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			About This Book

			This book is based on the need for a college-level textbook with examples derived from the biological sciences as an introduction to biostatistics using JMP software. The contents of this book follow that of an introductory course on biostatistics created for and taught at Bob Jones University and reflects an intended audience of undergraduates forced to take a course they really rather wished they could avoid. These undergraduates generally have enough biological and mathematical knowledge to be dangerous, coupled with an innate fear of “Statistics,” that renders them quite dangerous indeed. Although a basic knowledge of math up to and including algebra is generally desirable, this work studiously avoids the underlying formulas and mathematical gyrations found in many of the more “comprehensive” books on statistics. This is by design. Most practitioners of statistics are not mathematicians, don’t care about the underlying math, and are content to let their software deal with those details as long as they can get the answers that they need with some assurance that they are correct. To that end, the emphasis here will be on how to set up and execute the statistical tests in JMP and how to interpret the output.

			Before getting into the details of the individual tests, however, it is necessary to cover some basics of how to think like a statistician, or a reasonable facsimile thereof, to ensure that the right analysis is being done in the first place. The reader will find most of these preliminaries in the first chapters, with their application to specific tests being covered in the remaining chapters. The ultimate goal is to create bioscientists who can competently incorporate biostatistics into their investigative toolkits to solve biological research questions as they arise.

			Why Am I Reading This Book?

			Given the intended audience of this work – undergraduate biology and health science majors – the question asked in this section title is probably best answered by the opening paragraph of Dawn Hawkins’ excellent book when she writes:

			Let us consider the likely scenario that you are a student of the biosciences. Whether you are a biomedic, a physiologist, a behaviourist, an ecologist, or whatever, you like learning about living things – you enjoy learning about the human body, bugs, and plants. Now, lo and behold, you have been forced to take a course that will make you do things with numbers and, dread-o-dread, even do something with numbers using a computer. You have probably decided that the people who are making you do this are mindless sadists.1 

			This captures many of the expressions I see on the first day of class on all too many of my students. Lest this seems to be an exaggeration, I have been asking those students to write down a one-word description of how they feel about taking this course and collecting those 

			responses. Using the text explorer feature in JMP to create a word cloud, I have acquired the following words to date:

			[image: ]

			Note that the majority of students are “nervous,” “unsure,” “afraid” or “anxious” as opposed to “excited” or “intrigued.” (Although it is intriguing that so many use that word to describe a biostatistics course at all!)

			But I will argue here that we are neither mindless nor sadists in our demand that you, as a promising practitioner of the biological sciences, learn how to “do statistics.”

			There are at least three reasons why this is so. First, if you are going to be a scientist of any kind, you should have some understanding of the philosophy and history of science. This is the “big picture” into which you will orient your own efforts at contributing to the body of knowledge. The twentieth century saw a paradigm shift in the basic philosophy underlying the scientific enterprise. The prior century, in part due to successful efforts in astronomy at understanding the movement of planets and other heavenly bodies, had developed a philosophical determinism in which mathematic formulas led to precise predictions. As David Salsburg notes,

			Science entered the nineteenth century with a firm philosophical vision that has been called the clockwork universe. It was believed that there were a small number of mathematical formulas (like Newton’s laws of motion and Boyle’s laws for gases) that could be used to describe reality and to predict future events. All that was needed for such prediction was a complete set of these formulas and a group of associated measurements that were taken with sufficient precision.2  

			Alas and alack, the expected measurement precision never materialized. In fact, it proceeded to go from bad to worse. To account for this, scientists and mathematicians eventually developed and applied the ideas of randomness and probability to their observations, leading to a statistical model of reality that has revolutionized science. Salsburg points out, “Gradually, science began to work with a new paradigm, the statistical model of reality. By the end of the twentieth century, almost all of science had shifted to using statistical models.”3  If you are going to be a scientist professionally, you should understand something of this underlying foundation on which you will build your own construct with your research.

			Given that data analysis will almost certainly be needed to interpret the results of your experiments, the second reason for learning how to do statistics is simply to do so correctly. There is a need for practitioners of the art, which is not the same as theoreticians, who can do so with competence. This is particularly true for the clinical and biomedical community where the use and interpretation of biostatistics often guides therapy, human health, and public policy, and is critical to understand published research. As one of the best standard textbooks on molecular biology points out:

			Statistics – the mathematics of probabilistic processes and noisy data-sets – is an inescapable part of every biologist’s life.

			This is true in two main ways. First, imperfect measurement devices and other errors generate experimental noise in our data. Second, all cell-biological processes depend on the stochastic behavior of individual molecules …and this results in biological noise in our results. How, in the face of all this noise, do we come to conclusions about the truth of hypotheses? The answer is statistical analysis, which shows how to move from one level of description to another: from a set of erratic individual data points to a simpler description of the key features of the data.4

			And the demand for proficiency goes beyond the research laboratory. Clinical and medical testing laboratory professionals likewise need to be conversant with data analysis, as a recent article in Clinical Laboratory News observes:

			Statistics! Just the mere mention of the word can strike fear, loathing, and dread in the hearts of some people. However, statistics is a key competency for laboratory professionals, both in normal clinical laboratory operations and in research. Not only does statistics provide the means to objectively evaluate data, it also summarizes data in a universal language that is meaningful to others.

			But fear not! Computer software programs are available that can help you overcome your apprehensions about statistics.5

			Yes, there is software to help, but using the software correctly means more than just plugging in the numbers, hitting a button, and out pops your answer! The process is much more involved, and even those who should know better by virtue of their training and experience don’t always get it right. Reviews of journals, even those servicing smaller specialty areas related to statistics, continue to put out a high frequency of statistical problems in published papers.6  And as Glantz rightly cautions,

			The existence of errors in experimental design or biased samples in observational studies and misuse of elementary statistical techniques in a substantial fraction of published papers is especially important in clinical studies. These errors may lead investigators to report a treatment or diagnostic test to be of statistically demonstrated value when, in fact, the available data fail to support this conclusion. Health care professionals who believe that a treatment has been proved effective on the basis of publication in a reputable journal may use it for their patients. Because all medical procedures involve some risk, discomfort, or cost, people treated on the basis of erroneous research reports gain no benefit and may be harmed. On the other hand, errors could produce unnecessary delay in the use of helpful treatments. Scientific studies which document the effectiveness of medical procedures will become even more important as efforts grow to control medical costs without sacrificing quality. Such studies must be designed and interpreted correctly.7

			The third reason we are not mindless sadists in asking you to learn biostatistics is the benefits of doing so in terms of what such knowledge empowers you to do. (This is hinted at in the Clinical Laboratory News quote above.) This empowerment has at least three components.

			First, the numbers that you need to analyze contain information that form a story about whatever it is you are investigating. As the analyst, it is your job to get the numbers to tell you their story. (You can view this as a counseling session or a torture situation, depending on your personal sense of humor.) In essence, you are the detective looking to reveal the information hidden in the data and interpreting it to determine “who done it.” To achieve this, you need to be able to actively explore your data, and it helps to be able to do so visually so that the capabilities of the human eye can be used in the process to make observations on your observations. JMP is particularly adept at facilitating this visual exploration. This outcome, which is indeed a skill, is foundational for the other two benefits.

			Secondly, a knowledge of (bio)statistics allows for effective communication to others in the field in a language that is precise and concise.8  The third skill this knowledge imparts is the ability to understand and evaluate the work of others as you read the results of their investigations and analysis. This peer review is part of the scientific process as we now practice it, and thus to be able to participate as a scientist, biological or otherwise, you need some familiarity with the discipline to do so without being ignored, or laughed at.

			This book seeks to start its readers off on the adventure of learning these skills and to do so in the context of JMP software. It will not make you an official Statistician, but at least if you talk to one to confirm your analysis, you will be able to speak his language intelligibly.

			“Come, Watson, come!” he cried. “The game is afoot. Not a word! Into your clothes and come!”9

			What Does This Book Cover?

			This book seeks to train students in the biological sciences in the most commonly used (and misused) statistical methods that they will need to analyze their experimental data. It covers many of the basic topics in statistics using biological examples for exercises so that the student biologists can see the relevance to future work in the problems addressed. One of the most critical aspects is how to select the right test to use to address a problem; a statistical strategy to accomplish this is covered. 

			The reader is then led through using that strategy with JMP addressing problems requiring analysis by chi-square tests, t tests, ANOVA analysis, various regression models, DOE, and survival analysis. Topics of particular interest to the biological or health science field include odds ratios, relative risk, and the survival analysis topics.

			This book merely scratches the surface of biostatistics and JMP capabilities, but demonstrates the capabilities of JMP to do not just the “fancy” complex analyses of more advanced methodologies, but also the simpler basic analyses that make up the bulk of the analytics to be found in the biological literature.

			Is This Book for You?

			The intended audience for this book is undergraduate biology and health science majors minimally at the sophomore level. That is, beginning students who want to competently analyze their data (know how to drive the car correctly), but are not necessarily interested in the mechanics thereof (taking the engine apart and putting it back together again…with no extra parts at the end), just that they get it right (not crashing into anything in the process). Given this audience, the language seeks to be more conversational in tone. Despite this explicitly intended audience, the contents should also be of help for practicing biologists seeking guidelines for analysis of their research already underway.

			What Should You Know about the Examples?

			This book includes tutorials for you to follow to gain hands-on experience with JMP.

			Software Used to Develop the Book’s Content

			JMP version 14.2

			Example Code and Data and Chapter Exercises

			You can access the example code and data, along with chapter exercises, for this book by linking to its author page at https://support.sas.com/figard. 

			We Want to Hear from You

			SAS Press books are written by SAS Users for SAS Users. We welcome your participation in their development and your feedback on SAS Press books that you are using. Please visit sas.com/books to do the following:

			●	Sign up to review a book

			●	Recommend a topic

			●	Request information on how to become a SAS Press author

			●	Provide feedback on a book

			Do you have questions about a SAS Press book that you are reading? Contact the author through saspress@sas.com or https://support.sas.com/author_feedback. 

			SAS has many resources to help you find answers and expand your knowledge. If you need additional help, see our list of resources: sas.com/books. 

			Learn more about this author by visiting his author page at https://support.sas.com/figard. There you can download free book excerpts, access example code and data, read the latest reviews, get updates, and more.

		

		
			Endnotes

			1	 D. Hawkins, Biomeasurement: A Student’s Guide to Biostatistics, 3rd edition, Oxford University Press, Oxford, United Kingdom, 2014, page 1. And yes, I did steal her chapter title for use here. This text is a very good introduction that does not use JMP, but I am indebted to its guidance in the formulation of much of my own material.

			2	 D. Salsburg, The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, 1st Edition, Holt Paperbacks, New York, 2002, page vii. This is an excellent and very readable book on the development of statistics and its impact on creating a paradigm shift in the way science is done.

			3	 Salsburg, page viii.

			4	 B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, et al., Molecular Biology of the Cell, 6th edition, Garland Science, New York, NY, 2014, pages 524-25.

			5	 J. Bornhorst, S. Post, “An Introduction to Practical Statistical Applications and Software Tools,” Clinical Laboratory News. 39 (2013). https://www.aacc.org/publications/cln/articles/2013/march/sycl-snapshots (accessed May 19, 2016).

			6	 E.g., see R. Tsang, L. Colley, L.D. Lynd, “Inadequate statistical power to detect clinically significant differences in adverse event rates in randomized controlled trials,” Journal of Clinical Epidemiology. 62 (2009) 609–616. doi:10.1016/j.jclinepi.2008.08.005, and Boutron I, Dutton S, Ravaud P, Altman DG, “Reporting and interpretation of randomized controlled trials with statistically nonsignificant results for primary outcomes,” JAMA. 303 (2010) 2058–2064. doi:10.1001/jama.2010.651. Both are cited along with others in S. Glantz, Primer of Biostatistics, 7th edition, McGraw-Hill Education / Medical, New York, 2011, page 4.

			7	 Glantz, page 5.

			8	 This language should likewise be one held in common, but as already noted, all too many are not truly competent in the language and this can lead to miscommunication. We are trying to prevent this miscommunication by promoting competence.

			9	 Sherlock Holmes in S.A.C. Doyle, The Adventure of the Abbey Grange, The Penguin Complete Sherlock Holmes, Viking, London, 1981, page 636.
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			Chapter 1: Some JMP Basics

			Great sculptors and artists spend countless hours perfecting their talents. They don’t pick up a chisel or a brush and palette, expecting immediate perfection. They understand that they will make many errors as they learn, but they start with the basics, the key fundamentals first.

			Joseph B. Wirthlin (1917–2008), businessman
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			Graph Builder

			Introduction

			To say that JMP is feature-rich would be an understatement of magnanimous proportions. To try to cover even “the basics” in one chapter would be hubris abounding. Nevertheless, there are some features that are helpful to be aware of at the outset. Doing so will lay the groundwork for a continuing learning process that will ultimately lead to the coveted title of “expert.”

			JMP Help

			First, note that JMP provides a plethora of help in a multiplicity of forms. Opening the Help menu gives you just some of these. Beyond the traditional Help Contents and Help Index common to most Windows applications, there are multiple avenues of finding information about how to use JMP. As Figure 1.1 shows, JMP comes with extensive documentation in the form of PDF Books (arrow), as well as a rather large Sample Data Library that can also be accessed through an Index (connected rectangles). Then there is the online help in the form of the JMP User Community that can be accessed from the JMP Help menu (oval). Lastly, the Help menu also lists a group of tutorials that are highly recommended (especially the Beginners Tutorial [underline]).

			Figure 1.1: Some JMP Help Options
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			As with most large software applications, JMP provides the ability to set preferences for most of its features, most of which do, indeed, have to do with personal preferences. For Windows users, this menu option can be found under File  Preferences, whereas on a Mac, it is under JMP / Preferences. For Windows, the Preference Groups look like Figure 1.2.

			Figure 1.2: JMP Preference Group
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			Most of the options are self-explanatory and the reader would be advised to go to each and evaluate which, if any, need to be changed. Most do not. The three places most likely to need alterations are the groups the arrows are pointing to in Figure 1.2 above: Platforms, Windows Specific, and Fonts. Of particular interest for Windows users is the Auto-hide menu and toolbars feature in the Windows Specific Group (Figure 1.3) which has notoriously driven some users crazy when it defaulted to “Always” without any indication that this feature had been added. If you have limited real estate on your monitor, this feature can be helpful. The menu and toolbar are still available, just hidden under a thin line on the top of the new output window. They are restored by hovering the mouse pointer over said line. Otherwise, I recommend turning this option to “Never” so that your menu and toolbars are always visible.

			Figure 1.3: Windows Specific Preferences
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			Another very handy feature is the ability to change all the proportional fonts simultaneously with the Font Family button in the Fonts Preference Group (Figure 1.4).

			Figure 1.4: Changing Proportional Fonts as a Family
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			At the same time, the ability to change the font for individual output characteristics remains, making this a powerful customization feature.

			Probably one of the most useful places to modify preferences is in the Platforms Preference Group. This is where the details of the analysis output for each analysis available in JMP can be adjusted to those settings that best reflect the interests of the analyst (Figure 1.5).

			Figure 1.5: Setting Platform Preferences
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			For example, in the Distribution platform (Figure 1.6), I prefer to Stack multiple graphs in a Horizontal Layout. The Normal Quantile Plot is very useful in assessing normality of the distribution (see Chapter 4) as is the plot for a Normal distribution. And I typically customize the Histogram Color here as well. (See the stars in Figure 1.6.) JMP tells you which features have the default on, which is very useful to know. As we work our way through the more commonly used platforms in the book, the preference options for this text will be noted.

			Figure 1.6: Preferred Distribution Platform Preferences
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			Manual Data Entry

			Data can be manually entered into the JMP Data Tables, and it is necessary to give some thought as to how to do so. Although the data table has a resemblance to an Excel spreadsheet (which can, indeed, serve as a data source; see next topic), there are some significant differences that must be considered when designing data entry and even when transferring data from Excel. Rather than a spreadsheet, it is better to think of the data table as a database table, where each column is a characteristic or variable, and each row is an individual sample of a population. Figure 1.7 shows a portion of the sample data table AdverseR.jmp, which helps illustrate this design characteristic.

			Figure 1.7: A Sample JMP Data Table
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			Notice that each row contains the data for one time point on one patient. There is a separate row for each time point, because each time, new values for the same set of information were collected.

			Opening Excel Files

			Often the instruments generating the data that you want to analyze will export to Excel files, and the nearly ubiquitous presence of Excel makes the ability to read Excel data directly into JMP very handy indeed. One need only go to File  Open and select the Excel file extensions (Figure 1.8), and JMP will even use the first row for column labels. Data sometimes needs to be rearranged to fit the characteristics outlined above, and while the JMP Tables menu allows for many such operations, it is sometimes easier to do it in Excel simply because more people are familiar with how to rearrange the data in Excel. There are, however, several manipulations that JMP excels in (pun sort of intended!) that we will encounter in future chapters as needed.

			Figure 1.8: Opening Excel Files
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			Column Information – Value Ordering

			When JMP places categorical variables on an X axis, it does so alphabetically. But there are times that alphabetical order does not fit what you want to show. For example, you might want categories in chronological order, which might differ from the alphabetical order. In the Sample Data JMP provides, there is a file called Animals.jmp that includes seasonal data for the four named seasons. Plotting the data by species for each season shows the seasons arranged alphabetically, which is not the correct chronological sequence (Figure 1.9). Since the goal is most likely to look at the seasonal data in chronological order, we want some way to arrange the categories in this way. The Value Ordering feature in JMP is the easiest way to accomplish this. Right click on the column heading either on the column list on the left or on the column heading in the data table and select Column Info… (Figure 1.10) to bring up the dialog box in Figure 1.11 (without the Value Ordering option already filled in).

			Figure 1.9: X-Axis Default Alphabetical, Not Chronological
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			Figure 1.10: Finding Column Info…
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			Click the Column Properties box and select Value Ordering. This should create the dialog box seen in Figure 1.11. The column order can be rearranged by highlighting the appropriate categories and then moving them using the buttons on the right to get them into the desired order. Figure 1.12 shows the same data as Figure 1.9 now arranged chronologically from the beginning of the year (Winter) to the end of the year (Fall). All analyses and graphs will now reflect this order for this variable.

			Figure 1.11: Value Ordering Dialog
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			Figure 1.12: Value-Ordered Chronological X-Axis
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			Formulas

			Most analysts are familiar with the ability to create formulas using various native functions in Excel or similar spreadsheets. (Does anyone out there remember Lotus 123, or know what Quattro Pro is?). The JMP Formula Editor allows the creation of entire columns based on formulas created with the data in the data table and the multitudinous functions provided by JMP. As a simple example, open the Big Class.jmp data table from the sample data. The last column is the variable weight, which we will assume is in pounds. But being the advanced scientists that we are, we want to convert that to kilograms. One pound is 0.4536 kg, so all we need to do is multiply the data in the weight column by 0.4536 to convert to kilograms.

			Double click on the first empty column to create a new column – Column 6 – and then right-click on it to get to the Column Info… menu (Figure 1.13).

			Figure 1.13: Creating a New Column
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			Change the column name to “weight (kg)” and then open the Column Properties and click Formula, and then Edit Formula (Figure 1.14).

			Creating the necessary formula is accomplished with a simple point-and-click. Clicking on the weight column under the table columns list automatically puts this variable into the bolded active box of the formula window (Figure 1.15). Since we want to multiply this by the constant 0.4536, clicking on the multiplication symbol adds multiplication to the formula and creates a box into which the multiplicand can be entered. This could be another column, but in this case, we simply enter the desired number (Figure 1.16) and click OK. This executes the calculations and enters the results into our new column. Now we have the weight data as both pounds and kilograms for our analysis (Figure 1.17).

			Figure 1.14: Getting to the Formula
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			Figure 1.15: Creating a Simple Formula
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			Figure 1.16 Finishing a Simple Formula
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			Figure 1.17: The Final Product = A New Column
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			“Platforms”

			A “platform” is a matter of terminology. Each type of analysis in JMP contains its own set of input options and outputs. A platform is the combination of the interactive windows used to set up the data analysis, and often the output options, and then the results of executing that analysis with the selected options. (At least that’s how this author views platforms and how we will use the term in this text.) Platforms are found under the main menu categories of DOE, Analyze, and Graph. So, for example, the platform is found under the Analyze menu (Figure 1.18) and will bring up the interactive window that will allow us to set up and execute an analysis of population distributions. (See Chapter 4 for much more on this.)

			Figure 1.18: Platforms in the Analyze Menu
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			The Little Red Triangle is Your Friend!

			Often, we need to customize our analysis output by adding or subtracting different aspects of that output. In fact, several analyses that we will look at in upcoming chapters are initiated by options under the “Little Red Triangle.” Thus, we strongly encourage the JMP user to burn this mantra into their foreheads by whatever means necessary: “The Little Red Triangle is My Friend!”

			The Little Red Triangle (LRT) contains contextual menus and appears in the upper left corner of whatever output it is controlling. So, for example, Figure 1.19 shows the menu brought up by the LRT for the distribution analysis of the height variable from the Big Class file that we have seen previously. The Normal Quantile Plot and the Outlier Box Plot are checked, indicating they are active in the analysis window, having been turned on in the Preferences for this platform. Various other options can be seen there, and will become more familiar as we proceed through the following chapters.

			The key takeaway here is…repeat after me: The Little Red Triangle is My Friend!

			Figure 1.19: The Little Red Triangle is My Friend!
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			Row States – Color and Markers

			Color and marker style are useful ways to show different categories of your data on a graph. The default is a black dot for all the data. Figure 1.20 shows an example of the bivariate fit for height versus weight from the Big Class data.

			Figure 1.20: An Example of a Boring Bivariate Plot
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			In a word, boring! Moreover, it is not as informative as it might be. For example, the data contains both male and female subpopulations. What if we distinguish between the genders by giving each gender a different color and symbol? We do this in the Rows menu by selecting Color or Mark by Column… (Figure 1.21), which brings up the dialog box shown in Figure 1.22.

			Figure 1.21: Finding Color or Mark by Column…
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			Figure 1.22: The Mark by Column Dialog Box
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			Highlighting the sex column immediately assigns colors based on that characteristic, and markers are easily selected from the multiple combinations JMP provides (Figure 1.23). You can experiment easily to find the best set to reveal information in your data with our graph.

			Figure 1.23: Selecting Markers
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			The resulting graph (Figure 1.24) is much more informative (in addition to looking better, especially on a computer monitor or e-reader that lets you actually see the color compared to the gray-scale printed text; sorry about that!) and now reveals that males tend to be taller for their weight than the females, who tend to be heavier for their height, at least with this data. 

			Figure 1.24: An Example of a Not-so-boring Bivariate Plot
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			For those wondering how I come to this conclusion, if you use the Little Red Triangle to group the data by the sex column, and then fit a line to each subpopulation, you will find that the slope of the fit line of the males is smaller than that of the females.

			Row States – Hiding and Excluding

			There are times when it might be desirable to hide and exclude data from an analysis. One of the options under the Rows menu is to Hide and Exclude. This option is particularly useful when there are only a few points to remove (usually having identified them as outliers of some kind). However, for the sake of example, suppose you want to hide and exclude the males in the graph of Figure 1.24. While a data filter would work just as well, we can also use the Rows menu to select the rows of male data by going to Row Selection  Select Where… and entering an “M” as the criterion for selection (Figure 1.25). Clicking OK selects all these rows and then Rows  Hide and Exclude will hide and exclude them from the data (Figure 1.26).

			Figure 1.25: Selecting Rows Where…
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			Figure 1.26: Hiding and Excluding Rows
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			Note the [image: image shown here] symbols for the rows with a value M in Figure 1.26. The first symbol indicates the row has been excluded and the second that it has been hidden. Going back to the graph, only the data for the females are now visible (Figure 1.27), and were any analysis done on this data, because the male subpopulation is now excluded, only the visible female data would be acted upon.

			Figure 1.27: Males Hidden and Excluded Plot

			[image: Figure 1.1 Some JMP Help Options]

			Saving Scripts

			Like Excel, JMP has a programming language incorporated in its design similar to Excel’s macro language. This is particularly helpful in two situations:

			1.	When the same analysis needs to be done repeatedly on different data sets. Saving the analysis script ensures that the exact same number crunching and output generation is executed in every case. It eliminates possible human error in trying to replicate analyses, especially with they involve multiple components. Standardization of the output is also an advantage. 

			2.	Customized analysis output that needs to be saved as compactly as possible so that it can be reproduced at will (with the same data). Saving the script to the data table enables you to do this with the data itself. Again, easy reproducibility would be the ultimate goal. This is just one place where our earlier mantra helps: the Little Red Triangle is Your Friend!

			The beauty of JMP is that you don’t have to turn on script recording. The software is already doing that for you in the background, but will ignore its own efforts unless you tell it to save the script. Again, the Little Red Triangle is Your Friend. Usually at the bottom of the menu there is a Script submenu that includes saving the script to various locations. The most useful option for students is saving the script to the data table (Figure 1.28).

			Figure 1.28: Saving a Script to the Data Table

			[image: Figure 1.1 Some JMP Help Options]

			Saving Outputs – Journals & RTF Files

			Saving your carefully crafted output tables and graphs can be done is several ways. The two easiest and most common are:

			1.	Journal the results 

			2.	Save the results to a file as a rich text format (RTF) document.

			These two methods are the ones that we will use in this text.

			Journals are particularly useful when you want to execute and present the results of a series of analyses. Creating and saving to a journal allows the output to be saved in a JMP-like format, complete with collapsing nodes. Journals can also be used to create presentations, complete with hyperlinks, links to other files, tables, and graphs. This latter ability is unnecessary for our purposes. You can read the JMP Help topics for more information.

			To save output as a journal, you execute the analysis of interest, and when it is formatted to your specifications, do Edit  Journal. This opens a new journal with the analysis of interest. You can then add output by doing each additional analysis and then executing the Edit  Journal again. Each time you do so, as long as the original journal is open, the analysis will be added to the bottom of the journal so that your final journal will contain the series of analyses in the order in which they were executed. Journals can then be saved as journal files that can be opened later in JMP.

			Many people do not have JMP and for those unfortunates, the analysis has the option of saving the journal as an RTF file. RTF files can be opened by most word processors, and it has become a common file format for that reason (similar to PDF files).

			Individual analyses can be saved as RTF files by making sure the active window is the output of choice, then executing a File  Save As… and selecting the *.RTF filetype from the pull-down Save as type menu.

			One caution for users of the Mac version: RTF files on a PC are automatically associated with Word, whereas on a Mac, unless you manually associate them with Word, they get associated with TextEdit. Now, TextEdit is only for editing text, as the name implies. So, this means that when you open a JMP RTF file on a Mac, it will appear as if your graphics were not saved, resulting in loss of hair as you weep, wail, and gnash your teeth at what you interpret to be a major design flaw in JMP. Not to worry! Open the same file with Word, or any other word processor on your Mac, and lo and behold, your graphics will be there smiling back at you. It is highly recommended that you associate RTF files on a Mac with Word to prevent this episode of hair loss. One additional caution. If you open the RTF file on a Mac and it opens in TextEdit, and you then save that file from TextEdit, it will delete your graphics at that point because it is saving only the text (unless you were savvy enough to save it under a different filename). This is another reason to figure out how to associate RTF files with Word on your Mac.

			Graph Builder

			The old saying that “A picture is worth a 1000 words” holds true in the presentation of data and the subsequent analysis. For this reason, most JMP outputs include a graph of some kind. Exploratory analysis can also be done in JMP with a powerful tool called the Graph Builder found under the Graphs menu (Graphs  Graph Builder). Graph Builder allows the construction of all types of graphs and graphics, and does so interactively so that you can examine your data upside-down, inside-out, and every which way in your search for the underlying story your data has to tell you. It does this in a simple drag-and-drop manner that allows the analyst to create graphs in seconds and to evaluate a multiplicity of ways of viewing the data in your search for the next discovery the numbers have to offer.

			This tool is so multifaceted that it is beyond the scope of this text to go into all the details and to present all the possibilities. However, JMP provides an excellent tutorial that you, the reader, should now go work through to familiarize yourself with this platform. The tutorial can be found at Help  Tutorials  Graph Builder Tutorial, and it does not take very long, but will provide a good introduction to this incredibly facile means of investigation.

		

	

			Chapter 2: Thinking Statistically

			“Poirot,” I said. “I have been thinking.”

			“An admirable exercise my friend. Continue it.”

			Agatha Christie, Peril at End House

			Thinking Like a Statistician

			Step One: What Is Your Objective?

			Step Two: What Type of Data Do You Have?

			Step Three (The Forgotten Step): Check Method Assumptions!

			Summary

			Thinking Like a Statistician

			At the risk of sounding like we are about to embark on some mystical journey of introspection, the purpose of this chapter is set the stage for what is to follow. Here we want to consider how to think like a statistician. This is easier said than done, but is not an impossible task. Every discipline, whether it be some esoteric branch of mathematics or the more mundane field of car mechanics, uses its own thought processes in addressing the problems encountered in those fields. Statisticians are no different. They have concepts such as randomness, variability, error, probabilities, and averages to incorporate into their mental toolboxes as they consider the specific problems that they are asked to solve. Many of these concepts are relatively easy for beginners to master using the skills already acquired. But a few are more problematic, especially for those students desiring to apply statistical methods to their research but for whom the mastery of statistics is not their main goal. (As pointed out in the About this Book section, mastery of statistics is, alas, a necessary goal if not a main goal for a developing scientist.)

			For example, as budding biological scientists, we might think the goal of an experiment should be to prove or disprove the hypothesis being tested by hopefully “proving” our hypothesis to be correct. Not so, says The Statistician. We can never “prove” a hypothesis, we can only “reject the null hypothesis.” The full rationale for this posture will be covered in chapter 6. For now, just note that this is a different way of thinking that will take some adjustment to our own thought processes as burgeoning scientists.

			With that as an introduction, we want to consider in particular how to think like a statistician in selecting the statistical test that we are going to use on our data. What methods will we use to gather our clues to solve the mystery presented to us by our data? (Or, if you have a more warped frame of mind, you can think of it as how you will select the tools of torture to make the data scream out its story.)

			This aspect of choosing the right test to use is probably the task that causes the most problems for beginning students. Practitioners of the art have, through experience, already worked this out so that it is second nature for them. Alas, the intended audience of this text lacks that experience (and often the desire) to attempt this with any confidence. To them I say, let not your heart be troubled. There is a method to the apparent madness, and it can be mastered. The process by which one determines what test to apply to one’s data is logical but requires the knowledge of some fundamentals of statistics, so even though we aren’t going to actually apply this process in practice until chapter 7, it will serve us well to cover this here in this chapter as it sets the stage for the intervening chapters.

			Step One: What Is Your Objective?

			This is the very first thing we must determine in this process. All too frequently the statistician is presented with a collection of data and asked to “analyze it” with no further elucidation of what the analysis is supposed to do. This is where the analyst must use his or her people skills to draw out exactly what the actual goal of the analysis is to be. Consider this famous interchange between Alice and the Cheshire cat:

			“Would you tell me, please, which way I ought to go from here?”

			“That depends a good deal on where you want to get to,” said the Cat.

			“I don’t much care where— ” said Alice.

			“Then it doesn’t matter which way you go,” said the Cat.1

			But the goal really does matter, so to answer this question, we must know what statistics can do for us. What are the potential answers statistics allows us to find? Statisticians usually have two primary objectives:

			1.	Describe a population

			2.	Infer something from the data 

			Objective 1: Describe a Population

			The first primary objective one can have is to simply describe a population. This is the process whereby we succinctly summarize a lot of numbers with a much smaller set of numbers that will allow us to visualize (at least to some extent) the data set that we are evaluating. We will cover this topic in detail in Chapter 4.

			Objective 2: Infer Something from the Data

			The second primary objective is to infer something from the data, and this forms the largest part of the arena of statistics. What does it mean “to infer?” Well, according to Webster’s Dictionary, and in this context, it means “to conclude or decide from something known or assumed; derive by reasoning; draw as a conclusion.”2 Basic statistical inference goals can be subgrouped by the specific goal, of which there are two.

			One of the most frequent and clearest inference goals is to determine whether or not there is a quantitative difference between two or more samples that exceeds that expected by chance alone. Those samples may come when comparing samples of individuals or results from different methods. Chapters 9 and 10 will cover methods to achieve this goal.

			The second basic inference goal involves determining whether or not there is an association or relationship between two or more variables in a set of data. If such a relationship exists, then additional goals include determining which variables are the most important and modeling the outcome or outcomes of interest using those variables (that is, predicting or forecasting results based on the models created). We will address these methods in Chapters 11 through 17.

			Step Two: What Type of Data Do You Have?

			There are three primary types of data the analyst will usually have to deal with, and each has its own methods for analysis. Consequently, JMP designates these types of data as “Modeling Types.” The three primary types of data are:

			1.	Nominal or categorical

			2.	Ordinal

			3.	Continuous

			The first type of data is the nominal or categorical data type: variables that represent distinct units or groupings. The data itself can be either numeric or character, but the numeric will be code values for some grouping or category. Examples include variables such as gender, blood type, instrument, technician, and location. Each member of this type of variable is mutually exclusive from the other members of the variable grouping.

			Cases that are categorical but have an order or sequence to them are called ordinal variables. Again, the so-called “raw data” may be collected as numeric or character values. However, there will be a sequence to them. For example, birth order is one such variable. Other examples would include such things as class in college, month, size (for example, small, medium, large), and letter grades. These share the challenges of categorical variables, but contain the additional information of order that requires slightly different treatment in doing the statistics.

			Thirdly, there is the continuous data type, which is probably what most people will think of when they think of “data.” Continuous data is always numeric and its values are those with which we perform mathematical calculations such as addition or averaging. Examples include such variables as height, temperature, or time. Continuous data can be considered continuous in the sense that one can find an infinite number of values between any two values, that is, the range between two values can be continuously divided. Thus, we can have a value of 2.5 between 2 and 3, but if 2 and 3 are categorical labels of two instruments, you don’t have an instrument 2.5 between them.3

			A distinct subclass of the continuous data type is present when the numbers represent counts of members of different categories. The counts are continuous but can only assume integer values of zero or greater. Such data is usually transformed into frequency data and analyzed as frequency distributions.

			JMP identifies the modeling type of a variable by providing symbols alongside of the column names in the column summary to the left of the data table as shown in Figure 2.1.

			Figure 2.1: Variable Modeling Type Symbols

			[image: Figure 1.1 Some JMP Help Options]

			What test is to be chosen to analyze the data will depend on the data type (modeling type).

			Also to be considered here is how the data was collected – that is, the experimental design. We will be examining some of these issues in the next chapter (Chapter 3). In Chapter 9, we will see that collecting the data in a paired manner can have a significant effect on the outcome of the analysis. Meaningful data analysis requires some knowledge of experimental design, and, indeed, that experimental design can make or break the attempted analysis, so it is necessary to consider what type of data analysis you want to do as you design the experiment in the first place.

			Step Three (The Forgotten Step): Check Method Assumptions!

			This is the step that I have personally observed is all too frequently not done. The primary question the analyst needs to ask is, do the data match the underlying assumptions of any given analysis method closely enough to permit the valid use of that analysis method? Failure to check assumptions can lead to the generation of a lot of meaningless numbers. The software can calculate the statistics and give you p-values upon which to ruminate, but if the assumptions of the test used have been violated, the results are worthless at best and misleading at worst.

			As just one example, parametric tests assume some aspect of the data is sampled from a normal distribution. JMP (and most statistical software applications) will give you the results of a parametric analysis even when this assumption is not true. Reliance upon the software is not to be done blindly. We must assert with Hercules Poirot, “These little grey cells. It is up to them.”

			Summary

			The observant reader will have noticed the italicized and underlined letters in the titles for the steps in this chapter, which give us a memory device to be able to recall these three steps: Y.O.D.A. Throughout the rest of this book, any reference to the Y.O.D.A. strategy will be pointing you to this simple set of steps for statistical thinking on which to base your analysis. In fact, once we cover the preliminaries, the rest of the book will proceed with this logical process and is outlined in a flowchart in Figure 2.2 below. This flowchart allows the student to determine what test to use with the Y.O.D.A. strategy.

			Figure 2.2: Test Selection with Y.O.D.A. Strategy

			[image: Figure 1.1 Some JMP Help Options]

		

		
			Endnotes

			1	Carroll, L. Alice’s Adventures in Wonderland, Kindle Edition. Jovian Press. (p. 29).

			2	Webster’s New World College Dictionary, Fourth Edition, 4th edition (Webster’s New World, 1994).

			3	This raises the interesting quandary when census data reports that the average household has 2.3 children, just what does that 0.3 child look like?

		

	

			Chapter 3: Statistical Topics in Experimental Design

			Sometimes the only thing you can do with a poorly designed experiment is to try to find out what it died of.

			R. A. Fisher

			Introduction

			Sample Size and Power

			Power

			Power Analyses

			Power Examples

			Replication and Pseudoreplication

			Randomization and Preventing Bias

			Variation and Variables

			Some Definitions

			Relationships Between Variables

			Just to Make Life Interesting

			Introduction

			Computer programmers have an acronym for writing code that applies equally well to the analysis of data by statistics: GIGO! Which, of course, signifies “Garbage In, Garbage Out.” As data analysts, we must remember that the data we are called upon to analyze usually has to be collected based on some type of experiment, be it merely observational or manipulative in nature. As Dr. Fisher noted in the quotation with which I’ve opened this chapter, failure to plan and design an experiment particularly with the end analysis in mind all too often leads to the need for an autopsy rather than meaningful conclusions. Many of the components of good experimental design are derived from basic considerations of the statistics to be applied to the results, and it is to this set of topics that we want to now turn our attention.

			Sample Size and Power

			Consider the following line of reasoning from a quote by Ann Landers:

			One out of four people in this country is mentally unbalanced.

			Think of your three closest friends; if they seem OK, then you’re the one.

			So, isn’t this impeccable logic proving that you are mentally unbalanced?

			Hopefully you can at least see that there is a problem here, even if the source is not obvious. The underlying problem lies in this consideration of sample size, which hinges on the even more fundamental issue of sampling error. Presumably the initial statistic (which is most likely made up by Ann Landers) was based on a much larger sample size than four. That being the case, the smaller sample size of only four is not going to allow a valid conclusion to be drawn due to the randomness of the sampling and the high probability that your sample of size four will not be representative of the true distribution of mental states in the larger population.

			In determining sample size for an experiment, the experimenter needs to assess the number of replicates or samples needed to make meaningful conclusions. In doing so, several factors are to be considered. We have to overcome the random variation in our system – the so-called noise that will mask the signal that we are trying to detect. We need a sample size large enough to ensure we have a representative sample of the population of interest. Finally, we will usually have to balance the cost of materials, time, subjects, and other resources. We need enough replicates/samples to detect biologically relevant results, but must realize as well that too many replicates/samples can lead to diminishing returns on investment. That is, your incremental ability to detect differences decreases as you increase your sample size.

			Power

			The concept of statistical power can help when deciding on a sample size for an experiment as well as diagnosing the postmortem evaluation of a failed experiment. Power answers this question: If the true effect is of a certain size (size of the effect) and the experiment is repeated this many times (number of replicates), what fraction of the results will lead to the correct rejection of the null hypothesis given this amount of noise in the system (amount of variation)?

			So, power is mathematically related to these three variables:

			1.	The size of the effect to detect. It’s easier to detect bigger differences. The difference in weight between a Chihuahua and a Great Dane is much more obvious than the difference in weight of an Irish Setter and a Golden Retriever.

			2.	The amount of variation in the system. Variation is usually measured by the standard deviation. I think most people familiar with radios are aware of the problem of static, the nonspecific signal or noise that can mask the actual signal of the radio station that you are trying to listen to. The more static or noise, the harder to hear the actual signal. This is the concept here.

			3.	The number of replicates you can measure. Each replicate is like a coin to purchase information, and the more coins you have, the more information you can buy.

			Power is expressed as a percentage or as a proportion from 0 to 1, and the traditional minimum power for an experiment is accepted to be at least 80% or 0.80.

			Power Analyses

			Thankfully, power analyses are routine components of statistical software, and JMP is no exception. Because this is an issue in experimental design, sample size and power calculations are found in the DOE platform under the Design Diagnostics submenu. There, JMP provides the slightly different sample size and power calculations for ten different situations, but for the purposes of this work, we will only focus on the first two, the One Sample Mean and the Two Sample Means situations (Figure 3.1).

			Figure 3.1: Sample Size and Power in the JMP Menu
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			Probably the more common situation is where the experimenter is comparing the means of two different groups, so we will look at that one first. Figure 3.2 shows the dialog box that is brought up by clicking on the Two Sample Means button, along with the rules for determining whether the experimental design is sufficient:

			Figure 3.2: Interpreting Sample Size Input and Output: Comparing Two Means
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			Note that you must always provide a value for the standard deviation in the system, whether it is an estimate or an actual value (preferred but not always available). The lack of any basis for determining this value before an experiment is often what requires a post-mortem after the experiment when that value is actually known.

			Once you provide a value for the Standard Deviation (Std Dev), JMP provides the instructions to determine if dancing in the halls is appropriate or if you should be calling the funeral home. Simply provide any two of the three variables shown in Figure 3.2, and click the Continue button to get your answer. It is important to notice that the sample size that will be calculated or input is the total number of samples in the two groups being compared, and those do not have to be equal (although good experimental design indicates they should be as close as possible).

			An interesting consideration for this calculation is when you have the data already in hand and you have two standard deviations – which one do you use? A little thought should lead to the conclusion that the larger standard deviation represents the worst-case scenario, that is, the most noise that needs to be overcome, so that is the one to input into the calculations.

			The sample size calculations for the One Sample Mean (Figure 3.3) follow virtually identical considerations. The main point in this situation is to compare an observed mean (or a mean that is to be observed) to some hypothetical mean. That hypothetical could be a known value of some parameter, or perhaps a value of zero indicating no difference from a known value. Again, JMP helpfully includes instructions in the text of the dialog box to perform the evaluation while letting you know up front what you are testing.

			Figure 3.3: Dialog Box for Sample Size Calculations for One Mean
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			Power Examples

			Two Sample Means

			A biomedical scientist wants to determine the difference in leg muscle power between normal individuals and those with chronic obstructive pulmonary disease (COPD). The scientist designs an experiment in which properly matched controls are to be compared to a population of COPD patients. If a minimum power of 80% is desired, and based on preliminary data, a standard deviation of about 114 Watts (W) is expected, what is the minimum sample size required to detect a difference of 100 W between the two groups with 95% confidence (α = 0.05)? Figure 3.4 shows the appropriate setup in the Two Sample Means dialog box, and Figure 3.5 shows the results.

			Figure 3.4: Sample Size Setup for Example
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			Figure 3.5: Sample Size Results for Example
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			In this case, a total sample size of 43 (which will need to be divided between the two groups being compared) is required to detect this size difference with a power of 80%. Alternatively, if you know only a certain number of subjects are available, you can calculate either the smallest size difference that you can detect or the power if a certain size difference is expected. In any case, the guidelines in Figure 3.2 allow the investigator to assess whether the experiment will be constructed well enough to answer the question with any degree of statistical confidence.

			One Sample Mean

			Suppose you have a new thermometer to measure body temperature. Using this thermometer, you measure your child’s temperature five times with an average temperature of 99.8°F with a standard deviation of 0.96°F. Given that “normal” is considered 98.6°F, is it time to break out the aspirin, call the doctor, or just send the kid to bed? Figure 3.6 shows how to answer the question by calculating the power to see whether it is at least 80%. As can be seen, the power in this situation is only 56.2%, so we have inadequate data to say that the thermometer reading of 99.8°F is significantly different from normal. Using this same scenario, you could also calculate the sample size needed to detect this difference with a power of at least 80% (it turns out to be 8, or just three more than what was done), or you could assess what size difference you could detect with this sample size, power, and the observed standard deviation (which is about 1.62).

			Figure 3.6: Results of One Sample Calculation
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			Replication and Pseudoreplication

			Because of the ubiquitous nature of variation in biological systems, a basic issue all experimental biologists must address is simply that one observation in the presence of so much variation cannot lead you to a significant conclusion about anything. Statistics and experimental design intersect at this point. Using replication in experimental design, and doing so intelligently, helps the statistical methodologies cut through the noise in the system.

			But what do we mean by replication? We have already used replicates in our discussion of sample size, but we need to look at replication a little closer now. Replication involves subjecting a number of different experimental subjects or units to the same manipulation(s) and then taking the same measurements on each one. A fundamental assumption is that the sampling of one experimental unit does not influence the sampling of another. This means true replicates must be independent of one another. The underlying idea here is that the more separate observations you can make of the same thing, the more likely it is that you are observing a true pattern and not an accident of chance.

			Suppose you want to determine the amount of human chorionic gonadotropin (hCG), the pregnancy hormone, in the blood of women one month into their pregnancy. You want to have 200 replicates for your study. True replication requires that we somehow persuade 200 different pregnant women to give a blood donation to make our measurements for our experiment. We obviously would not go in and measure the blood levels in the same person 200 times (at least I hope it would be obvious!). To do the latter is to engage in pseudoreplication and to violate the assumption of the independence of the data. Figure 3.7 illustrates the difference between replication and pseudoreplication. Pseudoreplication will artificially lower the amount of variability being measured and could lead to the wrong conclusion. Thus, in designing an experiment it is important to carefully identify the experimental unit before determining how to design the replicates. This requires a knowledge of the biology of the system under study as well as a clear understanding of the hypothesis being tested. There are no hard and fast rules. This is perhaps where the “art” of science comes into play as the biologist plans the experimental details to address the question of interest.

			Figure 3.7: Replication versus Pseudoreplication
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			A word needs to be said in defense of pseudoreplication because the prefix “pseudo” carries with it the connotation of something false and thus something bad and to be avoided at all costs. Any scientist with even a little experience in the lab will look at Figure 3.7 and the depiction of pseudoreplication and say, “Wait a minute! I do that all the time!” Not because they are stupid, but because they need to account for the variability of the signal output from the instrument being used to make the measurements and/or the complexity of the sample being measured that adds additional variability. For example, in my previous life, I developed automated in vitro immunodiagnostic assays for the health care industry. Both the reagents and the samples being tested are complex biologicals with multiple sources of variation. And the instruments under development have a mind boggling amount of moving parts and possible sources of variation and failure. Until final configurations were reached and the potential variability brought to acceptable levels, we routinely would measure the same sample on the same instrument in replicates of three or more to evaluate performance. That would be considered classic pseudoreplication, but it was necessary to measure the error component associated with the instrument itself. The key to all this is to understand your system and what you are replicating and what error component of the process are you truly measuring. For a more detailed discussion of replication and pseudoreplication in the context of experimental design, I would refer the reader to Ruxton and Colegrave’s excellent book, Experimental Design for the Life Sciences.1

			Randomization and Preventing Bias

			Another aspect of experimental design that JMP allows for is that of randomization of data collection, particularly in the Design of Experiments (DOE) module (see Chapter 16). Randomization is all about equal opportunity. It is how one can increase the probability of getting a truly representative sample of the whole population of interest. Its main target is the reduction or elimination of sampling bias and to reduce the impact of confounding factors on the data collection. As R. A. Fisher has observed, “Designing an experiment is like gambling with the devil: only a random strategy can defeat all his betting systems.”

			How do you go about randomizing data? When using JMP to design your experiment (DOE), JMP defaults to randomization of the trials for which to collect the data, so you just use that option and let JMP do the work for you. (That is, after all, why you are using software in the first place.) However, when you are not doing an actual DOE experiment, probably the simplest way is to assign numbers to your samples, randomize those numbers with a computer (or even a random number table, which is what many used prior to the advent of computers), and then place the samples in groups based on the random order.

			One caution here: random sampling (good!) is not the same as haphazard sampling (bad!). Haphazard sampling might best be defined by an example. Suppose you have a tank of crabs that you want to assign to different but relatively equal groups to create representative samples of the total crab population. And alas, because of lack of sufficient funding, the only tool you have on hand to create this separation is your hand (pun intended) with which to reach in and try to grab one crab at a time from the main tank to deposit into your other experimental tanks. It is not randomization to just reach in and try to grasp them “at random” for several reasons. Given that crabs don’t particularly encourage strange hands picking them up and removing them from their current environment as that feels a little too much like predation, they will have a propensity to engage in either fight or flight. So you, as the investigator (or poor undergraduate slave labor, I mean, intern), will not be so keen on having your fingers between those crab pincers, and who knew that crabs could move so fast when they wanted to! In other words, your selection of crabs will be biased initially toward the slower, less aggressive types and the most aggressive will probably be saved for last out of fear for the integrity of your fingers. Put yet another way, your separation of crabs into separate sample populations is not really going to give you a truly representative set of populations except by fortuitous chance, in other words, haphazardly.

			Care should also be taken to acknowledge that random sampling is just not possible in many situations. For example, clinical trials are usually not truly random sampling from a given population. Although patients may be randomized to the different treatment groups of the study, the sample pool being drawn from will be more a sample of convenience, of those willing to take part in such a study, which is not necessarily the same as the entire population one wants to study. Generalizing the results of such studies to the larger population of human beings should be done with great caution.

			Variation and Variables

			Our last topic to discuss in the realm of experimental design and statistics will require us to define and investigate variables and the different ways variables may be related to one another in the data collection of the experiment. These will dramatically impact what tests can be used in the analysis of said data.

			Some Definitions

			Variables are the characteristics that vary between items in a sample. They are the sources of variation, in obvious contrast to the “constants,” which obviously don’t vary. A confounding variable is a factor causing variation that confuses the results obtained by increasing the noise in the system. These are not the focus of our experiment, and one of the goals of experimental design is to eliminate or control as many of these confounding variables as possible.

			In designing an experiment, we usually have one or more independent variables. These are the inputs to be altered naturally, as is correlational studies, or intentionally by the investigator, as in a manipulative (sometimes called “controlled causal”) experiment. These are the dials on your instrument that you will use to adjust the output of that instrument. Traditionally these are the factors that go on the X axis of a graph, and we will become quite familiar with this idea in the Fit Y by X platform later in the book. Paired with the independent variable is the dependent variable, or response variable. This is what we are measuring as a function of the different settings of the independent variable. As a scientist, your goal is to determine whether a relationship exists between the independent and dependent variables and, if so, model that relationship so that you can predict the outcome given known inputs.

			Relationships Between Variables

			While we have defined independent and dependent variables in the last section, we must be careful not to assume that applying those definitions to any specific set of variables implies that there is a relationship between the two. Independent and dependent variables can be considered mere labels to identify the components of an experiment in experimental design. Actual connection between variables should not be confused with these labels. We are doing the experiment to determine whether such a linkage does exist, and if it does, perhaps to get a handle on the direction of the relationship (that is, which is the cause and which is the effect). Statistics can help with this determination, but only if the experiment has been appropriately designed.

			When two variables are in a dependent relationship with one another, it is because one variable gives information about the other. We can say they are correlated or non-orthogonal. When two variables do not, in fact, yield any information about one another, then they may be said to be independent of one another, or uncorrelated or orthogonal.

			Just to Make Life Interesting…

			Just in case the previous section was clear as mud, we must also consider here the “relatedness” in how data is collected. This frequently is the defining factor in determining which statistical test is the appropriate one to use and is a function of experimental design. Consider the data2 in Table 3.1 on the speed at which a gecko can climb a stone wall as a function of temperature.

			Table 3.1: Related Data

			
				
					
					
					
				
				
					
							
							Gecko ID

						
							
							Temperature (°C)

						
							
							Speed (m/s)

						
					

					
							
							Sue

						
							
							14

						
							
							1.6

						
					

					
							
							Sarah

						
							
							22

						
							
							2.1

						
					

					
							
							Sally

						
							
							19

						
							
							2.3

						
					

					
							
							George

						
							
							13

						
							
							0.6

						
					

					
							
							Roger

						
							
							15

						
							
							1.6

						
					

					
							
							Ralph

						
							
							18

						
							
							1.9

						
					

					
							
							David

						
							
							9

						
							
							0.5

						
					

					
							
							Amy

						
							
							15

						
							
							1.5

						
					

				
			

			The data in this table are said to be related because for each subject (that is, each individual gecko) we have measurements of each of the two variables. Most likely we are interested in whether there is a relationship between these two variables, so for each gecko, we have two numbers representing the two variables of interest: the temperature of the environment and the climbing speed of that gecko at that temperature.

			Table 3.2 is an example of a specific type of related data collected in what is called a paired design.3 Thus, it is considered paired data.

			Table 3.2: Related, Paired Data

			
				
					
					
					
				
				
					
							
							Gecko ID

						
							
							Speed (m/s) in cold

						
							
							Speed (m/s) in warm

						
					

					
							
							Larry

						
							
							0.7

						
							
							1.8

						
					

					
							
							Betty

						
							
							0.5

						
							
							2.0

						
					

					
							
							Josh

						
							
							0.6

						
							
							1.9

						
					

					
							
							Mary

						
							
							0.6

						
							
							1.8

						
					

					
							
							Robert

						
							
							0.2

						
							
							1.5

						
					

					
							
							Ernie

						
							
							0.0

						
							
							0.7

						
					

					
							
							Katherine

						
							
							0.6

						
							
							1.8

						
					

					
							
							Ronald

						
							
							1.0

						
							
							2.2

						
					

				
			

			The hallmark of pairing is the collection of data of the same variable, in this case, speed, from the same individual under two different conditions (temperature at 5°C and 20°C). Note that our goal has changed. We no longer have the necessary information to model a relationship between temperature and wall climbing speed. We can only determine whether there is a difference between the two settings of the independent variable, and by looking carefully, the direction of that difference. However, we are unable to determine the strength of the relationship or to model it for predictive purposes due to the change in the way the data was collected, that is, in the experimental design. This is not a bad thing; it all depends on the objective of your research. This particular type of design has the advantage of reducing the sources of variation in the response that might be due to individual characteristics of the geckos, such age, size, or weight.

			Yet another design that collects related data is the matched design. In this case we have two populations of equal size4 where one subject from one group is partnered with a subject in the other group according to the variables thought to have a potential impact on the response, but which are really not the variable of interest for the purposes of the experiment. These would again be things like age, size, or weight, or gender, or other variables the experimenters think appropriate. The goal is to try to create two groups that are as close to one another as possible so that any differences in the response seen are more likely to be due to the independent variable that is being changed. So then, one subject in each pair is in one condition, and the other subject in the pair is in the other condition, creating two response populations that can then be compared to determine whether there is a difference between the responses in the two conditions.5 Table 3.3 illustrates what such data might look like with our friendly neighborhood geckos.

			Table 3.3: Related, Matched Data

			
				
					
					
					
				
				
					
							
							Gecko IDs

						
							
							Speed (m/s) in cold

						
							
							Speed (m/s) in warm

						
					

					
							
							Craig & Bob

						
							
							0.8 (Craig)

						
							
							2.1 (Bob)

						
					

					
							
							Mitchell & Rory

						
							
							0.5

						
							
							1.9

						
					

					
							
							Laura & Alexia

						
							
							0.8

						
							
							1.6

						
					

					
							
							Martha & Peg

						
							
							0.6

						
							
							2.5

						
					

					
							
							Harry & Frodo

						
							
							0.2

						
							
							1.4

						
					

					
							
							Don & Fred

						
							
							0.3

						
							
							0.8

						
					

					
							
							Wilma & Betty

						
							
							0.2

						
							
							1.2

						
					

					
							
							Bruce & Bryan

						
							
							0.9

						
							
							1.6

						
					

				
			

			The matched data design is not a good way to control for variation created by the individual differences between subjects; the paired or repeated measures design is much better for that reason. However, it is often the best option in certain circumstances, particularly when dealing with human subjects. There might be, for example, ethical reasons not to expose your study subjects, be they human or animal, to more than one experimental condition. Moreover, the treatment under study might indeed change the underlying disease state of the subject, rendering them ineligible to serve as their own control under a different treatment regimen.

			These three examples of experimental design have all collected related data. There is some connection between the data as described above. There are times, however, when the data is collected in a manner that can only be called unrelated. If we have measured the climbing speeds of eight geckos under cold conditions and eight totally different geckos under warm conditions, and these two groups were not matched, nor was there any way to do so, we find ourselves with two unrelated populations of data. In this case, the populations do not have to be equal in size. We could have had eight geckos in the cold and ten in the warm. Consult Table 3.4 to see what this data might look like.

			Table 3.4: Unrelated Data

			
				
					
					
					
					
				
				
					
							
							Cold Environment

						
							
							Warm Environment

						
					

					
							
							Gecko ID

						
							
							Speed (m/s)

						
							
							Gecko ID

						
							
							Speed (m/s)

						
					

					
							
							Alfred

						
							
							0.8

						
							
							John

						
							
							1.9

						
					

					
							
							Nellie

						
							
							0.3

						
							
							Dottie

						
							
							1.8

						
					

					
							
							Lilly

						
							
							0.4

						
							
							Brian

						
							
							2.1

						
					

					
							
							Ray

						
							
							0.6

						
							
							Leslie

						
							
							2.6

						
					

					
							
							George

						
							
							0.5

						
							
							Rose

						
							
							1.3

						
					

					
							
							Clay

						
							
							0.0

						
							
							Ron

						
							
							2.2

						
					

					
							
							Gail

						
							
							0.7

						
							
							
					

				
			

			Experimental designs that can collect related data allow greater control over potential confounding sources of variation, but the nature of the problem being addressed might not permit the collection of such data. For example, when investigating some disease, the scientist does not have control over who has the disease and who does not, so gathering information about infected versus non-infected populations will almost invariably require the use of unrelated data.

		

		
			Endnotes

			1	G. Ruxton and N. Colegrave, Experimental Design for the Life Sciences, 3rd edition (2010), OUP Oxford.

			2	The data in this and the following tables are purely fictional and the product of the author’s imagination; any resemblance to other data, actual or otherwise, is mere coincidence and does not reflect the view of anyone. I actually have no clue how fast geckos can climb walls; I just know that they can.

			3	If there were more than two categories or groupings, then it would be called a repeated measures design.

			4	In this case, I am describing a case where we are comparing only two groups or settings of the independent variable; however, we are not limited to only two. For the purposes of illustrating the principles involved, it is easier to work with just two groups.

			5	Note the ultimate goal here. Your objective or goal for the experiment will be critical in determining what statistical test you will apply to the data to do your analysis.

		

	

			Chapter 4: Describing Populations

			The mathematician, carried along on his flood of symbols, dealing apparently with purely formal truths, may still reach results of endless importance for our description of the physical universe.

			Karl Pearson
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			Introduction

			Statistics in general can be categorized by two basic goals. When sitting at your desk with a set of numbers before your eyes, you either want to describe the population(s), or you want to infer something from them or both. Thus, we have descriptive statistics (this chapter) and inferential statistics (most of the rest of the book). Making inferences, that is, drawing conclusions, from our analyses comprises the bulk of what is usually considered “statistics.” While we will examine the underlying concepts in more detail in the next chapter, most of the rest of the book will deal with how to go about generating those inferences using JMP. Since the method used to do so usually requires us to know something about our population(s) of interest, we will start with descriptive statistics first. Keep in mind the primary reason we need descriptive statistics is the ubiquitous presence of variation in both populations and in measurement methods.

			Population Description

			So, what do we need to describe a population? Such a description will generally have three components: 

			1.	a measure of the central tendency of the data

			2.	a measure of the amount of variation in the data

			3.	some description of the distribution shape, which usually requires a graphic representation of the data

			Central Tendency (Location)

			The central tendency of the data is simply where you will find most of the data and there are three such metrics. Probably the most common one is the mean or average, which is simply the arithmetic average of the numbers in the population. The second metric is the median, or middle value of the population when the sample size is an odd number. For even-numbered samples, the median is the average of the two middle values. The primary reason for using a median instead of a mean is the robustness to outliers in the population provided by this metric. In other words, a median is not going to move as dramatically as a mean if there is an extreme value at the upper or lower ends of the population. Lastly, there is the mode, defined as the most frequently occurring value in the population. This is the only metric for categorical data, but it can be used with other types of data as well. When a distribution shape is perfectly symmetrical, these three metrics will be the same. The more skewed the distribution shape is, the greater will be the difference between these three (Figure 4.1). We will look at metrics of shape after measures of sample variation.

			Figure 4.1: Effect of Distribution on Mean, Median and Mode

			[image: Figure 1.1 Some JMP Help Options]

			Sample Variation

			The amount of noise in a population, that is, the amount of variation, can be measured with at least five different metrics, each of which has advantages and disadvantages. The first is simply to indicate the range of the data, from lowest to highest. This is simple to calculate but not necessarily very illuminating, especially if there are outliers at one or both ends of the population.

			Populations can be divided into quartiles, each of which contains 25% of the data. The interquartile range, which is the middle 50% of the values, is a metric that is less affected by extreme values and can give a better idea of the spread of the data. It can be calculated by subtracting the 25th percentile from the 75th percentile (Figure 4.2).

			Figure 4.2: Pictorial Definition of Interquartile Range

			[image: Figure 1.1 Some JMP Help Options]

			One of the more useful metrics is the variance of the population. Its utility lies in the fact that variances are additive. That is, if you can identify the variance for the different components of a response, the total variance that you would expect to see in the overall process will be the sum of the variances. This leads to the identification and measurement of variance components, a subject not in the scope of this text, but the idea is important to note. Variance is related to the next measure, the standard deviation (SD), by simply squaring the standard deviation (variance = SD2). This points out one disadvantage of the variance from a practical side: the unit of variance is the raw data squared, which makes the variance slightly harder to interpret.

			Standard deviation is probably the most common metric reported as a measure of the variation in a population, and since the units are those of the raw data, its interpretation is more straightforward. Before you can interpret a standard deviation, you must first know where it is on the scale being measured. This is usually provided by the population mean. Thus, a standard deviation of 2 indicates very little variation if the mean is 100, but tremendous variation if the mean is only 3. Just having the standard deviation does not tell you much unless you know the location of the signal for which the variation is being measured by the standard deviation. We shall see momentarily that the standard deviation has some special properties when the population distribution is what we call “normal.”

			The last metric seeks to address this by taking the standard deviation and dividing by the mean to create the coefficient of variation, or CV. If this is converted to a percentage (%CV), it reflects the amount of variation in the population as a percentage of the central tendency, typically a more intuitive measure of the variation present. This also allows you to compare the variation across a range of values to see if the % of the noise relative to the signal stays the same.

			Frequency Distributions

			The shape of the population distribution combines the central tendency and variation simultaneously in a graphical display that aids in identifying outliers as well as informing the viewer of the nature of the distribution. Histograms are commonly used for this. For nominal and ordinal data, the X axis is divided into “bins” that represent each category or level in the data. For continuous scale data, the bin size is defined by the investigator, although the software usually has a default number of bins into which it will place the data. JMP does this and then enables you to change that as you see fit. However, we generally only want 5 to 10 bins along the X axis in order to get a reasonable shape.

			While a histogram will give a general idea of the shape of the distribution, there are two numerical measures of shape that will give a more objective evaluation of that shape: skewness is a measure for the degree of symmetry around the point of central tendency, and kurtosis indicates how sharp the central peak is relative to a standard normal distribution.

			A normal distribution has a skewness of zero, so deviations from that indicate the presence of a tail on one side or the other of the central peak. A skewness value less than zero indicates a negatively skewed distribution, or a longer tail on the left side relative to the right side, whereas a positive value is skewed to the right, that is, its tail on the right side is longer than that on the left side (Figure 4.3).

			Figure 4.3: Skewness

			[image: Figure 1.1 Some JMP Help Options]

			Kurtosis is a little more difficult to describe, and it does not help that there are at least two different ways of computing this measure. JMP uses the formula that yields a value of zero for a normal distribution, which helps in that it matches the similar criteria for skewness. But you may find in the literature (or on the internet) references that indicate that the normal distribution has a value of 3. Regardless, the concept and interpretation are the same, and since we are using JMP, we will use the JMP criteria.

			That being the case, kurtosis values < 0 indicate a platykurtic distribution. Say what?!? (I told you it was harder to describe!) The focus of kurtosis is the tails of the distribution, so a platykurtic distribution has tails that are shorter and thinner than that of a normal distribution. This often leads to the central peak being less of a peak and broader so that some have mistakenly thought that kurtosis is describing this feature rather than the characteristics of the tails. This is not the case (and I know it to be true because I read it on the internet). A normal distribution with a kurtosis value of 0 is said to be mesokurtic, and kurtosis values > 0 are leptokurtic. Leptokurtic tails are longer and fatter compared to the normal distribution, and this often results in the central peak being higher and sharper, as seen in Figure 4.4:

			Figure 4.4: Kurtosis

			[image: Figure 1.1 Some JMP Help Options]

			In JMP, the Distribution platform is where we will be able to both see and evaluate our frequency distribution regardless of the data type. Skewness and kurtosis values are not normally shown, but you can find them in the Summary Statistics node if you click the Little Red Triangle  Customize Summary Statistics, and ask JMP to provide those numbers for you. In actual practice, they are not commonly evaluated, but the concepts are important to be aware of. In essence, the farther from zero those values are, the less likely you are looking at a normal distribution.

			The Most Common Distribution – Normal or Gaussian

			Probably the most common distribution shape found in nature is the symmetrical, bell-shaped curve (Figure 4.5) known as a normal or Gaussian distribution. It is foundational to inferential statistics in that some of the more powerful inferential methods frequently assume a normal distribution of some aspect of the data being analyzed. Thus, it will be important to know how to test for the normality of any particular population.

			Figure 4.5: A Normal or Gaussian Distribution
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			The standard deviation has some useful properties relative to a normal distribution. The mean ± 1 SD encompasses about 68% of the population. The remainder is in the tails. (See Figure 4.5.) The mean ± 1.96 SD, frequently rounded to 2 SD, encloses about 95% of the population. To include 99% of the population being described, use the mean ± 2.58 SD.

			Two Other Biologically Relevant Distributions

			While normal distributions or almost normal distributions are encountered most frequently in biological data, there are two other distributions that are frequently found as well. The easiest to recognize is the binomial population. This is a nominal response with only two possibilities or categories into which the response can be placed. Examples include such responses as alive or dead, sick or healthy, positive or negative, pregnant or not pregnant. This type of variable would be considered categorical, and should we look at a distribution of such a variable, there will be only two bins for the two options into which a response can fall.

			The other distribution that we might encounter in biological data is the Poisson distribution. This is almost a cross between a categorical and continuous data distribution. It consists of discrete, nonnegative integers and is most often found when counting something. Poisson distribution histograms might look like normal distributions, but the underlying data has nothing really connecting the “bars” of the histogram (Figure 4.6).

			Figure 4.6: A Poisson Distribution

			[image: Figure 1.1 Some JMP Help Options]

			The JMP Distribution Platform

			With all JMP platforms, the resulting output can be customized to display output for the individual’s specific needs in the JMP Preferences menu. As we proceed through this book, I will indicate what preferences I personally have found to be the most useful to select or turn off. However, as the name suggests, these are only preferences and not “set in stone” commands, so you can feel free to ignore them with abandon. Here are my preferences for the Distribution platform (Figure 4.7, 4.8, and 4.9).

			Figure 4.7: Setting Distribution Platform Preferences

			[image: Figure 1.1 Some JMP Help Options]

			Turning “on” the Stacking and Horizontal Layout preferences are truly personal preferences and leaving them off will not impact your ability to work through this book. Similarly, the Histogram Color is where you get to customize your histogram bar colors, so you can have fun here setting it to whatever you like. Turning on the Normal Quantile Plot and checking the Normal box will be helpful for evaluating the normality of a population, so they are more important to turn on. I do not usually look at the quantiles of a distribution (dotted rectangle), so I normally turn that off, even though it is default on. However, in the Distribution Summary Statistics, I then turn on the Median so that I can compare the mean/median ratio in evaluating the distribution normality (Figure 4.8).

			Figure 4.8: Setting the Distribution Summary Statistics Preferences
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			Lastly, in the Fit Distribution platform, I turn on the Goodness of Fit option to get a quantitative evaluation of the fit of the population to whatever curve it’s being fit to, in this case, the normal distribution (Figure 4.9).

			Figure 4.9: Turning on Goodness of Fit in Fit Distribution Preferences
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			So, now that we have described some distributions, identified the normal distribution that is of most interest to us, and set our preferences to optimize our output, it is time to look at a specific example. We will see what this all looks like in JMP as well as answer the question, how do we know when a distribution is normal?

			An Example: Big Class.jmp

			To look at what the resulting distribution platform looks like, open the sample data file Big Class.jmp found in Help  Sample Data Library. For this exercise, we will evaluate the distribution of age, an ordinal variable, and height, a continuous variable. Open the Distribution platform dialog box by clicking on Analyze  Distribution. Move the columns of interest to the Y, Columns box by either highlighting the column name on the left and then clicking the Y, Columns button, or by dropping and dragging the columns to that box. You should now have Figure 4.10.

			Figure 4.10: Distribution Dialog Box Correctly Set Up

			[image: Figure 1.1 Some JMP Help Options]

			Clicking on OK, should give you something like Figure 4.11.

			Figure 4.11: Distribution Analysis Output for the Example

			[image: Figure 1.1 Some JMP Help Options]

			In this figure, the interactive nature of JMP graphics, a strong visual tool, can be seen. The 14-year-old bin has been selected in the age histogram, and those data are then highlighted in the output for height below, allowing us to see the height distribution of this age group in both the histogram and the normal quantile plot.

			The normal quantile plot allows for a visual evaluation of the normality of the data: a normal population will be relatively linear with most or all of the points falling within the 95% confidence limits indicated by the dotted lines, as is the case here.

			The outlier box plot gives us more specific information about the distribution shape, and rather than reinventing the wheel, I will just quote here the description from the online JMP Help with their figure (Figure 4.12).

			Figure 4.12: The Box Plot Explained

			[image: Figure 1.1 Some JMP Help Options]

			Note the following aspects about outlier box plots:

			The horizontal line within the box represents the median sample value.

			The confidence diamond contains the mean and the upper and lower 95% of the mean. If you drew a line through the middle of the diamond, you would have the mean. The top and bottom points of the diamond represent the upper and lower 95% of the mean.

			The ends of the box represent the 25th and 75th quantiles, also expressed as the 1st and 3rd quartile, respectively.

			The difference between the 1st and 3rd quartiles is called the interquartile range.

			The box has lines that extend from each end, sometimes called whiskers. The whiskers extend from the ends of the box to the outermost data point that falls within the distances computed as follows:

			1st quartile - 1.5*(interquartile range)

			3rd quartile + 1.5*(interquartile range)

			If the data points do not reach the computed ranges, then the whiskers are determined by the upper and lower data point values (not including outliers).

			The bracket outside of the box identifies the shortest half, which is the most dense 50% of the observations.

			The histogram below the outlier box plot superimposes a true normal distribution curve over the actual distribution represented by the bin bars, allowing the viewer to see how close to a normal distribution the data is.

			The Summary Statistics gives us just that and can be customized to show just those statistics the analyst considers most useful. Of particular interest to us are the mean and median values. The mean/median ratio will be 1.0 for a normal population, and the population may be considered “normal enough” if this ratio falls within the range of 0.8–1.2 (that is, ± 20%).1

			In the Fitted Normal output, we want to focus particularly on the Goodness-of-Fit Test to see the results of the Shapiro-Wilk test for normality.2 JMP provides the necessary rule of interpretation for the resulting p-value that tells us when we may infer normality and when we cannot.

			Parametric versus Nonparametric and “Normal Enough”

			You learned earlier in this chapter that some of the more powerful statistical tests are those that assume a normal distribution underlying some aspect of the data. Such tests are examples of what are referred to as parametric tests. These are statistical methods applied when there is a set of fixed parameters that determine the probability distribution of the population, and we are making some assumption about those parameters. Thus, a test that assumes the data being analyzed is normally distributed would be considered a parametric test. Such tests are generally considered to be more powerful than the corresponding nonparametric tests, but they are only valid when the assumptions about the parameters of the tests are met. When the assumptions are not met, you can usually still get numbers that suggest a conclusion, but those numbers are essentially meaningless since they are based on unmet and therefore false assumptions.

			For those cases where the assumptions are not met, we are not left to weeping, wailing, and gnashing of teeth in an inability to do anything with the data. We could try data transformations (discussed a little later in this section), or turn to the next option, nonparametric tests, which, though not as powerful, still allow for an objective evaluation of the data and subsequent drawing of conclusions. Nonparametric tests make no assumptions about the parameters of the population being studied and so are considered more versatile in some quarters.

			Since the normality assumption is the most common one for the usual parametric tests encountered, this leads to the question of how “normal” is “normal enough” to allow for the use of a parametric test? Parametric tests are typically robust to modest departures from normality in the data. Therefore, they can still be used with valid results even though a test like the Shapiro-Wilk is having an apoplectic fit and demanding that you reject the null hypothesis of no difference between your population and a normal distribution population (in other words, stomping its feet and plaintively wailing that the population is not normal). In fact, the Shapiro-Wilk does tend to be overly sensitive to slight departures from normality, so the flowchart in Figure 4.13 provides a decision tree to determine normality for the purposes of continuing with a parametric versus a nonparametric test.

			Figure 4.13: Normality Algorithm for Normal “Enough”
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			The logic is simple. If the Shapiro-Wilk test is happy and says that the population is normal, all is well and you can continue with parametric testing. However, if the Shapiro-Wilk is indicating non-normality, it turns into a best out of three tests. (The actual order in which you do the other two is not relevant.) If both the normal quantile plot and the mean/median ratios say that the population is “normal enough,” then continue with parametric testing. If one or both of these secondary tests fails (either the normal quantile plot is radically nonlinear, or the mean/median ratio is outside of the acceptable 0.8-1.2 range), then the population is not normal enough and you must resort to either the nonparametric counterpart3 for your testing or attempt to transform your data into something that is normally distributed.

			Transforming the data is simply the process of converting one population distribution into another by applying the same mathematical operation to all the data. This can be done to “normalize” the data, or sometimes just to make data visualization easier. Common data transformations include taking the log of the data, the reciprocal of the data, or squaring the data. For example, when the data are skewed in a log normal distribution, taking the log of the data will usually provide a normal distribution that can then be analyzed. The one caution when using transformed data is to remember the need to reverse the transformation to get back to the original scale of the data (for example, when calculating the confidence interval on the transformed data, that interval must be transformed back into the original scale to have practical utility).

		

		
			Endnotes

			1	This is one of those notorious “rules of thumb.” In other words, a general guideline that has a basis in experience but no theoretical, mathematical, or quantitative validation. It is, however, useful in guiding decisions.

			2	The Shapiro-Wilk test is automatically used for n ≤ 2000. For n > 2000, the Kolmogorov-Smirnov-Lillefors test is automatically calculated by JMP. The interpretation for the two is the same.

			3	We will be covering these as we go along in describing the tests in later chapters.

		

	

			Chapter 5: Inferring and Estimating

			Don’t leave inferences to be drawn when evidence can be presented.

			Richard Wright
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			Introduction

			Most of what we consider to be “statistics” falls into the category of inferential statistics. These are methods that allow us to infer something about populations from samples. Now, don’t you just love definitions that use the word that you’re trying to define in the first place?! What does it mean “to infer?” According to Dictionary.com, to infer is “to derive by reasoning; conclude or judge from premises or evidence.”1 This definition gives us considerably more help in understanding what we are talking about. The reasoning involved will be the application of induction and deduction as we apply our premises, or assumptions, and evaluate the evidence, or data.

			But what are the “somethings” we are supposed to be inferring? These are the various objectives for the analysis of the data, and they depend on the purpose of your experiment. Generally, we are looking for differences between populations, the presence or absence of relationships between variables, the existence of patterns in the data, or some expanded description of our data, often in the form of a model that explains a response in quantitative terms of one or more variables. In this chapter, we will look at the estimation of parameters that describe populations and what they allow us to infer about the data. In the following chapter, we will look at a second, more extensive use as well as explore null hypothesis significance testing (NHST) as a tool to decide if our results were obtained by chance alone.

			Inferential Estimation

			In biology, most of the populations that we might want to study are so large that it would be impossible to obtain results from every member of the population. Consequently, the biologist must resort to taking samples of the population that are, hopefully, a representative subset of that population. Successfully achieving this is a function of good experimental design, which is outside the scope of this work.2 Therefore, we will be assuming, in most cases, that the data collected for the examples that are given in this work were, in fact, collected appropriately. The analyst should always consider that the fallibility of human endeavor in this realm is still very much a possibility that might need to be taken into account when interpreting our results and the results of our analysis.

			Confidence Intervals

			We have already seen that when we describe a population, we want a measure of the central tendency (a mean or median value) and some measure of the variation present in the population. Confidence intervals (CIs) associated with those metrics give us a range in which we have a certain confidence that the true value for the metric lies. So, for example, if we have a mean with a 95% CI of 36.75 to 36.89, then we can say that we are 95% confident that the true unknown mean falls somewhere between these two values. Put another way, if we were to measure with the same sample size the same population 100 times, 95 of the CIs would contain the true mean. Conversely, we are not saying there is a 95% chance that the mean falls within this range (in other words, it is not a probability). An important distinction to remember is that confidence intervals do not quantify variation (the spread of the data) in the population, only the location of the metric for which it is being calculated. The variation does go into the calculation of the CI in the form of the standard deviation, but it is only one factor determining this metric. The importance of this fact will be noted again later.

			Confidence intervals are calculated from four values (with a formula that we will studiously avoid because our software will do the calculations for us). The CI for a mean requires:

			●	The sample mean. The CI will always be centered around the sample mean

			●	The standard deviation (SD). Our confidence will be influenced by the amount of scatter or noise in our data. Consequently, the width of the CI will be directly proportional to the sample SD.

			●	The sample size. The more data you have, the greater your ability to assess where the mean truly lies. The range of the CI will be larger for smaller sample sizes. (Technically, the width of the CI is inversely proportional to the square root of the sample size, but did you really want that much detail? See Figure 5.1.)

			●	The degree of confidence. The traditional level is 95%, but that is not set in stone and can be changed as needed. For greater confidence, you can go to 99%, or if you don’t need that much confidence, 90% has been used. Regardless, the size of the CI increases with the increasing degree of confidence chosen (Figure 5.2).

			Figure 5.1: Confidence Intervals Change with Sample Size

			[image: Figure 1.1 Some JMP Help Options]

			Figure 5.2: Confidence Intervals Change with the Degree of Confidence

			[image: Figure 1.1 Some JMP Help Options]

			Confidence intervals have a very helpful characteristic for inferential estimation: when comparing populations, the extent of the overlap of the CIs indicates how likely the samples are from the same population. Figure 5.3 shows an example where the CIs almost completely overlap, so we can conclude that these two samples are not going to be statistically different.3 Figure 5.4 is an example where there is no overlap, so we can conclude that these two samples are most likely not from the same population (that is, they are statistically different). Lastly, Figure 5.5 is a case where we have partial overlap, and this is why we really need statistics!

			Figure 5.3: Overlapping Confidence Intervals: Statistically Equivalent

			[image: Figure 1.1 Some JMP Help Options]

			Figure 5.4: Non-overlapping Confidence Intervals: Statistically Different

			[image: Figure 1.1 Some JMP Help Options]

			Figure 5.5: And Now We Need Statistics!

			[image: Figure 1.1 Some JMP Help Options]

			There Are Error Bars, and Then There Are Error Bars

			When reading the biological and medical literature, graphs frequently have error bars incorporated into their presentation, and it is critical to understand what those error bars are representing because confidence intervals are not the only metric that could be displayed using error bars. At least two other metrics are commonly shown as error bars, and all good graphs should indicate which one the error bars represent because the concepts behind each are different.

			As we have seen, the CI indicates the range in which we are x percent confident that our metric can be found, where x is typically 95%. When sufficient data is present (n ≥ 30) for a standard deviation to be a reasonable measure of the amount of variation in the data, error bars can be used to show that SD graphically. When the metric in question is the mean, dividing the SD by the square root of the sample size gives the Standard Error of the Mean (SEM), which is a measure of how precisely you know the population mean.4 Because of the math, the SEM is always smaller than the SD, but again, it is important to note that they are metrics of two totally different things. The SD is the variation present in your sample. The SEM is how well you know the true location of the mean for the entire population. (It is the same concept as a confidence interval, but using a different calculation to try to measure the same thing.) The larger the sample size, the smaller the SEM, because you have a better idea of that location with the increasing amount of data. So again, it is critical to specify which one you are plotting when you put error bars on your graph. (JMP does it automatically for you in Graph Builder, so you have to intentionally remove that label if you want to put it elsewhere.)

			So, which one should you plot? That depends on your goal. If you want to have a visual cue supporting your conclusion comparing samples and their similarity or difference, then the CI is probably the best. If you want to show how much variation is present in the values that you have collected in each sample, then the SD can be used. One caution when using the SD is that the ability to accurately measure the variation in the sample increases with increasing sample size, so for small sample sizes (n ≤ 10-30) it is probably better to just plot the data, or failing that, the SEM. The SEM can be used in any case to show how precisely you have determined the mean of your sample(s).

			Figure 5.6 shows the possible error bars for the same set of data so that you can visualize the differences summarized in this discussion.

			Figure 5.6: Types of Error Bars Compared

			[image: Figure 1.1 Some JMP Help Options]

			So, You Want to Put Error Bars on Your JMP Graphs…

			Error bars are very helpful tools to accurately portray various characteristics of your data on your graphs. But where in JMP do we find these values, and how do we put them on our graphs? Go ahead and open Big Class.jmp as the sample data to answer these questions. Create a distribution analysis of the weight variable and look carefully at the numbers in the Summary Statistics box. The standard deviation and the standard error of the mean are just below the mean (arrows in Figure 5.7) and the 95% confidence limits are just below that (boxed in Figure 5.7).

			Figure 5.7: Confidence Intervals in the Summary Statistics

			[image: Figure 1.1 Some JMP Help Options]

			Of course, remembering that the Little Red Triangle Is Your Friend, we can modify the number of metrics shown in the Summary Statistics to include such things as the minimum and maximum (to calculate the range, or you can just check the box to show the range) or the interquartile range. (See Figure 5.8.)

			Figure 5.8: Summary Statistics Options

			[image: Figure 1.1 Some JMP Help Options]

			The Summary Statistics is where you can find the actual numbers associated with these metrics, but how do you put error bars on your graphs? There are at least two places where you can apply error bars to your graph, and both are found under the Graph platform. 

			Graph Platform

			The first we will look at here is the oldest and will most likely be going the way of the dinosaur in future versions. It is presented here for the sake of completeness, and to aid in the appreciation of the other method that we will stress is the “better” way. This is the Chart method found by going to Graph  Legacy  Chart. Select weight again and add the Mean into the Statistics box, and add sex to the Categories, X, Levels box. Then check the Add Error Bars to Mean box and look at the options in the drop-down menu (Figure 5.9). There you can see the most common options available to you for a chart of the mean weights for these two categories. Figure 5.10 shows the results of the selected options in Figure 5.9: a bar chart with error bars representing the SEM.

			Figure 5.9: Charting Confidence Intervals

			[image: Figure 1.1 Some JMP Help Options]

			Figure 5.10: A Chart with Error Bars

			[image: Figure 1.1 Some JMP Help Options]

			If you choose to show the Confidence Interval, you can then choose the confidence level (it defaults to the 95% confidence limit).

			Graph Builder Platform

			The other place in JMP where you can add error bars to your graph is in the Graph Builder platform, and this is the extremely versatile tool for creating all sorts of graphs and figures in JMP – it’s the best thing since sliced bread! Figure 5.11 shows the setup and results for replicating the chart data in Figure 5.10 as a point graph rather than a bar chart and with the 95% confidence interval. (Of course, if you really wanted the bar chart, you can do that with Graph Builder as well.)

			Figure 5.11: Graph Builder Setup for Error Bars

			[image: Figure 1.1 Some JMP Help Options]

		

		
			Endnotes

			1	 Most dictionaries will have some variation of these concepts in defining the word, but I like this one because it falls in nicely with the concepts that we are exploring here in this chapter.

			2	 However, I have already cited Ruxton and Colegrave’s work, Experimental Design for the Life Sciences, in a previous chapter as an excellent starting point for this important topic.

			3	 Technically we say that the means are not significantly different, but we will get into that in the next chapter.

			4	 We have not made a distinction between the sample mean and the population mean, but statisticians do, and not without good cause.

		

	

			Chapter 6: Null Hypothesis Significance Testing

			Statistics show that of those who contract the habit of eating, very few survive.

			George Bernard Shaw
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			Introduction

			We have now arrived at our last “theoretical” chapter before we start looking at specific case studies and tests. What is Null Hypothesis Significance Testing, also known affectionately as NHST? If we break the phrase apart, obviously we are talking about testing something (that is why it’s called “testing”). We are testing the significance of something, and there must be some criterion, if not multiple criteria, for assessing that significance. Hypotheses should be familiar to even the most basic of science majors. They are the proposed answers to our research questions around which our experimentation lies. But what does “null” mean, and more specifically, what is a null hypothesis?

			Looking up “null” in the dictionary, one meaning that applies in this context is “without value, effect, consequence, or significance.”1 Of particular applicability here is “without effect.” Thus, the null hypothesis is the hypothesis of no effect, no difference, no change…in short, boring nothingness! It is usually what the scientist hopes to reject so that she can provide evidence for her hypothesis that there is an effect, a difference, a change…in short, that she has found a new result she can publish. (This is why one should “care” about NHST. It lies at the heart of data analysis.)

			The null hypothesis (Ho) is in direct opposition to the research or alternative hypothesis (H1). Table 6.1 compares and contrasts these two. There may be more than one alternative hypothesis under consideration in any given line of research, but distinguishing between different alternative hypotheses falls into the arena of experimental design.

			Table 6.1: Null vs. Research Hypothesis

			
				
					
					
				
				
					
							
							Null Hypothesis (Ho)

						
							
							Research/Alternative Hypothesis (H1)

						
					

					
							
							No difference between populations

						
							
							The populations are different

						
					

					
							
							No relationship between two variables

						
							
							There is a relationship between two variables

						
					

					
							
							The particular intervention does not make a difference/has no effect

						
							
							The particular intervention does make a difference/has an effect

						
					

				
			

			Biological Versus Statistical Ho

			At this point it is helpful to distinguish between two different types of null hypotheses in any given experiment because it will help in interpreting our results. When designing your experiment, your research question should lead you to formulate a biological null hypothesis, which defines the absence of an effect in biological terms specific to what you are investigating. The biological null hypothesis frequently needs to be translated into an appropriate statistical null hypothesis that then enables you to evaluate the biological Ho. The statistical Ho is formulated in terms of the statistical metric or metrics that will be evaluated by your statistical test.

			For example, let’s go back to our example of geckos climbing walls as a function of temperature. Your research question is something along of the lines of “does temperature affect the rate at which geckos climb walls?” Your biological Ho is: temperature does not affect the rate at which geckos climb walls. This is the question that you, as a biologist, are really interested in. But when you go into the lab (or out in the gecko habitat) and collect your data, you now have two or more populations of rates at a minimum of two temperatures. How do you answer your question objectively with this data? The statistical Ho is what will guide you to your conclusion. The best statistical Ho is that there is no difference in the mean rate of climbing walls at the different temperatures. In order to answer the biological question, we calculate the metric of the mean of the rate populations and compare them for significant differences with a statistical test.2

			NHST Rationale

			Null Hypothesis Significance Testing (NHST) has a specific rationale as illustrated in Figure 6.1. You have measured the same thing on two different populations and obtained a mean of 15 in one population and a mean of 18 in the other. The null hypothesis says the samples come from the same population and are different just by chance due to the inherent variation in the system (and possibly in your measurement instrumentation). This is depicted on the left side of Figure 6.1. Alternatively, on the right side of Figure 6.1, the two samples might come from two distinct populations and are not different by chance but because they are, in fact, different populations. So, which is it?

			Figure 6.1: The Alternative Hypotheses of NHST

			[image: Figure 1.1 Some JMP Help Options]

			The application of the NHST rationale can be done in four steps:

			1.	Construct your null hypotheses (biological  statistical)

			2.	Choose a critical significance level for the p-value (0.05 is the default; more on this in a moment)

			3.	Calculate a statistic (JMP does this for you, which is why we love software)

			4.	Reject or fail to reject the null hypotheses based on the p-value associated with the calculated statistic

			p-Values

			Steps 2 and 4 use this metric call the p-value. Just what is a p-value? The more statistical definition is the probability of getting a value for the test statistic equal to or more extreme than that calculated3 for the Ho if the null hypothesis is true. Since most of us will have trouble parsing that definition, another way of defining the p-value is the probability that the observed difference is due to chance alone. Or, to put it yet another way, from the perspective of very low p-values, the p-value is the probability that you mistakenly rejected a true null hypothesis.

			The traditional critical significant level of 0.05 is just that, tradition. It has no basis in theory, only in practice. You are saying that as long as the p-value is ≤ 0.05, the maximum probability of rejecting a true hypothesis that you will accept is 5% (or a 95% confidence level). We could just as easily have said that you really wanted to be much more convinced and accept an even smaller probability of being wrong, so you set the critical significance level to 0.01 (a 1% chance of error, or 99% confidence). Conversely, if the nature of your investigation is such that you are willing to accept a higher chance of error, then you could set it to 0.10 (a 10% chance of error, or 90% confidence). Or you can set it at any other value you think appropriate. However, the traditional 0.05 will be used throughout the rest of this work for simplicity’s sake.

			p-Value Interpretation

			Interpreting the p-value is straightforward once you have set it. When p < 0.05, we say there is a statistically significant difference and we reject the null hypothesis. One way to remember this is to learn the phrase, “If p is low, the null must go.” When p is > 0.05, we fail to reject the null hypothesis. Notice that we are not “accepting” the null hypothesis. In part, this is because failing to reject the null hypothesis does not mean that the null hypothesis is correct, only that there is not enough evidence to reject it. Remember we are in the foggy realm of probabilities, and unless you are omniscient, the null hypothesis can never be disproved. You can only say whether there is enough evidence to support it. A key axiom to remember: The absence of evidence is not evidence of absence.

			A Tale of Tails…

			Another aspect to be aware of is the distinction between one- and two-tailed tests. P-values are calculated for both, but what do they mean? What is the difference? Let’s refresh our little gray cells on the shape of a normal distribution with Figure 6.2.

			Figure 6.2: A Normal Distribution Revisited

			[image: Figure 1.1 Some JMP Help Options]

			Notice that the normal distribution has two tails, one on either end of the curve. They are called tails because they are obviously shrinking in size as fewer and fewer members of the population are found in these parts of the curve, so they sort of look like tails. (Also, maybe the statistician who named them was an animal lover?!?) A two-tail test is one that simply wants to determine whether a difference exists between two populations regardless of the direction. That is, it is irrelevant to the goal of the experiment whether population A is greater than or less than population B, you just want to know whether they are different. One-tail tests, then, are for directional hypotheses where you want to know specifically if population A is greater than (or less than) population B. JMP provides p-values for all three types of tests: two-tail, and one-tail in either direction. This should be clearer after we walk through a sample case study at the end of this chapter.

			Error Types

			The significance level of p-values is usually set with reference to this mysterious Greek letter alpha, α. Alpha is used to designate what is called a Type I error, defined as incorrectly rejecting a true null hypothesis. You can call this a false positive error because when you reject a null hypothesis, you are accepting the alternative hypothesis as true and saying there is something going on (for example, a difference or relationship is present) when in fact it is not. Sort of like a doctor telling a male patient that he is pregnant.

			There is another type of error the analyst can make. If you do not reject a false null hypothesis, you have committed a Type II error (often referred to as β), or accepted a false negative. To use our previous example, it would be like a doctor telling an obviously pregnant female patient that, no, you are not pregnant! Table 6.2 shows the various options to clarify.

			Table 6.2: Error Types

			
				
					
					
					
				
				
					
							
							
							Conclusion: REJECT
Null Hypothesis
(an effect exists)

						
							
							Conclusion: DO NOT REJECT Null Hypothesis
(no effect detected)

						
					

					
							
							Null Hypothesis is TRUE

							(no effect exists)

						
							
							Type I error (α)

						
							
							No error

							(correct conclusion)

						
					

					
							
							Null Hypothesis is FALSE

							(an effect does exist)

						
							
							No error

							(correct conclusion)

						
							
							Type II error (β)

						
					

				
			

			Perhaps the bottom line of these concepts that the biologist should always keep in mind is that there is always a finite chance, however small, that your experiment will find a statistically significant difference when none exists.

			A Case Study in JMP

			Mild-to-severe chronic obstructive pulmonary disease (COPD) usually reduces the ability to engage in physical activity for those suffering from this ailment. To determine if this actually is the case, athletic performance was measured by seeing how far (in meters) individuals could walk in six minutes. A group of COPD patients was compared to age- and sex-matched controls with no disease.

			What is the biological null hypothesis? Simply that COPD has no effect on the distance walked compared to the controls. How do we translate this into a statistical null hypothesis? Well, what type of data do we have? (See Figure 6.3.) Each group has a set of continuous data of the distances walked by each subject in the group. The best way to summarize these two groups would be to find the central tendency, that is, the mean. So, our objective is to compare the two groups and the easiest way to compare them is to compare the means. Therefore, our statistical null hypothesis is that there is no difference in the mean distance walked of the COPD and control groups. Notice two things about this process. We have employed the Y.O.D. part of our Y.O.D.A. strategy, and the formulation of our two types of null hypotheses worked synergistically to identify the overall objective and how we were going to get there. This is one of the advantages of thinking in terms of null hypotheses.

			Figure 6.3: Raw Data for the Case Study

			[image: Figure 1.1 Some JMP Help Options]

			This type of analysis is a standard t test, which will be covered more extensively in Chapter 9. For now, we will work through the example in JMP to see how to apply the concepts described in this chapter. Trust me…by the end of the book, you will know more than you probably want to know about the t test, but you will be prepared to use it correctly and interpret it easily.

			The data in Figure 6.3 is presented in the form in which it was probably collected, and most likely in an Excel table (it’s already in JMP in this figure, but transfer between JMP and Excel has been made incredibly easy, so no worries there). Each column can be summarized in this format, but the actual comparison requires a reconfiguration of the data. Think in terms of the independent and dependent variables of the experimental design. The independent variable is not the control, but rather the group identity. The dependent variable is the distance walked. Thus, the independent variable is actually across the top of this initial JMP data table in the column headings!

			JMP allows for this reconfiguration in the Table menu. It is the Stacking option and the filled-out menu is in Figure 6.4.

			Figure 6.4: Stacking the Data

			[image: Figure 1.1 Some JMP Help Options]

			The two columns have been moved over into the Stack Columns box, and the New Column Names entered into the appropriate boxes. Clicking OK yields the new data table (neatly preserving the initial data) seen in Figure 6.5.

			Figure 6.5: New Stacked Data Ready for Analysis

			[image: Figure 1.1 Some JMP Help Options]

			Now open the Fit Y by X platform in the Analyze menu and put the Group as the X, Factor and the Distance as the Y, Response (Figure 6.6), and click OK. Depending on the settings in your preferences, you should see something like Figure 6.7. (Don’t worry if your results look different; how to get there will be explained in Chapter 9 when we cover this test in more detail.)

			Figure 6.6: Fit Y by X Dialog Box Filled Out for the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			Figure 6.7: Analysis Results

			[image: Figure 1.1 Some JMP Help Options]

			Looking at this output, JMP provides the graph that immediately lets us see that the COPD population is lower than the control population, but there is some overlap. The normal quantile plots allow us to evaluate the assumptions of a t test, but more on that in Chapter 9. For now, we want to focus on the t test table in which we find the more useful objective information. In the left column, we can note that the test execution has subtracted the control mean from the COPD mean to get the Difference. JMP then provides the Standard Error of the Difference (review Chapter 5 if you are unclear on what the Standard Error represents). It then provides the confidence limits (CL) and the significance level of those CL for the difference, which defaults to 95% (or 0.95). This characterizes the difference between the means of these two groups/populations.

			The question at hand is whether this difference is significant, that is, is it greater than expected based on chance alone? This is where the metrics in the right column come in. Remember that statistical tests compute some metric to which the p-value is associated. In this case, the t ratio is calculated with the degrees of freedom (DF) as shown (using an equation of which we are gloriously ignorant and pragmatically don’t want to know because the software does it all). That doesn’t help us much because we don’t know what value to compare the t ratio to in order to make any kind of determination. Since we just want to know if there is a difference, the two-tailed p-value will be sufficient for the purposes of this analysis, so we can look at the Prob > |t| value of < .0001. This value tells us the probability of seeing a t ratio this large by chance alone is really, really small if the null hypothesis were true. Therefore, we can safely reject the null hypothesis of no difference between the means and conclude that there is a statistically significant difference in the means of these specific populations. This latter caveat should always be kept in mind since we only have a sample of the total population for each condition.

		

		
			Endnotes

			1	 Definition of “null” from www.Dictionary.com; accessed 10 July 2017.; accessed 10 July 2017.

			2	 In the medical field, the biological null hypothesis may be referred to as the clinical null hypothesis. The presence or absence of statistical significance may be referred to as clinical significance.

			3	 Back in the Dark Ages, before the dawn of computers, these critical values would be laboriously hand calculated and tabulated in monster tables along with their associated p values.  Yet another reason to rejoice that we have computers and software like JMP in these enlightened times!

		

	

			Chapter 7: Tests on Frequencies: Analyzing Rates and Proportions

			Pick up a sunflower and count the florets running into its center, or count the spiral scales of a pine cone or a pineapple, running from its bottom up its sides to the top, and you will find an extraordinary truth: recurring numbers, ratios and proportions.

			Charles Jencks (1939– ), American landscape architect
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			Two-way Chi-Square Tests and Piscine Brain Worms

			Background and Data

			Data Entry into JMP

			Analysis

			Interpretation and Statistical Conclusions

			Introduction

			Having equipped the reader with the basics of terminology and statistical strategy in the first six chapters, we now turn to pontificating upon the details of specific statistical tests and how to execute them in JMP. This will be our first instance of applying our Y.O.D.A. strategy up close and personal. Remember that to do so, we need to ask and answer the following questions: What is Your Objective? What type of Data do you have? And what are the Assumptions of the test chosen to analyze that type of data with that objective in mind?

			Y.O.D.A. Assessment

			The first set of tests is used when the information needed by biological and medical scientists comes in the form of the number of subjects1 in different categories. In this case, the analyst is confronted with count Data that translates into rates or proportions, or, in other words, frequency data. The initial observations collected can be made using nominal, ordinal, discrete scale or continuous scale measurements. But these are then tabulated as frequencies (not percentages),2 and it is the frequency data that is evaluated. This type of analysis is done with a group of nonparametric inferential statistics tests known as chi-square tests.

			Your Objective and the Data type integrate with one another to determine which of the two chi-square tests you will perform, and just to make things more fun, they are found in two different locations in the JMP menus due to the nature of the objectives.

			The simplest situation is when you have collected data with only one category but two or more possible values within that category, and you have some hypothesis or theory that would predict a certain specific ratio of those subcategories if the hypothesis is correct. Your Objective in this case is inferential, that is, to compare the observed frequency distribution to the frequency distribution expected based on these theoretical considerations. This situation is evaluated with a one-way classification chi-square test, which is usually shortened to just a one-way chi-square test. Since this is a nonparametric test, the primary Assumption is that each item sampled can only fall into one subcategory, something that results from experimental design and not statistical evaluation.

			A second frequently encountered situation is when the biologist has two variable categories with two or more subcategories in each and wants to know if the two categories are related to one another. Your Objective is to infer if there is an association between the two variables by comparing the observed frequencies with the expected frequencies calculated assuming no association between the two. This is a two-way classification chi-square test, or just two-way chi-square test. The primary Assumption for the two-way chi-square test is the same as that of the one-way. An additional concern that is not so much an assumption as it is a caution: chi-square tests become unreliable if some expected values are small. As a general rule, if 20% or more of the expected counts are less than 5, the reliability of the results is questionable enough to require extreme caution in using them as a basis for any critical conclusions or decision. JMP has a handy warning to that effect in the output of this test, so analysts do not have to worry about their eyeballs crossing from searching the resulting output table to check this out.

			In the pattern that we will follow for the rest of the book, let’s now look at specific examples both to address additional associated issues and to see how to do the analysis in JMP and interpret the output.

			One-way Chi-Square Tests and Mendel’s Peas

			Background and Data

			Over 100 years before the genetically modified food controversy popped up into the public eye, an obscure (at the time) Austrian Augustinian monk by the name of Gregor Mendel was happily at work genetically modifying his pea crop in an effort to try to detect the principles of inheritance involved in the hybridization process of these plants. Following artificial fertilization, Mendel collected frequency data on the physical characteristics of the pea plants, such as seed color and seed form. We will look at one set of data from this experiment with its outcomes and refer the reader to the data source for more details should they be interested.3

			Table 7.1 shows some of the “raw data” Mendel collected along with the category he created that combined the two characteristics in which he was interested (the seed form and seed color). As is obvious from this table, the raw data is nominal. Since Mendel’s hypothesis had to do with the inheritance of these two characteristics, to create a frequency table, the two variables had to be combined into a category that combined the seed form and color, as seen in the third column of the table. Counting the total number of seeds in each category yields Table 7.2, and this is what will be analyzed in JMP.

			Table 7.1: Mendel’s Raw Data

			
				
					
					
					
					
				
				
					
							
							Seed Number

						
							
							Seed Form

						
							
							Seed Color

						
							
							Category

						
					

					
							
							1

						
							
							Round

						
							
							Green

						
							
							Round.Green

						
					

					
							
							2

						
							
							Round

						
							
							Yellow

						
							
							Round.Yellow

						
					

					
							
							3

						
							
							Wrinkled

						
							
							Yellow

						
							
							Wrinkled.Yellow

						
					

					
							
							4

						
							
							Round

						
							
							Yellow

						
							
							Round.Yellow

						
					

					
							
							5

						
							
							Wrinkled

						
							
							Green

						
							
							Wrinkled.Green

						
					

					
							
							6

						
							
							Wrinkled

						
							
							Green

						
							
							Wrinkled.Green

						
					

					
							
							7

						
							
							Round

						
							
							Green

						
							
							Round.Green

						
					

					
							
							8

						
							
							Wrinkled

						
							
							Yellow

						
							
							Wrinkled.Yellow

						
					

					
							
							9

						
							
							Round

						
							
							Yellow

						
							
							Round.Yellow

						
					

					
							
							…

						
							
							…

						
							
							…

						
							
							…

						
					

				
			

			Table 7.2: Restructured Version of Mendel’s Raw Data

			
				
					
					
				
				
					
							
							Seed Category

						
							
							Number of Seeds

						
					

					
							
							Round Green

						
							
							25

						
					

					
							
							Round Yellow

						
							
							24

						
					

					
							
							Wrinkled Green

						
							
							27

						
					

					
							
							Wrinkled Yellow

						
							
							22

						
					

					
							
							Total

						
							
							98

						
					

				
			

			The predicted frequency distribution based on the number and types of chromosomes and genes being hypothesized is 1:1:1:1, that is, equal ratios. That is not what the data reveals, at least not exactly. But is the observed frequency distribution close enough to the predicted distribution to be within the “noise cloud” of chance so that we can say the predicted and observed are not statistically different and that the observed differences are only due to biological variation and possible measurement error? The statistical null hypothesis is that of no difference between the observed and predicted frequency ratios, and this is one of the few instances that we would want to fail to reject the null hypothesis. The null hypothesis is, in this case, what we want to prove because the biological hypothesis that we are trying to support is the basis for the predicted frequency distribution. Therefore, showing no difference between the observed and predicted would provide evidence for the mechanism being proposed by the biological hypothesis under investigation.

			Data Entry into JMP

			There are two ways to handle data entry of this type, and they conform to the way the data is tabulated as shown in Tables 7.1 and 7.2. In other words, you can enter the data as in Table 7.1 and let JMP do the counting for you, or you can do the counting yourself and enter the data as in Table 7.2. If you opt for letting JMP do the counting for you, you will still have to enter the characteristics of each seed one at a time (Figure 7.1). However, you can use the JMP Formula function to create the combination designation by concatenating the Form and Color columns together (Figure 7.2).

			Figure 7.1: Data Entry for Table 7.1

			[image: Figure 1.1 Some JMP Help Options]

			Figure 7.2: Formula Editor Setting up Third Column

			[image: Figure 1.1 Some JMP Help Options]

			Figure 7.3 shows the data table modeled after Table 7.2 data entry. Note that the Count column has had the Frequency role pre-assigned (right-click the Count column and select Preselect Role ► Freq).

			Figure 7.3: Data Entry for Table 7.2

			[image: Figure 1.1 Some JMP Help Options]

			Analysis

			We are comparing frequency distributions, but we have only one set of observations, so the Distribution platform is where we will find the one-way chi-square test. With either data entry method, select Analyze ► Distribution, and move the Category variable to the Y, Columns box, then click OK for the distribution (Figure 7.4).

			Figure 7.4: Setting up the Analysis in the Distribution Platform

			[image: Figure 1.1 Some JMP Help Options]

			The results are best ordered by the frequencies using the Little Red Triangle as shown in Figure 7.5.

			Figure 7.5: Ordering the Output

			[image: Figure 1.1 Some JMP Help Options]

			The observant reader will have seen that in this menu, there is also the option to Test Probabilities. (Note the pop-up that JMP helpfully provides to identify the test to which this links in Figure 7.6.).

			Figure 7.6: Finding the One-Way Chi-Square Tests

			[image: Figure 1.1 Some JMP Help Options]

			This brings up this dialog box into which the predicted frequencies can be input for comparison to the observed (Figure 7.7).

			Figure 7.7: Analysis Dialog Box for One-Way Chi-Square Test

			[image: Figure 1.1 Some JMP Help Options]

			While the hypothesized probabilities to enter should sum to a value of 1, as do the estimated probabilities (see Estim Prob column), JMP is smart enough to rescale the values that you enter if you want to supply the actual values your hypothesis predicts. So, for this example, we can enter a value of 1 into each cell of the Hypoth Prob column, and JMP will automatically rescale each to a value of 0.25 (=1/4). This might seem obvious, but when the predicted frequency distribution becomes more complex, letting JMP do the math avoids another opportunity to enter information incorrectly.

			Entering the necessary numbers and clicking Done yields the output in Figure 7.8.

			Figure 7.8: One-way Chi Square Analysis Output

			[image: Figure 1.1 Some JMP Help Options]

			Interpretation and Statistical Conclusions

			JMP has calculated two versions of the chi-square value for us, but both are very close, and the p-values are both well above the critical value of 0.05 and thus yield the same conclusion: the null hypothesis cannot be rejected, and we cannot discern statistically a difference between our observed frequencies and the expected frequencies. The variation between the two could plausibly be due to chance alone. We can conclude that at least with this data set, the ratio is, in fact, 1:1:1:1 and the underlying hypothesis predicting this has another datum to support it. Dancing in the hall(s) can commence!

			Two-way Chi-Square Tests and Piscine Brain Worms

			Background and Data

			Parasites often have multiple hosts through which they must pass in order to complete their life cycle. Trematodes of the species Euhaplorchis californiensis pass through three different species: birds, snails, and fish. The mature state of this parasite reaches that maturity in birds and lays eggs that are excreted in the avian feces. The horn snail (Cerithidea californica) consumes those parasite eggs (which makes one wonder about the culinary propensities of these and other snails and adds yet another reason to eschew escargot), which hatch within this host into an intermediate life stage. Enter the California killifish (Fundulus parvipinnis). Horn snails form a staple of the fish’s diet, so the parasite passes into the next stage of development that includes encysting itself into the fish’s braincase. The last stage of the journey completes the cycle when the fish gets eaten by a bird, where the worm can mature to begin the cycle anew.

			Biologists have observed that infected fish seem to exhibit a suicidal death wish by spending more time near the water’s surface where they can be more readily spotted and consumed by avian predators. It is almost as if the worm has taken over control of the fish brain to guide the fish to the parasite’s next host. Is this really an example of worm control, or is this just a subjective impression by some researchers who have read too much science fiction?

			To test the hypothesis that the worm had turned the fish into suicidal zombies, Lafferty and Morris4 stocked a large outdoor tank with killifish that were either uninfected, lightly infected, or highly infected with this worm. A natural fishing contest was then held by letting the local predaceous waterfowl (primarily great egrets, great blue herons, and snowy egrets) have full access to this tank and monitoring the number of the different categories of fish actually eaten. The data from the experiment is shown in Table 7.3.

			Table 7.3: Raw Data to Analyze

			
				
					
					
					
					
				
				
					
							
							
							Uninfected

						
							
							Lightly Infected

						
							
							Highly Infected

						
					

					
							
							Eaten by birds

						
							
							1

						
							
							10

						
							
							37

						
					

					
							
							Not eaten by birds

						
							
							49

						
							
							35

						
							
							9

						
					

				
			

			Data Entry into JMP

			What we have in Table 7.3 is a classic contingency table in which two categorical variables, bird predation and infection level, are being shown together. The biological question is whether these two are associated, so the biological null and alternative hypotheses are as follows:

			Ho: Bird predation and parasitic infection are not associated with one another.

			HA: Bird predation and parasitic infection are associated with one another.

			Notice that the biological hypotheses, the questions in which we are really interested, are formulated in terms of the specific biological question. Compare these now to the statistical null and alternative hypotheses, which are formulated in terms of the metric we are comparing, the frequency distributions:

			Ho: There is no difference between the observed frequencies of bird predation versus parasitic infection and the frequencies predicted if the two are, indeed, not associated.

			HA: There is a significant difference between the observed frequencies of bird predation versus parasitic infection and the frequencies predicted if the two are not associated. Therefore, there is an association between these two variables.

			The alternative hypothesis is the one the investigators were really interested in, so in this case, disproving the null hypothesis would be the most interesting outcome. (Not disproving it might also have some interest, depending on your ultimate goal for the experiment.)

			To enter this data into JMP, the contingency table in Table 7.3 will need to be rearranged a little so that the two categorical variables under consideration are each in their own column. The resulting rearrangement looks like Figure 7.9.

			Figure 7.9: Data Table of This Raw Data

			[image: Figure 1.1 Some JMP Help Options]

			Note that we have again pre-assigned the frequency role to the Count column. With two variables like this, data entry in this format is the most logical.

			Analysis

			Because we have two variables and we are interested in whether they are associated, we need to use the Fit Y by X platform for the analysis. Go to the Analyze ► Fit Y by X dialog box and note the set of figures in the lower left corner (Figure 7.10).

			Figure 7.10: Fit Y by X Dialog Box Filled Out for the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			In the lower left corner of Figure 7.10, we see the types of analysis available to us depending on the nature of the data. For the two nominal data sets in this example, a contingency analysis is expected, and that is what we want. Based on the experimental design, the independent variable is the Infection Level, so it can be entered as the X, Factor. The Bird Predation then is the Y, Response. Having pre-assigned the frequency role to Count, it automatically appears in the Freq box, but could be entered here manually if it was not pre-assigned. It is critical to ensure that the Count column does get placed here, because otherwise, JMP finds a count of one for each category rather than the actual data, and the output is meaningless. If the resulting contingency table in the JMP output has a value of one in every cell, you should realize that you made this mistake!

			Clicking OK yields the analysis shown in Figures 7.11 and 7.12.

			Figure 7.11: Analysis Output – Mosaic Plot

			[image: Figure 1.1 Some JMP Help Options]

			Figure 7.12: Analysis Output – Contingency Table and Chi-Square Results

			[image: Figure 1.1 Some JMP Help Options]

			Interpretation and Statistical Conclusions

			The Mosaic Plot gives a nice graphic display of the data, and the fact that there is such a different distribution of the Bird Predation for each Infection Level strongly suggests that there is a relationship between the two variables in question. Turning then to the Contingency Table5 itself, we see that there is a big difference between the observed Count and the count Expected,6 assuming no association between the two variables. This is confirmed by the p-values for the chi-square test, both of which are < 0.0001, which means that there is only a really, really itsy-bitsy7 small chance that there is no association between these two variables. The null hypothesis can be rejected and we can conclude that yes, the brain worms are creating suicidal zombies out of the infected fish! Isn’t science fun?!

		

		
			Endnotes

			1	 The term “subject” is being used very loosely here. It does not refer to human individuals only. It can be the equally infamous “widgets” or elephants or tumor cells, and so on.

			2	 Percentages are frequently used to present and compare proportional data, but they do so by essentially normalizing the data to a standard range of 0–100. As such, chi-square tests should not be used with percentages, but with the data underlying the percentages.

			3	 The data for this example can be found on the web at http://www.mendelweb.org/Mendel.html. (Be sure you capitalize the M of the html file or you will get an error message saying the file is not found on this server!). (Be sure you capitalize the M of the html file or you will get an error message saying the file is not found on this server!)

			4	 Lafferty, K.D. and A.K. Morris (1996) “Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts.” Ecology 77: 1390–1397.

			5	 Using the Little Red Triangle of the Contingency Table, the default values showing column and row percentages have been deselected, and only the count and expected count selected. This simplifies the table by having only the two most relevant (for this discussion) numbers to compare.

			6	 The formula for the Expected values is simple: (row total * column total)/n), where n is the total number of observations in the table. Remember, the Expected values are assuming no association between the two variables. In other words, the numbers are based on probabilistic chance only.

			7	 Technical term for “teeny-tiny.” For ESL readers, that means really, really, really small!

		

	

			Chapter 8: Tests on Frequencies: Odds Ratios and Relative Risk

			If something has a 50% chance of happening, then 9 times out of 10 it will. 

			Yogi Berra (1925–2015)

			Introduction
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			Definition and Calculation
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			Odds Ratios

			Definition and Calculation

			Interpretation of the Odds Ratio

			Odds versus Probability

			Renal Cell Cancer and Smoking

			Introduction

			In the previous chapter we saw how to detect the presence of a relationship between two variables with count or frequency data. But what if we find such a relationship and want to assess the strength of that association? Is there a metric we can calculate that will provide such a value? This is what we will consider in this chapter.

			Consider the following abstract (underline added):

			Background: HER2 positivity is reported to be <20% in gastric cancer. Clinicopathological characteristics will be helpful to understand the biological features of HER2-positive gastric cancer. Methods: A total of 813 gastric cancer patients who underwent HER2 testing between January 2005 and December 2010 were included in this study. Results: Ninety-five (11.7%) patients had HER2-positive gastric cancer. Elevated serum carcinoembryonic antigen (CEA) concentration [odds ratio (OR), 5.629; p < 0.001] and differentiated histology (OR, 3.717; p = 0.002) were significant predictive factors for HER2 positivity in localized disease. For recurrent or metastatic disease, elevated serum CEA concentration (OR, 2.545; p < 0.001), differentiated histology (OR, 3.299; p < 0.001), pulmonary metastasis (OR, 3.321; p = 0.001), and distant lymph node metastasis (OR, 2.286; p = 0.002) were significant predictive factors. Median disease-free survival (DFS) was shorter in HER2-positive patients than in others, especially in stage I or II disease (24.7 vs. 49.2 months; p < 0.001). Among HER2-negative patients with stage II diseases, patients who received adjuvant chemotherapy had longer DFS than others (42.2 vs. 30.7 months; p = 0.025). Conclusions: Clinicopathological factors may be useful in predicting the HER2 positivity of gastric cancer. Further studies are needed to understand the molecular basis of HER2-positive gastric cancer.1

			In just this one example from the medical literature, we have the odds ratio used multiple times, and the ability to understand the results and conclusions is totally dependent upon the readers’ understanding of this metric. I use this abstract to point out to the premed students taking my course that even they need to know and understand biostatistics if they are to make intelligent decisions on the implications of medical research to their own medical practices. Odds ratios and relative risk are two of the more commonly used metrics that you will find in the biomedical literature for assessing the strength of the relationship between two variables. Usually, one variable is some measure of exposure to or treatment with something of interest to some disease state. But before we can dive into a description of these metrics, we need to take a side trip into the realm of experimental design.

			Experimental Design and Data Collection

			This is a classic case where how you collect the data determines how you can analyze the data, and how you collect the data is, in turn, an integral component of the experimental design. We must distinguish here between prospective and retrospective studies. They have both similarities and critical differences.

			Prospective Design

			To design a prospective study, the researcher collects two populations of subjects based on whether they are to receive an experimental treatment or have been exposed to a putative cause of the eventual outcome of interest to the experiment. So then, we have a treated or exposed experimental group and an untreated or unexposed control group to compare. The researcher then waits for a period of time and watches for the frequency of the outcome of interest in each group. Thus, he is looking forward in time from the initial creation of the two groups, that is, he is designing prospectively. 

			As an example of a prospective study, the case study that we will look at later in the chapter looks at whether women use hormone replacement therapy (HRT) and what impact such usage has on the outcome of death. Two groups of women were observed over time: one using and one not using HRT. The data collected is the count of those who die in the time period of interest. (More details when we look at these later.) The experimenters are seeking to determine if there is a relationship between the use of HRT and subsequent mortality.

			Prospective studies are also called longitudinal or cohort studies. All three terms describe the same study design. The thing to remember here is that one can calculate either a relative risk or an odds ratio for this type of study design. Not so for the retrospective design.

			Retrospective Design

			In a retrospective study, the researcher again creates two populations of subjects, but this time, the subjects are divided based on whether they have the outcome of interest. The researcher then looks back, retrospectively, and determines the frequency of exposure to the risk factor (or treatment) in each of these groups. Usually, this can be accomplished by going to hospital records or some other database of personal information where the critical variables have been collected.

			In other words, retrospective studies use pre-existing data to create two populations with and without the outcome of interest (usually a disease in this context) and then look back over the data previously collected to count within each of these two populations the frequency of exposure to a potential risk factor or causative agent. Clear as mud?

			Retrospective studies are sometimes called case-control studies because the case subjects who have the outcome of interest are being compared to the control subjects who do not have the outcome of interest. Due to the nature of the data collection for this design, only odds ratios should be calculated for this type of experiment.

			As we shall see later in this chapter, both types of experimental designs are analyzed as 2 x 2 contingency tables, so if the data is presented to the analyst in this format without any additional information, the type of design used to fill in the contingency table will need to be provided. That is to say, you cannot intuit the experimental design from just the data presentation. Both are presented in the same tabular format. Thus, the analyst must be told so that the correct metric can be used. (Alternatively, you can always calculate an odds ratio since that can be used for either design. But if relative risk is desired, the design should be prospective in nature.) Figure 8.1 gives a graphical representation and sets up our discussion of how to calculate each of these metrics in JMP.

			Figure 8.1: Prospective Versus Retrospective Study Designs

			[image: Figure 1.1 Some JMP Help Options]

			Relative Risk

			Definition and Calculation

			The relative risk is simply the probability of the outcome of interest in the exposed group divided by the probability of the outcome of interest in the unexposed group. Figure 8.2 illustrates how to calculate this from the 2 x 2 contingency table.

			Figure 8.2: Relative Risk Contingency Table and Formula

			[image: Figure 1.1 Some JMP Help Options]
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			While you do not need to remember this formula because we are going to let JMP do the actual calculations for us, it is still helpful to have an idea of what it looks like, because it will help us interpret the value for the relative risk that is computed for any specific situation.

			Interpretation of Relative Risk

			Since relative risk is the ratio of the probability in the exposed group to the probability in the unexposed group, the null hypothesis would be no different between the two, and thus the ratio will have a value of one. This simply means that the treatment or exposure to a putative cause has no effect on the risk of disease or the outcome of interest. Given this definition, a relative risk greater than 1 means an increased risk of disease or the outcome of interest in the treated or exposed group. Likewise, a relative risk less than 1 means a decreased risk. The p-value associated with the relative risk will be the probability that the relative risk differs from a value of 1 (that is, the null hypothesis).

			As a ratio, relative risk is a unitless number. However, it is frequently expressed as a percentage increase or decrease in the risk of the outcome using the following formula:

			Relative Risk (Reduction or Increase)% = | 1 – RR | x 100

			For example, a relative risk of 1.36 can be expressed as a 36% increase in the risk of a disease upon exposure to the risk factor of interest. This risk is always relative to the unexposed group, which is why it is called relative risk.

			Take another example: what is the interpretation of a relative risk of 0.80? Answer: The risk of the outcome in the exposed group was reduced by 20% (or occurred 20% less) relative to the unexposed group.

			Similarly, a relative risk of 3.30 means that the risk of the outcome in the exposed group was increased by 230% relative to the unexposed group. Or, one could also say that the outcome was 3.3 times more likely to occur in the exposed group than in the unexposed group.

			Hormone Replacement Therapy: Yea or Nay?

			Hormone replacement therapy (HRT) is frequently used in postmenopausal women to decrease the risk of cardiovascular disease and osteoporosis. Unfortunately, the use of HRT is also associated with an increased risk of breast and endometrial cancers. So, do the benefits outweigh the risks?

			To answer this question, a subset of postmenopausal women was selected from the Nurses’ Health Study, a prospective study that was started in 1976 and updated every two years. Numerous variables are tracked in this database, providing a large data set for such investigations. Two of the variables tracked were the usage of HRT and mortality rates. The research question of interest can be phrased in this way: is there any evidence that the risk of death in women who were identified as currently using HRT relative to those who are not? (Note the italicized words in this phrasing. These will become important momentarily when we actually calculate the relative risk in JMP.) The data are in Table 8.1.2

			Table 8.1: Contingency Table of HRT Data

			
				
					
					
					
				
				
					
							
							
							Number of People

						
					

					
							
							
							Deceased

						
							
							Alive

						
					

					
							
							Currently using HRT

						
							
							574

						
							
							8483

						
					

					
							
							Never used HRT

						
							
							2051

						
							
							17520

						
					

				
			

			The first step is to translate this 2 x 2 contingency table into a JMP data table in which the count data is all in one column. Remember we have two categorical variables here, the HRT usage and the mortality outcome, so each should get their own column. Table 8.1 should be converted into the JMP table that looks like Figure 8.3.

			Figure 8.3: HRT Usage Data Table

			[image: Figure 1.1 Some JMP Help Options]

			Since we are looking to determine if this data supports an association between these two variables, we need to do a chi-square test in the Fit Y by X platform. Click the Analyze menu option, then Fit Y by X, and fill out the subsequent form as found in Figure 8.4.

			Figure 8.4: Fit Y by X Dialog Box Filled Out

			[image: Figure 1.1 Some JMP Help Options]

			Because this is a prospective study, and the groups were initially separated based on HRT usage, that independent variable becomes our X, factor. The Status is the outcome of interest and that is our dependent Y, response. But most importantly, the Count column must be inserted into the Frequency input box (Freq). Failure to do this last step should be apparent when you look at the results of the analysis, which will be all ones in the resulting contingency table, and p-values of 1.0000 for the Chi-square p-values. If you see that, red flashing lights and sirens should go off in your head along with a loud monotone computer voice saying, “Error…Error…Error…” In short, don’t do that!

			What should appear is the output seen in Figure 8.5.

			Figure 8.5: Chi-Square Output of HRT Usage Data

			[image: Figure 1.1 Some JMP Help Options]

			Let’s dissect out what this output is telling us. The contingency table allows us to compare our JMP data table to our initial data table to confirm that we have entered the right numbers for each of the variable combinations. The Pearson Chi-Square p-value of < .0001 tells us only that an association does, in fact, exist, but nothing more. Remember from the last chapter that this means the observed distribution of the counts in the different boxes of the contingency table is significantly different from those expected based on chance alone, that is, in the absence of an association between the two variables. The p-value tells us to reject the null hypothesis of no association, which means HRT usage does very significantly influence mortality in these women, but as yet we do not know if it is an increase or decrease in mortality (direction).

			Fisher’s Exact Test allows us to determine the direction of the relationship. The right tailed test has the significant p-value, so we reject the null hypothesis represented by this one-sided test and accept the Alternative Hypothesis, which JMP helpfully provides for us in an abbreviated form. Reading this alternative hypothesis from left to right, we can translate it into “the probability of your status being ‘dead’ is greater if your HRT usage is ‘never’ relative to those currently using HRT.” So now we know, or can conclude that at least for this particular population of women, using hormone replacement therapy improved their chances of living longer.

			The final question is how much of an improvement can we expect? What is the relative risk quantitatively? Is the risk really that much better if HRT is used? In JMP, the Little Red Triangle Is Our Friend, and Relative Risk is found under our Friend as shown in Figure 8.6.

			Figure 8.6: Locating Relative Risk in the Friendly Menu

			[image: Figure 1.1 Some JMP Help Options]

			There is a little bit of a hiccup here because selecting Relative Risk brings up this dialog box (Figure 8.7).

			Figure 8.7: Special Relative Risk Questionnaire

			[image: Figure 1.1 Some JMP Help Options]

			How the research question was phrased becomes important here. Or put another way, what is the specific relationship you are interested in? We want to know whether this data provides evidence that the risk of death (response = dead) differs in women identified as currently using HRT (Sample HRT Usage = currently) relative to those who are not, so the specific combination that we want is shown in Figure 8.7. You do have the option of selecting Calculate all combinations, and avoiding making this choice, but then you will still have to figure out which calculated relative risk best answers your question. It is really much better to reason it out with this dialog box and to resist the temptation to take what appears to be the easy way out and calculating them all. Either way, you have to think about what to actually use to draw your conclusion.

			Selecting OK gives the output in Figure 8.8.

			Figure 8.8: Relative Risk Output

			[image: Figure 1.1 Some JMP Help Options]

			The relative risk calculation has been added to the bottom of the output already on your screen. We see we have a relative risk of 0.605 with a 95% confidence limit of 0.553 to 0.661. The good news is, the 95% confidence limit does not span a value of one, so this confirms the Pearson Chi-square p-value is showing a significant association between our variables. The value is less than one, so there is a decrease in risk, and reading the shorthand in the Description column and using our formula to convert to a percentage risk, we can conclude that there is a 40% reduction in risk of mortality (that is, of being “dead”) for women “currently” using HRT relative to those “never” using HRT in this population.

			Odds Ratios

			Definition and Calculation

			As the name suggests, the odds ratio is a fraction just like the relative risk. However, in this case, it is the odds of exposure in those with the outcome divided by the odds of exposure in those without the outcome. Since the outcome is usually some disease state, we can define the odds ratio in other words as how many times more likely the odds are of finding an exposure to a risk factor in someone with the disease compared to finding an exposure in someone without the disease. The exposure can be to a risk factor, or it could be a treatment of some kind. Retrospective studies tend to be evaluating exposure to risk factors and prospective studies, to treatments. Thus, you can calculate an odds ratio once you have the data collected regardless of which study design was used to collect it.

			Figure 8.9 shows the actual formula as related to the values in the 2 x 2 contingency table of the data.

			Figure 8.9: Odds Ratio Contingency Table and Formula

			[image: Figure 1.1 Some JMP Help Options]
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			Interpretation of the Odds Ratio

			An odds ratio of one means that there is no change in the frequency of exposure in the two populations, so this corresponds to the null hypothesis (similar to the relative risk). An odds ratio greater than one indicates there is an increased frequency of exposure among the case population, and contrariwise, an odds ratio less than one indicates there is a decreased frequency of exposure among the case population. Note how that is phrased. With odds ratios, we are talking about the odds of being exposed to a putative cause, not the odds of having the outcome if you had the exposure.

			This difference is subtle, but important. Going back to the abstract with which we opened this chapter, the title of that paper is “Clinicopathological Features and Prognostic Significance of HER2 Expression in Gastric Cancer.” The outcome of interest is the presence of HER2 expression in the gastric cancer being examined because the expression of this gene has prognostic significance to the cancer patient. The first result cited in the Results section of the abstract indicates that “elevated serum carcinoembryonic antigen (CEA) concentration [odds ratio (OR), 5.629; p < 0.001]…[was a] significant predictive factor for HER2 positivity in localized disease.” The correct translation for this odds ratio: subjects that are HER2 positive for localized gastric cancer are 5.6 times more likely to have elevated CEA concentration, making elevated CEA concentrations a significant predictive factor in assessing HER2 positivity. Clear as mud?

			Odds versus Probability

			Before moving to an example, let’s briefly consider the difference between odds and probability. It is easiest to see the distinction with an example. Imagine a horse race where you expect the horse to win 5 races out of a total of 7 races. The odds the horse will win is the number of times you expect it to win divided by the number of times you expect it to lose. In our example, this would be 5/2 = 2 ½. We would probably say that the horse is two and a half times more likely to win than to lose. In contrast, the probability the horse will win is the fraction of times you expect the horse to win, which in this case is 5/7 = 0.71 or approximately 71% of the time. Both metrics are trying measure the same thing, but are essentially climbing the mountain from different sides.

			Both the odds ratio and the relative risk are ratios, and both are trying to quantify the likelihood of an event (which corresponds to the strength of the association between the two variables in question). Many find relative risk ratios more intuitive than odds ratios, but that might merely be a matter of exposure and personal preference. As an interesting datum, when the disease is relatively rare, the odds ratio is close to the relative risk.

			Renal Cell Cancer and Smoking

			Cigarette smoking is associated with an increased incidence of many types of cancers. Investigators wanted to determine whether cigarette smoking was associated with an increased risk of renal cell cancer (RCC), so they constructed a retrospective case-control study. Control subjects without RCC were matched on sex, age (within 5 years), race, and neighborhood of residence to each case subject with RCC.3 After recruiting a total of 2314 subjects for the study, they visited them in their homes and interviewed them about their smoking habits (potential exposure variable) both past and present. The results are in Table 8.2.

			Table 8.2: Renal Cell Cancer and Smoking Data

			
				
					
					
					
				
				
					
							
							
							Number of People

						
					

					
							
							
							RCC

						
							
							No Cancer

						
					

					
							
							Smoker

						
							
							800

						
							
							713

						
					

					
							
							Never smoked

						
							
							337

						
							
							444

						
					

				
			

			Here the independent variable is exposure to smoking, that is, are they a smoker or not (having never smoked at all). The dependent variable is whether they have RCC. However, notice how the data was collected. Being retrospective in nature, the initial groups were formed based on the experimental dependent variable, that is, their RCC status. When we set up our analysis in JMP, this variable becomes our X, factor instead of the Y, response that we would expect based on the cause-effect relationship we are trying to establish. Figure 8.10 shows the contingency table in Table 8.2 translated into a JMP data table with the Fit Y by X dialog box filled out for the correct analysis. Note again that the Count column must be assigned to the Freq box.

			Figure 8.10: Renal Cell Cancer Data Table and Fit Y by X Dialog Box Filled Out

			[image: Figure 1.1 Some JMP Help Options]

			Once the initial analysis is complete, we must again resort to the Little Red Triangle. Astute observers may have noticed that the Odds Ratio was present in that menu back when we calculated the relative risk. Figure 8.11 shows us this menu.

			Figure 8.11: Finding the Odds Ratio Option

			[image: Figure 1.1 Some JMP Help Options]

			The output in Figure 8.12 allows us to draw our conclusions. 

			Figure 8.12: Odds Ratio Output

			[image: Figure 1.1 Some JMP Help Options]

			First, the p-value for the Pearson Chi-square test is 0.0001. This tells us there is an association between smoking and RCC, but not the direction or strength, only its presence. Next, the Fisher’s Exact Test gives us a significant p-value (< 0.0001) for the right sided test, so that is the alternative hypothesis supported by this data. Interpreting the JMP shorthand, the probability that a subject is a smoker (Smoker = yes) is greater for the group with RCC (Renal Cell Cancer = yes) than it is for those without RCC. This is logically and medically what we would expect. Lastly there is the odds ratio, which has a value of 1.395. We can see from the 95% confidence limits of the OR that one is not included in that range, which confirms our Pearson Chi-square conclusion: this odds ratio is significantly different from one. Therefore, there is something going on. The value is greater than one, so something has increased. In fact, this value tells us that individuals with RCC are 1.4 times more likely to be smokers than nonsmokers. We now have a quantitative metric for the strength of the association between smoking and renal cell cancer.

		

		
			Endnotes

			1	 J.S. Park, S.Y. Rha, et al., “Clinicopathological Features and Prognostic Significance of HER2 Expression in Gastric Cancer,” Oncology. 88 (2015) 147–156. doi:10.1159/000368555.

			2	 F. Grodstein, et al., “Postmenopausal hormone therapy and mortality.” N. Engl. J Med. 336 (1997) 1769–1775.

			3	 J.-M. Yuan, et al. “Tobacco use in relation to renal cell carcinoma.” Cancer Epidemiol Biomarkers Prev. 7 (1998) 429–433.

		

	

			Chapter 9: Tests of Differences Between Two Groups

			It doesn’t make a difference how beautiful your guess is, it doesn’t make a difference how smart you are, who made the guess, or what his name is. If it disagrees with [the] experiment, it’s wrong. 

			Richard Feynman

			Introduction

			Comparing Two Unrelated Samples and Bone Density

			Applying Statistical Strategy

			Preferences of Use

			Null Hypotheses

			The Categorical Variable and Data Format

			Let’s Do It Already!

			The Nonparametric Alternative

			Comparing Two Related Samples and Secondhand Smoke

			Blowing Smoke

			Clearing the Fog

			But Wait! There’s More!

			Introduction

			We now turn to the tests found on the left branch of our master flowchart in Figure 2.2 in Chapter 2, in which our primary objective is to determine if the samples being compared come from the same or from different populations. In this chapter we will examine the tests associated with the simplest of comparisons between just two groups. The most common experiments in which these tests are used are ones in which the variable being measured is continuous, but there are nonparametric versions for cases where the data is ordinal or nominal (although nominal categories tend to use the count data format, so these fall into the chi-square tests from the last chapter).

			Comparing Two Unrelated Samples and Bone Density

			You are a medical researcher wanting to evaluate the effect of a new drug on bone density, but before you start your research, you need a baseline comparison across the genders of your subjects. You have heard that there are differences in bone density between the genders, and if that is true, then it is possible you will see gender-specific effects of the drug. It will be helpful for your experimental design to know up front if there is such a difference.

			The data that you have is in Figure 9.1 for two groups of 20 subjects of each gender.

			Figure 9.1: Bone Density Measurements in g/cm2

			[image: Figure 1.1 Some JMP Help Options]

			Applying Statistical Strategy

			The key concept of comparison already clues you in to Your Objective, to wit, to determine whether there is a difference between the means of these two populations. The next thing to consider is what type of Data you have. It is clear we have two groups of continuous data, but even more importantly, the data is independent data. That is, the values are unrelated. This is one of the Assumptions of the primary candidate for the method of evaluation – the unpaired t test. We can evaluate this first assumption by looking at the data table itself. 

			There are two additional assumptions that are important for this test that will need to be evaluated using JMP. The first is that the data in the two groups are each normally distributed. In addition, they should have relatively equal variances (or standard deviations) in the two groups. This variance assumption is necessary for the pooled t test, the version that we will describe here. (There is a t test that does not make this assumption that we will also see in a moment.) Both of these assumptions can be tested simultaneously using the visual output of the normal quantile plot. Relatively normal data will be a straight line for each population. Relatively equal variance will be seen in roughly parallel lines. Of course, normality can be tested with the Shapiro-Wilk statistic as described in Chapter 4.1 Likewise, statistical tests of unequal variance can be turned on in the JMP menus, as demonstrated in the next section. 

			The overall logic of testing the assumptions for comparing two unrelated samples is shown in Figure 9.2.

			Figure 9.2: Testing Assumptions for the t Test

			[image: Figure 1.1 Some JMP Help Options]

			Preferences of Use

			Before we continue, it would be best to see the preference options that are used in subsequent analyses. In this case, I turn off some default on options and turn on others that are not on by default. This is shown in Figure 9.3.

			Figure 9.3: Suggested Preferences for One-way Platform

			[image: Figure 1.1 Some JMP Help Options]

			Some of these preferences are, indeed, more personal rather than required. For example, I prefer the box plot to the means diamonds (although I still seem to get the means diamonds with the Means/Anova option turned on anyway). I also do not find the Grand Mean or the X Axis Proportional particularly helpful (which is not to say that they aren’t in the right circumstances; I would rather turn them off but have the option of using them when appropriate than to not have them at all). The test for Unequal Variances, Plot Actual by Quantile, and Points Jittered all add value to the analysis output, in my humble opinion. And later, when we compare more than two groups (Chapter 10), we will find that the All Pairs, Tukey HSD analysis will be useful in most cases. As usual, all these can also be turned on or off in the menus in the analysis output Little Red Triangles, so the operative word here is still “preferences.”

			Null Hypotheses

			As you consider the analysis of this data, it is again helpful to formulate your null hypotheses as described in Chapter 6. The biological null hypothesis is simply that there is no difference in the bone densities of men compared to women. That is the biological question in which we have the most interest, and it is what we wrote the grant proposal to determine. We evaluate that biological Ho by evaluating the means of the bone densities of the two populations, so our statistical null hypothesis is that there is no difference between the mean bone density of men and women.

			The Categorical Variable and Data Format

			At this point, we are almost ready to do the analysis. However, there is still one issue. The data as seen in Figure 9.1 is in the form in which it was probably collected and entered into an Excel spreadsheet. It clearly shows the two groups along with their measurements, and one might be tempted to think that we are comparing two variables of male bone density to female bone density. This is true in the biological sense. Alas, such is not the case statistically speaking. Statistically, we have two variables, but one is a categorical variable and the other a continuous variable. The categorical variable is the gender of the subject. The continuous variable is the bone density measurement. Remember, our data table has to be set up as a database table where each column is a variable and each row is an individual measurement of a subject, in this case, an individual subject. The data in Figure 9.1 has two columns that each represent the same variable, bone density. Furthermore, each row has two subjects in it. This will not do for our analysis!

			But JMP does come to the rescue by means of one of the functions in the Tables menu, the Stack option. Figure 9.4 shows its location and the dialog box with the necessary options filled in.

			Figure 9.4: Stacking Your Data

			[image: Figure 1.1 Some JMP Help Options]

			Note the little figures to the left of each command; these are helpful hints as to what each command does. In the resulting dialog box, the two columns have been transferred to the Stack Columns box since those are the columns that we need to combine into one. The Stacked Data Column will have our bone density measurement, so we can change the wording in that dialog box to reflect that. Similarly, the Source Label Column collects the column names, which are the categories for that variable, and associates each value with the appropriate category. (Note the Keep dialog open box in the lower left of the Stacking dialog box. It is often helpful to check this box to keep this dialog box open until you know for sure you have what you need and haven’t missed something or otherwise have made a stacked data set that cannot be used for your analysis. This is not much of an issue here, but for more complex data sets, it doesn’t hurt to keep it open until you are sure.) Clicking OK creates a new data table with the desired characteristics for our analysis as shown in Figure 9.5.

			Figure 9.5: Stacked Bone Density Data

			[image: Figure 1.1 Some JMP Help Options]

			Note that JMP did not alter the initial data; it is still accessible in the original data file. This is an important consideration in regulated industries where data integrity is a critical component of operations. We now have a new table where each column is a different variable and each row represents only one subject. The data is now ready to be analyzed.

			Let’s Do It Already!

			Figure 9.6 shows how to bring up the Fit Y by X menu and the resulting dialog box.

			Figure 9.6: Finding Fit Y by X for the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			Click Analyze  Fit Y by X. Gender is our X, Factor and Bone Density is our Y, Response. Clicking on the variable and then the appropriate button prepares us to click OK for the analysis, but first let’s look a little closer at that figure on the lower left corner of the Fit Y by X dialog box (outlined in dashed lines). The type of analysis provided by this platform depends on the nature of the x and y variables, in other words, the data of your problem. JMP makes it obvious by placing the data type symbol on the axes. Our current problem has a nominal variable for the x and a continuous variable for a y, so that tells us that we will be getting a one-way analysis of the data, which is the subcategory in which we will find t tests and ANOVA analyses. If both variables are continuous, then we get a bivariate analysis, also known as regression (we will get there in Chapter 11). And so forth.

			So, without further ado, click the OK button and let’s see what JMP tells us in Figures 9.7 and 9.9.

			Figure 9.7: Output of the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			I have already turned back off the Std Dev Lines and Means Diamonds by going into the Little Red Triangle  Display Options and clicking each of those options off. In the Little Red Triangle menu, the t Test option has been turned on to get the output of the “unpooled” t test that does not assume equal variances. The box plot shows us significant overlap in the two populations both for the middle 50% of the data (the box) and for the whiskers of the plot. The median values seem to be separated, but this is clearly a case where we need some more objective measure to say with any clarity whether these two populations differ significantly. The normal quantile plot suggests that both the assumptions of a pooled t test are met. The comparison circles are a feature exclusive to JMP that aids in discerning significant differences as shown in Figure 9.8 from the JMP Help website.

			Figure 9.8: The JMP Explanation of Comparison Circles

			[image: Figure 1.1 Some JMP Help Options]

			The comparison circles in Figure 9.7 appear to be a case that might be borderline significantly different, so we will have to go to the metrics below the figures to draw any conclusions. Nevertheless, in the graphics provided by JMP we see hints that there might indeed be a difference in bone density between the genders, at least with this data.2

			Moving down through each node of the output, the Summary of Fit output does not tell us much as far as this analysis goes. The Pooled t Test node give us the most important figures. The value to focus upon is the Prob > |t|, or the p-value associated with the calculated t statistic that tells us whether the difference (also shown here) is statistically significant (remembering our definition of statistical significance from Chapter 6). This value is 0.0462, just barely below 0.05. Assuming we have set our critical significance (α) value at 0.05, this is truly a borderline significant difference. If we were the investigators at this point, a power calculation might be in order and/or a collection of additional data to clarify these results.

			As we will see in the next chapter, ANOVA can be done on only two populations, and the ANOVA p-value is identical to that obtained for the t statistic (which only confirms that we have a “definite maybe” with this data…isn’t science fun!).

			The t Test node gives us the same conclusion with a slightly higher p-value without the assumption of equal variances (expressed as “Assuming unequal variances”). In a moment, we will see that this p-value is the same as that given by the Welch ANOVA testing which likewise does not assume equal variances.

			Continuing to the other nodes resulting from this analysis, the output is shown in Figure 9.9.

			Figure 9.9: Testing Variance Assumption and Comparing with Tukey-Kramer

			[image: Figure 1.1 Some JMP Help Options]

			We turned on the tests for unequal variances in the Preferences, so we get this output automatically. However, we can also get this analysis through the Little Red Triangle. Five tests for unequal variance are provided with p-values all above 0.05 (solid outline). This statistically says that we cannot reject the null hypothesis of no difference between these two variances. Putting a little more simply, there is no significant difference between these two variances. Had there been a significant difference, the Welch’s Test is provided below these (dotted outline) and again shows a borderline significant p-value of 0.0466. Note that JMP highlights in red and adds an asterisk to p-values below 0.05 to call the viewer’s attention to statistically significant values. The choice of α at 0.05 is one that can be changed if the analyst so desires (but this analyst currently does not so desire).

			At this point we really do not need the Means Comparison node information because it is redundant, but note how JMP gives you the rule of interpretation for the numbers presented in the HSD Threshold Matrix table (arrows in Figure 9.9; more in the next chapter).

			Based on this data, we can conclude there is a modest but significant difference in the bone densities of men compared to women, and the men appear to be lower in density (remember this is bone density and not mental density). If this were preliminary data for a grant proposal, it would serve as very nice fodder for asking for more money to further investigate this possible difference and the ramifications, if any, thereof.

			The Nonparametric Alternative

			What if the data had not been normally distributed, so the parametric t test had been inappropriate? Again, the Little Red Triangle for this analysis contains the option to turn on nonparametric tests. In this case the Wilcoxon test (this test may also be referred to as the Mann-Whitney U test or the Kruskal-Wallis test depending on the data being analyzed) is the appropriate one to turn on. The output is in Figure 9.10.

			Figure 9.10: Nonparametric Output

			[image: Figure 1.1 Some JMP Help Options]

			The outcome is the same with a significant p-value at the 0.05 level.

			Comparing Two Related Samples and Secondhand Smoke

			When the same measurement is made on a population of subjects at different times or under different conditions, the data is said to be related. This kind of experimental design and data collection is particularly useful in reducing the sources of confounding variation between the individual characteristics of the subjects in the two samples. The two sample populations are identical except for the condition or treatment being tested, allowing for firmer conclusions. That connection imparts an additional level of information that is lost if we ignore it and just do the simple t test that we’ve been discussing above. Let’s look at an example from the literature.

			It has been reported that exposure to secondhand smoke will increase the risk of experiencing a heart attack. In a study to investigate the possible mechanisms for this,3 eight healthy young adults had their heart rate variability measured before and after spending 2 hours in the smoking lounge of the Salt Lake City airport. Under normal conditions, the heart beats regularly at about once a second. However, small beat-to-beat random fluctuations can be observed (on the order of about 0.1 seconds). (This is biological variation at its finest, and a classic example of why we need statistics.) For reasons that currently lack an explanation, a reduction in heart rate variation is also associated with the increased risk of an acute heart attack. Thus, the critical question being asked of the data is: Did exposure to the secondhand smoke of the smoking lounge reduce the variability seen in the heart rate variation of these otherwise healthy individuals?4 The data is shown in Figure 9.11.

			Figure 9.11: Raw Data for Secondhand Smoke Experiment

			[image: Figure 1.1 Some JMP Help Options]

			Blowing Smoke

			We could treat this data as simply two separate populations and ask if there is a statistically significant difference in the means by performing a t test. (Note that it will be necessary to stack the data first to do this analysis, See the previous example.) Doing so yields the output in Figure 9.12.

			Figure 9.12: Simple t Test Output

			[image: Figure 1.1 Some JMP Help Options]

			Both looking at the graph and reviewing the p-values for the t statistic (all are > 0.05) would lead to the conclusion that there is no significant difference between these two populations and therefore we cannot reject the biological null hypothesis that secondhand smoke has no effect on heart rate variability. This conclusion would be further enhanced if we looked at the extensive overlap of the 95% confidence intervals of the means of these two populations. (See Figure 9.13. See also Chapter 5).

			Figure 9.13: Overlap of Confidence Intervals for This Data

			[image: Figure 1.1 Some JMP Help Options]

			Clearing the Fog

			What happens when we add back the paired relationship in our experiment? Let’s “connect the dots” for the paired before and after data.

			Figure 9.14: Pairing the Data

			[image: Figure 1.1 Some JMP Help Options]

			Suddenly the picture changes drastically as we can see the variability drop from Before to After in almost all the cases in this sample set. Surely we have missed something!

			The analysis that compares two populations that are paired, or matched, is the paired t test. This is found in Analyze  Specialized Modeling / Matched Pairs. Figure 9.15 shows this menu and the resulting dialog box with the two columns already transferred to the Y, Paired Response box.

			Figure 9.15: Setting Up a Paired t Test

			[image: Figure 1.1 Some JMP Help Options]

			Clicking OK yields the output shown in Figure 9.16. In addition to the default output, I have also turned on the Reference Frame and the Wilcoxon Signed Rank options using the friendly Little Red Triangle menu of this analysis, for reasons I will explain in a moment.

			Figure 9.16: Paired t Test Output

			[image: Figure 1.1 Some JMP Help Options]

			For the paired t test, the metric being evaluated is actually the difference between the two conditions, in this case, the Before and After. If there is no impact of the conditions on the response, then the average difference will be zero. Consequently, the statistical null hypothesis for a paired t test is that the mean difference between the two conditions is zero, the hypothesis of no effect. In addition, the Assumption for a paired t test is a normal distribution of the differences. We will get to confirming that after we look at how to interpret this output.

			Looking at the numerical output, JMP first gives us the mean for each population being compared in the left column, followed by the difference. The negative difference indicates we are seeing a decrease in the SD after exposure to the secondhand smoke. The remainder of the left column gives us a few more descriptors of this difference. The right hand column is where we look for the answer to our question. The addition of the pairing information now gives us a two-tailed p-value of 0.0012, quite a bit lower than 0.05, and definitely lower than the p-value of 0.1683 seen when we ignored the pairing. That pairing linkage allows us to detect a difference that we were not able to before. This paired t test p-value allows us to reject the null hypothesis that the mean difference is zero, or to put it another way, our observed difference is statistically significantly different from zero. Therefore, we can draw the conclusion that secondhand smoke, at least with this population and under these conditions, has an impact most likely detrimental to overall health for healthy individuals.

			The graph provided by JMP is a Bland-Altman plot, with the After-Before difference plotted on the Y axis and the After + Before mean on the X axis. The Reference Frame allows easier visualization of whether the average difference (on the Y axis) is significantly different from zero by drawing the zero line. The data lines include the 95% confidence limits of the mean difference, so one can see if the zero line falls within those limits, indicating no statistically significant difference. In this case, the conclusion from the p-value analysis is visualized with the zero line being outside this limit for the mean difference.

			But Wait! There’s More!

			Ah, yes, before we can celebrate this by dancing in the halls and rushing to publication, we need to check that critical assumption for a paired t test. In this case, we do not need to fear we have drawn the wrong conclusion: the p-value for the nonparametric Wilcoxon Signed Rank test is still below 0.05 at 0.0078, so even if the differences are not normally distributed, the nonparametric test still validates a statistically significant difference. Note that the nonparametric p-value is closer to our critical cutoff of 0.05, reflecting the lower power of the nonparametric test.

			If this were an Excel spreadsheet, we could simply create a formula to subtract the After values from the Before values and copy that formula down an adjacent column to get the difference values. Fortunately for us, JMP has a similar function. We can create a new column for the Differences and insert a formula that subtracts the two desired columns (clicking in the order indicated in Figure 9.17), and then test the normality of that difference column with the Distribution platform (Figure 9.18).

			Figure 9.17: Creating the Formula for a Difference Column

			[image: Figure 1.1 Some JMP Help Options]

			Figure 9.18: Output for Testing Normality of Differences

			[image: Figure 1.1 Some JMP Help Options]

		

		
			Endnotes

			1	 Remember we have a logic flow for determining if a population is “normal enough” as described in Chapter 4. We will use that logic throughout this book for assessing normality.

			2	 Since we are always dealing with a subpopulation or sample of the populations of interest, it is important to keep this caveat in mind. Our ability to generalize to the entire population is heavily dependent upon the size and composition of our sample population, which may or may not accurately reflect the overall total population. This is an issue that plagues every experiment regardless, due to our finite data collection abilities compared to the universe as a whole.

			3	 Pope, C.A. III, et al., “Acute exposure to environmental tobacco smoke and heart rate variability.” Environ Health Perspect. 2001; 109:711-716.

			4	 Some might object that our data is a set of standard deviations, and they are not additive, and thus comparing their means is not statistically valid. Thus, we should be working with the corresponding variances instead. At least for the purposes of this illustration, we are ignoring the characteristics of SDs and their relationship to the corresponding variances and simply using the SD as a measure of the variability in heart rate in which higher numbers mean higher variability, and for which the unit is the same unit of the heart rate that was measured. The original article (previous endnote) did its analysis on the SDs, but did different analyses on a larger data set than that shown here.

		

	

			Chapter 10: Tests of Differences Between More Than Two Groups

			Data do not give up their secrets easily. They must be tortured to confess.

			Jeff Hopper, Bell Labs

			Introduction

			Comparing Unrelated Data

			Why not…?

			So how…?

			Can you…?

			Our Strategy Applied

			How Do You Read the Reeds?

			Comparing Related Data

			Introduction

			In the previous chapter, we first looked at comparing two groups of independent, that is, unrelated data, by comparing their means. Remember from Chapter 3, unrelated means we are talking about the experimental design and how the data was collected. The unrelated data from the previous chapter was collected from two populations whose members were totally different, in other words, unrelated. This is compared to the second data set we looked at in the last chapter where the two populations being compared were the same, but measured at two different times. Thus, that data is related. This distinction is an important one to keep in mind when selecting the test to use (as seen in the last chapter).

			Having seen how to handle a comparison of two groups, we now turn our attention to how to compare three or more groups.

			Comparing Unrelated Data

			Why not…?

			Having set the stage in the previous chapter in which we compared the means of two groups of data, we now progress to the question of what to do if you have more than two groups of data. Based on the previous chapter, we might think that an easy solution would be to do a series of t tests on all the possible pairs of data to see if and where significant differences lie. (Alas, this approach is found all too frequently in the published peer-reviewed literature.) The problem with this approach is that when the number of groups being compared increases, the chance of observing one or more significant p-values by chance alone likewise increases.

			Consider the situation where, instead of one comparison, you want to make two comparisons. Using the traditional 0.05 cutoff for statistical significance, the probability that you correctly fail to reject the null hypothesis (that is, determine that there is not a significant difference) is 0.95. But this is true for your second comparison as well. Assuming that both null hypotheses are true, the probability that you will not find a significant difference when combining both cases is the product of 0.95 times 0.95, or 0.9025. In other words, you now have a 10% chance of finding a statistically significant difference by chance alone where none exists. One can create a formula to track how quickly this can escalate: the chance of finding a statistically significant difference by chance alone = 1.0 - 0.95n, where n = a positive integer representing the number of independent comparisons that you want to do. Hopefully you can see that this can rapidly degrade the analyst’s ability to draw any significant conclusions with confidence. As J. L. Mills has observed, “If you torture your data long enough, they will tell you whatever you want to hear.”1 This approach comes very close to an illegitimate persecution of the data.

			So how…?

			OK, so if multiple comparisons do not work, what method can we use to compare more than two groups of data? The basic test is a method called one-way ANOVA, often referred to as just “ANOVA,” where ANOVA is an abbreviation for ANalysis Of VAriance. This test allows us to answer the question, Are the means the same for three or more groups or populations of data?

			Just to be clear, despite the method’s name, it does not compare the variances themselves. In fact, one of the assumptions is equal variances of the groups (within-group variances). You would never be able to detect a difference if the method is comparing variances, since to be valid, the variances have to be equivalent to have valid conclusions!

			What the method is doing is comparing the between-group variation to the within-group variation to calculate the F statistic. Each group will have a certain variation associated with that population (within-group). But there will also be variation in the sample means that is the between-group variation. If the groups are from different sample populations, that is, their means are different, then the between-group variation will tend to exceed the within-group variation, allowing the probabilistic determination of whether the means differ.2

			Can you…?

			Just a quick interlude here. Can you do one-way ANOVA on only two groups instead of the t test? The answer is, of course! The reason we don’t normally do that is due more to the history of the tests than the ability of the test to do the job. When these tests were first developed, there were no computers or electronic calculators. In fact, you were lucky if you knew how to use a slide rule! (And yes, dinosaurs roamed the earth eating unwary statisticians.) The computations for ANOVA are much more tedious than those for the t test, so if you have only two groups, and you don’t have handy-dandy software like JMP to do the work for you, why opt for more work than you have to in order to evaluate two groups? Thus, the t test was born and is the preferred method for comparing two groups even though we now do have JMP to do either job in milliseconds (or perhaps nanoseconds?).

			Our Strategy Applied

			Your Objective is still that of comparison, and our Data type is continuous data, although you can also use ordinal data. The primary Assumptions of one-way ANOVA are normality of the data in each group and equal within-group variances. As with t tests, the assumptions can be evaluated graphically with the normal quantile plots (see Figure 10.2), where straight lines indicate data normality, and parallel lines indicate equal variance. Normality can also be assessed directly with the Shapiro-Wilk test in the Distribution platform. (See Chapter 4 and Figure 4.13 in particular.) Let’s do an example to clarify.

			How Do You Read the Reeds?

			The data in Figure 10.1 shows the % dry weight nitrogen content of five determinations for each of three sites of reedbeds in Fowlmere, England.3 This format is how you would typically collect the data and place it into an Excel spreadsheet. As a plant biologist, you are interested in whether the nitrogen content differs between these three sites. (No, I am a protein biochemist, not a plant biologist, so I don’t know why anyone would be interested in this question, but I’m sure my plant biology colleagues would be happy to tell me if I were motivated to ask.)

			Figure 10.1: Fowlmere Reed Raw Data

			[image: Figure 1.1 Some JMP Help Options]

			We will be able to test the normality assumption shortly by looking at the normal quantile plots, but in this configuration of the data table, we can also check the normality in the Distribution platform using the Shapiro-Wilk test. When we do so, we find that all three sites are happily normal by Shapiro-Wilk (p-values all above 0.05, so we cannot reject the null hypothesis that the data are from a normal distribution).

			In order to do our analysis, we must now stack our data so that one column contains the categorical variable of Collection Site, and the other column our continuous data of Nitrogen Level (Figure 10.2).

			Figure 10.2: Stacking the Raw Reed Data

			[image: Figure 1.1 Some JMP Help Options]

			The new data is seen in Figure 10.3, where I have added colors and symbols to the data based on the Collection Site (Figure 10.4) to distinguish the categorical variable of sites more clearly in the output.

			Figure 10.3: Stacked Data Ready for ANOVA

			[image: Figure 1.1 Some JMP Help Options]

			Figure 10.4: Making the Graphs “Pretty”

			[image: Figure 1.1 Some JMP Help Options]

			We do the analysis by going to Analyze  Fit Y by X, and filling out the dialog box by putting Collection Site in the X, Factor box and Nitrogen Level in the Y, Response box as in Figure 10.5 and then clicking OK.

			Figure 10.5: Setting Up the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			The results of this analysis with the options turned on that we turned on back in Chapter 10 (see Figure 10.3) give us a wealth of information to decipher. Let’s start with the graphs in Figure 10.6.

			Figure 10.6: Graphs in Analysis Output of Fowlmere Reed Data

			[image: Figure 1.1 Some JMP Help Options]

			The box plots on the left indicate that Sites 1 and 2 are not too dissimilar, with Site 2 having the lowest median value. Given the spread of the data that is visible by plotting all the data, and the relatively small sample size, the median shows its worth as the best measure of central tendency since Site 2 does appear to have one point higher than all the rest that would pull the average higher and present a small distortion in the data visualization if we were to rely upon means to visually compare the groups.

			Jumping over to the normal quantile plots on the right, we can see that the points do appear to be reasonably linear, confirming what we saw in the Shapiro-Wilk results for data normality. The lines also appear parallel to the eye, so most likely the variances are equal enough to go with the parametric one-way ANOVA results to determine whether there is a statistically significant difference in the nitrogen content at these three sites. We will verify this with the results in the Tests that the Variances are Equal output.

			The Comparison Circles in the middle are a graphic unique to JMP. Their interpretation is fairly straightforward, but the explanation from the JMP documentation reproduced in Figures 9.8 and 10.7 provides a more technical description. Basically, the more the circles overlap, the less likely there is a statistically significant difference between the groups. The size of the circle reflects sample size and thus the confidence in the location of the group mean, so the larger the circle, the less data available to locate the mean, and thus the less confidence in its location.

			Figure 10.7: The JMP Explanation of Comparison Circles

			[image: Figure 1.1 Some JMP Help Options]

			Figure 10.8: Output in One-way ANOVA node

			[image: Figure 1.1 Some JMP Help Options]

			In all the numbers in the One-way Anova node presented in Figure 10.8, there are three items of information that we want. First, the Rsquare value tells us that, in this case, 66.6% of the variation in the nitrogen content data is accounted for by the difference in the site of the data collection. The fact that the majority of the variation seems to come from collecting the data from different sites suggests that there will be a significant difference between the sites. The p-value for the ANOVA analysis, Prob > F, is 0.0014, well below 0.05. JMP highlights this as a statistically significant p-value by changing the color and placing as asterisk to the right of the value, effectively drawing the eye to say, “Yo! I’m significant at the 95% confidence level! Look at me!” This tells us that there is a difference somewhere between at least two of the groups that is statistically significant, but it does not tell us where those statistically significant differences are. We will get to that in a minute.

			Before we do, we should, however, digress into the fuller explanation of this p-value. Remember that what has been done in the background is a calculation of the F statistic, or F ratio as it’s called in the above table, comparing the between-group variation to the within-group variation. This p-value is now telling us the chance of getting an F ratio this large by chance alone. The fact that the probability is so low is indicative of a significant difference.

			The third item that we can glean from this output is the means with their 95% confidence limits. Looking at these, we can begin to determine where the significant differences lie, but later output that we will look at in a moment will make this easier to see. Nonetheless, the information is there in the numbers for those wanting to look at it in this format.

			Figure 10.9: Means Comparisons Node Output
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			The Means Comparison node output in Figure 10.9 shows us where our significant differences are using Tukey’s HSD4 test, which we selected in the preferences in the previous chapter. Other options for such comparisons can be found under the Compare Means selection in the Little Red Triangle at the top of the One-way Analysis.

			The results can be viewed in three different ways, any of which can be turned on or off with preference settings. JMP tells you how to interpret the output in a single sentence below the output of the first two. For the HSD Threshold Matrix, “Positive values show pairs of means that are significantly different.”

			In my opinion, differences are a little easier to see in the next level, the Connecting Letters Report. Now JMP points out that “Levels not connected by same letter are significantly different.” Looking at the provided means, it is now obvious that Site 3 is a good bit higher than the other two sites and in a class all by itself.

			Lastly, the Ordered Differences Report, which might arguably be the most informative, allows us to see both qualitatively and quantitatively the site comparisons, even including the lower and upper confidence levels for the observed differences. When those limits bracket a value of zero, we cannot say that the difference is significantly different from zero, and that is confirmed by the associated p-values. Based on this table, we can conclude that, at least with this data set, Site 3 is most statistically different from Site 2, but also statistically different from Site 1 to a lesser degree. And, Sites 1 and 2 are statistically equivalent.

			Our last immediate consideration is to check the assumption of equal variances. The results of that analysis are in Figure 10.10 below.

			Figure 10.10: Testing the Equal Variance Assumption

			[image: Figure 1.1 Some JMP Help Options]

			We can see graphically that there will probably not be a significant difference, and yea, verily, the p-values for all four tests show p-values very much larger than 0.05, indicating no difference between the variances. We are warned, however, that the sample sizes are small, so we should “Use Caution” in our use of this outcome. It does, however, confirm what we saw in the normal quantile plot lines, so we are most likely on solid ground saying that this assumption has been met, and thus the use of the parametric one-way ANOVA is substantiated. (Welch’s ANOVA p-values are provided in this analysis [but not shown since we don’t need them] had the variances not been equal.)

			But what if the data had not been normally distributed? Well, I am glad you asked that question; it shows you have been thinking! Figure 10.11 shows that once again, the Little Red Triangle is your friend. There are nonparametric options to use in this case, along with nonparametric multiple comparisons tests to determine where differences are should a significant difference be found.

			Figure 10.11: Nonparametric ANOVA Options

			[image: Figure 1.1 Some JMP Help Options]

			Figure 10.12 shows the nonparametric output for this data.

			Figure 10.12: Nonparametric Output for the Fowlmere Reed Data

			[image: Figure 1.1 Some JMP Help Options]

			In this case, a significant difference is identified, but notice the p-value has shifted closer to the 0.05 cutoff from the 0.0014 value seen with the parametric calculations. This is a reflection of the loss of power by moving to a nonparametric method. An even more dramatic result is visible when we look at the Nonparametric Comparisons For Each Pair Using Wilcoxon Method output (Figure 10.13).

			Figure 10.13: Nonparametric Comparisons Output for the Fowlmere Reed Data

			[image: Figure 1.1 Some JMP Help Options]

			Switching to a nonparametric method has lost the ability to detect a difference between Site 3 and Site 1, at least at the 95% confidence level. It is always better to use a parametric method when possible due to the increased statistical power given by such methods.

			Comparing Related Data

			Related data in the situation under consideration would be when the experimenter makes the same measurement on the same subjects multiple times, usually with time as a variable so that there are now three or more groups of data to compare depending on the number of time points, an experimental design frequently encountered in biological and medical research. This is comparable to the paired t test described in the previous chapter. While logically this topic would fit in here, and it is certainly an important method, it would require several concepts beyond the scope of this text to explain, and there appear to be at least two, if not three, methods of accomplishing this analysis in JMP. (See the JMP YouTube video channel for examples). The method is called repeated measures ANOVA.

		

		
			Endnotes

			1	 Mills, J.L. (1993) “Data torturing.” New England Journal of Medicine, 329, 1196-1199.

			2	 This is not to say you can’t have different populations with the same means, just that you would not detect that difference with this test. Most likely making that distinction would lie in the realm of the design of the experiment.

			3	 Hawkins, D. (2014) Biomeasurement: A Student’s Guide to Biostatistics, 3rd Edition, Oxford University Press, Great Britain, page 164–165.

			4	 File under points to ponder: HSD stands for “Honestly Significant Difference,” which leads me to wonder, “Does that mean there’s a Dishonestly Significant Difference out there?!?”

		

	

			Chapter 11: Tests of Association: Regression

			You can lead a horse to water but you can’t make him enter regional distribution codes in data field 97 to facilitate regression analysis on the back end.

			John Cleese

			Introduction

			What Is Bivariate Linear Regression?

			What Is Regression?

			What Does Linear Regression Tell Us?

			What Are the Assumptions of Linear Regression?

			Is Your Weight Related to Your Fat?

			How Do You Identify Independent and Dependent Variables?

			It Is Difficult to Make Predictions, Especially About the Future

			Introduction

			At this point, we have worked our way through the entire left branch of our master flowchart (Figure 2.2) and looked at the basic tests for comparing population samples to infer whether they are from the same population or different populations, at least probabilistically speaking. The second basic primary objective an analyst might have is to determine the presence and nature of any associations between two or more variables under study. This now is the right branch of our master flowchart. Whereas our first primary objective can be accomplished with relatively definitive answers, this area is one where students often have difficulties because the answers are not always black and white, but are frequently more “wibbly-wobbly” in nature. This is similar to that famous quote by the 10th Doctor1 about time:

			“People assume that time is a strict progression of cause to effect, but actually, from a non-linear, non-subjective viewpoint, it’s more like a big ball of wibbly-wobbly…timey-wimey…stuff.”

			The basic concepts are best understood in the context of the simplest situation – two different variables, typically a dependent/independent variable pair in a linear relationship to one another – known as bivariate linear regression. As we progress through the remaining chapters, it will be helpful to fully master the concepts in the strict progression in which we will march, but remember that those concepts are then to be used in the big ball of wibbly-wobbly, staty-waty2 stuff of our conclusions.

			What Is Bivariate Linear Regression?

			In bivariate linear regression, we are going to draw a standard x-y plot where x and y represent the two variables of interest. The X axis is the independent variable and the Y, the dependent variable. The statistical null hypothesis of no relationship between the variables will be evaluated by looking at the slope of the best line drawn between the data points. A slope of zero indicates no relationship, so statistically, we will want to know if the slope differs significantly from zero. The alternative hypothesis, that a relationship exists between the variables, simply means that as one variable changes, so does the other, yielding a positive or negative slope that differs from zero.

			The data is paired continuous data, but this is different from the paired t test situation. For a paired t test, the same variable is measured twice on the same subject under different conditions. Here, two different variables are measured once under the same conditions. (See Figure 11.1.) This data type (continuous) also distinguishes the analysis from the two-way chi-square test where you are also looking for the presence or absence of a relationship, but with count or frequency data typically presented in a contingency table.

			Figure 11.1: Paired Data for Different Analyses

			[image: Figure 1.1 Some JMP Help Options]

			What Is Regression?

			So, does regression mean a reversion to an earlier or less advanced state, like reverting to the caveman era? Fortunately, we are not what is regressing. To regress simply means to move backward, and that is what happens when we minimize something. We are moving to a smaller form, in this case, smaller total residuals. In linear regression, we are trying to draw a line through our plotted data with the goal being to minimize the sum of the residuals squared. Figure 11.2 illustrates the process, remembering that “residuals” here refers to the vertical distance between the data point and the line.

			Figure 11.2: Linear Regression Process

			[image: Figure 1.1 Some JMP Help Options]

			On the extreme left of Figure 11.2, we see the large residuals for a line that clearly does not fit the data well. However, it shows why we sum the squares of the residuals instead of just the residuals. There are obviously both positive and negative distances there, and if we just summed the residuals, the negative distances would at least partially, if not totally cancel the positive distances, and we are not minimizing the residuals. By squaring the number, we algebraically eliminate the negative values, allowing us to sum the total to get a better idea of how far the line really is from the data. Determining the minimum sum of squares by adjusting the slope and position of the line is what is being done behind the scenes of linear regression.

			What Does Linear Regression Tell Us?

			Regression analysis allows us to answer four questions, two of which are really one question but are expressed slightly differently.

			1.	Is there a relationship between these two variables?

			2.	Is the slope significantly different from zero?

			3.	How much variation does the model explain?

			4.	What is the best linear model?

			Obviously, the primary question is, is there a relationship between these two variables? This relates to the biological null hypothesis. The second question, which is used to answer the first, is, is the slope significantly different from zero? This relates to the statistical null hypothesis. This second question is answered directly by looking at the p-value associated with the slope in the Parameter Estimates output table. It is also answered indirectly by the p-value from the F statistic in the ANOVA output of the Fit Line analysis. That analysis determines if the fit line does a better job of matching the data than a horizontal line at the mean. Since such a horizontal line has a slope of zero by definition, if this p-value indicates rejection of the null hypothesis, then the fit line slope is going to be significantly different from zero.

			The third question is, how much variation does the model explain? If the model is statistically significant, then we would expect it to do a fairly good job of explaining the variation in y. This is answered by the value of R squared, which we normally will multiply by 100 to get a % variation being explained.

			Lastly, what is the best linear model? This will be the coefficients computed for the slope and the intercept, which appear under the graph (discussed later in the chapter). The slope is interpreted in algebra as the change in y as x changes, sometimes referred to as “rise over run.” This is an essential component in describing the relationship between the two variables. For example, if a drug administered in mg dosages is used to raise the blood pressure in mm Hg, a slope of 3.7 is simply interpreted as a 3.7 mm Hg increase in blood pressure for every mg of the drug administered.

			Of less significance, but still there, is the intercept, or more fully, the y-intercept. This is the value of y at a value of zero for x. Sometimes this can be interpreted biologically, but sometimes not. The line will not always go through zero, but that is not time to weep, wail, and put on sackcloth and ashes. There is no law that says the intercept must be interpretable. Now go make another cup of coffee (or tea, if that is your preference) and relax in front of a nice sunrise!

			What Are the Assumptions of Linear Regression?

			There is a parametric criterion for regression, but it is not that the data be normally distributed. It is that the residuals must be normally distributed. JMP provides a normal quantile plot of the residuals so that this assumption can be evaluated. In our example, we will see how to find this plot. If this assumption is not met, most likely you will need to turn to nonlinear regression.

			There is a second assumption that is often ignored in practice, but of which the analyst should at least be aware. The variance of the dependent variable should be similar for all values of the independent variable. This is usually ignored because there is no good way to objectively evaluate it.

			Is Your Weight Related to Your Fat?

			As an example of this analysis, let’s look at the data in Figure 11.1a with weight in kilogram and body fat in mm measured. We find the bivariate linear regression in the Analyze  Fit Y by X platform (Figure 11.3).

			Figure 11.3: Bivariate Linear Regression

			[image: Figure 1.1 Some JMP Help Options]

			This is a case where we can ask, biologically does fat amount increase with weight, or does weight increase with more fat? In other words, which variable is the dependent variable and which the independent variable? The simple answer in this case is, we don’t know! So, let’s call weight the independent variable (x) and fat the dependent variable for the sake of our analysis. In this case, we will just ask the question whether there is a relationship between the two variables. Put Weight into the X, Factor box, and Fat into the Y, Response box, and click OK (Figure 11.4).

			Figure 11.4: Setting Up the Analysis

			[image: Figure 1.1 Some JMP Help Options]

			This gives us the x-y plot in Figure 11.5.

			Figure 11.5: Basic Bivariate Fit Output
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			Well, this is suggestive, but there is no linear fit here. (Hang on, we will set preferences in a little bit.) But never fear, the Little Red Triangle is here! Clicking the one next to the Bivariate Fit title reveals multiple fits that can be done. Select the Fit Line and you will get the output shown in Figure 11.6.

			Figure 11. 6 Linear Regression Output
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			With this output, we can now answer our questions about these variables. In the Analysis of Variance output, the p-value for the F statistic is <0.0001, so our linear model is a better statistical fit for the data than a horizontal line at the response mean. (It is on this basis we can say that the slope is significantly different from zero, although technically that is not what is being assessed here.) We can conclude that there is a relationship between these two variables. The RSquare value indicates this line accounts for 87.5% of the variation in the Fat with the Weight variable, which biologically speaking, is a relatively good accounting. The equation for the line is given just below the Linear Fit bar, or you can look at the Parameter Estimates to see that the slope is 0.186, and the intercept is 11.6. Both values are significantly different from zero as shown by the p-value for the t statistic in this table. Thus, we can conclude that the slope is statistically different from zero and, again, there is a relationship between the two variables. (Quantitatively, for every 1 kg of weight gain, we can expect an approximately 0.186 mm increase in the fat measurement.) Right clicking the table column headings brings up a menu that enables you to add a few more columns, of which the 95% confidence limits of the slope and intercept can be of interest (Figures 11.7 and 11.8). Looking at the values in these columns, you can confirm that zero does not appear in them, which is what the p-values are telling you.

			Figure 11.7: Adding Columns to the Table Output
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			Figure 11.8: Modified Table Output
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			The last thing we should do is check the assumption of the normality of the residuals. Under the Little Red Triangle for the Linear Fit, you will find Plot Residuals (Figure 11.9). Clicking on that option gives several residual plots, and the very bottom one is the normal quantile plot (Figure 11.10).

			Figure 11.9: Little Red Triangle Menu for Linear Fit
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			Figure 11.10: Normal Quantile Plot of Residuals
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			In interpreting the normal quantile plot, we want to see the points falling along the central line, but more importantly, within the 95% confidence limits of the line (dotted lines). These data fit the assumption of the linear regression analysis, so we can be confident in the validity of our conclusions.

			One additional graphic that can be created in this analysis to show how the slope relates to a slope of zero is to go up to the Bivariate Fit Little Red Triangle and activate the Fit Mean option. This places a line in the middle of the data (the mean, obviously) that has a slope of zero. Your Analysis of Variance is essentially comparing this line to the fit line to determine which fits better. Then go to the Linear Fit Little Red Triangle and click on both Confid Curves Fit and Confid Shaded Fit. This will produce the graphic in Figure 11.11.

			Figure 11.11: Fun with Graphics
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			The graph in Figure 11.11 enables you to visualize how different the slope of the line is from zero. If the ends of the Fit Mean line are outside of the 95% confidence limits of the curve fit, then your slope differs from zero statistically.

			What about the one point that is outside the confidence limits of the curve fit (circled in Figure 11.11)? It has the largest, by far, residual value as is easily seen on the residual plots (for example, Figure 11.12).

			Figure 11.12: Residual Plot with Largest Residual Circled
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			And it is the only point not in the confidence limits of the curve fit (Figure 11.11). As nice as it might be to just remove that data point because it does not seem to fit, without an assignable cause, in other words, a valid reason to identify that datum as not belonging to this population (for example, an error in measurement), such a practice leads to the charge of falsifying one’s data, which falls into the category of “Not a good idea!” Since this is not an enormous sample size, it is probably well within the range of the biological variation that we would see with a larger population.

			Nonetheless, it will be instructive for purely educational purposes to see what happens when that datum is hidden and excluded from the analysis, which JMP lets you do easily. How much is that datum influencing our model? Before we go there, however, let’s set a few preferences so that we do not have to rely so heavily on our friendship with the Little Red Triangle and we can give it a break.

			First, go to File  Preferences  Platforms and highlight the Bivariate platform. Show Points is default on, but click Fit Line to always get the linear regression analysis when you do the bivariate regression in Fit Y by X (Figure 11.13).

			Figure 11.13: Setting Fit Y by X Preferences – Part A
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			Next, go to the platform just below, the Bivariate Curve, and check the Plot Residuals option. If you regularly want the confidence limits of the curve shown, you can also turn on the Confid Curves Fit and the Confid Shaded Fit (arrows), but for now I am going to leave those off (Figure 11.14).

			Figure 11.14: Setting Fit Y by X Preferences – Part B
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			We are now ready to Hide and Exclude our allegedly errant datum. Highlight the row in the original data table (row 7 with a weight of 82 and a fat of 29), and then go to the Rows menu item and select Hide and Exclude to execute this function (Figure 11.15). Note how the JMP data table now has symbols for this row indicating this new row state (Figure 11.16). Redoing our analysis as above, including turning on the confidence limits for the curve fit, gives the output in Figure 11.17.

			Figure 11.15: Hiding and Excluding Data
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			Figure 11.16: Datum Hidden and Excluded
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			Figure 11.17: Full Output Without “Odd” Datum
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			So, what has changed? Since it was only one data point, not much. The slope has dropped slightly from 0.186 to 0.181. The model remains statistically significant, the slope and intercept are still significantly different from zero, and the normal quantile plot of the residuals indicates the residuals are normally distributed, validating the analysis. The confidence limits of the fit have gotten tighter (the shaded area is narrower), but the most significant change is in the RSquare value, which has jumped from 0.875 to 0.957. In other words, without that one point, we are now able to account for 95.7% of the variation in the fat measurements made by just the weight of the individual. This is unusually good for a biological phenomenon, and is probably an artifact of the small sample size, which we have just made smaller by removing a datum that we did not like. Clearly the analyst must be careful in the data cleaning and compilation (see Chapter 18) prior to the analysis to ensure that the right data are included and any aberrant data identified and excluded (with assignable cause!). An instructive exercise made possible by software…you wouldn’t want to try this without it!

			How Do You Identify Independent and Dependent Variables?

			Regression allows the analyst to determine if a relationship exists between two variables, along with some quantitative information about that relationship. However, it, by itself, cannot determine which variable is the cause and which is the effect, so independent and dependent both become dependent on the design of the experiment. How the data is collected, how the experiment is designed and run, combine to determine this totally apart from statistics. Thus, the analyst must depend on the scientist giving her the data with the correct identifications, or the scientist herself must do the analysis correctly. The latter option is what this book is all about.

			It Is Difficult to Make Predictions, Especially About the Future

			This expression in the heading of this section has been attributed to variety of individuals (variation, anyone?), including Niels Bohr, Samuel Goldwyn, Robert Petersen, and Yogi Berra. Although this author would prefer Yogi Berra as the one who uttered this truism, as a scientist, I must remain objective and inform you that it remains shrouded in a mystery that even statistics cannot unravel. However, it serves to introduce one of the more practical applications of modeling biological phenomena, and that is the ability to predict a variable value under conditions of the other variable (or variables, as we shall see in later chapters).

			To put it in terms of the example used in this chapter, once we have the equation defining the relationship between weight and fat, we can predict the fat thickness at any given weight, or the weight at any given fat thickness. Algebraically, this is expressed as predicting y at any given value of x, or vice versa.

			For simple bivariate linear regression, the computations are straightforward and could be done by hand. But what is the good of having software that can do the same thing faster and easier if you don’t use it? The Little Red Triangle for the Linear Fit provides two options that allow the computation of y from any x: Save Predicteds and Indiv Confidence Limit Formula (Figure 11.18).

			Figure 11.18: Predicting Y from X
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			The Save Predicteds option creates a new column back in the original data table that calculates all the y values at the given x values. One can then enter new values for x, and JMP adds a new row with the computed values supplied. Since there is, of course, a certain degree of uncertainty, the Indiv Confidence Limit Formula option creates new columns for the lower and upper 95% confidence limits of those predictions (Figure 11.19).

			Figure 11.19: Predictions Tabulated
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			Note row 11 where the weight of 50 kg has been entered. Using the regression line for this data, we can predict that at this weight, the fat thickness will be 20.8 mm, with a 95% confidence range of 17.9 to 23.8 mm. Given that the data has been collected with only two significant figures, we should probably round this to 21 with a range of 18–24. JMP does provide an overabundance of significant figures that all too often go beyond what is justified by the accuracy of the measurements in the data. You can change the column properties to address this, or you can do what we have done and rounded in our data summary. This is yet another example where the analyst must use common sense and the ancillary knowledge about the experiment and the nature of the data to avoid leaving false impressions of the analysis.

			Row 12 shows what happens when you try to do the inverse prediction and plug in a value of y (fat). You do not get anything else in that row. Since there is a relationship between these two variables, this can be addressed by simply doing the same analysis but reversing the identity of the x and y variables, that is, make weight the y response and fat the x factor. In later chapters with more than one x, we will see other tools JMP provides to do inverse predictions when there are multiple x’s or nonlinear curve fits.

		

		
			Endnotes

			1	 That would be David Tennant playing the BBC science fiction character of Dr. Who in the episode entitled “Blink.” As a helpful hint for future reference, when someone asks you why you are late, you can tell them “Wibbly wobbly timey wimey…stuff” got in the way.

			2	 Yes, I just made that “word” up to match the quote about time but to reference statistics instead.

		

	

			Chapter 12: Tests of Association: Correlation

			The invalid assumption that correlation implies cause is probably among the two or three most serious and common errors of human reasoning.

			Stephen Jay Gould

			Introduction

			What Is Correlation?

			How Does It Work?

			What Can’t Correlation Do?

			How to Calculate Correlation Coefficients: An Eyepopping Example

			Choosing the Correlation Coefficient

			Calculations (Finally!)

			Introduction

			Of all the metrics calculated in linear regression analysis, none actually measures the strength of any relationship found between two variables. The RSquare value, sometimes called the coefficient of determination, comes closest by quantitating the percentage of the variation in y that is accounted for by the variation in x, but this is going to be dependent on how many other variables are simultaneously influencing y. What we need is a metric to quantify the strength of the association between two continuous variables, and that is done with the concept of correlation and the corresponding correlation coefficient.

			What Is Correlation?

			When two variables vary together, this is called covariation, or correlation. Correlation and regression are related to one another because they both look for linear relationships between two variables, but they are different concepts. Regression is a method of analysis used to mathematically define the relationship of one variable to another. As we have seen, regression can be used for prediction because it is used to construct a mathematical model that can be used to predict y from known x’s, or x from known y’s.

			The correlation coefficient, on the other hand, is a metric of interdependence, used to measure the level or strength of the interdependence, or covariation, between two variables. It cannot be used for prediction because it is not a mathematical model. In addition, while we are currently considering linear relationships, a different correlation coefficient (based on the same concept of measuring the strength of the association) can also be calculated for nonlinear relationships as well.

			How Does It Work?

			The correlation coefficient is a number between zero (no correlation) and one (perfect correlation). It can be positive or negative to indicate the direction of the relationship. A positive correlation coefficient indicates the two variables are directly proportional to one another (positive slope of the line), whereas a negative correlation coefficient indicates the two variables are inversely proportional (negative slope of the line). The weaker the correlation, the less likely the relationship will be statistically significant, but this will also depend on the chosen significance level and the sample size.

			How does one describe the strength of the correlation indicated by the correlation coefficient? Asked another way, what values of the correlation coefficient indicate a strong correlation versus a weak correlation? Alas, a quick survey of the web reveals that there is no universally accepted standard. Some will divide the spectrum from zero to one into only three categories (none to weak, moderate, strong), but others will go so far as to suggest six categories (very low, low, moderate, high moderate, high, very high). Still others will just weasel out and simply indicate that as you go from zero to one, you go from weak to strong! Since this is a subjective categorization, this author prefers to keep it simple and adopt the division into only three categories. Thus, I would suggest correlation coefficients in these ranges:

			●	0 to 0.39 –  zero or “weak” correlations

			●	0.40 to 0.69 – “moderate” correlations

			●	0.70 to 1.00 –“strongly” correlated relationships 

			As indicated, this is not set in stone, so if you work in a lab with a different tradition, don’t quote me as any kind of authority in the matter.

			Two additional thoughts on how correlation coefficients work, or perhaps better, what they indicate. First, the weaker the correlation, the more likely factors other than those incorporated into your model are involved in the determination of the response being modeled. This will play an important role when we consider multiple regression and more advanced modeling in later chapters. Secondly, for biostatistics in particular, the probability of getting a correlation coefficient of exactly 1.0000 is so low that if you see this in your output, you should immediately look for where you made an error in your execution or data tabulation! Biology just tends to be very messy, with so much variation compared to other disciplines such as chemistry (where one can get very close to 1.0000 correlation coefficients if you make the measurements of chemical reactions with sufficient rigor and accuracy) that it is extremely unlikely that biological variables will have a perfect correlation to one another. And as we will see in later chapters, overfitting, or fitting the variation, can lead to perfect correlations that are artifacts of the equation being fit and not the actual phenomenon being modeled. Forewarned is forearmed!

			What Can’t Correlation Do?

			The presence of a correlation between two variables only defines the strength of the covariation of the two variables. It cannot reveal which, if any, of the two variables is the cause and which is the effect. Put in other words, it cannot define which is the independent variable and which, the dependent variable. When the two variables, A and B, move together, it could be that A has an effect on B, or it could be that B has an effect on A. In either case, there will be a correlation between the two variables, and the plot will look the same. To make it even more fun, it could also be that A and B have absolutely no effect on one another, but both are being influenced by a third variable C, and you will still see A and B “moving together” and thus correlated to one another. How does the analyst figure out which is what? Is it possible to determine which is the cause and which is the effect? Well, weeping and wailing and gnashing of teeth are not necessary, for it is possible to do so, but that lies in the realm of experimental design, a nonstatistical topic that lies outside the scope of this present work. Suffice it to say that the analyst must be told by the experimenter which variable is the independent and which is the dependent in order to make sense of the data and its analysis (or must design the experiment him/herself in an appropriate manner).

			This is why every statistician knows the basic principle that correlation does not equal causation. This is a mantra that all too few in the general population (and news media) seem to grasp. However, to make the point in a humorous and memorable fashion, this author recommends visiting www.tylervigen.com/spurious-correlations for a series of graphs showing very high correlations between variables that really could not possibility be related to one another except by mere chance (at least we really, really hope not!). For example, did you know that the per capita cheese consumption in the United States correlates with the number of people who died by becoming tangled in their bedsheets with a correlation coefficient of 0.9471?!?1 Or, that the divorce rate in Maine correlates to the per capita consumption of margarine with a correlation coefficient of 0.9926!2 Obviously, we should stop consuming margarine to prevent divorces in Maine, right?

			How to Calculate Correlation Coefficients: An Eyepopping Example

			The data in Figure 12.1 show measurements of intraocular pressure (IOP) in the eye and the corresponding pulsatile ocular blood flow (POBF) in the same eye. The biological/medical question before us is whether these are correlated to one another. Thus, our biological null hypothesis is that these two variables do not covary in a linear fashion with one another. The statistical null hypothesis in answering the biological question has two components: the slope of the regression line for the two variables is not significantly different from zero, and the correlation coefficient is not significantly different from zero.

			Figure 12.1: The Eyepopping Data

			[image: Figure 1.1 Some JMP Help Options]

			Since we do not know which variable might be the dependent and which the independent in this case, we will simply assign IOP as the X, Factor and POBF and the Y, Response (alphabetically). Plotting the data gives Figure 12.2.

			Figure 12.2: The Data Plotted
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			Looking at the plot, we can see that if these two variables are related, they are in an inverse relationship. Secondly, as is typical of biological data, there is a lot of scatter in the data, so we will need the statistics to tell us if the line is significantly different from zero.

			Let’s continue with just graphics and modify our plot by fitting both a line with the 95% confidence limits of the fit and the mean3 to get Figure 12.3.

			Figure 12.3: An “Annotated” Plot
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			Looking at this graph, we plainly see that the slope of the regression line is significantly different from zero because the terminal ends of the mean line fall outside of the 95% confidence limits of the curve fit. We confirm this quantitatively by looking at the output below the graph (Figure 12.4).

			Figure 12.4: Regression Output
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			The p-values for the slope in both the Analysis of Variance and the Parameter Estimates confirm the graphical conclusion that the slope is significantly different from zero, with a p-value of 0.0023. The RSquare value indicates only 41% of the variation in the POBF is accounted for by the IOP. Clearly other factors are in play, but 41% is a credible amount of variation being explained by this one variable.

			This brings us to something that we have not seen before, and that is the Lack of Fit output. This is something JMP provides when there is sufficient data to calculate it. Lack of Fit compares the residual error (or model error, or lack of fit error) to the pure error in the system. If the residual error is significantly larger than the pure error, there is a problem that is termed “lack of fit.” Consequently, we want our model to have a p-value greater than 0.05 to indicate that there is no significant lack of fit. This is what we observe here in this example.

			Choosing the Correlation Coefficient

			First, just to make life interesting, we must distinguish between two different correlation coefficients and when to use them. The “when” has to do with the method assumptions, the primary one of interest being that both the X and Y populations follow a normal, or nearly normal, distribution. (This is distinct from the assumption of linear regression, which is the normality of the residuals.) When that is the case, the standard correlation coefficient to calculate is considered parametric and is called Pearson’s r. Pearson’s r is the square root of RSquare (the coefficient of determination), so they are related but give different information. 

			If one or both of the variables are not normally distributed enough to use a parametric test (or we are dealing with a nonlinear data set), then we can use Spearman’s rho (ρ), which likewise indicates the strength of the association but without making the data normality assumption (at the cost of a little power). If one of the variables is ordinal, then one must use Spearman’s rho in that situation as well.

			Calculations (Finally!)

			The correlation coefficients are found under Analyze / Multivariate Methods  Multivariate (Figure 12.5).

			Figure 12.5: Finding Correlation Coefficients

			[image: Figure 1.1 Some JMP Help Options]

			This brings up the dialog box and, after clicking on OK, the results shown in Figure 12.6.

			Figure 12.6: Multivariate Setup and Output
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			The Correlations table at the top of the output provides just the Pearson’s r, which is -0.6423, a moderate correlation using our previously described verbal translation of the correlation coefficient. The correlation coefficient is negative, indicating an inverse relationship (which we have seen before in the negative slope in Figure 12.3). However, we can get more information from the Multivariate Little Red Triangle by clicking on both the Pairwise Correlations and the Nonparametric Correlations  Spearman’s Rho (Figure 12.7).

			Figure 12.7: Correlation Coefficients Found 
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			Now we can see, in addition to the coefficients, the p-values for the significance of the coefficients as well as the 95% confidence interval for the Pearson’s r (showing that the correlation coefficient is, indeed, significantly different from zero because the lower and upper limits do not include zero therein). Notice how the nonparametric rho is both lower (indicating a weaker correlation) and has a higher p-value (although still well within the statistically significant range) indicative of the lower power of the nonparametric method.

			And now you finally know where to find correlation coefficients in JMP!

		

		
			Endnotes

			1	 Data sources: U.S. Department of Agriculture and Centers for Disease Control & Prevention. Seriously, how does one fall victim to a murderous bedsheet?!

			2	 Data sources: National Vital Statistics Report and U.S. Department of Agriculture.

			3	 See the previous chapter for details of how to do this if you did not set the preferences as described in the previous chapter.

		

	

			Chapter 13: Modeling Trends: Multiple Regression

			A theory is just a mathematical model to describe the observations.

			Karl Popper

			Introduction

			What Is Multiple Regression?

			The Fit Model Platform Is Your Friend!

			Let’s Throw All of Them in…

			Stepwise

			Introduction

			In our earlier chapters, we covered some basics of statistical terminology and strategy, and we have realized that, at the basic level, there are two primary objectives for data analysis. The first is a comparison of different samples, and we have covered the more common tests for those. We are now in the realm of the second objective, which is to determine if there is a relationship between variables, and if so, to quantitatively define that relationship as closely as possible.

			The simplest situation that we have already described (in the previous chapter) is when there are only two variables, an independent variable and a dependent variable, which are modeled by a straight line. The familiar equation is:

			 [image: ] 

			where b is the y intercept and m is the slope. These two values are also known as the coefficients in the equation. Determining their values allows us to define the relationship between y and x to such an extent that we can predict one from the other. But what if there are multiple x variables that define y, such that:

			[image: ] 

			It is to this situation that we now turn our attention. While we would prefer to apply Occam’s razor1 to avoid the complexities of the math such equations will require, biology all too frequently will not oblige our desire to do so, and fortunately for us, JMP handles the mathematics behind the scene so that we don’t have to.

			What Is Multiple Regression?

			We saw in the previous chapter that the process of regression was simply seeking to reduce the differences between the actual data and the line being drawn through the data. The same process is in play with multiple regression, but because there are two or more independent variables involved, it becomes harder, or impossible, to visualize the process as we did in that chapter. The ability of the human mind to visualize in multidimensional space is a challenge that remains unmet. Fortunately, computers don’t worry about visualization. The underlying math becomes more “interesting” as well, but we can let JMP worry about that. The primary point to remember about multiple regression is that there are multiple possible variables impacting the response of interest. Multiple regression allows the analyst to determine which variables, if any, contribute significantly to the response, and to quantitate how much of an influence each variable has.

			For example, consider a response y that is impacted by two variables, x1 and x2. If we hold x2 constant and change x1, what is the change in the mean response y? Now, hold x1 constant and change x2. What is the change in the mean response y? The magnitude and direction of those changes will be indicated and quantitated by the coefficients for each x variable, and this is what we are seeking to determine: the values of the coefficients (or parameters per JMP terminology) for each x variable and accordingly, how significantly are they contributing to the value of y? Life, of course, gets more interesting when additional variables are called upon to explain the response, but that is yet another reason to love software that does the heavy lifting for us!

			The Fit Model Platform Is Your Friend!

			The best way to “get into” this method is to begin doing it in JMP with the Fit Model platform. We will use the Lipid Data.jmp file provided with JMP in the Sample Data Library. This file has 95 data points and 25 columns of different variables. (See Figure 13.1.)

			Figure 13.1: The Lipid Data
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			The data show multiple variables for 95 individuals, including continuous variables for various blood analytes as well as some nominal variables describing, for example, smoking history. Multiple regression can handle both types of variables. Some of the data are “initial” values, and some have the results for the same variables three years later. Now we must set aside our statistician’s hat and think with our biological/medical hat on. What are we going to analyze?

			A response of interest, medically speaking (and for this example), is the Cholesterol Loss. Which of the variables in Figure 13.1 will be best at modeling the amount of cholesterol lost over the three-year period in which this data was collected? Your Objective is to determine whether there is an association between cholesterol loss and any of the variables other than the obvious initial cholesterol combined with the 3-year cholesterol. Cholesterol Loss is the difference between these two variables, so their inclusion in the model will, of course, be significant, and not a particularly insightful result of the research.

			The Fit Model Platform is found under the Analyze  Fit Model menu as shown in Figure 13.2.

			Figure 13.2: The Fit Model Platform...Your Friend!
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			Highlight the Cholesterol Loss variable in the list of columns and transfer it to the Y under the Pick Role Variables box. This is where you put the variable that you are trying to model (and frequently to predict with that model). When you do this, you will notice that the Personality drop-down is filled with the Standard Least Squares option, and something called Emphasis appears with Effect Leverage selected (Figure 13.3). The Personality is just the analysis method to be used. We will eventually look at several of the options under here, but for now, standard least squares method is appropriate. JMP chose this because the y variable that we want to model is a continuous variable. In later chapters we will see what happens if a different variable type is chosen as the y variable.

			The Emphasis is just the level of detail in the output report. Effect Leverage has the most output, including the leverage graphs. Effect Screening eliminates the leverage graphs but contains the rest of the analysis found in the Effect Leverage output. The Minimal Report option reduces that output further to what JMP considers the critical values of the analysis. For now, let’s leave it at the Effect Leverage emphasis.

			The Construct Model Effects box is where we put the x variables that we want to consider. For our first example, let’s consider if the frequency of exercise (min/wk) and coffee intake (cups/day) are associated with the cholesterol loss. After all, we have all heard how beneficial exercise is for us, and maybe accelerating our metabolism with caffeine will help burn off that cholesterol?

			Highlight those two variables in the Columns list and click the Add button to transfer them to make them model effects for the analysis. Your dialog box should now look like Figure 13.3, and you are ready to click the Run button:

			Figure 13.3: The Completed Fit Model Dialog Box
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			The first output from clicking on the Run button is shown in Figure 13.4.

			Figure 13.4: First Output 
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			The Actual by Predicted Plot under the Whole Model shows you how well the entire model works by comparing the actual values to the values predicted by the model just created. In this case, it does not look good. The shaded area indicating the 95% confidence limits of the model is so wide that the line could fit in anywhere, including as a flat line with a slope of zero. The p-value of 0.2391 in the X-axis label confirms that this model as a whole is not telling us anything about cholesterol loss because the slope is not significantly different from zero.

			The p-values under the Effect Summary confirm this by showing that each individual x variable does not contribute significantly to the response of interest. This is also confirmed graphically by looking at the leverage plots, both of which show that the line with a slope of zero fits quite well into the 95% confidence range of the plotted data, so we can conclude that neither variable individually, nor the two together, are contributing to the cholesterol loss (sorry, Starbucks!).

			The only good news so far is that the Lack of Fit is not a matter of concern, with a p-value of 0.9492.

			The pessimistic view of this model continues, however, with an RSquare value of only 0.069, indicating only 7% of the variation in the cholesterol loss is accounted for with this particular model, that is, by these two variables. Figure 13.5 shows two additional outputs of this analysis. The Analysis of Variance is again of the whole model and indicates an insignificant model with the p-value we have seen previously. For the Parameter Estimates, right click on the table headings to add the columns for the Lower and Upper 95% confidence limits of the parameters.

			Figure 13.5: Analysis of Variance & Parameter Estimates for This Model 

			[image: Figure 1.1 Some JMP Help Options]

			The parameter estimates allow us to construct the actual equation that is the “best fit” to the data:

			Cholesterol loss = -0.505 + (0.081*exercise) + (2.18*coffee)

			However, the 95% confidence limits of these coefficients all include zero in their range, so an equally likely equation would be:

			Cholesterol loss = 0 + (0*exercise) + (0*coffee) = 0 + 0 + 0 = 0 (!!!)

			The bottom line is that these two variables are not associated with cholesterol loss in any significant way, despite what we would like to believe. At least not in this set of data.

			A word about negative results: we have an instinctive dislike for results that appear to show us nothing, but this is actually not the case. Negative results do tell you something. They let you know, and provide objective evidence to this end, that you can stop looking at these variables as vectors impacting the response of interest and that you can (and should) turn your attention elsewhere (hopefully with greater profit eventually when you are successful). This is incredibly helpful in industrial settings where time and resources are money that you don’t want to squander by repeatedly ramming into a brick wall to no avail. This is so important that I will be repeating it in later chapters, particularly our chapter on DOE (Chapter 16).

			Let’s Throw All of Them in…

			If multiple regression allows us to simultaneously evaluate the impact of multiple variables on a response, what if we throw all of them into the model effects and see what JMP tells us (Figure 13.6)?

			Figure 13.6: Adding All the Appropriate Variables to the Analysis
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			Notice that with this many variables, JMP automatically changes the emphasis to Effect Screening for a more manageable output. For this attempt, we have to think about which variables we do not need to include using our knowledge of the biology and the overall context. Not included are the Name, since this is just an identifier and is unique to each record, and the variables at the end of the three-year interval. The initial variables have been left in to determine whether they influence how much cholesterol will be lost. Note again that this platform can handle both continuous and nominal variables as x variables. We click Run and…oh, dear!...we get some very “interesting” results (using a definition of “interesting” to which we are unaccustomed!) See Figure 13.7.

			Figure 13.7:  “Interesting” Results in the Effect Summary Output 
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			This is decidedly unhelpful. Not only is nothing significant, we have some variables with no output whatsoever. What is going on here? The Parameter Estimates gives us some clue (Figure 13.8).

			Figure 13.8:  Clues in the Parameter Estimates
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			Several variables are labeled as biased and one is zeroed. All of this points to a significant problem with this attempt: insufficient data to model this many terms. The Summary of Fit output also gives two interesting clues (Figure 13.9).

			Figure 13.9: Summary of Fit Clues
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			The RSquare value indicates 48% of the variation is being explained by this conglomeration of variables, but the RSquare Adj drops dramatically to a nonsensical (squared values should not be negative) negative 3%, a huge clue that this model has problems! The adjustment to the RSquare value takes into account the number of variables in the equation, and this is what one would use to compare different models (equations) in the effort to determine which fits the response best. Notice also that the number of observations is only 43, whereas we have 95 rows of data. When you scroll down the original data table, we find we are missing some of the data for the Cholesterol Loss, so we do not have as much data as we thought we did. This confirms our conclusion that we have insufficient data to model this many variables simultaneously.

			Stepwise

			Does this mean we have to manually evaluate each individual variable for its impact on the cholesterol loss one at a time? However tedious this might appear at first glance, even a casual review of the history of statistics in the twentieth century, most of which occurred before the advent of computers, let alone personal computers (and JMP!), and you will see that such a task is really a piece of cake comparatively speaking with the aid of software such as JMP. Historical perspective can be helpful at times!

			Fortunately, the answer is no, we do not have to manually evaluate each individual variable. JMP has provided a tool under the Personality options that can be helpful here called Stepwise (Figure 13.10).

			Figure 13.10: No Need to Fear! Stepwise is Here!

			[image: Figure 1.1 Some JMP Help Options]

			Clicking Run brings up the dialog box shown in Figure 13.11.

			Figure 13.11: The Stepwise Dialog Box
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			The default Stopping Rule is to minimize the BIC value. This should lead the discerning reader to ask, “What exactly is the BIC (I thought it was a brand of pen!) and why should I use it compared to the other options? And…um, what are the other options?” Well, I am glad you asked those questions. The BIC is the Bayesian Information Criterion, and it is used to compare models by assessing their fit. The lower the BIC, the better the fit. A similar criterion that can be used is the AICc, which is the one we will use in this case. The AICc is the corrected (for smaller sample sizes) Akaike’s Information Criterion, and we would similarly want to minimize its value (that is, smaller AICc values indicate models that fit the data better). Both procedures are seeking to balance model fit with model simplicity by containing penalties for making the model more complicated than necessary. Because of the way they are calculated, the BIC tends to favor models with fewer parameters by penalizing model complexity more heavily. The third option which we will ignore here is the p-value Threshold in which p-values are used to enter and remove variables into the model.

			Adjust the Stopping Rule to Minimum AICc and click Go. When JMP is done, three variables end up being in the model (Figure 13.12).

			Figure 13.12: Stepwise Executed
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			You can see what JMP actually did by looking at the Step History output at the bottom (Figure 13.13).

			Figure 13.13: Stepwise Detailed Steps
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			In Figure 13.11, there are two buttons of interest now that we have variables selected by Stepwise. At the top right, there are Make Model and Run Model buttons. The Make Model button opens a new instance of the Fit Model platform with the variables just selected by Stepwise already put into the appropriate boxes. All you have to do is click the Run button, and you get the analysis so that you can evaluate the model based on the output. The Run Model button just skips the intermediate step and immediately executes the analysis so that you can go directly to evaluation. Choosing the latter option yields the results in Figure 13.14.

			Figure 13.14: The “Best” Model Output
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			With this data set and these three variables, we are still only accounting for about 27% of the variation in the cholesterol loss, with the initial cholesterol levels being the only significant contributor with a p-value of 0.0022 (which might not be too surprising from a medical point of view). The whole model is significant with a p-value of 0.0058, so the slope of the predicted versus actual differs from zero. For the parameter estimates, the lower and upper 95% confidence limits columns were “turned on” to demonstrate how zero is within that range for all but the cholesterol variable. Thus, our model really devolves to:

			Cholesterol loss = 0.344*cholesterol (with 95% confidence range of (0.132-0.557)*cholesterol)

			One can, of course, go the manual route for variables of particular interest to determine whether they have any effect on cholesterol loss as we did at the outset. And cholesterol loss might not necessarily be the most relevant of the variables to address with this data. The final, three-year cholesterol level might be more important as a medical indicator of cardiovascular health in the long run, so you, dear reader, may want to consider analyzing this data with that variable as the response.

		

		
			Endnotes

			1	 Occam’s Razor would assert that when presented with competing hypotheses, as in our case, mathematical equations, that make the same predictions, one should select the solution with the fewest assumptions, or in our case, the fewest x variables. The Wikipedia discussion of Occam’s razor is quite enlightening.

		

	

			Chapter 14: Modeling Trends: Other Regression Models

			Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas.

			Unknown

			Introduction

			Modeling Nominal Responses

			It’s Not Linear! Now What?

			Predictions

			Introduction

			In previous chapters, we have modeled dependent variables that are continuous in nature and can be expected to have at least some linear component in the way the x variable(s) contributes to that response. But what if those two conditions are not applicable? There are many times in biology where the response of interest is not continuous or is not linear. 

			Modeling Nominal Responses

			Consider the data in Figure 14.1.

			Figure 14.1: Parkinson’s Disease Data
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			The data is for 32 individuals with the subject identifiers in the first column and their coded disease status in the second column.1 A “1” is a subject who has Parkinson’s disease, and a “0” obviously does not. (Notice the data is also color- and symbol-coded by going to Row  Color by Row or Column… and using the Status column to select a red plus sign for those who have Parkinson’s disease and a blue circle for those who do not. This will aid visualization for some displays of the data.)

			The remaining three columns are three vocal metrics that represent variables that are of interest relative to an ability to predict whether a subject has Parkinson’s disease. To date there is no definitive test to diagnose Parkinson’s disease, and measuring such vocal variables is non-invasive, so this would definitely be of interest to the medical community.

			Fo is the vocal fundamental frequency, a baseline measure of pitch, measured in hertz (Hz). Jitter is the variation in pitch measured relative to absolute pitch (also known as perfect pitch; Abs). Finally, Shimmer is the variation in volume as measured in decibels (dB). So, our biological null hypothesis is that none of these variables are able to predict the likelihood of having Parkinson’s disease. The statistical null hypothesis would be that none of the coefficients of these variables is significantly different from zero.

			Go to the Fit Model platform and transfer the Status to the Y Role Variable box and the other three variables to the Model Effects box (Figure 14.2).

			Figure 14.2: Fit Model of a Nominal Variable
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			Notice that JMP has automatically changed the Personality to Nominal Logistic based on the selection of a nominal variable as the response to be modeled. (Remember that the Personality is the type or method of analysis to be used to create the model.) The Target Level tells JMP the outcome upon which to place the focus, in this case, on the probability of not having Parkinson’s disease (code 0). Clicking Run gives the following output (Figure 14.3).

			Figure 14.3: First Nominal Logistic Output
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			The Effect Summary reveals that Shimmer is the most important variable, although it does not meet the 0.05 criterion for the p-value. However, when evaluating nominal variables, it is not uncommon to set the significance level at 10%, or a p-value of 0.10, given the discontinuous nature of the response being modeled. In that case, the Shimmer variable becomes significant. The base frequency Fo is next as a contributor, but not at a statistically significant level. In contrast, the Jitter contributes almost nothing with a p-value of 0.98.

			These conclusions are for the three variables considered as simultaneous contributors to the outcome in the presence of the other factors. Taken together, we have the Whole Model Test, which indicates a statistically significant model with a p-value of 0.0066. In the whole model testing, the model using the predictor variables is being compared to a model based on just the observed frequency ratio in the data. In this data, 25% of the subjects do not have this disease, so everyone in the population has a 75% chance of having Parkinson’s disease. Using the model just created with these variables, better predictions can be made for the individuals within the population than using chance alone.

			The whole model testing also provides us with some metrics that we can use to compare to other models if we so choose. All three are ones that we have seen before, and they mean the same things here. Thus, 34% of the variation in the predictions is accounted for with this model (RSquare). The AICc and BIC do not really help us unless we do start creating other models to compare.

			Lastly, the Lack of Fit output is interpreted the same as what we have seen before. The p-value is much larger than 0.05, so we can conclude that there is no lack of fit with our model.

			How can we go about seeing the practical outcome of this model? We will want to try making predictions, but before we do so, it will be a cautious step to look at the amount of error in our parameters given the relatively small sample size that we have for a logistic analysis. To do so, activate the Confidence Intervals under the Little Red Triangle for the Nominal Logistic Fit for Status (Figure 14.4).

			Figure 14.4: Turning On Confidence Intervals
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			This will give the following output for our parameters in the Parameter Estimates table (Figure 14.5).

			Figure 14.5: Confidence Intervals for the Parameters of This Model
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			As can be seen in Figure 14.5, the confidence intervals for all of the parameters include zero, going from a negative number on the low end to a positive number on the high end. This signifies that our ability to predict with this amount of data is questionable. Our model can give us numbers for potential outcome, but the accuracy will not be enough to put any confidence in those numbers.

			Nevertheless, for didactic reasons, let’s see how we would go about making those predictions. Using the Little Red Triangle at the top of the output, turn on the Profiler option (Figure 14.6).

			Figure 14.6: Turning On the Profiler
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			This creates the interactive profile graphs shown in Figure 14.7.

			Figure 14.7: The Profiler of Status
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			The vertical dashed red lines can be manually moved around to different values for each of the variables (grab with the mouse by left clicking and holding on the line and dragging to the desired location/value), and the resulting probabilities for Status read off the boxes on the left. (We will be examining some of the additional features of the Profiler when we get into DOE, Chapter 16.) Notice that there are no confidence limits for either the prediction or the individual parameters, a reflection on the potential inaccuracy of the model. For example, if the three variables have the values shown in the figure, then the model predicts there is only a 9.5% probability that such an individual does not have Parkinson’s disease (or a 90.5% chance that they do). 

			Notice also how the shape of the lines for each variable reflects what we saw with the p-values in the output. Jitter has almost no contribution, and we see a nearly flat line for jitter such that movement one way or the other (that is, changing the values for jitter through the entire range) will have only a minuscule impact on the Status. In contrast, as the Shimmer drops to the lower end of the allowable range, the slope increases dramatically, indicating a significant increase in the probability of a status of “0” (or of not having Parkinson’s disease). Above a certain value, the probability of not having the disease drops to zero. The base frequency (Fo) is in between these two extremes with a mild curve indicating some impact on status. The reader might want to try remodeling without the Jitter variable to see if the model is better.

			It’s Not Linear! Now What?

			A very common practice in biochemistry is the construction of standard curves to determine the concentration of a given substance using some measurable response. The most desired assays have a linear portion to their response curves allowing the use of linear regression analysis. Alas and forsooth, many biological phenomena are not linear, with sigmoidal responses being fairly common. Figure 14.8 shows the results of measuring the % Relaxation of a muscle sample as a function of applied norepinephrine, a compound that causes muscles to relax, shown as the log of the molar concentration due to the large range of concentrations used.

			Figure 14.8: Nonlinear Data – Muscle Relaxation
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			Figure 14.9 shows the results of plotting this data and trying to apply a linear regression.

			Figure 14.9: Linear Regression on Nonlinear Data
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			At first glance, one might think this is a good fit. After all, the RSquare value is 0.96, indicating 96% of the variation in the % Relaxation is explained by the changing norepinephrine concentration, and the ANOVA p-value clearly indicates a strong relationship between the two as well. But if you look at the graph itself, there is a pattern to the way the actual data are located relative to the line. This pattern is more readily seen if the residuals are graphed and evaluated as shown in Figure 14.10.

			Figure 14.10: Residuals Reveal A Problem
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			The “oscillating wave” pattern in the residuals is characteristic of sigmoidal data being fit by a linear curve fit. The result of using a linear fit will be lower than actual values at the low end and then higher than actual values at the upper end. In other words, wrong concentrations being read off a line when the response is nonlinear.

			Now obviously I would not be telling you about this problem if JMP didn’t have a solution, and of course it does! Under the Analyze menu, there is Specialized Modeling  Fit Curve (Figure 14.11).

			Figure 14.11: Where to Find Nonlinear Modeling
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			Note that our descriptive help box tells us that we will find “a variety of built-in nonlinear models” under this option. Why don’t we go to the Nonlinear menu just underneath? Well, that dialog box allows the input of specific formulas for the x column, a feature beyond the scope of this text, and in the absence of such a formula (which we have in this example), JMP goes to the Fit Curve platform anyway, so we might as well save JMP the trouble of doing so by selecting the Fit Curve platform right away.

			Selecting this platform brings up the dialog box in Figure 14.12, which should look a little familiar by now. The two variables can be transferred to the appropriate X and Y input boxes as shown, and then clicking OK gives the output seen in Figure 14.13.2

			Figure 14.12: The Nonlinear Dialog Box Filled Out
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			Figure 14.13: Initial Nonlinear Fit Curve Output
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			The astute reader will notice that this output (Figure 14.13) is decidedly uninformative, but the sharp-eyed and quick-witted reader will notice the Little Red Triangle in the usual position and ask, “I wonder what lies under that friendly feature?” This is the correct question to ask, for as Figure 14.14 shows, this is where a multiplicity of potential nonlinear curve fits can be turned on and evaluated.

			Figure 14.14: The Nonlinear Curve Fit Families (Showing the Polynomial Family with All the Children)
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			Using the Little Red Triangle, turn on the following curve fits:

			●	Polynomials  Fit Cubic

			●	Sigmoidal Curves  Logistic Curves  Fit Logistic 4P

			●	Exponential Growth and Decay  Fit Exponential 3P

			●	Peak Models  Fit Lorentzian Peak

			●	Pharmacokinetic Models  Fit Biexponential 4P

			These curve fits were selected somewhat at random. In practice, one either has some idea which family to work with, or one can systematically work through all of possible curve fits and select the optimum based on the criteria that we are about to cover. The top of your output should now look like Figure 14.15.

			Figure 14.15: Nonlinear Model Comparison Output
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			JMP provides a comparison table with the Summary of Fit metrics that can be evaluated for comparison purposes. The optimum curve fit will have the smallest AICc, a weighted AICc closest to 1, the smallest BIC and RMSE, and the largest R-Square value. As a general guide for comparing AICc values, models where values of the AICc are within 10 units of each other are considered roughly equivalent. The same holds for BIC values.

			For this data, the metrics clearly indicate the logistic 4P (logistic 4 parameter) model is superior in fitting this data. However, there will be times when the metrics will not tell the whole story and must be supplemented by judicious evaluation of the actual curve shape. Some curves might appear to fit well by the metrics but actually may present a fit that, at the extremes, would never occur in biology. For example, the biexponential 4P fit is at the bottom of this set of curve fits, but it is also the one that drops like a rock at the higher concentrations of norepinephrine. At 0.9742, the RSquare value is not bad, but this response does not model a biological response and can be eliminated from consideration on that basis alone, regardless of how good or bad the metrics in the table.3

			One can similarly remove the Lorentzian Peak and the Cubic curve fits for the same reason: both drop precipitously at the upper end, and the Cubic even rises unnaturally at the lower end. Of the two remaining fits, the Exponential 3P looks nearly linear and is no improvement on a linear regression fit.

			This leaves the logistic 4P curve fit (Figure 14.16), which has an excellent RSquare value of 0.9978, a very good value for a biological phenomenon. Examining the curve fit relative to the data shows that the fit curve does not fit the data perfectly, as expected, but does fit very closely and in a more natural manner (that is, in a way expected for a biological reaction).

			Figure 14.16: The “Best” Curve Fit: Logistic 4P

			[image: Figure 1.1 Some JMP Help Options]

			Under the node for this curve fit, the actual equation being fit can be found, with explanations of what the coefficients reflect (when possible), in the Prediction Model (Figure 14.17).

			Figure 14.17: The Logistic 4P Equation
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			The Parameter Estimates table (Figure 14.18) gives the values of the four parameters with their 95% confidence limits.

			Figure 14.18: Logistic 4P Estimates of the Parameters
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			While the values for three of the four parameters differ significantly from zero (this is a good thing!), the Lower Asymptote is so low that it is not significantly different from zero. This is actually also good because it means that when no norepinephrine is added, no muscle relaxation is observed. Or in other words, it is what you would expect of the biology. This type of reality check is an essential element of data analysis. It is where hypotheses can be verified or falsified, where the validity of your interpretation of the results can be supported, and where unusual results can be observed and pursued, leading to new discoveries.

			Predictions

			This leads to the last topic of this chapter, how is this curve fit used to predict % Relaxation from known norepinephrine concentrations, or vice versa. To do this, we turn to the Little Red Triangle (…is your Friend!) of the Logistic 4P output (Figure 14.19) where we find the Save Prediction Formula and the Save Inverse Prediction Formula options (see arrows).

			Figure 14.19: Prediction Formulas
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			In both cases, a new column is added to the original data table. The Prediction Formula calculates y values from known x values, whereas the Inverse Prediction Formula will calculate x values from known y values. The first can be used to confirm the “standard curve” just created to validate its accuracy for determining unknowns. The second can be used with the measured y values of unknown x values to predict the x values. Figure 14.20 shows an example for this data and curve fit.

			Figure 14.20: The Predictions

			[image: Figure 1.1 Some JMP Help Options]

			The first two columns are the raw data that we have seen before. The next column has the % Relaxation Predictor formula in the column, so it calculates y values for all the x values that appear in the first column…as long as they are logarithms of the concentrations. Typing in -6.25, a log value not used to construct the curve, JMP tells us that the % Relaxation is expected to be 29.5% (solid rectangle in Figure 14.18). Notice that the format for the y column is set to percentage, so the numbers appear to be percentages, but the underlying data is in a decimal format as can be seen in the third column. So, for example, at a log concentration of -5, 73.7% relaxation was observed, but this number is really 0.737. The model predicts a value of 0.7494, or 74.9%. Not too bad!

			If, on the other hand, we want to determine the norepinephrine concentration at a given percent relaxation, you enter a number in the second column for % Relaxation, and the fourth column over, which contains the inverse prediction formula, will calculate the log of the concentration. It is important to remember that the concentrations have been transformed by the log function. You will want to convert those values back to molarity to make sense of the data. So, for a % Relaxation of 42.6%, enter 0.426 into the second column, and JMP populates the rest of the row automatically with the inverse calculation, that is, the log of the norepinephrine concentration (dashed rectangle). With JMP, it is easy enough to create the final column in Figure 14.20 as a formula that calculates the exp of the log column so that the molarity can be readily seen (Figure 14.21).

			Figure 14.21: Creating the Formula to Get Concentration

			[image: Figure 1.1 Some JMP Help Options]

			Thus, at 42.6% relaxation, 0.0028 M (or 2.8 mM) of norepinephrine has been applied to the muscle tissue.

		

		
			Endnotes

			1	 Running a logistic model with so few observations is not the best of practices, especially for more than one variable. This example, therefore, would serve as good preliminary data for a grant proposal, but extreme caution should be used in generalizing the results to a larger population, or to the population as a whole.

			2	 This is, as are most JMP platforms, very powerful with a plethora of options and methods that can be applied to the data. Most of these we will not be using due to the scope constraints of this book. For more complete coverage of these options and how to use them, see the JMP documentation and other training. 

			3	 In such cases, when multiple analyses are desired, it is a great thing to be using software because you can quickly add or remove curve fits and see the results in seconds without laboriously working on the next option or being disgruntled about wasting time working on a curve fit that doesn’t work.

		

	

			Chapter 15: Modeling Trends: Generalized Linear Models

			A theory has only the alternative of being right or wrong. A model has a third possibility: it may be right, but irrelevant.

			Manfred Eigen
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			Introduction

			Chapters 11–14 have dealt with the right branch of our master flowchart (Figure 2.2), and we are still dealing with the main objective of that branch of the flow here in this chapter. That is to say, our goal continues to be determining the presence and nature of any associations between variables. But we have made some assumptions along the way, and we now turn our attention to some methods where those assumptions are not necessary to address situations where we still have data to torture analyze to make inferences about our biological situation.

			What Are Generalized Linear Models?

			An increasingly popular framework approach to modeling that does not require the data to meet the usual requirements of traditional linear models is found in the generalized linear model approach. The traditional linear models assume continuous response variables that are normally distributed as well as constant variance across all observations. There are many situations within biology where these are not true. For example, what if the variable you want to model1 is count or frequency data? These usually display a Poisson distribution2 rather than a normal distribution. What about proportions where the observed values are restricted to the range of 0 to 1? There are likewise many situations where the response of interest is binomial (for example, diseased versus healthy, or alive versus dead, or male versus female, and so on). For situations like these, we can use generalized linear models as we shall see in this chapter.

			The Underlying Forms

			Notice that I said “forms” and not “formulas.” We will continue to avoid the underlying mathematics of these methods in our pursuit of a practical working knowledge of how to use them appropriately. However, there is some basic understanding that will help us achieve this goal. There are three components to a generalized linear model: random, systematic, and link. 

			There is a random component that is based on the probability distribution of the response variable being modeled. These distributions can be normal, binomial, Poisson, or exponential. We will concern ourselves with the first three here, and the Generalized Linear Model Personality in the Fit Model platform will need to be told which one you want to use for your modeling.

			The second component is a systematic component that is a linear combination of the independent variables in the model (thus generalized linear models). This component helps estimate the regression parameters using a method called maximum likelihood rather than the least squares method that we have been using.

			These two components are connected by the third component, the link function. The link function helps define how the response variable is related to the explanatory variable(s). Specific link functions are normally associated with specific probability distributions of the random component, but the model framework allows for flexibility in which link function to use in the modeling efforts. Table 15.1 delineates the components of the most commonly used generalized linear models with the link functions identified.

			Table 15.1: Generalized Linear Model Components
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			Why Use Generalized Linear Models?

			We have already seen ways to model binomial data (nominal logistic regression) and normally distributed data (standard least squares models), so why use generalized linear models instead? The easiest reason to understand is the application to binomial and Poisson data where the response does not need to be transformed to create normally distributed data. However, the ability to modify the link function to other than the default choice (which JMP gives you by default) gives more flexibility in modeling. A third reason is that these models require only one procedure in a software application to capture all the modeling possibilities (in other words, you find them all under one menu option in the software instead of having to hunt them down; of course, that is also a function of how good the software developers are in creating the user interface, but we won’t go there). There are other statistical and mathematical reasons that go beyond the scope of this course, at least that’s my story and I’m stickin’ to it! (Translation: I don’t understand them myself and neither would you unless you are a math major or a statistical genius! It is enough for me to know such reasons exist, and I will trust the statisticians that say so.)

			How to Use Generalized Linear Models

			The Fit Model platform output provides the same statistics as we have seen before for the summarization and evaluation of different models. Thus, parameter estimates, standard errors, goodness-of-fit statistics, and so on, are provided and interpreted as we have been doing. All the new things are “under the hood” and invisible to the user. The goodness-of-fit statistics are particularly important since a primary aspect of modeling is the selection and comparison of various combinations of explanatory variables4 in the search for the best fit to the data.5 Figure 15.1 shows how to select which model to use for any given data set. Walking through this flowchart will be the rest of this chapter.

			Figure 15.1: The Generalized Linear Model Flowchart

			[image: Figure 1.1 Some JMP Help Options]

			The General Linear Model

			When the response being modeled is expected to have a reasonably normal distribution of continuous data, the generalized linear model is called the general linear model (GLM). (Yes, I know this is confusing, but I didn’t come up with the names; but at least it will make sure you are awake!) This is the left branch of our flowchart (Figure 15.1). GLM does not work well with small sample sizes, although how small is too small has no clear answer.

			GLM Assumptions

			The flowchart indicates three assumptions for the general linear model: normality, homogeneity, and linearity. Before we look at an example, we should understand what these assumptions are.

			The first is normality, but it is the normality of the error or residuals. A normal quantile plot of the residuals would be the best way to evaluate this, but this platform does not provide one. You will have to save the residuals to the data table and then evaluate the distribution of that column to determine whether this criterion is met using the methods discussed in Chapter 4.

			The second assumption is listed as homogeneity, and this is the homogeneity of the residuals. In other words, when plotted against the predicted values of the model, the residuals should display an even “shotgun” pattern above and below the zero line with no particular shape (see Figure 15.2), indicating a relatively constant variation across the range of predicted values. A lack of homogeneity is evidenced by a funnel shape to the residual cloud. (See Figure 15.3.)

			Figure 15.2: Random Residuals = Homogeneous and Linear
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			Figure 15.3: Non-homogenous Residuals

			[image: Figure 1.1 Some JMP Help Options]

			The third assumption is linearity, and this also refers to the residuals. Linearity is also evidenced by a lack of a pattern (other than the proverbial shotgun blast of randomness) as seen in Figure 15.2. Nonlinear residuals will show a shape other than (or perhaps in addition to) a funnel as shown in Figure 15.4. Nonlinearity is often caused by a failure to include significant interactions in the model. (More on interactions and DOE will be discussed in Chapter 16.)

			Figure 15.4: Nonlinear Residuals…NOT a Smiley Face!

			[image: Figure 1.1 Some JMP Help Options]

			Reading the Output: Questions Answered

			Generally, there are three fundamental questions the analyst wants to answer with this modeling. First, does this model describe a significant amount of the variation in the response variable? The Whole Model Test chi-square p-value answers this for the overall model. There are also chi-square p-values associated with each effect in the model (Effect Summary and Effect Tests output) that indicate the relative importance of the individual variables to the overall response.

			If the answer to the first question is yes, that is, our whole model is statistically significant, then the second question can be addressed: what is the best linear model based on which explanatory variable(s)? The aforementioned p-values determine which variables to include, and then JMP provides the Parameter Estimates with their 95% confidence ranges that it then uses in the Profiler (or Save Formulas) for prediction purposes.

			The third related question to address comes into play when comparing models: how good is the model compared to other possible models? Here we look more closely at the AICc or BIC values,6 remembering that the BIC generally penalizes models that have more parameters than does the AICc, so it will generally lead to the selection of models with fewer parameters. In both cases, the smaller the value, the better the fit.

			Is Weight a Function of… (a GLM Example)

			For our example of a GLM, open the Big Class.jmp sample data file from the files that come with JMP (Help  Sample Data  “Open the Popular Big Class.jmp Sample Data Table” button). Here we have the name, age, sex, height, and weight of 40 individuals. Our biological question is, can we predict the approximate weight of an individual based on knowledge of their age, sex, and height? This is just another way of asking if there is an association between these four variables that is strong enough to allow for prediction of weight using the other three variables.

			For comparison, first open the Fit Model platform and use the Standard Least Squares personality, but change the Emphasis to Minimal Report, then click Run (Figure 15.5).

			Figure 15.5: Fit Model with SLS
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			This should give the output in Figure 15.6 (with the Profiler turned on from the Little Red Triangle menu).

			Figure 15.6: Fit Model SLS Output
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			Reading down the output, we first see (Effect Summary) that height is a very significant contributor to weight (p < 0.0001; not a surprising biological outcome). Age is less of a contributor, but still statistically significant (p = 0.0340), and sex does not contribute significantly at all (p = 0.3801). There is a significant lack of fit; however, p = 0.0083, indicating that the model is not a good as it could be. Nevertheless, the RSquare value indicates we are accounting for a full 71% of the variation in the weight with these three variables, and the ANOVA output has a p-value of < 0.0001, so the model as a whole is significant. The Prediction Profiler shows the error bars for the nominal variables and a 95% confidence range around the continuous height variable, allowing for a visual assessment of the model. At the settings shown, the weight is predicted to be about 121, with a possible range of 109–134.7

			Now, go back to Analyze  Fit Model. Enter the same variables in the same places, but this time change the Personality to Generalized Linear Model and set the Distribution to Normal (Figure 15.7).

			Figure 15.7: Fit Model with Generalized Linear Model
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			JMP defaults to the usual Link Function automatically, but this can be changed if the analyst has a reason to believe a different function will work better (or if it is desired to see if a different link function will work better). Clicking Run yields the output in Figure 15.8.

			Figure 15.8: GLM Output
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			The output first provides a summary of the settings used for the analysis, and then we see that the Whole Model Test by this method also shows that a significant model has been constructed with these variables (p < 0.0001). In this case, the goodness of fit metric is the overdispersion rather than a lack of fit metric (same idea, different math and method). The greater the overdispersion, the greater the model’s variability compared to that expected based on the theoretical distribution. One could also say the greater the overdispersion, the greater the lack of fit.

			The Effect Tests show the same results as we saw with standard least squares, but with slightly different p-values. The residual plot shows no non-homogeneity or non-linearity, so those assumptions of the GLM have been met. Lastly in this output, the Prediction Profiler presents the same picture as seen before for each of the variables, although the 95% confidence range for the predicted weight is slightly tighter with the GLM results (111–132 versus the 109–134 with the SLS output).

			To check the normality assumption, click the Little Red Triangle for the Generalized Linear Model Fit, go down to the Save Columns menu and select Studentized Deviance Residuals (Figure 15.10). This will create a new column in the data table of those residuals. Notice the Prediction Formula can also be saved to the data table for predicting weight values with this model, along with the Mean Confidence Interval for the 95% confidence range of the weights already in the table. (Alas and forsooth, it is not a formula, so it cannot predict for unknown values.) An interesting benefit of saving the Prediction Formula is the ability to see the actual formula used by going to the Column Information of that column and looking at the formula (Figure 15.9).

			Figure 15.9: The Prediction Formula
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			Returning to the question of the normality of the residuals, analyze the distribution of that column for normality with the Distribution platform (Figure 15.11). The normal quantile plot indicates the distribution to be normal enough for satisfying this assumption (most of the points are reasonably linear and fall within the 95% confidence limits of the plot).

			Figure 15.10: Saving the Residuals
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			Figure 15.11: Residual Normality Evaluation
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			In this particular case, we can conclude that we are getting six of one and half a dozen of the other when comparing a standard least squares analysis to a general linear model approach. But we have made different assumptions for the two, and in cases where the data do not fit the assumptions of one, they might with the other, giving the analyst another tool in the toolbox. Generalized Linear Models are particularly helpful in the cases with a normal distribution is not expected, that is, the responses are binomial or count distributions.

			Binomial Generalized Linear Models

			The middle path on the generalized linear model flowchart (Figure 15.1) is used when the response to be modeled is binomial in nature. This model is also known as the binary logistic. And since we are going to be using the phrase “generalized linear model” a lot in the upcoming text, please note that this can be abbreviated with the acronym GLZM (in contrast to GLM for the general linear model of the last section).

			Assumptions of the Binomial GLZM

			This model does not assume that residuals are normally distributed or that the variance is homogeneous across the range of the explanatory variables. It is assumed that there is a linear relationship between the response variable that is transformed by the link function and the associated explanatory variables. However, this is difficult to assess, and in practice is usually ignored. Consequently, the residual plots have little value to the evaluation of the model.

			The assumption that is easy to check since JMP can calculate it for you is the absence of overdispersion. As a reminder, overdispersion occurs when the variability in the data is larger than expected for the distribution used in the modeling. For the binomial and Poisson distributions, an overdispersion of about 1 is desired, and one considers it a violation of the assumption when the overdispersion exceeds a value of about 2. However, it has been noted that overdispersion is not uncommon in practice.8

			How Severe Is It?

			For an example problem, open the JMP sample data file entitled Liver Cancer.jmp in the provided sample data library. The first column tabulates the number of cancerous nodes found in the 136 subjects from which this data was measured. High severity is defined as > 5 nodes present. “Markers” refers to biochemical markers of liver function with a value of 1 indicating abnormal levels. “Hepatitis” refers to the presence (1) or absence (0) of anti-hepatitis B antigen antibodies, indicating infection with the hepatitis B virus. The jaundice column indicates the presence (1) or absence (0) of jaundice, which would also indicate a failure in liver function. 

			The biological question before us is whether any of the variables of BMI, age, time, markers, hepatitis, or jaundice can predict the probability of having a low or high node count. This would have diagnostic and prognostic implications if we could have some idea of the likelihood of the extent of the cancer spread given these variables that can be measured more readily than trying to find and count cancerous nodes.

			To set up the analysis, open the Fit Model platform and transfer the Severity variable to the Y Role box and the BMI through the Jaundice variables into the Model Effects box. JMP assumes you want to do the Nominal Logistic analysis as soon as it sees a nominal variable as the Y variable, but we want to change that to the Generalized Linear Model (not to be confused with the Generalized Regression personality), as shown in Figure 15.12.

			Figure 15.12: Setting Up a Binomial GLZM, Part 1
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			Once you have changed the Personality to Generalized Linear Model, choose the Binomial as the distribution. JMP will automatically assume you want the Logit link function, which we do in this case. Since a lack of overdispersion is an assumption for the binomial GLZM, check the Overdispersion Tests and Intervals box as well (Figure 15.13), and then click Run.

			Figure 15.13: Setting Up a Binomial GLZM, Part 2
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			Figure 15.14 shows the most important output from this analysis after activating the Prediction Profiler using the Little Red Triangle for the Generalized Linear Model Fit.

			Figure 15.14: Binomial GLZM Output
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			The Whole Model Test shows a p-value that is just above the statistical significance at the 0.05 level, but there is no overdispersion. (Remember, we expect a value of 1 and do not want to see anything above 2, if possible.) The Effect Summary shows that the Age variable contributes significantly to the probability of having a High Severity of cancerous nodes, but none of the other variables contribute significantly. Looking at the error ranges around the lines in the Prediction Profiler, we can see why: they are so wide we could drive a truck through them!9 The default values for BMI, Age, and Time are the averages of the data in each case, and we can read this to say that at these settings of parameters, we expect a 62% probability of having a High Severity, with a 95% confidence range of 42% to 79%. Again, this is a rather large range and a portion crosses the 50% line, meaning that the 95% confidence range encompasses both the Low and High Severity categories.

			Since the Time variable has the largest p-value at 0.77, we can try eliminating it from the model to see whether that improves the outcome. Doing so reduces the whole model p-value to a significant value of 0.0348, leaves the overdispersion unaffected, and Age as the only significantly contributing factor. The predicted probabilities at the settings above remain unchanged as well. Looking at the AICc, it has dropped from 186 to 184, but that is a difference of less than ten, so it is not a practically significant drop.

			In fact, given the high p-values for all but the Age variable, we can eliminate all but Age and still get a significant model (p = 0.0039) with no overdispersion. When doing so, the 95% confidence limit of the prediction at the average age now shrinks to 54% to 71%, a slight improvement.

			Poisson Generalized Linear Models

			The same data set we just evaluated provides an opportunity to also look at the Poisson GLZM. The first column contains the actual tumor node count used to divide the subjects into the two categories we just evaluated as a binomial distribution. But count data is a little different, remembering that we have only integer values in our distribution.

			Poisson Distributions

			First, we need to recover our definition of the Poisson distribution from Chapter 4. This distribution is unique to count data. It consists of a discrete but continuous set of nonnegative integers only. It occurs when you are counting items that cannot be divided into subparts – in this case, tumor nodes. You either have one or you don’t. You don’t have half a node! Figure 15.15 shows some examples of Poisson distributions.

			Figure 15.15: The Poisson Distribution
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			Counting Nodes

			What we want to do now is see whether the same variables we previously examined in the binomial GLZM model can be used to predict the actual node count of the liver cancer. In setting this up, the only difference between what we entered in Figure 15.13 is that we have selected the Poisson Distribution under the Generalized Linear Model, and JMP has selected the Log Link Function for us (Figure 15.16).

			Figure 15.16: Poisson GLZM Setup
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			Figure 15.17 shows the output of this analysis.

			Figure 15.17: Poisson GLZM Output
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			Again we have a statistically significant whole model, but this time our overdispersion is significantly different from the desired value, rendering our model of lesser utility. Looking at the Effect Summary, only Age is a statistically significant contributor to the node count. When we look at the Prediction Profiler, the responses do not show large effects, and the predicted node count is 5, with a 95% confidence range of 3 to 7, which is rather large for this context. Our overall conclusion might be that with this data, we are more likely to accurately predict the general severity of the cancer with the binomial analysis than we are to accurately predict the actual number of cancer nodes present. This might not sound exciting, but it is definitely helpful in the context of determining the prognosis of the patient.

		

		
			Endnotes

			1	 Note: this is your objective according to our statistical strategy. Modeling is just determining if there is an association between a response variable and the potential explanatory variables under consideration.

			2	 See Chapter 4 if your gray matter needs to review the identity of a Poisson distribution.

			3	 “Mixed” means a combination of continuous and categorical variables.

			4	 That is, the x variables, or independent variables of the equation.

			5	 This incidentally is where a lot of the “wibbly-wobbly” aspect of modeling comes in to drive the novice to the brink of despair in the pursuit of the “one right answer” when there is, in fact, no one right answer.

			6	 To again refresh the brain cells, AIC = Akaike Information Criterion and BIC = Bayesian Information Criterion.

			7	 Note that these figures have been rounded to the nearest pound because most scales do not go much below the nearest tenth of a pound, and the nearest pound is sufficient given the amount of error in these types of measurements. (And this is an illustration only, not a research publication.)

			8	 McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models. 2nd ed. London: Chapman & Hall.

			9	 Figuratively speaking, of course!

		

	

			Chapter 16: Design of Experiments (DOE)

			All models are wrong, some are useful.

			George Box
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			The Goals of DOE

			But Why DOE?
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			The Practical Steps for a DOE

			Step 1: State and Document Your Objective
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			Step 3: Create a Design to Support the Model
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			Step 6: Verify the Model with Checkpoints

			Step 7: Report and Document Your Entire Experiment

			A DOE Example Start to Finish in JMP

			Introduction

			In this chapter we will attempt to introduce a topic about which volumes have been written by people much smarter than this author. But it is an incredibly powerful tool that every scientist should have in his/her toolbox. There is a multiplicity of books out there, including many available by and from SAS. Here we will only scratch the surface of this methodology1, but hopefully this will serve to whet the reader’s appetite to both appreciate and master this technique in the early course of their career so as to reap the benefits thereof. So…off we go!

			What Is DOE?

			Perhaps the best way to approach answering this question is to first say what it is not. First of all, it is not what we see in Figure 16.1.

			Figure 16.1: One Thing DOE Is Not!
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			And it is likewise not:

			Figure 16.2: Another Thing DOE Is Not!
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			So enough already with the silliness and just tell us what DOE is! DOE in this context stands for Design of Experiments. Now, astute readers, or at least the ones who are still awake, should immediately have a question jump into their minds: But wait! Aren’t all experiments “designed!?” What makes this so special it gets a whole chapter in this book?

			Well, I’m so glad you asked that question! Yes, it is true that all experiments, at least all good experiments, have a significant planning component to them that is a design process. However, not all are designed with the end analysis in mind, and not all meet the primary requirement of a DOE. To the first point, many experiments get designed and executed, and then the data is taken to a data scientist who is then asked/told to “analyze this” for us please. Sometimes that works, but more often, not. A good design process also includes thinking about how you are going to analyze the data after you have collected it so that you can ensure you are collecting the right data in the first place, and that you can, indeed, get something out of the use of the time and resources the experiment will consume.

			To the second point, what is the primary requirement of a DOE? The primary requirement of a DOE is the ability to vary all the important input parameters to the desired levels. Many types of experiments do not allow you to set the inputs of the situation; rather, you can only observe the inputs and record them accordingly. For example, if you want to determine how the amount of actual sunlight (using the actual sun) affects plant growth, you cannot turn a knob on the sun to adjust the lumens to specific levels at specific times; you can only determine how much is reaching the plants as a function of time. We cannot control the many factors that would influence the extent to which sunlight reaches the ground.

			So what would be a helpful definition of DOE for our purposes? In his book Design and Analysis of Experiments, Douglas Montgomery describes it as “the process of planning the experiment so that the appropriate data that can be analyzed by statistical methods will be collected, resulting in valid and objective conclusions.”2 Mark Anderson and Patrick Whitcomb characterize it as “a planned approach for determining cause and effect relationships.”3 A third set of authors indicates that DOE “consists of purposeful changes of the inputs (factors) to a process in order to observe the corresponding changes in the outputs (responses).”4 (Emphases added.) Notice that the italicized portions of the preceding descriptions all align with the idea of planning out, of designing, very specifically the nature of the experiments to be executed. Combining the several ideas contained in these characterizations, the following definition has been derived by Yours Truly:

			DOE: the generation of response data from systematically selected combinations of input factors that are used to create mathematical models (equations) from which valid and objective conclusions about the inputs and outputs can be inferred.

			In addition to the idea of design, this definition introduces the concept of modeling and the ultimate goals of DOE.

			The Goals of DOE

			There are two primary types of DOE, each with their own primary goal. The first goal is simply to identify the important factors that contribute to a given response. The DOE design type with this goal is called screening, and screening designs typically allow for many factors to be evaluated but not necessarily with enough data collected to create a mathematical model that can be used for prediction. (Remember, as observed by that eminent statistician, Yogi Berra, “Prediction is very hard, especially when it is about the future.”) 

			Consequently, the second possible primary goal would be to predict a response based on the input variables that are the principal drivers of that response. This type of design is called a Response Surface Model (RSM) and collects more data with fewer input variables to gather enough information to be able to create a mathematical model of the process under evaluation. We will look at these two in more detail shortly (in other words, don’t stop reading here…unless, of course, your house is burning down around you).

			Although the previous paragraphs outline the types and goals of DOE in neat categories, it should be noted that Mother Nature does not always play by these rules. That is to say, sometimes she has processes that are simple enough that a screening design can, in fact, be used to accurately predict outcomes as well as identify the major players, rendering a further RSM unnecessary. In addition, more recent work has developed a newer version of the screening methodology called a Definitive Screening Design5 that is even more likely to allow for both screening and prediction. And, of course, one can create, execute, and analyze these in JMP, although these are beyond the scope of this text.

			A secondary, but equally important, goal underlying DOE is the idea of getting your results by consuming a minimum of your available resources. As we shall see, trying to measure all possible combinations of our input variables in a set of experiments can quickly lead to impossible numbers, whereas DOE can achieve statistically confident results with much fewer runs, as long as one designs those runs from the outset using DOE methodology.

			But Why DOE?

			Perhaps the best way to answer this question is by way of contrast to OFAT. This is, of course, another acronym, this time for One Factor At a Time, the time honored, traditional (and, indeed, correct) way of doing most experiments by the scientific method. The experimenter tries to design the experiment such that the only thing changing is the putative cause of the effect of interest, controlling by holding constant as many other potential variables as possible. In most cases, this is the best approach. But in characterization experiments, when one is trying to determine the factors that most influence a response of interest, or when one wants to be able to predict a response of interest based on critical input variables (think a manufacturing process here as a concrete example), OFAT has three basic flaws:

			1.	It can miss the true optimum settings of your input variables

			2.	It does not account for possible interactions between the input variables

			3.	It has a lower statistical power of analysis (when running the same number of experimental runs) than does a DOE approach

			I have to take the statisticians’ word on number 36, and we will discuss interactions a little later in this chapter. To illustrate the first problem, consider the response in Figure 16.3 that is a function of input X and input Z.

			Figure 16.3: An OFAT Example

			[image: Figure 1.1 Some JMP Help Options]

			The optimum response (assuming we are looking to maximize said response) is clearly at a value of Z = 10 and X = 7. But there is a suboptimal maximum also at Z = 4 and X = 3.8. If the investigator fixes Z somewhere around a value of 4 and then tests various levels of X, that suboptimal maximum is what will be ultimately identified as the maximum, when, in fact, it most certainly is not. DOE systematically probes the entire surface as part of the design process, which makes it much more likely you will find the true optimum response. And it can do it when more than two variables are critical to your response, something graphing responses as we did above cannot do.

			DOE Flow in JMP

			There is a logical flow to DOE in JMP, and it is illustrated in Figure 16.4.

			Figure 16.4: The Logic of DOE in JMP

			[image: Figure 1.1 Some JMP Help Options]

			JMP provides an entire DOE platform, and the first four steps are carried out in that platform. There, you first select the responses of interest, and there can be more than one (and yes, you can use JMP to simultaneously optimize, if it is at all possible, two or more responses). You then input the factors that you want to investigate and their levels (more details about the mechanics are found later in this chapter). You select the design that you want to use to collect your data. Design selection refers to determining what combinations of factor to run. Figure 16.5 illustrates some of the classic designs for three variables with low, medium and high settings for inputs.

			Figure 16.5: Classic DOE Designs
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			The full factorial design in the upper left of Figure 16.5 tests every possible combination at all three levels of each variable, and you can readily see how many tests need to be made (those would be the dots in the illustration). The other designs will allow for the same conclusions to be drawn with the use of much fewer resources thanks to the wonders of statistical math!

			Finally, have JMP create a table that specifies the exact input variable setting combinations you will then run into the lab/factory/location of your choice to fill with real numbers (your data).

			This is the point where you go have fun collecting your data to fill out the table JMP has provided. (And if this is not a fun part your work, you might want to reconsider your career plans.)

			Once you have your data, you return to JMP for the “really fun” fun to begin, because now we are going to try to find out what story your data is trying to tell you. (Was it the butler in the kitchen with the candlestick?!) But we should now be in familiar territory, because all we are doing at this point is modeling the data with the Fit Model platform that we have been using since Chapter 13. Modeling in this context is simply creating the equation that connects the input variable(s) to the response variable(s) with all the diagnostic outputs that tell us how important each variable is to the response and how well our model fits the data.

			Modeling the Data

			To more fully grasp what we mean by modeling (no, we are not making model planes, or showing off the latest fashion!), consider a response y as a function of two input variables (because that is the easiest and clearest to visualize graphically) x and z. What modeling does is create equations that describe response y in quantitative terms of x and z. But what might that look like?

			The simplest model is a linear model in which there is a slope in the x direction but none in the z direction (Figure 16.6).

			Figure 16.6: A Linear Model Graphed
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			The equation for this model is the well-known y = a + bx, where a is the y intercept and b is the slope. In modeling, the statistics are calculating the best a and b, called coefficients, that create the best line that fits the data. (See Chapter 11 on linear regression.) This identical process is what is going on behind the curtains with the math for more complex equations as well.

			The next most complex model would be a simple plane (Figure 16.7).

			Figure 16.7: A Planar Model Graphed
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			Now we are looking at the equation, y = a + bx + cz, where x and z are called “main effects” because they stand alone without interacting or being squared or being otherwise subjected to any additional mathematical manipulations. The model accounts for no interactions between the input variables, or for any curvature in the response surface. Because of its simplicity, it is often used to analyze screening designs where the primary goal is just to identify the major players contributing to a response.

			So what does adding an interaction between x and z look like? I’m glad you asked! Figure 16.8 shows that the interaction term, expressed mathematically as dxz, twists the plane without adding curvature to it (yes, I know it looks like it does, but that is an optical illusion, I assure you; place a straightedge on any of the lines and you will see they are all straight with no curves):

			Figure 16.8: An Interaction Model Graphed
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			Our equation has now grown to y = a + bx + cz + dxz, where the xz is the interaction term.

			How do we add curvature to the response? This is achieved with squared terms. Figure 16.9 shows what it looks like to add curvature in the x variable only.

			Figure 16.9: A Curve in X Graphed
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			As we add each feature to our potential response, our equation to describe the response gets more complex. Now it looks like: y = a + bx + cz + dxz + ex2.

			The quadratic equation allows for curvature in all variables, and we add the z squared term to our expanding equation: y = a + bx + cz + dxz + ex2 + fz2. See Figure 16.10.

			Figure 16.10: A Quadratic Model Graphed
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			The quadratic model is most frequently used to analyze standard response surface designs. Fortunately, the overwhelming majority of cases you are likely to encounter in the biological world do not get more complex than this. For those that do so, there is the partial cubic model that allows for curves both up and down in all variables. The “partial” label is due to the absence of the actual cubed terms in the equation. The equation for a partial cubic model is y = a + bx + cz + dxz + ex2 +fz2 + gx2z + hxz2 (Figure 16.11).

			Figure 16.11: A Partial Cubic Model Graphed

			[image: Figure 1.1 Some JMP Help Options]

			The Practical Steps for a DOE

			So much for the theory, which provides much of the “why” of what we do when executing a DOE. Let’s turn our attention now to practical principles of execution. Figure 16.4 outlined the three major phases of DOE, but each one consists of several steps that can also be identified. In fact, we can distinguish seven steps from start to finish.

			Step 1: State and Document Your Objective

			If you aim for nothing, you are bound to hit it. Are we interested just in identifying the major players of a process, or do we really want the ability to predict our response(s) so that we can optimize our outputs? The former would only require a screening design in which more factors can be evaluated with a simpler response surface. The latter, however, is a response surface design that requires fewer variables to be involved so enough data can be collected to model a potentially more complex surface. If your process has never been characterized before, how many variables do you have to evaluate? Will you need a screening experiment first to weed out the inconsequential variables before setting up a response surface experiment? As you consider the options and your particular case, it would be well to remember J. W. Tukey’s admonition that “It’s better to solve the right problem approximately than to solve the wrong problem exactly.” It’s also a good idea to write down your objective both to communicate it to others and to remind yourself as you proceed just what it is you are trying to accomplish.

			Step 2: Select the Variables, Factors, and Models to Support the Objective

			Selecting Variables

			This is where the JMP DOE Platform comes into its own. JMP first asks you what response or responses (the dependent variables of your experiment, the “y’s” of your equation) you want to model, and then what factors (the independent variables, the “x’s” of your equation) you want to use in that modeling. If you are in a biotech or industrial setting, the responses are the critical quality attributes your product needs for the customer to be willing to buy it. In a more research-oriented setting, the responses are the things of biological interest and importance that you are investigating.

			The variables that we will consider here are continuous and categorical variables, but one can also model mixtures and use blocking variables. These latter two considerations, while important, are not within the scope of this introduction to biostatistics, but you should be aware that they exist.

			The selection of the responses and factors is perhaps one of the first places that the “art” of science enters the picture. This process requires a good knowledge of the system that you are investigating, and there are no hard and fast rules that can be given for how to select the right ones. Preliminary experiments can be helpful, especially when setting the ranges for your independent variables. But the bottom line is, you need to know the biology and/or the chemistry of your system to be able to make intelligent choices.

			In addition to the variables that you want to investigate, this is probably the point at which you should also consider potential noise variables and identify those variables that you want to control at constant settings for your system. There will almost always be potential inputs that are not of interest to the study and, if at all possible, should be set to a fixed control level for the duration of the experiment. There are likewise potential inputs that cannot be controlled and could influence results and should be monitored (that is, recorded) so that, if necessary, they can be evaluated as random factors to see whether they have influenced your response. Examples of such noise factors include things like ambient temperature and humidity.

			Setting Ranges

			A word about setting the ranges of your variables for the experiments that you are about to execute. This is particularly important for the continuous variables. You will want your low and high settings to be far enough apart that you will maximize your chances of seeing a difference that you can model. But it is important to also remember that there is going to be some level of measurement error. This being the case, if the range is set too “timidly,” that is, too close together, there is an increased possibility that the measurement taken at the low setting might be on the higher part of the response curve, the measurement at the high setting might be at the lower end of the response curve, and the subsequent conclusion drawn could be the exact opposite of the real response (Figure 16.12).

			Figure 16.12: “Timid” Range Setting...Bad
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			By selecting the low and high range settings farther apart (that is, “boldly”), this error can be avoided even when the same measurement error combination is encountered (Figure 16.13).

			Figure 16.13: “Bold” Range Setting...Good!
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			What Model?

			Once the factors have been chosen and the responses selected, the next question is, how do you want to have the x’s related to the y’s? In other words, what equation do you want to evaluate as a potential model for your responses? Do you want to look at main effects only, or do you want to include the potential for interactions and evaluate those? Here is where your experimental goal integrates with your decision because a screening design will most likely only look at main effects, but include many more independent variables. For a response surface design, you generally have fewer variables (3–4 at maximum) and can afford to look at more complex models that take into account interactions and curvature.

			Since the data collected to support a complex model will also support less complex models, a commonsense approach is to try to create the most complex model you can under the specific conditions of resources that you have available. This then leads us to step 3.

			Step 3: Create a Design to Support the Model

			At this point we are now ready to select the combinations of variable settings for which we will collect data to use in constructing our mathematical model of the phenomenon under study. Rather than worrying about figuring out these combinations ourselves manually, the JMP DOE platform will do all the heavy lifting for us at this point. The only designs we will look at in detail here are the optimal designs selected by the Custom Design platform. This generally provides the most flexible of design choices for most purposes. However, it should be noted that JMP has the option to choose many other designs as shown in Figure 16.14.

			Figure 16.14: Other Design Options in the DOE Platform
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			You can see that, in addition to the Custom Design option, you can select Definitive Screening designs, classical screening and response surface designs. If you are a glutton for punishment and have unlimited resources, you can choose a full factorial design, and if you need it, you can do mixture designs. If you are in marketing, you might be interested in the choice designs found in the Consumer Studies menu shown above. All of these have their place in the toolbox of the researcher, but are beyond the scope of this present work. I call your attention to them to hopefully whet your appetite for this rich menu of powerful tools provided in this platform.

			Replication

			As we turn our attention now to design, there are a few considerations that we should note. JMP will ask whether you want any centerpoints and replicates. Centerpoints will be points in the middle of the response surface plane that can help detect curvature if they are used. Replicates are used to help measure process error, but be forewarned that a replicate to JMP means a complete new set of runs based on the initial design. Thus, if the initial design calls for 8 unique combinations, one replicate will generate a design with 16 runs, the unique 8 combinations created twice.

			True replication is repeating all the steps of the process under investigation so that each set of conditions is executed as a unique run more than once, starting from the beginning. This allows the underlying math to calculate the process error associated with your model, taking into account the variation of the system and ability to reproduce the phenomenon in question. This is to be distinguished from measuring the response from the same preparation multiple times, which quantitates the measurement error, not the process error. Some sources would call this type of replication pseudo-replication since you are not evaluating the entire process. That prefix “pseudo” carries some negative connotations that make it sound like a bad thing. This is only true if the investigator is not aware of what he or she is truly measuring. There are times it is quite important to know the amount of error is being introduced into the results by the instrument measuring those results, that is, the measurement error as well as the process error.

			Blocking

			There will be times when factors will be identified that are not of interest to the problem under investigation but which might still impact the results. For example, you are interested in determining whether a dog’s running speed is impacted by its diet, and you have four different diets to test and a population of 100 dogs (of the same breed) to work with. A variable that could affect speed is age, yet you are not really interested in the effect of age on speed, but the population of dogs available for the study are of different ages. While you could randomly assign the dogs to each diet group and hope your ages are spread evenly across your four groups, a better approach is to treat age as a blocking factor in the experiment. To do this, you would rank the dogs by age and then partition the ranks into blocks so that those in a given block have a similar age. The number of blocks is not of great importance to the analysis, only to the logistics of the execution. What is important is that the number of subjects in a block is a multiple of the number of test groups. (In this case, we have four diets, so we need multiples of four in each block.) The subjects in each block then get randomly assigned to the test groups so that now each test group has approximately the same type of population relative to the variable being blocked (in this case, age). Treating the blocked variable as a separate factor in the data analysis allows you to determine whether, in fact, this variable has influenced your results, and, if so, to remove its influence from the analysis of the remaining factors.

			If all that sounds complicated, it is. But rejoice! JMP will handle all that planning if you simply identify age as a blocking variable when you set up the experiment in the DOE platform. It will then separate out the individuals from each block into their appropriate groups for you. Software is so much fun!

			Confounding and Aliasing

			In a DOE experiment, more than one variable is usually being changed at a time. Therefore, another concern when selecting a design is what happens when two different alterations are applied to the same process at the same time so that if the process response changes, you do not know which alteration caused the change. For example, you get stung by a bumblebee on your finger as you reach for a flower. Having avenged itself upon your poor finger, the bumblebee flies off, leaving you behind doing the not-so-happy bee sting dance with accompanying vocalizations unfit for print. Someone eventually grabs you, after downloading your dance choreography to Facebook, plants you in a chair, and sticks your throbbing hand into a cold glass of ice water, whereupon you sigh the sweet sigh of relief as the pain subsides and you can now think rationally enough to threaten with bodily harm whomever did download this episode to Facebook. Question: what relieved the pain, the wet of the water or the cold of the ice? We don’t know, because “wet” and “cold” are confounded or aliased.

			Statisticians have “repurposed” the concept of resolution from microscopy to address this and to signal how the variables of a DOE might be confounded with one another.

			●	Resolution-3 designs: main effects not confounded with each other but are confounded with 2-factor interactions; only main effects are included in the model.

			●	Resolution-4 designs: main effects are not confounded with main effects or 2-factor interactions, but some 2-factor interactions are confounded with each other.

			●	Resolution-5 designs: no confounding between or within main effects and 2-factor interactions.

			Since the best situation would appear to be to always choose resolution-5 designs, why bother with lower resolution designs at all? Simply for the pragmatic reason that increasing the design resolution increases the number of trials needed to get enough data to make the distinctions needed to separate out confounded variables. This, of course, means using up more resources, and such resources might be limited to the point that resolution-5 designs may not be possible under the conditions available. Thus, the only two choices would be to weep, wail, and gnash one’s teeth, which really does not help much, or to run a lower-resolution design to get at least some information that can be applied to solving the situation at hand.

			New(er) Designs

			Back in Figure 16.14, we noted that JMP includes the ability to create so-called classic designs through the DOE platform. Some of those are diagrammed out in Figure 16.5. The Custom Design menu focuses on designs that have been created in the more recent history of DOE as improvements on the classical designs (not that the classical designs are misleading or incorrect), the “optimal” designs.

			If you have a fairly large number of variables, you will most likely find JMP creating a D-optimal design for you. This design seeks to maximize a criterion so that you learn more about the variables themselves. For those who really want to know, that criterion minimizes the generalized variance of the estimates. (And no, I don’t really know the math behind that statement, but as biological scientists, we only need to know that it is valid and it works, with apologies to my mathematical/statistical friends.) It is an all-purpose design particularly useful for screening designs.

			In other situations, you will find JMP creating an I-optimal design. This design maximizes a criterion so that the model predicts best over the region of interest and has the most utility in response surface optimizations. (The criterion cited minimizes the average variance of prediction over the experimental region.)

			A Final Design Point

			When you come to the point of having JMP create your data table that you will take into the lab for data collection, the default option is to randomize the trials, but there is the ability to change that to other, more orderly sequences. Unless there is a compelling reason to do otherwise, randomization is the best choice to reduce correlations between the independent variables of the study and unknown confounding variables. As R. A. Fisher noted, “Designing an experiment is like gambling with the devil. Only a random strategy can defeat all his betting systems.”

			Step 4: Collect the Data Based on the Design

			Once you have your JMP data table without data, you get to have the real fun that you have been looking forward to all along: doing the actual experiments and/or making the observations that started you on this journey in the first place. On a historical note, much of the original development of DOE methodology came from the agricultural field (or fields, literally) and the beer brewing industry, so the techniques have their roots (pun not intended) in biology.

			There is a possibility that you will not be the one collecting the data personally, or that you will be working in a team and that someone else will be helping collect the data. It may be that you need to have samples run on a certain instrument that you are not qualified to use, so a trained technician will be running the samples for you. Regardless, get involved as much as possible with the data collection. “There is nothing like first-hand evidence,” as noted by that eminent statistician, Sherlock Holmes.7

			If others are involved, share the ownership of the project; communicate why and how you are doing things. I don’t know how true they are, but I have heard anecdotes of how someone planned out an experiment and did not do this, and the “old hands” in the factory who just “knew” how things would turn out, filled in his data table with numbers that they just “knew” would be the outcomes without actually doing the actual process at the requested settings, and their knowledge was not accurate despite their experience. As you might imagine, the results were less than satisfactory.

			Step 5: Execute the Analysis with the Software

			For those of us diagnosed with clinical insanity due to our love of statistics, this is where our fun really gets fun! You now have your data table filled out with real data from your efforts, but what does it all mean? We are done with the DOE platform at this point and move to our old friend, the Fit Model platform. Analysis in this context simply means combining your data with math to create an equation of your process. In doing so, we want to answer two main questions: does the model fit the data, and what are the important factors and variables? Table 16.1 summarizes some of the metrics provided by JMP that allow the analyst to answer these questions. Notice that we generally do not have to rely upon just one value to make a decision.

			If we are in a screening design, the answer to the second question furnishes us with the information for the construction of a response surface DOE. If they are already from a response surface experiment, then those are the variable for the axes of the contour plot and the focus of our attention in the Prediction Profiler.

			Table 16.1: Metrics Provided by JMP to Assess DOE goals

			
				
					
					
					
					
				
				
					
							
							Metric

						
							
							Model Fit

						
							
							Important Factors

						
							
							Comments

						
					

				
				
					
							
							RSquare

						
							
							X

						
							
							
							% of variation in the response data accounted for by factors in the model

						
					

					
							
							RSquareAdj

						
							
							X

						
							
							
							Adjusts the RSquare value to make it more comparable over models with different numbers of parameters using the degrees of freedom to penalize those having many model terms

						
					

					
							
							p-value, whole model

						
							
							X

						
							
							
					

					
							
							AICc, BIC

						
							
							X

						
							
							
					

					
							
							p-value, LOF

						
							
							X

						
							
							
					

					
							
							p-value, individual factors

						
							
							
							X

						
							
					

					
							
							Normal plot

						
							
							
							X

						
							
							Significant factors appear as outliers that lie away from the line that represents normal noise (and helpfully labeled for you by JMP)

						
					

					
							
							Prediction Profiler

						
							
							X

						
							
							X

						
							
							95% confidence limits of prediction and error bars provided when possible to calculate help in assess model fit and important factors

						
					

				
			

			Step 6: Verify the Model with Checkpoints

			Remember the quotation from George Box at the beginning of this chapter: “All models are wrong, some are useful.” At this point, you have a model and presumably it has a reasonable fit to the data, at least the data that you used to create it. Checkpoints or verification points are trials run at combinations of settings not used to create the model, or, in other words, predictions that will hopefully prove that your model has some contact with reality. This is a vital step if the model is to have demonstrated utility beyond working only on the data use to create it, which would amount to arguing in a circle. At what settings should you try to create checkpoints? Several options are available to you, including at or near optimum response outputs, near suspicious behavior, at low cost settings, and even at settings outside the range of the original settings (how well does the model extrapolate?). But regardless of where, one should always, always, always (did I say that often enough?) check the model’s predictions to verify whether it has utility beyond the settings used to create it.

			Step 7: Report and Document Your Entire Experiment

			Information is useless unless shared. One would think it unnecessary to state this as bluntly as this, but it is. I spent 25 years of my life in an industry where if you did not document it, including signing, dating, and having it signed and dated by a witness, it never happened. Period. Your documentation requirements might not be as stringent, but it is better to be safe than sorry.

			In addition, this documentation should really go beyond a simple “here is what I did” approach frequently found in lab notebooks. Particularly with DOE, document the logic and rationale of all your steps (for example, why did you choose this range for this variable?) even if it seems obvious to you at the time. It will help tremendously when you have to defend it to your doctoral review committee, or your friendly neighborhood regulatory agency (for example, the FDA) three years later when you have forgotten all those little details that are currently seared into your consciousness and you think you could never possibly ever forget.8 Trust me, you will. It is best to remember what Confucius says: “The weakest ink is mightier than the strongest memory.”

			A DOE Example Start to Finish in JMP

			Since agriculture was one of the first places in which DOE methodology was developed, we are going to try to maximize plant growth by modeling said growth on three factors: amount of fertilizer, the amount of water, and the numbers of days the plants are allowed to grow. We will see how successful we are modeling with just two levels of each (Table 16.2).

			Table 16.2: DOE Domain Ranges

			
				
					
					
					
				
				
					
							
							Factor

						
							
							Low

						
							
							High

						
					

				
				
					
							
							Fertilizer

						
							
							45 gm

						
							
							90 gm

						
					

					
							
							Water

						
							
							6 mL

						
							
							10 mL

						
					

					
							
							Days grown

						
							
							11 days

						
							
							16 days

						
					

				
			

			Open the Custom Design DOE dialog box and enter the information shown in Figure 16.15 (DOE / Custom Design).

			Figure 16.15: Custom Design Dialog-Response and Factors Entered

			[image: Figure 1.1 Some JMP Help Options]

			Clicking Continue takes us to the next step, determining the model that we want to try to construct. We know we want to include the three variables as main effects, which JMP defaults to adding to the model. Given the possibility of interactions between the variables, we should also add two-way interactions by selecting 2nd under the Interactions drop box for Model to add these to the desired model (Figure 16.16).

			Figure 16.16: Adding Interactions to the Model

			[image: Figure 1.1 Some JMP Help Options]

			The default number of runs with these parameters is 12, but given the ease of getting the supplies for this experiment, let’s add four more runs by entering 16 into the User Specified box, and then clicking the Make Design button (Figure 16.17).

			Figure 16.17: Adding Runs and Making Design
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			Normally the design that JMP creates and displays is randomized, but the Design in Figure 16.18 has been ordered Left to Right to see that we have eight unique runs, each duplicated. Had we used the default of 12 runs, four runs would not have been duplicated, and we will see shortly the impact that adding just those four runs has on the overall model efficiency.

			Figure 16.18: The Design Created by JMP
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			Having created the design, JMP provides several ways to evaluate the design under the Design Evaluation node. Probably the most useful are the Color Map on Correlations, which enables you to see which variables are aliased and to what extent, and the Design Diagnostics, which gives some efficiency metrics of the design (Figure 16.19).

			Figure 16.19: Some Design Evaluations
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			The color map will show aliased variables with correlations greater than zero, which is really not what we want when at all possible. The diagonal line of red boxes is simply the variables correlated to themselves, which we would hope they would be. This color map is the optimal one we want to see, where none of the variables, be they main effects or interactions, are aliased with any other variable.

			The Design Diagnostics calculate the various efficiency metrics, and we would prefer to have 100% efficiencies, which is what we do have with this design and this number of reps. JMP also tells us it has created a D optimal design for this set of variables and this number of levels.

			Now, click the Back button at the bottom of the window and select the default number of runs of 12 for your design, and make that design. The same design evaluation nodes now show you that merely reducing the number of replicates of those unique runs by 4 out of the eight has introduced some aliasing as well as reducing the efficiency of the design (Figure 16.20).

			Figure 16.20: A Less Efficient Design by Comparison
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			Notice that now the Fertilizer main effect is aliased with the interaction between water and days grown with a correlation of about 0.5 as indicated by the gray colored squares where those two variables intersect in this graphic. In fact, each main effect is aliased with a different two-way interaction in this design.

			Go Back again and restore the full 16 runs, make the first design again, and then click the Make Table to create the data table without data that you are to take into the lab (or greenhouse in this case) to grow some plants under these specific combinations of fertilizer, water, and number of growth days (Figure 16.21).

			Figure 16.21: The Data Table to Be Filled Out

			[image: Figure 1.1 Some JMP Help Options]

			In this case, we do have data that has been collected and is shown in the next figure (Figure 16.22).

			Figure 16.22: The Data Table Filled Out with Data

			[image: Figure 1.1 Some JMP Help Options]

			We are now ready to have some analytical fun by seeking to model the data in the Fit Model platform. We can set this up using either the script JMP has created by clicking on the little green triangle in the script box on the top left side of the data table, or by simply opening the Fit Model platform through the standard menu. Either way will result in the model specified in the DOE setup being entered for the analyst into Y variable and model effects boxes, complete with the interactions that we want to include in the model (Figure 16.23).

			Figure 16.23:  Fitting the Model with the Fit Model Platform

			[image: Figure 1.1 Some JMP Help Options]

			When there is any chance I might want to evaluate more than one model, I personally find it helpful to check the Keep dialog open box so that I can redo the analysis by rearranging the model effects. For now, let’s leave all the main effects and two-way interactions in the model and see what we get. Click Run and you should get the analysis that we will now look at in detail in the next several figures.

			Figure 16.24 shows us that we have a very good model in this case. The RSquare value indicates we are accounting for 99% of the variation in the height with our model, and there is no significant lack of fit (p = 0.6331). All but one interaction is contributing significantly to the model. The Effect Summary node ranks the variables by their logworth values, which gives a quantitative estimate of how much each variable is contributing to the response. This is particularly useful when the p-values are all so low that JMP just assigns them a value of < 0.0001. So the variable contributing the most to the plant height is the amount of fertilizer, followed by the interaction of the fertilizer and water.

			Figure 16.24: Analysis, All Variables Present, Part 1

			[image: Figure 1.1 Some JMP Help Options]

			The remaining output of interest (Figure 16.25) confirms the very strong RSquare values, gives values for AICc and BIC for comparisons (we will compare the main effects only model in a moment), and the parameter estimates. Those parameters (the coefficients in the equation) are all positive, indicating that the height increases in direct proportion as the values for these variables increase.

			Figure 16.25: Analysis, All Variables Present, Part 2

			[image: Figure 1.1 Some JMP Help Options]

			The strongest interaction (Fertilizer * Water) is evident in the Prediction Profiler when we leave the water and days grown at their midpoints (the default values JMP uses when the Prediction Profiler is first accessed) and move the amount of Fertilizer used from the low to midpoint to high amount of fertilizer (note the arrow in Figure 16.26 and the vertical dotted line). The slope for the amount of Water goes from positive at high Fertilizer to negative at low Fertilizer (middle variable in the profiler, Figure 16.26). This type of change in slope is a hallmark of an interaction between the variables.

			Figure 16.26: An Interaction in the Prediction Profiler

			[image: Figure 1.1 Some JMP Help Options]

			One of our objectives was to determine the settings for these three variables that would maximize the plant height. This is accomplished by activating the Desirability functions under the Little Red Triangle of the Prediction Profiler (Figure 16.27).

			Figure 16.27: Activating the Desirability Functions

			[image: Figure 1.1 Some JMP Help Options]

			Since we set up the DOE with maximizing the height as the goal (Figure 16.15), JMP has remembered that, and the Desirability functions are already set up to maximize the height. This is accomplished by adjusting the three points (shown by blocks that can be clicked on and dragged to the desired setting) so that the maximum desirability of one is at the highest height and the lowest desirability approaching zero is at the lowest height (see arrows in Figure 16.28).

			Figure 16.28: Optimizing Desirability

			[image: Figure 1.1 Some JMP Help Options]

			If your mouse hand is unsteady, or you are restricted to a touchscreen or touch pad such that it is difficult to catch and move the desirability dots to the desired location, you can also manually enter the numbers by calling up the Response Goal dialog box. Once again, the Little Red Triangle is your friend, and you can find the Set Desirabilities option second from the bottom of the Optimization and Desirability menu of the Prediction Profiler Little Red Triangle (Figure 16.27).

			It is always a good idea to look at the optimization settings closely to see whether they make biological sense for the response being modeled. In this case, the optimum settings are the high setting for all three variables. Does it make biological sense that the highest amounts of fertilizer and water along with the longest growing time should yield the tallest plants? Almost any gardener or farmer would have no problem answering that! Of course, too high amounts of fertilizer and water are known to be detrimental for some plants, but in the data collected for the ranges tested here, that does not seem to be a problem.

			Could this model be made any better? Remember that we have one interaction that is not contributing significantly to the model (Water * Days grown, p = 0.2735, Figure 16.24). What if we eliminated that variable from the model? And how does a main effects model compare to either of these with interactions? One of the great advantages of doing your statistics with software is that you can easily do these analyses in just a few minutes (if not seconds) and answer questions such as these. Using the metrics that allow us to determine the goodness of fit and to compare models as shown in Table 16.3, we can see that dropping the one interaction doesn’t really change much. The AICc is lower, and it is the simpler model that should predict just as well as the more complex model, and therefore would be the one to use for whatever conclusions are to be drawn for this experiment. In contrast, a main effects model is considerably poorer, having significant lack of fit and comparison metrics that clearly indicate that modeling with the main effects only is not a statistically satisfactory route to go.

			Table 16.3: Comparing Models
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			Chapter 17: Survival Analysis

			A weed is a plant that has mastered every survival skill except for learning how to grow in rows.

			Doug Larson

			Introduction
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			Comparing Survival with Kaplan-Meier Curves

			Modeling Survival

			Quantitating Survival: Hazard Ratios

			Introduction

			In our last chapter (Chapter 16) we exhausted our exploration of the master flowchart of Figure 2.2. But we are not done yet, of course. That flowchart provides only the basics of the simpler forms of statistical analysis. As with most disciplines, there are further depths into which to plunge to access additional information or to address specific problems that require different approaches. Regardless, our Y.O.D.A. strategy still holds. You should always ask what Your Objective really is. You should always determine what type of Data you have and how it was collected. And you should always make sure you are aware of the Assumptions of your analysis method and assess whether those assumptions have been met.

			The topic of this chapter, survival analysis, is a frequent and powerful tool used in the biomedical field to evaluate the effects of different drugs and/or treatments in the search for cures of various maladies plaguing mankind. That said, one can find the same analyses applied in other areas where survival can be translated into metrics such as mean time to failure. Our concern here is obviously the biological application.

			First, let me issue this disclaimer regarding this chapter. While we will be talking about survival, we are not talking about surviving the coming zombie apocalypse. There are plenty of websites that do that, as evidenced by the fact that one gets “about 4,500,000 hits” when googling that phrase. Instead, we will address another topic to which entire books have been devoted, and will once again only scratch the surface of what could be covered. However, it will provide a brief introduction to the arena that will allow further study with some understanding of the more commonly published products of such analyses.

			So, What Is It?

			The survival analysis with which we are concerned is a collection of statistical procedures for data analysis for which the outcome variable of interest is time until an event occurs. Here we define “time” as any measure of time from the beginning of follow-up of an individual until an event occurs. Alternatively, it can be the age at which an event occurs.

			The event is any designated experience of interest that might happen to an individual. This could be death, disease recurrence, relapse from remission, recovery (for example, returning to work).

			A Primary Problem or Consideration

			This type of data analysis must deal with a problem that is unique to this type of data. Specifically, what if you don’t know the survival time is exactly? This could happen in a number of different ways, for example, when:

			●	The subject does not experience the event before the study ends

			●	The subject is lost to follow-up during the study period (for example, moves out of the area)

			●	The subject withdraws from the study (for example, has an adverse drug reaction)

			So, do we weep, wail, gnash our teeth, and cover ourselves in sackcloth and ashes? There is information in such data even if we do not have the exact start time or endpoint, and we do not want to lose that in our analysis. Fortunately, statisticians much smarter than this author have devised a solution.

			The Solution: Censoring

			Censoring is the term used to describe data points for which this problem occurs. There are three primary types of censoring as illustrated in Figure 17.1 and described below:

			1.	Right-censoring: this is probably the most common and is the only one we will use in this book. It occurs when you know the start time but not the end time (for possible reasons enumerated above). In this case, the true survival time is greater than or equal to the observed survival time.

			2.	Left-censoring: sometimes we know the start time of a study but do not sufficiently monitor the subject to verify their status relative to the event of interest until the actual event occurs. For example, we follow a set of subjects until they become HIV-positive, but we are not testing them regularly so that we know exactly when they were exposed to the HIV relative to testing positive. In this case, the true survival time is less than or equal to the observed survival time. (Remember, survival in this context is simply time until an event occurs.)

			3.	Interval-censoring: in this case, the time of first exposure to the putative cause is unknown but you know the time before and after. To clarify with an example, define the event of interest again as testing positive for the HIV virus. In contrast to the left censored data, we confirm the subjects’ negative HIV infection status when they first join the sample population. They are then periodically retested to see if and when they test positive. For those who test positive, we have time points for before infection and after infection, but we don’t know the actual time of infection. Consequently, the true survival time is within a known time interval but less than the observed time between tests.

			Figure 17.1: Censoring Options Illustrated

			[image: Figure 1.1 Some JMP Help Options]

			Censored data is usually indicated in a data table with a 1 for censored and a 0 for uncensored results, but this is not a universal rule.

			As we move forward in this chapter, there are only three basic topics that we will investigate. These topics correspond to the objectives of the analysis. First, how to graph and compare survival curves. Secondly, how to model survival curves to make predictions. Lastly, how to quantitate the likelihood of survival.

			Comparing Survival with Kaplan-Meier Curves

			For the rest of the chapter, we will use the survival data shown in Figure 17.2.

			Figure 17.2: Sample Survival Data

			[image: Figure 1.1 Some JMP Help Options]

			In this data set we have two groups, a control group and a treatment group. The treatment group looks like it has a longer survival time, but do the statistics and graphics of the data support this? Notice also that there are six subjects in the treatment group that have survival times of 24 weeks and are censored. This is indicative of subjects who survived the entire 24-week time period of the study and were no longer followed because of the termination of the study. Thus, we do not know the true survival time of these subjects, but we do know they represent right-censored data. There is still information there, so we don’t want to discard these subjects. To do so would truly bias the results (as we shall see in a moment).

			To graph with what is known at a Kaplan-Meier curve and compare the two groups, open the Survival platform by going to Analyze  Reliability and Survival  Survival (notice the icon next to this option that looks like a Kaplan-Meier graph) as shown in Figure 17.3.

			Figure 17.3: Survival Curve Comparison

			[image: Figure 1.1 Some JMP Help Options]

			This will bring up the dialog box shown in Figure 17.4.

			Figure 17.4: The Survival Dialog Box

			[image: Figure 1.1 Some JMP Help Options]

			The dialog box has been correctly filled out by putting the Time (weeks) in the Y, Time to Event box, the Group into the Grouping box, and the Censor column into the Censor box. Note that you also have the option to specify the censor code in the box in the lower left side of the dialog box. Clicking OK gives the output in Figure 17.5.

			Figure 17.5: Correct Kaplan-Meier Curve Comparison

			[image: Figure 1.1 Some JMP Help Options]

			The step curve in this output is the Kaplan-Meier method of visualizing survival data. The step character reflects the fact that the population is constant across the time variable until an event of interest (for example, a subject dies) occurs. Note that the treatment group is clearly different from the control group, and it does not reach zero because the censored subjects are still alive at the end of the study. In the Summary table, we can see the mean survival times with their standard errors as well as the “Biased” indicating that the results are based on censored data and therefore are not necessarily the true survival time. Median times can be found in the Quantiles table. The most interesting result is the Tests Between Groups where we find p-values testing the null hypothesis that there is no difference between the survival times of the two groups. The p-values here are very low, so we can confidently reject the null hypothesis with this data and conclude in agreement with our graph that the survival times of the two groups are significantly different. In cases where the two curves are closer together, this is the primary way to assess the presence or absence of differences between survival curves and thus whether whatever distinguishes the two groups had an effect.

			Let’s pause for a moment and evaluate what would happen if we had not censored the data. Filling out the dialog box the same way but not putting the censor column into the Censor box gives the output in Figure 17.6.

			Figure 17.6: Incorrect Kaplan-Meier Output: No Censoring

			[image: Figure 1.1 Some JMP Help Options]

			Notice how the curve for the treatment group now drops to zero at the end of the study, incorrectly indicating that the entire population of subjects died by that time. Comparing the mean survival times here to the previous figure, the mean for the Treatment group is inaccurate, but there is nothing to warn the analyst that something is wrong. The curves are still far enough apart that we would draw a correct conclusion in our comparison of the curves.

			Finally, before we move on, what would happen if we decided not to use the censored data at all because the subjects did not experience the event of interest in the time frame of our study? Figure 17.7 shows the incorrect output with inaccurate graphing, an inaccurate mean, and now inaccurate p-values (although, as noted previously, in this instance the curves are sufficiently far enough apart that they are still significantly different).

			Figure 17.7: Really Messed Up Kaplan-Meier Output

			[image: Figure 1.1 Some JMP Help Options]

			Modeling Survival

			Modeling survival curves to predict the likelihood of survival at different times based on the data in hand is accomplished in the Life Distribution platform. Open this platform by going to Analyze / Reliability and Survival  Life Distribution (Figure 17.8).

			Figure 17.8: Opening the Life Distribution Platform

			[image: Figure 1.1 Some JMP Help Options]

			This brings up the dialog box shown in Figure 17.9 where the Y, Time to Event, Censor, and By boxes have been populated with the appropriate data columns.

			Figure 17.9: Life Distribution Dialog Box

			[image: Figure 1.1 Some JMP Help Options]

			Notice that there are two tabs to this dialog box. The default is the Life Distribution tab, and to analyze each curve separately, we need to use the By box to separate the groups (dashed rectangles). The input on the Compare Groups tab looks slightly different (Figure 17.10), but in both cases, each group will be modeled separately, allowing for predictions for each group.

			Figure 17.10: Life Distribution on Compare Groups Tab

			[image: Figure 1.1 Some JMP Help Options]

			Clicking on OK on the Life Distribution tab yields the type of output seen in Figure 17.11 for each group. Since there is no censored data in the Control group, the Treatment group is shown to illustrate the difference between the censored and uncensored data in the Event Plot at the top of the output. In the Compare Distributions node, there is now a list of possible curve fits that can be applied to the data. Any number can be turned on simultaneously in an effort to determine the best fit to the data for model creation that will allow prediction of survival times.

			Figure 17.11: Output from the Life Distribution Tab

			[image: Figure 1.1 Some JMP Help Options]

			“Turning on” each curve fit by clicking in the boxes on the left side adds the curves with the 95% confidence limits of the fit to the graph and nodes for each curve fit that contain all sorts of statistics about that curve fit, most of which are irrelevant to our present purposes (which is not to say they are not important or relevant for some purpose). In another example of the excellence of JMP design, and of the fact that The Little Red Triangle is Your Friend, clicking on said triangle for the Life Distribution output has Fit All Distributions as the first option, so you don’t have to go crazy clicking on all the individual distribution fits to create your table. JMP also displays the best fit as a result of this operation. Of more interest for our purposes is the table of AICc and BIC values under the Model Comparisons (Figure 17.12) that allow us to narrow down the best curve fit, remembering that we want to minimize both these metrics.

			Figure 17.12: Model Comparisons Output

			[image: Figure 1.1 Some JMP Help Options]

			For this particular example, we run into the problem that our data is presenting only two real data points, so fitting a model is problematic. This is another way of saying that we really need more data on the treatment in order to model it. Attempting to model the control group will be more illustrative, so if we repeat the model comparison analysis shown in Figure 17.12 for the control group, we get the output in Figure 17.13.

			Figure 17.13: Model Comparisons Output – Control Group

			[image: Figure 1.1 Some JMP Help Options]

			Remembering that AICc and BIC values within 10 units of one another are essentially still equivalent, Figure 17.13 shows us many equivalent curve fits at least by those statistics. For now, activate the “best” curve fit, the Weibull, to visualize this attempt to fit the data along with a Profiler graph that will allow the prediction of mortality as a function of time (Figure 17.14).

			Figure 17.14: Predicting with a Specific Curve Fit

			 [image: Figure 1.1 Some JMP Help Options]

			The Profiler defaults to the average time and tells us that at 6 weeks we can expect 48.9% of the control group to be dead, with a 95% confidence range of that prediction at 27.4–75.5% (a rather large range, but this is not a large study). Note that if you want to model survival instead of mortality (or failure), the Little Red Triangle is once more Your Friend (Figure 17.15). This will allow the modeling and prediction of survival probabilities instead of mortality probabilities as seen in Figure 17.16.

			Figure 17.15: Turning on Survival Curve

			[image: Figure 1.1 Some JMP Help Options]

			Figure 17.16: Modeling Survival Instead of Mortality

			[image: Figure 1.1 Some JMP Help Options]

			If we go to the Compare Groups tab output instead of the Life Distribution tab output, the same individual graphs are provided for separate analysis, but the two groups can also be compared side by side (with the same curve fit methodology; Figure 17.17).

			Figure 17.17: Compare Groups Tab Output Comparing Distributions

			[image: Figure 1.1 Some JMP Help Options]

			Quantitating Survival: Hazard Ratios

			Having seen that the survival curves are different and having modeled those differences, the researcher often wants to share the results with a simple metric that reflects the difference between treatments or conditions quantitatively without the graphics. The medical literature is replete with references to the hazard ratio, which really looks a lot like the odds ratio, but with a different name. The hazard ratio is the hazard or risk of, or resulting from, the treatment or condition in the numerator relative to that in the denominator. It is interpreted similar to odds ratio. If there is no difference in the risk between the two treatments/conditions, then the value is one. Or in other words, a value of one for the hazard ratio represents the outcome of failing to reject the null hypothesis of no effect. If the 95% confidence limits include the value of one, then the hazard ratio is not significantly different from one, and there is no hazard or risk between the two things being compared. 

			HR = 1= no relationship between groups; no effect of treatment versus control

			HR > 1 = the exposed group has x times the hazard/risk of the unexposed group

			HR < 1 = the exposed group has x times less of a hazard/risk of than the unexposed group

			So, let’s calculate the hazard ratio for our example data. This is accomplished in the Fit Model platform using the Proportional Hazards personality, and there are two ways to get there. One can just open the Fit Model platform and manually select that personality, or, staying with the Reliability and Survival menu, the Fit Proportional Hazards option can be selected to let JMP do the work for you (Figure 17.18).

			Figure 17.18: Selecting the Proportional Hazards Fit Model under Reliability and Survival

			[image: Figure 1.1 Some JMP Help Options]

			Figure 17.19 shows the Fit Model dialog box with the variables dropped into the appropriate locations for the analysis. Note that the Group does not go into the By box. We are seeking to determine whether the Group affects the Time to Event, making the Group the model effect of interest.

			Figure 17.19: Proportional Hazards Dialog Box

			[image: Figure 1.1 Some JMP Help Options]

			Clicking OK brings up results, most of which are beyond the scope of this book, and it does not bring up the Hazard Ratio, which JMP calls the Risk Ratio. To get the Risk Ratio, select it from the menu under the Little Red Triangle for the Proportional Hazards Fit (Figure 17.20).

			Figure 17.20: Finding the Risk Ratios

			[image: Figure 1.1 Some JMP Help Options]

			Figure 17.21 shows the Risk Ratios for this data along with the only other information that we would like to glean from this analysis, the p-value for the whole model (which tells us by a different method whether the survival curves are statistically different).

			Figure 17.21: Proportional Hazard Output of Interest

			[image: Figure 1.1 Some JMP Help Options]

			In this instance, since the curves are so far apart (refer to Figure 17.5), the risk ratios are ridiculously small or large, depending on your perspective. For example, the risk associated with the treatment group is 2.2 x 10-10 times less than the control group. Or, the control group has a 4.6 x 109 times greater risk than the treatment group. We would definitely want to be in that treatment group!

			Since our data was simulated (a fancy word for “made up out of thin air”), let’s look at the data in the Rats.jmp sample data file in the JMP Sample Data Library. In Figure 17.22, we can see the confidence intervals for the two curves overlap significantly, and, in fact, the p-values for the Tests Between Groups are both above 0.05, allowing us to draw the conclusion that these two are not significantly different even though it appears that Group 1 outlasts Group 2:

			Figure 17.22: Kaplan-Meier Curves from Rats.jmp

			[image: Figure 1.1 Some JMP Help Options]

			Calculating the hazard (risk) ratio for this experiment, Group 2 has a 1.8 times greater risk than Group 1, or conversely, Group 1 has a 0.55 less risk (or 45% less risk) than Group 2 (Figure 17.23).

			Figure 17.23: Risk Ratios for Rats.jmp

			[image: Figure 1.1 Some JMP Help Options]

			But even though we have those values, notice that the 95% confidence limits for those values include the value of one, so they are not significantly different from the null hypothesis. This is confirmed by the p-value for the whole model, which is also above 0.05.

		

	

			Chapter 18: Hindrances to Data Analysis

			Errors using inadequate data are much less than those using no data at all.

			Charles Babbage
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			Introduction

			This basic text has explored a multifaceted tool of extreme importance for budding biologists to master.  However, before we conclude our overview, there are a few issues to which we should turn our final attention. At the end of the day, or the end of the experiment, there are at least three hindrances that can confound your analysis if not carefully addressed in the whole process. If you are still with me and have not thrown down this book in disgust yet, we will examine them now before we retire to our local coffee shop to opine on the vagaries of college professors and their favorite courses.

			Hindrance #1: Outliers

			The first of these hindrances is the issue of outliers. Outliers are “extreme” values in the data that appear to originate from a different population than that under study. The critical question then is, is this datum a real data point representative of a legitimate member of the population being examined, or did it come from another population that somehow snuck into the data collection? For example, is it an error on the part of the experimenter or instrument used to collect the data?

			Causes

			Outliers can be caused by the random noise in the signal being measured. Depending on the sample size, it might be a legitimate measurement that is telling you something about the signal itself. It may be unexpected, but unless you have what is known as an “assignable cause,” you cannot remove it from the data being analyzed. This brings to mind one of my favorite quotes from Isaac Asimov: “The most exciting phrase to hear in science, the one that heralds discoveries, is not ‘Eureka!’ but ‘Now that’s funny….’”

			Assignable cause is a valid reason to identify the datum as not belonging to the population under study because it either came from another population, or it was an error in the data collection. Most commonly, a true assignable cause identifies some error in data collection, or possibly data transcription. For example, the lab technician measuring reagents into the reaction vessel accidentally skipped adding a reagent to one vessel, or, entering data into the spreadsheet, forgot to enter the decimal point and thus 52.35 became 5235! Sometimes, as in the latter case, the outlier can be corrected. But the former can only be discarded because the reaction was not set up to go as it was supposed to, so the datum for that reaction vessel is invalid.

			Having an assignable cause for removing data is critical in regulated industries such as those related to medicine. Regulatory agencies tend to view data removal as an illegitimate and often illegal attempt to hide something that should not be hidden without sufficient documentation to explain that is not the case.

			So, what do you do with outliers? Examine them very carefully to see whether an assignable cause can be identified. Otherwise, they must be retained in the data for the analysis, although it is not a bad idea to do the analysis with and without the outlier (properly identified and documented, of course) to see whether it even impacts the final result. Often the concern over an outlier will end up being so much sound and fury, signifying nothing because it does not change the final results and conclusions to any significant degree.

			Detection

			So how do we detect outliers? The easiest way is to look for them in box plots where they show up as data points beyond the “whiskers” of the box (Figure 18.1, dashed circles).

			Figure 18.1: Outliers Identified by Box Plot

			[image: Figure 1.1 Some JMP Help Options]

			The whiskers extend from the ends of the box to the outermost data point that falls within the distances computed as follows (populations A and B in Figure 18.1):

			3rd quartile + 1.5*(interquartile range)

			1st quartile – 1.5*(interquartile range)

			If the data points do not reach the computed ranges, then the whiskers are determined by the upper and lower data point values (not including the putative outliers; population C in Figure 18.1).

			To this nonparametric method, JMP adds four more that can be found under Analysis  Screening  Explore Outliers (Figure 18.2 and 18.3).

			Figure 18.2: Finding Additional Outlier Detection Routines

			[image: Figure 1.1 Some JMP Help Options]

			Figure 18.3: Additional Outlier Detection Methods

			[image: Figure 1.1 Some JMP Help Options]

			The JMP Help describes these four options in detail, but we will look at the Quantile Range Outliers method and the Multivariate Robust Outliers here in this overview. To do so, open the Big Class.jmp Sample Data file and do a distribution analysis of the height variable. We see that the box plot reveals two outliers on the low end (Figure 18.4).

			Figure 18.4: Distribution of Height in Big Class Data Set

			[image: Figure 1.1 Some JMP Help Options]

			Now open the Explore Outliers dialog box and select the Quantile Range Outliers option to get Figure 18.5.

			Figure 18.5: Quantile Range Outliers Output

			[image: Figure 1.1 Some JMP Help Options]

			Note the two, modifiable input boxes that determine whether a datum will be flagged as an outlier. Q is defined in the box as the number of times to multiply the interquantile range past the lower and upper quantiles; that is, it is defining the length of the whiskers above and below the interquantile range just as the box plot does without any other conditions. The default value is 3, but it has been changed here to 1.5 to match the standard definition of how a box plot creates those whiskers. (Can we reproduce the same results as the box plot from the distribution platform?) The Tail Quantile is a little trickier.

			The JMP Help on the Tail Quantile states: “The probability for the lower quantile that is used to calculate the interquantile range. The probability of the upper quantile is considered 1 - Tail Quantile. For example, a Tail Quantile value of 0.1 means that the interquantile range is between the 0.1 and 0.9 quantiles of the data. The default value is 0.1.” Since the interquantile range is normally defined as the central 50% of the data, unless the data is oddly shaped and skewed, a value of 0.25 would encompass that middle 50% and more accurately reflect the box plot, so that value has been changed from the default value as well.

			The results of these changes to the default values show that we have, indeed, replicated the results of the box plot from the distribution analysis. Two outliers at the low end are identified in the output.

			The Multivariate Robust Outliers methodology is intended for multivariate data, so we will have to go back to our original data and select both height and weight for our outlier analysis. If we then click the Multivariate Robust Outliers button to get the Mahalanobis Distances plot, we find one more outlier (40) based on the Mahalanobic criteria (which definition we will studiously ignore at this point, knowing just that it is another possible method that we have at our disposal to identify outlier data), while including the two (5, 8) we have already identified (Figure 18.6).

			Figure 18.6: Output of Multivariate Robust Outliers Methodology

			[image: Figure 1.1 Some JMP Help Options]

			Thanks to the interactive nature of the JMP graphics, we can highlight these outliers and then determine that 5 and 8 are the low end height outliers, and 40 is a high end weight outlier.

			Again, I want to stress that identifying data points as statistical outliers by any of the previously described methods does not justify removing them from the analysis. It only alerts you to potential issues that should be addressed. Well-documented data removal may be valid only if an assignable cause is found.

			Hindrance #2: “Unclean” Data

			Definition and Causes

			The second problem facing the data analyst, especially with larger sets of data, is the existence of errors due to “clerical” issues. This would include errors in data collection or transcription as well as errors in documentation. Cleaning up the data will often occupy a greater portion of the analyst’s time for analysis than the actual analysis itself (which will frequently take seconds, or minutes at the most, compared to days for the cleanup operation). Figure 18.7 gives a typical example that hinges, in part, on the case sensitivity of JMP to text entered as data.

			Figure 18.7: “Unclean” Data Example

			[image: Figure 1.1 Some JMP Help Options]

			All of the entries in Figure 18.7 will be treated as separate categories or levels of the nominal Variable 1, even though most sentient humans would recognize that whomever entered the data was trying to denote the same thing – a positive sample. This is often the problem in larger experiments when multiple technicians collect the data in the absence of sufficiently clear agreement on protocol and how to designate samples. Note especially the first two entries, the only difference being the presence of blank spaces in front of the second. I have added enough to make it obvious, but when it is only one space due to a typographical error, it is often not obvious and can lead to much hair loss as the analyst tries to figure out what is going on. At least it will if he or she does not know about a few handy tools JMP provides that we will cover in just a moment (in other words, keep reading, please!).

			Another potential cause for “unclean” data is incorrect assumptions. For example, assuming that all samples in a population are negative for the analyte in question when there exists in the population a small percentage that are true positives.1 And then there is the question of when is a zero a real number, and when does it represent the total absence of data? This is where statistics cannot help; you need clear communication with the personnel collecting the data as well as the programmers determining what output the software running an instrument will show when an error occurs and no data is generated. A typical resolution is to put a number like 99999 in place of a zero or a blank. Knowledge of the system generating the data is just as important for the one analyzing the data as it is for the one collecting the data.

			Cleanup Operations

			The cleanup operation of your data can be a sizable task and frequently takes more time than the actual analysis itself because it is usually manual, requiring the use of Human Eyeball 1.0. The goal is to identify, classify, and when possible, correct the data. When an assignable cause can be found for elimination, and only when an assignable cause is found, then removing the data from the analysis is justified (but be sure to document the reasoning for doing so!). Always keep a copy of the original data somewhere, and then work on the cleaned data.

			One method to ease the burden of this task is to combine the Distribution platform for detection with the Column Recode function for correction as we will illustrate next. Suppose we have sample to cutoff ratio data for a hepatitis B core antigen assay that we want to analyze as shown in Figure 18.8.

			Figure 18.8: Sample “Unclean” Data

			[image: Figure 1.1 Some JMP Help Options]

			A sharp eye will see that row 7 introduces a space in front of the assay name. Doing a distribution analysis of this column shows the following.

			Figure 18.9: Distribution of Assay Names

			[image: Figure 1.1 Some JMP Help Options]

			It is fairly obvious that these are all most likely simple typographical errors, but do we now have to painstakingly read through every line to make the necessary correction? That might not be too bad for small data sets, but as the amount of data increases, so does the task. This is where the Column Recode tool is most useful. First highlight the Test column and then go to Cols  Recode. This should bring up the dialog box in Figure 18.10.

			Figure 18.10: Column Recode Is Your Friend!

			[image: Figure 1.1 Some JMP Help Options]

			Change the first three values in the New Values column to the correct HBCore designation, which will result in Figure 18.11.

			Figure 18.11: Recoding

			[image: Figure 1.1 Some JMP Help Options]

			Note that the drop-down box with New Column will create a new column of Test names designated Test 2 by default. Alternatively, you can select to recode In Place, which will reduce the size of your analysis file, but at the expense of losing your original data. But you have saved that in a separate file somewhere for reference, right?

			Clicking on Recode “cleans” that column’s data and allows you to continue on your merry way looking for other problems to resolve before impressing your boss with how good you are with statistics (assuming you want him/her to know that!).

			Recoding with Grouping

			There is another option or tool in the Recoding function that can significantly aid in data cleanup. Text data is sometimes collected in a free-form, fill-in-the-blank format that allows for multiple ways for subjects to express the same idea. For example, open up Consumer Preferences.jmp in the JMP Sample Data Library and scroll to the last column on the right. Here we find about 448 reasons for not flossing, which is probably a bad idea, but readily justified by the human species. (In most cases, it’s just because we are too lazy, but the human mind’s ability to rationalize comes through strongly in this column.) Highlight the column, go to Col / Recode, and then click the Little Red Triangle, looking for Group Similar Values… (Figure 18.12 ).

			Figure 18.12: Finding the Grouping Option in Recoding

			[image: Figure 1.1 Some JMP Help Options]

			Clicking on this brings up the Grouping Options dialog box (Figure 18.13).

			Figure 18.13: Grouping Options

			[image: Figure 1.1 Some JMP Help Options]

			The options are mostly self-evident; however, the Difference Ratio refers to the proportion of each response that are similar. Thus, the default value of 0.25 means that JMP will group responses that are 25% similar to one another. Click OK and let’s see what we get (Figure 18.14).

			Figure 18.14: First Pass Grouping in Col Recode

			[image: Figure 1.1 Some JMP Help Options]

			At the top of the image, we can see that 398 responses have been regrouped into 345 responses, which helps. The dotted rectangle at the bottom indicates that the 53 items have been regrouped into 29 clusters. Looking at those clusters, we can see that some refinement could be applied; the two clusters with rectangles around them both have to do with the same response where the only difference is “do not” versus “dont.” This exercise still takes some time, but it is certainly more automated than manually going through nearly 400 lines to try to find all the ones that are just different rephrasings or spellings of the same idea.

			Hindrance #3: Sample Size and Power

			We have already covered the last hindrance in some detail back in Chapter 3, so I will not belabor the point here just to expand this chapter. Suffice it to say that too many experiments really don’t show what they purport to show due to a lack of statistical power, which is a hidden hindrance that can be alleviated if the experimenter takes sample size and power calculations into account before he or she wastes time and resources in creating “post-mortem” data. Unless zombies are the particular subjects of the study in question.

		

		
			Endnotes

			1	 This example comes from the in vitro immunodiagnostic industry, where sensitivity and specificity of immunoassays depend on the testing of populations that are “known” to be positive and negative, respectively, in evaluating any given assay. While assay developers strive to identify “known” samples by using so-called gold standards, none are totally infallible. Moreover, when developing an assay that is better than the gold standard, resolving conflicts between the two assay results can lead to some interesting discussions in team meetings!
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