

 Red Hat

Kafka Connect

Build Data Pipelines by Integrating Existing Systems

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Mickael Maison and Kate Stanley

 Kafka Connect

 by
 Mickael
 Maison
 and
 Kate
 Stanley

 Copyright © 2023 Mickael Maison and Kate Stanley. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 Jessica Haberman

 	
 Development Editor:
 Jeff Bleiel

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 October 2023:
 First Edition

 Revision History for the Early Release

 	
 2022-02-18:
 First Release

 	
 2022-04-15:
 Second Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098126537
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kafka
 Connect, the cover image, and related trade dress are trademarks of
 O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 This work is part of a collaboration between O’Reilly and Red Hat. See our statement of editorial independence.

 978-1-098-12653-7

 Chapter 1. Apache Kafka Basics

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the second chapter of the final book.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at KafkaConnectBook@gmail.com.

 Connect is one of the components of the Apache Kafka project. While you don’t need to be a Kafka expert to use Connect, it’s useful to have a basic understanding of the main concepts in order to build reliable data pipelines.

 In this chapter, we will give a quick overview of Kafka and you will learn the basics in order to fully understand the rest of this book. (If you already have a good understanding of Kafka, you can skip this chapter and go directly to Chapter 3.) We will explain what Kafka is, its use cases and briefly introduce some of its inner workings. Finally we will discuss the different Kafka clients, including Kafka Streams, and show you how to run them against a local Kafka cluster.

 If you want a deeper dive into Apache Kafka, we recommend you take a look at the book “Kafka, the Definitive Guide”.

 A Distributed Event Streaming Platform

 On the official website, Kafka is described as an “open-source distributed event streaming platform”. While it’s a technically accurate description, for most people it’s not immediately clear what that means, what Kafka is and what you can use it for. Let’s first look at the individual words of that description separately and explain what they mean.

 Open Source

 The project was originally created at LinkedIn where they needed a performant and flexible messaging system to process the very large amount of data generated by their users. It was released as an open source project in 2010 and it joined the Apache Foundation in 2011. This means all the code of Apache Kafka is publicly available and can be freely used and shared as long as the Apache License 2.0 is respected.

 Note

 The Apache Foundation is a nonprofit corporation created in 1999 whose objective is to support open source projects. It provides infrastructure, tools, processes and legal support to projects to help them develop and succeed. It is the world’s largest open source foundation and as of 2021, it supports over 300 projects totalling over 200 million lines of code.

 The source code of Kafka is not only available, but the protocols used by clients and servers are also documented. This allows third parties to write their own compatible clients and tools. It’s also noteworthy that the development of Kafka happens in the open. All discussions (new features, bugs, fixes, releases) happen on public mailing lists and any changes that may impact users have to be voted on by the community.

 This also means Apache Kafka is not controlled by a single company that can change the terms of use, arbitrarily increase prices or simply disappear. Instead it is managed by an active group of diverse contributors. To date, Kafka has received contributions from over 800 different contributors. Out of this large group, a small subset (~50) are committers that can accept contributions and merge them into the Kafka codebase. Finally there’s an even smaller group of people (25-30) called Project Management Committee (PMC) members that oversee the governance (they can elect new Committers and PMC members), set the technical direction of the project and ensure the community around the project stays healthy. You can find the current Committer and PMC member roster for Kafka on the website: https://kafka.apache.org/committers.

 Distributed

 Traditionally, enterprise software was deployed on few servers and each server was expensive and often used custom hardware. In the past 10 years, there has been a shift towards using “off the shelf” servers (with common hardware) that are cheaper and easily replaceable. This trend is highly visible with the huge popularity of cloud infrastructure services that allow you to provision standardized servers within minutes whenever needed.

 Kafka is designed to be deployed over multiple servers. A server running Kafka is called a broker, and interconnected brokers form a cluster. Kafka is a distributed system as the system workload is shared across all the available brokers. In addition, brokers can be added to or removed from the cluster dynamically to increase or decrease the capacity. This horizontal scalability enables Kafka to offer high throughput while providing very low latencies. Small clusters with a handful of brokers can easily handle several hundreds of megabytes per second and several Internet giants, such as LinkedIn and Microsoft, have large Kafka clusters handling several trillion events per day (LinkedIn: https://engineering.linkedin.com/blog/2019/apache-kafka-trillion-messages; Microsoft: https://azure.microsoft.com/fr-fr/blog/processing-trillions-of-events-per-day-with-apache-kafka-on-azure/).

 Finally distributed systems offer resilience to failures. Kafka is able to detect when brokers leave the cluster, due to an issue, or for scheduled maintenance. With appropriate configuration, Kafka is able to keep fully functional during these events by automatically distributing the workload on remaining brokers.

 Event Streaming

 An event stream is an unbounded sequence of events. In this context, an event captures that something has happened. For example, it could be a customer buying a car, a plane landing, or a sensor triggering.

 In real life, events happen constantly and, in most industries, businesses are reacting to these events in real time to make decisions. So event streams are a great abstraction as new events are added to the stream as they happen. Event streaming systems provide mechanisms to process and distribute events in real time and store them durably so you can replay them later.

 Kafka is not limited to handling “events” or “streams”. Any arbitrary data, unbounded or finite, can be handled by Kafka and equally benefit from the processing and replay capabilities.

 Platform

 The final part of the definition is platform. Kafka is a platform because it provides all the building blocks to build event streaming systems.

 As shown in Figure 1-1, the Apache Kafka project consists of the following components:

 	Cluster

 	
 Brokers form a Kafka cluster and handle requests for Kafka clients.

 	Clients

 	

 	Producer

 	
 Sends data to Kafka brokers.

 	Consumer

 	
 Receives data from Kafka brokers.

 	Admin

 	
 Performs administrative tasks on Kafka resources.

 	Connect

 	
 Enables building data pipelines between Kafka and external systems. This is the topic of this book!

 	Streams

 	
 A library for processing data in Kafka.

 [image: Components in the Kafka project]
 Figure 1-1. Components in the Kafka project

 Due to its openness, many third party tools and integrations have been created by the ever growing Kafka community.

 Putting it all together, we see that Kafka is an open source project with an open governance under the Apache foundation. Because it is distributed, it is scalable and able to handle very high throughput but also provides high availability. It provides low latency and unique characteristics make it ideal for handling streams of events. Finally the various components of the project create a robust and flexible platform to build data systems.

 Now that you understand what Kafka is, let’s go over some of the use cases it excels at.

 Use Cases

 Here we will only explore the most common use cases. But integrations with a multitude of other data systems and flexible semantics make Kafka versatile in practice.

 Log/Metrics Aggregation

 This type of use case requires the ability to collect data from hundreds or thousands of applications in real time. In addition, strong ordering guarantees, especially for logs, and the capacity to handle sudden bursts in volume are key requirements. Kafka is a great fit for log and metrics aggregation as it’s able to handle large volumes of data with very low latency.

 Kafka can be configured as an appender by logging libraries like log4j2 to send logs directly from applications to Kafka instead of writing them to files on storage.

 Stream Processing

 Stream processing has emerged as a differentiating feature in many industries. It allows users to process and analyze data in real time and hence see results and make decisions as soon as possible. This is in contrast with batch processing where data is processed in large chunks for example, once each day.

 Kafka is designed for handling streams of data and has tools and APIs specifically for this paradigm. Kafka Streams is a library for building stream processing applications. It provides high level APIs that hide the complexity of handling unbounded data streams, and it enables building complex processing applications that are reliable and scalable.

 Messaging

 Kafka is also great at generic messaging use cases. Because it is performant, offers strong delivery semantics, and allows decoupling the sending and receiving ends, it can fulfil the role of a message broker. Kafka clients are built into many application frameworks, making it a popular choice for connecting applications in event driven or microservices architectures.

 How Kafka Works

 Kafka uses the Publish-Subscribe messaging pattern to enable applications to send and receive streams of data. Publish-Subscribe, or PubSub, is a messaging pattern that decouples senders and receivers. The utility of this pattern is easy to understand with a simple example. Imagine you have two applications that need to exchange data. The obvious way to connect them is to have each application send data directly to the other one. This works for a small number of applications but as the number of applications increases the number of connections grows even more. This makes connecting applications directly impractical, even if most applications only need to talk to a few of the others as you can see in Figure 1-2.

 [image: Applications sending data by connecting directly]
 Figure 1-2. Applications sending data by connecting directly

 Such tight coupling also makes it very hard to evolve applications and a single failing application can bring the whole system down if others depend on it. PubSub instead introduces the concept of a system that acts as the buffer between senders and receivers. As shown in Figure 1-3, Kafka provides this buffer.

 [image: Apache Kafka provides a buffer between applications.]
 Figure 1-3. Apache Kafka provides a buffer between applications

 The PubSub model makes it easy to add or remove applications without affecting any of the others. For example, it is easy to add more receivers if a piece of data is interesting for multiple applications. Similarly, if an application that is sending data is offline for any reason, the receiving applications aren’t affected and will just wait for more data to arrive in the buffer. In Kafka, applications sending data are called producers and applications receiving data are called consumers.

 Although there are many other technologies that use PubSub, very few provide a durable PubSub system. Unlike other messaging systems, Kafka does not remove data once it has been received by a particular consumer. Other systems have to make copies of the data so that multiple applications can read it, and the same application cannot read the same data twice. This is not the case with Kafka as applications can read a piece of data as many times as they like, and since it doesn’t have to create new copies, adding new consuming applications has very little overhead.

 In the rest of this section we will cover some common terms which will help you understand how Kafka provides this durable event streaming platform.

 Brokers and Records

 As discussed previously, a deployment of Apache Kafka, normally referred to as a Kafka cluster, is made up of one or more brokers. Each Kafka broker is deployed separately but they collaborate together to form the distributed event streaming platform that is at the core of Kafka. When a Kafka client wants to add data to or read data from the stream, they connect to one of these brokers.

 The data in the event stream is stored on the Kafka brokers. However, to support the different use cases we discussed earlier, the brokers need to be able to handle lots of different types of data, no matter what format it is in. Kafka does this by only dealing with Kafka records. A record is made up of a key, a value, a timestamp and some headers. Records are sent to and read from Kafka as raw bytes. This means Kafka does not need to know the specific format of the underlying data, it just needs to know which parts represent the key, value, timestamp and headers.

 Typically, the value is where you put the bulk of the data you want to send. The data in the value can be in any shape that is needed for the use case. For example, it could be a string, a JSON document or something more complex. The data can represent anything, from a message for a specific application, to a broadcast of a change in state. The record key is optional and is often used to logically group records and can inform routing. We will look at how keys affect routing later in this chapter.

 The headers are also optional. They are a map of key/value pairs that can be used to send additional information alongside the data. The timestamp is always present on a record, but it can be set in two different ways. Either the application sending the record can set the timestamp, or the Kafka runtime can add the timestamp when it receives the record.

 The record format is important as it brings on a few specificities that make Kafka extremely performant. First clients send records in the exact same binary format that brokers write to disk. Upon receiving records, brokers only need to perform some quick sanity checks such as Cyclic Redundancy Checks (CRC) before writing them to disk. This is particularly efficient as it avoids making copies or allocating extra memory for each record. Another technique used to maximize performance is batching, which consists in grouping records together. The Kafka record format is actually always a batch so when producers send multiple records grouped in a batch, this results in a smaller total size sent over the network and stored on brokers. Finally to reduce sizes further, batches can be compressed using a variety of data compression libraries, such as gzip, lz4, snappy or zstd.

 Now let’s look at where records are stored in Kafka.

 Topics and Partitions

 Kafka doesn’t store one single stream of data, it stores multiple streams and each one is called a topic. When applications send records to Kafka they can decide which topic to send them to. To receive data, applications can choose one or more topics to consume records from. There is no right or wrong way to decide which records should go on which topic. It depends how you want those records to be used and your specific system. For example, suppose you are collecting temperature readings from sensors all over the world. You could put all those records into one big topic, or have a topic for each country. It depends how you want to use the topics later.

 Kafka is designed to handle a high volume of data flowing through it at any one time. It uses partitions to help achieve this by spreading the workload across the different brokers. A partition is a subset of a particular topic. When you create the topic you decide how many partitions you want, with a minimum of one. Partitions are numbered starting from 0.

 Figure 1-4 shows 2 topics spread across 3 brokers. The topic called mytopic has 3 partitions and the topic called othertopic has 2 partitions.

 [image: Topics and partitions in a Kafka cluster.]
 Figure 1-4. Topics and partitions in a Kafka cluster

 If you only have one partition, every application that wants to send data to the topic has to connect to the same broker. This puts a lot of load on this single broker. Creating more partitions allows Kafka to spread a topic out across the brokers in the cluster. We will talk more about how the partitions affect both producing and consuming applications in the section on Kafka clients.

 Figure 1-5 shows records on a partition. Each record in a partition can be identified by its offset. The first record added to the topic gets an offset of 0, the second 1 etc. To uniquely identify a record in Kafka you need the topic, the partition and the offset.

 [image: Records on a partition denoted by their offset.]
 Figure 1-5. Records on a partition denoted by their offset

 New records are always added to the end of the partition and Kafka records are ordered. This means Kafka will guarantee that the records are placed onto the partition in the order that it received them. This is a useful feature if you need to maintain the order of data in your stream. However, since the guarantee is only per partition, if you absolutely need all events in a topic to be strictly kept in the order they were received, you are forced to use a single partition in your topic.

 Replication

 In most systems it is sensible to assume that something will go down at some point. You should always be planning for failure. In Kafka, brokers can be taken offline for many reasons, whether it’s the underlying infrastructure failing or the broker being restarted to pick up a configuration change. Because it’s a distributed system, Kafka is designed for high availability and can cope with a broker going down. It does this using replication.

 Replication means Kafka can maintain copies or replicas of partitions on a configurable number of brokers. This is useful because if one of the brokers goes down, the data in partitions on that broker isn’t lost or unavailable. Applications can continue sending and receiving data to that partition, they just have to connect to a different broker.

 Applications are told which broker to contact based on which one is the leader for the partition they are interested in. For each partition in a topic one broker is the leader and the brokers containing replicas are called followers. The leader is responsible for receiving records from producers and followers are responsible for keeping their copies of the partition up to date. Followers that have up to date copies are called in-sync replicas (ISR). Consumers can connect to either the leader or ISR to receive records from the partition. If the leader goes offline for some reason Kafka will perform a leader election and choose one of the ISR as the new leader. Kafka applications are designed to handle leadership changes and will automatically reconnect to an available broker. This is what provides the high availability because applications can continue processing data even when Kafka brokers go down.

 You configure the number of replicas for a topic by specifying the replication factor. If you have a replication factor of 3 then Kafka will make sure you have 1 leader broker and 2 follower brokers. If there are multiple partitions in the topic Kafka will aim to spread out the leaders amongst the brokers.

 Note

 One broker within a Kafka cluster has the additional role of being the controller. This is the broker that is responsible for managing the leaders of each partition. If the controller goes down, Kafka will automatically select a new controller from the remaining eligible brokers.

 Retention and Compaction

 As mentioned earlier, Kafka topics contain unbounded streams of data, and this data is stored on the Kafka brokers. Since machine storage isn’t unlimited this means at some point Kafka needs to delete some of the data.

 When a topic is created you can tell Kafka the minimum amount of time to wait or the minimum amount of records to store, before it can start deleting records. There are various configuration options you can use to control deletion, such as log.retention.ms and log.retention.bytes.

 Tip

 Kafka won’t delete your records as soon as it hits the specified time or size. This is due to the way Kafka stores the records on disk. The records in a partition are stored in multiple, ordered files. Each file is called a log segment. Kafka will only delete a record when it can delete the entire log segment file. Log segments are built up sequentially, adding one record at a time and you can control when Kafka starts writing to a new log segment using the log.segment.ms and log.segment.bytes settings.

 Configuring clean up based on time or size doesn’t always make sense. For example, if you are dealing with orders you might want to keep at least the last record for each order, no matter how old it is. Kafka enables such use cases by doing log compaction. When enabled on a topic, Kafka can remove a record from a partition when a new record has been produced that contains the same key. To enable compaction, set the cleanup.policy to compact, rather than the default delete.

 In order to delete all records with a specific key you can send a tombstone record. That is a record with null value. When Kafka receives a tombstone record it knows it can clean up any previous records in that partition that had the same key. The tombstone record will stay on the partition for a configurable amount of time, but will also eventually be cleaned up.

 Compaction keeps the overall partition size proportional to the number of keys used rather than to the total number of records. This also makes it possible for applications to rebuild their state at startup by reprocessing the full topic.

 Tip

 Similarly to record deletion, compaction doesn’t happen immediately. Kafka will only compact records that are in the non-active segment files. That means if the segment file is currently still having records sent to it, it won’t be compacted.

 Kafka Clients

 To get data into and out of Kafka you need a Kafka client. As we mentioned in section 2.1 the Kafka protocol is open, so there are plenty of clients to choose from or you can write your own. In this section we will introduce the Kafka clients that are shipped with the Kafka distribution. They are all Java clients and provide everything you need to get started with Kafka. The advantage of using one of these provided clients is they are updated when new versions of Kafka are released.

 The configuration options we will cover are usually available within third-party clients as well. So even if you don’t plan to use the included clients, the next few sections will help you understand how Kafka clients work. If you decide to use a third-party client, keep in mind that it can take some time for them to release a new version that supports the features in the latest Kafka.

 Producers

 Producers are applications that send records to topics. The class org.apache.kafka.clients.producer.KafkaProducer<K,V> is included as part of the Kafka distribution for producer applications to use. The K and V indicate the type of the key and value in the record.

 When you are writing a Kafka producer application you don’t have to specify the partition you want to send records to, you can just specify the topic. Then the Kafka client can determine which partition to add your record to using a partitioner. You can provide your own partitioner if you want to but to start off you can make use of one of the built-in partitioners.

 As shown in Figure 1-6, the default partitioner decides which partition the record should go to based on the key of the record.

 [image: Records distributed on partitions by the default partitioner]
 Figure 1-6. Records distributed on partitions by the default partitioner

 For records without a key, the partitioner will roughly spread them out across the different partitions. Otherwise, the partitioner will send all the records with the same key to the same partition. This is useful if you care about ordering of specific records. For example if you are tracking status updates to a specific order, it makes sense to have these updates in the same partition so that you can take advantage of Kafka’s ordering guarantees.

 There are a few different configuration options that you should be aware of when writing a producer application. These are:

 	

 bootstrap.servers

 	

 key.serializer

 	

 value.serializer

 	

 acks

 	

 retries

 	

 delivery.timeout.ms

 	

 enable.idempotence

 	

 transactional.id

 The bootstrap.servers configuration is a list of the broker endpoints the application will initially connect to. This can be a single broker, or include all the brokers. It is recommended to include more than one broker so that applications are still able to access the cluster even if a broker goes down.

 The key.serializer and value.serializer configuration options specify how the client should convert records into bytes before sending them to Kafka. Kafka includes some serializers for you to use out of the box, for example StringSerializer and ByteArraySerializer.

 You should configure acks and retries based on the message delivery guarantees you want for your specific use case. The acks configurations option controls whether the application should wait for confirmation from Kafka that a record has been received. There are three possible options: 0, 1, all/-1. If you set acks to 0 your producer application won’t wait for confirmation that Kafka has received the record. Setting it to 1 means the producer will wait for the leader to acknowledge the record. The final option is all, or -1 and this is the default. This acks setting means the producer won’t get acknowledgement back from the leader broker until all followers that are currently in-sync (have an up-to-date copy of the partition) have replicated the record. This allows you to choose the delivery semantics you want, from maximum throughput (0) to maximum reliability (all).

 If you have acks set to 1 or all you can control how many times the producer will retry on failure using the retries and delivery.timeout.ms settings. It is normally recommended to leave the retries setting as the default value and use the delivery.timeout.ms to set an upper bound for the time a producer takes trying to send a particular record. This determines how many times the producer will try to send the record if something goes wrong. Using the acks and retries settings, you can configure producers to provide at least once or at most once delivery semantics.

 Kafka also supports exactly once semantics via the idempotent and transactional producers. You can enable the idempotent producer via the enable.idempotence setting and is enabled by default from Kafka 3.0 onwards. In this mode, a single producer instance sending records to a specific partition can guarantee they are delivered exactly once and in order. You enable the transactional producer using the transactional.id setting. In this mode, a producer can guarantee records are either all delivered exactly once to a set of partitions, or none of them are. While the idempotent producer does not require any code changes in your application to be used, in transactional mode, you need to explicitly start and end transactions in your application logic, via calls to begin and commit or abort.

 Warning

 If you don’t use an idempotent or transactional producer and have retries enabled you might get reordering of records. This is because the producer could try to send multiple batches before the first batch is acknowledged. You can control the number of in-flight requests using max.in.flight.requests.per.connection.

 Consumers

 Consumer applications fetch records from Kafka topics. Similarly to producers there is a class included in the Kafka distribution that you can use: org.apache.kafka.clients.consumer.KafkaConsumer<K,V>. The K and V represent the type of key and value. Consumer applications can consume from a single topic, or multiple topics at the same time. They can request data from specific partitions, or use consumer groups to determine which partitions they receive data from.

 Consumer groups are useful if you want to share the processing of records on a topic amongst a set of applications. All applications in a consumer group need to have the same group.id configuration. As shown in Figure 1-7, Kafka will automatically assign each partition within the topic to a particular consumer in the group.

 [image: Consumers in a group consuming from different partitions]
 Figure 1-7. Consumers in a group consuming from different partitions

 This means a single consumer could be assigned to multiple partitions, but for a single partition there is only one consumer processing it at a time. If a new consumer joins the group, or a consumer leaves the group, Kafka will rebalance the group. During rebalancing, the remaining consumers in the group coordinate with Kafka to assign the partitions amongst themselves.

 If you want more control over the partition assignments you can assign them yourself in the application code. In Java applications you use the assign function to handle partition assignment manually or subscribe to let Kafka do it with a consumer group.

 Note

 For each group, one broker within a Kafka cluster takes on the role of group coordinator. This broker is responsible for triggering rebalancing and coordinating the partition assignments with the consumers.

 These are some of the configuration options you should be familiar with to write a consumer application:

 	

 bootstrap.servers

 	

 group.id

 	

 key.deserializer

 	

 value.deserializer

 	

 isolation.level

 	

 enable.auto.commit

 	

 auto.commit.interval.ms

 The bootstrap.servers configuration works the same as the matching configuration for producers. It is a list of one or more broker endpoints the application can initially connect to. The group.id determines which consumer group the application will join.

 Configure the key.deserializer and value.deserializer to match how you want the application to deserialize records from raw bytes when it receives them from Kafka. This needs to be compatible with how the data was serialized in the first place by the producer application. For example if the producer sent a string you can’t deserialize it as JSON. Kafka provides some default deserializers, for example ByteArrayDeserializer and StringDeserializer.

 The setting isolation.level enables you to choose how consumers handle records sent by transactional producers. By default, this is set to read_uncommitted which means consumers will receive all records, including those from transactions that have not yet been committed by producers or have been aborted. Set it to read_committed if you want consumers to only see the records that are part of committed transactions. With this setting the consumers still receive all records that were not sent as part of a transaction.

 Committing offsets

 The enable.auto.commit and auto.commit.interval.ms configuration options are related to how consumer applications know which record to read next. Kafka persists records even after a consumer has read them and doesn’t keep track of which consumers have read which records. This means it is up to the consumer to know which record it wants to read next and where to pick up from if it gets restarted. Consumers do this using offsets.

 We mentioned previously that a record can be uniquely identified by its topic, partition and offset. Consumers can either keep track of which offsets they have read themselves or use Kafka’s built-in mechanism to help them keep track. It isn’t recommended for consumer applications to keep track of offsets in memory. If the application is restarted for some reason it would lose its place and have to start reading the topic from the beginning again or risk missing records. Instead consumer applications should save their current position in the partition somewhere external to the application.

 Applications can use Kafka to store their place in the partition by committing offsets. Most consumer clients provide a mechanism for a consumer to automatically commit offsets to Kafka. In the Java client this is the enable.auto.commit configuration option. When this is set to true the consumer client will automatically commit offsets based on the records it has read. It does this on a timer based on the auto.commit.interval.ms setting. Then if the application is restarted it will first fetch the latest committed offsets from Kafka and use them to pick up where it left off.

 Alternatively you can write logic into your application to tell the client when to commit an offset. The advantage of this approach is you can wait until a record has finished being processed before committing offsets. Whichever approach you choose it’s up to you to decide how to best configure it for your use case.

 Streams

 Kafka Streams is a Java library that gives you the building blocks to create complex stream processing applications. This means Streams applications process data on client-side, so you don’t need to deploy a separate processing engine. Being a key component of the Kafka project, it takes full advantage of Kafka topics to store intermediate data during complex processes. We will give a brief overview of how it works here, but if you want to do a deeper dive the Kafka website goes into more detail.

 Streams applications follow the read-process-write pattern. One or more Kafka topics are used as the stream input. As it receives the stream from Kafka, the application applies some processing and emits results in real time to output topics. The easiest way to explain the architecture of a Kafka Streams application is through an example. Consider a partition containing records that match those in Figure 1-8. The top word is the key and the bottom is the value, so the first record has a key of choose_me and a value of Foo.

 [image: Records in a partition with a key and value]
 Figure 1-8. Records in a partition with a key and value

 Imagine you want to only keep the records with a key of choose_me and you want to convert each of the values to lowercase. You do this by constructing a processor topology. The topology is made up of a set of stream processors or nodes that each connect together to create the topology. The stream processors perform operations on the stream. So for our example we would need a topology that looks similar to Figure 1-9.

 [image: Kafka Streams topology]
 Figure 1-9. Kafka Streams topology

 The first node reads from the input topic and is called a source processor. This passes the stream to the next node, which in our case is a filter that removes any record from the stream that doesn’t have the key choose_me. The next node in the topology is a map that converts the record values to lowercase. The final node writes the resulting stream to an output topic and is called a sink processor.

 To write our example in code you would need something similar to the following:

 KStream<String, String> source = builder.stream("input-topic")
 .filter((key, value) -> key.equals("choose_me"))
 .map((key, value) -> KeyValue.pair(key, value.toLowerCase()))
 .to("output-topic")

 This example only used stream processors that are part of the Kafka Streams DSL. The DSL provides stream processors that are useful for many use cases, such as map, filter and join. Using just the DSL you can build very complex processor topologies. Kafka Streams also provides a lower-level processor API that developers can use to extend Streams with stream processors that are specific to their use case. Kafka Streams makes it easy to build processor topologies that contain many nodes and interact with many Kafka topics.

 In addition to the basic stream processors used in the example, Kafka Streams also provides mechanisms to enable aggregation, or combining, of multiple records, windowing and storing state.

 Getting Started with Kafka

 Now that you understand the main concepts of Kafka, it’s time to get it running. First you need to make sure you have Java installed in your environment. You can download it from https://java.com/en/download/.

 Then, you need to download a Kafka distribution from the official Kafka website. We recommend you grab the latest version. Note that different versions of Kafka may require different Java versions. The supported Java versions are listed in https://kafka.apache.org/documentation/#java. Kafka releases are built for multiple versions of Scala, for example, Kafka 3.0.0 is built for Scala 2.12 and Scala 2.13. If you already use a specific Scala version, you should pick the matching Kafka binaries, otherwise it’s recommended to pick the latest.

 Once you’ve downloaded the distribution, extract the archive. For example, for Kafka 3.0.0:

 $ tar zxvf kafka_2.13-3.0.0.tgz
$ cd kafka_2.13-3.0.0

 Kafka distributions have scripts for Unix based systems under the bin folder and Windows systems under bin/windows. We will use the commands for Unix based systems, but if you are using Windows, replace the script names with the Windows version. For example, ./bin/kafka-topics.sh would be .\bin\windows\kafka-topics.bat on Windows.

 Starting Kafka

 As described previously, Kafka initially required ZooKeeper in order to run. The Kafka community is currently in the process of removing this dependency. We’ll cover both ways to start Kafka, you can follow one or the other.

 Kafka in KRaft mode (without ZooKeeper)

 In this mode, you can get a Kafka cluster running by starting a single Kafka broker.

 You first need to generate a cluster ID:

 $./bin/kafka-storage.sh random-uuid
RAtwS8XJRYywwDNBQNB-kg

 Then you need to format the Kafka storage directory. By default, the directory is /tmp/kraft-combined-logs and can be changed to a different value by changing log.dirs in ./config/kraft/server.properties. To format the directory, run the following command, replacing <CLUSTER_ID> with the value returned by the previous command:

 $./bin/kafka-storage.sh format -t <CLUSTER_ID> -c ./config/kraft/server.properties
Formatting /tmp/kraft-combined-logs

 Finally you can start a Kafka broker:

 $./bin/kafka-server-start.sh ./config/kraft/server.properties

 Look out for the Kafka Server started (kafka.server.KafkaRaftServer) line to confirm the broker is running.

 Kafka with ZooKeeper

 If you don’t want to run in KRaft mode, before starting Kafka, you need to start ZooKeeper. Fortunately, the ZooKeeper binaries are included in the Kafka distribution so you don’t need to download or install anything else. To start ZooKeeper you run:

 $ bin/zookeeper-server-start.sh config/zookeeper.properties

 To confirm ZooKeeper is successfully started, look for the following line in the logs:

 binding to port 0.0.0.0/0.0.0.0:2181 (org.apache.zookeeper.server.NIOServerCnxnFactory)

 Then in another window, you can start Kafka:

 $ bin/kafka-server-start.sh config/server.properties

 You should see the following output in the Kafka logs:

 [KafkaServer id=0] started (kafka.server.KafkaServer)

 Sending and receiving records

 Before exchanging records, you first need to create a topic. To do so, you can use the kafka-topics tool:

 $./bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic my-first-topic --partitions 1 --replication-factor 1
Created topic my-first-topic.

 The --partitions flag indicates how many partitions the topic will have. The --replication-factor flag indicates how many replicas will be created for each partition.

 Let’s send a few records to your topic using the kafka-console-producer tool:

 $./bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic my-first-topic
> my first record
> another record

 When you are done, you can stop the producer by pressing CTRL + C.

 You can now use the kafka-console-consumer tool to receive the records in the topic

 $./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic my-first-topic --from-beginning
my first record
another record

 Note that we added the --from-beginning flag to receive all existing records in the topic. Otherwise, by default, the consumer only receives new records.

 Running a Streams app

 To conclude this quick overview, you can also run a small Kafka Streams application which is included in the Kafka distribution. This application consumes records from a topic and counts how many times each word appears. For each word, it produces the current count into a topic called streams-wordcount-output.

 In order to run the application, you need to create the topic that it will use as its input:

 $./bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic streams-plaintext-input --partitions 1 --replication-factor 1

 Once you’ve created the topic, start the Streams application:

 $./bin/kafka-run-class.sh org.apache.kafka.streams.examples.wordcount.WordCountDemo

 Here you need to leave this running and open a new window to run the remaining commands.

 In a new window, you can produce a few records to the input topic:

 $./bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic my-first-topic
> Running Kafka
> Learning about Kafka Connect

 Again press CTRL + C to stop the producer once you’re done.

 Finally you can see the output of the application by consuming the records on the streams-wordcount-output topic:

 $./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
 --topic streams-wordcount-output \
 --from-beginning \
 --formatter kafka.tools.DefaultMessageFormatter \
 --property print.key=true \
 --property print.value=true \
 --property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer \
 --property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer
Running 1
Kafka 1
Learning 1
about 1
Kafka 2
Connect 1

 For each word, the Streams application has emitted a record that has the word as the key and the current count as the value. For this reason, we configured the kafka-console-consumer command to have the appropriate deserializers for the key and value.

 Summary

 In this chapter we covered some of the basics of Apache Kafka. We introduced the open source project and explained some common use cases. After reading this chapter you should understand the following key terms that you will likely encounter elsewhere in this book:

 	
 Broker

 	
 Record

 	
 Partition

 	
 Topic

 	
 Offset

 We also looked at the different clients that interact with Kafka, from producers and consumers that write to and read from partitions, to Kafka Streams that process streams of data.

 Finally we walked through how to start Kafka, create a topic, send and consume a record and run a Kafka Streams application. You can refer back to the steps in the getting started section as you progress through this book. You will need Kafka running before you start Kafka Connect and the producer and consumer sections can be used to either send test data for Kafka Connect to read, or check the data that Kafka Connect has put into Kafka.

 Chapter 2. Components in a Connect Data Pipeline

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the third chapter of the final book.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at KafkaConnectBook@gmail.com.

 A Kafka Connect pipeline involves multiple components, such as the runtime, connectors, converters and transformations. You can combine and configure these pluggable components in many different ways to get the best pipeline for your use case. To get the most out of Connect it’s important to understand the purpose of each component and how to configure them.

 In this chapter we will cover each of the core Kafka Connect components: the runtime, connectors, converters and transformations. We will introduce some key concepts you should understand, give a high-level overview of how each component works and how to use them together. People often use the term Connect to refer to one component, or the whole pipeline, so we will introduce the correct terms for each component so you can differentiate them. By the end of this chapter you will know how to build, configure and run a basic Kafka Connect pipeline using the standard Kafka distribution.

 Kafka Connect Runtime

 At its core Kafka Connect is a runtime that runs and manages the components that make up the pipeline. You can either deploy the runtime in “standalone” or “distributed” mode. In standalone mode you run a single Kafka Connect process and it stores its state on the filesystem as shown in Figure 2-1.

 [image: Kafka Connect runtime running in standalone mode]
 Figure 2-1. Kafka Connect runtime running in standalone mode

 In this mode data only flows through the Connect pipeline as long as this single process is up, and you can’t make any changes to the pipeline once it is started.

 For production deployments it is preferable to instead run in the distributed mode. As shown in Figure 2-2, in this configuration you start one or more Kafka Connect runtimes. Each one runs independently and we refer to them as “workers”. The workers collaborate with each other to spread out workload and store joint state in Kafka topics.

 [image: Kafka Connect runtime running in distributed mode]
 Figure 2-2. Kafka Connect runtime running in distributed mode

 In distributed mode Kafka Connect distributes the workload amongst the workers and the pipeline can be reconfigured while Connect is running. Having multiple workers means Kafka Connect can continue flowing data even if a worker goes down and you can add more workers to the cluster if needed. This means the system is resilient and scalable.

 A Kafka Connect cluster, both in standalone and distributed mode, flows data between a single Kafka cluster and one or more external systems. However, for a single Kafka cluster, there is no limit to the number of Kafka Connect clusters that you can have connected to it.

 Warning

 If you want to run more than one Kafka Connect cluster in the same environment make sure you consider where the state will be stored. If running Connect in standalone mode, make sure each cluster has its own file. If running in distributed mode, change the topics that are used so the different clusters don’t interfere with each other.

 We will now discuss the four steps you need to take to get a Kafka Connect runtime up and running. These are, getting the binaries and scripts, starting the runtime, customising the runtime with plugins and managing the runtime once it is started using the REST API.

 Binaries and Scripts

 You can easily run Kafka Connect on a laptop using the scripts, jar files and configuration files provided in the Kafka distribution. For example Kafka 3.0.0 includes the following scripts in the bin directory for Unix based operating systems:

 	

 connect-distributed.sh

 	

 connect-standalone.sh

 The equivalent scripts for Windows operating systems are under bin/windows in the Kafka distribution:

 	

 connect-distributed.bat

 	

 connect-standalone.bat

 These two scripts start the distributed and standalone versions of Kafka Connect respectively.

 The libs directory contains the following jar files:

 	
 connect-api-3.0.0.jar

 	
 Api jar for writing a new connector

 	
 connect-basic-auth-extension-3.0.0.jar

 	
 Library to allow you to add basic authentication to the Kafka Connect REST API

 	
 connect-file-3.0.0.jar

 	
 File connectors for writing to and reading from a file

 	
 connect-json-3.0.0.jar

 	
 Converter for writing data into Kafka using a json format

 	
 connect-runtime-3.0.0.jar

 	
 The Kafka Connect runtime

 	
 connect-transforms-3.0.0.jar

 	
 API for writing transformations

 This directory is automatically added to the Connect classpath and together these jar files include everything you will need for both writing custom components and running them on Kafka Connect.

 Finally the config directory contains the following properties files:

 	

 connect-console-sink.properties

 	

 connect-console-source.properties

 	

 connect-file-sink.properties

 	

 connect-file-source.properties

 	

 connect-log4j.properties

 	

 connect-standalone.properties

 	

 connect-distributed.properties

 The files connect-console-sink.properties, connect-console-source.properties, connect-file-sink.properties and connect-file-source.properties all contain example configurations you can use to deploy the file connectors that can be used to build a data pipeline that includes writing to and reading from a file.

 The connect-log4j.properties file is an example of how to adjust the logging levels of Kafka Connect.

 You can use the connect-standalone.properties and connect-distributed.properties to start Kafka Connect in standalone and distributed mode respectively.

 Running Kafka Connect in Distributed Mode

 Before starting up Kafka Connect make sure you have a Kafka cluster running. We will use the connect-distributed.sh script from the bin directory to start Kafka Connect in distributed mode. The script requires a configuration file, so we will use the connect-distributed.properties file from the config directory.

 The configuration file must provide the following values:

 	
 bootstrap.servers

 	
 A comma-separated list of addresses for Kafka Connect to use for Kafka.

 	
 group.id

 	
 A unique name for the Kafka Connect cluster which is used for workers to identify the others in their cluster.

 	key.converter and value.converter

 	
 The format of keys and values of events in Kafka. Kafka connect uses these as defaults to convert between that format and the Kafka Connect internal format.

 	
 offset.storage.topic

 	
 The topic Kafka Connect will use to store offsets.

 	
 config.storage.topic

 	
 The topic Kafka Connect will use to store connector configuration.

 	
 status.store.topic

 	
 The topic Kafka Connect will use to store its status.

 Tip

 You can override the converter settings with individual connector configuration. For example you might set JSON as the default converter but run a connector that should produce using the String format.

 In addition the file can include overrides to the default configuration, such as the replication factor for the Kafka Connect topics, the host and port used for the REST API and the location of connector jar files. The full list of configuration options is available in the Apache Kafka documentation.

 We are using a configuration file that assumes there is a Kafka broker accessible on localhost:9092 and that there is only a single broker. If your environment is different then you need to edit the connect-distributed.properties file before you use it.

 To start Kafka Connect:

 	
 Navigate to the directory containing the Kafka distribution.

 	
 Start ZooKeeper (if applicable).

 	
 Start Kafka.

 	
 Start Kafka Connect by running ./bin/connect-distributed.sh config/connect-distributed.properties.

 Your terminal will tail the Kafka Connect logs. Take a look at the logs and note Kafka Connect prints out the configuration it’s using. You can also make sure there are no errors. If you list the topics in your Kafka cluster you can see the new topics created by Kafka Connect:

 $./bin/kafka-topics.sh --list --bootstrap-server localhost:9092

 You will have one topic for each of configs, offsets and status:

 connect-configs
connect-offsets
connect-status

 Plugins

 The Kafka Connect runtime is the starting point for all Connect pipelines, then you add additional components specific to your use case. These additional components are called “plugins”. Connectors, converters and transformations are all types of plugins you can load into Kafka Connect. Some plugins are included in the Kafka distribution and are already available on the Kafka Connect classpath. There are two ways to add new plugins, either by adding them to the Kafka Connect classpath, or by using the plugin.path configuration option. If possible, we recommend that you use the plugin.path so that Kafka Connect only loads the libraries for the required plugin. This prevents classpath clashes between plugins.

 Your plugin.path should be configured to point to a list of one or more directories. Each directory can contain a combination of JAR files and directories that in turn contain the assets (JAR files or class files) for a single plugin. For example the contents of a directory listed in the plugin.path could look like:

 +-- custom-plugin-1.jar [image: 1]
+-- custom-plugin-2 [image: 2]
| +-- custom-plugin-2-lib1.jar
| +-- custom-plugin-2-lib2.jar

 	[image: 1]

 	A single jar file containing the plugin and all its dependencies

 	[image: 2]

 	A directory containing a set of jar files that include the jar file for the plugin and the jar files for all its dependencies

 Whether you use the plugin.path approach or the classpath approach, when Kafka Connect starts up it lists out the plugins it has loaded:

 INFO Added plugin 'org.apache.kafka.connect.converters.ByteArrayConverter'
INFO Added plugin 'org.apache.kafka.connect.file.FileStreamSourceConnector'
INFO Added plugin 'org.apache.kafka.connect.transforms.TimestampRouter'

 We will cover the different plugin types (connectors, converters, transformations) in detail in the other sections of this chapter.

 Kafka Connect REST API

 When running distributed mode, Kafka Connect includes a REST API to allow you to query the cluster for the current state. By default this endpoint is not secured and uses the HTTP protocol, but Kafka Connect can be configured to use HTTPS instead. You can also configure the port that Kafka Connect is listening on. The default value is 8083.

 With Kafka Connect up and running try the following curl command:

 $ curl localhost:8083

 It gives you basic information about the cluster:

 {"version":"3.0.0","commit":"8cb0a5e9d3441962","kafka_cluster_id":"SXu4poDjQZyzQ84eB4Asjg"}

 Tip

 You can use jq to print the responses from the REST API in a more readable format:

 $ curl localhost:8083 | jq
{
 "version":"3.0.0",
 "commit":"8cb0a5e9d3441962",
 "kafka_cluster_id":"SXu4poDjQZyzQ84eB4Asjg"
}

 The REST API supports two different base paths: /connectors and /connector-plugins. For more details on how to use the REST API to manage connectors see Chapter 8.

 You can use the REST API with the /connector-plugins path to verify which connector plugins are currently installed into your Kafka Connect cluster:

 $ curl localhost:8083/connector-plugins

 By default, you will have available the FileStreamSink, FileStreamSource and the MirrorMaker2 connectors:

 [
 {
 "class":"org.apache.kafka.connect.file.FileStreamSinkConnector",
 "type":"sink",
 "version":"3.0.0"
 },
 {
 "class":"org.apache.kafka.connect.file.FileStreamSourceConnector",
 "type":"source",
 "version":"3.0.0"
 },
 {
 "class":"org.apache.kafka.connect.mirror.MirrorCheckpointConnector",
 "type":"source",
 "version":"1"
 },
 {
 "class":"org.apache.kafka.connect.mirror.MirrorHeartbeatConnector",
 "type":"source",
 "version":"1"
 },
 {
 "class":"org.apache.kafka.connect.mirror.MirrorSourceConnector",
 "type":"source",
 "version":"1"
 }
]

 Once you have started Kafka Connect and verified that it’s running, you can start a connector plugin.

 Source and Sink Connectors

 Connectors are plugins you can add to a Kafka Connect runtime. They serve as the interface between external systems and the Connect runtime and encapsulate all the external system specific logic. A connector consists of one or more JAR files that implement the Connect API.

 As shown in Figure 2-3, there are two types of connectors:

 	Sink connectors

 	
 To export records from Kafka to external systems

 	Source connectors

 	
 To import records from external systems into Kafka

 [image: Example of a Connect runtime with both a source and a sink connector]
 Figure 2-3. Example of a Connect runtime with both a source and a sink connector

 A connector typically targets a single system or protocol. For example, you can have a S3 Sink connector that is able to write records into S3, or a JDBC Source connector that is able to retrieve records from various databases via JDBC. Often connectors come in pairs, a sink and a source, for the same system but this is not required. If you only want to sink records into S3, you only need the S3 sink connector.

 How Do Connectors Work?

 The Connect runtime runs and manages connectors by calling the various methods on the connector API. It exchanges data with connectors using ConnectRecord objects. ConnectRecord is an abstract Java class that encapsulates records flowing through Connect. It has fields for the record’s topic, partition, key and its schema, value and its schema, timestamp and headers. There are two concrete record classes that are specific to each connector type:

 	
 SinkRecord

 	
 Sink connectors receive SinkRecord objects from the runtime. In this case, all fields are populated with the Kafka details from this record.

 	
 SourceRecord

 	
 Source connectors build SourceRecord objects to pass to the runtime. They can use the fields to provide some information about the record in the source system.

 Individual connectors are responsible for translating data between these ConnectRecord formats and the format used by the external system. It allows the runtime to stay generic and not know any details of the connector’s external system.

 The role of a connector is to create and manage tasks. Tasks do the actual work of exchanging data with external systems.

 When a connector starts up, it computes how many tasks to start. For each task, the connector also computes a configuration and assigns the task a share of the workload. Different connectors compute the number of tasks and assignments in different ways. This can depend on the connector internal logic, the user provided connector configuration as well as the state of the external system it’s interacting with.

 In Connect, multiple tasks can run in parallel and they can also be spread across multiple workers when running in distributed mode. This works very much like regular Kafka consumer groups that distribute partitions across consumers. The work is split across tasks and it can be dynamically rebalanced when resources change. At runtime, connectors can detect if the resources they interact with have changed and trigger a reconfiguration. This allows adjusting the number of tasks to match the current workload. For example, a sink connector can create new tasks, up to the configured maximum, if you have added partitions to the topics it’s exporting data from. This makes tasks the unit of scalability in Connect.

 In order to start a connector, you first need to define its configuration. Some configuration options apply to all connectors such as the maximum number of tasks, tasks.max. Others are specific to source or sink connectors, for example, the configuration topics apply to all sink connectors and it indicates which topics the runtime will consume data from. Finally each connector has its own specific configuration options that depend on its implementation, features and on the system it’s targeting. This means you can start multiple copies of the same connector with different configurations that run independently in parallel. For example, you can start two instances of the S3 sink connector to export different topics into different S3 buckets.

 In a connector configuration, it is also possible to override some runtime configurations. This is useful to adjust Kafka client configurations and change key, value or header converters.

 Adjust Kafka client configurations

 The runtime creates dedicated Kafka clients for each connector. For example, for a sink connector, it creates consumers retrieving data from the specified topics. By default, these clients use the runtime configuration. Some connectors may benefit from some client specific configuration changes such as different fetch sizes, isolation level or timeouts.

 Key, value, and header converters

 The runtime is configured with default converters to control the format of records sent to/from Kafka by Connect. Individual connectors can override this setting to provide the converters required for their use case. We’ll cover converters in more detail in the next section.

 Finding Connectors for Your Use Case

 Out of the box, Apache Kafka only provides a handful of ready-made source and sink connectors. There are two file connectors, a sink and a source, for interacting with files on disks. These ready-made connectors mostly serve as examples to demonstrate how both source and sink connectors work and for quick demos. The other included connectors are for connecting Kafka to … Kafka! These are the MirrorMaker source connectors used for mirroring Kafka clusters, we’ll cover those in detail in Chapter 6.

 Fortunately, the Kafka community has implemented connectors for hundreds of popular technologies ranging from messaging systems, to databases, to storage and data warehouse systems. To find connectors for your use case, you can use repositories like Confluent Hub or the Event Streams connector catalog that reference the most used and tested connectors. Finally, in case there is not already a connector available, as Connect is a pluggable API, you can implement your own connectors! We will cover how to do so in Chapter 12.

 How Do You Run Connectors?

 In the previous section, you started a Connect runtime in distributed mode, let’s now use it to start a connector. For example, we can start the file sink connector, FileStreamSinkConnector, to write records from a Kafka topic into a file. To start a connector, you use the Connect REST API.

 First you create a file named sink-config.json that contains the desired configuration for the connector:

 {
 "name": "file-sink", [image: 1]
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector", [image: 2]
 "tasks.max": 1, [image: 3]
 "topics": "topic-to-export", [image: 4]
 "file": "/tmp/sink.out", [image: 5]
 "value.converter": "org.apache.kafka.connect.storage.StringConverter" [image: 6]
}

 	[image: 1]

 	name specifies the name we’re giving to this connector instance. When managing connectors or looking at logs, we will use this name.

 	[image: 2]

 	connector.class is the fully qualified Java class name of the connector we want to run. You can also provide the short name, FileStreamSink in this case.

 	[image: 3]

 	tasks.max defines the maximum number of tasks that can be run for this connector.

 	[image: 4]

 	topics specifies which topics this connector will receive records from.

 	[image: 5]

 	file indicates where the connector will write Kafka records, you can change it to your preferred path. This configuration is specific to this connector.

 	[image: 6]

 	value.converter overrides the runtime’s value.converter configuration. We use the StringConverter here so we can produce raw text via the console producer.

 Create a topic called topic-to-export using:

 $ bin/kafka-topics.sh --bootstrap-server localhost:9092 \
 --create --replication-factor 1 --partitions 1 --topic topic-to-export

 Then you use the Connect REST API to start the connector with the configuration you created:

 $ curl -X PUT -H "Content-Type: application/json" \ http://localhost:8083/connectors/file-sink/config --data "@sink-config.json"

 Once it has started, you can check the state your connector via the Connect REST API:

 $ curl http://localhost:8083/connectors/file-sink | jq
 {
 "name": "file-sink",
 "config": {
	"connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
	"file": "/tmp/sink.out",
	"tasks.max": "1",
	"topics": "topic-to-export",
	"name": "file-sink",
	"value.converter": "org.apache.kafka.connect.storage.StringConverter"
 },
 "tasks": [
	{
 	 "connector": "file-sink",
 	 "task": 0
	}
],
 "type": "sink"
}

 You can see a FileStreamSinkConnector instance is running and it has created one task.

 Let’s now insert some records into the topic-to-export topic. To do so, you can use the console producer:

 $ bin/kafka-console-producer.sh --bootstrap-server localhost:9092 \
 --topic topic-to-export
> First record
> Another record
> Third record

 The connector appends the records you produced to the file /tmp/sink.out:

 $ cat /tmp/sink.out
First record
Another record
Third record

 Connectors do the actual work of moving data between Kafka and external systems. However, the connectors need to know what format to use when sending the data to and from Kafka. That’s where the next plugin type, converters, comes in.

 Converters

 In this section we will discuss the mechanism that is used to translate between the Kafka Connect internal format and the format used by Kafka. That mechanism is called a converter. When data is sent from Kafka Connect and Kafka it is serialised and sent as a stream of bytes. When data is sent from Kafka to Kafka Connect it has to be deserialized. A converter is a library that implements the Converter API and describes how to convert a ConnectRecord into bytes and back again.

 For source connectors, as shown in Figure 2-4, converters are invoked after the connector.

 [image: Source Connect pipeline]
 Figure 2-4. Source Connect pipeline

 On the other hand, for sink connectors, converters are invoked before the connector, as shown in Figure 2-5.

 [image: Sink Connect pipeline]
 Figure 2-5. Sink Connect pipeline

 Why Is Data Format Important?

 To understand why converters are important we need to consider the data that is flowing through the system. Kafka records are made up of a key, value and headers. When an application sends data to or from Kafka it has to be serialized into raw bytes, as that is how Kafka stores it.

 The way the data is serialized, and then deserialized, completely depends on the format of the data. For example the key might be a String, but the value could be JSON. You can inadvertently deserialize JSON into a String, but trying to deserialize some data into JSON when it’s actually a String can cause exceptions in your application. This can lead people to choose the String format for everything to reduce the chances of exceptions.

 However, particularly for the value, a String often doesn’t provide enough structure. For many use cases the data sent to and from Kafka needs structure, and perhaps even a schema so the structure can change and evolve as new capabilities are added to the system. As a result formats like JSON or Apache Avro are very common in data pipelines that use Kafka. Since these formats depend heavily on the use case, you need to think carefully about the best format for your specific system.

 Producer and consumer applications use serializers and deserializers to configure how data should be translated before being sent to or when received from Kafka. If Connect is getting data out of Kafka, it needs to be aware of the serializers that were used to produce the data. If Connect is sending data to Kafka it needs to serialize it to a format that the consumers will understand. Often the format that the Kafka applications expect is different from the format in your external system. This is why Connect not only lets you configure the translation between the Kafka Connect internal format and the Kafka format, but also allows you to configure it completely independently of the connector you have chosen. So if your data is in a particular format in your external system, that doesn’t mean it has to stay in that format when it reaches Kafka. Converters give you the flexibility to evolve the structure of the data as it flows through the system.

 For Connect you don’t configure a serializer and deserializer separately, instead you provide a single library, a converter, that can both serialise and deserialise the data for your chosen format. You will likely find you don’t need to write one from scratch. There are a few provided as part of Kafka and many more created by the community. However, if you do need to write your own, we cover that in Chapter 13. To make a custom converter available to Kafka Connect, you add it as a new plugin.

 For simple data types, converters manipulate data to conform to that type in the same way every time. For example, IntegerConverter is able to write and read as an integer. For complex data types such as JSON or Avro records, in order to manipulate data, converters need to know the exact schema the data is put in.

 Converters and Schemas

 Schemas describe the shape of your data. For example, the data could contain multiple fields with different types. For example, for the following record:

 {
 "title": "Kafka Connect",
 "isbn": "123-45-67890-12-3",
 "authors": ["Kate Stanley", "Mickael Maison"]
}

 The JSON schema could look like the following:

 {
 "type": "object",
 "properties": {
 "title": {"type": "string"},
 "isbn": {"type": "string"},
 "authors": {
 "type": "array",
 "items": {"type": "string"}
 }
 },
 "required": ["title"]
}

 Since a schema can evolve over time you need a mechanism to tell any consumers what schema a specific record is using. One way to do this is to include the schema alongside each record. This adds overhead to each record, so it is very common to use a schema registry instead. A schema registry allows you to store schemas in a central place and just include a reference to the schema with each record. Popular schema registries that work with Kafka are the Apicurio Registry and the Confluent Schema Registry.

 Schema registries that are designed to be used with Kafka usually provide custom converters that you can use with Connect. The purpose of these custom converters is to perform the task of getting the schema from the schema registry and using it to correctly interpret the data. This also includes storing the schema id somewhere in the record before sending it to Kafka so that consuming applications can retrieve it when they read the message. If you are adding Kafka Connect to an existing system that already uses a schema registry, check if that registry provides a converter that implements the Connect converter API.

 Configuring Connect with Converters

 In Kafka Connect there are three different converters you can configure, one for the record key, the record value and finally the headers. The properties are called key.converter, value.converter and header.converter respectively. The key.converter and value.converter do not have a default value and must be configured when you start Kafka Connect.

 By default, the header.converter is set to use the class org.apache.kafka.connect.storage.SimpleHeaderConverter. The class only serializes and deserializes header values, not the keys. The header values are serialized as strings, then when deserializing the class makes a best guess at what object to choose, for example boolean, array or map.

 The converters that you specified as part of the runtime configuration are the default converters for every connector the Kafka Connect runtime starts. However, you can override this in your connector configuration. This allows you to set sensible defaults and then be very prescriptive about how data is structured as it flows through your system. This also means you can start multiple instances of the same connector, but running with a different converter. By allowing you to mix and match both the connectors and converters you can build a complex data pipeline without writing any new code.

 Some converters have additional configuration options that you can apply to them. For example let’s consider the JSON converter that is included in Connect. The JSON converter serializes and deserializes to and from JSON and has a configuration option called schemas.enable. If you enable this option the converter will include a JSON schema inside the JSON it creates, and look for a schema when it is deserializing data.

 Let’s say you want to use the JSON converter for your record keys, and to enable the schema. You will already have the configuration:

 key.converter=org.apache.kafka.connect.JsonConverter

 To enable a specific configuration option you add a line to your properties that specifies the name of the converter you want to configure, followed by the configuration option you want to set. So to set the schemas.enable configuration option to true you add the following:

 key.converter.schemas.enable=true

 Kafka Connect comes with some built-in converters to save you needing to write your own. These are:

 	

 org.apache.kafka.connect.json.JsonConverter

 	

 org.apache.kafka.connect.storage.StringConverter

 	

 org.apache.kafka.connect.converters.ByteArrayConverter

 	

 org.apache.kafka.connect.converters.DoubleConverter

 	

 org.apache.kafka.connect.converters.FloatConverter

 	

 org.apache.kafka.connect.converters.IntegerConverter

 	

 org.apache.kafka.connect.converters.LongConverter

 	

 org.apache.kafka.connect.converters.ShortConverter

 	

 org.apache.kafka.connect.storage.SimpleHeaderConverter

 Most of these are included in the Connect runtime or api jar files. The JsonConverter is included as a separate jar called connect-json-*.jar in the libs directory of the Kafka distribution. This means you can configure your Kafka Connect runtime to use these converters without needing to put the jar files anywhere special.

 Example

 Let’s see how using different converters can change the way data can appear in an external system. We are going to start two copies of the FileStreamSink connector, one using the StringConverter and the other using the JsonConverter. Make sure you have Kafka Connect running in distributed mode and a new topic called topic-to-export-with-converters. Create a file called json-sink-config.json with the following contents:

 {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": 1,
 "topics": "topic-to-export-with-converters",
 "file": "/tmp/json-sink.out",
 "value.converter": "org.apache.kafka.connect.json.JsonConverter",
 "value.converter.schemas.enable": "false"
}

 Create a second file called string-sink-config.json that contains:

 {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": 1,
 "topics": "topic-to-export-with-converters",
 "file": "/tmp/string-sink.out",
 "value.converter": "org.apache.kafka.connect.storage.StringConverter"
}

 Now run the following commands to start the two connectors:

 $ curl -X PUT -H "Content-Type: application/json" \ http://localhost:8083/connectors/file-json-sink/config --data "@json-sink-config.json"

$ curl -X PUT -H "Content-Type: application/json" \ http://localhost:8083/connectors/file-string-sink/config --data "@string-sink-config.json"

 Try sending some JSON messages to the topic-to-export topic:

 $ bin/kafka-console-producer.sh --bootstrap-server localhost:9092 \
 --topic topic-to-export
> {"key":"value"}

 Compare the contents of the two files:

 $ cat /tmp/json-sink.out
{key=value}

$ cat /tmp/string-sink.out
{"key":"value"}

 Both connectors read the same message from Kafka, however the one configured with the JsonConverter deserialized it as a JSON object when converting it to the Kafka Connect internal format. The FileStreamSink connector has then written the data into the file differently because it knew it was a JSON type.

 Now try sending a message that isn’t JSON. The message only appears in the string-sink.out file appear in the file and if you check the Kafka Connect logs you will see an exception from the JsonConverter:

 Error converting message value in topic 'topic-to-export'
...
Caused by: com.fasterxml.jackson.core.JsonParseException: Unrecognized token 'foo'
...

 Warning

 One of the most common mistakes to make when using Kafka Connect is to not consider message serialization and deserialization. By thinking carefully about the converter you use you can avoid exceptions in your consuming applications and connectors as they try to consume from Kafka.

 If all the data flowing through Connect is already in the right format with the right content you don’t need to transform it! But on the other hand, if you want to slightly alter some data, this is where transformations come to the rescue.

 Transformations

 Transformations, often referred to as Single Message Transformations (SMT) or transforms, are also plugins you can add to a Kafka Connect runtime. As the name indicates, they allow you to transform messages that flow through Connect. This helps you get the data in the right shape for your use case before it gets to either Kafka or the external system, rather than needing to manipulate it later. A transformation is a Java class that implements the Transformation interface from the Connect API.

 Contrary to connectors and converters, transformations are optional components in a Connect pipeline.

 Warning

 While it’s possible to perform complex logic in transformations, it’s best to stick to fast and simple logic. As a rule of thumb, transformations should not store states nor interact with remote APIs. A slow or heavy transformation can significantly affect the performance of a Connect pipeline. For advanced logic, it’s best to use Kafka Streams.

 In a Connect pipeline, a transformation is always associated with a connector. Transformations are always applied on ConnectRecord objects. For source connectors, as shown in Figure 2-6, transformations are invoked after the connector and before the converter.

 [image: Source Connect pipeline]
 Figure 2-6. Source Connect pipeline

 On the other hand, for sink connectors, transformations are invoked after the converter and before the connector, as shown in Figure 2-7.

 [image: Sink Connect pipeline]
 Figure 2-7. Sink Connect pipeline

 It’s possible to chain multiple transformations together in a specific order to perform several modifications. To enable transformations, you need to declare them in the configuration of a connector. Then these transformations will be applied to all the ConnectRecord objects this connector handles. Different connectors running in the same Connect cluster can have different transformations associated with them.

 Note

 Single Message Transformations were initially introduced in Kafka 0.10.2.0 via KIP-66 in February 2017. Transformations related to headers shipped with 2.4.0 via KIP-440 and finally predicates in 2.6.0 via KIP-585.

 What Can Transformations Do?

 The main use cases for transformations are:

 	
 Routing

 	
 Sanitizing

 	
 Formatting

 	
 Enhancing

 For each category, we will list the built-in transformations that enable the use case.

 Routing

 A routing transformation typically does not touch the key, value or headers of ConnectRecord but instead can change its topic and partition fields. This type of transformation is used to dynamically decide where each record will be written to.

 This is useful when you want to split a stream of data into multiple streams, so let’s look at a scenario. If you have a Kafka topic containing user interactions events, it may have different types of events like UpdateAddress and MakeOrder. When sinking this topic to a Cloud Object Storage system, a routing transformation enables you to send UpdateAddress and MakeOrder records to different stores or indexes.

 Kafka comes with the following built-in transformations that allow routing records:

 	
 RegexRouter

 	
 If the topic name matches a configurable Regular Expression (regex), the topic in the ConnectRecord is replaced by a configurable value.

 	
 TimestampRouter

 	
 Injects the record timestamp, with a configurable format, into the topic name.

 Sanitizing

 Sanitizing transformations allow you to remove data that you don’t want to flow downstream in your Connect pipeline. This type of transformation involves directly altering the content of ConnectRecord objects or completely discarding them.

 This is useful for removing sensitive data such as credentials, personally identifiable information (PII), or simply data that is of no-use to downstream applications.

 The following transformations are built-in Kafka and allow sanitizing records:

 	
 DropHeaders

 	
 Removes headers whose keys match a configurable list.

 	
 MaskField

 	
 Given a field in the content, replaces its value with its default null value or a configurable replacement.

 	
 Filter

 	
 Drops the record. This is always used with a Predicate.

 Formatting

 Formatting transformations allow you to change the schema of ConnectRecord objects. It can be useful to move fields around or change the type of some fields to make the data easier to consume downstream. This can also be used to shape ConnectRecord objects into the format the converter is expecting.

 For example, ConnectRecord objects may come using this JSON schema:

{
 "type": "struct",
 "fields": [
 {"type": "string","field": "item"},
 {"type": "string","field": "price"}
]
}

 It would be preferable to have the price field as a number instead of as a string. In this case, you can use a transformation to change the type of this field.

 The following transformations are built-in in Kafka and allow formatting records:

 	
 Cast

 	
 Casts a field into a different configurable type

 	
 ExtractField

 	
 Extracts a configurable field and throws away the rest of the record

 	
 Flatten

 	
 Flattens the nested structure of the record and renames fields accordingly

 	
 HeaderFrom

 	
 Copies or moves a field from the record value to its headers

 	
 HoistField

 	
 Wraps the record’s fields with a new configurable field

 	
 ReplaceField

 	
 Renames fields using a configurable mapping

 	
 SetSchemaMetadata

 	
 Sets the key or value schema to configurable values

 	
 ValueToKey

 	
 Replaces the record’s key with configurable fields from the record’s value

 Enhancing

 Enhancing transformations allow you to add fields and headers or improve the data in some fields. In many cases, it is useful to inject additional data to records passing through a pipeline. This can be used for data lineage, tracing or even debugging.

 For example, you can use an enhancing transformation to inject a new field with the record timestamp. Even though the ConnectRecord object has a dedicated timestamp field, when it is exported to an external system, some connectors might not include it. To solve this issue, you can use InsertField to inject a field with the timestamp value.

 The following transformations are built-in in Kafka and allow enhancing records:

 	
 InsertField

 	
 Inserts fields with configurable values

 	
 InsertHeader

 	
 Inserts headers with configurable values

 	
 TimestampConverter

 	
 Converts timestamp fields using a configurable format

 Note that while these categories are helpful to identify use cases, it’s possible for a single transformation to perform several of these. Each transformation is not limited to perform a single modification. Sometimes, you can chain multiple single purpose transformations and in other cases you may prefer using a single transformation that does multiple modifications.

 To see the complete list of the Apache Kafka built-in transformations and their associated configuration options, see the Transformations section on the Kafka website.

 As with connectors and converters, the Kafka community has built transformations for many use cases. But again if you can’t find one for your use cases, as it’s a pluggable component, you can write your own transformations. This is covered in detail in Chapter 13.

 Configuring Transformations

 Before detailing how to configure transformations, let’s look at predicates.

 Predicates

 Predicates allow you to apply a transformation only if a configurable condition is met. Some transformations are intended to be used with a predicate, such as Filter which otherwise would apply to all records and result in all records being dropped. But this is also really useful with many other transformations. For example if a stream contains several types of events you can apply certain transformations to certain events.

 These are the built-in predicates in Kafka:

 	
 HasHeaderKey

 	
 Is satisfied if the record has a header with a configurable name

 	
 RecordIsTombstone

 	
 Is satisfied if the record is a tombstone, i.e., the value is null

 	
 TopicNameMatches

 	
 Is satisfied if the record’s topic name matches a configurable regex

 Predicates are also pluggable and if the built-in predicates don’t satisfy your use case, you can implement your own. This is also covered in Chapter 13.

 Tip

 In Kafka, a record is called a tombstone if its value is null. The name comes from compacted topics where a record with a null value acts as a delete marker and causes all previous records with the same key to be deleted during the next compaction cycle.

 Configuration syntax

 You specify transformations (and predicates) alongside the connector configuration. The syntax to define transformations is a bit convoluted so let’s look over a simple example to see how it works.

 {
 "name": "my-connector",
 "config": {
 [...] [image: 1]
 "transforms": "addSuffix", [image: 2]
 "transforms.addSuffix.type": "org.apache.kafka.connect.transforms.RegexRouter", [image: 3]
 "transforms.addSuffix.regex": "(.*)", [image: 4]
 "transforms.addSuffix.replacement": "$1-router" [image: 5]
 }
}

 	[image: 1]

 	This is the regular connector configuration, like you have seen in previous sections.

 	[image: 2]

 	You first need to list the transformations you are going to use. The transforms field uses a comma separated value of names for the transformations. Transformations will be applied in the order they are specified in this field.

 	[image: 3]

 	You define the actual transformation class to use for each name listed above. In this case, we defined a single name addSuffix so here we specify the fully qualified class name we want to use using the type field.

 	[image: 4]

 	Then you define the configurations specific for this transformation. The first configuration RegexRouter uses is the regex field that is set to (.*).

 	[image: 5]

 	The remaining configuration of RegexRouter is replacement that defines the suffix to add.

 With this transformation, all ConnectRecord objects emitted by your connector will have the -router suffix added to their topic.

 Predicates are defined using the same syntax but use the predicates prefix. Let’s look at an example mixing both transformations and predicates:

 {
 "name": "my-connector",
 "config": {
 [...]
 "transforms": "filterTombstones",
 "transforms.filterTombstones.type": "org.apache.kafka.connect.transforms.Filter",
 "transforms.filterTombstones.predicate": "isTombstone", [image: 1]

 "predicates": "isTombstone", [image: 2]
 "predicates.isTombstone.type": "org.apache.kafka.connect.transforms.predicates.RecordIsTombstone" [image: 3]
 [...] [image: 4]
 }
}

 	[image: 1]

 	All transformations accept a single predicate field to specify which predicate must be satisfied for it to be applied.

 	[image: 2]

 	Like for transformations, you start by listing predicates you are going to use. The predicates field uses a comma separated value of names for the predicates.

 	[image: 3]

 	You define the actual predicate class to use for each name listed above. In this case, we defined a single name isTombstone so here we specify the fully qualified class name we want to use using the type field.

 	[image: 4]

 	Predicates can also have specific configurations. Like for transformations, the syntax is:

 predicates.<predicate_name>.<configuration>=<value>

 With this transformation, all ConnectRecord objects emitted by your connector that are tombstones will be dropped and not passed to the rest of the Connect pipeline.

 Predicates can also be negated, if you want to test for the opposite condition. This allows using the same small set of predicates for both conditions. To do so, you set the negate field on the connector to true. For example:

 {
[...]
"transforms.myTransformation.predicate": "topicMatch",
"transforms.myTransformation.negate": "true",

"predicates": "topicMatch", (2)
 	"predicates.topicMatch.type": "org.apache.kafka.connect.transforms.predicates.TopicNameMatches" (3)
	"predicates.topicMatch.pattern": "mytopic.*",

[...]
}

 In this case, the myTransformation transformation is only applied if the topicMatch predicate is not satisfied because the record topic name does not start with mytopic.

 Key and value transformations

 In Kafka, the record’s key and value can contain arbitrary data. In fact, in ConnectRecord, both the key and value fields are defined as Object and each has a Schema field (keySchema and valueSchema) associated.

 This means that many transformations can be applied on the value or on the key. If that’s the case, there are often two different classes, one that applies to the key and one to the value. You need to make sure you specify the correct class in the type configuration of the transformation.

 For example, the transformation Cast exposes two classes:

 	
 org.apache.kafka.connect.transforms.Cast$Key

 	
 For casting a field in the key

 	
 org.apache.kafka.connect.trans
 forms.Cast$Value

 	
 For casting a field in the value

 Enabling Transformations in Your Pipeline

 Let’s now enable some transformations in your Connect pipeline. Make sure you have Kafka Connect running in distributed mode and a new topic called topic-to-export-with-transformations.

 First we need to update the connector configuration in a file called file-sink.json:

 {
 "name": "file-sink",
 "config": {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": 1,
 "topics": "topic-to-export-with-transformations",
 "file": "/tmp/sink.out",
 "value.converter": "org.apache.kafka.connect.json.JsonConverter",
 "value.converter.schemas.enable": "false"
 "transforms": "replaceSource,addTimestamp", [image: 1]
 "transforms.replaceSource.type": "org.apache.kafka.connect.transforms.ReplaceField$Value", [image: 2]
 "transforms.replaceSource.renames": "source:origin", [image: 3]
 "transforms.addTimestamp.type": "org.apache.kafka.connect.transforms.InsertField$Value", [image: 4]
 "transforms.addTimestamp.timestamp.field": "ts" [image: 5]
 }
}

 	[image: 1]

 	You define two transformations you want to apply: replaceSource and addTimestamp.

 	[image: 2]

 	The first one is ReplaceField. Note that we specified the ReplicaField$Value class to apply the transformation on the value.

 	[image: 3]

 	The source field will be replaced by origin.

 	[image: 4]

 	The second transformation is InsertField, again on the value.

 	[image: 5]

 	It will insert the timestamp into a new field named ts.

 Then you produce another record to topic-to-export

 $./bin/kafka-console-producer.sh --bootstrap-server localhost:9092 \
 --topic topic-to-export-with-transformations
> {"source": "kafka-console-producer", "type": "event"}

 Now start the connector:

 $ curl -X PUT -H "Content-Type: application/json" \ http://localhost:8083/connectors/file-sink/config --data "@file-sink.json"

 The connector processes that record and append the following to your file:

 $ cat /tmp/sink.out
{"origin":"kafka-console-producer","type":"event","ts":"Mon Nov 22 10:38:05 CET 2021"}

 Summary

 In this chapter we explored the main components of a Connect data pipeline and built a simple pipeline exporting records from a topic to a file.

 We first looked at the Connect runtime including its artifacts and modes of operations. To recap, the Connect runtime can run in the following modes:

 	Standalone

 	
 Only suitable for basic development due to its lack of resiliency and limitations managing connectors

 	Distributed

 	
 Suitable for both development and production since it provides strong resiliency, scalability and management capabilities

 We would recommend that you use distributed mode wherever possible, as it is easy to run on any system and allows you to run with the same mode in both development and production.

 We then introduced connectors and described how they import and export data between Kafka and external systems. The two types of connectors are:

 	Sink

 	
 Used to export data from Kafka

 	Source

 	
 Used to import data into Kafka

 We also covered converters and understood their role in translating data between formats and ensuring data stays consistent for applications consuming it.

 Finally, we looked at transformations and predicates and explained how they can be used to fully control the content and format of data flowing through Connect.

 Chapter 3. Building Effective Data Pipelines

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the fourth chapter of the final book.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at KafkaConnectBook@gmail.com.

 In this chapter you will learn how to build resilient and effective data pipelines using Connect. We will explain the key concepts and decision points data engineers and architects have to understand when assembling the different components we introduced in Chapter 3. We will start by looking at important factors you need to take into account when selecting connectors from the hundreds available in the community and then describe how to model data effectively to satisfy your production requirements.

 We will also dive into the resiliency characteristics of Connect. By detailing some of its inner workings, we’ll explain why Connect is a robust environment, able to handle failures. We will show you how to understand the end to end delivery semantics that sink and source pipelines can achieve and the different configuration options and trade offs available to target your specific use cases.

 Connect can run in Standalone or Distributed mode. Standalone only provides bare bones resiliency features and it is not suitable for production environments. In this chapter we will focus on Distributed mode which is able to handle many types of failures at many levels in the stack, from the machine that’s running Connect workers, down to individual tasks.

 Choosing a Connector

 When building a data pipeline that uses Connect, you first need to decide which connectors to deploy. Since Kafka is a very popular technology there are many existing connectors for you to choose from. Rather than reinventing the wheel it is better to use an existing connector if you can, but only if it fulfills your requirements. Here are some things to consider when choosing whether to use a specific connector as part of your pipeline:

 	
 Flow direction - source or sink

 	
 Licensing and support

 	
 Connector features

 Flow Direction

 First verify that the connector flows data in the right direction, i.e. is it a source connector that sends data to Kafka or a sink connector that consumes from Kafka. Most connectors include this detail as part of the name, and it is usually clear from the documentation. In case it is not, you can install the connector in a Connect environment and use the REST API to retrieve its type.

 $ curl localhost:8083/connector-plugins
[
 {
 "class":"org.apache.kafka.connect.file.FileStreamSinkConnector",
 "type":"sink",
 "version":"3.0.0"
 }
]

 The type field indicates the type of the connector.

 Some projects provide a single download that includes both a source and sink connector but some other projects may provide only one or the other.

 Licensing and Support

 Before using a connector make sure to check what its license permits. Just because a connector is open source or freely available to download doesn’t mean the license is permissive. You should also consider the level of support you need. The Kafka community works hard to make sure that older clients can work with newer versions of the runtime, however it is still preferable for your connector to be updated regularly. Whatever connector you choose, whether it’s open source or proprietary, make sure you know how often the connector is updated with the latest Kafka APIs and how the developers address security vulnerabilities.

 Since a single connector is often used for many different use cases you may find there isn’t one perfectly suited to your needs. If that is the case instead of writing one from scratch we would encourage you to see if there is an open source connector that you could contribute to. You still need to get your changes accepted but most open source projects are very welcoming of new contributors.

 Connector Features

 Once you have identified potential connectors for your pipeline, you will need to take a closer look at the features offered by those connectors. To start with, does the connector support the type of connection you need? For example, your external system might require an encrypted connection, some form of authentication or for the data to be in a specific format. You should also check if the connector is suitable for production use. For example, does it provide metrics for monitoring its status and logging to help you debug problems? Look over the documentation and, for an open source connector, the code, to see how the connector works and assess the features it provides.

 In Chapter 3 we introduced the common configuration options for all connectors; topics for sink connectors and tasks.max for both source and sink. Most connectors offer additional options to configure their specific features. For a specific connector you can use the REST API to list all of the available configuration options and validate your configuration before starting the connector.

 Using the REST API is especially useful if the code is not available, but be aware that this relies on the developer documenting their configuration correctly. Some fields might be incorrectly marked as optional or required.

 To list the configuration options for FileStreamSinkConnector:

 $ curl http://localhost:8083/connector-plugins/org.apache.kafka.connect.file.FileStreamSinkConnector/config
[
 {
 "name": "file",
 "type": "STRING",
 "required": false,
 "default_value": null,
 "importance": "HIGH",
 "documentation": "Destination filename. If not specified, the standard output will be used",
 "group": null,
 "width": "NONE",
 "display_name": "file",
 "dependents": [],
 "order": -1
 }
]

 To validate a specific configuration JSON object:

 $ curl -X PUT -d '{"connector.class":"org.apache.kafka.connect.file.FileStreamSinkConnector",...}' http://localhost:8083/connectors/MyConnector/config/validate
{
 "configs": [{
 "definition": {"name": "topics", "importance": "HIGH", "default_value": null, ...},
 "value": {
 "errors": ["Missing required configuration \"topics\" which has no default value."],
 ...
}

 Defining Data Models

 No two pipelines are identical. Even if they fulfill a similar use case or use the same components, the actual data and how that data evolves varies from pipeline to pipeline. When you are designing your pipeline you need to consider when and how each individual data entry will change, but also how the individual entries relate to each other. How you group or split (shard) your data will affect how well you can scale your pipeline as the amount of data it is processing increases. To examine these ideas in more detail we will first discuss when to apply data transformation in Connect and techniques for mapping data between Connect and other systems.

 Data Transformation

 There are two common patterns that are used to evolve data as it flows through a pipeline: ETL (Extract, Transform, Load) (Extract, Transform, Load) and ELT (Extract, Load, Transform) (Extract, Load, Transform). In these patterns the word “Transform” doesn’t just refer to updating the format. Transformation could include cleaning the data to remove sensitive information, collating the data with other data streams or performing more advanced analysis.

 Both approaches have their advantages and disadvantages. In systems where storage is restricted it is better to use the ETL approach and use the ETL approach and transform the data before loading it into storage. This makes it easy to query the data because it has already been prepared for analysis. However, it can be difficult to update the pipeline if a new use case that requires a different transformation is discovered. In contrast, ELT keeps the data as generic as possible for as long as possible, giving the opportunity for the data to be reused for other purposes. The ELT pattern has been gaining popularity and there are now many dedicated data processing and analysis tools that are built to support this pattern. Some examples of these tools are Kafka Streams, Apache Spark, Apache Flink, Apache Druid and Apache Pinot.

 So where do Connect transformations fit in this flow? In Connect there is a rich set of transformations that you can perform on your data while it is in flight, so this fits naturally into the ETL pattern. Using Connect for your transformations removes the need for a separate tool to transform the data before loading it. Since you choose the specific set of transformations to apply and Connect allows you to plug in custom ones, the possibilities are endless. However Connect transformations do have their limitations because they are applied to each piece of data independently. This means you can’t perform more advanced processing like merging two streams of data or aggregating data over time. Instead you should use one of the dedicated technologies for these kinds of operations.

 Even if you decide to use a dedicated technology for the bulk of your data processing and analysis, you can still make use of Connect transformations. The particular transformations you might want to consider are the ones that remove or rename fields and can drop records. These are very useful for ensuring that sensitive data isn’t sent further down the pipeline and for removing data that could cause processing problems later. If you have multiple different sources that need to be aggregated in subsequent steps you can also use Connect transformations to first align the data to have common fields. Figure 3-1 shows this sort of flow.

 [image: Data pipeline using Connect transformations for removing sensitive data and Kafka Streams to perform further processing.]
 Figure 3-1. Data pipeline using Connect transformations for removing sensitive data and Kafka Streams to perform further processing.

 We have discussed how you can transform individual data entries, but what about the grouping of your data as a whole?

 Mapping Data Between Systems

 One of the hardest things to reason about in a data pipeline is how to map the data structures between different systems. Here we mean more than just the format of an individual entry, but how the data should be grouped and stored, what ordering is required and what happens when the pipeline needs to be scaled. In Connect a lot of these decisions are made for you by the developer who wrote the connector. However, you should still be aware of the mechanisms that are available for connectors to use when mapping data between Kafka and other systems. If you understand these mechanisms, you are better equipped to assess a connector you want to use and then configure the connector correctly for your pipeline.

 To understand the way connectors can group and map data, you need to consider the interaction between Connect tasks and Kafka partitions. In Chapter 3 we introduced tasks as the mechanism that Connect uses to do the actual work of transferring data from one place to another. In Chapter 2 we talked about partitions and highlighted the fact that Kafka provides ordering guarantees within a single partition. Both mechanisms provide a way to shard data.

 Let’s first look at the impact of tasks. When a source connector reads data from an external system, each task is reading data in parallel. It is up to the connector to decide how to split this data amongst the available tasks to ensure there are no duplicates. A simple connector could run a single task and avoid the problem of sharding the data that’s in the external system. This is actually how FileStreamSourceConnector that is packaged with Kafka works. See Figure 3-2 for an example.

 [image: A single task in FileStreamSourceConnector reads the file line by line.]
 Figure 3-2. A single task in FileStreamSourceConnector reads the file line by line.

 Even if you increase the max.tasks setting, it will still only run a single task, because it doesn’t have a sensible mechanism to shard the data. Most connectors are more advanced than FileStreamSourceConnector and have built in mechanisms to assign the data across the tasks. Figure 3-3 shows an example of such a connector that allows different tasks to read different lines of a table.

 [image: Multiple tasks that each read a subset of the data preventing duplicates in Kafka.]
 Figure 3-3. Multiple tasks that each read a subset of the data, preventing duplicates in Kafka.

 In sink connectors, tasks also run parallel. This can affect the order that data is sent to the external system. For example if you had a FileStreamSourceConnector with two tasks, there is no way to determine the final order that the data entries would end up in the file. You can be sure that each task will write its own data in order, but there isn’t any order coordination between tasks.

 Now let’s consider partitions. An individual source connector can either choose which records should go to which partitions or rely on the configured partitioning strategy. Many connectors use keys to identify the data that needs to be sent to the same partitions, for example status updates that apply to a particular entity might use the entity id as the key. Figure 3-4 shows an example of tasks sending data to partitions.

 [image: Source tasks can send their data to one or more partitions.]
 Figure 3-4. Source tasks can send their data to one or more partitions.

 How a source connector partitions its data will affect the next stage of the pipeline, whether that next stage is a sink connector, or just a Kafka consumer. That is due to the way Kafka distributes partitions among both sink tasks and consumers from a group. Each partition can only be assigned to a single sink task of a particular connector and similarly a single consumer within a particular group. So any data that needs to be read by a single task or consumer, needs to be sent to the same partition by the source connector.

 The way sink tasks interact with partitions also impacts the number of sink tasks you can run. If you have one partition and two tasks, only one task will receive any data. So when creating a data pipeline with a sink connector, make sure you are mindful about the number of partitions on the topics the connector is reading from. Figure 3-5 shows two sink tasks reading data from three partitions.

 [image: Each partition can only be read by one sink task for a specific connector.]
 Figure 3-5. Each partition can only be read by one sink task for a specific connector.

 As you can imagine, the combination of tasks and partitions means there are multiple ways that the data can be grouped and ordered as it flows through the system. When you are designing your Connect data pipeline make sure you think about these options and don’t leave the max.tasks and partitions configuration options as an afterthought.

 Now that we have looked at how data at a high level can be transformed and mapped between systems, let’s look at how you can control the specific format of data in a Connect pipeline.

 Formatting Data

 In Chapter 3 we talked about converters and how they serialize and deserialize data as it goes into and out of Kafka. We also briefly covered why you need to align your converters with the serializer and deserializer of your producers and consumers that are also interacting with the data. Here we will discuss in more detail the difference between converters, transformations and connectors and how they impact the data format throughout the pipeline. We will also look at how you can enforce this structure with schemas and a schema registry.

 Data Format

 In a Connect pipeline the format of the data and how it evolves depends on the connector, any configured transformations, and the converter. Let’s look at each of these in turn and how they affect the data format.

 First let’s consider the connector. In a source flow the connector runs first, it reads the data from the external system and creates a ConnectRecord. The connector decides which parts of the data should be kept and how to map them to the ConnectRecord. The specifics of this mapping can differ between connectors, even if they are for the same system. So make sure the connector you choose keeps the parts of the data that are important to you.

 In a sink flow the connector is run last rather than first. It takes ConnectRecord objects and translates them into data objects that it can send to the external system. This means that a sink connector has the last say on what data makes it to the external system. Keep this in mind when you are adding transformations and converters. Make sure you aren’t wasting processing time on fields that will be ignored by the sink connector.

 Next we’ll look at the difference between converters and transformations when it comes to their input and output:

 	
 Transformations have ConnectRecord objects as both their input and output.

 	
 Converters convert between ConnectRecord objects and the raw bytes that Kafka sends and receives.

 Figure 3-6 shows the different data types that are passed between connectors, transformations and converters.

 [image: Data types in source and sink flows.]
 Figure 3-6. Data types in source and sink flows.

 The reason transformations and converters are separate steps is to enable the composability that Connect offers. You could write a JSON converter that manipulates the contents of the record before sending it to Kafka. This would work fine, but if you also wanted a pipeline that manipulated the data in the same way, but instead used a format like Avro, you would need a new converter. It would be much better to create a transformation that manipulates the data and then have two converters, one for JSON and one for Avro.

 This is also true for transformations. Transformations are designed to be stacked, so it is better to run multiple simple transformations that together fulfill your requirements, than to write a custom one that only works for your very specific use case. If you can’t find a transformation or converter that fits your requirements you can write your own (see Chapter 13), but try to write them in a way that will allow future reuse.

 Now that you understand the individual roles of connectors, transformations and converters, and the order they run in, you can make a better informed decision of which libraries to use for your pipeline. This will make it easier to get the exact data format you need at each stage in the pipeline.

 Schemas

 A schema provides a blueprint for the shape of the data. For example, a schema can specify which fields are required and the expected types that should be present. When you are building a data pipeline it is important to use schemas because most data is complex and contains multiple fields of different types. Without schemas to give context to the data, it is very difficult for applications to reliably perform the steps to process and analyze it.

 Almost all systems that deal with data provide a mechanism to define schemas. Although the specific schemas of your systems will vary, here’s how Connect pipelines make use of schemas. As we saw in the previous section, data transitions between two different formats while passing through Connect, the ConnectRecord and raw bytes. Each format has a different mechanism that is provided to configure the schema.

 A ConnectRecord contains a Schema object for both the key and the value. Schema is a Java class that is part of the Connect API and is used by connectors, transformations and converters as the data travels through Connect. Let’s look at how the schema is used in both a source and sink flow.

 A source connector is responsible for constructing the initial ConnectRecord object and has control over the schema that is added. The way the schema is defined depends on the connector. FileStreamSourceConnector always uses the STRING_SCHEMA no matter what format the file is using. You can see this in the source code:

 private static final Schema VALUE_SCHEMA = Schema.STRING_SCHEMA;
@Override
public List<SourceRecord> poll() throws InterruptedException {
 ...
 records.add(new SourceRecord(offsetKey(filename), offsetValue(streamOffset), topic, null, null, null, VALUE_SCHEMA, line, System.currentTimeMillis()));
 ...
}

 Most connectors are more complex than FileStreamSourceConnector and will make use of schemas provided by the system. For example the Debezium connectors that read database change logs will take note of schema changes and use that information to construct the ConnectRecord. The ConnectRecord and included schemas are then passed to any transformations and to the converter. Transformations and converters use the schema to parse the ConnectRecord and do their respective work.

 In a sink flow, it is the converter that constructs the ConnectRecord and therefore the Schema. Again the transformations use this information for parsing the contents. Sink connectors use the ConnectRecord to construct the object that is sent to the external system. This means they can choose how to interpret the schema that is included in the ConnectRecord. For example FileStreamSinkConnector ignores the schema completely, however that is only because it is writing to a file. Most sink connectors will use the schema information to construct the external system data.

 The second type of schemas in a Connect flow is the one used for the raw bytes that are sent to Kafka. These schemas are used by converters to understand how to serialize and deserialize the data that is sent to and from Kafka. In a sink flow, the schema Connect uses to deserialize data is the same one that is used by the applications that originally produced the data. On the other hand, in a source flow, the schema Connect uses to serialize the data is also used by consuming applications or sink connectors, to deserialize it further down the pipeline.

 If you are using a schema for your data in Kafka you should also use an external schema registry as part of your Connect pipeline. The next section will look at why a schema registry is important and the most commonly used ones for Kafka.

 Schema Registry

 Before explaining what a schema registry is, let’s consider the impact of schemas on your pipeline without one. Say you have some JSON data that you want to send to Kafka and have consumed later:

 {
 "productId": "1234",
 "productName": "Connect Book"
}

 As long as the applications that are sending and receiving this kind of data agree on the schema, the pipeline will work fine. However, what if you decide to add a new field to your JSON, such as price. Without an updated schema to define the latest expected format, applications might reject the new data and as a result your pipeline would be unstable.

 So the next question is how do you make sure that consuming applications know what schema to validate against. Well you could send the schema with every message. This is actually what the JsonConverter does by default. If you run FileStreamSourceConnector against a file with the following contents:

 This is a string
Another string
A third string
The final string

 The JsonConverter will use the String schema that the connector provides and construct Kafka records with the values as:

 {"schema":{"type":"string","optional":false},"payload":"This is a string"}
{"schema":{"type":"string","optional":false},"payload":"Another string"}
{"schema":{"type":"string","optional":false},"payload":"A third string"}
{"schema":{"type":"string","optional":false},"payload":"The final string"}

 Although this makes it easy to pass a schema along for consumers it means that every single record has to include the schema. The example here is simple, so the schema is small, but the more complex the schema the bigger the overhead for each record. As you can imagine this quickly becomes unsustainable. Instead you should consider using a schema registry.

 A schema registry is a central store for your schemas. If you use a schema registry with Kafka you only need to send the id of the schema with each record, not the entire schema. Then the converter or consumer can use the id to look up the schema in the registry. There are two schema registries that are most commonly used with Kafka: the Confluent Schema Registry and the Apicurio Registry.

 Both of these registries allow you to use Kafka as the backing store for the registry, removing the need for a separate database or other storage system. They also both support the most common schema formats that are used with Kafka: Avro, JSON schema and Protobuf.

 A detailed comparison of the available schema formats and schema registries for Kafka is outside the scope of this book, however we can give some pointers. To choose a format make sure you consider the tools and libraries that go along with each. For example, do they support the language you want and provide code generation options? The schema registry you choose will influence your converter and serializer/deserializer options. The Confluent schema registry will only work with Confluent libraries, whereas Apicurio Registry comes with a compatibility API which means you can use the dedicated Apicurio Registry libraries or the Confluent ones.

 The last thing we will highlight around schema registries is how the schema id is sent with the record. This is important for Connect pipelines because different converters use different mechanisms when serializing Kafka data. Most converters use one of two mechanisms:

 	
 The schema id is added as a record header.

 	
 The schema id is included at the beginning of the serialized value.

 If you are building a source flow make sure you choose a converter that not only works with your schema registry, but also will store the id in a place that is expected by the downstream applications that will consume the record. Similarly if you are building a sink flow, choose a connector that can contact your schema registry and knows where in the record to look for the id.

 Exploring Connect Internals

 In order to understand how Connect in distributed mode can withstand failures, you should first understand how it stores its state by using a mix of internal topics, and group membership. Secondly, you should be familiar with the rebalancing protocol Connect uses to spread tasks across workers and detect worker failures.

 Internal Topics

 As explained in Chapter 2, Connect automatically creates and uses 3 topics:

 	
 Configuration topic, specified via config.storage.topic

 	
 Offsets topic, specified via offsets.storage.topic

 	
 Status topic, specified via status.storage.topic

 In the configuration topic, Connect stores the configuration of all the connectors and tasks that have been started by users. Each time users update the configuration of a connector or when a connector requests a reconfiguration (for example it detects it can start more tasks), a record is emitted to this topic. This topic is compacted, so it always keeps the last state for each entity while ensuring it does not use a lot of storage.

 In the offsets topic, Connect stores offsets of source connectors. Again this topic is compacted for the same reasons. By default, Connect will create this topic with several partitions, as each source task uses it regularly to write its position. Offsets for sink connectors are stored using regular Kafka consumer groups.

 In the status topic, Connect stores the current state of connectors and tasks. This topic is used as the central place for the data that is queried by users of the REST API. It allows users to query any worker and still get the status of all running plugins. It is also compacted and should also have multiple partitions.

 At startup, Connect automatically creates these topics if they don’t already exist. All workers in a Connect cluster must use the same topics, but if you are running multiple Connect clusters, each cluster needs its own separate topics. Data within all these 3 topics is stored in JSON so it can be viewed using a regular consumer.

 For example, with the kafka-console-consumer.sh tool, here’s how you can view the content of the status topic:

 ./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
 --topic connect-status \
 --from-beginning \
 --property print.key=true
status-connector-file-source {"state":"RUNNING","trace":null, "worker_id":"192.168.1.12:8083","generation":5}

 In this example, the runtime has status.storage.topic set to connect-status, a connector named file-source and Connect that name to derive the key, status-connector-file-source, for records about this connector.

 Group Membership

 In addition to topics, Connect makes extensive use of Kafka’s group membership API.

 First, for each sink connector, the Connect runtime runs a regular consumer group that extracts records from Kafka. The groups are named after the connector name, for example for a connector named file-sink, the group will be connect-file-sink. Each consumer in the group is providing records to a single task. These groups and their offsets can be retrieved using regular consumer groups tools, such as kafka-consumer-groups.sh.

 In addition, Connect uses the group membership API to assign tasks onto workers and ensure each partition is only consumed once. At startup, Connect creates a group using the group.id value from its configuration. This group is not directly visible by the consumer group tools as it’s not a typical consumer group but it works in essentially the same way. This is why all workers with the same group.id value, become part of the same Connect cluster.

 To be a member of a group, workers, just like regular consumers, have to heartbeat regularly. A heartbeat is just a request that contains the group name, the member ID and a few more fields to identify the sender. It is sent at regular intervals (specified by heartbeat.interval.ms, by default 3 seconds) by all workers to the broker that acts as the coordinator for their group. If a worker stops sending heartbeats, the coordinator will detect it, remove the worker from the group and trigger a rebalance. During a rebalance, tasks are assigned to workers using a rebalance protocol and once this is complete, workers resume their work.

 Rebalancing Protocols

 The specifics of rebalancing protocols are generally hard to comprehend. Thankfully, to use Connect effectively, it’s enough to understand the high level process that is described in this section.

 As mentioned, Connect wants to ensure that all tasks are running, that each task is run by a single worker and that tasks are spread evenly across all workers. A rebalance happens anytime the resources that are managed by Connect change, for example, when a worker joins or leaves the group, or when tasks from a connector are added or removed. When this happens Connect has to rebalance tasks across the workers.

 The mechanism that Connect uses has changed over time. We will talk about the different approaches that have been taken over time and explain why the current approach has been chosen.

 Until Kafka 2.3, during a rebalance Connect would simply stop all tasks, and reassign them all onto the available workers. This is called the eager rebalance protocol, also often referred to as “stop the world”. The main issue with this protocol is that Connect can run a set of independent connectors, and each time one of them decides to create or delete tasks, all connector tasks are stopped, then they are reassigned to workers and they finally restart running. In a busy Connect cluster, this can lead to long and repetitive pauses in the processing. This approach also makes rolling restarts very expensive as each worker causes two rebalances to happen, one when it shuts down and another one when it restarts.

 In Kafka 2.3, Connect introduced an incremental cooperative rebalancing protocol called compatible. The idea is to avoid stopping all connectors and tasks each time a rebalance happens, and instead only rebalance the resources that need to be rebalanced, and do it incrementally if possible. For example, if a worker disappears, Connect will first wait a short duration before rebalancing anything. This is because in most cases, workers don’t experience destructive failures but instead restart immediately. If the worker rejoins quickly, it will keep the tasks that it owned before and no rebalance is needed. If the worker does not rejoin quickly enough (the duration is specified via scheduled.rebalance.max.delay.ms, 5 minutes by default) then the tasks it used to run are reassigned to available workers.

 Since Kafka 2.4, the default rebalance protocol is sessioned. In terms of rebalancing behavior, it works exactly the same way as compatible but it also ensures that inter-worker communications are secured. Like compatible, sessioned is only active if all workers support it, otherwise it defaults to the common protocol shared by all workers.

 The rebalance protocol Connect is using is specified by the connect.protocol configuration. Users should keep the default value for the version they use and only consider downgrading to eager in case they rely on its specific behavior.

 Note

 For more details in the history behind each protocol, you can read the respective KIPs. The compatible rebalance protocol was introduced by KIP-415. The sessioned rebalance protocol was introduced by KIP-507.

 Handling Failures in Connect

 Now that you understand how Connect manages its state, let’s take a look at the most common types of failures and see how to handle them.

 In order to build a resilient pipeline it’s key to understand how all components in your system handle failures. In this section we’ll focus on Connect and how it handles failures and ignore other components (such as the operating system, execution and deployment environment or hardware).

 We will cover the following failures:

 	
 Worker Failure

 	
 Connector/Task Failure

 	
 Kafka/External Systems Failure

 We will also discuss how you can use Dead Letter Queues to deal with unprocessable records.

 Worker Failure

 In distributed mode, Connect can run across multiple workers and it is recommended for users to use at least 2 workers to be resilient to a single worker failure.

 For example, if we have 3 workers that are running 2 Connectors (C1 and C2), the different tasks could be spread like in Figure 3-7.

 [image: Example of a Connect cluster with 3 workers. Connector C1 has three tasks T1 T2 T3 and C2 has two tasks T1 and T2 .]
 Figure 3-7. Example of a Connect cluster with 3 workers. Connector C1 has three tasks (T1, T2, T3) and C2 has two tasks (T1 and T2).

 In this case, if worker2 is taken offline, either because it crashed or for maintenance, Kafka will not receive its heartbeat anymore and after a short interval, it will automatically kick worker2 out of the group. This will force Connect to rebalance all running tasks onto the remaining workers.

 After the rebalance, the task assignment may look like Figure 3-8.

 [image: Connect has reassigned all tasks onto the remaining workers.]
 Figure 3-8. Connect has reassigned all tasks onto the remaining workers.

 While the rebalance is happening, the tasks that were on worker2 are not run. This mechanism triggers and completes within a few minutes. It depends mostly on the following configurations:

 	
 session.timeout.ms

 	
 The maximum duration between 2 consecutive heartbeats from workers

 	
 rebalance.timeout.ms

 	
 The maximum duration workers can take to rejoin the group when a rebalance happens

 	
 scheduled.rebalanc
 e.max.delay.ms

 	
 The maximum delay to schedule a rebalance

 When a worker is not stopped cleanly, it’s possible it did not commit offsets for all records it was processing. So upon restarting, some tasks may reprocess some records. We will discuss this problem and how it affects delivery semantics later in this chapter.

 So in order for Connect to handle worker failures, you need to make sure you have enough capacity to accommodate tasks that were on these workers. Connect has no mechanism to limit the number of tasks that can be assigned to a worker during a rebalance. If a worker is assigned too many tasks, its performance will degrade and eventually tasks won’t make any progress. At the minimum, you should at all times have enough capacity to handle a single worker being down to reliably handle rolling restarts of the workers.

 Connector/Task Failure

 Another common type of failure is a crash of one of the connectors or one of its tasks. Until now, we’ve simplified what happens exactly when Connect runs a connector. In reality, it has to run 1 instance of the connector and 1 or more instances of the task. Connect tracks the health of both and associates them with a state which can be:

 	
 UNASSIGNED

 	
 A connector or task has not yet been assigned to a worker.

 	
 RUNNING

 	
 A connector or task is correctly running on a worker.

 	
 PAUSED

 	
 A connector or task has been stopped by a user via the REST API.

 	
 FAILED

 	
 A connector or task has encountered an error and crashed.

 	
 DESTROYED

 	
 A connector or task has just been deleted by a user via the REST API and is shutting down. This state is never exposed to the end user.

 	
 RESTARTING

 	
 A connector or task has just been restarted by a user via the REST API after it was paused.

 The state of connectors and tasks can be retrieved via the REST API. Figure 3-9 depicts the possible transitions between the different states.

 [image: State transitions for connectors and tasks.]
 Figure 3-9. State transitions for connectors and tasks.

 Tip

 Connect emits detailed metrics tracking the time spent in each state by each connector. See Chapter 11 for details on how to retrieve and monitor metrics.

 The connector class that implements the Connector interface is used by the runtime to configure and spawn tasks. In case any of its methods fail and throw an Exception, the Connect runtime will retry calling it automatically after a short backoff interval. Some connectors may perform extra logic such as connecting to their target system to discover resources, so this retry mechanism permits handling connectivity issues. While this happens, the connector will be in RUNNING state but none of the tasks will be created. One exception is the start() method which, contrary to the other methods, immediately puts the connector in the FAILED state if it throws an exception.

 Each task can also encounter an error. By default Connect lets the task crash, marks it as FAILED and it does not attempt to restart it automatically. Connect emits metrics for the state of tasks which administrators have to monitor to quickly identify failures. A task failure does not trigger a rebalance.

 In case of a one-off failure, administrators can restart FAILED tasks via the REST API. The REST API can also be used to retrieve the Exception that crashed the task and its stack trace. In case of a systematic failure, for example a record that is impossible to process, Connect offers the possibility to skip it and optionally emit a detailed log message instead of failing the task. This can be configured per connector using the errors.tolerance configuration.

 Kafka/External Systems Failure

 As Connect flows data between Kafka and external systems, failures in either can impact Connect.

 As detailed in Chapter 2, Kafka can be configured to be a very resilient system. For production use cases, Kafka clusters must have multiple brokers and be configured to offer maximum availability. In addition, Connect must be configured to create its topics with multiple replicas so it’s not negatively impacted by the failure of a single broker. This includes topics that are either the source or sink for connectors, the internal Connect topics and the __consumer_offsets topic. In this case, Connect will automatically reconnect to Kafka and it will keep running.

 On the other hand, a failure on the external system has to be handled by the connector. Depending on the system and the implementation of the connector, it may be handled automatically or it may crash tasks and require manual intervention to recover.

 Before building a pipeline, it’s important to read the connector documentation and understand the failure modes of the external system to gauge the resiliency of a Connect pipeline. Keep in mind that sometimes there are multiple community implementations for the same connectors and you need to pick the one that satisfies your needs. Then, you need to perform resiliency testing to validate if the connector provides the required resiliency for your use cases. Finally it’s important to monitor the appropriate metrics and logs from both the external system and the connector.

 Dead Letter Queues

 When dealing with an unprocessable record, for sink connectors, Connect can also use a dead letter queue. A dead letter queue, often abbreviated DLQ, is a concept from traditional messaging systems, it is basically a place to store records that can’t be processed or delivered instead of simply ignoring them. In Connect, the dead letter queue is a topic (specified via errors.deadletterqueue.topic.name in the connector configuration) where unprocessable records are written. Connect however does not provide a similar mechanism for source connectors because it can’t convert the record from the external system into a Kafka record.

 Note

 Support for dead letter queues for sink connectors was added in Kafka 2.6 via KIP-610.

 Let’s look at an example of using a dead letter queue. When running the S3 sink connector, the Connect runtime is reading records from a Kafka topic before passing them to the connector. As the topic is expected to contain Avro records, we configure the connector with an Avro converter. However, if a single record in the topic is not in the Avro format, for example an application emitted a JSON record, the connector will not be able to handle this record. Instead of failing the connector or losing this record, Connect can forward it to a dead letter queue and keep processing the other records in the topic. The connector configuration would contain the following settings:

 {
 "connector.class": "io.confluent.connect.s3.S3SinkConnector",
 "value.converter": "io.confluent.connect.avro.AvroConverter",
 "errors.tolerance": "all",
 "errors.deadletterqueue.topic.name": "my-dlq"
}

 This allows the contents of the dead letter queue topic to be processed by another mechanism, for example another connector or a consumer application.

 Figure 3-10 shows an example of using a dead letter queue.

 [image: Unprocessable records can be sent to a dead letter queue to be processed by another mechanism.]
 Figure 3-10. Unprocessable records can be sent to a dead letter queue to be processed by another mechanism.

 The flow starts with the S3 sink connector configured with Avro receiving records from the input topic (1). Avro records are correctly processed and sent to S3 (2). In case a record can’t be processed, it is sent to the dead letter queue configured for the connector (3). In this example, another application receives records from the dead letter queue (4), processes them and reports errors (5).

 Understanding Delivery Semantics

 Delivery semantics defines the type of guarantees that are made when sending a message. It can be one of these 3 types:

 	At most once

 	
 When sending a message, it will either arrive or not on the receiver. Messages that don’t arrive on the receiver are lost.

 	At least once

 	
 When sending a message, it will always arrive on the receiver but it may arrive multiple times. Extra copies of a message are called duplicates.

 	Exactly once

 	
 When sending a message, it will arrive once and only once on the receiver.

 Warning

 Achieving consistent exactly-once semantics is one of the hardest problems in computer science. In some cases, it might not be possible to achieve exactly-once semantics between Connect and an external system. Depending on the use case, relying on at least once semantics with some deduplication, or gracefully handling duplicates in the downstream system may be an acceptable compromise.

 The exact delivery semantics that a Connect pipeline provides depends on several aspects, including:

 	
 The connector that is being used and its configuration

 	
 The configuration of the runtime and the way it’s set up to handle errors.

 Also because a pipeline is composed of multiple steps, the delivery semantic is typically not of the whole pipeline but often per message or batch of messages. This is because each step, due to its configuration, may drop records and result in at most once semantics or instead retry on failure and result in at least once semantics.

 Let’s look at each type of connector and see how to understand the semantics that can be provided.

 Sink Connectors

 As a quick recap, these are the steps that constitute a sink pipeline:

 	
 The runtime consumes records from the Kafka topic

 	
 Records are passed to the configured converter

 	
 Records are passed to the configured transformations

 	
 Records are passed to the sink connector that writes then to the sink system.

 Figure 3-11 shows this flow.

 [image: Steps in a sink pipeline.]
 Figure 3-11. Steps in a sink pipeline.

 In step 1, each time a task starts up it will restart from the last committed offset. So depending when offsets are committed, a task could re-consume or skip some records. Offsets are eligible to be committed once the connector put() method returns. So for example, if a connector sends new records synchronously to the target system and it crashes before returning, the runtime won’t have committed the offsets and when it restarts it will re-consume these records. In this case, you have at least once semantics.

 On the other hand, if a connector sends records asynchronously to the target system, there’s a chance the runtime might commit those records offsets before they are sent. In this case if the send then fails, these records will effectively be skipped and you have at most once semantics.

 In step 2 and 3, the main factor deciding the semantics is whether the connector is using a dead letter queue or not. In case it is not, failures will be ignored (or crash tasks) and records may be lost (at most once), based on errors.tolerance. With a dead letter queue, if there is a failure, the runtime ensures no records are lost and it automatically forwards the affected records to the dead letter queue. In case there are no failures, these steps effectively provide exactly once semantics.

 In the last step, the runtime passes the records to the sink task via the put() method and the task is responsible for exporting the records to the target system. Any failures at this step have to be handled explicitly by the connector and if an error is thrown, the runtime will either skip the records or fail the task based on the value of errors.tolerance. In case the connector is configured to not fail, connectors can explicitly forward records in flight to the dead letter queue by calling report() on the ErrantRecordReporter instance of the task otherwise they will be skipped.

 Several of these steps may create duplicate records but in practice, it’s still often possible to achieve exactly once delivery semantics. Because records in Kafka are immutable, if the same records are processed twice, the connector can emit the exact same records to the target system. In systems that offer idempotent writes, for example by storing records based on their key, they can remove duplicated records and only keep a single copy, effectively achieving exactly once delivery semantics.

 To summarize, if you want to avoid losing any records and maximize the availability of a sink pipeline, you should use a dead letter queue. Also while some steps may cause duplicates, some external systems are able to handle them and effectively provide exactly once semantics end to end for sink pipelines.

 Source Connectors

 As a quick recap, these are the steps that constitute a source pipeline as shown in Figure 3-12:

 	
 The connector consumes records from the external system

 	
 Records are passed to the configured transformations

 	
 Records are passed to the configured converter

 	
 Records are passed to the runtime that produces them to a Kafka topic

 [image: Steps in a source pipeline.]
 Figure 3-12. Steps in a source pipeline.

 Similarly to the consumer fetching records in a sink pipeline, in a source pipeline the connector has to decide which data to retrieve from the external system. Not all external systems have a mechanism like offsets in Kafka that enable them to directly identify a record. For that reason, source connectors can associate an arbitrary mapping of keys to values, the sourceOffset field in SourceRecord objects, to express their current position. This arbitrary object can be retrieved by tasks whenever needed. It is the responsibility of the connector to ensure this object contains the appropriate information to correctly retrieve records from the external system. The Connect runtime will automatically store this object in the offsets topic and it also calls commit() on tasks in case they want to store it themselves in the target system. This is always done after producing records to Kafka, so it’s possible for a worker to successfully produce records to Kafka and fail before it’s able to commit their offsets. So depending how the connector works, this step may cause some record reprocessing resulting in at least once semantics.

 In case there are any errors in the transformations or converter steps, based on errors.tolerance, the task will be either marked as FAILED or the failing record will be skipped. Source tasks can’t rely on dead letter queues, so this effectively makes these steps provide at most once semantics in case of errors.

 Finally the record is pushed to Kafka via a producer from the runtime. As of Kafka 3.1.0, by default, producers are configured to offer at least once but this could be overridden in the connector configuration.

 Overall, the achieved semantics of source pipelines are hard to summarize and depend very much on the connector implementation.

 Note

 Support for exactly once delivery semantics for source connectors is being added to Kafka via KIP-618.

 Summary

 In this chapter, we looked at the different aspects that need to be taken into consideration in order to build resilient data pipelines with Connect.

 We first looked at selecting the right connectors from the hundreds of connectors built by the Kafka community. You need to consider the flow direction, whether it fulfills your feature requirements and if it comes with an appropriate level of support.

 Then we focused on data models and formats and the options you have for mapping data between systems. Whatever choice you make you need to understand the structure of your data at each stage in the pipeline and make conscious transformation and formatting decisions. We also highlighted the benefits of using schemas and a schema registry to properly define and enforce the structure of the data.

 We then examined the challenges in handling the many kinds of failures that can arise from the crash of a full worker down to errors in a single task. Although Connect is generally considered to be resilient, it cannot recover from all failures, so if for example a worker or task goes down it is likely you would need to step in. You should understand the levers we discussed so you know when to use these in response to failures.

 Finally we detailed how all the decisions taken regarding data models, error handling, runtime and connector configurations directly impact the delivery semantics that can be achieved by pipelines with Connect. For sink pipelines, dead letter queues are a powerful feature to avoid losing data, and achieving exactly-once semantics can be relatively straight forward with many downstream systems. For source pipelines achieving exactly-once is much more tricky and really depends on the connector and the external system.

 About the Authors

 Mickael Maison is a committer and member of the Project Management Committer (PMC) for Apache Kafka. He has been contributing to Apache Kafka and its wider ecosystem since 2015.

 Mickael is a software engineer with over 10 years of software development experience. While working at IBM, he was part of the Kafka team that runs hundreds of Kafka clusters for customers. He is now working in the Kafka team at Red Hat and has accumulated a lot of expertise about Kafka Connect.

In addition, Mickael has developed and contributed to several connectors for Connect. He also has deep expertise in Connect’s internals, as he has made a number of code contributions to Connect itself and regularly reviews pull requests from the community on this component.

Finally, Mickael really enjoys sharing expertise and teaching. He has been writing monthly Kafka digests since 2018 and enjoys presenting at conferences.

Kate Stanley is a software engineer, technical speaker and Java Champion. She has experience running Apache Kafka on Kubernetes, developing enterprise Kafka applications and writing connectors for Kafka Connect.

Kate currently works as a Principal Software Engineer across the Red Hat Kafka offerings. She also contributes to multiple projects in the Kafka ecosystem, including the open-source Kafka operator, Strimzi. Kate started her journey with Kafka as part of the Event Streams team at IBM in 2018, quickly becoming well known in the community.

Alongside development, Kate has a passion for presenting and sharing knowledge. She is a regular speaker at technical conferences around the world, including events such as Kafka Summit, Jfokus, Devoxx UK and JavaOne. She has authored two LinkedIn Learning courses on MicroProfile and Kafka and written an eBook on writing microservices with Java.

OEBPS/Images/6.png

OEBPS/Images/4.png

OEBPS/Images/ad.png
Connect data streams
Say goodbye to isolated data

Connect data in real-time across applications, APIs, devices,
and edge computing using cloud-native technologies.
Red Hat® OpenShift® Streams for Apache Kafka provides:

» Kubernetes-native application development, connectivity,
and data streaming.

» Aunified experience across different clouds.
» An ecosystem to streamline real-time data initiatives.

Start your data streaming journey

or

‘ Red Hat \JO I

OEBPS/Images/apache_kafka_basics_760376_01.png
Admin Producer

Connect

]

Kafka cluster

]

Consumer

Streams

OEBPS/Images/5.png

OEBPS/Images/apache_kafka_basics_760376_02.png
Appl

App2

App3

App4

-

App5

App6

OEBPS/Images/apache_kafka_basics_760376_03.png
Appl

App2

App3

‘\l/

Apache Kafka

OEBPS/Images/apache_kafka_basics_760376_04.png
Broker O Broker 1 Broker 2

mytopic-0 mytopic-1 mytopic-2

othertopic-0 othertopic-1

Kafka cluster

OEBPS/Images/apache_kafka_basics_760376_05.png
4

OEBPS/Images/apache_kafka_basics_760376_06.png
patsons [| | |

Partition 1 ED

pariion2 |[| []

Partition 0

Partition 1

Partition 2

[l o]

Records contain no key

Records with keys k1 and k2

OEBPS/Images/apache_kafka_basics_760376_07.png
Partition 0

Partition 1

Partition 2

Consumer2

OEBPS/Images/apache_kafka_basics_760376_08.png
choose_me | not_me |choose_me |choose_me | not_me

Foo Bar FOO foo BAR

OEBPS/Images/apache_kafka_basics_760376_09.png
filter stream
processor

map stream
processor

sink processor

OEBPS/Images/building_effective_data_pipelines_542480_12.png
Source
Connector

Transform
ations

Converter

Kafka Connect

—

Kafka
Cluster

OEBPS/Images/2.png

OEBPS/Images/building_effective_data_pipelines_542480_11.png
Kafka
Cluster

:> Converter

Transform

ations

Kafka Connect

Sink
Connector

Sink
System

OEBPS/Images/3.png

OEBPS/Images/building_effective_data_pipelines_542480_10.png
Kafka

input-topic

Connect

Consumer o
application error

OEBPS/Images/1.png

OEBPS/Images/components_in_a_connect_data_pipeline_559255_06.png
Source
System

>

Source
Connector

SMTs

Converter

Kafka Connect

Kafka Cluster

OEBPS/Images/components_in_a_connect_data_pipeline_559255_07.png
Kafka Cluster

Converter

SMTs

Sink
Connector

Kafka Connect

:> Sink System

OEBPS/Images/components_in_a_connect_data_pipeline_559255_04.png
Source
System

Source
Connector

Converter

Kafka Connect

Kafka Cluster

OEBPS/Images/components_in_a_connect_data_pipeline_559255_05.png
Kafka Cluster

Converter

Sink
Connector

| System

Kafka Connect

OEBPS/Images/components_in_a_connect_data_pipeline_559255_02.png
Connect
worker

T
'
1
1
Connect Store state + send/receive data
worker
1
1
'
'
i

Connect
worker

Kafka Connect Cluster

Kafka Cluster

OEBPS/Images/components_in_a_connect_data_pipeline_559255_03.png
Kafka Cluster

Kafka
Connect

Source
Connector

Sink System

OEBPS/Images/components_in_a_connect_data_pipeline_559255_01.png
Send/receive
data

Kaka Cluster

Kafka Connect

Store state

OEBPS/Images/building_effective_data_pipelines_542480_05.png
Sink

Partition

> Sink Task
Partition
Partition Ll Sink Task

Ll 5| System

Kafka Cluster

Kafka Connect

OEBPS/Images/building_effective_data_pipelines_542480_04.png
Source
System

Source Task

Partition

Source Task

Partition

Kafka Connect

Partition

Kafka Cluster

OEBPS/Images/building_effective_data_pipelines_542480_03.png
wa | (21 2 [

data

| Source connector task | ——,
Kafka

data 413 4 [3 Cluster

C———» | Source connectortask |

data

OEBPS/Images/building_effective_data_pipelines_542480_02.png
FPRENIN

File Stream Source
connector task

Kafka
Cluster

OEBPS/Images/cover.png
OREILLY"

Kafka
Connect

Build Data Pipelines by
Integrating Existing Systems

Early
Release

Raw & Unedited
Compliments of
.= RedHat
Developer

Mickael Maison
& Kate Stanley

OEBPS/Images/building_effective_data_pipelines_542480_01.png
Source connector task
with SMT

Kafka
Cluster

U

Kafka
Streams

App

OEBPS/Images/building_effective_data_pipelines_542480_09.png
Unassigned |[«——

Assigned to a worker

Restarted

Running

. Paused via REST API
Restarting

Paused

Resumed via REST API

Hit an error

Failed

Deleted via REST API

Destroyed

Restarted via REST API

OEBPS/Images/building_effective_data_pipelines_542480_08.png
worker1 worker2 worker3 /

OEBPS/Images/building_effective_data_pipelines_542480_07.png
worker1 worker2 worker3 /

OEBPS/Images/building_effective_data_pipelines_542480_06.png
Source flow

[&= Transtom | Comverer [
Source system Connect Connect Bytes
format Record Record
Sink flow
| converter |1 ¢;> Transform || t? ok
bytes Conne Conne Sink system
Record Record format

