repository, it is still useful to search for it from the command line. Oftentimes, searching is a useful way to find not only what charts can be installed, but what versions are available.

To begin, let’s search for the Drupal chart:

$ helm search repo drupal
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versatile open...

We did a simple search for the term drupal. Helm will search not just the package names, but also other fields like labels and descriptions. Thus, we could search for content and see Drupal listed there because it is a content management system:

$ helm search repo content
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versa...
bitnami/harbor 6.0.1 2.0.0 Harbor is an an open...
bitnami/joomla 7.1.18 3.9.19 PHP content managemen...
bitnami/mongodb 7.14.6 4.2.8 NoSQL document-orient...
bitnami/mongodb-sharded 1.4.2 4.2.8 NoSQL document-orient...

While Drupal is the first result, note that there are a variety of other charts that contain the word content somewhere in the descriptive text.

By default, Helm tries to install the latest stable release of a chart, but you can override this behavior and install a specific verison of a chart. Thus it is often useful to see not just the summary info for a chart, but exactly which versions exist for a chart:

$ helm search repo drupal --versions
NAME CHART VERSION APP VERSION DESCRIPTION
bitnami/drupal 7.0.0 9.0.0 One of the most versatile op...
bitnami/drupal 6.2.22 8.9.0 One of the most versatile op...
bitnami/drupal 6.2.21 8.8.6 One of the most versatile op...
bitnami/drupal 6.2.20 8.8.5 One of the most versatile op...
bitnami/drupal 6.2.19 8.8.5 One of the most versatile op...
...

There are several dozen versions of the Drupal chart. The preceding example has been truncated to just show the top few versions.

Chart and App Versions

A chart version is the version of the Helm chart. The app version is the version of the application packaged in the chart. Helm uses the chart version to make versioning decisions, such as which package is newest. As we can see in the preceding example, multiple chart versions may contain the same app version.

Installing a Package

In the next chapter, we will dive deeply into the details of how package installation works in Helm. In this section, though, we will look at the basic mechanics of installing a Helm chart.

At very minimum, installing a chart in Helm requires just two pieces of information: the name of the installation and the chart you want to install.

Recall that in the previous chapter we distinguished between an installation and a chart. This is an important distinction during installation and upgrading. In an operating system package manager, we may request that it install a piece of software. But it is extremely rare that we need to install the same exact package multiple times on an operating system. A Kubernetes cluster is different. It makes complete sense in Kubernetes to say “I want to install a MySQL database for Application A, and a second MySQL database for Application B.” Even if the two databases are exactly the same version and have the same configuration, in order to appropriately manage our applications, we may desire to have two instances running.

Therefore, Helm needs a way to distinguish between the different instances of the same chart. So an installation of a chart is a specific instance of the chart. One chart may have many installations. When we run the helm install command, we need to give it an installation name as well as the chart name. So the most basic installation command looks something like this:

$ helm install mysite bitnami/drupal
NAME: mysite
LAST DEPLOYED: Sun Jun 14 14:46:51 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/

2. Login with the following credentials

 echo Username: user
 echo Password: $(kubectl get secret --namespace default mysite-drupal...

The preceding will create an instance of the bitnami/drupal chart, and will name this instance mysite.

As the install command runs, it will return a considerable amount of information, including user-facing instructions about getting started with Drupal.

Note

In future examples of helm install, we will omit the returned output for the sake of brevity. However, when using Helm, you will see that output for each installation. In the next chapter, we will also see how to view that output again with the helm get command.

At this point, there is now an instance named mysite in the cluster. If we tried to rerun the preceding command, we wouldn’t get a second instance. Instead, we would get an error because the name mysite has already been used:

$ helm install mysite bitnami/drupal
Error: cannot re-use a name that is still in use

One further clarification is in order. In Helm 2, instance names were cluster-wide. You could only have an instance named mysite once per cluster. In Helm 3, naming has been changed. Now instance names are scoped to Kubernetes namespaces. We could install two instances named mysite as long as they each lived in a different namespace.

For example, the following is perfectly legal in Helm 3, though it would have generated a fatal error in Helm 2:

$ kubectl create ns first
$ kubectl create ns second
$ helm install --namespace first mysite bitnami/drupal
$ helm install --namespace second mysite bitnami/drupal

This will install one Drupal site named mysite in the first namespace, and an identically configured instance named mysite in the second namespace. This might seem confusing at first, but it becomes clearer when we think about a namespace as a prefix on a name. In that sense, we have a site named “first mysite” and another named “second mysite.”

Using Namespace Flags Throughout Helm

When working with namespaces and Helm, you can use the
--namespace or -n flags to specify the namespace you desire.

Configuration at Installation Time

In the preceding examples, we installed the same chart a few different ways. In all cases, they are identically configured. While the default configuration is good sometimes, more often we want to pass our own configuration to the chart.

Many charts will allow you to provide configuration values. If we take a look at the Artifact Hub page for Drupal, we would see a long list of configurable parameters. For example, we can configure the username of the Drupal admin account by setting the drupalUsername value.

Note

In the next chapter we will learn how to get this information using the helm command.

There are several ways of telling Helm which values you want to be configured. The best way is to create a YAML file with all of the configuration overrides. For example, we can create a file that sets values for drupalUsername and drupalEmail:

drupalUsername: admin
drupalEmail: admin@example.com

Now we have a file (conventionally named values.yaml) that has all of our configuration. Since it is in a file, it is easy to reproduce the same installation. You can also check this file into a version control system to track changes to your values over time. The Helm core maintainers consider it a good practice to keep your configuration values in a YAML file. It is important to keep in mind, though, that if a configuration file has sensitive information (like a password or authentication token), you should take steps to ensure that this information is not leaked.

Both helm install and helm upgrade provide a --values flag that points to a YAML file with value overrides:

$ helm install mysite bitnami/drupal --values values.yaml
NAME: mysite
LAST DEPLOYED: Sun Jun 14 14:56:15 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/

2. Login with the following credentials

 echo Username: admin
 echo Password: $(kubectl get secret --namespace default mysite-drupal -o js...

Notice that in the preceding output the Username is now admin instead of user. One nice feature of Helm is that even the help text can be updated using values you
provide.

Note

You can specify the --values flag multiple times. Some people use this feature to have “common” overrides in one file and specific overrides in another.

There is a second flag that can be used to add individual parameters to an install or upgrade. The --set flag takes one or more values directly. They do not need to be stored in a YAML file:

$ helm install mysite bitnami/drupal --set drupalUsername=admin

This sets just one parameter, drupalUsername. This flag uses a simple key=value
format.

Configuration parameters can be structured. That is, a configuration file may have multiple sections. The Drupal chart, for example, has configuration specific to the MariaDB database. These parameters are all grouped into a mariadb section. Building on our previous example, we could override the MariaDB database name like this:

drupalUsername: admin
drupalEmail: admin@example.com
mariadb:
 db:
 name: "my-database"

Subsections are a little more complicated when using the --set flag. You will need to use a dotted notation: --set mariadb.db.name=my-database. This can get verbose when setting multiple values.

In general, Helm core maintainers suggest storing configuration in values.yaml files (note that the filename does not need to be “values”), only using --set when absolutely necessary. This way, you have easy access to the values you used during an operation (and can track those over time), while also keeping your Helm commands short. Working with files also means you do not have to escape as many characters as you do when setting things on the command line.

Before moving on to upgrades, though, we will take a quick look at one of the most helpful Helm commands.

Listing Your Installations

As we have seen so far, Helm can install many things into the same cluster—even multiple instances of the same chart. And with multiple users on your cluster, different people may be installing things into the same namespace on a cluster.

The helm list command is a simple tool to help you see installations and learn about those installations:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mysite default 1 2020-06-14... deployed drupal-7.0.0 9.0.0

This command will provide you with lots of useful information, including the name and namespace of the release, the current revision number (discussed in Chapter 1, and in more depth in the next section), the last time it was updated, the installation status, and the versions of the chart and app.

Like other commands, helm list is namespace aware. By default, Helm uses the namespace your Kubernetes configuration file sets as the default. Usually this is the namespace named default. Earlier, we installed a Drupal instance into the namespace first. We can see that with helm list --namespace first.

When listing all of your releases, one useful flag is the --all-namespaces flag, which will query all of the Kubernetes namespaces to which you have permission, and return all of the releases it finds:

$ helm list --all-namespaces
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
mysite default 1 2020-06-14... deployed drupal-7.0.0 9.0.0
mysite first 1 2020-06-14... deployed drupal-7.0.0 9.0.0
mysite second 1 2020-06-14... deployed drupal-7.0.0 9.0.0

Upgrading an Installation

When we talk about upgrading in Helm, we talk about upgrading an installation, not a chart. An installation is a particular instance of a chart in your cluster. When you run helm install, it creates the installation. To modify that installation, use helm upgrade.

This is an important distinction to make in the present context because upgrading an installation can consist of two different kinds of changes:

	
You can upgrade the version of the chart

	
You can upgrade the configuration of the installation

The two are not mutually exclusive; you can do both at the same time. But this does introduce one new term that Helm users refer to when talking about their systems: a release is a particular combination of configuration and chart version for an
installation.

When we first install a chart, we create the initial release of an installation. Let’s call this release 1. When we perform an upgrade, we are creating a new release of the same installation: release 2. When we upgrade again, we will create release 3. (In the next chapter, we’ll see how rollbacks also create releases.)

During an upgrade, then, we can create a release with new configuration, with a new chart version, or with both.

For example, say we install the Drupal chart with the ingress turned off. (This will effectively prevent traffic from being routed from outside the cluster into the Drupal instance.)

Note that we are using the --set flag to keep examples compact, but would recommend using a values.yaml file in regular scenarios:

$ helm install mysite bitnami/drupal --set ingress.enabled=false

With ingress turned off, we can work on getting our site all set up to our liking. Then when we are ready, we can create a new release that enables the ingress feature:

$ helm upgrade mysite bitnami/drupal --set ingress.enabled=true

In this case, we are running an upgrade that will only change the configuration.

In the background, Helm will load the chart, generate all of the Kubernetes objects in that chart, and then see how those differ from the version of the chart that is already installed. It will only send Kubernetes the things that need to change. In other words, Helm will attempt to alter only the bare minimum.

The preceding example will only change the ingress configuration. Nothing changes with the database, or even with the web server running Drupal. For that reason, nothing will be restarted or deleted and re-created. This can occasionally confuse new Helm users, but it is by design. The Kubernetes philosophy is to make changes in the most streamlined way possible, and Helm seeks to follow this philosophy.

On occasion, you may want to force one of your services to restart. This is not something you need to use Helm for. You can simply use kubectl itself to restart things. With an operating system’s package manager, you do not use the package manager to restart a program. Likewise, you don’t need to use Helm to restart your web server or database.

When a new version of a chart comes out, you may want to upgrade your existing installation to use the new chart version. For the most part, Helm tries to make this easy:

$ helm repo update [image: 1]
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "bitnami" chart repository
Update Complete. ⎈ Happy Helming!⎈

$ helm upgrade mysite bitnami/drupal [image: 2]

	[image: 1]

	Fetch the latest packages from chart repositories.

	[image: 2]

	Upgrade the mysite release to use the latest version of bitnami/drupal.

As you can see, the default policy of Helm is to attempt to use the latest version of a chart. If you would prefer to stay on a particular version of a chart, you can explicitly declare this:

$ helm upgrade mysite bitnami/drupal --version 6.2.22

In this case, even if a newer version is released, only bitnaim/drupal version 6.2.22 will be installed.

Configuration Values and Upgrades

One of the most important things to learn about Helm installs and upgrades is that configuration gets applied freshly on each release. Here’s a quick illustration:

$ helm install mysite bitnami/drupal --values values.yaml [image: 1]
$ helm upgrade mysite bitnami/drupal [image: 2]

	[image: 1]

	Install using a configuration file.

	[image: 2]

	Upgrade without a configuration file.

What is the result of this pair of operations? The installation will use all of the configuration data supplied in values.yaml, but the upgrade will not. As a result, some settings could be changed back to their defaults. This is usually not what you want.

Inspecting Values

In the next chapter we will look at the helm get command. You can use helm get values mysite to see what values were used on the last helm install or helm upgrade operation.

Helm core maintainers suggest that you provide consistent configuration with each installation and upgrade. To apply the same configuration to both releases, supply the values on each operation:

$ helm install mysite bitnami/drupal --values values.yaml [image: 1]
$ helm upgrade mysite bitnami/drupal --values values.yaml [image: 2]

	[image: 1]

	Install using a configuration file.

	[image: 2]

	Upgrade using the same configuration file.

One of the reasons we suggest storing configuration in a values.yaml file is so that this pattern is easy to reproduce. Imagine how much more cumbersome these commands would be if you used --set to set three or four configuration parameters! For each release, you’d have to remember exactly which things to set.

While we strongly advise using the pattern discussed here, and specifying --values each time, there is an upgrade shortcut available that will just reuse the last set of values that you sent:

$ helm upgrade mysite bitnami/drupal --reuse-values

The --reuse-values flag will tell Helm to reload the server-side copy of the last set of values, and then use those to generate the upgrade. This method is okay if you are always just reusing the same values. However, the Helm maintainers strongly suggest not trying to mix --reuse-values with additional --set or --values options. Doing so can make troubleshooting complicated and can quickly lead to unmaintainable installations in which nobody is sure how certain configuration parameters were set. While Helm does retain some state information, it is not a configuration management tool. Users are advised to manage configuration using their own tools and explicitly pass that configuration to Helm in each invocation.

At this point, we’ve learned how to install, list, and upgrade installations. In the final section of this chapter, we will delete an installation.

Uninstalling an Installation

To remove a Helm installation, use the helm uninstall command:

$ helm uninstall mysite

Note that this command does not need a chart name (bitnami/drupal) or any configuration files. It simply needs the name of the installation. In this section, we will look at how deletion works and take a brief detour into a big change between Helm 2 and Helm 3.

Like install, list, and upgrade, you can supply a --namespace flag to specify that you want to delete an installation from a specific namespace:

$ helm uninstall mysite --namespace first

The preceding will delete the site we created in the first namespace earlier in this chapter. Note that there is no command to delete multiple applications. You must uninstall a specific installation.

Deletion can take time. Larger applications may take several minutes, or even longer, as Kubernetes cleans up all of the resources. During this time, you will not be able to reinstall using the same name.

How Helm Stores Release Information

One of the big changes in Helm 3 is how it deletes Helm’s own data about an installation. This section briefly describes how installations are tracked and then concludes by explaining how and why Helm changed between version 2 and version 3.

When we first install a chart with Helm (such as with helm install mysite bitnami/drupal), we create the Drupal application instance, and we also create a special record that contains release information. By default, Helm stores these records as Kubernetes Secrets (though there are other supported storage backends).

We can see these records with kubectl get secret:

$ kubectl get secret
NAME TYPE DATA AGE
default-token-vjhx2 kubernetes.io/service-account-token 3 58m
mysite-drupal Opaque 1 13m
mysite-mariadb Opaque 2 13m
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 13m
sh.helm.release.v1.mysite.v2 helm.sh/release.v1 1 13m
sh.helm.release.v1.mysite.v3 helm.sh/release.v1 1 7m53s
sh.helm.release.v1.mysite.v4 helm.sh/release.v1 1 5m30s

We can see multiple release records at the bottom, one for each revision. As you can see, we have created four revisions of mysite by running install and upgrade
operations.

In the next chapter, we will see how these extended records can be used to roll back to previous revisions of an installation. But we point this out now to illustrate something about how helm uninstall works.

When we run the command helm uninstall mysite, it will load the latest release record for the mysite installation. From that record, it will assemble a list of objects that it should remove from Kubernetes. Then Helm will delete all of those things before returning and deleting the four release records:

$ helm uninstall mysite
release "mysite" uninstalled

The helm list command will no longer show mysite:

$ helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

We now have no installations. And if we rerun the kubectl get secrets command, we will also see all records of mysite have been purged:

$ kubectl get secrets
NAME TYPE DATA AGE
default-token-vjhx2 kubernetes.io/service-account-token 3 65m

As we can see from this output, not only were the two Secrets created by the Drupal chart deleted, but the four release records were deleted as well.

In the next chapter, we will see the helm rollback command. The preceding explanation should give you some hints as to why, by default, you cannot roll back an uninstall. It is possible, though, to delete the application, but keep the release records:

$ helm uninstall --keep-history

In Helm 2, history was retained by default. In Helm 3, the default was changed to deleting history. Different organizations prefer different policies, but core maintainers found that when most people uninstalled, they expected all traces of the installation to be destroyed.

Conclusion

In this chapter, we covered the basics of installing and then using Helm. After looking at popular methods of getting Helm installed and configured, we added a chart repository and learned how to search for charts. Then we installed, listed, upgraded, and finally uninstalled the bitnami/drupal chart.

Along the way, we picked up some important concepts. We learned about installations and releases. We took a first look at chart repositories, which will be covered at length in Chapter 7. And at the end of the chapter we learned a little about how Helm stores information about our installations.

In the next chapter, we will return to the helm command, learning about other things that the Helm tool can do.

Chapter 3. Beyond the Basics with Helm

In the previous chapter, we looked at the most frequently used Helm commands. In this chapter we will explore other capabilities that the Helm tool provides. We will dive into commands that provide information about releases, that test installations, and that keep track of history. Finally, we will revisit installing and upgrading, this time covering advanced cases.

We will get started with some tools helpful for troubleshooting and debugging.

Templating and Dry Runs

When Helm installs a release, the program steps through several phases. It loads the chart, parses the values passed to the program, reads the chart metadata, and so on. Near the middle of the process, Helm compiles all of the templates in the chart (all in one pass), and then renders them by passing in the values (like we saw in the previous chapter). During this middle portion, it executes all of the template directives. Once the templates are rendered into YAML, Helm verifies the structure of the YAML by parsing it into Kubernetes objects. Finally, Helm serializes those objects and sends them to the Kubernetes API server.

Roughly, then, the process is:

	
Load the entire chart, including its dependencies.

	
Parse the values.

	
Execute the templates, generating YAML.

	
Parse the YAML into Kubernetes objects to verify the data.

	
Send it to Kubernetes.

For example, let’s look at one of the commands we issued in the previous chapter:

$ helm install mysite bitnami/drupal --set drupalUsername=admin

In the first phase, Helm will locate the chart named bitnami/drupal and load that chart. If the chart is local, it will be read off of disk. If a URL is given, it will be fetched from the remote location (possibly using a plugin to assist in fetching the chart).

Then it will transform --set drupalUsername=admin into a value that can be injected into the templates. This value will be combined with the default values in the chart’s values.yaml file. Helm does some basic checks against the data. If it has trouble parsing the user input, or if the default values are corrupt, it will exit with an error. Otherwise, it will build a single big values object that the template engine can use for substitutions.

The generated values object is created by loading all of the values of the chart file, overlaying any values loaded from files (that is, with the -f flag), and then overlaying any values set with the --set flag. In other words, --set values override settings from passed-in values files, which in turn override anything in the chart’s default values.yaml file.

At this point, Helm will read all of the templates in the Drupal chart, and then execute those templates, passing the merged values into the template engine. Malformed templates will cause errors. But there are a variety of other situations that may cause failure here. For example, if a required value is missing, it is at this phase that an error is returned.

It is important to note that, when executed, some Helm templates require information about Kubernetes. So during template rendering, Helm may contact the Kubernetes API server. This is an important topic that we will discuss in a moment.

The output of the preceding step is then parsed from YAML into Kubernetes objects. Helm will perform some schema-level validation at this point, making sure that the objects are well-formed. Then they will be serialized into the final YAML format for Kubernetes.

In the last phase, Helm sends the YAML data to the Kubernetes API server. This is the server that kubectl and other Kubernetes tools interact with.

The API server will run a series of checks on the submitted YAML. If Kubernetes accepts the YAML data, Helm will consider the deployment a success. But if Kubernetes rejects the YAML, Helm will exit with an error.

Later on, we’ll go into detail about what happens once the objects are sent to Kubernetes. In particular, we’ll cover how Helm associates the process described earlier with an installation and revisions. But right now, we have enough information about workflow to understand two related Helm features: the --dry-run flag and the helm template command.

The --dry-run Flag

Commands like helm install and helm upgrade provide a flag named --dry-run. When you supply this flag, it will cause Helm to step through the first four phases (load the chart, determine the values, render the templates, format to YAML). But when the fourth phase is finished, Helm will dump a trove of information to standard output, including all of the rendered templates. Then it will exit without sending the objects to Kubernetes and without creating any release records.

For example, here is a version of our previous Drupal install with the --dry-run flag appended:

$ helm install mysite bitnami/drupal --values values.yaml --set \
drupalEmail=foo@example.com --dry-run

At the top of the output, it will print some information about the release:

NAME: mysite
LAST DEPLOYED: Tue Aug 11 11:42:05 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
HOOKS:

The preceding tells us what the name of the installation is, when it was last deployed (in this case, the current date and time), which namespace it would have been deployed into, what phase of the release it is in (pending-install), and the revision number. Since this is an install, the revision is 1. On upgrade, it would be 2 or greater.

Finally, if this chart declared any hooks, they would be enumerated here. For more on hooks, see Chapters 6 and 7.

At first glance, it might seem that this metadata entry has a lot of unnecessary data. After all, what good does LAST DEPLOYED do if we are not actually installing? In fact, this chunk of information is a standard set used throughout Helm. It is part of the release record: a set of information about a release. Commands like helm get use these same fields.

Next, after the informational block, all of the rendered templates are dumped to standard output:

Source: drupal/charts/mariadb/templates/test-runner.yaml
apiVersion: v1
kind: Pod
metadata:
 name: "mysite-mariadb-test-afv3u"
 annotations:
 "helm.sh/hook": test-success
spec:
 initContainers:
 - name: "test-framework"
 image: docker.io/dduportal/bats:0.4.0
...

The rendered Drupal chart is thousands of lines, so the preceding just shows the first several lines of output.

Finally, at the bottom of the dry-run output, Helm prints the user-oriented release notes:

NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/
...

The example is truncated for brevity.

This dry-run feature provides Helm users a way to debug the output of a chart before it is sent on to Kubernetes. With all of the templates rendered, you can inspect exactly what would have been submitted to your cluster. And with the release data, you can verify that the release would have been created as you expected.

The principal purpose of the --dry-run flag is to give people a chance to inspect and debug output before sending it on to Kubernetes. But soon after it was introduced, Helm maintainers noticed a trend among users. People wanted to use --dry-run to use Helm as a template engine, and then use other tools (like kubectl) to send the rendered output to Kubernetes.

But --dry-run wasn’t written with this use case in mind, and that caused a few
problems:

	
--dry-run mixes non-YAML information with the rendered templates. This means the data has to be cleaned up before being sent to tools like kubectl.

	
A --dry-run on upgrade can produce different YAML output than a --dry-run on install, and this can be confusing.

	
It contacts the Kubernetes API server for validation, which means Helm has to have Kubernetes credentials even if it is just used to --dry-run a release.

	
It also inserts information into the template engine that is cluster-specific. Because of this, the output of some rendering processes may be cluster-specific.

To remedy these problems, the Helm maintainers introduced a completely separate command: helm template.

The helm template Command

While --dry-run is designed for debugging, helm template is designed to isolate the template rendering process of Helm from the installation or upgrade logic.

Earlier, we looked at the five phases of a Helm install or upgrade. The template command performs the first four phases (load the chart, determine the values, render the templates, format to YAML). But it does this with a few additional caveats:

	
During helm template, Helm never contacts a remote Kubernetes server.

	
The template command always acts like an installation.

	
Template functions and directives that would normally require contacting a Kubernetes server will instead only return default data.

	
The chart only has access to default Kubernetes kinds.

Regarding the last item, helm template makes a notable simplifying assumption. Kubernetes servers support built-in kinds (Pod, Service, ConfigMap, and so on) as well as custom kinds generated by custom resource definitions (CRDs). When running an install or upgrade, Helm fetches those kinds from the Kubernetes server before processing the chart.

However, helm template does this step differently. When Helm is compiled, it is compiled against a particular version of Kubernetes. The Kubernetes libraries contain the list of built-in kinds for that release. Helm uses that built-in list instead of a list it fetches from the API server. For this reason, Helm does not have access to any CRDs during a helm template run, since CRDs are installed on the cluster and are not included in the Kubernetes libraries.

Note

Running an old version of Helm against a chart that uses new kinds or versions can produce an error during helm template because Helm will not have the newest kinds or versions compiled into it.

As a result of these decisions, helm template produces consistent output run after run. More importantly, it can be run in an environment that does not have access to a Kubernetes cluster, like a continuous integration (CI) pipeline.

The output is also different from --dry-run. Here’s an example command:

$ helm template mysite bitnami/drupal --values values.yaml --set \
drupalEmail=foo@example.com

Source: drupal/charts/mariadb/templates/secrets.yaml
apiVersion: v1
kind: Secret
metadata:
 name: mysite-mariadb
 labels:
 app: "mariadb"
 chart: "mariadb-7.5.1"
 release: "mysite"
 heritage: "Helm"
type: Opaque
... LOTS removed from here
 volumes:
 - name: tests
 configMap:
 name: mysite-mariadb-tests
 - name: tools
 emptyDir: {}
 restartPolicy: Never

The preceding is a greatly abridged version of the output, showing just the command and a sample of the beginning data and the end of the data. The important thing to note, though, is that only the YAML-formatted Kubernetes manifest is printed by default.

Because Helm does not contact a Kubernetes cluster during a helm template run, it does not do complete validation of the output. It is possible that Helm will not catch some errors in this case. You may choose to use the --validate flag if you want that behavior, but in this case Helm will need a valid kubeconfig file with credentials for a cluster.

The helm template command has a broad number of flags that mirror those in helm install. So in many cases, you can execute a helm template command just as you would a helm install, but then capture the YAML and use it with other tooling.

Using a Post-Render Instead of Helm Template

Sometimes you want to intercept the YAML, modify it with your own tool, and then load it into Kubernetes. Helm provides a way to execute this external tool without having to resort to using helm template. The flag --post-renderer on the install, upgrade, rollback, and template will cause Helm to send the YAML data to the command, and then read the results back into Helm. This is a great way to work with tools like Kustomize.

To summarize, helm template is a tool for rendering Helm charts into YAML, and the --dry-run flag is a tool for debugging installation and upgrade commands without loading the data into Kubernetes.

Learning About a Release

In the previous chapter, we got a glimpse of the helm get command. At this point, we will take a deeper look into that command and others that provide us with information about Helm releases.

To start, let’s revisit the five phases of a Helm installation from the previous section. They were:

	
Load the chart.

	
Parse the values.

	
Execute the templates.

	
Render the YAML.

	
Send it to Kubernetes.

The first four phases are primarily concerned with a local representation of the data. That is, Helm is doing all of the processing on the same computer that the helm command is run on.

During the last phase, though, Helm sends that data to Kubernetes. And then the two communicate back and forth until the release is either accepted or rejected.

During that fifth phase, Helm must monitor the state of the release. Moreover, since many individuals may be working on the same copy of that particular application installation, Helm needs to monitor the state in such a way that multiple users can see that information.

Helm provides this feature with release records.

Release Records

When we install a Helm chart (with helm install), the new installation is created in the namespace you specify, or the default namespace. We looked at this in the previous chapter.

At the end of that chapter, we also saw how helm install creates a special type of Kubernetes Secret that holds release information. We saw how we could inspect these Secrets with kubectl:

$ kubectl get secret
NAME TYPE DATA AGE
default-token-g777k kubernetes.io/service-account-token 3 6m
mysite-drupal Opaque 1 2m20s
mysite-mariadb Opaque 2 2m20s
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 2m20s

Of particular note is that last Secret, sh.helm.release.v1.mysite.v1. Notice that it uses a special type (helm.sh/release.v1) to indicate that it is a Helm secret. Helm automatically generated this secret to track version 1 of our mysite installation (which is a Drupal site).

Each time we upgrade that mysite installation, a new Secret will be created to track each release. In other words, a release record tracks each revision of an installation:

$ helm upgrade mysite bitnami/drupal
Output omitted
$ helm upgrade mysite bitnami/drupal
Output omitted
$ kubectl get secrets
NAME TYPE DATA AGE
default-token-g777k kubernetes.io/service-account-token 3 8m43s
mysite-drupal Opaque 1 5m3s
mysite-mariadb Opaque 2 5m3s
sh.helm.release.v1.mysite.v1 helm.sh/release.v1 1 5m3s
sh.helm.release.v1.mysite.v2 helm.sh/release.v1 1 20s
sh.helm.release.v1.mysite.v3 helm.sh/release.v1 1 8s

In the preceding example, we have upgraded a few times, and now we are at v3 of mysite. By default, Helm tracks up to ten revisions of each installation. Once an installation exceeds ten releases, Helm deletes the oldest release records until no more than the maximum remain.

Each release record contains enough information to re-create the Kubernetes objects for that revision (an important thing for helm rollback). It also contains metadata about the release.

For example, if we looked at the release using kubectl, we would see something like this:

apiVersion: v1
data:
 release: SDRzSUFBQU... # Lots of Base64-encoded data removed
kind: Secret
metadata:
 creationTimestamp: "2020-08-11T18:37:26Z"
 labels: [image: 1]
 modifiedAt: "1597171046"
 name: mysite
 owner: helm
 status: deployed
 version: "3"
 name: sh.helm.release.v1.mysite.v3
 namespace: default
 resourceVersion: "1991"
 selfLink: /api/v1/namespaces/default/secrets/sh.helm.release.v1.mysite.v3
 uid: cbb8b457-e331-467b-aa78-1e20360b5be6
type: helm.sh/release.v1

	[image: 1]

	The labels contain Helm metadata

In this example, the giant Base64-encoded data has been removed along with a few other inessential fields. That blob contains a gzipped representation of the chart and release. But importantly, the labels section of the Kubernetes metadata contains information about this release.

We can see, for instance, that this data describes the release named mysite, that its current revision number is 3, and the release is marked deployed. If we were to look at version 2, we would see the release status is superseded, which means that it has been replaced by a later version.

In short, this secret is stored inside of Kubernetes so that different users of the same cluster have access to the same release information.

During the life cycle of a release, it can pass through several different statuses. Here they are, approximately in the order you would likely see them:

	pending-install

	
Before sending the manifests to Kubernetes, Helm claims the installation by creating a release (marked version 1) whose status is set to pending-install.

	deployed

	
As soon as Kubernetes accepts the manifest from Helm, Helm updates the release record, marking it as deployed.

	pending-upgrade

	
When a Helm upgrade is begun, a new release is created for an installation (e.g., v2), and its status is set to pending-upgrade.

	superseded

	
When an upgrade is run, the last deployed release is updated, marked as superseded, and the newly upgraded release is changed from pending-upgrade to deployed.

	pending-rollback

	
If a rollback is created, a new release (e.g., v3) is created, and its status is set to pending-rollback until Kubernetes accepts the release manifest. Then it is marked deployed and the last release is marked superseded.

	uninstalling

	
When a helm uninstall is executed, the most recent release is read and then its status is changed to uninstalling.

	uninstalled

	
If history is preserved during deletion, then when the
helm uninstall is complete, the last release’s status is changed to uninstalled.

	failed

	
Finally, if during any operation, Kubernetes rejects a manifest submitted by Helm, Helm will mark that release failed.

Listing Releases

Status messages show up in a number of Helm commands. We already saw how pending-install appears in a --dry-run. In this section and the next, we’ll see a few more places where this appears.

In the previous chapter, we used helm list to see the charts we had installed. Given our coverage of status, it is worth revisiting helm list. The list command is the best tool for quickly checking on the statuses of your releases.

For example, say we have a cluster with both the drupal and wordpress charts installed. Here is the output of helm list:

NAME 	NAMESPACE REVISION UPDATED STATUS 	CHART 	APP V...
mysite 	default 	3 2020-08-11... deployed drupal-7.0.0 9.0.0
wordpress default 	2 2020-08-12... deployed wordpress-9.3.11 5.4.2

To show the result of a failure, though, we can run an upgrade command that we know will break:

$ helm upgrade wordpress bitnami/wordpress --set image.pullPolicy=NoSuchPolicy
Error: UPGRADE FAILED: cannot patch "wordpress" with kind Deployment:
Deployment.apps "wordpress" is invalid:
spec.template.spec.containers[0].imagePullPolicy: Unsupported value:
"NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"

As the error message indicates, a pull policy cannot be set to NoSuchPolicy. This error came from the Kubernetes API server, which means Helm submitted the manifest, and Kubernetes rejected it. So our release should be in a failed state.

We can verify this by running helm ls again:

$ helm ls
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VER...
mysite 	default 	3 2020-08-11 deployed drupal-7.0.0 9.0.0
wordpress default 	3 2020-08-12 failed wordpress-9.3.11 5.4.2

It is worth noting again that the REVISION field for our newly failed wordpress installation has been incremented from 2 to 3. Even failed releases have revisions attached to them. We’ll see why this is important in “History and Rollbacks”.

Find Details of a Release with helm get

While helm list provides a summary view of installations, the helm get set of commands provide deeper information about a particular release.

There are five helm get subcommands (hooks, manifests, notes, values, and all). Each subcommand retrieves some portion of the information Helm tracks for a release.

Using helm get notes

The helm get notes subcommand prints the release notes:

$ helm get notes mysite
NOTES:

*** PLEASE BE PATIENT: Drupal may take a few minutes to install ***

1. Get the Drupal URL:

 You should be able to access your new Drupal installation through

 http://drupal.local/
...

This output should look familiar, as helm install and helm upgrade both print the release notes at the end of a successful operation. But helm get notes provides a convenient way to grab these notes on demand. That is useful in cases where you’ve forgotten what the URL is to your Drupal site.

Using helm get values

One useful subcommand is values. You can use this to see which values were supplied during the last release. In the previous section, we upgraded a WordPress installation and caused it to fail. We can see what values caused it to fail using helm get values:

$ helm get values wordpress
USER-SUPPLIED VALUES:
image:
 pullPolicy: NoSuchPolicy

We know that revision 2 was successful, but revision 3 failed. So we can take a look at the earlier values to see what changed:

$ helm get values wordpress --revision 2
USER-SUPPLIED VALUES:
image:
 tag: latest

With this, we can see that one value was removed and one value was added. Features like this are designed to make it easier for Helm users to identify the source of errors.

This command is also useful for learning about the total state of a release’s configuration. We can use helm get values to see all of the values currently set for that release. To do this, we use the --all flag:

$ helm get values wordpress --all
COMPUTED VALUES:
affinity: {}
allowEmptyPassword: true
allowOverrideNone: false
customHTAccessCM: null
customLivenessProbe: {}
customReadinessProbe: {}
externalDatabase:
 database: bitnami_wordpress
 host: localhost
 password: ""
 port: 3306
...

When the --all flag is specified, Helm will get the complete computed set of values, sorted alphabetically. This is a great tool for seeing the exact state of configuration for the release.

Seeing Default Values

Although helm get values does not have a way of showing you the default values, you can see those with helm inspect values CHARTNAME. This inspects the chart itself (not the release) and prints out the documented default values.yaml file. Thus, we could use helm inspect values bitnami/wordpress to see the default configuration for the WordPress chart.

Using helm get manifest

The last helm get subcommand that we will cover is helm get manifest. This sub-command retrieves the exact YAML manifest that Helm produced using the Chart templates:

$ helm get manifest wordpress
Source: wordpress/charts/mariadb/templates/secrets.yaml
apiVersion: v1
kind: Secret
metadata:
 name: wordpress-mariadb
 labels:
 app: "mariadb"
 chart: "mariadb-7.5.1"
 release: "wordpress"
 heritage: "Helm"
type: Opaque
...

One important detail about this command is that it does not return the current state of all of your resources. It returns the manifest generated from the template. In the preceding example, we see a Secret named wordpress-mariadb. If we query that Secret using kubectl, the metadata section looks like this:

$ kubectl get secret wordpress-mariadb -o yaml
apiVersion: v1
kind: Secret
metadata:
 annotations:
 meta.helm.sh/release-name: wordpress
 meta.helm.sh/release-namespace: default
 creationTimestamp: "2020-08-12T16:45:00Z"
 labels:
 app: mariadb
 app.kubernetes.io/managed-by: Helm
 chart: mariadb-7.5.1
 heritage: Helm
 release: wordpress
 managedFields:
 - apiVersion: v1
 fieldsType: FieldsV1
...

The output of kubectl contains the record as it currently exists in Kubernetes. There are several fields that have been added since the template output. Some (like the annotations) are managed by Helm itself, and others (like managedFields and
creationTimestamp) are managed by Kubernetes.

Once again, Helm provides tools designed to ease debugging. Between helm get manifest and kubectl get, you have tools for comparing what Kubernetes thinks is the current object with what the chart produced. This is particularly helpful when a resource that should be managed by Helm was manually edited outside of Helm (e.g., using kubectl edit).

With helm get, we can closely inspect an individual release. But the next tool we will cover provides us a view of the progression of releases. In the next section, we will look at helm history and helm rollback.

History and Rollbacks

Throughout this book, we have distinguished between installations and revisions. In this chapter, we have been working with an installation named mysite and another installation named wordpress. And when we ran helm list earlier, we saw that each installation had three releases. Moreover, we saw that wordpress was in a failed state:

$ helm list
NAME 	NAMESPACE REVISION UPDATED STATUS CHART APP VER...
mysite default 	3 2020-08-11 deployed drupal-7.0.0 9.0.0
wordpress default 	3 2020-08-12 failed wordpress-9.3.11 5.4.2

We can investigate the release history of WordPress to see what happened. To do this, we will use helm history:

$ helm history wordpress
REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... deployed 	wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed 	wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"

The output of this command gives us a nice history of the wordpress release. First it was installed, and then it was upgraded and marked deployed (which means that it was a successful upgrade). But when it was upgraded again, that upgrade failed. The helm history command even gives us the error message that Kubernetes returned when marking the release failed.

From the error, we know that the release failed because we supplied an invalid image pull policy. So of course we could correct this by simply running another helm upgrade. But imagine a case where the cause of error was not readily available. Rather than leave the application in a failed state while diagnosing the problem, it would be nice to simply revert back to the release that worked before.

This is what helm rollback is for:

$ helm rollback wordpress 2
Rollback was a success! Happy Helming!

This command tells Helm to fetch the wordpress version 2 release, and resubmit that manifest to Kubernetes. A rollback does not restore to a previous snapshot of the cluster. Helm does not track enough information to do that. What it does is resubmit the previous configuration, and Kubernetes attempts to reset the resources to match.

Now we can once again use helm history to see what has happened:

REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... superseded wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug 12... deployed wordpress-9.3.11 5.4.2 Rollback to 2

The rollback operation created a new revision (4). Since the rollback was successful (and Kubernetes accepted the alterations), the release is marked deployed. Note that revision 2 is now marked superseded, while the failed release 3 is still marked failed.

Because Helm has preserved the history, you can still examine the failed release after rolling back to a known-good configuration.

In most cases, helm rollback is a great way to recover from a catastrophe. But if you hand-edit resources that are managed by Helm, an interesting problem may arise. Rollbacks can on occasion cause some unexpected behavior, especially if the Kubernetes resources have been hand-edited by users. Helm and Kubernetes will attempt to preserve those hand-edits if they do not conflict with the rollback. Essentially, a rollback will generate a 3-way diff between the current state of the resources, the failed Helm release, and the Helm release that you roll back to. In some cases, the generated diff may result in rolling back handmade edits, while in other cases those discrepancies will be merged. In the worst case, some handmade edits may be overwritten while other related edits are merged, leading to an inconsistency in configuration. This is one of the many reasons Helm core maintainers recommend against hand-editing resources. If all edits are made through Helm, then you can use Helm tools effectively and with no guesswork.

Keeping History and Rolling Back

In the previous chapter, we saw that the helm uninstall command has a flag called
--keep-history. Normally, a deletion event will destroy all release records associated with that installation. But when --keep-history is specified, you can see the history of an installation even after it has been deleted:

$ helm uninstall wordpress --keep-history
release "wordpress" uninstalled

$ helm history wordpress
REVISION UPDATED STATUS 	CHART APP V DESCRIPTION
1 Wed Aug 12... superseded 	wordpress-9.3.11 5.4.2 Install complete
2 Wed Aug 12... superseded 	wordpress-9.3.11 5.4.2 Upgrade complete
3 Wed Aug 12... failed 	wordpress-9.3.11 5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug 12... uninstalled wordpress-9.3.11 5.4.2 Uninstall complete

Note that the last release is now marked as uninstalled. When history is preserved, you can roll back a deleted installation:

$ helm rollback wordpress 4
Rollback was a success! Happy Helming!

And now we can see a newly deployed release 5:

$ helm history wordpress
REVISION UPDATED STATUS CHART APP VER DESCRIPTION
1 Wed Aug... superseded 	wordpress-9.3.11	5.4.2 Install complete
2 Wed Aug... superseded 	wordpress-9.3.11	5.4.2 Upgrade complete
3 Wed Aug... failed 	wordpress-9.3.11	5.4.2 Upgrade \
 "wordpress" failed: cannot patch "wordpress" with kind Deployment: \
 Deployment.apps "wordpress" is invalid: \
 spec.template.spec.containers[0].imagePullPolicy: Unsupported value: \
 "NoSuchPolicy": supported values: "Always", "IfNotPresent", "Never"
4 Wed Aug... uninstalled wordpress-9.3.11 5.4.2 Uninstall complete
5 Wed Aug... deployed 	wordpress-9.3.11 5.4.2 Rollback to 4

But without the --keep-history flag, this will not work:

$ helm uninstall wordpress
release "wordpress" uninstalled
$ helm history wordpress
Error: release: not found
$ helm rollback wordpress 4
Error: release: not found

A Deep Dive into Installs and Upgrades

In Chapter 2 we took a first look at installing and upgrading Helm packages, and throughout this chapter we have looked at tools that help us work with Helm installations. To close out this chapter, we will circle back to installation and upgrading and look at a few advanced features.

The --generate-name and --name-template Flags

One of the subtle dangers of the way Kubernetes works has to do with naming. Kubernetes assumes that names will have certain uniqueness properties. For example, a Deployment object must have a name unique within its namespace. That is, in the namespace mynamespace I cannot have two Deployments named myapp. But I can have a Deployment and a Pod each named myapp.

This has made certain tasks a little more complicated. For example, a CI system that automatically deploys things must be able to ensure that the name it gives these things is unique within the namespace. One approach to dealing with this issue is for Helm to provide a tool for generating a unique name. (Another approach is to always overwrite a name if it already exits. See the next section for that approach.)

Helm provides the --generate-name flag for helm install:

$ helm install bitnami/wordpress --generate-name
NAME: wordpress-1597689085
LAST DEPLOYED: Mon Aug 17 11:31:27 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1

With the --generate-name flag, we no longer need to provide a name as the first argument to helm install. Helm generates a name based on a combination of the chart name and a timestamp. In the preceding output, we can see the name that was generated for us: wordpress-1597689085.

In Helm 2, “friendly names” were generated using adjectives and animal names. That was removed in Helm 3 due to complaints that release names were unprofessional. There is currently no way to re-enable this feature.

However, there is an additional flag that allows you to specify a naming template. The --name-template flag allows you do to something like this:

$ helm install bitnami/wordpress --generate-name \
 --name-template "foo-{{ randAlpha 9 | lower }}"
NAME: foo-yejpiyjmp
LAST DEPLOYED: Mon Aug 17 11:46:04 2020
NAMESPACE: default

In this example, we used the name template foo-{{ randAlpha 9 | lower }}. This uses the Helm template engine to generate a name for you. We’ll cover the Helm template engine in the next few chapters. But here’s what the name template does: The {{ and }} demarcate the beginning and end of a template. Inside of that template, we are calling the randAlpha function, asking for a 9-character random string from the a-z, A-Z range of characters. Then we are “piping” the results through a second function (lower) that lowercases everything.

Looking at the output of the earlier example, the result of {{ randAlpha 9 | lower }} was yejpiyjmp. So the result of the entire name template was foo-yejpiyjmp.

The --create-namespace Flag

Another consideration with naming in Kubernetes has to do with namespaces. Earlier, we saw that no two objects of the same kind within the same namespace can have the same name. But Kubernetes also has a concept of global names. CRDs and namespaces each have global names.

A namespace, therefore, must be unique cluster-wide.

Whenever Helm encounters globally unique names, it adopts a defensive posture. In later chapters, we’ll see how charts handle globally unique names. But here, it is worth pointing out that Helm 3 assumes by default that if you attempt to deploy a chart into a namespace, that namespace was already created.

For example, on a fresh cluster this will fail:

$ helm install drupal bitnami/drupal --namespace mynamespace
Error: create: failed to create: namespaces "mynamespace" not found

It fails because mynamespace has not already been created and Helm won’t automatically create a namespace. It won’t create one because namespaces are global, and the safe assumption is that when a namespace is created, it probably needs access controls (like RBACs) and other things assigned to it before it can be safely used in production. In short, it views silently creating a namespace as an opportunity for unintentionally creating a security hole.

However, Helm does let you override this consideration by explicitly stating that you want to create a namespace:

$ helm install drupal bitnami/drupal --namespace mynamespace --create-namespace
NAME: drupal
LAST DEPLOYED: Mon Aug 17 11:59:29 2020
NAMESPACE: mynamespace
STATUS: deployed

By adding --create-namespace, we have indicated to Helm that we acknowledge that there may not be a namespace with that name already, and we just want one to be created. Be sure, of course, that if you use this flag on a production instance, you have other mechanisms for enforcing security on this new namespace.

There is not an analogous --delete-namespace on helm uninstall. And the reason for this falls out of Helm’s defensiveness regarding global objects. Once a namespace is created, any number of objects may be put in the namespace, not all of them managed by Helm. And when a namespace is deleted, all of the objects inside of that namespace are also deleted. So Helm does not automatically delete namespaces that were created with --create-namespace. To delete a namespace, use kubectl delete namespace (after making sure, of course, that no important objects exist in that namespace).

Using helm upgrade --install

Some systems, like CI pipelines, are employed to automatically install or upgrade a chart each time a significant event occurs. For example, many organizations have pipelines that trigger whenever new code is uploaded to a version control system (VCS) like Git. GitHub, a popular Git hosting service, even provides tools to automatically deploy whenever a code change is merged.

Systems like this often run rudimentary scripts on a stateless platform that does not have the means to query Kubernetes. Users of such systems requested a Helm feature that would allow “install or upgrade” support in a single command.

To facilitate this behavior, Helm maintainers added the --install flag to the helm upgrade command. The helm upgrade --install command will install a release if it does not exist already, or will upgrade a release if a release by that name is found. Underneath the hood, it works by querying Kubernetes for a release with the given name. If that release does not exist, it switches out of the upgrade logic and into the install logic.

For example, we can run an install and an upgrade in sequence using exactly the same command:

$ helm upgrade --install wordpress bitnami/wordpress
Release "wordpress" does not exist. Installing it now.
NAME: wordpress
LAST DEPLOYED: Mon Aug 17 13:18:14 2020
NAMESPACE: default
STATUS: deployed
...
$ helm upgrade --install wordpress bitnami/wordpress
Release "wordpress" has been upgraded. Happy Helming!
NAME: wordpress
LAST DEPLOYED: Mon Aug 17 13:18:43 2020
NAMESPACE: default
STATUS: deployed

As we can see in the first line of output, the first run of the command caused an install, while the second caused an upgrade.

This command does introduce some danger, though. Helm has no way of establishing whether the name of the installation you provide to helm upgrade --install belongs to the release you intend to upgrade or just happens to be the named the same thing as the thing you want to install. Careless use of this command could result in overwriting one installation with another. This is why it is not the default behavior for Helm.

The --wait and --atomic Flags

Another pair of significant flags for helm install and helm upgrade modify the success criteria for Helm operations. These are the --wait and --atomic flags.

The --wait flag modifies the behavior of the Helm client in a couple of ways. First, when Helm runs an installation, it remains active for a set window of time (modifiable with the --timeout flag) during which it watches Kubernetes. It polls the Kubernetes API server for information about all pod-running objects that were created by the chart. For example, DaemonSets, Deployments, and StatefulSets all create pods. So Helm with --wait will track such objects, waiting until the pods they create are marked as Running by Kubernetes.

In a normal install or upgrade, Helm marks a release as successful as soon as the Kubernetes API server accepts the manifests. This is similar to package managers that consider a package successfully installed as soon as the package contents are written to the correct storage locations.

But with --wait, the success criteria for an installation is modified. A chart is not considered successfully installed unless (1) the Kubernetes API server accepts the manifest and (2) all of the pods created by the chart reach the Running state before Helm’s timeout expires.

Thus, installs with --wait can fail for a wide variety of reasons, including network latency, a slow scheduler, busy nodes, slow image pulls, and outright failure of a container to start.

This behavior is seen as a desirable outcome, and operators use helm install --wait to ensure that not only did the chart successfully install but that the resulting application correctly started. However, it does introduce some complicating factors when troubleshooting. Transient outages may result in Helm failures that are resolved by Kubernetes later. For example, a delayed image pull might result in a Helm release marked as failed, even though a few minutes later the image pull can complete and the application can be started.

With this in mind, though, helm install --wait is a good tool for making sure that the release is brought all the way to running. But when used in automated systems (like CI), it may cause spurious failures. One recommendation for using --wait in CI is to use a long --timeout (five or ten minutes) to ensure that Kubernetes has time to resolve any transient failures.

A second strategy is to use the --atomic flag instead of the --wait flag. This flag causes the same behavior as --wait unless the release fails. Then, instead of marking the release as failed and exiting, it performs an automatic rollback to the last successful release. In automated systems, the --atomic flag is more resistent to outages, since it is less likely to have a failure as its end result. (Keep in mind, though, that there is no assurance that a rollback will be successful.)

Just as --wait can mark a release as a failure for transitive reasons that may be resolved by Kubernetes itself, --atomic may trigger an unnecessary rollback for the same reasons. Thus, it is recommended to use longer --timeout durations for --atomic, especially when used with CI systems.

Upgrading with --force and --cleanup-on-fail

The last two flags we will look at modify the way that Helm handles the nuances of upgrades.

The --force flag modifies the behavior of Helm when it upgrades a resource that manages pods (like Pod, Deployment, and StatefulSet). Normally, when Kubernetes receives a request to modify such objects, it determines whether it needs to restart the pods that this resource manages. For example, a Deployment may run five replicas of a pod. But if Kubernetes receives an update to the Deployment object, it will only restart those pods if certain fields are modified.

Sometimes, though, Helm users want to make sure that the pods are restarted. That’s where the --force flag comes in. Instead of modifying the Deployment (or similar object), it will delete and re-create it. This forces Kubernetes to delete the old pods and create new ones. By design, using --force will cause downtime. While it is often only seconds of downtime, it is downtime nonetheless. It is recommended to only use
--force when the situation clearly calls for it, not as a default option. For example, the core maintainers do not recommend using --force in CI pipelines that deploy to production.

Another way to modify the behavior of an upgrade is to use the --cleanup-on-fail flag. Similarly to --force, this flag instructs Helm to do additional work.

Consider the case where you install a chart that creates one Kubernetes Secret. A new version of the chart is created, and it creates a second Secret. But partway through the installation, Helm encounters an error and marks the release a failure. It is possible for the second Secret to be left hanging. This situation is more likely to arise if
--wait or --atomic are used, since those may fail after Kubernetes has accepted the manifests and created the resources.

The --cleanup-on-fail flag will attempt to fix this situation. On failure, it will request deletion on every object that was newly created during the upgrade. Using it may make it a little harder to debug (especially if the failure was a result of the newly created object), but it is useful if you do not want to risk having unused objects hanging around after a failure.

Conclusion

The Helm command-line tool provides many useful commands. While the basic commands were introduced in the previous chapter, this chapter has focused on some of the other useful commands in Helm. Near the end, we also revisited the installation and upgrade commands, getting a taste of some of the more sophisticated features for working with those.

However, not all of the commands were discussed here. In coming chapters, we’ll take a look at commands for creating and packaging charts, commands for signing and verifying packages, and more commands for working with repositories.

Chapter 4. Building a Chart

Charts are at the heart of Helm. In addition to installing them into a Kubernetes cluster or managing the instances of charts you’ve installed, you can build new charts or alter existing ones. In the next three chapters we will cover a lot of details about charts including creating them, the elements inside them, templating Kubernetes manifests, testing charts, dependencies, and more.

In this chapter you will learn how to create a new chart and learn about the many parts of a chart. This will include the use of several built-in commands that can help you in the chart development process.

Charts are the packages Helm works with. They are conceptually similar to Debian packages used by APT or Formula used by Homebrew for macOS. The conceptual similarity is where the similarities end. Charts are designed to target Kubernetes as a platform that has its own unique style. At the heart of charts are templates to generate Kubernetes manifests that can be installed and managed in a cluster.

Before we dig into templates in Chapter 5, let’s start by creating a basic fully functional chart. To do that we will cover an example chart named anvil. Using that chart you will learn about using Helm to generate a chart, the structure of charts and files within them, packaging charts, and linting charts. Reference the online source for this chart at https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil.

The Chart Creation Command

Helm includes the create command to make it easy for you to create a chart of your own, and it’s a great way to get started. This command creates a new Nginx chart, with a name of your choice, following best practices for a chart layout. Since Kubernetes clusters can have different methods to expose an application, this chart makes the way Nginx is exposed to network traffic configurable so it can be exposed in a wide variety of clusters.

The create command creates a chart for you, with all the required chart structure and files. These files are documented to help you understand what is needed, and the templates it provides showcase multiple Kubernetes manifests working together to deploy an application. In addition, you can install and test this chart right out of the box.

Throughout this chapter we will look at an example application named anvil. It is a simple application that will show you the structure of a chart and provide you the chance to alter a chart for a different application. To create the new chart, run the following command from a command prompt:

$ helm create anvil

This will create a new chart as a subdirectory of your current directory with the name anvil.

Different Starting Points

Nginx is a good starting point to showcase the parts of a chart and for basic stateless services. However, if you regularly create charts that do not follow the Nginx model, a different starting point would be more helpful. For this purpose, Helm has a feature called starter packs, which helm create can utilize to provide a different starting point to generate a chart from. This is covered in Chapter 6.

The new chart is a directory containing a number of files and folders. This does not include every file and folder—you will discover some more in the next couple chapters. These are the basic ones needed for a functioning chart:

anvil
├── Chart.yaml [image: 1]
├── charts [image: 2]
├── templates [image: 3]
│ ├── NOTES.txt [image: 4]
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml [image: 5]
└── values.yaml [image: 6]

	[image: 1]

	The Chart.yaml file contains metadata and some functionality controls for the chart.

	[image: 2]

	Dependent charts can optionally be held in the charts directory. Chart dependencies are covered in Chapter 6. For now this will be an empty directory.

	[image: 3]

	Templates used to generate Kubernetes manifests are stored in the templates directory.

	[image: 4]

	The NOTES.txt file is a special template. When a chart is installed, the NOTES.txt template is rendered and displayed rather than being installed into a cluster.

	[image: 5]

	Templates can include tests that are not installed as part of the install or upgrade commands. This chart includes a test that is used by the helm test command. Testing is covered in Chapter 6.

	[image: 6]

	Default values passed to the templates when Helm is rendering the manifests are in the values.yaml file. When you instantiate a chart, these values can be
overridden.

You can install this newly created chart without any modifications by running the following command:

$ helm install myapp anvil

When you run this command Helm will create an instance of the chart running in the cluster with the name myapp. It will install it using the currently configured connection and context you use for Kubernetes. Helm is using the same configuration you’re using when you use kubectl, the command-line application for Kubernetes. In that command the final argument of anvil is the directory where the chart is located.

The output from this command includes content generated by rendering the NOTES.txt template, as shown here:

NAME: myapp
LAST DEPLOYED: Sun Apr 5 08:12:59 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default ↵
 -l "app.kubernetes.io/name=anvil,app.kubernetes.io/instance=myapp" ↵
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

The NOTES section contains information on connecting to the application. Depending on the values you pass into the chart when it is instantiated, this information can be very different. This chart can be configured to use a ClusterIP, NodePort, LoadBalancer, and Ingress to expose an application. By default, a ClusterIP is used.

If you follow the directions in the notes you will see the default Nginx web page to show you it’s running, as shown in Figure 4-1.

[image: Nginx]
Figure 4-1. Default Nginx web page when you visit the running application

The methods to expose the application are tied to built-in Kubernetes resource types rather than features of the application. That makes them portable to your custom applications. The methods to expose applications include:

	ClusterIP

	
A configuration option on the Kubernetes Service resource type that exposes the service on a cluster-level internal IP address.

	NodePort

	
An alternative option for Kubernetes Service resources that exposes the service on a static port of each node. A ClusterIP is automatically created as well.

	LoadBalancer

	
A Kubernetes Service configuration option that exposes an application externally using a load balancer provided by the hosting provider.

	Ingress

	
Ingress resources are additional resources to Services that expose a service over HTTP and HTTPS. An Ingress Controller, such as ingress-nginx, is required for this to work.

If you installed this chart into your cluster to test it, you can delete the instance from your cluster by running the following command:

$ helm delete myapp

Note

When the chart is installed the image used for Nginx, by default, is the latest version of the image from the Docker Official Images. If the Kubernetes cluster you are working with does not have access to hub.docker.com you won’t be able to install the image. You would need to set the image to one your cluster has access to.

Now that a working chart has been scaffolded, let’s take a look at what’s inside and modify it for the Anvil application.

The Chart.yaml File

Look inside the anvil directory and you’ll find a file named Chart.yaml. The Chart.yaml file tells Helm and other tools about your chart. Other tools include Kubeapps (an on-premise catalog and application installer), the Artifact Hub (a listing of cloud native artifacts), and many others.

When you open the Chart.yaml file, you will see the contents shown in Example 4-1.

Example 4-1. The generated Chart.yaml file

apiVersion: v2 [image: 1]
name: anvil [image: 2]
description: A Helm chart for Kubernetes

A chart can be either an 'application' or a 'library' chart.
#
Application charts are a collection of templates that can be packaged into ↵
 versioned archives
to be deployed.
#
Library charts provide useful utilities or functions for the chart developer.↵
 They're included as
a dependency of application charts to inject those utilities and functions ↵
 into the rendering
pipeline. Library charts do not define any templates and therefore cannot be ↵
 deployed.
type: application

This is the chart version. This version number should be incremented each ↵
 time you make changes
to the chart and its templates, including the app version.
version: 0.1.0 [image: 3]

This is the version number of the application being deployed. This version ↵
 number should be
incremented each time you make changes to the application. Versions are not ↵
 expected to
follow Semantic Versioning. They should reflect the version the application ↵
 is using.
appVersion: 1.16.0

	[image: 1]

	The apiVersion tells Helm what structure the chart is using. An apiVerison of v2 is designed for Helm v3.

	[image: 2]

	The name is used to identify the chart in various places.

	[image: 3]

	Charts can have many versions. Helm uses the version information to order and identify charts.

This Chart.yaml file contains numerous keys, of which only three are required. The apiVersion property tells Helm which version of a chart this is. Helm v3 can work with charts whose apiVersion is v1 or v2. v1 charts are those designed to work with previous versions of Helm. If your charts are designed to work with Helm v3 or newer you should set this to v2. The value of name is typically used as part of the name for Kubernetes resources. This means names are limited to lowercase alphanumeric, -, and . characters and must start and end with an alphanumeric character. Names are typically lowercase alphanumeric characters. The final required key is
version, containing the version of the chart. Versions are expected to follow Semantic Versioning, which was covered in Chapter 2.

You might notice that the style of a Chart.yaml file is similar but mildly different from those of Kubernetes manifests. Chart.yaml files are not the same format as custom resources but do contain some of the same properties. The original Chart.yaml files were designed back in 2015, long before Kubernetes custom resource definitions existed. While Helm has progressed in major versions, it has maintained a certain amount of backward compatibility over time to not disrupt users too much. This has led to differences between the Chart.yaml file format and Kubernetes manifests.

Chart.yaml files also contain descriptive information, which is useful as it’s presented in user interfaces. The description field in Example 4-1 is one such field, but you can add additional fields, such as the following:

	
home is a URL to the chart or projects homepage.

	
icon is an image (e.g., PNG or SVG file) in the form of a URL.

	
maintainers contains a list of maintainers. Each maintainer on the list can have a name, email, and URL.

	
keywords can hold a list of keywords about the project.

	
sources is for a list of URLs to source code for the project or chart.

A full description of the properties in the Chart.yaml file are available in Appendix A, for reference.

The generated Chart.yaml file can be modified for the Anvil application. The following modifications update the required fields, add some descriptive files, and remove comments:

apiVersion: v2
name: anvil
description: A surprise to catch something speedy.
version: 0.1.0
appVersion: 9.17.49
icon: https://wile.example.com/anvil.svg
keywords:
 - road runner
 - anvil
home: https://wile.example.com/
sources:
 - https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil
maintainers:
 - name: ACME Corp
 email: maintainers@example.com
 - name: Wile E. Coyote
 email: wile@example.com

One property that was in the generated Chart.yaml file but is not in the one for Anvil is type. Anvil is an application which is the default value for the type field, so the type field is not required. The other type of chart is a library chart, which is covered in Chapter 7.

The appVersion property is unique. It is both descriptive and regularly used within the templates. The appVersion property represents the version of the primary or combined application. For example, if the application being packaged was WordPress, it would be the version of WordPress.

Tip

The icon property is a URL, and that can include data URLs. Data URLs enable you to embed small files in URL form. This is especially useful if the logo is a small SVG file. If a chart may be run in air-gapped on-premise environments or you do not want user interfaces constantly downloading a file from your web server, a data URL is a useful choice.

Modifying Templates

In order to modify this chart for the Anvil application or your own custom application, you will need to understand and modify templates. Out of the box, the templates created by the helm create command run Nginx as a stateless application. In the example we are working through, Nginx will need to be replaced with Anvil.

Helm is written in the Go programming language, and Go includes template packages. Helm leverages the text template package as the foundation for its templates. This template language is similar to other template languages and includes loops, if/then logic, functions, and more. An example template of a YAML file follows:

product: {{ .Values.product | default "rocket" | quote }}

In this YAML file there is a key name of product. The value is generated using a template. {{ and }} are the opening and closing brackets to enter and exit template logic. There are three parts to the template logic separated by a |. This is called a pipeline, and it works the same way as a pipeline in Unix-based systems. The value or output of a function on the left is passed in as the last argument to the next item in the pipeline. In this case, the pipeline starts with the value from the property in .Values.product. This comes from the data object passed in when the templates are rendered. The value of this data is piped as the last argument to the default function, which is one of the functions provided by Helm. If the value passed in is empty, the default function uses the default value of "rocket", ensuring there is a value. This is then sent to the quote function, which ensures the string is wrapped in quotes before writing it to the template.

The . at the start of .Values.product is important. This is considered the root object in the current scope. .Values is a property on the root object.

The Deployment

Helm charts can hold templates for any Kubernetes resource type you might use. That includes StatefulSets, Jobs, PersistentVolumeClaims, Services, and much more. The chart created with helm create is designed to run a stateless service as a Kubernetes Deployment. The example application we are using here for Anvil is a stateless application, which means it will work well as a deployment.

To understand the Deployment template, we can take a look at the deployment.yaml file in the templates directory of the chart. The following is the templated version of the Deployment up to the spec section:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ include "anvil.fullname" . }}
 labels:
 {{- include "anvil.labels" . | nindent 4 }}

This looks very similar to the start of a Kubernetes manifest. It has an apiVersion, the kind, and metadata. Once you get into the metadata you’ll notice the templating begins.

Tip

If you are unfamiliar with the structure of Kubernetes Deployments, you can read about them in the Kubernetes documentation.

The include template function enables including the output of one template in another template, and this works in pipelines. The first argument to the include function is the name of the template to use. The . passed in as the second argument is the root object. This is passed in so the properties and functions on the root object can be used within the called template.

anvil.fullname and anvil.labels are two reusable templates included in the chart via the _helpers.tpl file. (The _ at the start of the name causes it to bubble up to the top of directory listings so you can easily find it among your templates; Helm does not render them into Kubernetes manifests but does make templates in them available for use.) anvil.fullname provides a name based on the name chosen when the chart is instantiated, and anvil.labels provides labels following Kubernetes best practices. The functions are covered in more depth in Chapter 5.

After the metadata section of the template is the spec section, which reads as follows:

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 {{- include "anvil.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 labels:
 {{- include "anvil.selectorLabels" . | nindent 8 }}
 spec:
 {{- with .Values.imagePullSecrets }}
 imagePullSecrets:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 serviceAccountName: {{ include "anvil.serviceAccountName" . }}
 securityContext:
 {{- toYaml .Values.podSecurityContext | nindent 8 }}
 containers:
 - name: {{ .Chart.Name }}
 securityContext:
 {{- toYaml .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default↵
 .Chart.AppVersion }}" [image: 1]
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 ports:
 - name: http
 containerPort: 80
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /
 port: http
 readinessProbe:
 httpGet:
 path: /
 port: http
 resources:
 {{- toYaml .Values.resources | nindent 12 }}
 {{- with .Values.nodeSelector }}
 nodeSelector:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.affinity }}
 affinity:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.tolerations }}
 tolerations:
 {{- toYaml . | nindent 8 }}
 {{- end }}

	[image: 1]

	The location and version of the container image is configurable via values.

The spec section completes the deployment. Most of this section is filling in data with the properties on .Values. There are a few elements that are hardcoded, such as the ports used to expose the application. Anvil is exposed over HTTP on port 80, so we do not need to change the port. If your containers are exposed on different ports, you will need to make changes here.

The value of image for the container is set using values. You won’t find the location of the image hardcoded here. This is useful for those cases where the image location needs to be set to a different location when a chart is instantiated. It means we need to change the location in the default values.

The properties on .Values are computed based on a number of factors. The default values and starting point are based on the values provided by the values.yaml file in the chart. The values.yaml file is covered in the next section. These values can be overridden by values passed in when the chart is instantiated. The helm CLI has flags to pass in values directly (i.e., --set, --set-file, and --set-string) or to pass in a file with values (i.e., -f or --values). The values are merged together, with those being passed in later taking precedence.

Templates are a large topic and typically make up the bulk of a chart. Chapter 5 is dedicated to templates.

Using the Values File

When someone instantiates an application in a Kubernetes cluster from a chart, they don’t need to supply all the values used in the templates. If they did, it would provide for a difficult user experience. This is where the values.yaml file comes in.

Charts include a values.yaml file that sits alongside the Chart.yaml file in the root of a chart. The values.yaml file contains the default values used by the chart, and it is a form of documentation for the custom values that can be passed into a chart.

values.yaml is an unstructured YAML file. There are some common and useful practices, which will be covered shortly, but nothing is required in the format of the YAML. This enables chart creators to provide a structure and information that works well for them. A values.yaml file can contain numerous things, from simple substitution for Kubernetes manifest properties to elements needed for application-specific business logic.

Container Images

The opening part of the values.yaml file created by helm create contains the image information along with some opening documentation and information on replicas:

Default values for anvil.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1

image:
 repository: ghcr.io/masterminds/learning-helm/anvil-app [image: 1]
 pullPolicy: IfNotPresent [image: 2]
 # Overrides the image tag whose default is the chart version.
 tag: "" [image: 3]

imagePullSecrets: [] [image: 4]

	[image: 1]

	The location of the image. It has been updated to reflect the location of Anvil.

	[image: 2]

	A policy of IfNotPresent means that the image will be cached in the Kubernetes cluster by the version being used. Always is another option that bypasses the cache and always downloads from the repository.

	[image: 3]

	By default this chart uses the appVersion as the tag. If an image tag is specified, it is used instead of the appVersion.

	[image: 4]

	A list of pull secrets is used when credentials are needed to access a container registry location that is protected with a username and password.

This chart and the values represent an application bundled as a single image. The patterns used in the values.yaml file are designed with that in mind. For example, there is only one image location. If your applications have multiple images, each image would have a section containing much of the information here. This includes replicaCount, which is the number of replicas Kubernetes will use when the Deployment is
created.

The image section contains details about the image. The repository contains the location of the image to use while the pullPolicy tells Kubernetes how often to fetch or cache the images. If a moving tag, such as stable, is used, the pullPolicy should be set to Always so that changes are picked up. Since a version is being used, the default pullPolicy is set to IfNotPresent so that a cached version can be used if available. The tag property provides an opportunity to set a tag that is different from the appVersion set in the Chart.yaml file.

You might notice there is no method to set a digest when fetching an image. Digests can be different when images are in different repositories. For example, if the Anvil image were copied from Docker Hub to Quay, another image repository, the digest would change for the same image even if the tag and content remained the same. Chapter 5 provides an example of adding in support for a digest to a chart, if that is desired.

If you need to pull an image from a container registry with access controls, Kubernetes needs to know how to do that. This happens through the use of pull secrets. imagePullSecrets allows you to list the names of pull secrets with access to private registries. Reference the documentation for creating a pull secret.

The generated chart has some security considerations built in that can be enabled or otherwise configured. A service account for the chart instance is created by default, while the other options are opt-in. The following is what is generated by helm
create:

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname ↵
 template
 name:

podSecurityContext: {}
 # fsGroup: 2000

securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000

You will notice that most of the properties in the configuration are comments and are inactive. When the chart is rendered with the values as comments, there is no value for those properties. The value is empty. By having a structure and values as comments the chart is documenting the structure and default values that can be used but isn’t turning on those features.

Exposing Services

The next section of the values.yaml file deals with exposing the application for others to consume:

service:
 type: ClusterIP
 port: 80

ingress:
 enabled: false
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:
 - host: chart-example.local
 paths: []
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local

In Kubernetes there are two built-in objects you can use to expose applications. The first is a Service. The service property will let you select the type of Service being used. While ClusterIP is used by default, other options such as NodePort and
LoadBalancer can be used. The few lines of YAML in the service section are paired with the generated service.yaml template to create a full Service manifest to upload to Kubernetes.

The second built-in object is the Ingress manifest, which can be paired with a Service, and the chart has the capability to generate them. Ingress configuration provides a means to show off a common pattern found in charts: the use of an enabled property to turn features on and off. In this case ingress.enabled is set to false. When Helm renders the templates and sees a value of false, the Ingress manifest is skipped. This is due to the use of an if logic statement in the Ingress template found in the generated ingress.yaml file.

Ingress Controllers

For a functional ingress setup you need more than an Ingress resource in Kubernetes. The Ingress resource you can include in a chart connects the Ingress Controller to a Service. You will need to have an Ingress Controller running in your cluster because one is not included by default. The Kubernetes community provides the Nginx Ingress Controller, which is a good default option.

Resource Limits

When you run applications in production, it is a good practice to set resource limits. This prevents, for example, a memory leak in one container from disrupting other containers. When a chart author creates a chart that others are going to use, they may not know where it will be installed and how many resources will be available there. Could this be installed on a laptop by a developer or someone testing out the chart? Or, might this be installed on large production servers? To handle this variance in environment, the recommendation is to put in resource limits and then turn them into comments. This can be found in the next section of the values.yaml file:

resources: {}
 # We usually recommend not to specify default resources and to leave this as
 # a conscious choice for the user. This also increases chances charts run on
 # environments with little resources, such as Minikube. If you do want to
 # specify resources, uncomment the following lines, adjust them as necessary,
 # and remove the curly braces after 'resources:'.
 # limits:
 # cpu: 100m
 # memory: 128Mi
 # requests:
 # cpu: 100m
 # memory: 128Mi

Those who install applications use these numbers as recommendations when they instantiate a chart. These numbers are the default values that have been set for a simple Nginx setup as it was generated. They work for the Anvil application. If your application will need different values, you will need to update these.

Workloads have the ability to specify details about where they are executed in a cluster by the settings node selector, tolerations, and affinity. Although these more advanced features are often not used, it is a good idea to include them in a chart for those who need them. The generated values.yaml file and templates take this into account. The following example has generated YAML keys for these advanced
features. The values are empty by default with an expectation that the person who installs the chart will set values as appropriate for their installation:

nodeSelector: {}

tolerations: []

affinity: {}

Packaging the Chart

You can package the files and directories of a chart into a single archive file. This is useful for many reasons, including:

	
For distribution to other people. One of the powerful aspects of a package manager is where someone with knowledge of running an application packages it up so that others, who don’t have intimate knowledge of the platform or application, can run it.

	
When a version of an application needs to be taken through a multienvironment test process. An example of this process is where there are development, quality assurance (QA), and production environments and the application needs to pass QA prior to going into production.

	
When developing a multiservice application and developers need to run services built or otherwise handled by others as part of their development setup.

In each of these situations it is often simpler to pass around a single file for the chart than a directory structure.

Chart versions bring another wrinkle to the way you distribute and consume charts. You or someone consuming your chart may need to use different versions of the chart. This is why it’s useful to store and share different versions using chart repositories or Open Container Initiative (OCI) registries, covered in Chapter 7. In these environments, storing and sharing many files in a collection of directory structures for each version is far from simple.

Helm has the ability to build a chart archive. Each chart archive is a gzipped TAR file with the extension .tgz. Any tool that can create, extract, and otherwise work on gzipped TAR files will work with Helm’s chart archives.

When Helm generates the archive files, they are named using a pattern of
chart name-version.tgz. Helm expects this same pattern when consuming them. The chart name is the name you will find inside the Chart.yaml file and the version is the chart version. This enables multiple versions of the same chart to be stored alongside each other. You can package Anvil as an archive by running:

$ helm package anvil

In this case anvil is the path to the location where the anvil chart source is located. By default, the helm package command will place the archive in the directory you were in when you ran the command.

There are some useful flags you can use when packaging a chart:

	--dependency-update (-u)

	
Tells Helm to update the dependent charts prior to creating the archive. This will update the Chart.lock file and place a copy of the dependent charts in the chart directory. Dependencies are covered in more detail in Chapter 6.

	--destination (-d)

	
Enables you to set the location to put the chart archive if it is different from the current working directory.

	--app-version

	
Can be used to set the
appVersion property of the Chart.yaml file. This is especially useful if you create new releases of the chart for each new release of your application running within the container and there is no other change to the chart. Automation can use a flag like this as part of the process to build the new version.

	--version

	
Updates the chart’s version. This is useful if you’re updating the appVersion using the command line as part of the process to package a chart.

	Flags for Pretty Good Privacy (PGP) signing charts

	
Helm charts can be cryptographically signed and verified. The package command has flags for the signing portion of the process, while commands like install and upgrade have flags for the verification portion of the process. Chapter 6 covers this process.

Sometimes you will have files in a chart directory that you do not want to include in the chart archive. Optionally, in a chart directory there can be a .helmignore file. This is similar to a .gitignore file for Git. The helm create command used earlier created one with the following contents:

Patterns to ignore when building packages.
This supports shell glob matching, relative path matching, and
negation (prefixed with !). Only one pattern per line.
.DS_Store
Common VCS dirs
.git/
.gitignore
.bzr/
.bzrignore
.hg/
.hgignore
.svn/
Common backup files
*.swp
*.bak
*.tmp
*.orig
*~
Various IDEs
.project
.idea/
*.tmproj
.vscode/

Many of these extensions and patterns may look familiar because they come from various version control systems and code editors.

When the chart archive is created, you usually don’t want to include elements like your version control system data. The .helmignore file provides a place to specify what to skip. This file needs to be at the top level of the chart.

Helm is designed to work with the archive files the same way it works with directory structures. Commands like helm install and helm lint, which will be covered shortly, can be passed an archive file the same way they can be passed a directory.

Linting Charts

When developing charts, especially when working with YAML templates, it can be easy to make a mistake or miss something. To help you catch errors, bugs, style issues, and other suspicious elements, the Helm client includes a linter. This linter can be used during chart development and as part of any testing processes.

To use the linter, use the lint command on a chart as a directory or a packaged archive:

$ helm lint anvil
==> Linting anvil

1 chart(s) linted, 0 chart(s) failed

The first line is the command you run, while the following lines are output by Helm. In this case there were no issues. You could use this command on an archive file like the one in the previous section. To do that, change the anvil argument, set to the directory location for the chart, to the archive file anvil-0.1.0.tgz.

This command is able to lint multiple charts in a single command. For example, if you had a second chart called mychart and wanted to lint it alongside anvil, you could run the following command:

$ helm lint anvil mychart

The three levels of actionable feedback about charts Helm provides are info, warning, and errors. Info-level feedback is informational; charts can be installed with info-level feedback. Info-level feedback causes Helm to have an exit code of 0. Error-level feedback means there is a problem with the chart. If a chart generates an Invalid manifest for Kubernetes, such as YAML being invalid, Helm will generate an error. Errors cause Helm to have a nonzero exit code, which is useful to catch issues in automated testing tools. In the middle are warning messages. These messages address findings that may cause issues. By default, warning messages cause Helm to have an exit code of 0, but Helm adds a --strict flag that causes the exit codes to be nonzero. You can choose how to handle these in automation.

Exit Codes

When an application exits, it provides a code or status to the parent that executed it. When you run Helm this is usually the operating system, command prompt, or shell. A zero exit status means that the application exited without any issues. A nonzero exit status means there was a problem. Automated testing systems often use exit codes to know when to continue or stop. Typically, when an application used in automated testing returns a nonzero exit code, the automated processes end and people are notified of an error.

In this case there were no issues found with the anvil chart. A default chart, created by helm create, will have a single info message about a missing icon property in the Chart.yaml file. This is an info-level notice so that people are aware it is missing. The missing icon will not affect the operation of the chart, but it will affect the way it is displayed in user interfaces.

Conclusion

Creating a simple chart for your application is straightforward when you use the helm create command. Even when your applications are more complicated, the structure of charts is able to accommodate them, and the helm create command can help you. With a few minor modifications made in this chapter you can install the Anvil chart using helm install and see the custom application running in your cluster. You can use this same flow to create your own charts.

In the next chapter you will learn about creating templates with an emphasis on how the template language works and how you can apply it to Kubernetes templates stored in charts. Templates are usually the largest part of a chart where you will spend the most time. Understanding what you have available to you when you create templates will make the process of developing them faster and easier.

Chapter 5. Developing Templates

Templates are at the heart of Helm charts, and they make up a majority of the files and content of a chart. These are the files that live within the templates directory. Helm will render the templates and send them to Kubernetes when you run commands like helm install and helm upgrade. If you use the helm template command, the templates are rendered and displayed as output (i.e., sent to standard out).

The template engine enables a wide range of ways to build templates. In simple situations, you can substitute values in Kubernetes manifest YAML files with values passed in by the user or from the values.yaml file. In more complex situations, you can build logic into templates that simplify what chart consumers need to input. Or you can build in features that can configure applications themselves.

In this chapter you will learn how to develop templates and understand how the template syntax works. We’ll also cover a number of cool features that Helm has added to the templates that enable you to work with YAML and interact with Kubernetes. Along the way we will look at some patterns you can apply to your own templates.

The Template Syntax

Helm uses the Go text template engine provided as part of the Go standard library. The syntax is used in kubectl (the command-line application for Kubernetes) templates, Hugo (the static site generator), and numerous other applications built in Go. The template engine, as it is used in Helm, is designed to work with various types of text files.

You don’t need to know the Go programming language to develop templates. There are some Go-isms in the template engine, but if you don’t know Go you can treat them as nuances of the template language. We will call them out as you learn to develop templates.

Why Go’s Template Engine?

When Helm was being developed and a need arose for a template engine, the template engine provided in the standard library for Go was the most mature and stable option. Additionally, this template engine had a security model and was maintained by Google with a security policy. It was the best choice.

Since that time, more general-purpose template engines have been made available to Go. The Helm project has been open to supporting other template engines and for several years had a code extension point where they could be added. Over that time there was only mild interest in other template systems, and no one was motivated enough to contribute support for one.

The Go template syntax is similar to those of other systems and has proven to be capable of handing the needs of Helm users.

Actions

Logic, control structures, and data evaluations are wrapped by {{ and }}. These are called actions. Anything outside of actions is copied to output.

When the curly brackets are used to start and stop actions they can be accompanied by a - to remove leading or trailing whitespace. The following example illustrates this:

{{ "Hello" -}} , {{- "World" }}

The generated output of this is “Hello,World.” The whitespace has been removed from the side with the - up to the next nonwhitespace character. There needs to be an ASCII whitespace between the - and the rest of the action. For example, {{–12}} evaluates to –12 because the - is considered part of the number instead of the bracket.

Within actions there are a wide variety of features you can leverage, including pipelines, if/else statements, loops, variables, subtemplates, and functions. Using these together provides a powerful way to program templates.

Information Helm Passes to Templates

When Helm renders a template it passes a single data object to the template with information you can access. Inside the template that object is represented as a . (i.e., a period). It is referred to as a dot. This object has a wide variety of information available on it.

In Chapter 4, you already saw how values in the values.yaml file are available as properties on .Values. The properties on .Values are specific to each chart based entirely on the values in the values.yaml file and those passed into a chart. The properties on .Values do not have a schema and vary from chart to chart.

In addition to the values, information about the release, as first described in Chapter 2, can be accessed as properties of .Release. This information includes:

	.Release.Name

	
The name of the release.

	.Release.Namespace

	
Contains the namespace the chart is being released to.

	.Release.IsInstall

	
Set to true when the release is a workload being installed.

	.Release.IsUpgrade

	
Set to true when the release is an upgrade or rollback.

	.Release.Service

	
Lists the service performing the release. When Helm installs a chart, this value is set to "Helm". Different applications, those that build on Helm, can set this to their own value.

The information in the Chart.yaml file can also be found on the data object at .Chart. This information does follow the schema for the Chart.yaml file. This includes:

	.Chart.Name

	
Contains the name of the chart.

	.Chart.Version

	
The version of the chart.

	.Chart.AppVersion

	
The application version, if set.

	.Chart.Annotations

	
Contains a key/value list of annotations.

Each of the properties that can be in a Chart.yaml file is accessible. The names differ in that they start with a lowercase letter in Chart.yaml but start with an uppercase letter when they are properties on the .Chart object.

If you want to pass custom information from the Chart.yaml file to the templates, you need to use annotations. The .Chart object only contains the fields from the Chart.yaml file that are in the schema. You can’t add new fields to pass them in, but you can add your custom information to the annotations.

Uppercase Property Names

Property names on data objects passed into templates begin with uppercase letters. This is a product of Helm being written in the Go programming language. In Go, public properties start with an uppercase letter and private properties start with a lowercase letter. When accessing the data object you just need to remember that the first letter is uppercase.

Different Kubernetes clusters can have different capabilities. This can depend on things like the version of Kubernetes you are using or if there are custom resource definitions (CRDs) installed. Helm provides some data about the capabilities of the cluster as properties of .Capabilities. Helm interrogates the cluster you are deploying an application into to get this information. This includes:

	.Capabilities.APIVersions

	
Contains the API versions and resource types available in your cluster. You will learn how to use this in a little bit.

	.Capabilities.KubeVersion.Version

	
The full Kubernetes version.

	.Capabilities.KubeVersion.Major

	
Contains the major Kubernetes version. Because Kubernetes has not been incrementing the major version, this is set to 1.

	.Capabilities.KubeVersion.Minor

	
The minor version of Kubernetes being used in the cluster.

When helm template is used, Helm does not interrogate a cluster the same way it does for helm install or helm upgrade. The capabilities information provided to templates being processed when helm template is run is default information Helm already knows about compliant Kubernetes clusters. Helm works this way because the template command is expected to only be used for processing templates and doing so in a manner that does not accidentally leak information from a configured cluster.

Charts can contain custom files. For example, you can have a configuration file you want to pass to an application through a ConfigMap or Secret as a file in the chart. The nonspecial files in a chart that are not listed in the .helmignore file are available on .Files within templates. This will not give you access to the template files.

The .helmignore File

You can include files in a chart directory that you do not want packaged up in a chart archive and that you do not want to be used by Helm or the chart. List those files in a .helmignore file at the root of the chart alongside the Chart.yaml file.

A .helmignore file is similar to a .gitignore file in Git, the source code management system. Individual files, directories, and patterns of files to ignore can be listed. When helm create is run to generate a new chart, it includes a .helmignore file that ignores common source control management systems and editor files.

The final piece of data passed into the template is details about the current template being executed. Helm passes in:

	.Template.Name

	
Contains the namespaced filepath to the template. For example, in the anvil chart from Chapter 4 a path would be anvil/templates/deployment.yaml.

	.Template.BasePath

	
The namespaced path to the templates directory of the current chart (e.g., anvil/templates).

Later in this chapter you will learn how you can change the scope of . in some circumstances. When the scope changes, properties like .Capabilities.KubeVersion.Minor will become inaccessible at that location. When template execution begins, . is mapped to $ and $ does not change. Even when the scope changes, $.Capabilities.KubeVersion.Minor and other passed-in data is still accessible. You will find $ is typically only used when the scope has changed.

Now that you’ve learned about the data being passed into the template, we will look at how you can use and manipulate that data within a template.

Pipelines

A pipeline is a sequence of commands, functions, and variables chained together. The value of a variable or the output of a function is used as the input to the next function in a pipeline. The output of the final element of a pipeline is the output of the pipeline. The following illustrates a simple pipeline:

character: {{ .Values.character | default "Sylvester" | quote }}

There are three parts to this pipeline, each separated by a |. The first is
.Values.character, which is a calculated value of character. This is either the value of character from the values.yaml file or one passed in when the chart is being rendered by helm install, helm upgrade, or helm template. This value is passed as the last argument to the default function. If the value is empty, default will use the value of “Sylvester” in its place. The output of default is passed as an input to quote, which ensures the value is wrapped in quotation marks. The output of quote is returned from the action.

Pipelines are a powerful tool you can use to transform data you want in the template. They can be used for a variety of purposes, from creating powerful transformations to protecting against simple bugs. Can you spot the bug in the following YAML output?

id: 12345e2

The value of id looks like a string, but it is not. The only letter is an e, and the rest are numbers. YAML parsers, including the one used by Kubernetes, will interpret that as a number in scientific notation. This will cause errors. A short string like this is a common output when you get a shortened version of a digest or commit ID from Git. A simple fix is to wrap the value in quotes:

id: "12345e2"

When the value is wrapped in quotes, the YAML parsers will interpret it as a string. This is a case where using the quote function on the end of a pipeline can fix or avoid a bug.

Unix Pipeline

In Unix and Unix-like systems (e.g., Linux) a pipeline is where the output of one application is used as an input in the next application. Applications that each do one thing can be chained together using their inputs and outputs as interfaces.

Pipelines originated from Douglas McIlroy and were later incorporated into the Unix philosophy by Ken Thompson, who worked on the design and implementation of the original Unix operating system. Two principles from the Unix philosophy include “make each program do one thing well” and “expect the output of every program to become the input to another, as yet unknown, program.”

Ken Thompson and Rob Pike, another member of the Unix team, are two of the original creators of the Go programming language.

Template Functions

Within actions and pipelines, there are template functions you can use. You have already seen some of these, including the default and quote functions described earlier in this chapter. Functions provide a means to transform the data you have into the format you need rendered or to generate data where none exists.

Most of the functions are provided by Helm and are designed to be useful when building charts. The functions range from the simple, like the indent and nindent functions used to indent output, to the complex ones that are able to reach into the cluster and get information on current resources and resource types.

Sprig Library

Many of the functions found in Helm templates are provided by a library named Sprig. These functions were developed alongside Helm, by Helm authors, with chart use cases in mind. They were placed into a separate library because they were generic enough that other applications could use them, too.

This is useful to know if you need functions for your Go-based application, find an issue in a function and want to report or fix it, or want to contribute a function of your own to Helm.

To illustrate functions we can look at a common pattern used in charts to improve readability. When helm create is run, as you saw in Chapter 4, a Kubernetes Deployment template is created as part of the chart. The Deployment template includes a section for a security context:

 securityContext:
 {{- toYaml .Values.podSecurityContext | nindent 8 }}

Tip

Read the full chart from Chapter 4 at https://github.com/Masterminds/learning-helm/tree/main/chapter4/anvil.

In the values.yaml file there is a YAML entry for podSecurityContext. This is meant to be the exact YAML passed in the template section of a Deployment for
securityContext. Inside, the template the information from the values.yaml file is no longer YAML. Instead it is a data object. The toYaml function turns the data into YAML.

The YAML under securityContext needs to be indented properly or the Deployment’s manifest will have YAML errors due to a section not being properly indented. This is accomplished through the use of two functions. To the left of toYaml a - is used with {{ to remove all the whitespace up to the : on the previous line. The output of toYaml is passed to nindent. This function adds a newline at the start of the text it receives and then indents each line.

nindent is used instead of the indent function for readability. The indent function does not add a newline at the beginning. nindent is used so that the YAML under securityContext can be on a new line. This is another common pattern found in templates.

Tip

In addition to toYaml, Helm has functions to convert data to JSON with toJson and to TOML with toToml. toYaml is often used when creating Kubernetes manifests, while toJson and toToml are more often used when creating configuration files to be passed to applications through Secrets and ConfigMaps.

The order of arguments passed into a function is intentional. When pipelines are used, the output of one function is passed as the last argument to the next function in the pipeline. In the previous example the output of toYaml is passed as the last argument to nindent, which takes two arguments. The order of arguments on functions is designed for common pipeline use cases.

There are more than a hundred functions available to use within templates. These include functions for handling math, dictionaries and lists, reflection, hash generation, date functions, and much more.

Methods

Up to this point, you have seen template functions. Helm also includes functions that detect the capabilities of a Kubernetes cluster and methods to work with files.

The .Capabilities object has the method .Capabilities.APIVersions.Has, which takes in a single argument for the Kubernetes API or type you want to check the existence of. It returns either true or false to let you know if that resource is available in your cluster. You can check for a group and version such as batch/v1 or a resource type such as apps/v1/Deployment.

Tip

Checking for the existence of resources and API groups is useful when dealing with custom resource definitions and multiple versions of Kubernetes resource types. As Kubernetes API versions move from alpha, to beta, to released versions, you want to use the latest version of a resource type as alpha and beta are deprecated and removed from Kubernetes. If your application will be installed on a wide range of Kubernetes versions, it is useful to support API versions in all of those clusters.

Warning

When helm template is used, Helm will use a default set of API versions for a compliant Kubernetes cluster instead of interacting with your cluster to generate the known capabilities.

The other place you will find methods is on .Files. It includes the following methods to help you work with files:

	.Files.Get name

	
Provides a means of getting the contents of the file as a string. name, in this case, is the name including filepath from the root of the chart.

	.Files.GetBytes

	
Similar to .Files.Get but instead of returning a string, the file is returned as an array of bytes. In Go terms, this is a byte slice (i.e., []byte).

	.Files.Glob

	
Accepts a glob pattern and returns another files object containing only the files whose names match the pattern.

	.Files.AsConfig

	
Takes a files group and returns it as flattened YAML suitable to include in the data section of a Kubernetes ConfigMap manifest. This is useful when paired with .Files.Glob.

	.Files.AsSecrets

	
Similar to .Files.AsConfig. Instead of returning flattened YAML it returns the data in a format that can be included in the data section of a Kubernetes Secret manifest. It’s Base64 encoded. This is useful when paired with .Files.Glob. For example,
{{ .Files.Glob("mysecrets/**").AsSecrets }}.

	.Files.Lines

	
Has an argument for a filename and returns the contents of the file as an array split by newlines (i.e., \n).

To illustrate the use of these, the following template is from an example chart. It reads all the files in the config subdirectory of a chart and embeds each one in a Secret:

apiVersion: v1
kind: Secret
metadata:
 name: {{ include "example.fullname" . }}
type: Opaque
data:
{{ (.Files.Glob "config/*").AsSecrets | indent 2 }}

As the following example output from Helm shows, each file can be found at its own key in the file:

apiVersion: v1
kind: Secret
metadata:
 name: myapp
type: Opaque
data:
 jetpack.ini: ZW5hYmxlZCA9IHRydWU=
 rocket.yaml: ZW5hYmxlZDogdHJ1ZQ==

Querying Kubernetes Resources In Charts

Helm contains a template function that enables you to look up resources in the Kubernetes cluster. The lookup template function is able to return either an individual object or a list of objects. This function returns an empty response when commands that do not interact with the cluster are executed.

The following example looks up a Deployment named runner in the anvil namespace and makes the metadata annotations available:

{{ (lookup "apps/v1" "Deployment" "anvil" "runner").metadata.annotations }}

There are four arguments passed into the lookup function:

	API version

	
This is the version of any object, whether included in Kubernetes or installed as part of an add-on. Examples of this look like "v1" and "apps/v1".

	Kind of object

	
This can be any resource type.

	Namespace to look for the object in

	
This can be left blank to look in all namespaces you have access to or for global resources such as Namespace.

	Name of the resource you are looking for

	
This can be left blank to return a list of resources instead of a specific one.

When a list of resources is returned, you will need to loop over the results to access the data on each of the individual objects. Where a lookup for an object returns a dict, a lookup for a list of objects returns a list. These are two different types Helm provides for use in templates.

When a list is returned, the objects are on the items property:

{{ (lookup "v1" "ConfigMap" "anvil" "").items }}

The items can be iterated over using a loop, which you will learn about later in the chapter. This example returns all the ConfigMaps in the anvil namespace, assuming you have access to the namespace.

You should be careful when using this function. For example, it will return different results when used as part of a dry run as opposed to when an upgrade is run. A dry run does not interact with a cluster, so this function will return no results. When an upgrade is run it will return results.

The results returned when installing or upgrading in various clusters can also be different. For example, in a development environment and in a production environment the resources installed in a cluster will have differences that can lead to unequal responses.

if/else/with

Go templates have if and else statements along with something similar but mildly different called with. if and else work the same way they do in most programming languages. To illustrate an if statement, we can look at a pattern from the chart generated using the helm create command covered in Chapter 4. In that chart the values.yaml file contains a section on ingress with an enabled property. It looks like:

ingress:
 enabled: false

In the ingress.yaml file that creates the Ingress resource for Kubernetes, the first and last lines are for the if statement that implements this:

{{- if .Values.ingress.enabled -}}
...
{{- end }}

In this case, the if statement evaluates whether the output of the pipeline following the if statement is true or false. If it’s true, the content inside is evaluated. In order to know where the end of the block is, you need an end statement. This is important because indentation or more typical brackets could be part of the material you want rendered.

Using if statements is how the common enabled pattern is typically implemented.

if statements can have an else statement that is executed if the if statement evaluates to false. The following example prints a YAML comment to output when Ingress is not enabled:

{{- if .Values.ingress.enabled -}}
...
{{- else -}}
Ingress not enabled
{{- end }}

Sometimes you will want to have multiple elements evaluated in an if statement by combining them with an and or an or statement. In templates this is a little different than you might be used to. Consider the following segment from a template:

{{- if and .Values.characters .Values.products -}}
...
{{- end }}

In this case and is implemented as a function with two arguments. That means and comes before either of the two items being used. The same idea applies to the use of or, which is also implemented as a function.

When one of the elements to be used with and or or is a function or pipeline, you can use parentheses. The following example has one of the arguments to or being an equal check:

{{- if or (eq .Values.character "Wile E. Coyote") .Values.products -}}
...
{{- end }}

The output of the equality check, implemented using the eq function, is passed as the first argument to or. The parentheses enable you to group elements together to build more complex logic.

with is similar to if with the caveat that the scope within a with block changes. To continue with an example from Ingress, the following block shows the scope change:

 {{- with .Values.ingress.annotations }}
 annotations:
 {{- toYaml . | nindent 4 }}
 {{- end }}

If the value passed into with is empty, the block is skipped. If the value is not
empty, the block is executed and the value of . inside the block is
.Values.ingress.annotations. In this situation, the scope within the block has changed to the value checked by with.

Tip

The pattern of checking a value using with and then sending it to output using the toYaml and nindent functions is common for elements you have in a values.yaml file that you want to directly output in a template. This is regularly used for image pull secrets, node selectors, and more.

Just like with if statements, with can have an accompanying else block that you can use when the value is empty.

Variables

Within templates you can create your own variables and use them to pass as arguments to functions, print in the output, and more. Variables start with a $ and are typed. Once a variable is created for one type, such as a string, you cannot set the value to another type, such as an integer.

Creating and initializing a variable has a special syntax through the use of :=, like the following example:

{{ $var := .Values.character }}

In this case a new variable is created and the value of .Values.character is assigned to it. This variable can be used elsewhere; for example:

character: {{ $var | default "Sylvester" | quote }}

The value of $var is passed to default in the same way .Values.character was passed earlier in the chapter.

The method to create a variable with an initial value is different from the method used to change the value of an existing variable. When you assign a new value to the existing variable, you use =. For example:

{{ $var := .Values.character }}
{{ $var = "Tweety" }}

In this case the variable is changed in another action. Variables live on for the life of the template execution and are available in the same action or different ones later in the template.

Note

Variable handling is reflective of the syntax and style used in the Go programming language. It follows the same semantics through the use of :=, =, and typing.

Loops

Using loops is a common method to simplify a user’s interaction with a chart. For example, you can use loops to collect a list of hosts to use when exposing a web application, through values, and then loop over the list to create more complex Kubernetes Ingress resources.

The loop syntax in templates is a little different than that in many programming languages. Instead of for loops, there are range loops that can be used to iterate over dicts (also known as maps) and lists.

The following example illustrates dicts and lists:

An example list in YAML
characters:
 - Sylvester
 - Tweety
 - Road Runner
 - Wile E. Coyote

An example map in YAML
products:
 anvil: They ring like a bell
 grease: 50% slippery
 boomerang: Guaranteed to return

You can think of a list as an array, while a map, with a key name and value, is similar to dictionaries in Python or a HashMap in Java. Within Helm templates you can create your own dictionaries and lists using the dict and list functions.

There are two ways you can use the range function. The following example iterates over the characters while changing the scope, which is the value of .:

characters:
{{- range .Values.characters }}
 - {{ . | quote }}
{{- end }}

In this case range iterates over each item in the list and sets the value of . to the value of each item in the list as Helm iterates over the item. In this example, the value is passed to quote in the pipeline. The scope for . is changed in the block up to end, which acts as the closing bracket or statement for the loop.

The output of this snippet is:

characters:
 - "Sylvester"
 - "Tweety"
 - "Road Runner"
 - "Wile E. Coyote"

The other way to use range is by having it create new variables for the key and value. This will work on both lists and dicts. This next example creates the variables that you can use in the block:

products:
{{- range $key, $value := .Values.products }}
 - {{ $key }}: {{ $value | quote }}
{{- end }}

The $key variable contains the key in a map or dict and a number in a list. $value contains the value. If this is a complex type, such as another dict, that will be available as the $value. The new variables are in scope up to the end of the range block, which is signified by the corresponding end action. The output of this example is:

products:
 - anvil: "They ring like a bell"
 - boomerang: "Guaranteed to return"
 - grease: "50% slippery"

Under the Hood: dict and list

Within Go, lists are represented as slices that are backed by arrays. The value is an interface, so it could be a variety of types. For example, if you use the list function to create a list within a template the returned value would be typed as []interface{}. When actions are taken on the value, reflection is used to figure out the type and how to act on that type.

A map or dict is represented a little differently. They are typically represented as map[string]interface{}. This is the type returned from the dict function that you can use within templates. As with lists, the value type is figured out using reflection when action is taken on the value.

Named Templates

There are times where you will want to create a template to call from within your template of a Kubernetes manifest—for example, when you have a value generated by some complex logic or when you have a section that is repeated across numerous Kubernetes manifests. You can create your own templates, which Helm won’t automatically render, and use them within templates of Kubernetes manifests.

An example of this can be found when you run helm create to generate a chart. By default Helm creates several Kubernetes manifests with some shared elements, such as labels. To keep the labels consistent and so they only need to be updated in one place, Helm generates a template and then calls that template each time the labels are needed.

There are two types of labels used in the templates. There are the labels used on higher-level resources, such as Deployments, and then there are the labels used in specifications that are paired with selectors used for updates. These labels need to be treated differently because the labels used on specifications and selectors are typically immutable. This means you won’t want them to contain elements such as application versions because those can change as an application is upgraded, but the specifications and selectors cannot be updated with new versions.

The following template selection contains the selector labels used to generate specifications and selector sections in the generated template. The name, anvil, is from the chart generated in Chapter 4:

{{/*
Selector labels [image: 1]
*/}}
{{- define "anvil.selectorLabels" -}} [image: 2]
app.kubernetes.io/name: {{ include "anvil.name" . }} [image: 3]
app.kubernetes.io/instance: {{ .Release.Name }}
{{- end -}} [image: 4]

	[image: 1]

	A comment prior to defining the function. Comments in actions open with /* and are closed by */.

	[image: 2]

	You define a template with a define statement followed by the name for the template.

	[image: 3]

	The content of a template is just like the content of any other template.

	[image: 4]

	The definition for a template is closed through an end statement that matches to the define statement.

This template includes several useful things you should consider using in your own templates:

	
A comment describing the template. This is ignored when the template is rendered but is useful in the same way code comments are.

	
The name is namespaced, using . as the separator, to include the chart name. In Chapter 6 you will learn about library charts and dependent charts. Using a namespace on a template name enables the use of library charts and avoids collisions on dependent charts.

	
The define and end calls use actions that remove whitespace before and after them so that their use does not add extra lines to the final output YAML.

This template is called in the spec section of resources, such as the Deployment in the anvil chart:

spec:
 replicas: {{ .Values.replicaCount }}
 selector:
 matchLabels:
 {{- include "anvil.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 labels:
 {{- include "anvil.selectorLabels" . | nindent 8 }}

The matchLabels section here is immutable, so it cannot be changed and it looks for the labels in the template section.

There are two functions you can use to include another template in your template. The template function is a basic function for including another template. It cannot be used in pipelines. Then there is the include function that works in a similar manner but can be used in pipelines. In the preceding example, include is used to call another template and the output of that template is passed to nindent to ensure the output has the proper indentation level. Since the output has a different indentation level for each call, the indentation level cannot be included as part of the template that defines it.

The include function takes two arguments. The first is the name of the template to call. This needs to be the full name including any namespace. The second is the data object to pass. This can be one you create yourself, using the dict function, or it can be all or part of the global object used within the template. In this case the whole global object is passed in.

The template function Helm created to generate the wider selection of labels, used on the labels for the higher-level resources where the labels are mutable, both adds labels and includes the selector labels. It has user-defined templates that call other user-defined templates:

{{/*
Common labels
*/}}
{{- define "anvil.labels" -}}
helm.sh/chart: {{ include "anvil.chart" . }}
{{ include "anvil.selectorLabels" . }}
{{- if .Chart.AppVersion }}
app.kubernetes.io/version: {{ .Chart.AppVersion | quote }}
{{- end }}
app.kubernetes.io/managed-by: {{ .Release.Service }}
{{- end -}}

Because these labels are mutable, there are useful labels included here that will change for various reasons. So as not to repeat the labels used for selectors, which are useful here as well, those labels are included by calling the function that generates them.

Kubernetes Recommended Labels

The Kubernetes documentation recommends a set of common labels that you can apply to your workload manifests. The chart generated by helm create includes templates that generate these labels for you.

The labels begin with the prefix app.kubernetes.io followed by / as a separator. The Kubernetes documentation for labels notes that a prefix should be used for any labels generated by automation and that those without a prefix are private to the user. These labels are for users, like you, and for various tools.

These labels include the application’s name, the instance of the application (you can run an application more than once in a cluster and even a single namespace), the version of the application, a component type used to show where it fits in a larger
application, what the application is part of, and the name of the tool used to manage the life cycle of the application (e.g., Helm). These labels are useful when linking applications together, displaying metadata in a user interface, and querying for information at the Kubernetes API.

You can learn more about the labels, which includes examples, in the Kubernetes documentation.

Another situation you may find yourself in where a named template would be useful is when you want to encapsulate complex logic. To illustrate this idea, consider a chart where you want to be able to pass in a container version as a tag, a digest, or fall back on the application version as a default. The part of the Pod specification that accepts the container image, including the version, is a single line. To provide all three of those options you need many lines of logic:

{{- define "anvil.getImage" -}}
{{- if .Values.image.digest -}}
{{ .Values.image.repository }}@{{ .Values.image.digest }}
{{- else -}}
{{ .Values.image.repository }}:
{{- .Values.image.tag | default .Chart.AppVersion }}
{{- end -}}
{{- end -}}

This new getImage template is able to handle a digest, tag, and default to the application version if neither of the other two are present. First, a digest is checked for and used. A digest is immutable, and it is the most precise method to specify the revision of an image to use. If no digest is passed in, a tag is checked. Tags are pointers to digests and can be changed. If no tag is found, the AppVersion is used as a tag.

This function targets the structure of the anvil chart, first created for Chapter 4. The image details are expected to be within the structure of that chart and its values.yaml file.

In the template for the Deployment, the image would be referenced using the new function:

image: "{{ include "anvil.getImage" . }}"

Templates can act like functions in a software program. They are a useful way for you to break off complex logic and have shared functionality.

Structuring Your Templates for Maintainability

There is limited structure that is enforced on the templates in the templates directory. Multiple Kubernetes manifests can be in the same YAML file, which means that the templates for multiple Kubernetes manifests can be in the same file, too. Named
templates can live in any of the template files and be referenced in the others. The NOTES.txt template is a special file that displays to the user, and tests are handled in a special way. Tests are covered in Chapter 6. Other than that, it is a blank canvas for you to create templates.

To aid in creating maintainable templates that are easy to navigate, the Helm maintainers recommend several patterns. These patterns are useful for a few reasons:

	
You may go long periods without making structural changes to the templates in a chart and then come back to it. Being able to quickly rediscover the layout will make the processes faster.

	
Other people will look at the templates in charts. This may be team members who create the chart or those that consume it. Consumers can, and sometimes do, open up a chart to inspect it prior to installing it or as part of a process to fork it.

	
When you debug a chart, which is covered in the next section, it is easier to do so with some structure in the templates.

The first pattern is that each Kubernetes manifest should be in its own template file and that file should have a descriptive name. For example, name your template deployment.yaml if there is a single deployment. If you have the case of multiple manifests of the same type, such as the case when you have a database deployed using primaries and replicas, you use names such as statefulset-primary.yaml and statefulset-replica.yaml.

A second guideline is to put the named templates, which you include in your own templates, into a file named _helpers.tpl. Because these are essentially helper templates for your other templates, the name is descriptive. As mentioned earlier, the _ at the start of the name causes it to bubble up to the top of directory listings so you can easily find it among your templates.

When you use the helm create command to start a new chart, the contents of the templates it starts with, by default, will already follow these patterns.

Debugging Templates

When developing templates it’s useful to debug the templates. Helm provides three features you can use in your development workflow to find issues. These are in addition to testing, which is covered in Chapter 6.

Dry Run

The commands to install, upgrade, roll back, and uninstall Helm charts all have a flag to initiate a dry run and simulate the process but not fully execute on that process. This is accomplished using the --dry-run flag on these commands. For example, if you use the --dry-run flag on the install command on the anvil chart, you could use the command helm install myanvil anvil --dry-run. Helm would render the templates, check the templates to make sure what would be sent to Kubernetes was well formed, and would then send it to output. The output would look similar to the output on a normal install but would have two additional sections:

NAME: myanvil
LAST DEPLOYED: Tue Jun 9 06:58:58 2020
NAMESPACE: default
STATUS: pending-install
REVISION: 1
HOOKS:
...
MANIFEST:
...
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default ↵
 -l "app.kubernetes.io/name=anvil,app.kubernetes.io/instance=myanvil" ↵
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

The two new sections are the HOOKS and MANIFEST sections that will contain the YAML Helm would normally pass to Kubernetes. Instead it is sent to the output. For brevity the full generated YAML is not included because this would be pages long.

If there were a problem in the templates, the response would be quite different. To illustrate this, try removing the first } from the deployment.yaml file in the anvil chart and performing a dry-run install again. Removing the } will cause an error parsing the actions in the templates. Instead of outputting the status, Helm will output an error like:

Error: parse error at (anvil/templates/deployment.yaml:4): unexpected "}" in
operand

The information here outlines a hint where to look for the issue. It includes:

	
The file where the error is occurring. anvil/templates/deployment.yaml, in this case.

	
The line number in the file where the error occurred. Here it is line 4.

	
An error message with a hint about the problem. The error message will often not display what the issue is, but rather where the parser is having an issue. In this case a single } is unexpected.

Helm will check for more than errors in the template syntax. It will also check the syntax of the output. To illustrate this, in the same deployment.yaml file remove the apiVersion: at the start of it. Make sure to add back the missing } so that the action is fixed. The beginning of the file will now look like:

apps/v1
kind: Deployment

Performing a dry-run install will produce the following output:

Error: YAML parse error on anvil/templates/deployment.yaml: error converting
YAML to JSON: yaml: line 2: mapping values are not allowed in this context

You might be wondering why there is an error converting between YAML and JSON. This is a product of the YAML parsing library that Helm and Kubernetes use. The useful part of the error message is the part that starts with line 2. The first line is not complete, so the second line is in the wrong context even though it is well formed. The file is not valid YAML, and Helm is telling you where to start looking for the problem. If you took the same section of YAML and tested it in an online YAML validator, you would get the same error.

Helm is also able to validate the schemas of Kubernetes resources. This is accomplished because Kubernetes provides schema definitions for its manifests. To illustrate this, change the apiVersion in the deployment.yaml to be foo:

foo: apps/v1
kind: Deployment

Performing a dry-run install will produce the following output:

Error: unable to build kubernetes objects from release manifest: error
validating "": error validating data: apiVersion not set

The deployment is no longer valid, and Helm was able to provide specific feedback on what is missing. In this case, the apiVersion property is not set.

Utilizing a dry-run isn’t the only way you can get access to this feature. The
helm template command provides a similar experience but without the full debugging feature set. The template command does turn the template commands into YAML. At this point it will provide an error if the generated YAML cannot be parsed. What it won’t do is validate the YAML against the Kubernetes schema. The template command won’t warn you if apiVersion is turned to foo. This is due to Helm not communicating with a Kubernetes cluster to get the schema for validation when the template command is used.

Getting Installed Manifests

There are times where you install an application into a cluster and something else changes the manifests afterwards. This leads to differences between what you declared and what you have running. One example of this is when a service mesh automatically adds a sidecar container to the Pods created by your Helm charts.

Service Mesh

A service mesh is a layer of infrastructure used to manage service-to-service communications. In Kubernetes, a service mesh uses a sidecar proxy container added to Pods to handle the communication. Many service mesh platforms offer the ability to automatically inject the sidecar proxies by altering the configuration of manifests.

You can get the original manifests deployed by Helm using the helm get manifest command. This command will retrieve the manifests for a release as they were when Helm installed the release. It is able to retrieve this information for any revision of a release still available in the history, as found using the helm history command.

To continue the myanvil example, to retrieve the manifests for this instance of the anvil chart you would run:

$ helm get manifest myanvil

The output will include all of the manifests with --- at the start of each new manifest. The following is the first 15 lines from the output:

Source: anvil/templates/serviceaccount.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
 name: myanvil-anvil
 labels:
 helm.sh/chart: anvil-0.1.0
 app.kubernetes.io/name: anvil
 app.kubernetes.io/instance: myanvil
 app.kubernetes.io/version: "9.17.49"
 app.kubernetes.io/managed-by: Helm

Source: anvil/templates/service.yaml
apiVersion: v1
kind: Service
...

--- is used as a separator between YAML documents. In addition to that, Helm adds a YAML comment with the source template used to generate the manifest.

Linting Charts

Some of the problems you will encounter don’t show up as violations of the API specification and aren’t problems in the templates. For example, Kubernetes resources are required to have names that can be used as part of a domain name. This restricts the characters that you can use in names and their length. The OpenAPI schema provided by Kubernetes does not provide enough information to detect names that will fail when sent to Kubernetes. The lint command, previously covered in Chapter 4, is able to detect problems like this and tell you where they are.

To illustrate this you can modify the anvil chart to add Wile to the end of the Deployment name in deployment.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ include "anvil.fullname" . }}-Wile

Running helm lint anvil will produce an error informing you of the issue:

$ helm lint anvil
==> Linting anvil
[ERROR] templates/deployment.yaml: object name does not conform to Kubernetes
naming requirements: "test-release-anvil-Wile"

Error: 1 chart(s) linted, 1 chart(s) failed

In this case, helm lint is pointing you to a problem and telling you where it is
happening.

Conclusion

The templates you include in a chart provide a powerful ability to create resources within Kubernetes. It’s akin to a programming language around templates. The template system has features like logic, built-in functions, custom templates, and debugging. This means you can collect the input you desire through values and generate the Kubernetes manifests you need.

There is still more to charts, including dependencies, testing, schemas for values files, and more. Chapter 6 is going to expand on what you can have and do with charts.

Chapter 6. Advanced Chart Features

There is more to charts than metadata about the chart and a collection of templates. Charts can have dependencies, values can have schemas, Helm has life cycle hooks, you can sign charts, and more. In this chapter you will learn about other elements of charts, moving beyond templates.

These features provide powerful solutions to common problems that arise when building packages. The chapter starts by covering dependencies. Dependencies are a critical part of virtually every package management solution because they let you leverage existing packages in your solution and build on the work of others. It then goes on to cover schemas and validation, which are useful when you want to help chart users avoid issues before covering ways you can hook into processes Helm performs to execute custom actions. This chapter covers tests and testing as well—tests are vital in development because they ensure your software is running as expected. Helm provides security features that aid in mitigating some common threat paths, which are covered next. The chapter concludes by looking at how charts can be used to extend the Kubernetes API.

Throughout this chapter, you will see charts as examples you can reference at https://github.com/masterminds/learning-helm/blob/main/chapter6. They showcase different features covered in the chapter along with a Helm repository.

Chart Dependencies

Dependencies are a common element of package managers and their packages. Charts can have dependencies on other charts. This enables the encapsulation of a service in a chart, the reuse of charts, and the use of multiple charts together.

To illustrate dependencies, consider a chart to install WordPress, the popular blogging software. WordPress depends on a MySQL-compliant database to store the blog content, users, and other configuration. A MySQL-compliant database can be used by other applications and can be consumed as a service. One way to handle the use of MySQL with WordPress is to put the manifests for it in the WordPress chart. Another way to handle it is to have a MySQL chart that stands alone while the WordPress chart has a dependency on it. Having a MySQL-compliant database as an independent chart enables it to be used by more than one application, and the database can be built and tested independently.

Dependencies are specified in the Chart.yaml file. The following is the dependencies section in the Chart.yaml file for a chart named rocket:

dependencies:
 - name: booster [image: 1]
 version: ^1.0.0 [image: 2]
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/ [image: 3]

	[image: 1]

	The name of the dependent chart within the repository.

	[image: 2]

	A version range string for the chart.

	[image: 3]

	The repository to retrieve the chart from.

Helm charts use semantic versions as their versioning scheme. The version field used for dependencies accepts a version range, and there are some shorthand syntaxes for those ranges. For example, ^1.2.3 is shorthand for >= 1.2.3, < 2.0.0. Helm supports ranges including =, !=, <, ⇐, >, >=, ^, ~, and -. Different ranges can be combined together using a space or comma to support logical and combinations and | to support logical or combinations. Helm also supports using a wildcard character of either X or *. If you omit a section of a version, such as omitting the patch portion, Helm will assume the missing part is a wildcard.

Ranges are the preferred manner to specify the desired version. In a moment you’ll learn how to lock to a specific dependency version from the specified range. By specifying a range, it is possible to use Helm commands to automatically update to the latest release within that range. This is useful if you want to pull in bug fixes or security updates to dependencies.

Shorthand Range Syntaxes

While semantic versions are defined from a specification, the range syntaxes in use to specify semantic version ranges have no specification. Different tools will use different algorithms for the same shorthand syntaxes of ^ and ~. Helm follows the same syntax used by JavaScript with npm and Rust with Cargo.

For major versions greater than 0, when you use ^ it does a range that is greater than or equal to the number you set and less than the next major version. When the major version is less than 1, Helm typically treats the minor version as the range it works in instead of the major version. The following are examples of the ranges and equivalent meanings:

	
^1.2.3 is equivalent to >= 1.2.3 < 2.0.0

	
^1.2.x is equivalent to >= 1.2.0 < 2.0.0

	
^2.3 is equivalent to >= 2.3 < 3

	
^2.x is equivalent to >= 2.0.0 < 3

	
^0.2.3 is equivalent to >= 0.2.3 < 0.3.0

	
^0.2 is equivalent to >= 0.2.0 < 0.3.0

	
^0.0.3 is equivalent to >= 0.0.3 < 0.0.4

	
^0.0 is equivalent to >= 0.0.0 < 0.1.0

	
^0 is equivalent to >= 0.0.0 < 1.0.0

~ is used for specifying patch ranges. Where ^ typically rounds up to the latest within a major version range, ~ rounds up within a minor version range as long as the minor version is specified. The following examples illustrate ~:

	
~1.2.3 is equivalent to >= 1.2.3 < 1.3.0

	
~1 is equivalent to >= 1 < 2

	
~2.3 is equivalent to >= 2.3 < 2.4

	
~1.2.x is equivalent to >= 1.2.0 < 1.3.0

	
~1.x is equivalent to >= 1 < 2

The repository field is where you specify the chart repository location to pull the dependency from. You can specify this in one of the following two ways:

	
A URL to the Helm repository.

	
To the name of a repository you have set up using the helm repo add command. This name needs to be preceded by an @ and wrapped in quotes (e.g.,
"@myrepo").

A full URL is typically used to specify the location. This will ensure the same dependency is retrieved in every environment the chart is used in.

Once you have the dependencies with their requested version ranges specified, you need to use Helm to lock those dependencies to specific versions and retrieve the dependencies. If you are going to package up your chart as a chart archive as covered in Chapter 4, you need to lock and fetch dependencies before packaging.

To resolve the latest version of the dependency within the specified range and to retrieve it, you can use the following command:

$ helm dependency update .

After running the command you will see the following output:

Saving 1 charts
Downloading booster from repo https://raw.githubusercontent.com/Masterminds/
 learning-helm/main/chapter6/repository/
Deleting outdated charts

Running this command caused a few steps to happen.

First, Helm resolved the latest version of the booster chart. It used the metadata in the repository to know which versions of the chart were available. From the metadata and the specified version range, Helm found the best match.

The resolved information is written to the Chart.lock file. Instead of a version range, the Chart.lock file contains the specific version of the dependencies to be used. This is important for reproducibility. The Chart.lock file is managed by Helm. Changes from users will be overwritten the next time helm dep up (the shorthand syntax) is run. This is similar to lock files for dependency managers on other platforms.

Once Helm knows the specific version to use, it downloads the dependent chart and puts it into the charts subdirectory. It is important for the dependent charts to be in the charts directory because this is where Helm will get their contents from to render the templates. Charts can be in the charts directory in either their archive or directory form. When Helm downloads them from a repository, it stores them in their archive form.

If you have a Chart.lock file but no contents in the charts directory, you can rebuild the charts directory by running the command helm dependency build. This will use the lock file to retrieve the dependencies at their already determined versions.

Once you have dependencies, Helm will render their resources when you run commands like helm install or helm upgrade.

When you specify a dependency, you may also want to pass configuration from the parent or main chart to the dependent chart. If we look back at the WordPress example, this could be used to set the name of the database to use. Helm provides a method to do this within the parent chart’s values.

In the main chart’s values.yaml file, you can create a new section with the name of the dependent chart. In this section you can set the values you want passed in. You only need to set the ones you want changed because the dependent charts included in the values.yaml file will serve as the default values.

In the values.yaml file for the rocket chart there is a section that reads:

booster:
 image:
 tag: 9.17.49

Helm knows this section is for the booster chart. In this case it sets the image tag to a specific value. Any of the values in the dependent chart can be set this way. When commands like helm install are run, you can use the flags to set values (e.g., --set) of the dependencies as well as those of the main chart.

If you have two dependencies on the same chart you can optionally use the alias property in the Chart.yaml file. This property goes on each dependency you want to use an alternative name for next to the name, version, and other properties. With alias you can give each dependency a unique name that you can reference elsewhere, such as in the values.yaml file.

Tightly Versus Loosely Coupled Dependencies

When you have dependencies, you can tightly couple or loosely couple them. Using the Chart.yaml file to specify dependencies causes a tight coupling between charts. You can see this in the way upgrades work. To upgrade one chart you must upgrade the whole group. There are benefits to tight coupling, such as a single Helm command being able to install the whole collection of charts. A tight coupling is useful when you want to distribute charts to others, outside your company or organization.

In a loose coupling situation you can install each chart independently from the rest. Each chart will run as its own instance. In this setup, each instance acts as a service that other services can connect to. With a loose coupling you can change and upgrade each chart independently from the rest. This method is sometimes used when you create and run charts within your own organization.

Conditional Flags for Enabling Dependencies

Helm provides the ability for you to enable or disable dependencies through configuration. To illustrate this idea, consider the case where you want to provide a WordPress blogging solution but give the option to the personnel installing WordPress to either use a database as a service or an included database. If the person installing the chart chooses to use a database as a service, they would provide a URL to that service and not need to have a database installed. This can be accomplished through configuration in two different ways.

When you want to control if a single feature is enabled or disabled through a dependency, you can use the condition property on a dependency. To illustrate this we will look at the dependencies section in the Chart.yaml file for the conditional chart:

dependencies:
 - name: booster
 version: ^1.0.0
 condition: booster.enabled
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/

The dependency has a condition key with a value that tells Helm where to look in the values to know if it should be enabled or disabled. In the values.yaml file the corresponding section is:

booster:
 enabled: false

The default value, in this case, is to disable the dependency. When someone installs the chart they can enable the dependency by passing in a value to enable it.

When you have multiple features you want to enable or disable that involve dependencies, you can use the tags property. Like condition, this property sits alongside the name and version when describing a dependency. It contains a list of tags for a dependency. To illustrate this we can look at the dependencies of another chart named tag:

dependencies:
 - name: booster
 tags:
 - faster
 version: ^1.0.0
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/
 - name: rocket
 tags:
 - faster
 version: ^1.0.0
 repository: https://raw.githubusercontent.com/Masterminds/learning-helm/main/
 chapter6/repository/

Here you will see two dependencies with a tags section. The tags are a list of related tags. In the chart’s values.yaml file you use a tags property:

tags:
 faster: false

tags is a property with a special meaning. The values here tell Helm to disable dependencies with the tag faster by default. They can be enabled when the chart’s user passes a true value into the chart as it’s being installed or upgraded.

Importing Values from Child to Parent Charts

There are times where you may want to import or pull values from a child to a parent chart. Helm provides two methods to do this. One is for the case where a child chart explicitly exported a value to be imported by a parent, and the other is for the case in which the child chart did not export a value.

The exports property

The exports property is a special top-level property in a values.yaml file. When a child chart has declared an export property, its contents can be imported directly into a parent chart.

For example, consider the following from a child chart’s values.yaml file:

exports:
 types:
 foghorn: rooster

When the parent chart declares the child as a dependency, it can import from the exports like the following:

dependencies:
 - name: example-child
 version: ^1.0.0
 repository: https://charts.example.com/
 import-values:
 - types

Within the parent’s calculated values the types are now accessible at the top level. In YAML that would be equivalent to:

foghorn: rooster

The child-parent format

When a parent chart wants to import a value from a child but the child chart hasn’t exported the value, there is a way to tell Helm to pull the child value into the parent chart.

To illustrate this, consider a child chart with the following values specified in its
values.yaml file:

types:
 foghorn: rooster

These values are not exported, but the parent chart can import them anyway. When the dependency is declared in the parent, it can import the values using child and parent files, like the following example:

dependencies:
 - name: example-child
 version: ^1.0.0
 repository: https://charts.example.com/
 import-values:
 - child: types
 parent: characters

In both methods of importing it’s the import-values property that’s used on the dependency. Helm knows how to differentiate between the different formats, and you can mix the two.

In the child chart the top-level property of types will not be available in the parent chart under the top-level property of characters in its calculated values. That would be represented in YAML as:

characters:
 foghorn: rooster

This format does allow for accessing nested values in addition to top-level properties using a period as a separator. For example, if the child chart had the following format, the child property on import-values could read data.types:

data:
 types:
 foghorn: rooster

Library Charts

You may run into the situation where you are creating multiple similar charts—charts that share a lot of the same templates. For these situations, there are library charts.

Library charts are conceptually similar to software libraries. They provide reusable functionality that can be imported and used by other charts but cannot be installed themselves.

If you use helm create to create a new library chart, the first step is to remove the contents of the templates directory and the values.yaml file because neither of these will be used. Then, you need to tell Helm that this is a library chart. In the Chart.yaml file set the type to library. To illustrate this, here is the Chart.yaml file from a chart named mylib:

apiVersion: v2
name: mylib
type: library
description: an example library chart
version: 0.1.0

The default value for type, when not set, is application. You only need to set it when your chart is a library.

Files in the templates directory that start with an underscore (i.e., _) are not expected to render manifests to send to Kubernetes. The convention is that helper templates and snippets are in _*.tpl and _*.yaml files.

To illustrate how reusable templates work, the following is the template to create a ConfigMap in the mylib chart file named _configmap.yaml:

{{- define "mylib.configmap.tpl" -}}
apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "mylib.fullname" . }} [image: 1]
 labels:
 {{- include "mylib.labels" . | nindent 4 }} [image: 2]
data: {}
{{- end -}}
{{- define "mylib.configmap" -}} [image: 3]
{{- template "mylib.util.merge" (append . "mylib.configmap.tpl") -}}
{{- end -}}

	[image: 1]

	The fullname function is the same as the one generated by helm create.

	[image: 2]

	The labels function generates the common labels Helm recommends to use in charts.

	[image: 3]

	A special template is defined that knows how to merge templates together.

Most of this definition looks similar to other templates you would put into the templates directory. define is a function used to define a template that is used elsewhere. There are two templates defined in this file. mylib.configmap.tpl contains a template for a resource. This will look similar to other templates. It provides a blueprint that is meant to be overridden by the caller in a chart that includes this library. mylib.configmap is a special template. This is the template another chart will use. It takes mylib.configmap.tpl along with another template, yet to be defined, containing overrides, and merges them into one output. mylib.configmap uses a utility function that handles the merging and is handy to reuse. That function is:

{{- /*
mylib.util.merge will merge two YAML templates and output the result.
This takes an array of three values:
- the top context
- the template name of the overrides (destination)
- the template name of the base (source)
*/ -}}
{{- define "mylib.util.merge" -}}
{{- $top := first . -}}
{{- $overrides := fromYaml (include (index . 1) $top) | default (dict) -}}
{{- $tpl := fromYaml (include (index . 2) $top) | default (dict) -}}
{{- toYaml (merge $overrides $tpl) -}}
{{- end -}}

This function takes a context (think about the . data covered in Chapter 5), a template containing overrides, and the base template function to be overridden. The function will become more clear when you see how it is used.

Note

The concept of library charts was developed prior to their official inclusion in Helm. The merge function was created by Adnan Abdulhussein as part of his work developing the idea through a chart named Common.

To illustrate using this library function, the following template is from another chart named mychart. Prior to using the resources it defines, it needs to be added as a dependency, just like any other. A template is included in mychart to create a ConfigMap:

{{- include "mylib.configmap" (list . "mychart.configmap") -}} [image: 1]
{{- define "mychart.configmap" -}} [image: 2]
data: [image: 3]
 myvalue: "Hello Bosko"
{{- end -}}

	[image: 1]

	Including and using the function from the library chart for the ConfigMap.

	[image: 2]

	A new template is defined with just the parts to override the template provided by the library.

	[image: 3]

	The data section is provided for use in the ConfigMap.

This template may appear to be confusing at first because there is a lot going on.

The first line includes the ConfigMap template from the library chart. A new list is passed to it with two items. The first is the current data object, and the second is the name of another template containing elements to override those provided by the library chart.

The rest of the file is the template containing overrides. In the template provided by the library chart no content was provided for the data section. It is empty. The function mychart.configmap provides a data section.

The Helm rendered output from this template is:

apiVersion: v1
kind: ConfigMap
metadata:
 labels:
 app.kubernetes.io/instance: example
 app.kubernetes.io/managed-by: Helm
 app.kubernetes.io/name: mychart
 helm.sh/chart: mychart-0.1.0
 name: example-mychart
data:
 myvalue: Hello Bosko

This output is the merged output from the library and the chart consuming the library. The same concept can be extended to other resources including those that are longer and more complex.

Schematizing Values Files

The values defined by a values.yaml file are schemaless. There is no set structure that all values.yaml files need to follow. Different charts have different structures. This enables you to structure the values to the application or workload you’re deploying with the chart.

Schemas provide numerous useful benefits including the ability to validate content, and you can do things such as generate user interfaces from them.

Helm provides the optional ability for each chart to provide its own schema for its values using JSON Schema. JSON Schema provides a vocabulary to describe JSON files. YAML is a superset of JSON, and you can transform content between the two file formats. This makes it possible to use a JSON Schema to validate the content of a YAML file.

When you run the commands helm install, helm upgrade, helm lint, and helm template, Helm will validate the values against what it finds in the values.schema.json file. The values Helm validates are the computed values. They include the values provided by the chart as well as the values passed in by the person installing the chart. The values.schema.json file lives next to the values.yaml file in the root of a chart. The file can describe all or part of the values.

Consider the following section from a values.yaml file:

image:
 repository: ghcr.io/masterminds/learning-helm/anvil-app
 pullPolicy: IfNotPresent
 tag: ""

A JSON Schema to check this would be:

{
 "$schema": "http://json-schema.org/schema#",
 "type": "object",
 "properties": {
 "image": {
 "type": "object", [image: 1]
 "properties": {
 "pullPolicy": {
 "type": "string", [image: 2]
 "enum": ["Always", "IfNotPresent"] [image: 3]
 },
 "repository": {
 "type": "string"
 },
 "tag": {
 "type": "string"
 }
 }
 }
 }
}

	[image: 1]

	image is an object. If image is passed to Helm as something other than an object, an error will be thrown.

	[image: 2]

	pullPolicy is a string. When other types, such as an integer, are passed in, an error will be thrown. This can catch subtle problems.

	[image: 3]

	The pullPolicy must be one of the listed values. When another value, even a misspelling, is passed in to Helm, an error will be thrown.

To illustrate this, we can use the booster chart. If you run the command from the root of the chart, you’ll see an error:

$ helm lint . --set image.pullPolicy=foo

The following error tells you where the values don’t match the schema:

==> Linting .
[ERROR] templates/: values don't meet the specifications of the schema(s) in the
following chart(s):
booster:
- image.pullPolicy: image.pullPolicy must be one of the following: "Always",
 "IfNotPresent"

Error: 1 chart(s) linted, 1 chart(s) failed

JSON Schemas provide several ways to describe properties. The most flexible method (a catch-all) is the use of regular expressions for strings. For example, instead of an enum a pattern of ^(Always|IfNotPresent)$ could have been used. The pattern would not have been as descriptive. The error would have noted the value didn’t fit the pattern. Patterns are great to use when there is no other method to describe a property’s value.

Schemas are a useful addition to charts that can catch and correct subtle issues someone may have when installing a chart.

Hooks

Helm provides a means to hook into events in the release process and take action. This is useful if you want to bundle actions as part of a release—for example, building in the ability to back up a database as part of the upgrade process while ensuring that the backup occurs prior to upgrading the Kubernetes resources.

Hooks are like regular templates and the functionality they encapsulate is provided through containers running in Kubernetes clusters alongside the other resources for your application. What distinguishes hooks from other resources is when a special annotation is set. When Helm sees the helm.sh/hook annotation, it uses the resource as a hook instead of a resource to be installed as part of the application installed by the chart. Table 6-1 contains a list of hooks and when they are executed.

Table 6-1. Helm hooks

	Annotation value
	Description

	pre-install

	Execution happens after resources are rendered but prior to those resources being uploaded to Kubernetes.

	post-install

	Execution happens after resources have been uploaded to Kubernetes.

	pre-delete

	Execution happens on a deletion request prior to any resources being deleted from Kubernetes.

	post-delete

	Execution happens after all resources have been deleted from Kubernetes.

	pre-upgrade

	Execution happens after resources are rendered but prior to resources being updated in Kubernetes.

	post-upgrade

	Execution happens after resources have been upgraded in Kubernetes.

	pre-rollback

	Execution happens after resources have been rendered but prior to any resources in Kubernetes being rolled back.

	post-rollback

	Execution happens after resources have been rolled back in Kubernetes.

	test

	Execution occurs when the helm test command is run. Tests are covered in the next section.

A single resource can implement more than one hook by listing them as a comma-separated list. For example:

annotations:
 "helm.sh/hook": pre-install,pre-upgrade

Hooks can be weighted and specify a deletion policy for the resources after they have run. The weight enables more than one hook for the same event to be specified while providing an order in which they will run. This gives you the ability to ensure a deterministic order. Because Kubernetes resources are used for the execution of hooks, the resources are stored in Kubernetes even after execution has completed. The deletion policy provides you with some additional control on when to delete these resources from Kubernetes.

The following code provides example annotations specifying all three values:

annotations:
 "helm.sh/hook": pre-install,pre-upgrade
 "helm.sh/hook-weight": "1"
 "helm.sh/hook-delete-policy": before-hook-creation,hook-succeeded

The weight, specified by the helm.sh/hook-weight annotation key, is a number represented as a string. It should always be a string. The weight can be a positive or negative number and has a default value of 0. Prior to executing hooks, Helm sorts them in ascending order.

The deletion policy, set using the annotation key helm.sh/hook-delete-policy, is a comma-separated list of policy options. The three possible deletion policies are found in Table 6-2.

Table 6-2. Helm hook deletion policies

	Policy value
	Description

	before-hook-creation

	The previous resource is deleted before a new instance of this hook is launched. This is the default.

	hook-succeeded

	Delete the Kubernetes resource after the hook is successfully run.

	hook-failed

	Delete the Kubernetes resource if the hook failed while executing.

By default, Helm keeps the Kubernetes resources used for hooks until the hook is run again. This provides the ability to inspect the logs or look at other information about a hook after it is run. A common policy to set is the one used in the previous example. This will keep hook resources around unless they complete successfully. When hooks fail, the resources and their logs are still available for inspection, but otherwise they are deleted.

The following Pod is an example of a hook running post-install:

apiVersion: v1
kind: Pod
metadata:
 name: "{{ include "mychart.fullname" . }}-post-install"
 labels:
 {{- include "mychart.labels" . | nindent 4 }}
 annotations:
 "helm.sh/hook": post-install
 "helm.sh/hook-weight": "-1"
 "helm.sh/hook-delete-policy": before-hook-creation,hook-succeeded
spec:
 containers:
 - name: wget
 image: busybox
 command: ["/bin/sleep","{{ default "10" .Values.sleepTime }}"]
 restartPolicy: Never

If you are running a Helm command, such as helm install, and want to skip running hooks, the --no-hooks flag can be used. This flag is available on commands that have hooks and will cause Helm to skip executing them. Hooks are an opt-out
feature.

Adding Tests to Charts

Testing is an integral part of software development, and Helm provides the ability to test charts through the use of the test hook and Kubernetes resources. That means tests run in a Kubernetes cluster right alongside the workloads with access to the components installed by the chart. In addition to the chart testing built into Helm, the Helm project provides an additional testing tool named Chart Testing. Since Chart Testing builds upon the features in the Helm client, we will first look at the functionality built into the Helm client.

Helm Test

Helm has a helm test command that executes test hooks on a running instance of a chart. The resources implementing those hooks can check database access, that database schemas are properly in place, for working connections between workloads, and other operational details.

If a test fails, Helm will exit with a nonzero exit code and provide you with the name of the Kubernetes resource that failed. The nonzero exit code is useful when paired with some automation testing systems that detect failures this way. When you have the name of the Kubernetes resource, you can look at the logs to see what failed.

Tests typically live in the tests subdirectory of the templates directory. Putting the tests in this directory provides a useful separation. This is a convention and not required for tests to run.

To illustrate a test, we will look at the booster chart. In the templates/tests directory, there is a single test in the file test-connection.yaml that contains the following test hook:

apiVersion: v1
kind: Pod
metadata:
 name: "{{ include "booster.fullname" . }}-test-connection"
 labels:
 {{- include "booster.labels" . | nindent 4 }}
 annotations:
 "helm.sh/hook": test
spec:
 containers:
 - name: wget
 image: busybox
 command: ['wget']
 args: ['{{ include "booster.fullname" . }}:{{ .Values.service.port }}']
 restartPolicy: Never

This test is the one created by default for Nginx when helm create is run. It happens to work to test connectivity to the booster application, as well. This simple test illustrates the structure of a test.

Note

If you look at tests in some existing charts you might find the hook they use is test-success instead of test. In Helm version 2 there was a hook named test-success for running tests. Helm version 3 provides backward compatibility and will run this hook name as a test.

There are two steps to run tests. The first step is to install the chart so that an instance of it is running. You can use the helm install command to do this. The following command installs the booster chart and assumes you are running it from the root directory of the chart:

$ helm install boost .

Once the instance of the chart is running, you run the helm test command to execute the tests:

$ helm test boost

Helm will output the status of the test as it executes and then information about the test and the release when complete. For the previous test it would return:

Pod boost-booster-test-connection pending
Pod boost-booster-test-connection pending
Pod boost-booster-test-connection running
Pod boost-booster-test-connection succeeded
NAME: boost
LAST DEPLOYED: Tue Jul 21 06:47:05 2020
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: boost-booster-test-connection
Last Started: Tue Jul 21 06:47:12 2020
Last Completed: Tue Jul 21 06:47:17 2020
Phase: Succeeded
NOTES:
1. Get the application URL by running these commands:
 export POD_NAME=$(kubectl get pods --namespace default -l
 "app.kubernetes.io/name=booster,app.kubernetes.io/instance=boost"
 -o jsonpath="{.items[0].metadata.name}")
 echo "Visit http://127.0.0.1:8080 to use your application"
 kubectl --namespace default port-forward $POD_NAME 8080:80

When charts have dependencies that have tests, those will be run, as well. For example, if the tests in the rocket chart used earlier in the chapter are run, the booster chart tests and the rocket chart tests will be run.

Tip

If you need to have configuration installed as part of a test, you can put the test hook on a Kubernetes Secret or ConfigMap to have it installed with other test resources.

Testing charts is a great way to ensure the contents of a chart are able to get the workload running in Kubernetes and catch changes that may break that.

Chart Testing Tool

The Helm project provides an additional testing tool, built on the foundation of helm test, that provides more advanced testing capabilities. Some of the additional features it includes are:

	
The ability to test different—mutually exclusive—configuration options at install time for a chart.

	
Chart.yaml schema validation that includes custom schema rules.

	
Additional YAML linting that includes configurable rules. For example, you can make sure indentation in the YAML files is consistent.

	
When the source is stored in Git, the ability to check if the version property in a Chart.yaml file has been properly incremented.

	
The ability to work with collections of charts and only test those that have changed.

The Chart Testing tool was designed to use in continuous integration system workflows, and some of the features directly target this situation.

History of Chart Testing

When Helm was in its early days, the project maintainers started a repository with some charts to showcase what you could do with charts. Helm repositories were designed to be distributed from the start—with different organizations running their own repositories—and the Helm project provided an example of how to do this.

This chart repository grew to have many charts and became a form of central repository. To aid in maintaining the many charts, automation scripts were created to help automatically provide feedback to proposed pull requests to the charts.

The automation scripts proved to be useful to more than the Helm project. To enable the chart repositories hosted by others to have the same testing capabilities, the scripts used by the Helm project were broken out into a separate tool and rewritten with portability in mind.

The Chart Testing tool is now used by a variety of companies and organizations to aid in the testing of their hosted charts.

The ability for Chart Testing to test a chart with different, mutually exclusive, configurations requires knowing those configurations. These are bundled in the ci directory of a chart.

In the ci directory you can create a values file for each situation to test. You need to use the glob naming pattern *-values.yaml when you name each file. For example, you can use file names like minimal-values.yaml and full-values.yaml.

Chart Testing will test each of these configurations separately. For example, when the chart is being linted, each case will be linted separately. The custom values will be passed to helm lint using the --values flag. The same idea and flag applies when the chart is being runtime tested. The values are passed to Helm using the --values flag beacuse this is how end users, who install the chart, provide their custom
configuration.

If you want to test using various configurations but do not want to ship those configurations as part of the chart archive, you can put the ci directory in the .helmignore file. When Helm packages the chart, the ci directory will be ignored.

Chart Testing can be installed and used in various ways. For example, you can use it as a binary application on a development system or in a container within a continuous integration system. Learn more about using and setting it up for your situation on the project page.

Security Considerations

Some of the biggest and most trusted technology organizations have had their users be attacked through software updates. Software changes and the mechanisms used to update and even install software provide a channel of attack.

Helm provides an opt-in means to check the provenance and integrity of charts. Provenance provides a means to verify the origin, such as a company or person, of a chart while integrity provides a way to check that you received what you expected without alterations. This functionality enables you and those who use your charts to verify who they came from and that the contents have not changed.

To accomplish this Helm uses Pretty Good Privacy (PGP), hashes, and a provenance file that sits alongside the chart archive file. For example, if you have a chart archive named mylib-1.0.0.tgz, you can have a provenance file named mylib-1.0.0.tgz.prov. This file contains a PGP message with the contents of the Chart.yaml file along with the hash of the chart archive. Helm can generate these files for you. The following example is the provenance file for mylib-1.0.0.tgz:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

apiVersion: v2
description: an example library chart
name: mylib
type: library
version: 0.1.0

...
files:
 mylib-0.1.0.tgz: sha256:d312aea39acf7026f39edebd315a11a52d29a9
 6a8d68737ead110ac0c0a1163d
-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEcR8o1RDh4Ly9X2v+lDboC/ukaQkFAl8yiesACgkQlDboC/uk
aQkG2BAAlIEgGI7uu9Kr8j4ZIxDseLmgphhPM1kgnIMPriLieBxFXSJQxciN3+dx
OQpIfdsFQvW98EnJ4781Pm+leHY2iI/L08O1cQWUtzKhfPEWC65YQJPXkTKpHnC2
wXYVUVYWvhx6BJ77RiS/f+hoXiC+i1aBqqS0TAG+AqXuwARO2tY/L7cF6EHjsUwD
pPuTNpYZ/OEWqh1KEYZYVDvLm6uN6QjV4pNTFfAgnvMckfoDLQ+kOPQVqCeUWG3F
tZO3sBzUg+Ak2dDviSTOFQ7TCifc3tOOaWS1XtcooSOkUENmTeeWV56jZnhK1rT4
yaIGT16zXZIdmkZ1t5o9VccuAhQ1Us2FhipdGqpD8yDoJABVz/ee9d2zoX8anfR7
LZ7fwecgQ/THnj54RroyQlzf2aottFiL9ZV4MjUqs0CSoA9+SZ/CcJDd/rxBGI8C
yxRqo0VoNdjT8Kr9hha13krfwD8IpLH8bv4kWt3Ckh6rgphjUL19xyTHJY7w2toY
bAeZMl3Y05Ca76EA7XDdoltE57SUS1Zzd+wDRzRD0IZO8KVk+Z5/PzzvV4l9lnDJ
X63fptInbJpyk0xYKLMFquOY7Yy5mlI9de7424CScePo9Nua3GAakfi4zk3i4Auz
2eaoU/S5uXt605OydkSLLz99BAyJwmazzf/qPyYcPWMw/b+gHxw=
=pRcC
-----END PGP SIGNATURE-----

A provenance file is a PGP signed message with a particular structure in the message. That hash in the message is used by Helm to validate integrity, and the PGP signature is used to validate who it came from.

There are two steps to using provenance files. First, you need to generate them. In order to do that you need to have a PGP key pair.

When creating a package using the helm package command, you can tell Helm to sign the package:

$ helm package --sign --key 'bugs@acme.example.com' \
 --keyring path/to/keyring mychart

The additional flags will tell Helm to create the provenance file. The --sign flag opts-in to signing, the --key flag specifies the name of the private key to use, and the
--keyring flag specifies the location of the keyring to use that contains the private key to use for signing. When Helm creates the archive of the chart, it will also create the .prov file alongside it.

The provenance file should then be uploaded alongside the chart archive and made available for download from a chart repository.

Verifying happens in reverse and is built into commands such as helm install, helm upgrade, and helm pull along with being available in the helm verify command.

Helm can handle the situation where you have both the archive and provenance file locally available and when you have the chart in a remote repository.

To illustrate the situation of having both files locally, we can use the helm verify command:

$ helm verify --keyring path/to/keyring mychart-0.1.0.tgz

The verify command will tell Helm to check the hash and signature. The --keyring flag tells Helm where a PGP keyring exists with the public key that matches the private key the chart was signed with. This can be either a keyring or a non-ASCII-Armored version of the public key. Helm will look for the mychart-0.1.0.tgz.prov file and use that to perform the check.

Running the verify command on the mylib chart would look like:

$ helm verify mylib-0.1.0.tgz --keyring public.key

This would output:

Signed by: Matthew Farina
Using Key With Fingerprint: 672C657BE06B4B30969C4A57461449C25E36B98E
Chart Hash Verified: sha256:d312aea39acf7026f39edebd315a11a52d29a96a8d68737ead11
 0ac0c0a1163d

If you have a chart in a Helm repository, Helm will download the provenance file when it downloads the chart. For example:

$ helm install --verify --keyring public.key myrepo/mychart

When Helm fetches the chart archive, it will also download the provenance file, verify the signature, and verify the hash.

Tip

The public key should be shared through a different channel from the chart and provenance file.

If there is a problem during the verification process, Helm will provide an error and exit with a nonzero exit code.

GNU Privacy Guard

Starting in GNU Privacy Guard (GPG) 2.1, keys were stored in a new keybox format. This new format is incompatible with PGP specifications and formats. That means there are some extra steps to working with keys if you use GPG. The following commands provide a reference you can use when working with GPG.

You can export your secret keys from GPG into a PGP format with:

gpg --export-secret-keys > secring.gpg

You can export public keys from GPG into a PGP format with:

gpg --export > pubring.gpg

You can convert a public key in ASCII-Armor format to binary format with:

gpg --dearmor < pgp_key.asc > public.key

pgp_key.asc is the name of the ASCII-Armored key file and public.key is the name of the same key in binary format. This public.key file can be passed to Helm as a keyring for verification.

If you use a password or a hardware security device with GPG, you may not be able to export your private key. In that case, there is the Helm GPG plugin. It provides commands and a means to directly work with provenance files through GPG. Plugins are covered in more detail in Chapter 8.

Verifying that a chart came from who you expected and that the content hasn’t changed is a useful step in securing your software supply chain.

Custom Resource Definitions

Kubernetes custom resource definitions (CRDs) provide a means to extend the Kubernetes API, and Helm provides methods to install them as part of the chart.

Custom Resource Definitions, the Kubernetes API, and Some Gotchas

CRDs provide a method to extend the Kubernetes API for all users of a cluster. They add new resource types, known as custom resources, that can be uploaded to a cluster alongside the resource types that ship with Kubernetes. CRDs provide a schema and can describe multiple versions of the same resource. They are a shared global resource.

CRDs in a cluster can be updated to change an API. This can be to change or update the schema for an existing version of an API or to add new versions to the API. The Kubernetes community recommends that the API version be incremented anytime there is a breaking change to an API, but backward compatible changes are acceptable. There is no enforcement of this recommendation within Kubernetes. For example, adding an optional field to an API is backward compatible, but a new mandatory field is not. Changes to CRDs affect all users of the cluster.

When a CRD is deleted from a cluster, all of the custom resources based on it are deleted as well. This applies to all users of the cluster because CRDs are cluster-wide resources. In multitenant clusters, when one tenant deletes a CRD the custom resources described by that CRD for all tenants are deleted.

CRDs work this way because they were designed to be cluster-level extensions. In a retrospective on CRDs, Brendan Burns, one of Kubernetes’ founders, described their three goals as:

	
An easy method to dynamically add new API types to Kubernetes.

	
To enable API extensibility without significant additional load on operators of Kubernetes clusters.

	
Enable an ecosystem of value add extensions to end-user clusters.

When Kubernetes API extensions were being developed, another method to extend the API was developed that required a lot more work from cluster operators and those developing extensions. CRDs simplified the experience.

CRDs are conceptually similar to kernel modules and extensions in operating
systems.

There are two Helm-based methods to managing the CRDs used by a chart. Choosing between the methods to use often depends on the requirements and environment configurations of those who need to install your charts.

First, the crds directory is a special directory you can add to a chart to hold your CRDs. Helm will install CRDs prior to installing other resources. This ensures that CRDs are available for any custom resources or controllers that may leverage them in the chart.

CRDs in the crds directory are different from other resources installed by Helm. These files are not templated. This is useful for the CRD management workflows we will cover in a moment. Helm will not upgrade or delete CRDs like it does other resources. Upgrading CRDs changes the API surface for all instances of the custom resources in the cluster, and deleting CRDs removes all of the custom resources for all users. When it comes to handling these cluster-wide changes you will need to use a companion tool, like kubectl, the command-line tool for Kubernetes.

Because CRDs change the Kubernetes API, whoever is installing your chart may not have permission to install, upgrade, or delete them. This is the case if you are bundling an application for distribution to other companies or the general public. Some cluster administrators restrict access to these functions as part of their access controls for security.

The CRDs in the crds directory can be extracted from a chart and used directly with tools like kubectl. This enables the CRDs to be passed to someone with permission to install them, if the person installing the chart doesn’t have permission. The extracted CRDs can also be used to upgrade the CRDs within a cluster using other tools.

A second, Helm-based, way to manage CRDs while providing an ordering that installs CRDs before using them through custom resources is to use a second chart that holds the CRDs. This method provides more nuanced control through Helm.

Using a second chart will let you:

	
Use Helm templates and the normal templates directory for CRDs.

	
Helm will manage the life cycle of the CRDs. That includes uninstalling and upgrades. If you want to keep the CRD installed after the chart is uninstalled, you can set the annotation "helm.sh/resource-policy": keep to tell Helm to skip uninstalling the resource.

	
If you have issues with an application and use the uninstall and reinstall method to try to fix issues, the CRDs in the separate chart will not be deleted.

This second chart can be installed with either a loose coupling, where the directions tell people to install it first, or a tight coupling, where it is set as a dependency. If the chart holding the CRDs is set as a dependency the use case should be that it is only installed once as it is setting cluster-wide resources.

When Helm is managing the CRDs, special care needs to be given for handling upgrade and delete cases. For example, if two versions of the CRD installing chart are installed, as you need to ensure an older version doesn’t overwrite a newer version and that a newer version doesn’t break the functionality for someone else in the cluster using the older version. This can happen if two people install different versions of the chart that installs CRDs. In multitenant clusters different users of the cluster may not know about each other, and it’s important to ensure that one user of the cluster does not break the workloads of another user of the cluster.

When installing and working with CRDs, the Helm developers recommend taking special care in all of the life cycle steps to make sure that users of charts don’t run into situations that accidentally break production workloads.

Conclusion

Helm charts are more than a collection of templates. They handle dependencies, can include schemas, provide an event hook mechanism, can include tests, and have features for security. These features are part of what make Helm a robust and reliable solution to the package management problem.

Chapter 7. Chart Repositories

No package manager is complete without a way to share and distribute the packages themselves. Organizations and vendors must have a way to publish packages for end users to download and consume. Likewise, end users must have a common way to fetch packages from a variety of sources.

Helm enables package distribution though a system called chart repositories. Chart repositories are simple HTTP(S) web services from which users can discover and download available charts. Conceptually, chart repositories are similar in design to Debian package repositories, Fedora package databases, or the Comprehensive Perl Archive Network (CPAN).

In this chapter, we will first dive deep into the internals of a chart repository. We will discuss the repository index and how to update it with new chart versions. After that, we will show how to set up a chart repository from scratch, how to secure one, and also show a real-world example of how to host a public chart repository using GitHub Pages for open source projects. After this, we will walk through the various helm repo commands and how to use them effectively.

Toward the end of the chapter, we will cover the next generation of chart repositories using Helm’s experimental Open Container Initiative (OCI) support. This bleeding-edge functionality added in Helm 3 allows users to store Helm charts in container registries alongside their container images.

Lastly, we will briefly describe some of the projects in the Helm ecosystem related to chart repositories.

The Repository Index

All chart repositories contain a special repository index file called index.yaml, which lists all available charts and their respective download locations.

Note

See Appendix B for more details describing the format of index.yaml.

Here’s an example of a very basic index.yaml file:

apiVersion: v1
entries:
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-27T17:46:52.60919-05:00"
 description: A Helm chart for Kubernetes
 digest: cd1f8d949aeb6a7a3c6720bfe71688d4add794881b78ad9715017581f7867db4
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-27T17:46:52.607943-05:00"

Note the entries section, which lists all charts and chart versions. This index.yaml example lists a just single chart, superapp, with a single version, 0.1.0.

An Example of a Chart Repository Index

Usually, chart repositories list many charts and all their available versions. This allows users to download a specific version of the chart they wish to install. The following is a more real-world example of a chart repository index, containing multiple charts and chart versions:

apiVersion: v1
entries:
 cert-manager:
 - apiVersion: v1
 appVersion: v0.14.2
 created: "2020-04-08T11:38:26.281Z"
 description: A Helm chart for cert-manager
 digest: 160e1bd4906855b91c8ba42afe10af2d0443b184916e4534175890b1a7278f4e
 home: https://github.com/jetstack/cert-manager
 icon: https://raw.githubusercontent.com/jetstack/cert-manager/master/logo/
 logo.png
 keywords:
 - cert-manager
 - kube-lego
 - letsencrypt
 - tls
 maintainers:
 - email: dev@jetstack.io
 name: jetstack-dev
 name: cert-manager
 sources:
 - https://github.com/jetstack/cert-manager
 urls:
 - charts/cert-manager-v0.14.2.tgz
 version: v0.14.2
 - apiVersion: v1
 appVersion: v0.14.1
 created: "2020-03-25T18:30:16.354Z"
 description: A Helm chart for cert-manager
 digest: 629150400487df41af6c7acf2a3bfd8e691f657a930bc81e1dcf3b9d23329baf
 home: https://github.com/jetstack/cert-manager
 icon: https://raw.githubusercontent.com/jetstack/cert-manager/master/logo/
 logo.png
 keywords:
 - cert-manager
 - kube-lego
 - letsencrypt
 - tls
 maintainers:
 - email: dev@jetstack.io
 name: jetstack-dev
 name: cert-manager
 sources:
 - https://github.com/jetstack/cert-manager
 urls:
 - charts/cert-manager-v0.14.1.tgz
 version: v0.14.1
 tor-proxy:
 - apiVersion: v1
 created: "2018-11-16T09:23:13.538Z"
 description: A Helm chart for Kubernetes
 digest: 1d2fd11e22ba58bf0a263c39777f0f18855368b099aed7b03123ca91e55343e4
 name: tor-proxy
 urls:
 - charts/tor-proxy-0.1.1.tgz
 version: 0.1.1
generated: "2020-04-23T17:43:41Z"

The preceding example shows two available charts: cert-manager and tor-proxy. There are a total of three available chart versions: cert-manager v0.14.1, cert-manager v0.14.2 (latest), and tor-proxy 0.1.1 (latest). The latest versions of each chart in the repo are displayed when running a helm search.

Typically chart archives (.tgz files) themselves are served from the same location as the repository index, but the index may also link to remote locations on entirely different domains. Here is a snippet from an index.yaml referencing chart archives located on a separate domain (note the absolute URL):

...
 - appVersion: 2.10.1
 created: 2019-01-14T23:25:37.125126859Z
 description: A simple, powerful publishing platform that allows you to share
 your stories with the world
 digest: dcadf39f81253a9a016fcab1b74aba1d470e015197152affdaeb1b337221cc5c
 engine: gotpl
 home: http://www.ghost.org/
 icon: https://bitnami.com/assets/stacks/ghost/img/ghost-stack-220x234.png
 keywords:
 - ghost
 - blog
 - http
 - web
 - application
 - nodejs
 - javascript
 maintainers:
 - email: containers@bitnami.com
 name: Bitnami
 name: ghost
 sources:
 - https://github.com/bitnami/bitnami-docker-ghost
 urls:
 - https://charts.example.com/ghost-6.2.3.tgz [image: 1]
 version: 6.2.3
...

	[image: 1]

	Absolute chart URL

Other fields found in each entry include the metadata for a chart as described in Chart.yaml, such as description, as well as an added digest field containing the Secure Hash Algorithm (SHA-256) checksum of the chart archive. In Chapter 4 we covered chart metadata and Chart.yaml in detail.

Additionally, at the top level is a generated field describing when the index was created (in RFC 3339 format), as well as an apiVersion describing the API version of the index. At the time of writing, there is currently only one API version for chart repositories. This field should always be v1.

Generating an Index

The repository index can be generated by a custom program, or typed out manually. Helm also provides built-in functionality to generate the repository index for you.

Let’s create an empty directory, charts/, which will serve as the root of our chart repository:

$ mkdir -p charts/

To generate a repository index inside the charts/ directory, run the following:

$ helm repo index charts/

This will create a file at charts/index.yaml. Let’s take a look:

$ cat charts/index.yaml
apiVersion: v1
entries: {}
generated: "2020-04-28T09:55:29.517285-05:00"

You’ll notice that the entries are empty. This is expected because we do not yet have any charts in the charts/ directory.

Let’s create a sample chart, and package it into the charts/ directory:

$ helm create superapp
Creating superapp
$ helm package superapp/ --destination charts/
Successfully packaged chart and saved it to: charts/superapp-0.1.0.tgz

Now let’s try generating the index again:

$ helm repo index charts/
$ cat charts/index.yaml
apiVersion: v1
 entries:
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00"
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T10:12:22.507289-05:00"

Now we see our chart listed in the entries section.

Adding to an Existing Index

In some scenarios (continuous integration/continuous deployment [CI/CD], for example), you may only have access to an existing index.yaml file and a newly packaged chart archive. Helm provides a mechanism for building upon the contents of an existing index with the --merge option.

Let’s simulate this scenario. Create a new directory called workspace/, which will represent a new working directory in a CI/CD pipeline:

$ mkdir -p workspace/

Copy the existing index file into the workspace/ directory with a new name, such as index-old.yaml:

$ cp charts/index.yaml workspace/index-old.yaml

In a real-world scenario, you might source the existing index file from some remote location (e.g., Amazon S3).

Next let’s create another Helm chart and package it into the workspace/ directory:

$ helm create duperapp
Creating duperapp
$ helm package duperapp/ --destination workspace/
Successfully packaged chart and saved it to: workspace/duperapp-0.1.0.tgz

Run the following command, which will create a new index.yaml file based on the combination of the existing entries found in index-old.yaml, as well as any .tgz files in the workspace/ directory:

$ helm repo index workspace/ --merge workspace/index-old.yaml

Finally, move the files from the workspace/ directory into the charts/ directory, overwriting the old index file with the new one:

$ mv workspace/duperapp-0.1.0.tgz charts/
$ mv workspace/index.yaml charts/

The new version of the index file should now contain entries for both charts:

$ cat charts/index.yaml
apiVersion: v1
entries:
 duperapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T11:34:26.780267-05:00"
 description: A Helm chart for Kubernetes
 digest: 30ea14a4ce92e0d1aea7626cb30dfbac68a87dca360d0d76a55460b004d62f52
 name: duperapp
 type: application
 urls:
 - duperapp-0.1.0.tgz
 version: 0.1.0
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00"
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672
 name: superapp
 type: application
 urls:
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T11:34:26.779758-05:00"

This method is useful in environments where you do not necessarily have access to a directory containing all of the chart archives.

Keep in mind, however, that if this merge occurs on multiple systems at the same time, you may run into a race condition where one or more charts goes missing from the index. This can be mitigated by ensuring that this process is only performed synchronously (e.g., a single CI job responsible for creating index.yaml for the repository). Another way to address this problem is to use a dynamic web server that is responsible for generating the contents of index.yaml. The ChartMuseum project, which is described later in this chapter in “Related Projects”, is one such example of a dynamic chart repository server you can use for this purpose.

Setting Up a Chart Repository

One of the benefits of chart repositories is that they can be entirely static—meaning you can place the files behind a simple web server such as Apache or Nginx and serve them as is. You can even use object storage providers, such as Amazon S3. No significant computation needs to occur on the server side when a client requests index.yaml, for example. The static web server just opens the file as it exists on the filesystem and sends the raw contents back to the client.

A Simple Chart Repository with Python

For the sake of this example, we will use Python’s built-in static web server to start up a local test repository. Note that almost all programming languages have some support in their standard libraries to start a web server and serve static files. Python is chosen simply because it comes preinstalled on most Unix-based systems, and because it provides an easy one-line command to start a static web server.

Follow the instructions in the previous section (“Generating an Index”) to create the charts/ directory, containing the files index.yaml, superapp-0.1.0.tgz, and duperapp-0.1.0.tgz. Run one of the following commands to start a local web server at http://localhost:8080.

Using Python 3 (try this first):

$ (cd charts/ && python3 -m http.server --bind 127.0.0.1 8080)

Using Python 2:

$ (ch charts/ && python -m SimpleHTTPServer 8080)

Caution

The Python 2 version of this command listens on all interfaces (0.0.0.0) versus just the loopback interface (127.0.0.1). Depending on your system, this will allow other devices on your network to connect. Be mindful of which files are present in the charts/ directory before running this command.

Now, in another terminal window, try fetching index.yaml using curl:

$ curl -sO http://localhost:8080/index.yaml
$ ls *.yaml
index.yaml

Now let’s verify that we can fetch chart archives:

$ curl -sO http://localhost:8080/superapp-0.1.0.tgz
$ curl -sO http://localhost:8080/duperapp-0.1.0.tgz
$ ls *.tgz
duperapp-0.1.0.tgz	superapp-0.1.0.tgz

If the curl commands succeed, your chart repository is ready to be used with Helm.

Securing a Chart Repository

In many cases, you may wish to limit access to a chart repository or maintain an audit trail of which users are accessing which resources. Helm has built-in support to allow users to authenticate themselves against chart repositories protected by either basic auth or mTLS.

Basic auth

Chart repositories can be protected by basic access authentication, or basic auth. This requires that users provide a valid username/password combination to access resources on the server.

Basic auth can be implemented by a server by first checking the Authorization header prior to processing a request. An incoming basic auth header resembles the following:

Authorization: Basic bXl1c2VyOm15cGFzcw== [image: 1]

	[image: 1]

	The opaque string here is the Base64 encoding of username + “:” + password.

Caution

The contents of the Authorization header are not encrypted, so you are strongly encouraged to also use HTTPS when supplying basic auth credentials.

When adding a repository for the first time, you can supply a username and password combination on the command line, which will instruct Helm to use basic auth when making requests against this repository:

$ helm repo add mycharts http://localhost:8080 --username myuser \
 --password mypass
"mycharts" has been added to your repositories

Client certificates

Most client-server communication over HTTPS allows the client to verify the identity of the server based on the SSL certificate provided by the server. With mutual TLS authentication (mTLS), servers can also verify the identity of the client based on a separate SSL certificate presented by the client during the TLS handshake.

Here is a simple Nginx server configuration enabling mTLS for a chart repository, assuming static files (i.e., index.yaml, .tgz files) are located in the directory /chartrepo on the server:

events { }
http {
 server {
 root /chartrepo;
 listen 443 ssl;
 server_name charts.example.com;
 ssl_certificate /certs/server.crt; [image: 1]
 ssl_certificate_key /certs/server.key; [image: 2]
 ssl_client_certificate /certs/client-ca.pem; [image: 3]
 ssl_verify_client on;
 proxy_set_header SSL_CLIENT_CERT $ssl_client_cert;
 }
}

	[image: 1]

	Server’s SSL certificate

	[image: 2]

	Server’s private key

	[image: 3]

	Certificate authority (CA) for client authentication—only requests from clients with a certificate signed by this CA will be accepted

The first step in obtaining a client certificate is to generate a new private key and certificate signing request (CSR):

$ mkdir -p ~/client-certs/
$ cd ~/client-certs/
$ openssl genrsa -out francis.key 4096
$ openssl req -new -key francis.key -out francis.csr

When prompted for a “Common Name” when generating the CSR, you must enter a value. Use something that identifies the client (e.g., “francis”). Other fields can technically be left blank, although you are encouraged to fill them out.

Next, using the certificate authority configured on the server (client-ca.pem) and the associated private key (client-ca.key), generate a new client certificate from the CSR:

$ openssl x509 -req -in francis.csr \
 -CA /certs/client-ca.pem -CAkey /certs/client-ca.key \
 -out francis.crt -sha256

Now you can use this certificate to authenticate by specifying the --cert-file and
--key-file options upon adding a new chart repository:

$ helm repo add client-cert-repo https://charts.example.com \
 --cert-file ~/client-certs/francis.crt --key-file ~/client-certs/francis.key
"client-cert-repo" has been added to your repositories

In the case that your server is using a self-signed certificate, you can also specify the --ca-file option pointing to a trusted certificate or certificate bundle:

$ helm repo add client-cert-repo-selfsigned https://charts.example.com \
 --cert-file ~/client-certs/francis.crt --key-file ~/client-certs/francis.key
 --ca-file /certs/server.crt
"client-cert-repo-selfsigned" has been added to your repositories

Note

The paths used for --cert-file, --key-file, and --ca-file are all stored in the Helm cache tied to the repository. It is important not to move these files; otherwise, future requests to the repository will fail due to missing files needed for the client to authenticate.

For more information on mTLS, please see Internet Engineering Task Force (IETF) RFC 8446, “The Transport Layer Security (TLS) Protocol Version 1.3.”

Real-World Example: Using GitHub Pages

GitHub has a free, static hosting solution called GitHub Pages. If you don’t mind making your charts public to the world, GitHub Pages is a great option for hosting a chart repository as you incur zero cost.

What’s even better is that GitHub Pages allows you to use a custom domain name that points to your GitHub Pages site. In this section we will show how to easily set up a public Helm chart repository using GitHub Pages.

There are some limitations on GitHub Pages (such as bandwidth), so before using this method, enumerate the performance requirements for your chart repository compared to GitHub’s documentation of GitHub Pages’ features.

Create a new Git repo

The first step is to create a brand-new Git repo on GitHub dedicated to your chart repository. You could technically host the chart repo alongside other content, but for the sake of simplicity, we will use a dedicated Git repo. Figure 7-1 shows how to set up a new repository.

[image: GitHub Pages]
Figure 7-1. Creating a new public repository in GitHub

Once you’re logged in to GitHub, click the top right of the screen and select “New repository.” Name the Git repo whatever you want. We will use the name mycharts for this example. Make sure to select the option for marking the repository as “Public,” which is a prerequisite for using GitHub Pages. Select the box for “Initialize this repository with a README,” which will allow us to clone the repo immediately. Feel free to select a license such as “MIT License” to indicate that the source code in this repo is free to use and repurpose. Finally, click “Create repository.”

Note

It’s important to note in this context the difference between a Helm repo (or chart repository) and a Git repo hosted on GitHub, which is used for version control.

Enable GitHub Pages

Navigate to the Settings panel on the repository. In the main settings, scroll down to the section titled GitHub Pages (see Figure 7-2). For the Source option, select “main branch.” This will cause GitHub to redeploy your GitHub Pages site every time you make a new commit to the main branch. Click Save.

[image: GitHub Pages]
Figure 7-2. Enabling GitHub Pages on your repository

Optional: Use a custom domain

Sites on GitHub Pages, by default, are hosted as a subdomain on the github.io domain. For example, the URL to your site would resemble something like https://yourusername.github.io/mycharts/.

If you have a custom domain name to use, in your registrar’s web console (or alternatively, in the console for the service you have set up to use for your authoritative nameservers), create a new DNS record pointing to yourusername.github.io. If using the root domain, use an ALIAS record type; otherwise, for subdomains, use a CNAME record type.

Go back to your repository settings in GitHub. As in Figure 7-3, in the “Custom domain” input, enter your domain that you set up a DNS record for.

[image: GitHub Pages, 500]
Figure 7-3. Using a custom domain for GitHub Pages

It may take up to an hour for GitHub to generate a TLS certificate for your domain. Once it is ready, you should see some text displayed in the settings such as “Your site is published at https://example.com.” Once you see this, make sure to enable the Enforce HTTPS option so that your site is only ever accessed over HTTPS versus just plain HTTP.

Adding chart repository files

Locate the clone URL for your repo in the GitHub UI (typically on the right side of the screen). Clone your new GitHub repository to your local system so that we can add some files to turn it into a real chart repository:

$ git clone git@github.com:youruser/mycharts.git
Cloning into 'mycharts'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 7 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.

Enter the directory of your Git repository:

$ cd mycharts/

Next, let’s create a chart called pineapple in a new src/ directory, package it into an archive in the root of the repo, and create an index.yaml file:

$ mkdir -p src/
$ helm create src/pineapple
Creating src/pineapple
$ helm package src/pineapple/
Successfully packaged chart and saved it to: /home/user/mycharts/
 pineapple-0.1.0.tgz
$ helm repo index .

Once that’s done, let’s commit and push all these new files back to GitHub:

$ git add .

$ git commit -m "Add pineapple chart v0.1.0"
[main 9bba19d] Add pineapple chart v0.1.0
 13 files changed, 395 insertions(+)
 create mode 100644 index.yaml
 create mode 100644 pineapple-0.1.0.tgz
 create mode 100644 src/pineapple/.helmignore
 create mode 100644 src/pineapple/Chart.yaml
 create mode 100644 src/pineapple/templates/NOTES.txt
 create mode 100644 src/pineapple/templates/_helpers.tpl
 create mode 100644 src/pineapple/templates/deployment.yaml
 create mode 100644 src/pineapple/templates/hpa.yaml
 create mode 100644 src/pineapple/templates/ingress.yaml
 create mode 100644 src/pineapple/templates/service.yaml
 create mode 100644 src/pineapple/templates/serviceaccount.yaml
 create mode 100644 src/pineapple/templates/tests/test-connection.yaml
 create mode 100644 src/pineapple/values.yaml

$ git push origin main
Enumerating objects: 20, done.
Counting objects: 100% (20/20), done.
Delta compression using up to 12 threads
Compressing objects: 100% (17/17), done.
Writing objects: 100% (19/19), 9.29 KiB | 4.64 MiB/s, done.
Total 19 (delta 0), reused 0 (delta 0)
To github.com:youruser/mycharts.git
 4964b76..9bba19d main -> main

Go back to GitHub in the browser. There is a small delay between the time you push a change and those changes becoming avaiable on your GitHub Pages site. Click the Environments item in the right sidebar. This will tell you the last time your site was deployed. If you see a reference to the commit you just pushed (9bba19d in the preceding example), your GitHub Pages site is ready to use.

Using your GitHub Pages site as a chart repository

Once you have pushed an index.yaml file up to your Git repo, and the site is live with the latest commit, you can use it exactly as you would any other chart repository.

Add your GitHub Pages chart repository to your local repositories:

$ helm repo add gh-pages https://yourusername.github.io/mycharts/

Or, if you’re using a custom domain:

$ helm repo add gh-pages https://example.com

Using Chart Repositories

Once you have a working chart repository (see previous section), you can then leverage it using the Helm CLI.

Several commands are available under the top-level helm repo subcommand for working with chart repositories. This section will focus on how to use each of these commands effectively.

Adding a Repository

The very first step in using a chart repository is to assign a unique name to it (such as mycharts) and add it to a list of repositories known by Helm. When you first add a repository, Helm fetches index.yaml from the URL provided and stores it locally.

Use the helm repo add command to add your repository:

$ helm repo add mycharts http://localhost:8080
"mycharts" has been added to your repositories

If you are running the Python example, check out the logs for your chart repository and you should see the incoming request for GET /index.yaml:

127.0.0.1 - - [06/May/2020 15:31:07] "GET /index.yaml HTTP/1.1" 200 -

Downloading Charts

To download a chart directly from a repository, use the helm pull command:

$ helm pull mycharts/superapp

Helm will automatically find the latest version based on Semantic Versioning. You can also specify a version:

$ helm pull mycharts/superapp --version 0.1.0

This will result in a new chart archive (.tgz file) in your workspace:

$ ls *.tgz
superapp-0.1.0.tgz

This archive can be then be installed directly:

$ helm install superapp-dev superapp-0.1.0.tgz

You can also install charts directly from added repositories:

$ helm install superapp-dev mycharts/superapp

Listing Repositories

It’s oftentimes helpful to know which chart repositories have already been added on your system. Knowing this may help you decide whether you want to use one of them to download charts or to remove one of them from the system completely.

Use the helm repo list command to list all chart repositories added to your system:

$ helm repo list
NAME 	URL
mycharts	http://localhost:8080

You can also leverage the --output / -o option to get this in machine-readable format, if needed.

Get the list as YAML by adding -o yaml:

$ helm repo list -o yaml
- name: mycharts
 url: http://localhost:8080

Get the list as JSON by adding -o json:

$ helm repo list -o json
[{"name":"mycharts","url":"http://localhost:8080"}]

Updating Repositories

Once new chart versions are released, repository owners add the .tgz package to the repo storage and update index.yaml with a new entry.

In order to fetch the latest version of the repository index, use the helm repo update command:

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "mycharts" chart repository
Update Complete. Happy Helming!

If you are running the Python example, once again, you should notice an incoming request for GET /index.yaml in the output logs from your chart repository:

127.0.0.1 - - [06/May/2020 15:31:07] "GET /index.yaml HTTP/1.1" 200 -

Whether or not the repository index has changed contents (we haven’t added any more charts to myrepo), the file is fetched and downloaded into the cache, overwriting the previously saved version.

Removing a Repository

In order to remove a repository, you can use helm repo remove:

$ helm repo remove mycharts
"mycharts" has been removed from your repositories

This will remove all references to this repository stored in the Helm cache.

Experimental OCI Support

Warning

Helm’s OCI support is still considered highly experimental. While development in this area is still active, the syntax described in this section may soon become outdated.

The chart repository system was designed to be easy to use. In most cases, this system has proven to be sufficient—enabling organizations around the globe to share and distribute their Helm charts.

Chart repositories do, however, present a few key challenges:

	
They have no concept of namespaces; all charts for a repo are listed in a single index

	
They have no fine-grained access control; you either have access to all charts in the repo or none of them

	
Chart packages with different names but the exact same raw contents are stored twice

	
The repository index can become extremely large, causing Helm to consume a lot of memory

Rather than trying to add features to address all of these issues with the current chart repository model, it made much more sense to build the next generation of chart repositories on top of registries that conform to the OCI Distribution Specification.

OCI stands for the Open Container Initiative. Taken from the website at https://opencontainers.org, OCI is defined as the following:

An open governance structure for the express purpose of creating open industry standards around container formats and runtimes.

One of the standards defined by OCI is the distribution specification. This spec describes an HTTP API used for distributing container images. Interestingly enough, this API is general-purpose and can apply to all sorts of things that aren’t container images—things such as Helm charts!

Starting in Helm 3.0.0, experimental support was added to push and pull charts to and from OCI-based container registries.

History of the OCI Distribution Spec

Docker introduced its own container engine in 2013, which was challenged in 2014 by CoreOS when it introduced rkt, an alternative engine with an open standard. Fun fact: the concept of the Kubernetes Pod comes directly from rkt. In an effort to bridge the divide, the Open Container Initiative was formed in 2015 to collaborate on open standards for container runtimes and images.

Meanwhile, Docker had also been working on v2 of its registry API. If you have ever used docker pull or docker push, the underlying HTTP calls are based upon this API. Docker registries began to see massive industry adoption, giving birth to companies such as Quay.io. Cloud providers such as Amazon Web Services began offering their own hosted options.

In 2018, Docker donated its registry v2 specification to OCI under the name distribution spec, enabling a broader community to continue to build on top of Docker’s efforts. The spec continues to evolve today as a general-purpose storage solution with a strong API.

Enabling OCI Support

At the time of writing, Helm’s OCI support is still considered experimental.

For now, set the following in your environment to enable OCI support:

$ export HELM_EXPERIMENTAL_OCI=1

Running a Local Registry

The Docker Distribution project (also known as the Docker registry) was the original implementation of Docker’s Registry v2 API. It supports Helm charts out of the box.

If you have docker installed, you can easily run a local registry in a container on port 5000 with the following command:

$ docker run -d --name oci-registry -p 5000:5000 registry

To tail the logs for you registry, run the following (press Ctrl-C to exit):

$ docker logs -f oci-registry

To stop your registry, run the following:

$ docker rm -f oci-registry

The Docker registry has several configuration options related to authentication, storage, etc.

If you wish to configure basic auth with a single username-password combo, first create a .htpasswd file:

$ htpasswd -cB -b auth.htpasswd myuser mypass

Then start the registry, mounting the .htpasswd file and setting the REGISTRY_AUTH environment variable:

$ docker run -d --name oci-registry -p 5000:5000 \
 -v $(pwd)/auth.htpasswd:/etc/docker/registry/auth.htpasswd \
 -e REGISTRY_AUTH="{htpasswd: {realm: localhost, path: /etc/docker/registry \
 auth.htpasswd}}" registry

For more information about Docker Distribution, visit the project GitHub page.

Logging In to a Registry

In order to authenticate against a registry, use the helm registry login command (you will be prompted to manually enter a password):

$ helm registry login -u myuser localhost:5000
Password:
Login succeeded

This makes a simple GET request to the path /v2/ on the registry using the credentials to determine if they are valid. If they are, the credentials will be stored in a Helm config file. If you have any Docker credential stores enabled (such as osxkeychain on macOS), the username and password will be stored there securely.

Note

The example of running a local registry at localhost:5000 uses no authentication. If you haven’t enabled authentication on your registry, any combination of login credentials will be accepted.

Logging Out of a Registry

In order to remove credentials for a given registry from your system, use the helm registry logout command:

$ helm registry logout localhost:5000
Logout succeeded

Storing a Chart in the Cache

Prior to uploading a chart to a registry, you must first save it into the cache. This converts a chart from its normal state into content-addressable blobs and also gives it a unique identifier.

Use helm chart save to store a chart in the cache:

$ helm chart save mychart/ localhost:5000/myrepo/mychart
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
2.7.0: saved

Notice that the tag used on the chart reference is based upon the chart’s version in Chart.yaml (2.7.0).

You can also use a custom tag, such as stable, by specifying it after a colon (:) on the chart reference:

$ helm chart save mychart/ localhost:5000/myrepo/mychart:stable
ref: localhost:5000/myrepo/mychart:stable
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
stable: saved

Listing Charts in the Cache

Use helm chart list to display all charts currently stored in the cache:

$ helm chart list
REF VERSION DIGEST SIZE
localhost:5000/myrepo/mychart:2.7.0 2.7.0 84059d7 454 B
localhost:5000/stable/acs-engine-autoscaler:2.2.2 2.2.2 d8d6762 4.3 KiB
localhost:5000/stable/aerospike:0.2.1 0.2.1 4aff638 3.7 KiB
localhost:5000/stable/airflow:0.13.0 0.13.0 c46cc43 28.1 KiB
localhost:5000/stable/anchore-engine:0.10.0 0.10.0 3f3dcd7 34.3 KiB

Exporting a Chart from the Cache

If you wish to extract the source files of a chart once it is in the cache, it must first be exported to a local directory. Use the helm chart export command to export the chart:

$ helm chart export localhost:5000/myrepo/mychart:2.7.0
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
Exported chart to mychart/

The name of the chart will be used to determine the output path (e.g., mychart/).

Pushing a Chart to the Registry

Pushing (a.k.a. uploading) a chart to the registry allows for it to be used by others. Once you are already logged in to the registry and the chart you want to push has been saved to the cache, use the helm chart push command to push a chart:

$ helm chart push localhost:5000/myrepo/mychart:2.7.0
The push refers to repository [localhost:5000/myrepo/mychart]
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
2.7.0: pushed to remote (1 layer, 2.4 KiB total)

Pulling a Chart from the Registry

Once charts have been pushed to a registry, other users can then pull (a.k.a. download) them. Pulling charts from a registry places them into the local cache. To pull an existing chart from a registry, use the helm chart pull command:

$ helm chart pull localhost:5000/myrepo/mychart:2.7.0
2.7.0: Pulling from localhost:5000/myrepo/mychart
ref: localhost:5000/myrepo/mychart:2.7.0
digest: 1b251d38cfe948dfc0a5745b7af5ca574ecb61e52aed10b19039db39af6e1617
size: 2.4 KiB
name: mychart
version: 2.7.0
Status: Downloaded newer chart for localhost:5000/myrepo/mychart:2.7.0

Removing a Chart from the Cache

To remove a chart from the local cache, use the helm chart remove command:

$ helm chart remove localhost:5000/myrepo/mychart:2.7.0
2.7.0: removed

Related Projects

Helm’s chart repository system has spawned a collection of open source tools to further enhance this experience. The following subsections cover some of the projects related to chart repositories.

ChartMuseum

Project homepage: https://github.com/helm/chartmuseum

ChartMuseum is a simple chart repository web server. Configure it to point to a storage location containing chart packages and it will dynamically generate index.yaml. It also exposes an HTTP API for uploading, querying, and deleting chart packages from storage. Additionally, it has a number of other configuration settings for auth, multitenancy, and caching that make it a popular choice for users hosting private or internal chart repositories.

ChartMuseum’s Supported Backends

ChartMuseum supports a wide array of storage backends, including the following:

	
Alibaba Cloud OSS Storage

	
Amazon S3

	
Baidu Cloud BOS Storage

	
DigitalOcean Spaces

	
etcd

	
Google Cloud Storage

	
Local filesystem

	
Microsoft Azure Blob Storage

	
Minio

	
Netease Cloud NOS Storage

	
Openstack Object Storage

	
Oracle Cloud Infrastructure Object Storage

	
Tencent Cloud Object Storage

Harbor

Project homepage: https://github.com/goharbor/harbor

Harbor is a full-featured registry with added security and management features. It provides a UI for Helm charts and leverages ChartMuseum on the backend as a multitenant chart respository. It also provides support for Helm’s experimental OCI feature set.

Similar to Helm, Harbor is a graduated, top-level CNCF project.

Chart Releaser

Project homepage: https://github.com/helm/chart-releaser

Chart Releaser, or cr, is a command-line tool that leverages GitHub releases for hosting chart packages. It has the ability to detect charts in a Git repo, package them, and upload each of them as artifacts to GitHub releases named after the unique chart
version.

Once charts have been uploaded using cr, the tool can also be used to generate an index.yaml file based on the contents of GitHub releases and associated artifacts. This repository index can then be hosted statically, on GitHub Pages or elsewhere.

S3 Plugin

Project homepage: https://github.com/hypnoglow/helm-s3

The S3 plugin is a Helm plugin that allows you to use a private Amazon S3 bucket as a chart repository.

GCS Plugin

Project homepage: https://github.com/hayorov/helm-gcs

The GCS plugin is a Helm plugin that allows you to use a private Google Cloud Storage bucket as a chart repository.

Git Plugin

Project homepage: https://github.com/aslafy-z/helm-git

The Git plugin is a Helm plugin that allows you to use a Git repository containing chart source files as a chart repository. It supports subpaths, custom references, and both HTTPS and SSH Git URLs.

Chapter 8. Helm Plugins and Starters

As we’ve seen throughout this book, Helm has plenty of features and methods that aid in delivering applications on Kubernetes. However, it is also possible to customize and extend the functionality provided by Helm.

In this chapter we will discuss two ways to further enhance and customize your usage of Helm: plugins and starters.

Plugins allow you to add extra functionality to Helm and integrate seamlessly with the CLI, making them a popular choice for users with unique workflow requirements. There are a number of third-party plugins available online for common use cases, such as secrets management. In addition, plugins are incredibly easy to build on your own for unique, one-off tasks.

Starters expand the possibilities of using helm create to generate new Helm charts for different types of applications. For example, you might have a Helm chart built for an internal microservice that fits perfectly as an example for future microservices. You could convert the chart into a starter, which you can then use each time you begin a new project with similar requirements.

By leveraging plugins and starters, we can build on top of Helm’s out-of-the-box functionality to simplify and automate everyday workflow tasks.

Plugins

Helm plugins are external tools that are accessible directly from the Helm CLI. They allow you to add custom subcommands to Helm without making any modifications to Helm’s Go source code. This is similar in design to how plugin systems are implemented in other tools, such as kubectl (the Kubernetes CLI).

Additionaly, downloader plugins allow you to specify a custom protocol for communicating with chart repositories. This can be useful if you have some custom authentication method, or if you need to somehow modify the method in which Helm fetches charts from repositories

Installing Third-Party Plugins

Many third-party plugins are made open source and publicly available on GitHub. Many of these plugins use the “helm-plugin” tag/topic to make them easy to find. Refer to the documentation for Helm plugins on GitHub.

Sample Publicly-Available Plugins

Here are just a few of the Helm plugins you can find on GitHub:

	helm/helm-2to3

	
Plugin for converting Helm 2 releases to Helm 3 releases in place

	jkroepke/helm-secrets

	
Plugin for effectively managing secrets in YAML format

	maorfr/helm-backup

	
Plugin to backup/restore Helm releases to/from a text file

	karuppiah7890/helm-schema-gen

	
Plugin to generate values.schema.json based on values.yaml (see Chapter 6 for more info on schematized values)

	hickeyma/helm-mapkubeapis

	
Plugin to update Helm release metadata that contains deprecated Kubernetes APIs

Once you have found a plugin to install, obtain its version control URL. This will be used as the means of obtaining the correct version of plugin.yaml and the rest of the plugin source code.

Git, SVN, Bazaar (Bzr), and Mercurial (Hg) URLs are currently supported. For Git, the version control URL looks something like https://example.com/myorg/myrepo.git.

For example, there is a simple plugin for managing Helm starters located in a git repo at https://github.com/salesforce/helm-starter. The version control URL for this plugin is https://github.com/salesforce/helm-starter.git.

To install this plugin, run helm plugin install passing the version control URL as the first argument:

$ helm plugin install https://github.com/salesforce/helm-starter.git
Installed plugin: starter

If the installation succeeds, you can proceed to use the plugin:

$ helm starter --help
Fetch, list, and delete helm starters from github.

Available Commands:
 helm starter fetch GITURL Install a bare Helm starter from Github
 (e.g., git clone)
 helm starter list List installed Helm starters
 helm starter delete NAME Delete an installed Helm starter
 --help Display this text

To list all installed plugins, use the helm plugin list command:

$ helm plugin list
NAME 	VERSION	DESCRIPTION
starter	1.0.0 	This plugin fetches, lists, and deletes helm starters from github.

To attempt to update the plugin, use the helm plugin update command:

$ helm plugin update starter
Updated plugin: starter

If you wish to the uninstall the plugin from your system, use the helm plugin remove command:

$ helm plugin remove starter
Uninstalled plugin: starter

Unless otherwise specified, Helm will use the plugin.yaml and source code located on the default branch of the Git repo when installing a plugin. If you wish to specify a Git tag to use, use the --version flag on install:

$ helm plugin install https://github.com/databus23/helm-diff.git --version v3.1.0

It is also possible to install plugins directly from a tarball URL. Helm will download the tarball and unpack it into the plugins directory:

$ helm plugin install https://example.com/archives/myplugin-0.6.0.tar.gz

In addition, you can install a plugin from a local directory:

$ helm plugin install /path/to/myplugin

Instead of copying the files, Helm will create symlinks to the original files:

$ ls -la "$(helm env HELM_PLUGINS)"
total 8
drwxrwxr-x 2 myuser myuser 4096 Jul 3 21:49 .
drwxrwxr-x 4 myuser myuser 4096 Jul 1 21:38 ..
lrwxrwxrwx 1 myuser myuser 21 Jul 3 21:49 myplugin -> /path/to/myplugin

This might be useful, for example, if you are actively developing a plugin. Making changes to plugin.yaml and other source files will be recognized immediately when invoking a symlinked plugin.

Custom Subcommands

Plugins have a number of useful features that enable seemless integration with the existing Helm user experience. Probably the most notable feature of Helm plugins is that each plugin supplies Helm with a custom, top-level subcommand. These subcommands even have the ability to leverage shell completion (covered later in this chapter).

A Bit of Helm Plugin History

One of the original features of Helm plugins was that they were provided with environment settings for connecting to Tiller, the deprecated Helm server-side component that existed in Helm 2. This was an important concept for plugin subcommands that needed to integrate closely with Helm, since anything involving Helm releases needed to route through Tiller.

In Helm 3, Tiller has been removed, and all communication to the Kubernetes API is performed by the Helm client itself. The plugin system, however, has remained.

Once a plugin is installed, a new command will become available for you to use based on the plugin’s name. This new command integrates directly with Helm and will even show up in helm help.

For example, let’s say we have a plugin installed called inspect-templates that gives us extra information about the YAML templates found within a chart. This plugin will provide you with an extra Helm command:

$ helm inspect-templates [args]

This will execute the inspect-templates plugin, passing along any arguments or flags provided to the underlying tool that the plugin executes upon invocation. The author of the plugin specifies some command that Helm should run as a subprocess each time the plugin is invoked (more info on how to specify this in “Building a Plugin”).

Plugins offer a happy alternative to augment Helm’s existing feature set without the need to make any modifications to Helm itself.

Building a Plugin

Building a Helm plugin is a fairly straightforward process. Depending on the requirements and overall complexity of the plugin, it may require some programming knowledge; however, many plugins run just a basic shell command.

The underlying implementation

Consider the following Bash script, inspect-templates.sh, the underlying implementation for our example inspect-templates plugin:

#!/usr/bin/env bash
set -e

First argument on the command line, a relative path to a chart directory
CHART_DIRECTORY="${1}"

Fail if no chart directory provided or is invalid
if [["${CHART_DIRECTORY}" == ""]]; then
 echo "Usage: helm inspect-templates <chart_directory>"
 exit 1
elif [[! -d "${CHART_DIRECTORY}"]]; then
 echo "Invalid chart directory provided: ${CHART_DIRECTORY}"
 exit 1
fi

Print a summary of the chart's templates
cd "${CHART_DIRECTORY}"
cd templates/
echo "----------------------"
echo "Chart template summary"
echo "----------------------"
echo ""
total="$(find . -type f -name '*.yaml' -maxdepth 1 | wc -l | tr -d '[:space:]')"
echo " Total number: ${total}"
echo ""
echo " List of templates:"
for filename in $(find . -type f -name '*.yaml' -maxdepth 1 | sed 's|^\./||'); do
 kind=$(cat "${filename}" | grep kind: | head -1 | awk '{print $2}')
 echo " - ${filename} (${kind})"
done
echo ""

This script is what Helm will execute behind the scenes when a user runs helm inspect-templates.

Note

Underlying plugin implementations are not required to be written in Bash, Go, or any specific programming language. To the end-user of this plugin, it should appear to be just another part of the Helm CLI.

The plugin manifest

Each plugin is defined by a YAML file called plugin.yaml. This file contains plugin metadata and information regarding what command to run when the plugin is invoked.

Here’s a basic example of plugin.yaml for the inspect-templates plugin:

name: inspect-templates [image: 1]
version: 0.1.0 [image: 2]
description: get a summary of a chart's templates [image: 3]
command: "${HELM_PLUGIN_DIR}/inspect-templates.sh" [image: 4]

	[image: 1]

	The name of the plugin.

	[image: 2]

	The version of the plugin.

	[image: 3]

	A basic description of the plugin.

	[image: 4]

	The command to run when this plugin is invoked.

Manual installation

First check the configured path for the plugin storage root directory:

$ HELM_PLUGINS="$(helm env HELM_PLUGINS)"
$ echo "${HELM_PLUGINS}"
/home/myuser/.local/share/helm/plugins

Using a Custom Root Directory for Plugins

The root directory for plugins can be overridden by providing a custom path for the HELM_PLUGINS environment variable in the current environment.

Create a directory matching the name of the plugin (inspect-templates) inside the plugin storage root directory:

$ PLUGIN_ROOT="${HELM_PLUGINS}/inspect-templates"
$ mkdir -p "${PLUGIN_ROOT}"

Next, copy over plugin.yaml and inspect-templates.sh to the new directory, and make sure the script is executable:

$ cp plugin.yaml "${PLUGIN_ROOT}"
$ cp inspect-templates.sh "${PLUGIN_ROOT}"
$ chmod +x "${PLUGIN_ROOT}/inspect-templates.sh"

The end result

Here’s what our inspect-templates plugin looks like in action:

$ helm inspect-templates
Usage: helm inspect-templates <chart_directory>
Error: plugin "inspect-templates" exited with error

$ helm inspect-templates nonexistant/
Invalid chart directory provided: nonexistant/
Error: plugin "inspect-templates" exited with error

$ helm create mychart
Creating mychart

$ helm inspect-templates mychart/

Chart template summary

 Total number: 5

 List of templates:
 - serviceaccount.yaml (ServiceAccount)
 - deployment.yaml (Deployment)
 - service.yaml (Service)
 - hpa.yaml (HorizontalPodAutoscaler)
 - ingress.yaml (Ingress)

Notice how the command-line arguments provided (i.e., mychart/) are passed directly to the script. This makes it easy for plugin authors to build standalone tools that accept any number of arguments or custom flags.

plugin.yaml

plugin.yaml is the name of the plugin manifest file that describes a plugin, its invocation command, and other important details.

Here is an example plugin.yaml that contains all possible options you can specify for your plugin:

name: myplugin [image: 1]
version: 0.3.0 [image: 2]
usage: "helm myplugin --help" [image: 3]
description "a plugin that belongs to me" [image: 4]
platformCommand: [image: 5]
 - os: windows
 arch: amd64
 command: "bin/myplugin.exe"
command: "bin/myplugin" [image: 6]
ignoreFlags: false [image: 7]
hooks: [image: 8]
 install: "scripts/install-hook.sh"
 update: "scripts/update-hook.sh"
 delete: "scripts/delete-hook.sh"
downloaders: [image: 9]
 - command: "bin/myplugin-myp-downloader"
 protocols:
 - "myp"
 - "myps"

	[image: 1]

	The name of the plugin.

	[image: 2]

	The plugin version.

	[image: 3]

	The usage instructions for this plugin.

	[image: 4]

	A description of the plugin.

	[image: 5]

	Platform-specific commands. If a client matches an os/arch combo, run that command instead of the default one.

	[image: 6]

	Command to run when this plugin is invoked.

	[image: 7]

	Whether or not to supress Helm global flags passed (such as --debug) when passed as arguments to the plugin.

	[image: 8]

	Plugin hooks (see “Hooks”).

	[image: 9]

	Downloaders and associated protocols (see “Downloader Plugins”).

The name of the plugin will be the subcommand used to invoke this plugin from the Helm CLI (e.g., helm myplugin). Due to this, plugin names should not match any existing Helm subcommands (install, repo, etc.). The name can only contain the characters a–z, A–Z, 0–9, _, and -.

The plugin version should be a valid SemVer 2 version.

The usage and description for the plugin will be displayed when you run helm help and helm help myplugin. However, the plugin itself must handle its own flag parsing for things like helm myplugin --help.

The command is what Helm will execute in a subprocess when this plugin is invoked. If a section for platformCommands is defined, Helm will first check if the system matches the provided os (operating system) and arch (architecture), and if so, Helm will instead use the command defined in the matching entry. The arch field is optional, and if missing, just the os will be checked.

Here is the exact order in which Helm determines which command to run when a plugin is invoked, based on the contents of plugin.yaml and the runtime environment:

	
If platformCommand is present, it will be searched first.

	
If both os and arch match the current platform, search will stop and the platform-specific command will be executed.

	
If os matches and there is no more specific match, the platform-specific command will be executed.

	
If no os/arch match is found, the default top-level command will be executed.

	
Helm will exit with an error if no top-level command is present and no matches are found in platformCommand.

Hooks

Plugin hooks allow you to take additional actions when the plugin is installed, updated, or deleted.

For example, the underlying implementation for your plugin may be a platform-specific binary that must be downloaded from the internet. The URL for the binary varies depending on the user’s operating system.

A script to handle this logic based on operating system might look something like the following:

#!/usr/bin/env bash

set -e

URL=""
EXTRACT_TO=""

if [["$(uname)" = "Darwin"]]; then
 URL="https://example.com/releases/myplugin-mac"
 EXTRACT_TO="myplugin"
elif [["$(uname)" = "Linux"]]; then
 URL="https://example.com/releases/myplugin-linux"
 EXTRACT_TO="myplugin"
else
 URL="https://example.com/releases/myplugin-windows"
 EXTRACT_TO="myplugin.exe"
fi

mkdir -p bin/
curl -sSL "${URL}" -o "bin/${EXTRACT_TO}"

By defining an install hook for our plugin, we can make it so that this script runs when a user installs this plugin.

To define a hook, add a hooks section to your plugin.yaml, defining commands for each event you want to respond to:

...
hooks:
 install: "scripts/install-hook.sh" [image: 1]
 update: "scripts/update-hook.sh" [image: 2]
 delete: "scripts/delete-hook.sh" [image: 3]

	[image: 1]

	Command to run on helm plugin install

	[image: 2]

	Command to run on helm plugin update

	[image: 3]

	Command to run on helm plugin remove

Downloader Plugins

Some plugins have special functionality that allows them to be used as an alternative for downloading charts.

This is useful if you are storing charts in some way that is different than a pure chart repository, or if your chart repository implementation has extra requirements.

A downloader plugin defines one (or more) protocols that, if detected on the command line, will instruct Helm to download index.yaml or chart .tgz packages using the plugin versus Helm’s internal download mechanism.

Here is an example of a plugin.yaml for a downloader plugin called “super-secure,” which registers the ss:// protocol:

name: super-secure
version: 0.1.0
description: a super secure chart downloader
command: "${HELM_PLUGIN_DIR}/super-secure.sh"
downloaders:
 - command: "super-secure-downloader.sh" [image: 1]
 protocols: [image: 2]
 - "ss"

	[image: 1]

	Command to run when this plugin is invoked as a downloader

	[image: 2]

	Custom protocols declared by this plugin

Note

Keep in mind that all plugins, including downloader plugins, define a custom top-level command (i.e., helm super-secure). The command for the plugin downloader can be identical to the
command field; just beware that if you wish to use the plugin as both a standard plugin and as a downloader, it might become challenging to determine how it’s being used. One way you could determine if the plugin is being used as a downloader is to check if the command is invoked with exactly four command-line arguments.

Downloader commands are always invoked with the following arguments:

<command> certFile keyFile caFile full-URL

The certFile, keyFile, and caFile arguments are derived from entries in a YAML configuration file, whose path is returned by $(helm env HELM_REPOSITORY_CONFIG), and are set when a repository is added using helm repo add (see Chapter 7 for more background). The full-URL argument is the full URL for the resource that is being downloaded, either an index.yaml, or chart .tgz/.prov file.

Let’s check out the implementation for the ss:// protocol downloader defined by the super-secure plugin:

#!/usr/bin/env bash
set -e

The fourth argument is the URL to the resource to download from the repo
URL="${4}"

Replace "ss://" with "https://"
URL="$(echo ${URL} | sed 's/ss:/https:/')"

Request the resource using the token, outputting contents to stdout
echo "Downloading $(basename ${URL}) using super-secure plugin..." 1>&2
curl -sL -H "Authorization: Bearer ${SUPER_SECURE_TOKEN}" "${URL}"

This downloader allows us to use a chart repository protected with token/bearer auth. It expects that the environment variable SUPER_SECURE_TOKEN is set, which will be used to formulate the header Authorization: Bearer <token> used when requesting a resource from a chart repository.

Note

While the super-secure plugin is a great example of a simple downloader plugin, future versions of Helm may actually support bearer token auth out of the box.

Downloader plugins are expected to output the contents of the resource to stdout, so any extra logs etc. should be printed to stderr. This is why, in the line starting with echo, we redirect this message to stderr using 1>&2.

Once this plugin is installed, here’s how we would add a chart repository protected by token auth:

$ export SUPER_SECURE_TOKEN="abc123"
$ helm repo add my-secure-repo ss://secure.example.com
Downloading index.yaml using super-secure plugin...
"my-secure-repo" has been added to your repositories

This repository URL will now show up in the local list of repositories, containing the ss:// protocol:

$ helm repo list
NAME 	URL
my-secure-repo	ss://secure.example.com

Now the repository can be used just like any other repository, to download remote chart packages:

$ export SUPER_SECURE_TOKEN="abc123"
$ helm pull my-secure-repo/superapp
Downloading superapp-0.1.0.tgz using super-secure plugin...
$ ls
superapp-0.1.0.tgz

Downloader plugins provide a way for Helm users to extend the transfer mechanism for working with chart repositories by defining custom protocols. When Helm detects a custom protocol being used, it will attempt to locate an installed plugin that can handle it, then defers the resource request to that plugin.

Execution Environment

Since plugins are meant to extend Helm’s functionality, they might need access to some of Helm’s internal configuration files, or global flags provided on the command line.

To provide plugins access to this type of information, a series of known environment variables are provided to the plugin at runtime.

Here is a current list of all the environment variables available to plugins, in alphabetical order:

	HELM_BIN

	
The path to the Helm command being executed

	HELM_DEBUG

	
Value set for the global boolean --debug option (“true” or “false”)

	HELM_KUBECONTEXT

	
Value set for the global --kube-context <context> option

	HELM_NAMESPACE

	
Value set for the global --namespace <namespace> option

	HELM_PLUGIN_DIR

	
Root directory of the current plugin

	HELM_PLUGIN_NAME

	
Name of the current plugin

	HELM_PLUGINS

	
Top-level directory containing all plugins

	HELM_REGISTRY_CONFIG

	
Root directory for registry configuration

	HELM_REPOSITORY_CACHE

	
Root directory for repository cache

	HELM_REPOSITORY_CONFIG

	
Root directory for repository configuration

Shell Completion

Helm has built-in support for shell autocompletion for both Bash and Z shell (Zsh) (see helm completion --help). This is helpful in situations where you cannot remember the name of a subcommand or flag you are attempting to use.

Plugins also have the ability to supply their own custom shell completions by using one of two methods: static autocompletion and dynamic completion.

Static autocompletion

By including a file called completion.yaml in the root of the plugin directory, Helm plugins can specify all of the expected flags and commands available for the plugin statically.

Here is an example completion.yaml for an imaginary zoo plugin:

name: zoo [image: 1]
flags: [image: 2]
 - disable-smells
 - disable-snacks
commands: [image: 3]
 - name: price [image: 4]
 flags:
 - kids-discount
 - name: animals
 commands:
 - name: list
 validArgs: [image: 5]
 - birds
 - reptiles
 - cats
 - name: describe
 flags:
 - format-json
 validArgs:
 - birds
 - reptiles
 - cats

	[image: 1]

	The name of the plugin that this completion file is for

	[image: 2]

	A list of flags available (Note: these should not include a - or -- prefix)

	[image: 3]

	A list of subcommands available

	[image: 4]

	Name of an individual subcommand

	[image: 5]

	A list of valid options for the first parameter following a subcommand

Underneath the top-level commands section, another commands section can be specified for nested subcommands (and recursively as many times as necessary). Each command in a commands section can contain its own list of flags and validArgs.

Helm’s global flags, such as --debug or --namespace, are already handled by Helm’s built-in shell completion, so it is not necessary to list these under flags.

If we begin trying to run the example zoo plugin, then press the Tab key, it should show us all of the available subcommands:

$ helm zoo # (click tab)
animals price

Now if we do the same, but add a --disable-s suffix prior to pressing the Tab key, we should see our flags:

$ helm zoo --disables-s # (click tab)
--disable-smells --disable-snacks

Using static completion, we are able to achieve parity with Helm’s existing shell completions, making plugins feel even more tightly integrated with the Helm user
experience.

Tip

If you are in the process of developing a plugin, you must open a new terminal window for static shell completions to be refreshed.

Alternatively, you can run one of the following to get the latest completions in the current terminal:

source <(helm completion bash) # for Bash
source <(helm completion zsh) # for Z shell

Dynamic completion

In some cases, the valid arguments for a given command may not be known ahead of time. For example, you may want to provide a list of Helm release names in your cluster as valid arguments for your plugin. This can be achieved using dynamic
completion.

To enable dynamic completion, include an executable file named plugin.complete in the root of the plugin directory. This file can be any type of executable; for example, a shell script or binary.

For plugins containing a plugin.complete file, when completion is requested (i.e., pressing the Tab key), Helm will run this executable, passing along the text that needs completion as the first argument. This program should then return a list of possible results, each separated by a new line, and exit successfully (i.e., return code 0).

You might even decide to supply this completion functionality as part of the primary plugin program, using a simple wrapper script to trigger it using a flag such as
--complete. Here is an example of a basic plugin.complete executable that does just this:

#!/usr/bin/env sh
$HELM_PLUGIN_DIR/my-plugin-program --complete "$@"

Building on the zoo plugin example, let’s say the list of available animal categories is constantly changing and stored in a file called animals.txt in the user’s home directory. Here’s what animals.txt might look like:

birds
reptiles
cats

We want to be able to dynamically provide completion based on the contents of this file. Here is an example of a plugin.complete executable (Bash script) that could be used to provide dynamic completion:

#!/usr/bin/env bash
set -e
INPUT="${@}"
if [["${INPUT}" == "animals list"*]]; then
 INPUT="$(echo "${INPUT}" | sed -e 's/^animals list //')"
 for flag in $(cat "${HOME}/animals.txt"); do
 if [["${flag}" == "${INPUT}"*]]; then
 echo "${flag}"
 fi
 done
fi

Now if we run the plugin and type in animals list, then press the Tab key, it should show us a list of all the available animal categories for listing:

$ helm zoo animals list # (press Tab key)
birds cats reptiles

To ensure it’s dynamic, let’s add an extra category “monkeys” to animals.txt and try again:

$ echo "monkeys" >> "${HOME}/animals.txt"
$ helm zoo animals list # (press Tab key)
birds cats monkeys reptiles

It works!

This is just a simple example of using dynamic completion, but keep in mind that you could also query something remote, such as resources in your Kubernetes cluster, making this a powerful feature for plugins.

Note

If you are already using static completion using a completion.yaml file, then dynamic completion is not used, even if a
plugin.complete executable is present in the plugin’s root
directory.

Starters

Starters, or starter packs, are similar to Helm charts, except that they are meant to be used as templates for new charts.

When you use the helm create command to create a new chart, this generates a new chart using Helm’s built-in starter, which is a general-purpose chart using best
practices.

To specify a custom starter, you can use the --starter option when creating a new chart:

$ helm create --starter basic-webapp superapp

Using starters allows us to leverage a chart that has been previously built for an application with a similar purpose. This is useful for bootstrapping new projects with similar requirements to be instantly ready to deploy to your Kubernetes environment.

Converting a Chart to a Starter

Any Helm chart can be converted into a starter. The only thing that separates a starter from a standard chart is the presence of dynamic references to the chart name in a starter’s templates.

To convert a standard chart into a starter, replace any hardcoded references to the chart’s name with the string <CHARTNAME>.

To demonstrate, let’s take this simple ConfigMap template from a chart called mychart:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "mychart.fullname" . }}
 labels:
 {{- include "mychart.labels" . | nindent 4 }}
data:
 hello: {{ .Values.hello | quote }}

Here’s what that template would look like instead in a starter:

apiVersion: v1
kind: ConfigMap
metadata:
 name: {{ include "<CHARTNAME>.fullname" . }}
 labels:
 {{- include "<CHARTNAME>.labels" . | nindent 4 }}
data:
 hello: {{ .Values.hello | quote }}

Note

This chart must still contain a Chart.yaml file to work; however, it will be overwritten by the generator.

Making Starters Available to Helm

Before using a starter, you must first decide on a unique name for it, for example “basic-webapp” for a starter containing boilerplate templates for deploying a basic web application.

To make this starter a valid option to be used when the --starter flag is specified on the command line, it must exist as a directory under the filepath
$(helm env HELM_DATA_HOME)/starters.

If this is the first starter you are adding, ensure that the top-level starters directory first exists:

$ export HELM_STARTERS="$(helm env HELM_DATA_HOME)/starters"
$ mkdir -p "${HELM_STARTERS}"

Then just copy the entire basic-webapp directory into that top-level directory:

cp -r basic-webapp "${HELM_STARTERS}"

Using Starters

Once a starter is available, you can generate new charts based on it by referencing its name on the command line:

$ helm create --starter basic-webapp superapp
Creating superapp

The structure of the newly generated chart will be identical to that of the starter. All references to <CHARTNAME> in the starter’s templates will be replaced with the new chart’s name (i.e., superapp).

Here’s an example directory structure for a generated chart based on a starter that has only two templates defined, deployment.yaml and service.yaml:

$ tree superapp/
superapp/
├── Chart.yaml
├── templates
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ └── service.yaml
└── values.yaml

From here, you could check this new chart into version control and start making changes to customize it for the given application.

Extending Helm Further

In this chapter, we have discussed how Helm can be extended using plugins and starters. However, there is one other way in which you can extend Helm: via open source contributions.

Everything in this book has been a reflection of thousands of open source contributions to the Helm project. While much of this work has been performed by maintainers (past and present), the majority of contributions have come from individuals around the world. This includes not only changes to the Go source code, but also testing and documentation updates.

Do you have something to contribute to the Helm project? Navigate to the Helm community landing page to learn more!

Appendix A. Chart API Versions

This appendix covers the differences between chart API versions 2 and 1 (legacy).

The chart API version is specified in each chart’s Chart.yaml file and is used by Helm to determine how to parse the chart and which feature sets are made available.

For new charts, API version 2 should generally be used. However, many publicly available charts were created prior to the genesis of API version 2, and use 1, the legacy API version. Here we will go into detail on each of these API versions and the ways in which they are different.

API Version 2

Chart API version 2 is the current API version that was introduced in Helm 3. This is the default API version used when new charts are created using helm create.

Charts using API version 2 are guaranteed to be supported by Helm 3, but not necessarily by Helm 2. If you are only planning to support Helm 3 and above, it is recommended to just use this API version.

The Chart.yaml File

The following is an example of a Chart.yaml file for a chart using API version 2:

apiVersion: v2 [image: 1]
name: lemon
version: 1.2.3
type: application
description: When life gives you lemons, do the DevOps
appVersion: 2.0.0
home: https://example.com
icon: https://example.com/img/lemon.png
sources:
 - https://github.com/myorg/mychart
keywords:
 - fruit
 - citrus
maintainers:
 - name: Carly Jenkins
 email: carly@mail.cj.example.com
 url: https://cj.example.com
 - name: William James Spode
 email: william.j@mail.wjs.example.com
 url: https://wjs.example.com
deprecated: false
annotations:
 sour: 1
kubeVersion: ">=1.14.0"
dependencies:
 - name: redis
 version: ~10.5.7
 repository: https://kubernetes-charts.storage.example.com/
 condition: useCache,redis.enabled
 - name: postgresql
 version: 8.6.4
 repository: @myrepo
 tags:
 - database
 - backend

	[image: 1]

	Field denoting chart API version 2

Each of the top-level fields in this file will be described in detail in the following
subsections.

Field: apiVersion

Required

The API version of this chart.

This field should always be set to v2.

Field: name

Required

The name of the chart.

In most cases, this should be 1-to-1 with the name of your application (i.e., lemon). If your application is broken into multiple, installable components, it is common to suffix this name with a description of the component; for example, lemon-frontend, lemon-backend, etc.

Chart names must be composed of lowercase letters, numbers, and dashes (-).

Field: version

Required

The current version of the chart, strictly formatted using Semantic Versioning 2.

Versioning Helm Charts

Semantic Versioning, if done correctly, can be extremely helpful. It lets the operator know what to expect during a software upgrade. You’ve likely already seen and used semantic versions. They are comprised of three numbers separated by a period (.), such as 3.1.2. Semantic versions follow the format MAJOR.MINOR.PATCH, where the following rules apply if each are incremented:

	MAJOR

	
Indicates that breaking changes are made that are not backward compatible (e.g., 3.1.2 → 4.0.0)

	MINOR

	
Indicates that there are newly available features that are backward compatible (e.g., 3.1.2 → 3.2.0)

	PATCH

	
Indicates that one or more bugs were fixed, and that changes were made to make things work as originally expected without introducing any new features (e.g., 3.1.2 → 3.1.3)

Helm charts can be challenging to version properly because they are not typical software packages containing an application with features. As a rule of thumb, most updates to the chart version should be increments to the MINOR version.

For example, any time that you are adding new key-value pairs that are used inside templates, this can be considered a new “feature,” since the options for configuration have been expanded. On the other hand, if you are modifying the way a certain value is used in a template, or removing a configuration setting entirely, this would be considered a breaking change, and you should increment the MAJOR version. Lastly, if you simply make a fix to a Helm chart that is not templating properly given an expected input, or is otherwise broken, this would be considered a bug fix and you should increment the PATCH version.

As for an initial version to use for your chart, choose 0.1.0 or 1.0.0. When the MAJOR version is 0 (e.g., 0.1.0), this technically indicates no promises will be made regarding breaking changes between MINOR and PATCH upgrades. Versions 1.0.0 and higher indicate a certain level of stability and a strict adherence to SemVer 2.

Field: type

Required

Specifies the chart type, which may be one on the following two types:

	application

	
A typical, installable chart

	library

	
A noninstallable chart containing common definitions, meant to be included as a dependency chart

This field is unique to API version 2. In API version 1, all charts are considered to be application charts. For more information on library charts, please see Chapter 6.

Field: description

A simple, one-sentence description of the chart.

Field: appVersion

The version of the application that the chart represents.

This field should match the version of the software you are deploying, not the chart itself. For example, if you’re creating a new internal chart to deploy a custom configured Nginx 1.18.0, the appVersion field would be 1.18.0, whereas the version field would be something more like 0.1.0 (initial version).

Field: home

An absolute URL to the homepage for the chart and/or application.

Field: icon

An absolute URL to an image that can be used as an icon for this chart.

This field is typically used by services such as Artifact Hub to display an appropriate image for the chart available for download.

Field: sources

One or more absolute URLs to the source code of the chart (if made available).

Field: keywords

A list of keywords or topics that the chart represents.

These are used by services such as Artifact Hub to group together charts by category or further enhance search capabilities.

Field: maintainers

A list of name/email/URL combinations for the person(s) who maintain the chart.

Field: deprecated

Whether or not the chart is deprecated.

This field is used by services such as Artifact Hub to determine when to remove chart listings.

Field: annotations

Additional mappings for the chart uninterpreted by Helm, made available for inspection by other applications.

Note: this field is not linked to Kubernetes annotations in any meaningful way; however, you may choose to define these as Kubernetes-specific annotations depending on how you decide to use this field.

Field: kubeVersion

A SemVer constraint specifying the minimum Kubernetes version required for the chart to properly install.

Some charts may use Kubernetes resource types and API groups that are only available on certain versions of Kubernetes. If an operator attempts to install a chart with an incompatible kubeVersion compared to that of the target cluster, an error will occur before any Kubernetes resources are provisioned.

Field: dependencies

A list of dependencies for the chart.

The chart dependencies listed here will be negotiated and placed appropriately into the charts/ subdirectory when you run helm dependency update.

At a bare minimum, each entry under the dependencies block should contain a name subfield, and either a repository or an alias subfield. A repository should be an absolute URL to a valid chart repository (serving /index.yaml). An alias should be the character “@” followed by the name of a previously added chart repository (e.g., @myrepo).

For more information about how to use chart dependencies, see “Chart Dependencies”.

The Chart.lock File

When a chart has dependencies listed under the dependencies field in Chart.yaml, a special file named Chart.lock is generated and updated each time you run the command helm dependency update. When a chart contains a Chart.lock file, operators can run helm dependency build to generate the charts/ directory without the need to renegotiate dependencies.

Here is an example of a Chart.lock file generated based on the dependencies specified in the Chart.yaml example:

dependencies:
- name: redis
 repository: https://kubernetes-charts.storage.example.com/
 version: 10.5.7
- name: postgresql
 repository: https://charts.example.com/
 version: 8.6.4
digest: sha256:529608876e9f959460d0521eee3f3d7be67a298a4c9385049914f44bd75ac9a9
generated: "2020-07-17T11:10:34.023896-05:00"

Dynamic fields such as conditions and tags are stripped out, and this file simply contains the repository, name, and version that were resolved for each dependency during the update, as well as a digest (SHA-256) and a generated timestamp.

Notice that the alias: "@myrepo" setting for the PostgreSQL dependency has been converted into repository: https://charts.example.com/. This means that sometime prior to updating the dependencies, a chart repository was added using the following command:

$ helm repo add myrepo https://charts.example.com/

API Version 1 (legacy)

Chart API version 1 is the original API version, and the only version recognized by Helm 2. The apiVersion field in Chart.yaml was first introduced in Helm 3 and is not recognized by Helm 2. Using Helm 2, all charts are assumed to be adhering to API version 1. In Helm 3, the apiVersion is strictly required.

Charts using API version 1 are guaranteed to be supported by both Helm 2 and Helm 3, but may not be able to support certain features that will only be made available to Helm 3 in the future.

The Chart.yaml File

The format of the Chart.yaml file for charts using API version 1 is nearly identical to that of charts using API version 2, with a couple notable differences.

The following is an example of a Chart.yaml file for a chart using API version 1:

apiVersion: v1 [image: 1]
name: lemon
version: 1.2.3
description: When life gives you lemons, do the DevOps
appVersion: 2.0.0
home: https://example.com
icon: https://example.com/img/lemon.png
sources:
 - https://github.com/myorg/mychart
keywords:
 - fruit
 - citrus
maintainers:
 - name: Carly Jenkins
 email: carly@mail.cj.example.com
 url: https://cj.example.com
 - name: William James Spode
 email: william.j@mail.wjs.example.com
 url: https://wjs.example.com
deprecated: false
annotations:
 sour: 1
kubeVersion: ">=1.14.0"
tillerVersion: ">=2.12.0"
engine: gotpl

	[image: 1]

	Field denoting chart API version 1

Differences from v2

As it compares to the Chart.yaml example for API version 2, there are some subtle differences:

	
The apiVersion field is set to v1 (Note: In Helm 2, this field is not strictly required).

	
The type field is missing. There is no concept of library charts in API version 1.

	
The dependencies field is missing. In API version 1, chart dependencies are specified in a dedicated file called requirements.yaml (as described later in this section).

	
Two additional fields are present: tillerVersion and engine.

Note

In many ways, the two chart API versions can essentially be considered Helm 2 charts (v1) versus Helm 3 charts (v2). This is especially true since chart API version 2 was introduced at the exact same time that Helm 3 was released.

The reason these versions aren’t instead named v2 and v3 (denoting the Helm version) is because the API for charts is independently versioned from the API for the Helm CLI.

For example, if and when Helm 4 is released, it is possible that chart API version 2 will still be used. Likewise, if chart API version 2 is later determined to be insufficient for whatever reason, a new chart API version 3 could be introduced prior to another major Helm release.

Field: tillerVersion (legacy)

A SemVer constraint specifying the Tiller version required for the chart to properly install.

Tiller is a legacy Helm server-side component only used in Helm 2. This field is ignored entirely when using Helm 3.

Field: engine (legacy)

The name of the template engine to use. Defaults to gotpl.

The requirements.yaml File (Legacy)

In API version 1, there is an additional file called requirements.yaml that specifies the chart’s dependencies. The format of this file is identical to the dependencies field as defined in API version 2.

Here is an example of a standalone requirements.yaml file:

dependencies:
 - name: redis
 version: ~10.5.7
 repository: https://kubernetes-charts.storage.example.com/
 condition: redis.enabled
 - name: postgresql
 version: 8.6.4
 repository: "@myrepo"
 tags:
 - database
 - backend

For a detailed description of each of the subfields, please see the subsection titled “Field: dependencies” under API version v2.
In API version v2, the contents of this file are defined directly in Chart.yaml.

The requirements.lock File (Legacy)

In API version 1, the chart dependency lock file has the name requirements.lock. This file is identical in format and purpose to the Chart.lock file described under API version 2, just with a different name. For more information, please see the subsection titled “The Chart.lock File” under API version 2.

Appendix B. Chart Repository API

In Chapter 7, we covered chart repositories. This appendix briefly covers the chart repository API,
the underlying specification that enables Helm to work with chart repositories.

The chart repository API is lightweight because there is only one required HTTP endpoint that must be implemented: GET /index.yaml.

In 99% of cases, chart repositories also serve chart package tarballs (.tgz) and any associated provenance files (.prov). However, it is also possible to host these files on a separate domain.

As described in detail in Chapter 7, index.yaml represents the repository index, containing a complete list of all the available chart versions in the repository. The format of this file is specific to Helm, and it currently has only one API version (1).

index.yaml

When implementing the chart repository API, your service must provide an HTTP GET /index.yaml route relative to the repository URL provided. The response from this request must return a status code 200 OK, and the response body must be a valid index.yaml as described in the following.

Note

The GET /index.yaml endpoint does not need to be at the root of the URL path. For instance, given a provided repository URL such as https://example.com/charts, the GET /index.yaml route must be accessible at https://example.com/charts/index.yaml.

The index.yaml Format

Following is a simple, valid index.yaml with a single chart version (superapp-0.1.0):

apiVersion: v1 [image: 1]
entries: [image: 2]
 superapp:
 - apiVersion: v2
 appVersion: 1.16.0
 created: "2020-04-28T10:12:22.507943-05:00" [image: 3]
 description: A Helm chart for Kubernetes
 digest: 46f9ddeca12ec0bc257a702dac7d069af018aed2a87314d86b230454ac033672 [image: 4]
 name: superapp
 type: application
 urls: [image: 5]
 - superapp-0.1.0.tgz
 version: 0.1.0
generated: "2020-04-28T11:34:26.779758-05:00" [image: 6]

	[image: 1]

	The repository API version (must always be v1).

	[image: 2]

	A map of unique chart names in the repository to a list of all available versions.

	[image: 3]

	The timestamp of when the tarball was created using helm package.

	[image: 4]

	A SHA-256 digest of the tarball.

	[image: 5]

	A list of URLs where the chart can be downloaded. These URLs can be absolute, and even hosted on separate domain(s). If a relative path is provided, it is considered relative to index.yaml. Usually only one URL entry is provided per chart version, but multiple can be provided, and Helm will try to download the next item in the list if the previous one is inaccessible.

	[image: 6]

	The timestamp of when this index.yaml file was generated, in RFC 3339 format.

With the exception of the fields created, digest, and urls, all of the fields on each individual chart version are defined by the chart API (name, version, etc.). Please see Appendix A for more info.

When Is index.yaml Downloaded?

There are five noteworthy scenarios when Helm downloads or redownloads the repository index:

	
When initially adding a chart repository:

$ helm repo add myrepo https://charts.example.com

	
When updating all chart repositories:

$ helm repo update

	
When updating dependencies (disabled with the --skip-refresh flag):

$ helm dependency update

	
When building dependencies from a lock file (disabled with the --skip-refresh flag):

$ helm dependency build

	
When installing a local chart with dependencies using the --dependency-update flag:

$ helm install myapp . --dependency-update

When Is the Cached Version of index.yaml Used?

Once index.yaml is downloaded, it is stored in a local cache and used whenever you reference the unique name you have associated with the repository (e.g., “myrepo”).

There are five noteworthy scenarios when Helm makes use of the locally cached repository index:

	
When pulling a chart from a repo:

helm pull myrepo/mychart

	
When installing a chart from a repo:

helm install myapp myrepo/mychart

	
When upgrading a release based on a chart from a repo:

helm upgrade myapp myrepo/mychart

	
When searching for charts to use:

helm search repo myrepo/

	
When updating dependencies using the --skip-refresh flag (and a dependency contains an alias subfield such as "@myrepo"):

helm dependency update --skip-refresh

.tgz Files

.tgz files in a repository represent individual chart versions, packaged as compressed tarballs.

There is no requirement for the URL path for these files as they are hosted in the repository; however, they must be able to be downloaded when they are requested by Helm. The status code of the response must be a 200 OK, and the response body should be the content of the .tgz in binary form.

When Are .tgz Files Downloaded?

There are three noteworthy scenarios when Helm downloads chart package .tgz files:

	
When pulling a chart from a repo:

helm pull myrepo/mychart

	
When installing a chart from a repo:

helm install myapp myrepo/mychart

	
When upgrading a release based on a chart from a repo:

helm upgrade myapp myrepo/mychart

.prov Files

.prov files in a repository represent chart version signature files, signed with GNU Privacy Guard. These files are optional and are used for verification purposes.

Unlike .tgz files, .prov files have a unique URL path requirement. They must be accessible at the path of the associated .tgz suffixed with .prov. For example, if a .tgz file is located at https://charts.example.com/superapp-0.1.0.tgz, then the .prov file must be located at
https://charts.example.com/superapp-0.1.0.tgz.prov.

The status code of the response must be a 200 OK, and the response body should be the content of the .prov in binary form.

When Are .prov Files Downloaded?

There are three noteworthy scenarios when Helm downloads chart signature .prov files:

	
When pulling a chart from a repo with the --verify flag:

helm pull myrepo/mychart --verify

	
When installing a chart from a repo with the --verify flag:

helm install myapp myrepo/mychart --verify

	
When upgrading a release based on a chart from a repo with the --verify flag:

helm upgrade myapp myrepo/mychart --verify

Index
Symbols
	$ (dollar sign) in variable names, Variables
	. (dot) in range loops, Loops
	.helmignore file, Information Helm Passes to Templates
	. (dot objects) in templates, Information Helm Passes to Templates	scope of dot, Information Helm Passes to Templates

	.prov files in repository, .prov Files
	.tgz file handling by repository API, .tgz Files
	:= (colon equals sign) to initialize, Variables
	= (equals sign) assigning new value, Variables
	_ (underscore) before file names, Library Charts	_helpers.tpl file for named templates, Structuring Your Templates for Maintainability

	{ } (curly brackets) in templates, Actions
	| (pipe) in templates, Pipelines

A
	Abdulhussein, Adnan, Library Charts
	access controls with pull secrets, Container Images
	actions in templates, Actions
	alias property in Chart.yaml file, Chart Dependencies
	Amazon S3 plugin for chart repository, S3 Plugin
	and statements in templates, if/else/with
	API Version 1 details, API Version 1 (legacy)-The requirements.lock File (Legacy)
	API Version 2 details, API Version 2-The Chart.lock File
	apiVersion in Chart.yaml file, The Chart.yaml File, Chart API Versions, Field: apiVersion, API Version 1 (legacy)
	APIVersion of Kubernetes, Information Helm Passes to Templates	resource availability determination, Methods

	app version, Searching a Chart Repository
	appVersion property, The Chart.yaml File, Field: appVersion
	architecture of Helm	charts, Charts
	Kubernetes resources, Kubernetes Resources

	archive file from packaging chart, Packaging the Chart-Packaging the Chart	dependencies, Chart Dependencies
	index.yaml for repository, An Example of a Chart Repository Index	adding to an existing, Adding to an Existing Index
	generating, Generating an Index

	naming protocol, Packaging the Chart

	Artifact Hub	chart repositories, Adding a Chart Repository
	Drupal configuration parameters, Configuration at Installation Time

	ASCII-Armor public key format, Security Considerations
	atomic flag, The --wait and --atomic Flags

B
	backup plugin, Installing Third-Party Plugins
	Bash scripts	downloader plugin, Downloader Plugins
	inspect-templates plugin, The underlying implementation
	install-hook for plugins, Hooks
	shell autocompletion built in, Shell Completion
	shell script to install helm client, Using the get script to install

	basic auth (basic access authentication)	chart repository, Basic auth
	Docker local registry, Running a Local Registry

	building a plugin, Building a Plugin-The end result
	building charts	Anvil example online source, Building a Chart
	Chart.yaml file, The Chart.yaml File-The Chart.yaml File
	create command, The Chart Creation Command-The Chart Creation Command	directory structure, The Chart Creation Command
	service account created, Container Images

	Deployment template, The Deployment-The Deployment	security context readable, Template Functions

	linting, Linting Charts, Linting Charts	Chart Testing tool, Chart Testing Tool

	modifying templates, Modifying Templates-The Deployment	Go template packages, Modifying Templates

	packaging the chart, Packaging the Chart-Packaging the Chart
	values.yaml file, Using the Values File-Resource Limits

	Burns, Brendan, The Cloud Native Ecosystem

C
	cache for chart	exporting chart from, Exporting a Chart from the Cache
	listing charts in, Listing Charts in the Cache
	path environment variable, Execution Environment
	pulling chart from registry, Pulling a Chart from the Registry
	pushing chart to registry, Pushing a Chart to the Registry
	removing chart from, Removing a Chart from the Cache
	saving chart into, Storing a Chart in the Cache

	Capabilities object, Information Helm Passes to Templates	APIVersions.Has method, Methods

	certificate signing request (CSR), Client certificates
	Chart object, Information Helm Passes to Templates
	Chart Releaser chart package host, Chart Releaser
	chart repositories	about, Chart Repositories	basics, Adding a Chart Repository
	challenges of, Experimental OCI Support
	Helm working with, Charts
	simplicity of serving, Setting Up a Chart Repository

	adding a chart repository, Adding a Chart Repository, Adding a Repository	GitHub Pages repository, Using your GitHub Pages site as a chart repository
	listing added repositories, Listing Repositories
	removing a repository, Removing a Repository
	token auth protection, Downloader Plugins
	updating added repositories, Updating Repositories

	API	about, Chart Repository API
	.prov files, .prov Files
	.tgz files, .tgz Files
	index.yaml, index.yaml
	index.yaml cached version use, When Is the Cached Version of index.yaml Used?
	index.yaml downloaded, When Is index.yaml Downloaded?
	index.yaml format, The index.yaml Format

	app version, Searching a Chart Repository
	Artifact Hub for, Adding a Chart Repository
	chart dependencies, Chart Dependencies
	chart version, Searching a Chart Repository
	downloading charts, Downloading Charts
	GitHub Pages for, Real-World Example: Using GitHub Pages-Using your GitHub Pages site as a chart repository	adding chart repository files, Adding chart repository files
	creating new repository, Create a new Git repo
	custom domain option, Optional: Use a custom domain
	enabling GitHub Pages, Enable GitHub Pages
	HTTPS option enabled, Optional: Use a custom domain
	using the GitHub Pages site, Using your GitHub Pages site as a chart repository

	HELM_REPOSITORY_CACHE, Execution Environment
	HELM_REPOSITORY_CONFIG, Downloader Plugins, Execution Environment
	history of, Chart Testing Tool
	index.yaml, The Repository Index-An Example of a Chart Repository Index	adding to an existing, Adding to an Existing Index
	API cached version use, When Is the Cached Version of index.yaml Used?
	API download of index.yaml, When Is the Cached Version of index.yaml Used?
	API format of index.yaml, When Is the Cached Version of index.yaml Used?
	API requirements, index.yaml
	API version, Chart Repository API
	generating, Generating an Index
	GitHub Pages repository, Using your GitHub Pages site as a chart repository
	updating added repositories, Updating Repositories

	listing, Listing Repositories
	OCI registries, Experimental OCI Support	(see also OCI (open container initiative) registries)

	open source tools	Chart Releaser chart package host, Chart Releaser
	ChartMuseum web server, ChartMuseum
	GCS plugin, GCS Plugin
	Git repository plugin, Git Plugin
	Harbor full-featured registry, Harbor
	S3 plugin, S3 Plugin

	provenance file, Security Considerations	provenance of charts, Security, Security Considerations-Security Considerations

	removing a repository, Removing a Repository
	repository field of Chart.yaml file, Chart Dependencies
	searching a chart repository, Searching a Chart Repository
	security, Basic auth-Client certificates	basic auth, Basic auth
	basic auth for Docker local registry, Running a Local Registry
	client certificates, Client certificates
	real-world example, Real-World Example: Using GitHub Pages

	setting up	about, Setting Up a Chart Repository
	creating new GitHub repository, Create a new Git repo
	Python repository, A Simple Chart Repository with Python
	securing, Basic auth-Client certificates

	updating added, Updating Repositories

	Chart Testing tool, Chart Testing Tool
	Chart.lock file, Chart Dependencies	API Version 2 details, The Chart.lock File

	Chart.yaml file, The Chart.yaml File-The Chart.yaml File	about, The Chart Creation Command
	about charts, Charts
	alias property, Chart Dependencies
	API Version 1 details, The Chart.yaml File
	API Version 2 details, The Chart.yaml File, Differences from v2
	apiVersion, The Chart.yaml File, Chart API Versions, Field: apiVersion, API Version 1 (legacy)
	chart dependencies, Chart Dependencies	API Version 2 details, Field: dependencies
	conditional, Conditional Flags for Enabling Dependencies
	helm dependency command, Chart Dependencies
	tightly versus loosely coupled, Chart Dependencies

	Chart object information, Information Helm Passes to Templates	custom information, Information Helm Passes to Templates

	create command directory structure, The Chart Creation Command
	icon property, The Chart.yaml File, The Chart.yaml File, Field: icon	example, The Chart.yaml File
	missing, Linting Charts

	information Helm passes to templates, Information Helm Passes to Templates
	modifying, Modifying Templates-The Deployment
	schema validation, Chart Testing Tool
	type property	application default, The Chart.yaml File, Library Charts
	library chart creation, Library Charts

	ChartMuseum chart repository web server, ChartMuseum
	charts	about, Charts	Chart.yaml, Charts
	Helm version and, A Brief Note About Helm 2
	installed into Kubernetes, Resources, Installations, and Releases
	packed versus unpacked, Charts
	templates, Charts, Building a Chart, Developing Templates
	values.yaml, Charts, Configuration Values and Upgrades

	about helm client, Installing and Configuring the Helm Client
	building	Anvil example online source, Building a Chart
	Chart.yaml file, The Chart.yaml File-The Chart.yaml File
	create command, The Chart Creation Command-The Chart Creation Command
	create command directory structure, The Chart Creation Command
	create command service account, Container Images
	Deployment template, The Deployment-The Deployment
	Deployment template security context, Template Functions
	linting, Linting Charts, Linting Charts, Chart Testing Tool
	modifying templates, Modifying Templates-The Deployment
	packaging the chart, Packaging the Chart-Packaging the Chart
	starters, Starters
	values.yaml file, Using the Values File-Resource Limits

	configurability via, Configurability
	custom files within, Information Helm Passes to Templates	.helmignore file, Information Helm Passes to Templates

	dependencies, Chart Dependencies-The child-parent format	Chart.lock file, Chart Dependencies, The Chart.lock File
	Chart.yaml file, Chart Dependencies, Field: dependencies, Differences from v2
	Chart.yaml file alias property, Chart Dependencies
	charts subdirectory, Chart Dependencies
	child chart exporting value, The exports property
	child chart value without export, The child-parent format
	conditional dependencies, Conditional Flags for Enabling Dependencies
	configuration via values.yaml, Chart Dependencies
	helm dependency build command, Chart Dependencies
	helm dependency command, Chart Dependencies
	namespacing template name, Named Templates
	package management and, Advanced Chart Features
	semantic versions, Chart Dependencies
	tags property, Conditional Flags for Enabling Dependencies
	tests included in dependencies, Helm Test
	tightly versus loosely coupled, Chart Dependencies

	development versus production, Configurability
	installation of	atomic flag, The --wait and --atomic Flags
	basic mechanics of, Installing a Package
	cleanup-on-fail flag, Upgrading with --force and --cleanup-on-fail
	configuration at installation, Configuration at Installation Time
	generate-name flag, The --generate-name and --name-template Flags
	helm get command for details, Find Details of a Release with helm get-Using helm get manifest
	helm history command, History and Rollbacks
	helm install command, Installing a Package
	install or upgrade via upgrade install flag, Using helm upgrade --install
	Kubernetes overview, Resources, Installations, and Releases
	listing installations, Listing Your Installations
	release information, How Helm Stores Release Information, Release Records
	release life cycle statuses, Release Records
	releases listed, Listing Releases
	templates, Templating and Dry Runs
	uninstalling, Uninstalling an Installation-How Helm Stores Release Information
	uninstalling and keeping history, Keeping History and Rolling Back
	upgrading an installation, Upgrading an Installation
	upgrading and configuration, Configuration Values and Upgrades
	upgrading and releases, Resources, Installations, and Releases, Upgrading an Installation
	wait flag, The --wait and --atomic Flags

	integrity of, Security Considerations
	Kubernetes resources queried, Querying Kubernetes Resources In Charts
	library charts, Library Charts-Library Charts	how reusable templates work, Library Charts
	namespacing template name, Named Templates

	online resource for chapter 6 charts, Advanced Chart Features
	as packages, Preface, Charts, Adding a Chart Repository, Building a Chart
	packaging, Packaging the Chart-Packaging the Chart	dependencies, Chart Dependencies
	index.yaml added to, Adding to an Existing Index
	index.yaml for repository, An Example of a Chart Repository Index
	index.yaml generated, Generating an Index
	Pretty Good Privacy signature, Security Considerations

	reusability via, Reusability
	security, Security, Security Considerations-Security Considerations	GNU Privacy Guard, Security Considerations
	helm verify command, Security Considerations
	Pretty Good Privacy, Packaging the Chart, Security Considerations-Security Considerations
	provenance feature, Security, Security Considerations-Security Considerations

	starters converted from, Converting a Chart to a Starter
	tests added to	about, Adding Tests to Charts
	Chart Testing tool, Chart Testing Tool
	example, Helm Test
	helm test command, Helm Test
	history of, Chart Testing Tool
	steps to running tests, Helm Test

	uninstalling, Uninstalling an Installation-How Helm Stores Release Information	keeping history, Keeping History and Rolling Back

	versions	chart repositories, Searching a Chart Repository, Storing a Chart in the Cache
	Chart.yaml file, The Chart.yaml File, Chart Dependencies
	custom resource definitions and, Custom Resource Definitions
	dependencies, Chart Dependencies
	distribution of charts, Packaging the Chart, Chart Dependencies
	Semantic Versioning, A note on Helm version numbers, Chart Dependencies, Field: version
	versioning charts, Field: version

	YAML via	helm post-renderer flag, The helm template Command
	helm template command, The helm template Command

	CI (continuous integration) pipelines	chart install or upgrade automated, Using helm upgrade --install	installs with wait flag failing, The --wait and --atomic Flags
	timeout recommended, The --wait and --atomic Flags, The --wait and --atomic Flags

	force flag not for production, Upgrading with --force and --cleanup-on-fail
	helm template command, The helm template Command
	names unique within namespace, The --generate-name and --name-template Flags

	cleanup-on-fail flag, Upgrading with --force and --cleanup-on-fail
	client certificates for chart repositories, Client certificates
	cloud native ecosystem	about, The Cloud Native Ecosystem	dependencies handled, Containers

	containers	about, Containers
	container images, Container images and registries
	runtime connecting to world, Containers
	scheduling, Schedules and Kubernetes

	Helm	about, Helm’s Goals
	architecture, Kubernetes Resources-Resources, Installations, and Releases
	configurability, Configurability
	ease of Kubernetes setup, From Zero to Kubernetes
	package management overview, Package Management
	reusability, Reusability
	security, Security

	Kubernetes	about scheduling containers, Schedules and Kubernetes
	configuration information storage, From containers to pods, services, deployments, etc.
	declarative infrastructure, Declarative infrastructure, Kubernetes Resources
	Deployment, From containers to pods, services, deployments, etc., Kubernetes Resources
	Helm and, Helm’s Goals
	pods, From containers to pods, services, deployments, etc.-From containers to pods, services, deployments, etc.
	reconciliation loop, The reconciliation loop
	Service, From containers to pods, services, deployments, etc.

	microservices, Microservices	containers for, Containers

	cluster capabilities, Information Helm Passes to Templates
	ClusterIP, The Chart Creation Command
	colon equals sign (:=) to initialize, Variables
	comments in templates, Named Templates
	completion command, Shell Completion
	completion.yaml file, Static autocompletion, Dynamic completion	shell completions, Static autocompletion

	completions by plugins	dynamic completion, Dynamic completion
	static autocompletion, Static autocompletion

	conditional dependencies, Conditional Flags for Enabling Dependencies
	conditional statements in templates, if/else/with
	ConfigMaps (Kubernetes), From containers to pods, services, deployments, etc.	converting to starter, Converting a Chart to a Starter
	custom files in charts, Information Helm Passes to Templates
	library chart use example, Library Charts
	lookup for list of, Querying Kubernetes Resources In Charts

	configuration	chart installation, Configuration at Installation Time, Configuration Values and Upgrades	testing charts and, Helm Test

	chart installation upgrade, Upgrading an Installation	configuration fresh with release, Configuration Values and Upgrades

	configurability in Helm, Configurability	charts in development versus production, Configurability

	default values via helm inspect command, Using helm get values
	dependent charts via values.yaml, Chart Dependencies
	helm client connecting to Kubernetes cluster, Working with Kubernetes Clusters
	helm rollback command, History and Rollbacks
	pod configuration information storage, From containers to pods, services, deployments, etc.	volumes linking, From containers to pods, services, deployments, etc.

	reusability in Helm, Reusability
	values via helm get command, Using helm get values
	values.yaml file, Charts, Configuration Values and Upgrades

	containers	about, Containers	runtime connecting to world, Containers

	container images	about, Container images and registries
	digest, Container images and registries
	digest in values.yaml file, Container Images
	getImage example, Named Templates
	image name, Container images and registries
	image registry, Container images and registries
	image registry with access controls, Container Images
	tag, Container images and registries
	values.yaml file, Container Images

	init containers, From containers to pods, services, deployments, etc.
	scheduling execution, Schedules and Kubernetes	declarative infrastructure, Declarative infrastructure
	pods, From containers to pods, services, deployments, etc.
	reconciliation loop, The reconciliation loop

	sidecar containers, From containers to pods, services, deployments, etc.

	continuous integration pipelines (see CI)
	CoreOS rkt, Experimental OCI Support
	CRDs (see custom resource definitions)
	create command, The Chart Creation Command-The Chart Creation Command	API version 2 by default, API Version 2
	Chart.yaml file, The Chart.yaml File-The Chart.yaml File
	deployment.yaml file, The Deployment-The Deployment
	directory structure, The Chart Creation Command
	ingress.yaml file, Exposing Services
	label management with named templates, Named Templates-Named Templates
	library charts, Library Charts
	service account created, Container Images
	service.yaml, Exposing Services
	starters, Helm Plugins and Starters, Starters, Using Starters	(see also starters)

	test created by default, Helm Test
	values.yaml file, Using the Values File-Resource Limits

	curly brackets ({ }) in templates, Actions
	custom domain for GitHub Pages, Optional: Use a custom domain
	custom resource definitions (CRDs), Custom Resource Definitions-Custom Resource Definitions	crds directory, Custom Resource Definitions
	declarative resource definitions, Kubernetes Resources
	helm template command and, The helm template Command
	Kubernetes API and, Custom Resource Definitions
	second chart for, Custom Resource Definitions

D
	data Helm passes to templates (see information Helm passes to templates)
	data in release records (see information in release records)
	debugging and troubleshooting	Chart Testing tool, Chart Testing Tool
	cleanup-on-fail flag, Upgrading with --force and --cleanup-on-fail
	downtime from force flag, Upgrading with --force and --cleanup-on-fail
	dry-run flag, The --dry-run Flag, Dry Run
	exit codes, Linting Charts
	helm get command, Find Details of a Release with helm get-Using helm get manifest	manifests, Using helm get manifest, Getting Installed Manifests

	helm rollback command, History and Rollbacks
	helm template command, The helm template Command, Dry Run
	helm test command, Helm Test
	HELM_DEBUG environment variable, Execution Environment
	installs with wait flag failing, The --wait and --atomic Flags
	linting charts, Linting Charts, Linting Charts	Chart Testing tool, Chart Testing Tool

	listing installations, Listing Your Installations	release status check, Listing Releases
	uninstalling an installation, Uninstalling an Installation-How Helm Stores Release Information
	uninstalling and keeping history, Keeping History and Rolling Back

	schematizing values.yaml files, Schematizing Values Files
	YAML output string potential errors, Pipelines

	declarative infrastructure of Kubernetes, Declarative infrastructure	resources in Helm architecture, Kubernetes Resources

	default function, Pipelines
	define function, Library Charts
	deletion policies of hooks, Hooks
	dependencies between charts, Chart Dependencies-The child-parent format	about, Advanced Chart Features
	Chart.lock file, Chart Dependencies	API Version 2 details, The Chart.lock File

	Chart.yaml file, Chart Dependencies	alias property, Chart Dependencies
	API Version 1 details, Differences from v2
	API Version 2 details, Field: dependencies

	charts subdirectory, Chart Dependencies
	child chart exporting value, The exports property
	child chart value without export, The child-parent format
	conditional dependencies, Conditional Flags for Enabling Dependencies
	configuration via values.yaml, Chart Dependencies
	helm dependency command, Chart Dependencies	rebuilding charts directory, Chart Dependencies

	namespacing template name, Named Templates
	requirements.yaml file, Differences from v2, The requirements.yaml File (Legacy)
	semantic versions, Chart Dependencies
	tags property, Conditional Flags for Enabling Dependencies
	tests included in dependencies, Helm Test
	tightly versus loosely coupled, Chart Dependencies

	dependency command, Chart Dependencies	rebuilding charts directory, Chart Dependencies

	Deployment (Kubernetes), From containers to pods, services, deployments, etc.	deployment.yaml file, The Deployment-The Deployment
	HorizontalPodAutoscaler, From containers to pods, services, deployments, etc.
	resource definition example, Kubernetes Resources
	security context readability, Template Functions
	template, The Deployment-The Deployment
	upgrading application via, From containers to pods, services, deployments, etc.

	dicts	about, Loops, Loops
	dict function, Loops
	lookup for an object, Querying Kubernetes Resources In Charts
	loops in templates, Loops

	digest of container images, Container images and registries
	directory structure from create command, The Chart Creation Command	charts subdirectory for dependent charts, Chart Dependencies

	Docker	container design, Containers
	Docker registries, Adding a Chart Repository, Experimental OCI Support	configuration documentation, Running a Local Registry
	Docker Distribution project GitHub page, Running a Local Registry
	donated to OCI, Experimental OCI Support	(see also OCI)

	local registry via, Running a Local Registry

	Nginx default images, The Chart Creation Command

	dollar sign ($) in variable names, Variables
	domain for GitHub Pages, Optional: Use a custom domain
	dot (.) in range loops, Loops
	.helmignore file, Information Helm Passes to Templates
	dot objects (.), Information Helm Passes to Templates	scope of dot, Information Helm Passes to Templates

	.prov files in repository, .prov Files
	.tgz file handling by repository API, .tgz Files
	downloader plugins, Plugins, Downloader Plugins-Downloader Plugins
	Drupal charts	dry-run flag, The --dry-run Flag
	installation of chart, Installing a Package	configuration at installation, Configuration at Installation Time

	installation of content management system, Adding a Chart Repository
	searching, Searching a Chart Repository
	upgrading installation, Upgrading an Installation

	dry-run flag, The --dry-run Flag, Dry Run	lookup in dry run, Querying Kubernetes Resources In Charts

	dynamic completion, Dynamic completion

E
	else statements in templates, if/else/with
	enabled property, Exposing Services	if statements evaluating, if/else/with

	end statements in templates, if/else/with
	environment variables	HELM_BIN, Execution Environment
	HELM_DEBUG, Execution Environment
	HELM_KUBECONTEXT, Execution Environment
	HELM_NAMESPACE, Execution Environment
	HELM_PLUGINS, Manual installation, Execution Environment
	HELM_PLUGIN_DIR, Execution Environment
	HELM_PLUGIN_NAME, Execution Environment
	HELM_REGISTRY_CONFIG, Execution Environment
	HELM_REPOSITORY_CACHE, Execution Environment
	HELM_REPOSITORY_CONFIG, Downloader Plugins, Execution Environment
	plugin access to, Execution Environment

	eq function for equality, if/else/with
	equals sign (=) assigning new value, Variables
	errors (see debugging and troubleshooting)
	exit codes, Linting Charts	chart verification, Security Considerations
	helm test command, Helm Test

	export property in dependencies, The exports property

F
	Files object methods, Methods
	force flag, Upgrading with --force and --cleanup-on-fail
	functions in templates, Template Functions-Template Functions	and/or functions, if/else/with
	eq function, if/else/with
	list of available, Template Functions
	lookup function, Querying Kubernetes Resources In Charts
	Sprig library, Template Functions
	variables as arguments, Variables

G
	GCS repository plugin, GCS Plugin
	generate-name flag, The --generate-name and --name-template Flags
	get command	configuration values, Using helm get values
	manifest retrieval, Using helm get manifest, Getting Installed Manifests
	release details, Find Details of a Release with helm get-Using helm get manifest	release notes via get notes, Using helm get notes

	getting started	about helm client, Using Helm
	chart installation, Installing a Package-Configuration at Installation Time	(see also installation of charts)

	chart repository added, Adding a Chart Repository
	chart repository searched, Searching a Chart Repository
	cloud native ecosystem, The Cloud Native Ecosystem	(see also cloud native ecosystem)

	installing a package, Installing a Package-Configuration at Installation Time	(see also installation of charts)

	installing helm client	building from source, Guidance on Building from Source
	Kubernetes cluster connection, Working with Kubernetes Clusters
	prebuilt binary, Installing a Prebuilt Binary-Using the get script to install

	listing installations, Listing Your Installations

	Git repository plugin, Git Plugin
	git tool, Guidance on Building from Source, Using helm upgrade --install
	GitHub Pages for chart repository, Real-World Example: Using GitHub Pages-Using your GitHub Pages site as a chart repository	adding chart repository files, Adding chart repository files
	creating new repository, Create a new Git repo
	custom domain option, Optional: Use a custom domain
	enabling GitHub Pages, Enable GitHub Pages
	HTTPS option enabled, Optional: Use a custom domain
	using the GitHub Pages site, Using your GitHub Pages site as a chart repository

	global names, The --create-namespace Flag
	GNU Privacy Guard (GPG), Security Considerations
	Go programming language	creators of, Pipelines
	Helm written in, Modifying Templates
	property names, Information Helm Passes to Templates
	Sprig library of template functions, Template Functions
	template engine	syntax of templates, The Template Syntax
	template packages, Modifying Templates
	why Go, The Template Syntax

	variable handling, Variables

	Google Cloud Storage as repository, GCS Plugin

H
	Harbor full-featured chart registry, Harbor
	Helm	about Kubernetes and, Helm’s Goals	chart installed into Kubernetes, Resources, Installations, and Releases
	ease of Kubernetes setup, From Zero to Kubernetes
	package management overview, Package Management
	security, Security

	architecture	charts, Charts
	charts installed into Kubernetes, Resources, Installations, and Releases
	Kubernetes resources, Kubernetes Resources

	chart repositories, Adding a Chart Repository, Chart Repositories	(see also chart repositories)
	adding, Adding a Chart Repository
	searching, Searching a Chart Repository

	charts, Charts	(see also charts)
	versions of Helm and, A Brief Note About Helm 2

	Developer Guide, Guidance on Building from Source
	Go programming language	Helm written in, Modifying Templates
	template packages, Modifying Templates
	template syntax, The Template Syntax
	why Go, The Template Syntax

	goals of, Helm’s Goals-Configurability
	helm client	about, Using Helm
	installing, Using Helm-Working with Kubernetes Clusters
	plugins, Helm Plugins and Starters
	plugins history, Custom Subcommands
	starters, Helm Plugins and Starters

	online community, Guidance on Building from Source, Extending Helm Further	Artifact Hub for chart repositories, Adding a Chart Repository

	package manager, Preface, Introducing Helm, Package Management, Configurability
	security, Security	provenance of packages, Security, Security Considerations-Security Considerations

	tools that interoperate with, Configurability
	versions	API Version 1 details, API Version 1 (legacy)-The requirements.lock File (Legacy)
	API Version 2 details, API Version 2-The Chart.lock File
	apiVersion in Chart.yaml file, The Chart.yaml File, Chart API Versions, Field: apiVersion
	chart instance names, Installing a Package
	chart version, Searching a Chart Repository
	charts and, A Brief Note About Helm 2
	helm template command, The helm template Command
	helm-2to3 plugin for converting, Installing Third-Party Plugins
	names generated, The --generate-name and --name-template Flags
	open container initiative registries, Adding a Chart Repository
	prebuilt binaries, A note on Helm version numbers
	release information storage, How Helm Stores Release Information
	Semantic Versioning, A note on Helm version numbers, Chart Dependencies, Field: version
	test versus test-success, Helm Test
	Tiller of Helm 2, Custom Subcommands

	helm-2to3 plugin for converting releases, Installing Third-Party Plugins
	helm-backup plugin, Installing Third-Party Plugins
	helm-mapkubeapis plugin for deprecated APIs, Installing Third-Party Plugins
	helm-schema-gen plugin for schematizing values, Installing Third-Party Plugins
	helm-secrets plugin for managing secrets, Installing Third-Party Plugins
	helm-starter plugin for managing starters, Installing Third-Party Plugins
	.helmignore file, Information Helm Passes to Templates
	HELM_BIN, Execution Environment
	HELM_DEBUG, Execution Environment
	HELM_KUBECONTEXT, Execution Environment
	HELM_NAMESPACE, Execution Environment
	HELM_PLUGINS, Manual installation, Execution Environment
	HELM_PLUGIN_DIR, Execution Environment
	HELM_PLUGIN_NAME, Execution Environment
	HELM_REGISTRY_CONFIG, Execution Environment
	HELM_REPOSITORY_CACHE, Execution Environment
	HELM_REPOSITORY_CONFIG, Downloader Plugins, Execution Environment
	help command and plugins, Custom Subcommands
	history command, History and Rollbacks	uninstalling and keeping history, Keeping History and Rolling Back

	hooks, Hooks	helm test command, Adding Tests to Charts
	install-hook script for plugins, Hooks
	no-hooks flag, Hooks
	plugins, Hooks

	HorizontalPodAutoscaler (Kubernetes), From containers to pods, services, deployments, etc.

I
	icon property, The Chart.yaml File, The Chart.yaml File, Field: icon	example, The Chart.yaml File
	missing, Linting Charts

	if statements in templates, if/else/with	and/or statements, if/else/with

	images (container images)	about, Container images and registries
	digest, Container images and registries	values.yaml file, Container Images

	getImage example, Named Templates
	image registry, Container images and registries	access controls, Container Images
	digest, Container images and registries
	image name, Container images and registries
	tag, Container images and registries

	values.yaml file, Container Images

	import-values property in dependencies, The child-parent format
	include function to include a template, Named Templates
	indent function, Template Functions
	index.yaml of chart repositories, The Repository Index-An Example of a Chart Repository Index	adding to an existing, Adding to an Existing Index
	API version, Chart Repository API
	chart repository API, index.yaml	cached version use, When Is the Cached Version of index.yaml Used?
	downloading index.yaml, When Is index.yaml Downloaded?
	format of index.yaml, The index.yaml Format

	generating, Generating an Index
	GitHub Pages repository, Using your GitHub Pages site as a chart repository
	updating added repositories, Updating Repositories

	information Helm passes to templates, Information Helm Passes to Templates-Information Helm Passes to Templates	.helmignore file, Information Helm Passes to Templates
	dot objects, Information Helm Passes to Templates

	information in release records, How Helm Stores Release Information, Release Records	helm get for details, Find Details of a Release with helm get-Using helm get manifest
	Release for information, Information Helm Passes to Templates

	Ingress, The Chart Creation Command	Ingress Controller, Exposing Services
	manifests in building charts, Exposing Services

	ingress flag, Upgrading an Installation
	ingress.yaml file, Exposing Services
	init containers, From containers to pods, services, deployments, etc.
	inspect values command for default configuration, Using helm get values
	inspect-templates example plugin, The underlying implementation
	install command, Installing a Package	atomic flag, The --wait and --atomic Flags
	chart repository files, Downloading Charts
	configuration at installation, Configuration at Installation Time, Configuration Values and Upgrades	testing charts and, Helm Test

	create-namespace flag, The --create-namespace Flag
	dry-run flag, The --dry-run Flag, Dry Run
	generate-name flag, The --generate-name and --name-template Flags
	process of, Templating and Dry Runs
	provenance file, Security Considerations
	testing process, Helm Test
	wait flag, The --wait and --atomic Flags	atomic flag instead, The --wait and --atomic Flags

	install-hook script for plugins, Hooks
	installation of charts	about, Resources, Installations, and Releases
	atomic flag, The --wait and --atomic Flags
	basic mechanics of, Installing a Package
	cleanup-on-fail flag, Upgrading with --force and --cleanup-on-fail
	configuration at installation, Configuration at Installation Time, Configuration Values and Upgrades	testing charts and, Helm Test

	generate-name flag, The --generate-name and --name-template Flags
	helm get command for details, Find Details of a Release with helm get-Using helm get manifest
	helm history command, History and Rollbacks
	helm install command, Installing a Package	configuration at installation, Configuration at Installation Time
	process of, Templating and Dry Runs

	install or upgrade via upgrade install flag, Using helm upgrade --install
	listing installations, Listing Your Installations
	release information, How Helm Stores Release Information, Release Records
	release instance name scope, Installing a Package
	release life cycle statuses, Release Records
	releases listed, Listing Releases
	templates, Templating and Dry Runs
	uninstalling, Uninstalling an Installation-How Helm Stores Release Information	keeping history, Keeping History and Rolling Back

	upgrading an installation, Upgrading an Installation	configuration fresh with release, Configuration Values and Upgrades
	releases, Resources, Installations, and Releases, Upgrading an Installation

	wait flag, The --wait and --atomic Flags	atomic flag instead, The --wait and --atomic Flags

	installation of helm client	about helm client, Using Helm
	adding chart repository, Adding a Chart Repository
	building from source, Guidance on Building from Source
	chart installation, Installing a Package-Configuration at Installation Time	listing installations, Listing Your Installations

	chart repository searched, Searching a Chart Repository
	installing a package, Installing a Package-Configuration at Installation Time	listing installations, Listing Your Installations

	Kubernetes cluster connection, Working with Kubernetes Clusters
	prebuilt binary, Installing a Prebuilt Binary-Using the get script to install	downloading binary, Downloading the binary
	Helm version numbers, A note on Helm version numbers
	list of Helm releases, Installing a Prebuilt Binary
	package managers, Installing a Prebuilt Binary
	shell script, Using the get script to install

	installing third-party plugins, Installing Third-Party Plugins
	instance name scope, Installing a Package
	integrity of charts, Security Considerations
	iteration (loops) in templates, Loops

J
	JSON (JavaScript Object Notation)	chart repositories listed as, Listing Repositories
	JSON Schema, Schematizing Values Files
	manifests for resources, From containers to pods, services, deployments, etc., Kubernetes Resources
	service queries and data updates, Containers and Microservices
	toJson function, Template Functions
	YAML as superset of, Kubernetes Resources

K
	Kubernetes	about scheduling containers, Schedules and Kubernetes
	API server	custom resource definitions and, Custom Resource Definitions
	release success determinant, The --wait and --atomic Flags
	templates, Templating and Dry Runs
	wait flag for Running status, The --wait and --atomic Flags

	Capabilities object, Information Helm Passes to Templates	APIVersions.Has method, Methods

	configuration information storage, From containers to pods, services, deployments, etc.
	declarative infrastructure, Declarative infrastructure	chart installed into Kubernetes, Resources, Installations, and Releases
	resources in Helm architecture, Kubernetes Resources

	Deployment, From containers to pods, services, deployments, etc.	deployment.yaml file, The Deployment-The Deployment
	HorizontalPodAutoscaler, From containers to pods, services, deployments, etc.
	resource definition example, Kubernetes Resources
	security context readability, Template Functions
	template, The Deployment-The Deployment
	upgrading application via, From containers to pods, services, deployments, etc.

	founder, The Cloud Native Ecosystem
	Helm	about Kubernetes and, Helm’s Goals
	chart installed into Kubernetes, Resources, Installations, and Releases
	ease of Kubernetes setup, From Zero to Kubernetes
	methods to expose applications, The Chart Creation Command
	package management overview, Package Management
	package manager, Preface, Introducing Helm, Configurability
	resources in architecture, Kubernetes Resources
	security, Security

	helm client connection, Working with Kubernetes Clusters
	helm template command not needing, The helm template Command
	kubectl	about, Guidance on Building from Source
	credential management, Working with Kubernetes Clusters
	delete namespace, The --create-namespace Flag
	helm client connection, Working with Kubernetes Clusters
	manifest secret metadata, Using helm get manifest
	release information secrets, How Helm Stores Release Information, Release Records
	restarting a service, Upgrading an Installation

	label recommendations, Named Templates
	namespace, Package Management	create-namespace flag, The --create-namespace Flag
	deleting with kubectl, The --create-namespace Flag
	Helm and namespace flags, Installing a Package
	HELM_NAMESPACE, Execution Environment
	listing installations, Listing Your Installations
	named templates, Named Templates
	names unique within, The --generate-name and --name-template Flags

	operating systems versus, Package Management	namespace, Package Management

	pods	about, From containers to pods, services, deployments, etc., From containers to pods, services, deployments, etc.
	configuration information storage, From containers to pods, services, deployments, etc.
	Deployment, From containers to pods, services, deployments, etc.
	forcing restarts on update, Upgrading with --force and --cleanup-on-fail
	init containers, From containers to pods, services, deployments, etc.
	manifests, From containers to pods, services, deployments, etc.
	Pod resource, From containers to pods, services, deployments, etc.
	rkt as historical origin, Experimental OCI Support
	Running state and wait flag, The --wait and --atomic Flags
	Service, From containers to pods, services, deployments, etc.
	sidecar containers, From containers to pods, services, deployments, etc.
	volumes linking to configuration, From containers to pods, services, deployments, etc.

	reconciliation loop, The reconciliation loop
	resources	charts, Charts	(see also charts)

	Helm architecture, Kubernetes Resources
	methods to expose applications, The Chart Creation Command
	resource type, Kubernetes Resources
	schema validation, Dry Run

	Secrets, From containers to pods, services, deployments, etc.	custom files in charts, Information Helm Passes to Templates
	helm-secrets plugin, Installing Third-Party Plugins
	image registry with access controls, Container Images
	pull secrets, Container Images
	release failure leaving hanging Secret, Upgrading with --force and --cleanup-on-fail
	release information storage, How Helm Stores Release Information

	Service, From containers to pods, services, deployments, etc.	exposing applications, Exposing Services
	restarting a service, Upgrading an Installation

	version determination, Information Helm Passes to Templates	resource availability determination, Methods

	Kustomize tool and helm post-renderer flag, The helm template Command

L
	labels	labels function, Library Charts
	management with named templates, Named Templates-Named Templates	Kubernetes recommended labels, Named Templates

	library charts, Library Charts-Library Charts	how reusable templates work, Library Charts
	namespacing template name, Named Templates

	linting charts, Linting Charts, Linting Charts	Chart Testing tool, Chart Testing Tool

	Linux pipelines, Pipelines
	listing installations, Listing Your Installations	release status check, Listing Releases

	lists	about, Loops, Loops
	list function, Loops, Loops
	lookup function returning, Querying Kubernetes Resources In Charts
	loops in templates, Loops

	LoadBalancer, The Chart Creation Command
	lookup function	dry run versus upgrade, Querying Kubernetes Resources In Charts
	returning dict or list, Querying Kubernetes Resources In Charts

	loops in templates, Loops
	loose coupling between charts, Chart Dependencies

M
	manifests	about, From containers to pods, services, deployments, etc., Kubernetes Resources
	building charts, Exposing Services
	chart installed into Kubernetes, Resources, Installations, and Releases
	helm get command to retrieve, Using helm get manifest, Getting Installed Manifests
	label recommendations by Kubernetes, Named Templates
	MySQL manifests in WordPress chart, Chart Dependencies
	plugin creation, The plugin manifest	plugin.yaml, plugin.yaml-plugin.yaml
	which code to run, plugin.yaml

	release success determinant, The --wait and --atomic Flags
	schema definitions from Kubernetes, Dry Run
	templates as, Charts

	maps (see dicts)
	McIlroy, Douglas, Pipelines
	merge function, Library Charts	creator Adnan Abdulhussein, Library Charts

	metadata annotations via resource lookup, Querying Kubernetes Resources In Charts
	methods in templates	Capabilities object, Methods
	Files object, Methods

	microservices, Microservices	containers for, Containers

	mutual TLS authentication (mTLS), Client certificates
	MySQL and chart dependencies, Chart Dependencies

N
	name-template flag, The --generate-name and --name-template Flags
	named templates, Named Templates-Named Templates	getImage example, Named Templates
	_helpers.tpl file for, Structuring Your Templates for Maintainability

	names	alias property in Chart.yaml file, Chart Dependencies
	chart archive files, Packaging the Chart
	chart instance name scope, Installing a Package
	Chart.yaml versus Chart object, Information Helm Passes to Templates
	container images, Container images and registries
	descriptive template names, Structuring Your Templates for Maintainability
	helm install command generate-name flag, The --generate-name and --name-template Flags
	label recommendations by Kubernetes, Named Templates
	lint detecting problems, Linting Charts
	property names on data objects, Information Helm Passes to Templates
	starters	converting chart to starter, Converting a Chart to a Starter
	unique name for, Making Starters Available to Helm
	using starters, Using Starters

	variables, Variables

	namespace (Kubernetes), Package Management	create-namespace flag, The --create-namespace Flag
	deleting with kubectl, The --create-namespace Flag
	Helm and namespace flags, Installing a Package
	HELM_NAMESPACE, Execution Environment
	listing installations, Listing Your Installations
	named templates, Named Templates
	names unique within, The --generate-name and --name-template Flags	chart instance name scope, Installing a Package
	global names, The --create-namespace Flag
	starters, Making Starters Available to Helm

	Nginx	helm create command, The Chart Creation Command, Modifying Templates	about Nginx as default, The Chart Creation Command
	test created by default, Helm Test

	images from Docker Official Images, The Chart Creation Command
	Ingress Controller, Exposing Services
	mTLS for chart repository, Client certificates
	web page indicating running, The Chart Creation Command

	nindent function, Template Functions	including another template, Named Templates

	NodePort, The Chart Creation Command
	NOTES.txt template, The Chart Creation Command

O
	OCI (open container initiative) registries	about, Experimental OCI Support	experimental status, Experimental OCI Support, Enabling OCI Support

	cache	exporting chart from, Exporting a Chart from the Cache
	listing charts in, Listing Charts in the Cache
	path environment variable, Execution Environment
	pulling chart from registry, Pulling a Chart from the Registry
	pushing chart to registry, Pushing a Chart to the Registry
	removing chart from, Removing a Chart from the Cache
	saving chart into, Storing a Chart in the Cache

	chart versions, Packaging the Chart, Storing a Chart in the Cache
	distribution specification, Experimental OCI Support
	enabling OCI support, Enabling OCI Support
	Helm 3 introducing, Adding a Chart Repository
	history of, Experimental OCI Support, Experimental OCI Support	distribution spec homepage, Experimental OCI Support

	local registry creation, Running a Local Registry
	logging in to, Logging In to a Registry
	logging out of, Logging Out of a Registry
	online information source, Experimental OCI Support

	online community, Guidance on Building from Source, Extending Helm Further	Artifact Hub for chart repositories, Adding a Chart Repository

	open container initiative registries (see OCI)
	open source tools	Chart Releaser chart package host, Chart Releaser
	ChartMuseum web server, ChartMuseum
	contributions to, Extending Helm Further
	GCS repository plugin, GCS Plugin
	Git repository plugin, Git Plugin
	Harbor full-featured registry, Harbor
	S3 repository plugin, S3 Plugin

	operating systems versus Kubernetes, Package Management
	or statements in templates, if/else/with

P
	package command, Packaging the Chart	Pretty Good Privacy signature, Security Considerations

	package managers	about, Preface, Package Management	configuration management versus, Configurability

	charts as packages, Preface, Charts, Adding a Chart Repository, Building a Chart
	dependencies and, Advanced Chart Features
	Helm as, Preface, Introducing Helm, Package Management	configuration management and, Configurability

	installing helm client, Installing a Prebuilt Binary
	success determination, The --wait and --atomic Flags

	packages	charts as, Preface, Charts, Adding a Chart Repository, Building a Chart
	packaging a chart, Packaging the Chart-Packaging the Chart	dependencies, Chart Dependencies
	index.yaml added to, Adding to an Existing Index
	index.yaml for repository, An Example of a Chart Repository Index
	index.yaml generated, Generating an Index
	Pretty Good Privacy signature, Security Considerations

	provenance feature of Helm, Security, Security Considerations-Security Considerations

	packed charts, Charts
	Pike, Rob, Pipelines
	pipelines in template syntax	about, Pipelines, Pipelines
	default function, Pipelines
	including another function, Named Templates
	quote function, Pipelines

	plugin.complete file, Dynamic completion, Dynamic completion
	plugins	about, Helm Plugins and Starters
	building, Building a Plugin-The end result	code executed, The underlying implementation
	end result, The end result
	install-hook script, Hooks
	manifest, The plugin manifest
	manual installation, Manual installation

	code executed	building a plugin, The underlying implementation
	install-hook script, Hooks
	which command to run, plugin.yaml

	completions	dynamic completion, Dynamic completion
	static autocompletion, Static autocompletion

	custom subcommands, Custom Subcommands	helm help command and, Custom Subcommands

	documentation, Installing Third-Party Plugins
	downloader plugins, Plugins, Downloader Plugins-Downloader Plugins
	environment variables available to, Execution Environment	HELM_PLUGINS, Execution Environment
	HELM_PLUGIN_DIR, Execution Environment
	HELM_PLUGIN_NAME, Execution Environment

	GCS as repository, GCS Plugin
	Git as repository, Git Plugin
	helm-2to3 for converting releases, Installing Third-Party Plugins
	helm-backup, Installing Third-Party Plugins
	helm-mapkubeapis for deprecated APIs, Installing Third-Party Plugins
	helm-schema-gen for schematizing values, Installing Third-Party Plugins
	helm-secrets for managing secrets, Installing Third-Party Plugins
	helm-starter for managing starters, Installing Third-Party Plugins
	history of, Custom Subcommands
	hooks, Hooks
	inspect-templates example plugin, The underlying implementation
	installing third-party, Installing Third-Party Plugins
	listing installed plugins, Installing Third-Party Plugins
	plugin.yaml, Installing Third-Party Plugins, Installing Third-Party Plugins, plugin.yaml-plugin.yaml	hooks, Hooks
	inspect-templates example plugin, The plugin manifest
	which command to run, plugin.yaml

	removing installed, Installing Third-Party Plugins
	root directory override, Manual installation
	S3 as repository, S3 Plugin
	updating, Installing Third-Party Plugins

	pods	about, From containers to pods, services, deployments, etc., From containers to pods, services, deployments, etc.
	configuration information storage, From containers to pods, services, deployments, etc.	volumes linking, From containers to pods, services, deployments, etc.

	Deployment, From containers to pods, services, deployments, etc.
	forcing restarts on update, Upgrading with --force and --cleanup-on-fail
	init containers, From containers to pods, services, deployments, etc.
	manifests, From containers to pods, services, deployments, etc.
	Pod resource, From containers to pods, services, deployments, etc.
	rkt as historical origin, Experimental OCI Support
	Running state and wait flag, The --wait and --atomic Flags
	Service, From containers to pods, services, deployments, etc.
	sidecar containers, From containers to pods, services, deployments, etc.

	prebuilt binary for helm client installation, Installing a Prebuilt Binary-Using the get script to install
	Pretty Good Privacy (PGP), Packaging the Chart, Security Considerations-Security Considerations	helm verify command, Security Considerations
	public key sharing, Security Considerations	GNU Privacy Guard, Security Considerations

	property names, Information Helm Passes to Templates
	protocol handling by downloader plugins, Plugins, Downloader Plugins-Downloader Plugins
	.prov files in repository, .prov Files
	provenance of charts, Security, Security Considerations-Security Considerations
	public key for Pretty Good Privacy, Security Considerations	ASCII-Armor public key format, Security Considerations
	GNU Privacy Guard, Security Considerations

	pull command, Downloading Charts
	pull secrets, Container Images
	Python chart repository, A Simple Chart Repository with Python

Q
	quote function for string output, Pipelines

R
	range function, Loops
	reconciliation loop of Kubernetes, The reconciliation loop
	Release object, Information Helm Passes to Templates
	releases	about, Resources, Installations, and Releases, Upgrading an Installation
	actions bundled as part of, Hooks
	chart installed into Kubernetes, Resources, Installations, and Releases	release installation process, Templating and Dry Runs

	dry-run flag, The --dry-run Flag
	helm history command, History and Rollbacks
	helm rollback command, History and Rollbacks
	helm-2to3 plugin for converting, Installing Third-Party Plugins
	helm-backup plugin, Installing Third-Party Plugins
	hooking into events, Hooks	no-hooks flag, Hooks
	tests added to charts, Adding Tests to Charts-Chart Testing Tool

	information in release records, How Helm Stores Release Information, Release Records	helm get for details, Find Details of a Release with helm get-Using helm get manifest
	Release for information, Information Helm Passes to Templates

	instance name scope, Installing a Package
	life cycle statuses, Release Records
	listing installations, Listing Your Installations
	listing releases, Listing Releases
	release notes via helm get notes, Using helm get notes
	success determination, The --wait and --atomic Flags
	templates, Resources, Installations, and Releases, Templating and Dry Runs
	upgrading installations, Upgrading an Installation	configuration fresh with release, Configuration Values and Upgrades

	repositories (see chart repositories)
	repository field in Chart.yaml file, Chart Dependencies
	requirements.lock file (legacy), The requirements.lock File (Legacy)
	requirements.yaml file (legacy), Differences from v2, The requirements.yaml File (Legacy)
	resource limits, Resource Limits
	resources	about use of term, From containers to pods, services, deployments, etc.
	annotating, Querying Kubernetes Resources In Charts
	charts, Charts, Resources, Installations, and Releases	(see also charts)

	custom resource definitions, Custom Resource Definitions-Custom Resource Definitions	crds directory, Custom Resource Definitions
	helm template command and, The helm template Command
	Kubernetes API and, Custom Resource Definitions
	second chart for, Custom Resource Definitions

	declarative resource definitions, Declarative infrastructure, Kubernetes Resources
	hand-editing and rollbacks, History and Rollbacks
	Helm architecture, Kubernetes Resources
	hooks, Hooks
	manifests, From containers to pods, services, deployments, etc., Kubernetes Resources	helm get command to retrieve, Using helm get manifest, Getting Installed Manifests

	methods to expose applications, The Chart Creation Command
	namespace, Package Management	Helm and namespace flags, Installing a Package

	querying in charts, Querying Kubernetes Resources In Charts
	resource availability determination, Methods
	resource type, Kubernetes Resources
	schema validation, Dry Run

	resources for learning	book supplemental material, Using Code Examples
	building anvil chart, Building a Chart
	chart repositories, Adding a Chart Repository
	Chart Testing tool, Chart Testing Tool
	charts from chapter 6 of book, Advanced Chart Features
	Docker Distribution, Running a Local Registry	Docker registry configuration, Running a Local Registry

	Helm Developer Guide, Guidance on Building from Source	tools that interoperate with Helm, Configurability

	Helm releases, Installing a Prebuilt Binary
	helm-users channel on Kubernetes Slack server, Guidance on Building from Source
	JSON Schema, Schematizing Values Files
	label recommendations by Kubernetes, Named Templates
	Nginx Ingress Controller, Exposing Services
	OCI information, Experimental OCI Support	distribution spec, Experimental OCI Support

	online community, Guidance on Building from Source, Extending Helm Further	Artifact Hub for chart repositories, Adding a Chart Repository

	plugin documentation, Installing Third-Party Plugins
	Sprig library of template functions, Template Functions
	template functions available, Template Functions
	tools that interoperate with Helm, Configurability

	REST (representational state transfer) APIs, Containers and Microservices, Microservices
	restarting a service with kubectl, Upgrading an Installation
	reusability in Helm, Reusability
	revisions of installations	failed releases have revisions, Listing Releases
	helm history command, History and Rollbacks
	helm rollback command, History and Rollbacks
	release records containing, Release Records

	rkt (CoreOS), Experimental OCI Support
	rollback command, History and Rollbacks	atomic flag, The --wait and --atomic Flags
	keeping history, Keeping History and Rolling Back

	root directory of plugins, Manual installation

S
	S3 plugin for chart repository, S3 Plugin
	scalability in Deployment (Kubernetes), From containers to pods, services, deployments, etc.
	schema validation of Chart.yaml, Chart Testing Tool
	schema validation of Kubernetes resources, Dry Run
	schematizing values.yaml files, Schematizing Values Files	benefits of schemas, Schematizing Values Files, Schematizing Values Files
	helm-schema-gen plugin, Installing Third-Party Plugins
	JSON Schema, Schematizing Values Files

	scope	chart instance name, Installing a Package
	dot objects, Information Helm Passes to Templates
	with statements, if/else/with

	scripts (see Bash scripts)
	Secrets (Kubernetes), From containers to pods, services, deployments, etc.	custom files in charts, Information Helm Passes to Templates
	helm-secrets plugin, Installing Third-Party Plugins
	image registry with access controls, Container Images
	pull secrets, Container Images
	release failure leaving hanging Secret, Upgrading with --force and --cleanup-on-fail
	release information storage, How Helm Stores Release Information

	security	basic auth, Basic auth	Docker local registry, Running a Local Registry

	chart repository, Basic auth-Client certificates	basic auth, Basic auth
	client certificates, Client certificates
	real-world example, Real-World Example: Using GitHub Pages

	chart security, Security, Security Considerations-Security Considerations	provenance feature, Security, Security Considerations-Security Considerations

	client certificates, Client certificates
	downloader plugin for protocol handling, Downloader Plugins-Downloader Plugins
	GitHub Pages HTTPS option enabled, Optional: Use a custom domain
	GNU Privacy Guard, Security Considerations
	namespaces, Package Management
	Pretty Good Privacy signing, Packaging the Chart, Security Considerations-Security Considerations	helm verify command, Security Considerations
	public key and GNU Privacy Guard, Security Considerations
	public key sharing, Security Considerations

	pull secrets for, Container Images

	Semantic Versioning, A note on Helm version numbers, Field: version	range syntaxes, Chart Dependencies
	version field for dependencies, Chart Dependencies

	Service (Kubernetes)	about, From containers to pods, services, deployments, etc.
	exposing applications, Exposing Services
	restarting a service, Upgrading an Installation

	service account from create command, Container Images
	service meshes, Getting Installed Manifests	manifest changes, Getting Installed Manifests

	service.yaml, Exposing Services
	shells	autocompletion, Shell Completion
	shell script to install helm client, Using the get script to install	(see also Bash scripts)

	sidecar containers, From containers to pods, services, deployments, etc.
	snippets in _*.yaml files, Library Charts
	Sprig library of template functions, Template Functions
	starters	about, Helm Plugins and Starters, Starters
	converting chart to, Converting a Chart to a Starter
	helm-starter plugin for managing, Installing Third-Party Plugins
	making available to Helm, Making Starters Available to Helm
	using, Using Starters

	static autocompletion, Static autocompletion, Dynamic completion
	stderr for plugin logging, Downloader Plugins
	stdout for plugin output, Downloader Plugins
	string output potential errors, Pipelines

T
	tag of container image, Container images and registries
	tags property in dependencies, Conditional Flags for Enabling Dependencies
	template command, The helm template Command, Developing Templates	cluster not interrogated, The helm template Command, Information Helm Passes to Templates, Methods, Dry Run
	debugging templates, Dry Run

	template function for including a template, Named Templates
	templates	about, Developing Templates	_ (underscore) before file names, Library Charts
	why Go, The Template Syntax

	about charts, Charts, Building a Chart
	chart create command, The Chart Creation Command-The Chart Creation Command	Chart.yaml file, The Chart.yaml File-The Chart.yaml File
	directory structure, The Chart Creation Command, Developing Templates
	values.yaml file, Using the Values File-Resource Limits

	chart installed into Kubernetes, Resources, Installations, and Releases	release installation process, Templating and Dry Runs

	charts subdirectory, Chart Dependencies
	comments in, Named Templates
	debugging	dry-run flag, The --dry-run Flag, Querying Kubernetes Resources In Charts, Dry Run
	linting charts, Linting Charts, Linting Charts, Chart Testing Tool
	manifests, Using helm get manifest, Getting Installed Manifests

	Deployment, The Deployment-The Deployment	security context readability, Template Functions

	helm template command, The helm template Command, Developing Templates	cluster not interrogated, The helm template Command, Information Helm Passes to Templates, Methods

	information Helm passes to, Information Helm Passes to Templates-Information Helm Passes to Templates	.helmignore file, Information Helm Passes to Templates
	dot objects, Information Helm Passes to Templates

	library charts, Library Charts-Library Charts	how reusable templates work, Library Charts
	namespacing template name, Named Templates

	modifying, Modifying Templates-The Deployment	Go template packages, Modifying Templates

	name-template flag, The --generate-name and --name-template Flags
	named templates, Named Templates-Named Templates	_helpers.tpl file for, Structuring Your Templates for Maintainability

	NOTES.txt, The Chart Creation Command
	starter dynamic references, Converting a Chart to a Starter	(see also starters)

	structuring for maintainability, Structuring Your Templates for Maintainability
	syntax of templates, The Template Syntax-Loops	actions, Actions
	complex logic in named template, Named Templates
	.helmignore file, Information Helm Passes to Templates
	dot objects, Information Helm Passes to Templates
	example template, Modifying Templates
	functions, Template Functions-Template Functions, Querying Kubernetes Resources In Charts, if/else/with
	functions available listed, Template Functions
	functions in example, The Deployment
	if/else/with, if/else/with
	information Helm passes to templates, Information Helm Passes to Templates-Information Helm Passes to Templates
	loops, Loops
	methods, Methods
	pipelines, Pipelines
	property names, Information Helm Passes to Templates
	querying Kubernetes resources, Querying Kubernetes Resources In Charts
	quote function, Pipelines
	Values examples, Modifying Templates, The Deployment
	variables, Variables
	why Go, The Template Syntax

	testing and create command, The Chart Creation Command
	values.yaml file for default values, The Chart Creation Command, Using the Values File

	test command, Helm Test	Chart Testing tool, Chart Testing Tool	history of, Chart Testing Tool

	example, Helm Test
	steps to running tests, Helm Test
	test-success versus, Helm Test

	testing	chart testing	about, Adding Tests to Charts
	Chart Testing tool, Chart Testing Tool
	helm test command, Helm Test
	history of, Chart Testing Tool
	steps to running tests, Helm Test

	exit codes, Linting Charts	chart verification, Security Considerations
	helm test command, Helm Test

	templates and create command, The Chart Creation Command

	.tgz file handling by repository API, .tgz Files
	Thompson, Ken, Pipelines
	tight coupling between charts, Chart Dependencies
	timeout flag, The --wait and --atomic Flags, The --wait and --atomic Flags
	toJson function, Template Functions
	toToml function, Template Functions
	toYaml function, Template Functions
	troubleshooting (see debugging and troubleshooting)
	type property	application default, The Chart.yaml File, Library Charts
	library chart creation, Library Charts

U
	underscore (_) before file names, Library Charts	_helpers.tpl file for named templates, Structuring Your Templates for Maintainability

	uninstalling charts, Uninstalling an Installation-How Helm Stores Release Information	keeping history, Keeping History and Rolling Back

	Unix pipelines, Pipelines
	unpacked charts, Charts
	upgrades	custom resource definitions and, Custom Resource Definitions
	Deployment handling, From containers to pods, services, deployments, etc.
	dry-run flag, The --dry-run Flag, Dry Run
	install flag for install or upgrade, Using helm upgrade --install
	installation upgrades, Upgrading an Installation
	releases, Resources, Installations, and Releases	(see also releases)

V
	Values	schematizing, Schematizing Values Files
	values.yaml file providing, The Deployment, Information Helm Passes to Templates
	variable initialization, Variables

	values.schema.json file, Schematizing Values Files
	values.yaml file	about charts, Charts
	building charts, Using the Values File-Resource Limits	container images, Container Images
	exposing services, Exposing Services
	resource limits, Resource Limits
	service account, Container Images

	dependent chart configuration, Chart Dependencies	child chart exporting value, The exports property
	child chart value without export, The child-parent format
	conditional dependencies, Conditional Flags for Enabling Dependencies

	library chart creation, Library Charts
	schematizing, Schematizing Values Files	helm-schema-gen plugin, Installing Third-Party Plugins
	JSON Schema, Schematizing Values Files

	upgrading an installation, Configuration Values and Upgrades	templates, Templating and Dry Runs

	Values from, The Deployment, Information Helm Passes to Templates	template default values, The Chart Creation Command, Using the Values File

	with conditional output, if/else/with

	variables in templates, Variables
	verify command, Security Considerations
	version field for dependencies, Chart Dependencies	range syntaxes, Chart Dependencies

	version of Kubernetes, Information Helm Passes to Templates	resource availability determination, Methods

	versions of Helm	API Version 1 details, API Version 1 (legacy)-The requirements.lock File (Legacy)
	API Version 2 details, API Version 2-The Chart.lock File
	apiVersion in Chart.yaml file, The Chart.yaml File, Chart API Versions, Field: apiVersion
	charts and, A Brief Note About Helm 2	chart instance names, Installing a Package
	chart version, Searching a Chart Repository
	open container initiative registries, Adding a Chart Repository

	helm template command, The helm template Command
	helm-2to3 plugin for converting, Installing Third-Party Plugins
	names generated, The --generate-name and --name-template Flags
	prebuilt binaries, A note on Helm version numbers	Semantic Versioning, A note on Helm version numbers

	release information storage, How Helm Stores Release Information
	Semantic Versioning, A note on Helm version numbers, Field: version	range syntaxes, Chart Dependencies
	version field for dependencies, Chart Dependencies

	test versus test-success, Helm Test
	Tiller of Helm 2, Custom Subcommands

	volumes linking pods to configuration objects, From containers to pods, services, deployments, etc.

W
	wait flag, The --wait and --atomic Flags	atomic flag instead, The --wait and --atomic Flags

	with statements in templates, if/else/with
	WordPress and chart dependencies	conditional dependencies, Conditional Flags for Enabling Dependencies
	MySQL dependency, Chart Dependencies
	passing configuration, Chart Dependencies

Y
	YAML	capturing	helm post-renderer flag, The helm template Command
	helm template command, The helm template Command

	chart repositories listed as, Listing Repositories
	Chart.yaml, Charts, The Chart.yaml File-The Chart.yaml File	(see also Chart.yaml file)
	information Helm passes to templates, Information Helm Passes to Templates
	template modification, Modifying Templates-The Deployment

	completion.yaml file, Dynamic completion
	ConfigMap, From containers to pods, services, deployments, etc.
	Deployment, From containers to pods, services, deployments, etc.	resource definition, Kubernetes Resources
	security context readability, Template Functions

	deployment.yaml file, The Deployment-The Deployment
	helm-secrets plugin, Installing Third-Party Plugins
	index.yaml of chart repositories, The Repository Index-An Example of a Chart Repository Index	(see also index.yaml)
	adding to existing, Adding to an Existing Index
	generating, Generating an Index

	library chart, Library Charts
	manifests for resources, From containers to pods, services, deployments, etc., Kubernetes Resources	helm get command to retrieve, Using helm get manifest, Getting Installed Manifests

	output string potential errors, Pipelines
	plugin.yaml, Installing Third-Party Plugins, Installing Third-Party Plugins, plugin.yaml-plugin.yaml	hooks, Hooks
	inspect-templates example plugin, The plugin manifest
	which command to run, plugin.yaml

	requirements.yaml file, Differences from v2, The requirements.yaml File (Legacy)
	reusability in Helm, Reusability
	Service, From containers to pods, services, deployments, etc.
	service.yaml, Exposing Services
	snippets in _*.yaml files, Library Charts
	superset of JSON, Kubernetes Resources
	templates, Templating and Dry Runs	(see also templates)
	template modification, Modifying Templates-The Deployment

	test-connection.yaml example file, Helm Test
	toYaml function, Template Functions
	values.yaml file, Charts	(see also values.yaml file)
	building charts, Using the Values File-Resource Limits
	child chart exporting value, The exports property
	schematizing, Schematizing Values Files
	with for conditional output, if/else/with

Z
	Z shell (Zsh) autocompletion, Shell Completion

About the Authors

Matt Butcher is a cofounder/creator of the Helm project. He leads a team of open source engineers at Microsoft Azure. Matt is also the cocreator of The Illustrated Children’s Guide to Kubernetes (with Karen Chu, Cloud Native Computing Foundation) and has authored eight other books (two with Matt Farina). He holds a Ph.D. in philosophy. When not coding, he enjoys drinking great coffee or hiking in the Colorado Rockies.

Matt Farina is a maintainer on the Helm project and has been contributing to open source projects for more than 15 years. He cofounded and cochairs the Kubernetes Apps Special Interest Group (SIG), which focuses on running workloads on Kubernetes. Matt works as a software architect at SUSE where he works on Kubernetes and developer tooling. He has previously authored two books alongside Matt Butcher. Creative problem solving and helping people are two driving forces for Matt’s work with software.

Josh Dolitsky is a maintainer of the Helm project and founder of the ChartMuseum project. He is the owner and lead engineer of Blood Orange, a software consulting firm specialized in helping with DevOps, CI/CD, and Kubernetes. Josh has a penchant for undertaking ambitious software projects and seeing them to completion (for the most part). He is a chronic user of airplane mode while not on an aircraft, and relishes the many nondigital joys in life.

 Colophon

 The animal on the cover of Learning Helm is a little grebe (Tachybaptus ruficollis), also known as a dabchick, a small water bird found in a large range extending across Europe, Africa, and southern Asia.

The little grebe has a pointed bill, which darkens from yellow to black as it matures, surrounded by white accents. Its mostly dark plumage, which runs down the bird’s back to its blunt rear, is offset by a rust-colored neck and a lighter abdomen. The little grebe’s breeding call is a trilled weet-weet-weet that has been likened to a horse’s whinny.

Its legs are set far back, like all grebes, and while it has difficulty walking on land the dabchick is a talented swimmer and diver. Thus, it prefers to dine on insects, mollusks, tadpoles, and small fish and build its nest at the water’s edge. Little grebe chicks are fed feathers by their parents to create a soft stomach lining that prevents damage from fish bones and shells.

 While the little grebe’s conservation status is currently listed as of Least Concern, many of the animals on O’Reilly covers are endangered; all of them are important to the world.

 The cover illustration is by Karen Montgomery, based on a black and white engraving from Elements of Ornithology. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/Images/6.png

OEBPS/Images/7.png

OEBPS/Images/4.png

OEBPS/Images/5.png

OEBPS/Images/8.png

OEBPS/Images/9.png

OEBPS/Images/2.png

OEBPS/Images/3.png

OEBPS/Images/1.png

OEBPS/Images/cover.png
O'REILLY"

Learning
Helm

Managing Apps on Kubernetes

Matt Butcher,
Matt Farina &
Josh Dolitsky

OEBPS/Images/lehe_0702.png
M < 0O B& & github.com @ M

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

Source
GitHub Pages is currently disabled. Select a source below to enable GitHub Pages for this repository. Learn
more.

¥ Branch: main ~ B / (root) ~ Save
Theme Chooser
Select a theme to publish your site with a Jekyll theme using the gh-pages branch. Learn more.

Choose a theme

OEBPS/Images/lehe_0703.png
@ github.com

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages from a GitHub repository.

v Your site is published at https://example.com

Source
Your GitHub Pages site is currently being built from the master branch. Learn more.

¥ Branch: main ~ B / (root) ~ Save
Theme Chooser
Select a theme to publish your site with a Jekyll theme. Learn more.

Choose a theme

Custom domain
Custom domains allow you to serve your site from a domain other than helm-demo-user.github. io. Learn
more.

example.com Save

Enforce HTTPS
HTTPS provides a layer of encryption that prevents others from snooping on or tampering with traffic to your site.
When HTTPS is enforced, your site will only be served over HTTPS. Learn more.

OEBPS/Images/lehe_0701.png
M < @ github.com

Q Search or jump to... Pulls Issues Marketplace Explore

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner * Repository name *

.. helm-demo-user~ [mycharts v
Great repository names are short and memorable. Need inspiration? How about didactic-engine?

Description (optional)

A home for my Helm charts

o E_l Public
n Anyone on the internet can see this repository. You choose who can commit.
E] Private
You choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

Add a README file
This is where you can write a long description for your project. Learn more.

Add .gitignore
Choose which files not to track from a list of templates. Learn more.

Choose a license
A license tells others what they can and can't do with your code. Learn more.

License: MIT License v

This will set ¥ main as the default branch. Change the default name in your settings.

Create repository

OEBPS/Images/lehe_0401.png
2
()

< [localhost &

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

