

Learning Functional Programming

??? Edition

Managing Code Complexity by Thinking Functionally

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Jack Widman, PhD

 Learning Functional Programming

 by Jack Widman

 Copyright © 2022 Jack Widman. All rights reserved.

 Printed in the United States of America.

 Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

 	Editors: Mary Preap and Shira Evans

 	Production Editor: Kate Galloway

 	Interior Designer: David Futato

 	Cover Designer: Karen Montgomery

 	Illustrator: Kate Dullea

 	June 2022: First Edition

 Revision History for the Early Release

 	2021-08-30: First Release

 	2021-12-10: Second Release

 	2022-02-01: Third Release

 	2022-04-21: Fourth Release

 See http://oreilly.com/catalog/errata.csp?isbn=9781098111755 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Functional Programming, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the author, and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-11168-7

Chapter 1. What is Functional Programming?

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve
 the content and/or examples in this book, or if you notice missing
 material within this chapter, please reach out to the author at jack.widman@protonmail.com.

Functional programming? Functors? Monoids, Monads? “I’m not a mathematician!” you might say. How can I learn these esoteric concepts? And why would I want to? These concerns are totally understandable. But the truth is you don’t need to be a mathematician to be a functional programmer.

Note

You don’t need to be a mathematician to write functional code.

The fundamental concepts of functional programming are easy to understand when presented in a clear, straightforward way. And that is what this book is about. Making functional programming understandable and practical. In particular, I will teach you how to think like a functional programmer. But why would you want to learn functional programming?

Picture this. It’s 10 pm and you are totally stuck while trying to fix a bug in a program you need to submit in the morning. The problem seems to be centered around a variable called ratio. The problem is that depending on the state of the system you are modeling, the variable ratio keeps changing. Your frustration builds. Or you have a deadline at work and there is an elusive bug in your microservice that you are chasing down. The problem seems to be in two nested for loops in which variables are modified in a fairly complex way. The logic is complex and you don’t quite see the solution. If only there were a way to write programs in a way in which the value of variables would not change! Functional Programming to the rescue.

Note

Variables whose values change often are a considerable source of bugs in programs.

So, what is functional programming? What makes one language functional and another not functional? The truth is that to some extent it is a matter of degree. You don’t have to follow every principle that falls under the heading of functional programming. Some people will try to follow all of them, and others will pick and choose. It is totally up to you. Functional Programming (FP), is a paradigm, an approach to programming, a way of breaking up the world and putting it back together in code. It involves both how we organize that piece of the world we are modeling and how we organize and structure the code.

In order to better describe the essence of FP, let us begin by contrasting it with Imperative Programming and Object Oriented Programming (OOP). There are others, such as Logic Programming, but the three mentioned, are by far, the most popular.

Note

Among the various programming paradigms, the three most common are object oriented, functional and imperative programming.

Imperative is what you might think of as plain old programming. It’s what programming was before object oriented and functional programming. In imperative programming, you write functions or procedures, use for loops and while loops and mutate state often. Languages like C or Pascal are typical imperative programming languages. Then there is OOP. Currently the most popular paradigm, OOP is a process of modeling the world as a collection of objects. Each object has state and methods, which are operations representing behaviors specific and relevant to that object. As the program runs, the state of the objects changes. The benefits of this approach include encapsulation, which means the state and methods that belong to an object, exist, at the code level, within the object. This is a much better idea than letting the state be scattered all throughout the code because managing mutable state is just plain difficult. You have multiple variables, possibly many, and their values are changing. The approach of FP is to acknowledge this and attempt to minimize, if not erradicate, changing state altogether.

Note

In functional programming, we try to minimize, if not eradicate, changing state.

Ultimately, it is not always possible to have no mutable state at all and so the standard FP approach is to isolate that part of the code that mutates state. When we cannot eradicate all changing state, we can, at least, localize the code with the changing state into one place in the code.

Immutability

The single most important aspect of FP is immutability. Generally speaking, this means a lack of change. Something is considered immutable, if we cannot modify it in some way. In functional programming this means a few things. Once a variable is set, its value cannot be changed. If x = 3 at the beginning of a program, it has that value for the remainder of the program. Does that mean that if a program is written in a functional style, and a person’s age changes, this change cannot be modeled? Of course not. That would be absurd. There are techniques like efficient copying that allow us to manipulate our code, without ever mutating state. Consider the following simple for loop in Java that prints the numbers 0 to 99.

Java

for (int i = 0; i < 100; i++) {
 System.out.println(i);
}

This type of code occurs all the time. You might wonder how we could possibly express this in an immutable way. It seems that the essence of this code is the changing of the value of the variable i. A common approach in FP is to use recursive functions. A recursive function is a function that calls itself. In the case of the above code, you can put the code in a function and then call the function on the next value of i, in each iteration. It might look something like:

Java

void f(int i) {
 if (i > 99) {
 return;
 }
 else {
 System.out.println(i)
 return f(i+1)
 }
}

f(0)

Now this code is a little longer but it does not mutate any state. If you know a little about FP, you might know that the return type of void is a sure giveaway that there will be side effects.1 A side effect is anything that affects the program outside of the function. Things like writing to a file, throwing an exception or modifying a global variable. The above example is just meant to show one way of avoiding the mutation of state. You have probably been mutating state your whole programming career and it likely seems indispensible. But remember two things

Warning

1) It feels very natural to mutate state.

2) Mutating state is a major cause of code complexity.

The good news is that with practice, the FP way will feel just as natural.

Let us consider another technique for avoiding the mutation of state. Imagine you have an object, which has a property, or field and it changes. The question here is how to model this situation without mutating a variable in the code. Let us consider a Java example first.

Java

public class Person {
 private final String name;
 private final int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public static void main(String[] args) {
 Person person = new Person("Carl", 32);
 //A year passes
 Person changedPerson = new Person("Carl", 33); [image: 1]
 System.out.println(changedPerson);
 }
}

	[image: 1]

	Instead of modifying the value of age in the Person object, we create a new object and initialize the new age value in the constructor. Let us now look at an example in Python.

Python

class Person:
 def __init__(self,name,age):
 self.name = name
 self.age = age

 def main():
 person = Person("John",22)
	#One year later
	changedPerson = Person("John",23)

One year passes and we need the person object to reflect this. But we can’t modify the value age. So we create another immutable object with the age variable initialized to 23

Let us now look at an example in Scala.

Scala

case class Person(name: String, age: Int) [image: 1]
val person = Person("Katherine", 25) [image: 2]
val changedPerson = person.copy(age=26) [image: 3]

	[image: 1]

	Declare a case class

	[image: 2]

	Create an instance of the class

	[image: 3]

	This line makes a new instance of Person and initializes age to 26. No state has been mutated.

Immutability is one of the most important aspect of FP. Lots of mutable state in a program is a source of many bugs. It’s simply not easy to keep track of all the changing values. Above, we have seen some examples of how to get around the apparent need to mutate state. It takes some getting used to but with a little practice, using these techniques may even start to seem natural.

Referential Transparency

You have seen some examples of immutability. Now we will look another crucial piece of what makes up FP, Referential Transparency. We say an expression is referentially transparent if we can replace it with its value anywhere in the code. You might think, upon first hearing about this, that you can always do this. Let us consider a simple example of a non referentially transparent function.

Java

today()

If I call this function, and get, say May 29th, 2021, and I replace its body with this value, and then call it tomorrow, I will get the wrong answer. So the today function is not referentially transparent.

Here are a few more examples of non referential transparency:

	
A function that returns a random number. Obviously you can’t replace the body of the function with a value you get when you call it once.

	
A function that throws an exception. Exceptions are generally avoided in FP. I will come back to this later.

It probably seems that if we throw out all non referentially transparent functions (and that is what we will aim for), that we will lose some valuable capabilities. It seems there will be many useful things we need to express but will not be able to. Rest assured, there are functional ways of expressing these things.

A related concept that you will see in writings about functional programming is purity. I am afraid to say there is some confusion in the literature about the relationship between purity and referential transparency and not everybody agrees on the meanings of these terms. Generally, a function is said to be pure if it has no side effects and for a given input, always returns the same output. This basically means that if you put in the same input,you get out the same output. If the input is x and the output is y, no matter how many
times you call the function with x as the input parameter, the function will return y. A side effect is anything that happens outside of the context of the function. Writing to a file and throwing an exception are two examples of side effects. Forget for the moment that we need to write to files, (though arguably we don’t need to throw exceptions) and think how nice it would be if everytime we call a function with the same input parameters, we get the same output and nothing, outside of the function is changed. That is something we enjoy in functional programming.

Note

We strive, in functional programming to use only pure functions. That is, functions that have no side effects and have the property that if you supply the same input, you get the same output.

Because different people have different views on this, and because the differences between referential transparency and purity are subtle, I will treat the two terms as synonymous.

Now, I said you don’t have to be a mathematician to write functional programs and you don’t. But functional programming does come from mathematics. It comes from two fields, actually, lambda calculus and category theory. Category theory has much to do with functions. And in mathematics, functions are pure. When a programmer looks at an expression like x = x + 1, she says ah, increment the variable. When a mathematician looks at x = x + 1, she says No, its not.2

Now what would an impure function look like?

Scala

object Main extends App {
 def impureFunction(x: Int): Int = {
 import scala.util.Random
 return Random.nextInt(100) + x
 }
 println(impureFunction(5))
 println(impureFunction(8))
}

The two function calls will very likely return different output values for the same input value. This function is not pure. We have said mathematical functions are pure. Well, programming has gained quite alot from this mathematical approach. Functional programs are clean and pure and elegant. The functional style of programming may take a little bit of getting use to at first,but as we gradually move through the basic ideas of functional programming in this book, you will little by little start thinking like a functional programmer. Your functions will be pure and your code will be clean.

Note

The biggest benefit, however, of writing functional programs is that you will have a much stronger expectation that your programs will be correct.

Let me make an important point here. We can’t ultimately just define what FP is in a negative way. We can’t say its the same as ordinary programming except that we leave out this and this and that and the other thing. The hard part, the part accomplished by the many creators of FP is how to express everything we need, in a functional way.

Higher Order Functions

Functional Programming is all about functions. What we want, in a functional programming language, is the ability to treat functions as first class citizens. This means we should be able to pass them as function parameters and return them from functions as return values.
Let’s discuss why higher order functions are an important part of functional programming.
One key goal in functional programming is to get to the heart of the matter. This means we need to be able to express concepts concisely in our language. If we want to square every integer in a list, for example, we shouldn’t have to loop through the list and modify each number by squaring it. We should be able simply to directly apply a square function to every element of the list simultaneously, as it were. The map function, in many languages, allows us to do this. It allows us to work at a higher level of abstraction. That higher level corresponds to a higher order function. We will see this as a major theme as we proceed.

Example 1 (an imperative approach)

Python

def square(nums):
 squared = []
 for i in nums:
 	squared.append(i*i)
 return squared

Example 2 (a functional approach)

Python

def square(nums):
 return map(lambda n: n*n, nums)

As you saw in the appendix, lambda is a way of creating an anonymous function; that is, creating a function with out a name, or on the fly, as it were. The map funtion that acts on members of a list, and all at once, applies it to all the elements of the list.

Lazy Evaluation

Another component of functional programming is lazy evaluation. This simply means an expression is not evaluated until it is needed. This is not, strictly speaking, necessary for a language to be functional but often languages which are, by nature, more functional, tend to be lazy. Haskell, for example, is lazy by default. Most popular languages are not lazy though, and they use, what is called, eager evaluation. This means an expression is evaluated the first (and every) time it is encountered. As you’ll see in the example below, there are two benefits of lazy evaluation:

	
It allows you to define control flow structures in your code directly as opposed to having to be operators built into the language.

	
It can speed up performance.

Imagine you want to define your own if statement. Let’s call the function myIf. You might want to add a logging line to every if statement, for example. If you try the following, you will encounter a problem.

Scala

def myIf(condition: Boolean, thenAction: Unit, elseAction: Unit): Unit = if (condition)
 thenAction
 else elseAction

Can you see the problem with this definition? With eager evaluation, which most common languages have, when the function is called, the first thing that happens is that all of the parameters are evaluated. So in the case of myIf, both the thenAction and the elseAction will be evaluated when you only want one of them to be evaluated, depending on the condition variable. However, with lazy evaluation, this would work. In this and related cases, it would allow you to write your own control statements.

Note

With eager evaluation, function parameters are evaluated as soon as the function is called. With lazy evaluation, they are not evaluated until they are needed.

Another benefit is performance improvement in certain situations. Since the lazy code is only evaluated when it is needed, it is often the case that it is actually evaluated less than it would be in the eager evaluation case. This can speed up the program.

In Scala we can use call by name parameters. In the code below, thenAction and elseAction are only evaluated when they are needed. That is, they are evaluated lazily. The following will work as expected.

Scala

def myIf(condition: Boolean, thenAction: => Unit, elseAction: => Unit): Unit = if (condition)
 thenAction
 else elseAction
}

Example 1-1.

With lazy evaluation, we can create our own versions of operators like if or while.

Thinking like a functional programmer

In this book, we will focus on how to think like a functional programmer. This presupposes, of course, functional programmers think a certain way. While there are a wide range of approaches to functional programming, there are basic ideas functional programmers use and and basic ways of thinking. Functional programmers don’t mutate state, for example. That is, once a variable has been set, it is never changed. Also, functional programmers tend to use lots of higer order functions. These are functions that take other functions as parameters and/or return a function as a return value.

Note

To know how a functional programmer really thinks involves knowing a set of idioms, or patterns that promote functional code.

It’s all well and good for me to tell you not to mutate your variables, but unless you know how, specifically to do this, implementing immutability may not make any sense. In other words, patterns are an important part of functional programming.

Now you may have heard that functional programmers don’t really care as much about patterns as object oriented programmers do. This is a misconception. What is true is that the term pattern, in the context of FP refers to something different than the Gang of Four patterns3. The Gang of Four patterns were developed in the context of object oriented programming. Patterns like the Prototype, Proxy and Flyweight patterns. These can largely be implemented in a functional style and are useful in the design of programs. But there is nothing particulary functional about these type of patterns. One might say they are functional - neutral. There is another type of pattern that is quintessentially functional and these are ideas that come from category theory. We will address this in some detail in chapter 3.

Note

There are two types of software patterns. The so called Gang of Four patterns, and what I am calling functional patterns.

The Benefits of Functional Programming

PAR
The benefits of functional programming are starting to be clear. It aids us in our quest for bug-free code. Or as close to bug-free code as is possible. And how does it do this? By rewiring our brains, as it were, so that we no longer see the world as a mass of objects each with its own changing state and processes that transform that state in such a whirlwind of complexity that we can hardly wrap our minds around it. There is no doubting it now. State is the culprit. When things change, we need to keep track of them. And that is the problem.

Warning

When state changes, we need to keep track of it. And that is the problem.

A multitude of variables and objects each with its own state, and each with its own set of transformations modifying it. Many a night has been spent by a tired programmer searching for a bug created by a change in state somewhere in the program.

Note

There is only so much complexity the human mind can bring under its control.

Only so much complexity we can take, before we start writing code that isn’t quite correct. But ’wait’, you say. ’The world is made up of objects. And those objects have state, and that state changes over time! So we are right to model the world this way. That’s exactly how the world is!’ But that doesn’t mean we can’t begin to see the world in more functional terms and model the world in this way. For now,the important thing is to realize that writing bug-free software is not something we really know how to do. I knew a Computer Science professor who once started off his introduction to programming class with the sentence

Note

The human race does not yet know how to program.

A bit dramatic, perhaps, but true. Projects typically come in above budget and take much longer than predicted. The reason is complexity. Programming is the art and science and engineering of managing complexity. Functional programming brings with it tools we can use in an attempt to restrain and control this complexity. Tools like immutability, referential transparency and higher order functions, to name a few. Master these tools and your code will be better, and more bug-free.

FP can improve productivity

So Functional Programming is a programming paradigm. What other paradigms are there?

The most popular is arguably4 something called Object Oriented Programming, or OOP. If you have programmed in Java or C# or C++ or Python for example, you are probably familiar with this way of programming. In this case, the world is modeled as a collection of objects each with its own state and its own behavior. There are many benefits of OOP. But even with these benefits, our code still suffers from coming in overbudget and overtime. Before FP and OOP became popular, there was imperative programming. On the surface, imperative programming resembles functional programming a bit. Functions are the main things and there are no objects or classes. But upon closer look, one sees that state is mutable, functions are not referentially transparent and imperative languages didn’t necessarily have higher order functions. C and Pascal are two examples of imperative programming languages.

Warning

On the surface, imperative programming resembles functional programming. In truth, there are vast differences.

You could argue that the best programmers will produce better code no matter what paradigm they use and this is probably true. But the question is if we have two developers of equal skill, one working with an object oriented approach and the other working with a functional approach, who will be more productive. I believe that the clarity, power, and higher level of abstraction will allow the functional programmer to produce more correct code, faster.5

FP is fun!

But there is another reason to program with functional programming. And this is perhaps the most important reason yet. Writing code with functional programming is fun! And it is fun for deep reasons.

Note

Functional programming is fun. And it is fun for deep reasons.

Functional programming lets you get to the heart of the matter. It lets you cut to the chase and spend more time coding on the subject matter. It is at a sufficiently high level of abstraction that it feels as if you are manipulating important, relevant concepts instead of moving drudgingly through low level details that closely model what a machine does.

The history of programming languages, from one perspective, is largely a story of ever increasing abstraction level. The higher the level, the easier it is to avoid manipulating masses of detail. But abstraction does not have to be hard. And functional programming is showing us this. Yes, there is a learning curve. But it is possible to shorten this curve by making the change little by little. If you currently code in Java or Javascript or Python for example, it is possible to gradually include idioms and structures and practices that will make your code more functional and before you know it, you will start to naturally rely on functional idioms for the power and tendency toward simplification they gives you. If you read this book carefully and study the examples given and start to incorporate some functional ideas into your code, you will soon see great benefits.

Note

You may even decide you want to investigate some programming languages that provide more support for the functional paradigm.

Scala

A note about the examples in this book. I will be providing examples in various languages. This is to demonstrate the way different languages implement functional ideas. But while it is possible to write functional code in various languages, to one degree or another depending on the language, some languages make it a lot easier to do and are generally more powerful becaus of this. One such language is Scala. There are two things I want to say about Scala.

	
Scala is a very concise language

	
Scala is very conducive to writing functional code

So while we will be including examples in Java, Python and C#, most of the examples will be in Scala. Especially when describing category theory, Scala is a good choice. I would argue that a language like Scala allows for more concise functional constructs and in many cases it may drive a point home to show how to do it in Scala. There are other languages I could have used for this purpose; other languages which are functional to one degree or another; Haskell (which is exceedingly functional) or Clojure or ML for example. I simply felt that the clarity of Scala and the ease with which on can write functional code, made it a good choice for many of the examples in this book.

Note

If you have been using Java and you are interested in functional programming and you have the opportunity, you may want to try out Scala. I would argue that, especially for greenfield projects, you might find it useful, productive and fun.

I mentioned that this book will contain exmples in Scala, Java, Python and C#. But as we get deeper into function concepts, it will be more useful to craft our examples in Scala. Especially when we learn about some of the abstract concepts in functional programming.

Note

While we will see examples in Scala, Java, Python and C#, as we get deeper into functional concepts, it will be advantageous for us to look at Scala examples.

Now there are different degrees of functional programming. Some languages are partly functional and others are fully or purely functional, as we say.

Here is a chart comparing our languages. I have included Haskell, even though we don’t use Haskell examples, because it is an example of a purely functional programming language and it is good as a means of comparison.

	
	Scala

	Java

	Python

	C#

	Haskella

	Supports Functional

	YES

	PARTLY

	PARTLY

	PARTLY

	YES

	Supports Purely Functional

	NO

	NO

	NO

	NO

	YES

	Supports OOP

	YES

	YES

	YES

	YES

	PARTLY

	a Haskell was created to be a purely functional language. For example, once you set the value of a variable, you cannot change it. It has many other functional features, many of which, come from category theory. We will see category theory in chapter 3.

In the next chapter, we will dive into functional patterns.

1 In FP, all functions should return a value. void is a sure sign of side effects.
2 This is meant to be a joke but I’ve experienced these reactions first hand.
3 https://www.amazon.com/s?k=gang+of+four+patterns&crid=1JHCPTFXX220I&sprefix=gang+of+four+patterns%2Caps%2C125&ref=nb_sb_noss_1
4 While there is more OOP code in existence currently, there is clearly a move in the direction of FP among many developers. It remains to see how this will play out. Perhaps a hybrid approach that mixes both approaches will become the norm. Or perhaps FP will just continue to get more popular.
5 Opinion, clearly labeled as such.

Chapter 2. Category Theory and Patterns

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve
 the content and/or examples in this book, or if you notice missing
 material within this chapter, please reach out to the author at jack.widman@protonmail.com.

In this chapter I will introduce software patterns and describe how they work in functional programming. I will also introduce Category theory and explain how it can be useful as a source of software patterns and also how it is the foundation, from which functional programming comes.

A software pattern is a reusable solution to a commonly occurring problem within a given context in software design.1 Software patterns mean that we do not have to start from scratch, everytime we write code. A software pattern is like a template that solves a given problem. The more of these templates that you know about, the more likely will one come to mind when you are solving a particular problem. If you have to look them up, you are much less likely to find one that fits the problem you are working on. The reason is that when these patterns become second nature, the right one will just occur to you as opposed to having to go searching for the right pattern.

Note

A pattern is just a tool for helping you formulate your code. Most of the problems we attempt to solve in software creation, have already been solved in a good, efficient manner. A pattern describes one of these solutions.

Patterns were made well known in the Gang of Four software patterns book.2. This book put patterns on the map and they have since become a very popular tool for programmers to use.
Now, if you ask functional programmers about patterns, they may say that patterns are not particulary relevant in functional programming. When they say this, they probably have in mind the traditional, gang of four patterns. But there is another set of structures, commonly used by functional programmers that they simply may not think of as patterns. These structures come from a branch of mathematics called Category theory. I choose to call these functional patterns and will investigate them next.

Note

Let us call patterns that come from category theory, Functional Patterns to distinguish them from patterns that come from the Gang of Four book.

Let us consider an example. The example we will consider has to do with the null keyword. It is well know that there are problems associated with the null keyword and one of the biggest is the NullPointerException. There is a functional pattern called the Option pattern. Let’s say you are a Scala programmer and you are writing some code with a null in it. Let’s say you have something like this:

Scala

case class User(name: String)

def getUser(uid: Int): User = {
 return getUserFromDB(uid)
}

Let us suppose getUserFromDB returns a null if it doesn’t find a user for the given uid. Now, there is a risk of you calling user.name. If user is null, this will throw a NullPointerException and your program may crash, depending on whether you handle the NullPointerException or not. Letting your code throw NullPointerExceptions is riksy.

Example 2-1.

Beware of NullPointerExceptions in your code. The best way to avoid them is to never have a function return a null. The functional pattern Option is a good way to avoid NullPointerExceptions.

Now let's say you know about the functional pattern *Option*.

The Option pattern is perfect for problems that involve a null value. The idea is to have an object represent the case that nulls are used for but to do it with a type. The Option trait addresses this problem exactly. Option comes in two flavors. Some(), a wrapper around a value, such as Some(user) and None which represents the case where there is no answer, the case often expressed by null. But None has a type and so the compiler can check that the code is correct. NullPointerExceptions are something that happen at run time, not compile time and use of the Option pattern helps to avoid this situation. Let us rewrite the above getUser method with Option. The following example shows how options can be processed with pattern matching.

Note

The Option class comes in two flavors - Some and None. Some wraps another value, like Some(user) and None means that no value was found. You can unwrap an option with pattern matching. A code example of this can be found below.

Scala

case class User(name: String)
def getUser(uid: Int): Option[User] = {
 getUserFromDB(uid) match {
 case Some(user) => //do something with user
 case None => //no user was found
 }
}

This code is checkable at compile time and there is no possibility of a NullPointerException. Option is a software pattern and is what I would call a functional pattern. For more on Options, see the
section on Options in appendix A.

Category Theory Based Patterns

Note

It is not absolutely critical that you know about category theory to be a good functional programmer. It will help, but if you prefer to learn more by code examples, you can skip the material on category theory. Later in the book we will investigate functional patterns by means of code examples.

I like to think of these patterns as hard-core functional programming patterns. Functional programmers who lean towards pure functional programming use these idioms liberally in their code. Along with immutability, referential transparency and higher order functions, these patterns form the main content of what it means for code to be functional.

Note

Functional programs use code constructs that are immutable, obey referential transparency, use higher order functions and make liberal use of functional patterns.

What are some examples of category theory based patterns? Things like Functor, Monoid and Monad are some examples. We will go into just what these patterns are and how they work. Now, where do these patterns come from? Now we could just introduce these patterns as they are without any reference to category theory. But I think you may appreciate and find useful the origin of these patterns. And who knows, you might just find you like category theory as a subject in its own right. So what is Category Theory and how did it come about?

Note

Category Theory is a branch of mathematics that developed in the 1940s. It initially was all about finding similar constructs within different areas of mathematics. It is a unifying theory. It later was applied to functional programming.

A brief history

In the 1940s, Saunders Mac Lane and Samuel Eilenberg were discussing a lecture one of them gave. They both came to the same conclusion, together, that the subjects each was working on, one in algebra and one in topology, were actually instances of the same phenomenon. After fleshing out their ideas, they realized they had discovered a new subject. Thus was born category theory! So while category theory is a distinct branch of mathematics from algebra and topology, its roots lie in these two subjects. The fundamental concepts of functional programming come from category theory. With a solid understanding of the basic concepts of category theory, these concepts will be easier to understand and adapt in the context of functional programming. Learning some category theory is like learning functional programming from a totally different perspective. And each new perspective makes your understanding deeper.

Note

Learning some category theory is like learning functional programming from a totally different perspective. It can deepen your understanding.

Mac Lane and Eilenberg cowrote a book called ’Categories for the Working Mathematician’ which became a big source for future development in the subject. Then in 1990, the purely functional programming language Haskell was created. Many ideas were taken from category theory in creating Haskell. Some of these concepts have found their way into other functional and partly functional programming languages, such as Scala, F# and Java, to name a few. Another way functional capabilities were incorporated into programming practice was through software libraries.

Now let us look at the definition of a category.

Objects and Morpisms

The basic definition of category theory involves two concepts, objects and morphisms.

Warning

Objects in category theory have nothing to do with objects in object oriented programming. They are totally unrelated concepts.

In category theory, Objects can be anything: sets, numbers, matrices, just to name a few. So a category has objects - basically a bunch of things. In addition to objects, a category also needs something caled morphisms. A morphism can only be defined in the context of two objects from the category. Let us suppose that A and B are objects from a category C. Then a morphism is an arrow from A to B. We write it like this:

A → B

But what does an arrow mean, exactly? Well, it connects object A to object B. Where the arrow starts and where the arrow ends is the information that defines the morphism.

Note

A morphism from object A to object B is an arrow from A to B. You could also think of it as a pair of objects in a particular order.

People tend to think of this arrow as a function, in part because the above expression makes it look like a function, and in most cases it is a function. There are categories where the morphisms are not functions but they are rare and for our purposes, morphisms will always be functions. So let us think of it this way - objects are sets and morphisms are functions from one set to another.

Note

While it is theoretically possible to have morphisms that are not functions, for our purposes, objects will always be sets and morphisms will be functions between the sets

Now if f is a morphism from A to B, then A is called the domain of f and B is called the codomain of f. This corresponds to the language used for functions. See the section on functions in appendix A.

An example of a category.

Let us start with the category of all sets. That is, the objects are all sets.

Note

A set is just a collection of objects. The objects can be numbers, people or even other sets. We are about to consider the category whose objects are all sets.

We consider the category called Set. The objects are all sets. What are the morphisms? Simply all functions from A to B. Every function from A to B is a morphism. So the category Set is the category whose objects are sets and morphisms are functions from A to B, for all pairs of sets, A and B. A is called the domain of the morphism and B is called the codomain of the morphism.
For review, see the section on functions in appendix A.

Now let’s look more deeply into the category Set.
 The following example shows two objects, A and B in the category Set and two morphisms with domain A and codomain B.

Let A = {1,2,3,4} and B = {a, b, c,d,e}.

These are two perfectly good sets so they are objects in the category Set. Let us now define two morphisms from A to B.

Morphism f from A to B:

For all x in A, f(x) = a. This could be called a constant morphism. This is just the function that takes every element of A to the element a of the set B.

Morphism g from A to B:

g(1) = a

g(2) = b

g(3) = c

g(4) = d

The above two functions from A to B are two morphisms in the category Set. Note that this is a very large category. It contains all sets and all functions from A to B.

Before we look at some more examples, there are a couple of things about morphisms we have to say. First, morphisms compose. What does this mean?

Note

We will give the actual definition of two morphisms composing below, but the general idea is that when you compose two morphisms, you call one morphism and then apply the second morphism to the result of calling the first morphism.

So for example, suppose

f: A → B

is a morphism and

g: B → C

is a morphism.

Then since we are in a category, there must exist a morphism h from A to C satisfying:

h(x) = g(f(x))

Note

g(f(x)) means first evaluate f(x) and then apply g to it. So we get g(f(x))

We denote h by the expression g o f and we say this as f composed with g.

Note

If f is a morphism from A to B, and g is a morphism from B to C, them there must exist a morphism h from A to C where for all x in A, h(x) = g(f(x)). In this case, we denote h with the epression g o f and call it f composed with g.

Note

If the composition h does not exist, then what we were considering was not a category. In every category, morphisms must compose.

There is one other property morphisms must have in order to have a category:
For each object A in the category, there must exist a morphism
id_A: A → A with the property that for any morphism f: A → B and morphism g: A → B in the category, we have:

f o id_A = f

and

id_B o g = g

This is just the category theory way of saying that id_A is the identity function on A. The identity function on A is just the function that takes every element of A to itself.

Note

The identity function on a set A i the function that maps every element to itself. The category theory version of this is that thte identity morphism on A, denoted id_A, when it compose with another function, leaves that function unchanged.

But category theorists tend to think not in terms of points, but rather in terms of composition of functions. The above expression is how you express the identity function in category theory in terms of composition. Instead of saying identity morphism takes every point in the object to itself (because we don’t think about the points), you say that when you compose the identity morphism with another morphism, you get the original morphism back. Much of category theory is about expressing mathematical concepts through the notion of composition.

Note

Much of category theory is about expressing structure through the notion of composition. Where does this show up in functional programming? It shows up when we compose functions. Here is an example.

Scala

Let’s take the length function. length takes a String and returns an integer denoting the length of that string. square is a function that takes an integer and returns an integer denoting the square of the given integer. Let’s compose the two.

(square o length)("abc") == square(length("abc")) == square(3) = 9

In this example, we composed length with square and got another morophism, denoted square o length.

Let’s look at some more examples of categories. We will need something called a semigroup. A semigroup has two main parts, a set of elements, (could be any non-empty set) and a binary operation on the set. A binary operation, like multiplication for whole numbers, takes two things and returns a third thing. There is one condition that must hold. The binary operation must be associative. We will denote the binary operation by *.

	
is associative means that for all x,y and z, we have:

x * (y * z) = (x * y) * z

Note

A semigroup is a non-empty set with an associative binary operation on it.

Example 1: Let the set be all whole numbers and let the operation be multiplication.

First notice that when we multiply two numbers together, we get another whole number. This is necessary for a semigroup. When you combine two elements in a semigroup with the binary operation, you’d better get something that is again in the semigroup.3 We won’t prove it here but multiplication on whole numbers is associative. We all learned that in school. So all whole numbers plus multiplication form a semigroup.

Example 2: Let the set be all three by three matrices of real numbers. If you don’t know what a matrix is, feel free to skip this example. The operation will be multiplication of matrices. One can show this is associative. It just so happens that matrix multiplication is not commutative. A*B is not necessarily equal to B*A. But commutativity is not a requirement for something to be a semigroup; associativity is necessary.

I’ve shown you two examples of semigroups, but suppose we want to study all semigroups. In this case, we could study the category of semigroups. This category is called Semigroup and the objects are all semigroups. What are the morphisms? This is a bit more involved. We might want to say that the morphisms are functions from one semigroup to another semigroup, but this would not be sufficient. Category theory is all about structure and finding similar structures in seemingly different objects, so what structure does a semigroup have? The structure is determined by the multiplication operation.

Note

In a semigroup, we often call the binary operation multiplication, even if it is not necessarily the usual multiplication of numbers.

So the notion of morphism in this case, has to somehow capture the multiplicative structure of the semigroup. In the following example, I’ll show you how this works.

Let S_1 and S_2 be two objects in the category Semigroup.

A function h from S_1 to S_2 is a morphism if for all x, y in S_1, we have:

h(x * y) = h(x) * h(y)

What this essentially is saying is that the two semigroups have similar multiplicative structure. It says if you want to know where h maps x*y, just look at where h maps x and where h maps y and then multiply them together in S_2. You can think of the morphism as renaming the object it maps. In this case, x in
S_1 corresponds to h(x) in S_2. And y in S_1 corresponds to h(y) in S_2. h being a morphism means that x*y corresponds to h(x) * h(y). It is like an alternate universe in which every entity in the original universe has a corresponding partner in the alternate universe.

What does all of this have to do with functional programming? In the next section, I’ll explain.

The category Scal

When it comes down to it, even though much of functional programming theory comes to us from category theory, often through the programming language Haskell, we are really only interested in one particular category.

Note

From now on, we will focus on one particular category, the category Scal

The category that represents a particular programming language. Let us describe this category. First, select a programming language. In theory, it can be any programming language with types. We will choose Scala, because it is particularly suited to functional constructions and because much of Scala code is sufficiently clear that it almost resembles pseudocode. I call this category Scal.

Note

I call this category Scal because of the well established category Hask associated with the Haskell language.

The objects in the category Scal are the set of all types of Scala. Not only simple types like String, Int and Boolean but also List[String], Map[Int,Double] and any type we can build up from basic ones. We could also include user defined types like User, Account etc. Let me also say here that in theory, we could look at the category for any programming language with types. We are working with the category Scal but we could, if we wanted to, work with a category based on, say, Java. In this case, the objects would be types in the Java language.

Note

The objects in the category Scal are all the types of Scala. String, List[Int] and Map[Int,User] are all objects in the category scal.

Morphisms

Now if we take two types, say String and Int, how should we define a morphism between them? Simply define a morphism from String to Int to be any function which takes a String and returns an Int. So an example of a morphism between these two types would be the length function. It takes a string, say “abc” and returns an Int, in this case, 3.

Note

If A and B are types in Scala, a morphism from A to B is a function that takes an A and returns a B.

Now let’s give an example of the composition of two morphisms. We know that in any category, if there is a morphism f: A → B and a morphism
g: B → C, then there must be a morphism
h: A → C with h = g o f. Let’s take two morphisms that line up the right way and see what their composition is.

f: String → Int is defined by f(s) = s.length

g: Int → Int is defined by g(n) = n * n

So f is the length function and g is the square function. What does their composition look like?
(g o f)(s) = s.length * s.length

So we have our category Scal where the objects are types and for two types A and B, the morphisms are functions that take an A and return a B.

Note

Once you have selected a programming language, Scala, in this case, all the category theory that is applied to functional programming deals with this one category Scal, where the objects are Scala’s types and the morphisms from A to B are functions that take an object of type A and return an object of type B.

Functors

Functor is a funny word. It sounds like function and it is, indeed, a function. But it is a very special kind of function. Before we define it, let’s look at some examples in Scala that correspond to Functors. Some functors in Scala are List, Option and Future.4 These examples have two things in common. First, they are generic types, meaning that they take other types as parameters. You can’t just have a List in Scala. You can have List[String], List[Int] or List[User], for example. List[String] is not a functor. It is a type. But List by itself, is a functor. Same for the other two examples.

Note

List[String] is not a functor. It is a type. List by itself is a functor. When you apply it to a type, like String, for example, you get a type. This is why, in Scala, a functor is also called a type constructor.

The second thing functors have is that they all have a map function. Let’s see an example:

Scala

val lst = List(1,2,3,4) [image: 1]
lst.map(n => n*n) [image: 2]
//returns List(1,4,9,16)

	[image: 1]

	Create a list of four numbers.

	[image: 2]

	List is a functor so it has a map function

Now let’s define functor. I first need to specify two categories C_1 and C_2

Then a functor F from C_1 to C_2 is a function from the first category to the second category which satisfies the following properties.

	
F takes objects in C_1 to objects in C_2. (Just like List takes String to List[String])

	
F takes morphisms in C_1 to morphisms in C_2. (What List does to a morphism is trickier. It involves the map function and we will treat this below.)

	
F(f o g) = F(f) o F(g) whenever the morphism domains and codomains of f and g line up.

This condition basically means that the two categories C_1 and C_2 have similar structure with respect to morphisms. The idea to keep in mind when considering functors is that they measure how similar two categories are.

Note

To define a functor, we need first two categories C_1 and C_2. Then a functor is a function from C_1 to C_2 that satisfies certain properties we describe below.

Now we said earlier that the category we will be interested in is Scal.

Note

Don’t we need two categories to define a functor? Actually no. A functor can go from a category to itself. Such a functor is called an endofunctor. So all the functors we will be considering, in the category Scal, will be endofunctors.

Example 1 The List type constructor in Scala. (Notice I didn’t say type). What’s a type constructor? As we have seen, List is not a type in its own right. It needs to take a type parameter before it becomes a bonafide type. We can have a List of Strings, a list of Ints etc. Once we pick a type parameter, say String, then we get the type List[String]. So List by itself is called a type constructor. What are some other examples like this in Scala? Option and Future to name a few.

In the category Scal, the above are examples of functors. List, Option and Future. They are functors from the category Scal to itself.

Note

Remember, we called such a functor an endofunctor. So List, Option and Future are examples of endofunctors, and all endofunctors are functors.

What does a functor do to a morphism?

First of all, List takes objects of Scal to objects of Scal. For example, List takes the object String to the object List[String]. Secondly, List also takes morphisms to morphisms. How does this work?
Let us consider the two morphisms length and square. length is a morphism from String to Int and square is a morphism from Int to Int. So their composition square o length is a morphism from String to Int. It takes a string and spits out the square of the string’s length.5

So we understand how List takes String to List[String] but how does List act on the morphisms? What is List(length)? This looks odd. We are not accustomed to taking the list of a function.6 What can this mean? Since length goes from String to Int, list(length) must go from List[String] to List[Int]. Can you think of any function, possibly with another name, that maps List[String] to List[Int]? If you said map, you are right. In Scala, we would write this:

Scala

List("abc", "defgh").map(_.length) //== List(3,5)

In Scala, certain types have a map function defined. (We will see that these are precisely the functors). So given a functor, there is this map function in the background. And when we want to know what the functor does to a morphism, we need to use the map function in a certain way. We expressed this above with length but let us see what this looks like in the general case.

Note

The place where functors turn up in functional programming is anywhere there are types which implement the map function. Think Functor = mappable trait (or interface)

Let’s look at an example in the category Scal.

Consider the functor List from Scala to Scala. We said that a functor maps objects to objects and morphisms to morphisms. In this case, List is taking an object A in Scal to the object List[A] in Scala. Remember, objects in Scal are types.

What about what the functor List does to morphisms? Let A = String and B = Int and let’s see what List does to length: A → B.

Well List(length) has to be a morphism in Scal. And it since length goes from String to Int, we know that List(length) goes from List[String] to List[Int]. So lets take an object of type List[String] and see what List(length) does to it.

List(length)(List(“abc”)) = List(“abc”).map(s ⇒ s.length)

And this equals List(3)

In Scala, we don’t think of this function as, List(length),but rather as the map function. There are actually many map functions, one for each functor. In Scala, we think of this as just one map function, which can be applied to any container-like data structure. But in Category Theory, the map function is what you get when you apply a functor to a morphism.

Note

I mentioned above that you could skip our theoretical treatment of category theory in functional programming. I said we would look at it in a purely practical way. This is what we do now for functors

Programming Language formulation of a Functor

What is a functor in purely programming language terms? A functor is simply an interface (or trait in Scala) that implements the map method. We could even have called functor Mappable. category Scal to a part of Scal.

Note

A functor is any trait or interface that implements the map function.

As we have seen, there are two ways of looking at a functor. We can represent functor as a trait (or interface) that implements the map method or we can think of it the way we think of it in category theory. From this perspective, a functor is a function from the types of Scala to the types of Scala and it is also a function from morphisms in the category Scal to other morphisms in Scal. In particular, if A and B are two scala types, and f is a morphism from A to B, then F(f) is a morphism from F[A] to F[B]. We could think of F as providing a context for two types and a morphism between them. We start off working in A and in B and end up working in F[A] and F[B]. So we have contextualized A and B. If I want to know what represents the morphism f in the context F, we look at the morphism F(f) from F[A] to F[B]. What is this morphism? Well if fa is an element of F[A], then

F(f) takes fa to fa.map(f).

Remember, that every Functor has a map method associated with it, so we can always carry out the above expression.
Let me give an example of the above. I can use the functor List.
In this example, A = Int and B = Int. F = List and let the morphism

square f: A → B be the square function.

Then F[A] = List[Int] and F[B] = List[Int] too.

What is F(square). That is to say, what is List(square)?
Remember, for this we need the map function that comes along with List (as it does with every functor).
So we have:

F(square)(fa) = fa.map(f) or
List(square)(fa) = fa.map(square).

This gives us:

List(square)(List(1,2,3,4)) = List(1,2,3,4).map(square) = List(1,4,9,16)

Now we said that there are three properties a functor from category C to category D must satisfy.

1) A functor F takes objects in C to objects in D. In the case of the category Scal, this means F takes Scala types to Scala types.

2) F takes morphisms in C to morphisms in D.

3) A composition property, seen below:

F(f o g) = F(f) o F(g)$]
where f and g are morphisms.

Let us check this property for the functor List and two morphisms length and square.7 So here length is a morphism from String to Int and square is a morphism from Int to Int.

Plugging in the values, I have to show:

List(square o length) = List(square) o List(length)

Warning

What follows is a longish computation. Feel free to skip it if its not your cup of tea.

Now the expression on the left takes an object of type List[String] to an object of type List[Int]
For example:

List(square o length)(List(“hello”, “universe”)) =

List(“hello”,"universe”).map(square o length) =

List(square o length (“hello”), square o length (“universe”)) =

List(square(5), square(8)) = List(25,64)

Now lets evaluate List(square) o List(length).

List(square) o List(length))(List(“hello”,"universe”)) =

List(square)(List(length)(List(“hello”,"universe”))) =

List(square)(List(“hello”,"universe”).map(length) =

$List(square)(List(5,8) = List(5,8).map(square) = List(25,64)

So the two sides are equal.
What we have shown, in this particular case, is in fact, always true. For any functor F and two morphisms f and g, we always have:

F(f o g) = F(f) o F(g)

Note

All of the above calculations show that F does satisfy this NOTE property of a functor, namely

F(f o g) = F(f) o F(g)

So for example, this will hold for other functors such as Option and Future. Once we know something is a functor, we know we can compose morphisms in this way. Why do we care? In the next section, I’ll explain.

The Patterns

In this section, we describe some functional patterns. These patterns occur frequently in functional code and if you know them well, when you are writing code and you have some problem you need to solve, it may happen that a pattern that is meant for solving that particular problem comes to mind. We start with the most common functional pattern, the functor.

The Functor Pattern

Now that we have some idea of what a functor is, let us see how this pattern can be useful.
Functors are useful for two reasons:

1)They always have a map function.

2)They can always be composed.

In the following example, I will show you how composing two functors can be useful.

Suppose we have a list of options, say:

Scala

val listOfOptions = List(Some(8), None, Some(2))

If you are unfamiliar with Some and None, see the section on option in the appendix.
Suppose we want to add up the numbers 1, 8 and 2. Now most languages don’t provide functor constructions out of the box. Even Scala, which is fairly functional, doesn’t have this capability. But there is a library called Cats8, which provides category theory constructs, as first class objects, as it were.

Note

In the functional Scala community, Cats is the goto library for functional constructs.

First, let’s look at the trait Functor, which comes with Cats.

Scala

trait Functor[F[_]] {
 def map[A, B](fa: F[A])(f: A => B): F[B]
}

We can see the map function, which every functor has. But what is F[_]?

F[_] is Scala’s way of expressing a type constructor, So the F, here, is what we are thinking of as the functor. Now remember what we are trying to show. We want to illustrate how composition of functors, which you always have, is useful. So back to our example of listOfOptions.

val listOfOptions = List(Some(8), None, Some(2))

The definition of the trait Functor in the scala library Cats, is much simplified for our example. One method it comes with is compose. So in order to add one to the numbers in the options, we can do the following.

Scala

Functor[List].compose[Option].map(listOption)(_ + 1)

We have a list of options of ints and we want to map over the Ints. So the above expression lets us compose List and Option to get a new functor, and then use that new functor’s map method to map over the ints with the anonymous function _ + 1, which is just Scala’s way of writing an anonymous function that adds one. We started with:

val listOfOptions = List(Some(8), None, Some(2))

and ended up with:

val listOfOptions = List(Some(9), None, Some(3))

Notice that alot of meaning is packed into the above expression.

This is a good example of the power of composition of functors for functional programming.

Monoids

As I mentioned earlier in the chapter, a semigroup is a set with an associative operation on it. If a semigroup has an identify element, which means an element e, in the semigroup, with the property that:
e * x = x * e = x for all elements x the semigroup, the semigroup is called a monoid.

In the following examples, I’ll show you some examples of monoids.

Example 1

Let M be the set of all non-negative whole numbers. Along with the operation addition, this is a semigroup. But notice that 0 is in the set M. We know that if we add 0 to any non-negative whole number, on the left or right, you get the original whole number back.

Note

We say left side or right side because not all semigroups are commutative. Its not always true, in a semigroup, that
a * b = b * a.

In the case of non-negative whole numbers, addition is commutative. So saying left side and right side in the definition is unnecessary. So this is a monoid. We can write it like this (N, + , 0).

Example 2

Let M be the set of all 2x2 integer matrices with matrix multiplication. With the identity matrix, the one with ones on the diagonal and zeros off the diagonal, this is a monoid. Note that matrix multiplilcation is not commutative in general but if you multiply the identity matrix on the left or right of a given matrix, you get that matrix back again.

How are monoids useful in functional programming?

Let us start with a simple example. We want a function that adds up a bunch of numbers. Let’s write this code in Java in a common, imperative style. We might do something obvious like:

Java

int sum(List<Integer> lst) {
 int result = 0;
 for (int i=0; i<lst.size(); i++) {
 result += lst.get(i);
 }
 return result;
 }

This code computes the sum of a list of integers. Let’s analyze it from a functional perspective. First, notice how it mutates state. The value of result continually changes throughout the program. So does the value of i. Let us try to write a functional version of this function that does not mutate state and also that uses an abstraction like monoid to express the sum with a higher level of abstraction. There is a function in functional programming called foldLeft.9 FoldLeft essentially comes out of the concept of a monoid. If you have a monoid, you can implement foldLeft.

Note

A monoid is the context in which foldLeft can be defined.

Let’s see an example. Consider the following monoid: the set of integers with addition as the operation and 0 as the identity element. In any monoid we can create the foldLeft function. We combine the identity with the first element of the monoid. Then we take the result of that and combine it on the left with the next element in the monoid. We do this until there are no more elements. Another way of saying this is that we are given a binary operation, that is, one that combines two elements. And fold applies the operation pairwise to get the combination of all the elements.
In Java, there is a similar function called reduce. Let’s see an example.

Java

Integer sumAll(List<Integer>lst) {
 return lst.stream().reduce(0, Integer::sum);
}

In Scala, we have:

Scala

def sumAll(Lst: List[Integer]):
 return lst.foldLeft(0)(_+_)

In Scala, foldLeft is a method in the List[Int] class and _ + _ is an anonymous function.
FoldLeft can be used in many situations. For every monoid in a category, there is a foldLeft function. For example strings with concatenation or booleans with and. Monoids can get complex but no matter how complex it is, there is always a foldLeft function you can use. This illustrates how we can get a useful function, foldLeft, in this case, that comes directly from the caegorical notion of monoid. foldLeft is a vast generalization of adding up a bunch of numbers, concatenating a bunch of strings, or anding together a bunch of boolean expressions. Any monoid has a foldLeft (or foldRight) method, though, as I said, they may be named slightly differently in different languages.

Our goal is to get to monads, see where they come from and how they relate to functional programming. To define monad, we need first to define a natural transformation.

Natural Transformations

To keep things simple, we will not go into all the technical details that make up the definition of natural transformations.10 My goal here is to give some idea of what a monad is, in the context of category theory, and more importantly, to make clear how they are useful in functional programming.11

Note

Our goal here is to give the reader an idea of what monads are about. We will not treat every detail.

We need natural transformations in order to define monads. It just so happens that there is a way of thinking about natural transformations that is, well, natural. Functors, as we know, are functions from one category to another category (for example, from Scal to Scal). But we can change our perspective and build a new category where the objects of the new categories are the functors from the original category.

Note

Let’s say that again. We start with a category C. Then we take all functors from C to C. We make a new category whose objects are all those functors from C to C. Next, we decribe what the morphisms are in this new category.

Now we want these functors to be the objects in a new category. To do so, we need morphisms. That is, we need functions between endofunctors that satisfy the rules for morphisms. Natural transformations in the category C correspond to morphisms in this new category of endofunctors. What properties will these morphisms have?

Note

Let us assume we have morphisms from C to C. We call these morphisms Natural Transformations

Let us look at the properties of these morphisms.

Note

If the following is too abstract for your tastes, feel free to skip to section on flatMap and unit

Let E_1, E_2 and E_3 be three endomorphisms of C. That is, they are three objects of End(C).
Let us further suppose we have two morphisms f and g where E_1 → E_2 and g: E_2 → E_3.
Then by the definition of morphism, there exist the composition g o f: E1 → E_3.
And this composition is associative. These morphisms, in End(C) are what we call natural transformations in the original category C. There is another definition of them, which you would ordinarily see in a category theory book, but that is a bit more involved. Thinking of them as morphisms in the category of endofunctors is more straightforward. In other words, we start with a category C, form the category End(C) and the morphisms of End(C) are natural transformations in C.

Note

To summarize, we have a category we will call End(C), the objects are functors from C to C and the morphisms are called natural transformations.

Now how do we get from here to monads?

The trick is to bring in the concept of monoid again. Pick any endomorphism M in End(C). It turns out that M can be given the structure of a monoid. So we have a monoid (M, *, e) in the category End(C). We have a monoid in the category of endofunctors. This is a monad. A monoid in the category of endofunctors is how monads appear in category theory.

Note

Remember, every monad is a monoid but not every monoid is a monad. A monad is a monoid with some extra structure, which we defined above.

Now the road from a simple category to a monoid in the category of endofunctors is a long one. I just wanted to give you some feel for what is involved. There are ways of treating monads that are more practical and useful. In fact, there is a way to get from the * operation of the monoid to a function called flatMap and to get from the identity e in the monoid to a function called unit. And these two functions will provide us with a more practical way of describing monads.

Now a monad is a monoid and it is also a functor. As a functor, it has a map method (like all functors) and as a monad it also has a flatMap method.

Monads

We have hopefully gotten some idea of where monads come from. But what about monads from a practical perspective? Do we need to deal with endofunctors whenever we want to use a monad? And how are monads useful? It turns out that there is a much simpler description of monads in the category Scal (or any other category associated with a programming language). This simpler description has to do with the functions flatMap and unit.

Note

There is a much simpler way of looking at monads. We just need two methods. flatMap and unit

flatMap and unit

In Scala, flatMap and unit are two functions that can be used to define a monad. They have the following signature:

Scala

trait Monad[M[_]] {
 def flatMap[A](ma: M[A])(f: A => M[B]): M[B]
 def unit[A](a: A): M[A]
}

Here, M[] is a type constructor. When we put a type A in M[], we get a new type, M[A] (Think List[A] or Option[A]). So we have ma, an object of type M[A], f, a function from A to M[B] and it returns an object of type M[B]. We will look at some examples but first,
how should you think about monads? There is a mystery about them and based on my description of where they come from in category theory, this is not surprising. The definition of monad in a category theory is complex. There are many moving parts. But if we think of the above trait, it becomes easier. The best way to think about monads, from a functional programming perspective is that it provides a context for an object. We can also think of it as adding additional structure to an object. So if we have M[A], the M is the context. We can think of it as adding structure to the type A.

Note

If A is any type, M[A] is A with added structure. The added structure is the M.

So let’s dive into the practical definition of a monad. We have flatMap and unit.
Let’s start with unit, since this is simpler than flatMap. Unit takes an element of type A and puts it into the context M[A], where M is the monad above. So for example if M is Option, and we start with the string “abc”, we get the object Some(“abc”). And this has type Option[String]. It’s not quite right to say that Some(“abc”) is a string but we want to say something like this. Well we can say this is a String in the context of Option. We have Optionized the String. Or we can say we have added additional structure.

Now what about flatMap? Well let’s first consider the function map. That is simpler. So we have something like:

Let ma be of type M[A]. Suppose we have a function f:A → B. Then ma.map(f) will give us a value of type M[B]
.
map will basically take the value ma out of its context M[A], apply f to it, get a value of type B and then wrap it in the context to get a value of type M[B].

But suppose now we have ma again, a value of type M[A], but now we have f: A → M[B]. This happens alot. M might be Option or List, for example. If we try map, we get: ma.map(f). If you think this through, you will see map returns a value of type M[M[B]]. And this is probably not what we want. This is where flatMap comes into play. flatMap maps f over ma but then it flattens the result.

Let ma be of type M[A].
Let f: A → M[B].
Then ma.flatMap(f) will return a value of type M[B], not M[M[B]] .

Let’s see an example of this:

Scala

class User(fname: String {
 def firstName: String = firstName
}

def getUser(id: Int): Option[User]

val users = List(1,2,3).flatMap(id => getUser(id))

If we used map here instead of flatMap, we would have ended up with a List of options of users. flatMap maps and then flattens, Here, flattening means taking the users out of the options. In general, flatMap is useful for chaining together functions that involve monads.

Note

flatMap can be thought of this way. first apply map and then flatten the result

Take the above example again.

val users = List(1,2,3).flatMap(id => getUser(id))

In this example, flatMap first maps a whole number to an option of a user and then flattens the option of the user. Here flatten means take the user out of the option.

Incidentally, even though every monad, being a functor, has a map method, you don’t have to prove it has a map method. The reason is that if you take flatMap and unit, you can define map. If you have these two, you can get map as follows:

Scala

m map g = m flatMap (x => unit(g(x)))

Note

If you have a flatMap and a unit, you get map for free.

So we can say a monad is a trait (or interface of some kind depending on the programming language) that implements two methods. flatMap and unit. Also, every monad is also a functor. So it must have a map function. And the above expression shows how to get it from flatMap and unit.

To fully understand monad as it is in category theory would require more work. I hope you have gotten a feel for the complexity involved in constructing a monad on the one hand and the more straightforward programming approach where we model a monad as an interface or trait that implements flatMap and unit.

Also, when somebody asks you what a monad is, you can answer It is a monoid in the category of endofunctors and have, at least, a bit of an idea what that means.

Conclusion

You have learned what a category is, what the category Scal is, and some examples of how to apply functors, natural transformations, monoids and monads to your code. I will present more examples in the course of the book. It is important to emphasize here that it is not absolutely necessary to learn category theory before you learn about constructions like functors and monads and how to apply them to your code, but I believe knowing where these constructions come from will give more context and perhaps suggest novel ways of applying them to your code.

1 https://en.wikipedia.org/wiki/Software_design_pattern
2 https://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-Professional-ebook/dp/B000SEIBB8
3 So for example, Negative numbers with multiplication couldn’t form a semigroup because when you multiply two negative numbers, you don’t get a nother negative number.
4 For more familiarity with these concepts, see appendix A.
5 a bit contrived, I know, but it illustrates composition of morphisms).
6 Unless its a list of functions. In this example, we do not mean a list of functions. We are applying List to the function as a functor.
7 This part is a bit formula heavy. Feel free to skip it if its not your thing.
8 https://typelevel.org/cats/
9 There is also a foldRight. You will see this function with various names depending on the programming languages. For example, foldLeft, foldl, fold, foldRight, foldr and fold).
10 For more information on natural transformations, see https://en.wikipedia.org/wiki/Natural_transformation. Natural transformations are complex.
11 If you wish, you can skip what follows, if you are not interested in the theoretical underpinnings of the monad. Then I will look at monads from a more practical, programming perspective.

Chapter 3. Functional Data Structures

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve
 the content and/or examples in this book, or if you notice missing
 material within this chapter, please reach out to the author at jack.widman@protonmail.com.

Introduction

Data structures are one of the foundational concepts in all of Computer Science. Along with algorithms, they are a staple of what a computer science student, and a programmer, must master. Just as the phrase functional pattern is not an established phrase, its the same with the phrase functional data structure. In this book, I will refer to two things as functional data structures. Structures that are used in functional patterns, as used in this book, will be called functional data structures. These are things like Option, Either, Try and List. These are monads. But there are other things that can rightfully be referred to as functional data structures. These are ordinary data structures, implemented in a functional way. A linked list, for example, can be implemented in a way that doesn’t mutate state. In this chapter, we will treat the first kind of functional data structures and then briefly cover some of the ideas surrounding ordinary data structures implemented in a functional way.

Before we look at particular data structures, let me mention an idea about functional data structures that has been discussed in the literature. First, there is this quote from Alan Perlis.1

 It is better to have 100 functions operate on one data structure than to have 10 functions operate on 10 data structures.
Alan Perlis

Seasoned functional programmers tend to use a small set of data structures: linked lists, arrays, hash tables as well as structures such as Option, Either and Try, to name a few. We will examine these below. I believe the idea behind this quote is that fewer data structures will mean more uniformity and simplicity in the codebase. And simplicity is one key to managing complexity. Now, let’s look at some data structures that are particularly functional. We will start with Option.

The Option Data Structure

I use the word Option above as a language neutral term, not as part of any particular programming language. Various programming languages have a version of this data structure and I will give examples of some of them. But first let’s flesh out the idea. Our discussion really should start with the null construct. Null is used for a value that might not exist; an optional value or a situation where a value is not known. One problem with null is that if a variable contains an object and the value of that variable is null, and a method is called on that object, the program will throw a null pointer exception. Exceptions break referential transparency and so are frowned upon by functional programmers. Tony Hoare, the inventor of null, said it was his billion dollar mistake.

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that time, I was designing the first comprehensive type system for references in an object oriented language (ALGOL W). My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty years2
Tony Hoare

But without null, how do we handle a piece of data that is optional or that may not have a value? Well, one of the main problems with null is that it doesn’t really have a type. What if we could create a type, that represented the case when a value is missing, or optional? Well there is such a thing. And it exists in many languages. And in those languages in which it doesn’t exist, it’s not hard to create one. There are a few ways of referring to this type but most of the ways involve some version of the word Option. We have Optional in Java.3 Python has something that resembles Option in some ways but does not have the full functionality of Option, the None object. However,it’s not hard to construct Option in Python. The idea behind Option is this: suppose we have a method that takes an id and returns a Customer object. What do we do if there is no Customer with the given id?

Warning

We could throw an exception when the Customer is not found, but as I said before, this is not functional.

Even if you like exceptions, this example really isn’t a suitable case for an exception. An exception refers to an exceptional situation. Something that should not happen but does. It’s arguable, but there really isn’t any good reason to believe that any id a system comes up with will correspond to an actual Customer. The situation where this happens is not uncommon. You might even say its one of the outcomes that we should expect. So how can we handle this without an exception? Let us consider the Option construct. By Option, I mean a general data structure and not a construct in any particular programming language. An Option usually has two parts: one is a container that holds a value. This is the case where a valid value was computed or obtained somehow. The second part represents the case where no valid value is available. This would be a situation where a language without an Option type might use a null. Let’s see an example in Scala. Let’s return to the example of retrieving a customer, given an id. In Scala, we can do the following.

Scala

def getCustomer(id: Int): Option[Customer] = {
 //code which retrieves customer from database.
}

This function can return one of two things. In the case where the id corresponds to a customer, the method will return

Some(customer)

If no customer corresponds to that particular id, the function will return the value:

None

and you can take the necessary action to deal with that situation. If it returns Some(customer), you can then get the customer out of the Some container in a variety of ways. One common way is to use Scala’s pattern matching feature. Here is an example of this:

getCustomer(17) match {
 case Some(customer) => //do something with customer
 case None => //Take action to handle this situation.
}

Another, perhaps more common approach is to use one of the higher order functions, such as map, flatMap or filter. For example:

val customer = getCustomer(17) map { customer => customer.firstName}

The variable customer, in the case where a value was obtained, will contain Some(“Peter”). If no customer was found, a None would be returned and the programmer can handle it.

Note

It is important to understand that Some and None are types and therefore the compiler can help to find errors associated with them, unlike null, which occurs at runtime, not compile time.

Suppose now that you had a list of Option objects, each a Some(customer) or a None. And suppose you wanted to change this to a list of customers where you ignore the Nones. Also suppose getCustomers returns a list of options of Customer objects.
The Customer object might be a case class that looks like this:

case class Customer(id: Int, firstName: String)

And the list of options of customers looks like this:

val customers = List(Some(Customer(1,"Bob")), None, Some(Customer(33, "Lee")),
 	 				 None, Some(Customer(5, "Rhonda")))

Then we could do the following:

customers.flatten

This would return:

List(Customer(1,"Bob"), Customer(33, "Lee"), Customer(5, "Rhonda"))

Notice how the Nones were conveniently left out.

Now let’s look at some examples in Java.

Java

 Optional<User> optUser = findUserById(123);

 optUser.ifPresent(user -> { System.out.println("User's name = " + user.getName());})
}

In this example, findUserById returns an Optional of a User object if it finds one for the given id. If not, the code in the braces is nnot executed. The older, pre Optional way of doing this would have been for findUserById to return a null if a user was not found. The problem with that is that if a method were then called on the user object, which was actually a null, a NullPointerException would be thrown. With the above code, which uses Optional, there is no exception is thrown.

Now, Python does not have an Option class. It does have the None object, this is only half of what makes up an option. It is, however, useful in its own right. You can do things like this:

Python

def getUser(id):
 #get user from database

 #if database call fails
 return None

Then, you can do this, when calling this function:

if getUser(789) is not None:
 #do something

You may say that this looks an awful lot like checking for a null, and I would agree with you. If you really want to, you can create an Option class in python. One way is shown here:

class Option:
 def get_or_else(self, default):
 return self.value if isinstance(self, Some) else default

class Some(Option):
 def __init__(self, value):
 self.value = value

class Nothing(Option):
 pass

I called this Nothing, because Python already has a None object. This isn’t particularly pythonic but it’s one way to get the job done.

Now C# also has its version of this idea. Its not exactly an Option, but it is a construct that helps with problems caused by nulls. Its called the Nullable type. With this type, we can represent, in a way that makes it explicit, that a variable may be holding a null value. For a given type, say int, we can form the type:

C#

Nullable<int>

As you can see, this is a generic type. A shorthand way of writing this is:

int?

We can also write code like:

Nullable<int> n1 = new Nullable<int>(10);
Nullable<int> n2 = null;

if (n1.HasValue) {
 process(n1.Value);
} else {
 //n1 has a null value.
}

This is a way of navigating nulls without risking a null pointer exception.

The Try Data Structure

While the Option construct is useful, and an improvement over nulls, it doesn’t give you a clue about why there is no legitimate value. Exceptions do this, but Options do not. Options are a great solution in many situations but sometimes you need to get some information about what went wrong. The Try construct addresses this. Just as Option has Some and None, Try has Success and Failure. Failure wraps the exception that was thrown. So while we try to avoid exceptions as much as possible in functional programming, sometimes we cannot avoid it. Try is one solution to this problem. Here is some code.

Scala

def divide(a: Float, b: Float): Try[Float] = Try(a/b)

Then we can do the following:

divide(3, 0) match {
 case Success(result) => //do something with resultd
 case Failure(ex) => println(ex.getMessage)
}

Here is an example of Try in a for comprehension:

def toInt(s: String): Try[Int] = Try(Integer.parseInt(s.trim))

val y = for {
 a <- toInt("9")
 b <- toInt("3.5")
 c <- toInt("6")
} yield a + b + c

Notice how well the error case is handled. y will either contain a Success wrapping the sum of a,b and c or it will contain a Failure wrapping an exception.

In the above case, the result will be:

Failure(java.lang.NumberFormatException: For input string: "3.5")

The Either Data Structure

While the Try type gives you more information about a failure or exceptional outcome than Option, you might wonder if there is a type that gives you more flexibility. The Either construct addresses this. The idea is this. An Either object can be either a Right or a Left. Right is like the Some type of Option. Left is like None, except it can wrap any type. Let us consider an example in Scala.

Scala

def divide(a: Int, b: Int): Either[String, Int] = {
 if (b == 0)
 Left("Can't divide by zero.")
 else
 Right(a/b)
}

And then you can do something like this:

divide(a, b) match {
 case Left(msg) => //do something with msg
 case Right(res) => //do something with res
}

Left and Right can wrap any types. For example, suppose you had two custom types, User and Error.

Scala

case class User(id: Int, firstName: String)

case class Error(id: Int, text: String)

def getUser(id: Int): Either[Error,User] = {
 //If I retrieve a user from api
 Right(User(id, firstName)

 //else if there is an error
 Left(id, text)
}

Then I can do:

getUser(4) match {
 case Right(user) => println(user.firstName)
 case Left(error) => println(error.text)
 }

Left can even wrap an exception, if for some reason you find it necessary or prudent to use one and you don’t want to use a Try. For example, you might be using a library that throws an exception. But it is always possible to catch the exception and return an error type wrapped in Left.

As we get deeper into functional programming, it will be useful and in some cases necessary to use third party functional libraries that include many of the structures we have been discussing. We are giving examples in Scala, Java, Python and C#. These languages vary in how much functional programming they can do without libraries, but all of them need libraries for some things.:4 For Java, there are at least two libraries that allow functional constructs. One is called Functional Java:5 and another is Vavr.:6 I will be giving examples from Vavr. I will always state when some code relies on Vavr. Let us see what Either looks like in Java with Vavr.

Java w/ Vavr

private static Either<String, User> getUser(int id) {
 //code that sucessfully found a user
 return Either.right(user);
 } else {
 return Either.left(String.format("No user found with id %s", id);
 }
}

What about a functional library for Python? One excelent library is OSlash.:7 With OSlash, we can write things in Python like the following:

Python (w/ OSlash)

def get_user(id):
 #successful case yields a user object
 return Right(user)
 #error case returns an error object
 return Left(error)

Then we can do:

if isinstance(result,Right):
 #do something with successfull result
else:
 # result is an error

Higher-Order Functions

Functions that return these functional data structures like Option or Either, lend themselves to higher-order functions. Let us first see some simple examples of this.

Scala

case class User(id, firstName)

val users: List[Option[User]] = List(Some(User(1, "Jack")),
				 None, Some(User(2, "Andrea")), None, None)

The users list could be the result of a function that queries an API and gets options of users back. In those cases in which no user was found for a given id, the function returns a None. To get just the users and not the Nones, we can do this:

users.flatten

This will return:

List(User(1,"Jack"),User(2,"Andrea"))

Often, one has a data pipeline, as it were, of values that we are transforming as we call a bunch of higher order functions.
For example, suppose we have a Scala function, getUsers, that returns a list of Either[Error,User], where User has a field called email. And suppose we want to filter out all users with an example.com account. So we expect the result to be a List[Either[Error,String]], where the String represents the email address. An imperative approach, which loops through the List, would be a bit messy. Let’s see how a functional approach, using higher-order functions greatly simplifies the code and it does this by going directly to the essence of what’s going on. Looping is not part of the essence. Let’s see some code:

Scala

case class User(id: Int, email: String)
case class Error(id: Int, text: String)

def getUsers(): List[Either[Error,User]] =
 List(Right(User(1, "jack@example.com")), Left(Error(4,"user not found")),
 Right(User(2, "andrea@example.com")))

Then we can do:

val emails = getUsers().map(either => either.map(u => u.email))

And now emails will contain:

List(Right(jack@example.com), Left(Error(4,user not found)), Right(andrea@example.com))

This allows you to drill down into the hierarchy of fields to the one you want.

Monads in for comprehensions in Scala

As we have seen, things like List, Option, Try and Either, are monads, One very useful thing you can do with monads in Scala is for comprehensions. Here is an example

Scala

case class Student(id: Int, email: String)
case class FinalGrade(grade: Int)
def getStudent(id: Int): Option[Student] = ???
def getFinalGrade(student: Student): Option[FinalGrade]

This function tries to get a User object that corresponds to the given id and if it finds it, it returns Some(User(493, “Alex”)), for example. If it does not find it, it returns None. We can now do the following:

for {
 student <- getStudent(999) //getStudent returns a monad
 finalGrade <- getFinalGrade(student) //getFinalGrade returns a monad
} yield (student,finalGrade)

And this would return a tuple consisting of an Option of the student and an Option of the final grade. If either of the options were None, the value of the for comprehension would be None and not the tuple of values. What this for comprehension does, in effect, is take perfectly functional code and make it look more like traditional imperative code. In many cases, it results in clearer code. It turns out that a for comprehension is really just syntactic sugar for a series of flatMap and map calls and we know that every monad has flatMap and Map. Let’s start out with a list of options of students:

Scala

case class Student(id: Int, email: String)
val students = List(Some(Student(1,"jack@example.com")), None,
 	 Some(Student(2, "andrea@example.com")), None)

First let’s assume you just want to get the students out of the options and ignore the Nones. You can do this with a simple call to flatten:

students.flatten // returns List(Student(1,"jack@example.com"), Student(2,"andrea@example.com"))

But now let’s say you are just interested in the emails and you want to get a list of the emails. You can do the following:

students.flatten.map(student => student.email)

// This will return List("jack@example.com","andrea@example.com")

So we did a flatten and then a map. Sometimes you want to first map and then flatten. This is precisely what flatMap does. Let’s look at an example of this:

students.flatMap(optStudent => opStudent)

// returns List(Student(1,"jack@example.com"), Student(2,"andrea@example.com"))

In this case, for the map, we used the identity function. This made the flatMap call the same as a call to flatten. We did not use the full power of flatMap. Let’s see a more complicated example. Suppose we have a getStudent function that takes an id and returns an Option of a student. This is a good idea since some ids might not refer to any Student. Here is some code.

def getStudent(id: Int): Option[Student] = {
 id match {
 case 1 => Some(Student(1, "jack@example.com"))
 case 2 => Some(Student(2, "andrea@example.com"))
 case _ => None
 }
 }

Let us suppose now that we have a of ids and we want to call the above function on the list somehow. But the function returns an Option. We can do the following:

List(1,2,3).map(id => getStudent(id))

But this will return:

List(Some(Student(1,jack@example.com)), Some(Student(2,andrea@example.com)), None)

This is probably not what we wanted. flatMap to the rescue.

List(1,2,3).flatMap(id => getStudent(id))

Now this will return:

List(Student(1,jack@example.com), Student(2,andrea@example.com))

Perfect! flatMap is useful when you have a list or any monad, and you want to map it but the function that you want to map it with returns a monad itself. The flatten part of flatMap will remove the result from its container, that is, its monad.

Traditional Data Structures

Immutability and History

As with everything functional, immutability is an important piece of the puzzle. What I am calling history, refers to the fact that since we do not change anything, we must copy something that changes, and retain its former state. For example, a stack can be functional, if implemented in a certain way. Operations such as push, would have to make a copy of the stack instead of modifying it in place. This requires, in general, a way of doing quick copies. There are various algorithms for this. There are even databases that follow this paradigm. Datomic, for example, a database created by Rich Hickey, creator of the clojure language (which has many functional capabilities), is a database that never overwrites data. It keeps a copy of all data and changes made. This is another way that the functional paradigm is becoming more mainstream.

Note

Whether or not a traditional data structure is functional depends on the particular implementation of that data structure.

Laziness

We have mentioned laziness before in connection with what makes a language functional. The basic idea is that a function or process is lazy if it is only evaluated when needed. Part of this is the fact that if a function carrys out a long computation, the value will be saved or memoized and then used the next time it is needed (if possible). This capability is useful in creating efficient functional data structures. Haskell is a lazy language and Scala has a lazy keyword but is not lazy by default. In general, for a language to be partially or fully lazy, it tends to be a language that was explicitly constructed to be, at least in part, functional.

Note

Laziness allows us to wait to evaluate an expression when and only when we need it.

Summary

In summary, there are two types of functional data structures. The first is a set of constructs that come from Category Theory, generally by way of Haskell, and which have a map and flatMap functions, which makes them monads. The second consists of traditional data structures which have been implemented according to the principles mentioned above.

1 http://www.cs.yale.edu/homes/perlis-alan/quotes.html
2 https://qconlondon.com/london-2009/qconlondon.com/london-2009/speaker/Tony+Hoare.html
3 Like many functional constructs, this requires Java 8 or above.
4 For a language that does not need libraries to be thoroughly pure, a so called pure functional programming language, there is Haskell. https://en.wikipedia.org/wiki/Haskell_(programming_language)
5 http://functionaljava.org
6 http://vavr.io
7 https://github.com/dbrattli/OSlash/tree/master/oslash

Chapter 4. More on Immutability

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve
 the content and/or examples in this book, or if you notice missing
 material within this chapter, please reach out to the author at jack.widman@protonmail.com.

Introduction

We have seen how important immutability is for functional programming. This chapter focuses on a number of techniques that help promote immutability. These include recursion, higher order functions and the combination of monoids with higher order functions. We include in the chapter a new pattern, called Monoid and fold, which represents many seemingly different but actually very similar types of functions. Let us start the chapter with a discussion of mutable and immutable variables.

Note

Immutability is a key property in functional code..

Mutable and Immutable Variables

Almost all programming languages allow you to create a variable, set its value and then change it at a later time. For an example of one that does not allow this, look at Haskell.1. A variable that can be modified, after it has been set, is called a mutable variable.

Note

In imperative and object oriented programming, mutable variables are ubiquitous. As I have said, in Functional Programming we avoid mutable variables.

Immutability is particulary valuable when dealing with concurrency and parallelism and we will look at that in the next chapter. For now, we will look more closely at the way immutability can be achieved. You have already seen how copying a variable with a new value instead of modifying the variable is useful.

Scala

case class User(firstName: String, age: Int)
val user = User("Peter", 34)

And the next year, we have:

user.copy("Peter", age = 35)

A new instance of User is created instead of just modifying the age variable in the original instance. So copying is a part of the way you can implement immutability.

Note

In functional programs we prefer to copy an object rather than mutating the variables in the object.

Another way of achieving immutability is with recursion. Let us look at this now.

Recursion

Recursiveness is a property of some functions. Simply put, a function is recursive if somewhere in its body, it calls itself. If you think about it, this seems strange. How can f call f if f hasn’t been completely defined yet? You might expect an infinite loop. And to be sure, if you define the a recursive function badly, you may very well get an infinite loop. I can’t resist mentioning this function:

def f():
 return f()

This is the simplest recursive function. What happens when we call this function? If you are not sure, try it.
In chapter one, we saw the following example of recursion. Here it is again:

Java

void f(int i) {
 if (i > 99) {
 return;
 }
 else {
 System.out.println(i)
 return f(i+1)
 }
}

In this example, no state is mutated.

Let us now consider something more substantial.

A Linked List Example

We will look at some code written in a common, mutable way and see how we can use a functional approach to make it all immutable. The following code defines a linked list and then adds a node to it. First, the imperative approach. Notice how it uses the var keyword which denotes a mutable variable in Scala.

Scala

case class Node[A](data: A, var next: Option[Node[A]])

def nodeAppend[A](node: Node[A], toAppend: Node[A]): Node[A] = {
 if (node.next == None) {
 node.next = Some(toAppend)
 } else {
 var current = node
 while (current.next != None) {
 current = current.next.getOrElse(current)
 }
 current.next = Some(toAppend)
 }
 node
}

Notice how the variable next is a var, which makes it a mutable variable and the addNode method continually updates the current variable, which is also a var. We would like to replace this code with vals, instead of vars. This will ensure we cannot mutate any variables. To accomplish this, we will bring in a new, higher order function called fold. fold takes an initial value, and then a function which tells you how to combine two of the values. Here is a simple example which lets you add up the numbers in a list:
Scala

val lst = List(1,2,3,4,5)

lst.fold(0)((m,n) => m + n) //This evaluates to 15

fold uses currying2. fold is used when you know how to combine two things and you want to combine a bunch of those things. Now let us see how we can use fold, along with copy and recursion to make the above linked list example immutable.

case class Node[A](data: A, next: Option[Node[A]])

def nodeAppend[A](node: Node[A], toAppend: Node[A]): Node[A] =
 node.next.fold(node.copy(next = Some(toAppend)))(
 nxt => node.copy(next = Some(nodeAppend(nxt, toAppend))))

To be sure, this might appear confusing at first sight. But once you get used to it, you can appreciate that it is shorter, more concise, and does not mutate any state! This is a very common use of fold and recursion. Let us look at some more examples. In Java 8, the stream construct has a function called reduce. This is similar to reduce in other languages and is basically like fold. Here is a simple example of adding up numbers using reduce.

Java

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
Integer sum = integers.stream()
 .reduce(0, (a, b) -> a + b);

The sum variable will be equal to the sum of the numbers, 15. As we begin to think in terms of reducing and folding instead of looping through collections and mutating state, we will notice that the level of abstraction of our code has increased. Our code is less like the language of the machine and more like that of a person. Let us see some more examples. If we have a function called add, say like this:

Java

public static int add(int a, int b) {
 return a + b;
}

in a class called Utils, then we can do this:

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
Integer sum = integers.stream()
 .reduce(0, Utils::add);

In the java.util.stream package, is a class called Collectors. It has a method called summingInt. With this we can do the following:

Java

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
Integer sum = integers.stream()
 .collect(Collectors.summingInt(Integer::intValue));

Java 8 has a variety of expressive constructs for raising the level of abstraction in your code. These work well for numbers. There is also a function called summingLong, which does the same thing for Longs. What about for objects? Consider the following code:

Java

public class Item {

 private int id;
 private Integer price;

 public Item(int id, Integer price) {
 this.id = id;
 this.price = price;
 }

 // Standard getters and setters
}

Let’s create some Item objects:

List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
Integer sum = integers.stream()
 .collect(Collectors.summingInt(Integer::intValue));

public class Item {

 private int id;
 private Integer price;

 public Item(int id, Integer price) {
 this.id = id;
 this.price = price;
 }

 // Standard getters and setters
}

Item item1 = new Item(1, 10);
Item item2 = new Item(2, 15);
Item item3 = new Item(3, 25);
Item item4 = new Item(4, 40);

Then we can do the following, using our add function from above:

Integer sum = items.stream()
 .map(x -> x.getPrice())
 .reduce(0, Utils::add);

Perhaps a better approach, that doesn’t depend on the Utils::add function is using a lambda expression (a, b) → a + b

Integer sum = items.stream()
 .map(item -> item.getPrice())
 .reduce(0, (a, b) -> a + b);

This is elegant, compact, easy to read and does not mutate any state.

Combined with a simple regular expression, there is no end to expressiveness we can achieve. Consider the following string examples. Say you have space a delimited string of words, each of which contains a number within it. We want to add those numbers together. The filter function filters out those strings that satisfy a certain predicate, here specified by a regular expression. This allows us to do the following:

String string = "Item1 10 Item2 25 Item3 30 Item4 45";

Integer sum = Arrays.stream(string.split(" "))
 .filter((s) -> s.matches("\\d+"))
 .mapToInt(Integer::valueOf)
 .sum();

Notice how much this is doing in so few lines of code. Also, through these examples, we can begin to see the role of streams in functional programming.

Example 4-1.

One way of characterizing functional programming is as the transforming of immutable data, as it moves through streams.

Whether those streams are explicitly streams, of the sort we find in Java 8 or Scala or are simply collections of data, like linked lists or arrays, the idea is the same; we are creating pipelines of data, immutable data to be sure, and at each stage we are transforming that data. After awhile, you may find that looking at data processing this way is easy and fun and possibly even less error prone than approaches that loop through data and mutate variarbles.

Note

Using higher order functions is often a more concise and compact way of treating a collection of values than looping through the collection and mutating state.

Let us look at some more examples of how recursion and higher order functions come together to create pipelines of data. Here are some in Python. Let’s say we want a function that takes a list of positive integers, and for each integer n, prints a row of the character a, n squared times. Seems a bit artificial but perhaps it’s a subroutine in a graphics program. In python, we could do the following:

Python

def print_row_of_as(ints):
 for k in map(lambda n: n*n, ints):
 print('a' * k)

In Java or Scala, for example, map would be a higher order function. in python, its actually a class, but it functions like a higher order function. In fact, a principle in functional programming is that in the functional world, the distinction between object and function starts to break down. In python, we can think of map or filter for example, as functions or objects. I tend to think of things as functions, whenever possible.

Example 4-2.

In many modern languages, functions are objects. The other way around, seeing objects as functions takes a bit more work.

Here is one way we might achieve this in python. Suppose we want to create a Square class (think x squared, not the shape). We can use the built in function call, to do the following. We will omit all but what we need to make the point.

class Square:
 def __call__(self,n):
 return n * n

Then we could do:

f = Square()
print(f(3))

This will print out 9. Now what is Square? Is it a class or a function. Technically, at the level of syntax, it’s a class. But more generally speaking, it is a function. And it was very easy to turn the class into a function.

Note

In Scala, we have the apply function. So from a higher level perspective, we can conceive of functions as objects and objects as functions.

Now let us return to examples of how recursion and higher order functions work together. Let’s focus on more python examples. Now python does not have a fold function. But it does have a reduce function. This comes from the functools package. A simple example that adds a bunch of numbers is as follows:

from functools import reduce
reduce(lambda m,n: m+n, [1,2,3,4,5])

This will return 15. Interestingly, we can do the same thing with strings. But in the case of strings, adding is concatenation. We have:

from functools import reduce
reduce(Lambda s,t: s+t, ["a","b","c","d"])

Let’s look at some other basic uses of recursion with some more python examples. First, let’s compute the length of a list recursively. To do this, I would like to use the list’s tail function, which returns all but the first element in a new list. But, sadly, python has no such function. No worries, in python3, we can do the very elegant following thing:

def tail(lst):
 _, *tail = lst
 return tail

The _ could have been named head, but we don’t need it in the function. So _ anonymously holds the first element of lst. The * causes tail to contain the rest of whats in lst. Now we can write our length function.

def length(lst):
 if lst == []:
 return 0
 else:
 return 1 + length(tail(lst))

Let’s use the same idea to sum a list of integers.

def sum(lst):
 if lst == []:
 return 0
 else:
 return lst[0] + sum(tail(lst))

A more pythonic definition of tail would be:

def tail(lst):
 return [1:len(lst)]

As we have seen, recursion is a useful way of avoiding the mutation of state. You may know that recursion relies on continually pushing values on the stack and then popping them when necessary. If you put too many values on the stack, you may get a stack overflow error. Even though recursion depends on the stack, the definition of recursion doesn’t mention the stack explicitly. In fact, it is possible, in many instances to have a recursive function that doesn’t rely on pushing values onto the stack. What happens is that in these instances, the compiler is able to rewrite the recursive function as a loop. When this happens, this is called a tail recursive function.

Tail Recursion

The identifying feature that tells us a recursive function is a tail recursive function is if the last to be called in the body of the function is the function itself.

Note

A tail recursive function is a recursive function in the body of which the last call made is to the function itself.

Let’s look at a simple example.

Scala

def printToZero(n: Int): Int = {
 if (n < 0)
 return 0
 println(n)
 printToZero((n-1))
 }

This function starts at n, goes down and prints every number less than n up to and including 0. In the body of the function, the last thing to be called is the function itself. That is a tail recursive function. Here is another example. It computes the greatest, common divisor of two positive integers

Scala

def gcd(a: Int, b: Int): Int =
 if (b == 0) a else gcd(b, a % b)

How does a tail recursive function differ from an ordinary recursive function as far as performance is concerned? Since the tail recursive function calls itself, you might think it necessarily requires a stack to implement it. It turns out that ordinary recursive functions do require putting the argument on the stack but tail recursive functions can be rewritten, by the compiler or preprocessor, in a way that uses a simple for loop. There is thus, no possibility of a stack overflow exception.

Let’s look at some more examples. What would a tail recursive version of factorial look like. Let’s first look at the straightforward version of a recursive factorial:

Scala

def factorial(n: Int): Int = {
 if (n == 0)
 1
 else
 n * factorial(n-1)
}

How can we make this tail recursive? Here is one way:

def factorial(n: Int): Int = {
 def fact(k: Int, result: Int): Int = {
 if (k == 0)
 return result
 else
 return fact(k-1, k * result)
 }
 fact(n, 1)
 }

In this case, factorial defines a function within its body and this inner function is tail recursive. The factorial function is not technically tail recursive, since it doesn’t call itself at all, but it’s just as good since the stack implementation is replaced with a for loop in the body of the function.

Let’s look at some more examples.
Here is a tail recursive version of fibonacci. First let’s see the usual, non tail recursive version:

Java

int fibonacci(int n) {
 if (n == 0) {
 return 0
 } else if (n == 1) {
 return 1
 }
 return fibonacci(n-2) + fibonacci(n-1)
}

This sort of recursion is called tree-recursion because the shape of this computation is a binary tree. As is well known, the performance is terrible. It is not hard to see why this is. The same computations are repeated over and over again. One solution is to write a tail recursive version of this function. Here it is in Java:

Java

int fib(int n, int a, int b)
 {
 if (n == 0)
 return a;
 if (n == 1)
 return b;
 return fib(n - 1, b, a + b);
 }

int fibonacci(int n) {
 return fib(n, 0, 1)
}

This is particulary elegant in Python, due to the default values a and b.

Python

def fib(n, a = 0, b = 1):
 if n == 0:
 return a
 if n == 1:
 return b
 return fib(n - 1, b, a + b)

One can achieve this elegance in Javascript as well

Javascript

function fib(n, a = 0, b = 1)
{
 if (n == 0){
 return a;
 }
 if (n == 1){
 return b;
 }
 return fib(n - 1, b, a + b);
}

Let us now try to add up the elements in the array in a tail recursive way.

Python

def arrSum(array, size, sum = 0):
	if size == 0:
		return sum

	return arrSum(array, size - 1,
			sum + array[size - 1])

Java

int arraySumHelper(int []array, int size, int sum)
{
 if (size == 0)
 return sum;

 return arraySumHelper(array, size - 1, sum + array[size - 1]);
}

int arraySum(int[] array) {
 return arraySumHelper(array, array.length, 0);
}

Javascript

function arrSum(array, size, sum = 0)
{
 if (size == 0)
 return sum;

 return arrSum(array, size - 1, sum + array[size - 1]);
}

Note

In Scala, if you place the annotation @tailrec above a function, it ensures the implementation is tail recursive. If it is not, the compiler throws an error.

Example 4-3.

The process of rewriting a function to take advantage of tail recursion is called tail call optimization, or TCO.

Note

Java does not directly support TCO at the compiler level.

More Examples of the Power of fold in Scala

We will start with some simple examples. Suppose we have a max function that takes two numbers and returns the larger one. Now we want to apply it to a list of numbers. Let’s see how we can do this using max and the fold function?

Scala

val lst = List(1,2,3,4,5)
val m = lst.fold(1)(_ max _)

Note

In one line of code, we can sum up a list of numbers without a for loop. Concise, yet easy to read.

Suppose we have a list of words and want the longest word.

def getLongestWord(words: List[String]): String =
 words.reduce((a,b) => if (a.length > b.length) a else b)

How about a simple product function that takes a list of integers?

def product(lst: List[Int]): Int = lst.fold(1)(_ * _)

Let’s implement the length of a list, using fold. I will call it count and it will take a List[Any]

Scala

def count(list: List[Any]): Int =
 list.foldLeft(0)((sum,_) => sum + 1)

Let’s look at some more complex examples. Try to figure out what each one does. The answers will be on the book’s github site.3 I will name the functions f1, f2 … so as not to give away what they do.

def f1(list: List[Double]): Double =
 list.foldLeft(0.0)(_+_) / list.foldLeft(0.0)((r,c) => r+1)

def f2[A](list: List[A]): A =
 list.foldLeft[A](list.head)((_, c) => c)

def f3[A](list: List[A]): A =
 list.foldLeft((list.head, list.tail.head))((r, c) => (r._2, c))._1

def f4[A](list: List[A]): List[A] =
 list.foldLeft(List[A]())((r,c) => c :: r)

def f5[A](list: List[A]): List[A] =
 list.foldLeft(List[A]()) { (r,c) =>
 if (r.contains(c)) r else c :: r
 }

A Connection between fold and Monoids

We learned about monoids in chapter 3 and it turns out that there is a close connection between monoids and the fold function. This is an area where higher order functions and data structures come together to produce a means of raising abstraction in your code which has the ultimate result of simplification.

Example 4-4.

Higher order functions and functionanl data structures can often come together to create abstractions that can simplify your code.

Let us start by recalling the definition of a monoid.

As I mentioned earlier in chapter 3, a semigroup is a set with an associative operation on it. If a semigroup has an identity element, which means an element e, in the semigroup, with the property that:

e * x = x * e = x

for all elements x in the semigroup, the semigroup is called a monoid.

Let us start by implementing a Monoid trait in Scala. This will be a bare bones implementation for learning purposes. Then we will examine its connection to the fold function.

trait Monoid[A] {
 def combine(x: A, y: A): A
 def empty: A
}

combine is a binary operation and empty represents things like 0, the empty string, false or true (depending on what combine does) and generally, that object that when combined with any other object gives the same object back. Let us look at some instances.

class IntMonoid extends Monoid[Int] {
 def combine(m: Int, n: Int): Int = m + n
 def empty: Int = 0
}

Now what does this have to do with fold? You may observe that this trait offers exactly what we need for fold. We need a way to combine two objects to get a third one and a starting object, which essentially has no effect when combined with other objects. If we had wanted to, we could have called Monoid Foldable. Let us apply fold to a list of integers using the IntMonoid class.

val monoid = new IntMonoid
val lst = (1 to 1000).toList
lst.fold(monoid.empty)(combine)

We see here that monoids go right to the heart of the matter of folding. Notice, also, how little we have to change if we want to concatenate strings instead of adding integers. We can do the following.

class StringMonoid extends Monoid[String] {
 def combine(s: String, t: String): String = s + t
 def empty: String = ""
}

val lst = List("a","b","c","d")
val monoid = new StringMonoid
lst.fold(monoid.empty)(monoid.combine)

And now lets and together a bunch of booleans.

class AndMonoid extends Monoid[Boolean] {
 def combine(x: Boolean, y: Boolean): Boolean = x && y
 def empty: Boolean = true
}

val lst = List(false, true, true, true)
val monoid = new AndMonoid
lst.fold(monoid.empty)(monoid.combine) // returns false

Similarly with or

class OrMonoid extends Monoid[Boolean] {
 def combine(x: Boolean, y: Boolean): Boolean = x || y
 def empty: Boolean = false
}

val lst = List(false, true, true, true)
val monoid = new AndMonoid
lst.fold(monoid.empty)(monoid.combine) // returns true

Here are some more examples. It is notable how many different patterns of computation are instances of the Monoid concept.

class ProductMonoid extends Monoid[Double]{
 def combine(x: Double, y: Double): Double = x * y
 def empty: Double = 1.0
}

val lst = List(1.0, 2.0, 3.0, 4.0)
monoid = new ProductMonoid[Double]
lst.fold(monoid.empty)(monoid.combine) //returns 24.0

You may notice we can compute factorial this way.

class IntProductMonoid extends Monoid[Int] {
 def combine(x: Int, y: Int): Int = x * y
 def empty: Int = 1
}

monoid = new ProductMonoid

def factorial(n: Int): Int =
 (1 to n).toList.fold(monoid.empty)(monoid.combine)

Or the sum version of factorial - adding up the numbers from 1 to n. Such a number is called the nth triangular number. The triangular numbers start off: 1, 3, 6, 10, 15 …

class IntTriangularMonoid extends Monoid[Int] {
 def combine(x: Int, y: Int): Int = x + y
 def empty: Int = 0
}

monoid = new IntTriangularMonoid

def nthTriangularNumber(n: Int) =
 (1 to n).toList.fold(monoid.empty)(monoid.combine)

Remember that combine has to be associative. That is for all x and y and z, we have to have:

combine(combine(x,y), z) == combine(x, combine(y,z))

Also notice that all of these examples involve monoid.empty and monoid.combine. So we could define the following general function for a given monoid m:

One general function

def f[A](lst: List[A]): A = lst.fold(m.empty)(m.combine)

Example 4-5.

This one, general function is general enough to express all the above examples! We might even say that all the above examples are the same function, parameterized by various monoids.

More with Higher Order Functions

fold is a higher order function. It takes a function as one of it’s parameters. The general pattern is that we have a list or some other collection object. And we call a higher order function f on the collection and pass in a function that does something to the elements of the collection. This is the general idea. Let’s look at a few examples of the simplest of all higher order functions, map. map is usually called on a container like a list or even an option. In fact, it can be called on any monad. As I explained in chapter 3, every monad is a functor and a functor always has a map function.

Note

The map function can be called on any monad. The reason is that every monad is a functor and every functor has a map function.

Without map, anytime you want to modify the elements of a collection, you would have to iterate through the collection and mutate state while doing so. Let’s look at some examples.

Scala

Let’s say we want to take the first n positive integers, square each one, and add them all together. Here is a Scala function that does this.

def sumOfSquares(n: Int) = (1 to n).toList.map(m => m*m).sum

The level of abstraction is higher than an imperative version of this and it is easier to read, I would argue, once you get use to the idea. We could have used fold instead of sum if we wanted to emphasize common patterns through the program. This would look like this.

def sumOfSquares(n: Int) = (1 to n).toList.map(m => m*m).fold(0)(_ + _)

The goal is maximize both legibility and concision. Now we said we could use the fold function to emphasize common structure in the program. The idea here is that all the instances of, say, fold in a program are instances of a common structure. The map examples above also have another common structure. Since they are map examples, it means there is a functor lurking in the room. Let’s see if we can make this more explicit. If you do this thing often enough, you will look at a function like sumOfSquares and immediately think Functor and Monoid. First, let’s write a trait for Functor and then express sumOfSquares with it.

trait Functor[F[_]] {
 def map[A, B](fa: F[A])(f: A => B): F[B]
}

Here F is the functor. The map function takes an element of F[A]. a function f: A ⇒ B and returns an element of F[B]. Think of F as a List or an Option or an other Functor (monads will do since they are also functors.)

Now let’s create a list Functor.

val listFunctor: Functor[List] = new Functor[List] {
 def map[A, B](ls: List[A])(f: A => B) = ls.map(x => f(x))
}

def sumOfSquares(n: Int): Int =
 listFunctor.map((1 to n).toList)(m => m*m).fold(0)(_ + _)

So sumOfSquares turns out to be a combination of a Functor and a use of fold. I might not want to sum squares, outside of an instructional context so let’s think of something I might want to do. How about tell if a positive integer is a prime. Recall that a prime is a positive integer that has exactly two factors.4 So how can we express this functionally?

 private def isPrime(n: Int): Boolean =
 (2 to (n - 1)).forall(n % _ != 0)

forall here is a higher order function that ensures the predicate it takes as an argument is true for every number in (2 to (n-1)). This effectively says, every number between 2 and n-1 inclusive, is not zero mod n. In other words. every number fails to divide n. This function works but there is a mathematical indesirability about it. Can you spot it? Hint: Something about the (2 to (n-1)). The following better version will make the problem more explicit.

def isPrime(n: Int): Boolean =
 (2 to math.sqrt(n).toInt).forall(n % _ != 0)

The reason this is better and the reason that, as an algorithm, the first version is not so great is that it checks all the integers up to one less than the number. But consider this: if k divides n, then either k or n/k is less than or equal to sqrt(n). If BOTH were > sqrt(n), then their product would be greater than n. But their product is n. So either k or n/k is less than equal to sqrt(n). Therefore when we are checking if an integer is prime, we just have to check up to the square root of the number.

Example 4-6.

Mathematical observation. When checking if a number is prime, you only have to check divisors upto (and including) the square root of that number.

As an example of a function that tells us if an integer is prime, and does it in a functional style, the isPrime function above is a beautiful example. No mutation and its use of the higher order function forall makes it concise.

From map to flatMap

We saw in chapter 3 that while a functor always has a map function, a monad always has both a map and a flatMap function. Let’s look at some more flatMap examples. First suppose we have a User class and a getUser function that returns a User given an id.

case class User(id: Int, firstName: String)

def getUser(Id: Int): User = ???

???, in Scala, is a way of telling the compiler, Im not finished yet but still compile. It’s useful while writing code. Let us suppose getUser returns a null, if the id doesn’t correspond to a user.

And let’s say we want to get the users that correspond to the ids 1 to 10 and then from them we want to get their first names. We can do the following.

Scala

(1 to 10).toList.map(id => getUser(id))

This will produce a list of elements, each one of which is either a User or a null. So first, lets improve on the null. Of course, we can and should use an Option here. Then there will be no chance of a null pointer exception and the compiler will check that everything is alright. So now we have:

case class User(id: Int, firstName: String)

def getUser(id: Int): Option[User]

Now when we evaluate

(1 to 3).map(id => getUser(id))

we will get something like

List(Some(User(1, "Carl")), None, Some(User(3,"Mary")))

But we don't want the Somes and we don't want the Nones. We just want the first names of those users that correspond to the ids. Well there is a function that will give us just that.

(1 to 3).flatMap(id => getUser(id))

This will return:

List(User(1,"Carl"), User(3, "Mary"))

Perfect! What flatMap is doing is first mapping and then flattening. Flattening means removing an object out of the functor that is containing it and discarding failure case. In the case of Options, the failure case is None. To get the bigger picture of flatMap, let us look at its signature. It generally is defined within a monad. Remember, we can define a monad, loosely speaking, as a trait or interface which implements map and flatMap.

trait Monad[M[_]] {
 def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]
}

Recall that a monad provides context to an object. Or you can think of it as a container around an object that has a map and flatMap function. The function f in the above flatMap signature returns a B object inside of the context M. So if you map over it, you will end up with, say, a list of M[B]s. You may want to access the B’s directly and this is where flatMap is useful. Let us look at a few more flatMap examples. Since flatMap maps and flattens, and a string is a list of characters, what do you think the following does?

val ls = List("Hello", "World")
ls.flatMap(s => s.toUpperCase)

It evaluates to List(H, E, L, L, O, W, O, R, L, D).
It maps each word to upper case and then flattens them.

Let us look at some more examples. Suppose you have a list of integers and you want to replace the list with a list that contains each integer appearing twice. So List(1,2,3) would map to List(1,1,2,2,3,3). Here is some code for this.

def doubleUpInts(ls: List[Int]): List[Int] =
 ls.flatMap(i => List(i, i))

To see why flatMap is necessary, let’s see what would happen if we replaced flatMap in the last example with map. We would have:

def doubleUpInts(ls: List[Int]) = ls.map(i => List(i, i))

Notice I didn’t include the return type. That is because if I put List[Int] as the return type, the program would fail to compile. The true return type of this function is List[List[Int]]. flatMap flattens this down to List[Int].

Conclusion

We know that immutability is one of the most important things in functional programming. In this chapter we saw a number of techniques for keeping the state in our programs immutable. Recursion allows us to not loop through variables and mutate state. Instead, inside a function, when, previously, we would have mutated state, now we can call the same function we are in with different arguments. We also have to continually check some condition that the arguments satisfy and return at the right moment. If we don’t do this, we could have an infinite loop on our hands. We do have to be careful of stack overflows, even with the large amounts of ram our machines have. When dealing with huge amounts of data, this is always a possibility. When possible, we can make our recursive functions tail-recursive, which means the last thing the function does in its body is call itself. These functions can be optimized and re-implemented with a for loop instead of using the stack.

Warning

Beware of stack overflow when using a recursive function on a large dataset. Use tail-recursive functions when possible.

We have also seen how higher order functions can help us to avoid state mutating in for and while loops. In the process of going through examples we saw how from one pattern, in this case using a Functor and the fold function, we could produce many seemingly different functions. We wrote down one function, which for any given monoid m, produced a new function. Here is that function:

Scala

def f[A](lst: List[A]): A = lst.fold(m.empty)(m.combine)

This is in fact a pattern, which I would like to call the Monoid and fold pattern.

Finally, we looked at the higher order function flatMap, in more detail. This is a critical function because along with map, it comprises the monad.

I encourage the reader to try to come up with more patterns like Monoid and fold. Perhaps starting with a monad, instead of a monoid and trying various higher order functions in addition to fold, new patterns can be discovered.

1 https://en.wikipedia.org/wiki/Haskell_(programming_language)
2 See the appendix for a definition of currying
3 put link here
4 The usual definition says that a prime is a positive integer with at most two factors and then says 1 is an exception. But 1 really is not a prime. Every positive integer can be written as a product of prime powers in a way that is unique, up to ordering of the factors. If 1 were a prime, we would have 1 = 1*1 and also 1 = 1*1*1 etc. So 1 behaves differently from the primes.

Chapter 5. Questions of Concurrency

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made active later on.

If you have comments about how we might improve
 the content and/or examples in this book, or if you notice missing
 material within this chapter, please reach out to the author at jack.widman@protonmail.com.

Introduction

I am going to start this chapter with a sentence that sounds a bit mystical.

With no mutation of state, we can ignore Time. Let us unpack this. First of all, what does time have to do with mutation of state, or with programming for that matter? Time enters programming when we have a set of processes that need to be executed in a particular order.

Note

When we are faced with a set of processes that need to be executed in a particular order, time is introduced into the equation.

Let’s consider the following example1.
Consider two functions. The first takes x to x + 1. The second takes x to x*x. Let’s set x to 10. Now let’s imagine running these two functions in parallel. What would the answer be? Would you be surprised there are 5 possible correct answers!? Let’s break this down. Let P1 = x → x*x and P2 = x → x+1

	
If P1 sets x to 100 and then P2 sets 100 to 101, we get 101.

	
If P2 sets x to 11 and then P1 sets 11 to 121, we get 121.

	
P2 changes 10 to 11 between the two times that P1 accesses the value of x during the evaluation of x*x. In this case, we get 110.

	
P2 access x. Then P1 sets x to 100. Then P2 sets x. This gives 10.

	
P1 accesses x twice. Then P2 sets x to 11. Then P1 sets x. This gives 100.

Which is the correct answer? 101, 121, 110, 10 or 100? Well that depends on what the programmer intended. The point is that if we just let P1 and P2 run in parallel, we can’t be sure which answer it will return. The reason is that the computer can decide to evaluate these two functions in any of the above orders.

Note

When state is mutated, the order in which processes are run, matters.

So what to do about this? The ideal is to have no mutable, shared state. What is shared mutable state? Shared means at least two different threads are accessing it and mutable means it changes. This is where problems can occur. Without shared mutable state, the order in which functions are called does not matter. If it is not possible to avoid shared mutable state, having mutable, shared state encapsulated is the next best thing. This idea here is to keep the mutable shared state in as small a region as possible.

One programming model which is particularly well suited to encapsulated, mutable, shared state is the actor model. We will examine that next.

From the wiki page for the actor model2

The actor model in computer science is a mathematical model of concurrent computation that treats actor as the universal primitive of concurrent computation. In response to a message it receives, an actor can: make local decisions, create more actors, send more messages, and determine how to respond to the next message received. Actors may modify their own private state, but can only affect each other indirectly through messaging (removing the need for lock-based synchronization).

(Lock-based synchronziation is when you only allow one thread at a time to access a piece of code. That is one of the main traditional approaches to the problem of shared mutable state.)

Note

Actors provides a high level abstraction for writing concurrent and distributed systems. It alleviates the developer from having to deal with explicit locking and thread management, making it easier to write correct concurrent and parallel systems.

Actors were defined in a 1973 paper by Carl Hewitt but have been popularized by the Erlang language, and used, for example, at Ericsson with great success to build highly concurrent and reliable telecom systems. The Akka Actor library is a Scala/Java library which has borrowed some of its syntax from Erlang. Actors are in some way like objects but they tend to be at a higher level of abstraction. What this means is that actors tend to represent cross cutting concerns like Logging and Security rather than oop-like objects like User and Message, though they can represent the latter as well. The main thing to remember about actors is that they make concurrency much easier, in many cases.

So how do actors work? The fundamental idea is that each Actor has its own mailbox, which is a container that holds a linear collection of messages.
Other actors send these messages to the actor and the messages are deposited in the actor’s mailbox. Then the actor processes the messages one at a time. The actor also receives a pointer to the sender in case it wants to return a message. The messages are immutable. Sending around mutable messages would open up the model the difficult task of managing changing state, especially when various threads are touching that state.

Note

Since the messages are immutable, and the messages are processed one at a time, there is no possibility of corrupted, mutable, shared state.

The Akka library, a library closely integrated with Scala, provides Actors and their infrastructure. With regard to performance, Akka Actors can handle 50 million messages/sec on a single machine! Part of what makes this possible is the immutability of the messages. In Scala, we use case objects3 to represent the messages.

The basic Idea is that we create actors and then send messages to them, telling them to take some action. Sending a message is a little bit like calling a method on an object. In fact some early object oriented programming languages, notably SmallTalk, passed messages instead ofcalling methods. It is a viable alternative to methods when creating an objected oriented language though methods are far more popular.

Note

The general approach to using actors is to consider what you are modeling from the perspective of communication, decide what are the main players and how they communicate with each other and create actors to represent these players.

Let’s look at some code that implements a mini version of the game Pong. There are two kinds of actors. Typed and untyped. Typed actors are a more recent standard. We will use the untyped actors for our examples because it is simpler and we can focus more on the fundamental ideas. You will see classes such as Actor, ActorRef and ActorSystem in the following code. We will explain these afterwards.

Scala

case object PingMessage
case object PongMessage
case object StartMessage
case object StopMessage

class Ping(pong: ActorRef) extends Actor {
 var count = 0
 def incrementAndPrint { count += 1; println("ping") }
 def receive = {
 case StartMessage =>
 incrementAndPrint
 pong ! PingMessage
 case PongMessage =>
 incrementAndPrint
 if (count > 99) {
 sender ! StopMessage
 context.stop(self)
 } else {
 sender ! PingMessage
 }
 }
}

class Pong extends Actor {
 def receive = {
 case PingMessage =>
 println(" pong")
 sender ! PongMessage
 case StopMessage =>
 context.stop(self)
 }
}

object PingPongTest extends App {
 val system = ActorSystem("PingPongSystem")
 val pong = system.actorOf(Props[Pong], name = "pong")
 val ping = system.actorOf(Props(new Ping(pong)), name = "ping")
 // start them going
 ping ! StartMessage
}

ping ! PongMessage

to mean we are sending the message PongMessage to the ping actor. This get’s the ball rolling, as it were.

We see in the definition above of the Ping class, there is a parameter called pong which has type ActorRef (and not Actor). This is an immutable handle to an actor which may or may not reside on the same host.

We also see the class ActorSystem. This is the context of the Actor and it is the ActorSystem that creates new actors.

The Akka library provides for two fundamental concepts. Actors and Streams. We have looked briefly at Actors and now we will look at Streams. Incidentally, Streams are implemented by way of actors.

Streams

Let us consider streams now. A stream, generally, is a potentially infinite, sequential container for data. It allows us to modify and process chunks of data, as those chunks “move” through the stream. A stream is, in a way, a generalization of an ordinary collection. From a functional perspective, the idea is this. On the one hand we could have an object in memory, and that object’s fields are mutated in time. This is the standard imperative or object oriented paradigm of mutating state. With a stream, in a functional program, we have a memory area, objects coming into the stream, and objects leaving the stream.

Note

But instead of mutating state, we can think of later objects as being a later evolutional stage of a previous object without any notion of time.

Think of it as similar to the example of a variable X that ranges over the positive integers. We could think of X as changing as time flows from t = 1, t = 2, t = 3 etc. Or we could think of X as a function that exists all at one time. In this case, nothing has changed. A stream can be thought of in the same way. It is a matter of perspective. There are many streaming libraries and they vary in design and purpose. We will look at a few across a few different programming languages.

Akka Streams

So how do Akka Streams work? Akka Streams are actually implemented with Akka Actors under the covers. To start with, since Akka Streams are built on actors, we need an ActorSystem just as we have in the case of actors.

Scala

implicit val system: ActorSystem = ActorSystem("StreamExample")

Let us also import the necessary Stream related classes:

import akka.stream._
import akka.stream.scaladsl._

Now a stream, in Akka, is made of three fundamental parts. The first is the Source, the second is the Flow and the third is the Sink.

Source

The source of a stream is what it sounds like. This is where the data enters the stream. Akka provides many prebuilt sources. Let’s look at a few.
Here is a simple one.

Scala

val source = Source(1 to 1000)

It is important to point out here that the variable of source here, does not actually contain anything. It is merely a description of how to emit integers. In order to get those integers out we need to run it. This is an NOTE functional theme. We make a clean distinction between the pure version of a program and the impure part. when the program is running. It is when it is running that it might undergo side effects. It is these side effects, like printing to standard out or throwing an exception which make the running state impure. The paradigm of describing a computation and only running when explicitly told to do so is an advanced, functional process. We will look into this process in the next chapter.

There are many useful run functions. Here is one example.

Scala

source.runForEach(i => println(i))

As a description of a process, a source can be re-used4. Let’s see an example of taking the above source and writing it to a file.

Scala

source.runWith(FileIO.toPath(Paths.get("numbers.txt")

Sink

Let us next consider the Sink of a stream. If a source is where the data comes from, the Sink is where the data goes to. From the documentation5: A Sink is an operator with exactly one input, requesting and accepting data elements, possibly slowing down the upstream producer of elements. This slowing down is known as backpressure and the fact that it comes for free with Akka Streams is a very valuable extra. Some examples:

Scala

val source = Source(1 to 10)
val sink = Sink.fold[Int, Int](0)(_ + _)
val sum: Future[Int] = source.runWith(sink)

As with a Source, a Sink is only a description of a computation. The actual value needs to be materialized as it is called.

These examples add up the numbers from the source.

Flow

In between the Source and Sink we can have flows. Flows take the incoming data and create a new piece of data based on the incoming data. This is instead of muta
ting the state of the incoming data. Here is an extended example:

Scala

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import akka.stream.scaladsl.{Sink, Source}
import java.io.File

implicit val actorSystem = ActorSystem("system")
implicit val actorMaterializer = ActorMaterializer()

val source = Source(List("test1.txt", "test2.txt", "test3.txt"))
val mapper = Flow[String].map(new File(_))
val existsFilter = Flow[File].filter(_.exists())
val lengthZeroFilter = Flow[File].filter(_.length() != 0)
val sink = Sink.foreach[File](f => println(s"Absolute path: ${f.getAbsolutePath}"))

val stream = source
 .via(mapper)
 .via(existsFilter)
 .via(lengthZeroFilter)
 .to(sink)

stream.run()

As we said, a stream in Akka is not executed off the bat, it is initially a description of a stream computation. It has to be materialized and that is why we implicitly import the ActorMaterializer class. In the sink variable, the println does not take place until the line stream.run(). That is when the description of the computation turns into an actual computation.

So we have seen how we can join a source to a flow or flows and to a sink to create a stream computation. Akka streams can do alot more than this. For more on Akka Streams, a good place to start is the documentation6.

More on Streams

Now that we have seen some examples of how streams might be implemented, lets look more fundamentally at streams and how they fit into the functional paradigm.

Warning

It certainly is possible to write streams that mutate state and are therefore not purely functional streams.

But we will focus on purely functional streams. Let us consider them from a more general, theoretical perspective. This is not always how streams are used but it is one way OF looking at them that is particularly functional. We will consider a very specific situation. We have a stream S and a sequence of object x_n in the stream where n ranges over the positive integers. So at various times, the stream contains x_1, x_2, x_3 etc. In fact, let us simplify it even more and say that at time n, the stream S contains only one object, namely x_n. Since the subscripts represent time, we are inclined to think of the objects as streaming or moving through the stream in time. We are also inclined to think of the x_n objects changing. But there is another way of thinking about this situation, namely that x_n is an aspect of a larger object x. x can exist in various states.

Note

So x has different states. At time n, x is in state x_n. When we look at it this way, we can see x as an unchanging object that exists all at once.

It’s not that x_n changes into x_n+1 but rather x_n and x_n+1 and every other x_i all exist at the same time to form x. At the code level, we use all immutable data and create new objects x_n in the stream for different values of n. It’s a matter of perspective. So there is one unchanging object called x which we can write as (x_n). When we think about x, we see it is as a complete, unchanging object. When think of the stream as containing x_n at time n, it seems to be changing but this is an illusion based on the fact that we are not looking at x as a completed object.

We have said that it is possible to have streams that mutate state. One has to go through a bit of work to ensure that no state is mutated but there are some good libraries that take care of this for you. The most popular is called FS2.

Functional Streaming in Scala

FS2 - Functional Streams for Scala

As it says on the FS2 website,7

FS2 is a library for purely functional, effectful, and polymorphic stream processing library in the Scala programming language. Its design goals are compositionality, expressiveness, resource safety, and speed. The name is a modified acronym for Functional Streams for Scala (FSS, or FS2).

FS2 is built upon two functional libraries for Scala - Cats and Cats-Effects.
To use, simply include the following configuration in your build.sbt file.

// available for 2.12, 2.13, 3.0
libraryDependencies += "co.fs2" %% "fs2-core" % "<version>"

Let’s look at a small example of how FS2 works. Note how FS2 uses the program as description and then run model. There is a class called IO, from the Cat’s Effects library which we will describe in more detail in the next chapter. For now, think of it as a Future. So it will hold a value when the process has completed its action. The variable converter doesn’t actually do anything. It merely describes the program. Then when the run function is called, the program actually does what it does.

import cats.effect.{IO, IOApp}
import fs2.{Stream, text}
import fs2.io.file.{Files, Path}

object Converter extends IOApp.Simple {

 val converter: Stream[IO, Unit] = {
 def fahrenheitToCelsius(f: Double): Double =
 (f - 32.0) * (5.0/9.0)

 Files[IO].readAll(Path("testdata/fahrenheit.txt"))
 .through(text.utf8.decode)
 .through(text.lines)
 .filter(s => !s.trim.isEmpty && !s.startsWith("//"))
 .map(line => fahrenheitToCelsius(line.toDouble).toString)
 .intersperse("\n")
 .through(text.utf8.encode)
 .through(Files[IO].writeAll(Path("testdata/celsius.txt")))
 }

 def run: IO[Unit] =
 converter.compile.drain
}

The converter object is a Stream and converter.compile runs the stream. drain effectively waits for the stream to run its course. It is essentially blocking until it completes. Each line being called above modifies the text by performing some operation and then creating a new piece of text. This code is purely functional. No state is modified, it is simply replaced with a new line that has been processesed in some way.

The following is a word count example.

def readAndWriteFile(readFrom: String, writeTo: String): Stream[IO, Unit] =
 Stream.resource(Blocker[IO]).flatMap { blocker =>
 val source: Stream[IO, Byte] = io.file.readAll[IO](Paths.get(readFrom), blocker, 4096)

 val pipe : Pipe[IO,Byte,Byte] = src =>
 src.through(text.utf8Decode)
 .through(text.lines)
 .flatMap(line => Stream.apply(line.split("\\W+"): _*))
 .fold(Map.empty[String, Int]) {
 (count, word) =>
 count + (word -> (count.getOrElse(word, 0) + 1))
 }
 .map (_.foldLeft("") {
 case (accumulator, (word, count)) =>
 accumulator + s"$word = $count\n"
 }
)
 .through(text.utf8Encode)

 val sink : Pipe[IO,Byte,Unit] = io.file.writeAll(Paths.get(writeTo), blocker)

 source
 .through(pipe)
 .through(sink)
}

This example, too, is purely functional. No mutated state anywhere.

Conclusion

The way we approach concurrency in functional programming is by insuring that as much of our code is immutable as is possible and we minimize changing state as much as possible.

Note

Above all, in writing concurrent code, we choose to adhere to the principle of immutability as much as we can.

In addition,we have seen that streaming is also an important part of implementing concurrency in a functional program. Viewing objects as streams allows you to see the entire lifetime of a changing object as a stream that doesn’t change at all. Streams are an important tool for handling concurrency.

1 This example was taken from Structure and Interpretation of Computer Programs
2 https://en.wikipedia.org/wiki/Actor_model
3 See the appendix
4 Unlike, say, an iterator.
5 Put reference here.
6 https://doc.akka.io/docs/akka/current/stream/index.html
7 https://github.com/typelevel/fs2

About the Author

Jack Widman started his professional life as a mathematician in academia. He studied and taught the intricacies of pseudo-compact topological groups, as well as teaching calculus and discrete math courses. At the suggestion of some friends, he decided to try out programming and see it this was his cup of tea. It is now twenty-three years later and Jack has been designing and writing code ever since. With a PhD in mathematics and twenty-three years of software industry experience, Jack conceived of the idea to write a book on functional programming, undoubtedly a subject with deep mathematical roots, and this book you have in your hands is the result.

In his spare time, Jack enjoys writing and producing music.

OEBPS/Images/2.png

OEBPS/Images/cover.png
O'REILLY"

Learning
Functional
Programming

Managing Code Complexity
by Thinking Functionally

Early
Release QpY#

RAW &
UNEDITED

Jack Widman

OEBPS/Images/3.png

OEBPS/Images/1.png

