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    Preface

    Edge computing and the Internet of Things (IoT) has migrated from hype to the mainstream. Organizations and industries require data to be gathered from objects and value and insight to be extracted from the information. Meanwhile, we are moving more processing and capabilities from data centers closer to data generation sources. A well-architected system requires multiple domains of expertise, from sensor physics and energy considerations to cloud-based data analytics strengths. We address the entire topology of IoT and edge computing in this book. Here, you will learn how interconnected each component is as a system. This covers telecommunications and radio signaling, embedded systems, long-range communication, network protocols, edge and cloud frameworks, holistic security, and cloud machine learning.

    Who this book is for

    This book is intended for architects, system engineers, academics, program managers, students, and engineering directors intent on understanding the nuances of a well-designed IoT and edge system. Individuals may have strengths in one area, but each element in IoT impacts others. We also focus on real-world commercial and industrial use cases and technologies that have been deployed with success.

    What this book covers

    Chapter 1, IoT and Edge Computing Definition and Use Cases. We begin this book with an overall understanding of the IoT and edge market and separate hype from reality. We define IoT and edge computing and then uncover various use cases for enterprise, commercial, and industrial IoT solutions. We end the chapter with a case study to provide a full system architectural understanding and breakdown of a typical IoT system, from hardware to software to cloud.

    Chapter 2, IoT Architecture and Core IoT Modules. This chapter provides a high-level view and the breadth of the components and interconnects required to build an IoT or edge system. It will illustrate how the various components are interconnected and what roles they play. Additionally, this chapter will uncover how IoT deployments should be modeled from a value and monetization point of view.

    Chapter 3, Sensors, Endpoints, and Power Systems. Data begins its journey in IoT and edge computing at the sensors and physical devices. Here, we teach the various types of sensors and the physics that govern their abilities. We will show how sensors capture data and images and how they are powered when constant power sources are not available.

    Chapter 4, Communications and Information Theory. To understand many of the constraints and capabilities of wireless communication, we begin with the theory of communication and wireless radio signaling. We explore concepts such as path loss, RF interference, the Shannon-Hartley theorem, and bit-rate limits. We also look at RF spectrum governance and distribution.

    Chapter 5, Non-IP Based WPAN. Personal area networks include devices and systems that are near-range and have short distances between transmitters and receivers. This chapter goes into the breadth and depth of various protocols such as Bluetooth 5.1, Bluetooth beaconing, direction-finding technologies, and Bluetooth 5.0 mesh networking. We also explore other 802.15.4 protocols such as Zigbee and end with a treatment of Z-Wave.

    Chapter 6, IP-Based WPAN and WLAN. This chapter explores the use of TCP/IP-based communication for near-range and long-range communication. We explore architectures such as 6LoWPAN, Thread, and various 802.11 Wi-Fi protocols such as 802.11ac, 802.11p, and 802.11ah.

    Chapter 7, Long-Range Communication Systems and Protocols (WAN). Long-range communication is a prerequisite for moving data from the remote edge to where data centers, customers, and consumers are located. This chapter presents a thorough knowledge of long-range protocols, including the 4G LTE cellular and the new 5G cellular standards. We also explore alternative long-rang technologies such as CBRS, LoRa, Sigfox, and Multefire. We dive deep into how the technologies work and the features they offer in building a system.

    Chapter 8, Edge Computing. This chapter analyzes the hardware and software components needed to build edge-level computing infrastructures. This includes a deep understanding of hardware resources: processor architecture, memory, storage, physical enclosures, environmental hardening, and interconnects. It also examines software frameworks, operating systems, and middleware. Additionally, we study the use of virtualization and containers for edge management (including examples of Microsoft Azure IoT Edge).

    Chapter 9, Edge Routing and Networking. A common use of an edge system is to provide gateway, routing, and network security functions. This chapter teaches the methods of PAN-to-WAN bridging, cellular gateway functions, routing and traffic shaping, as well as security aspects such as software-defined networking and VPNs.

    Chapter 10, Edge to Cloud Protocols. This chapter explores the various methods and features of edge to cloud protocols over wide area networks such as MQTT 5, CoAP, AMQP, and HTTP as standard methods for data transport. 

    Chapter 11, Cloud and Fog Topologies. There are many ways to architect and partition a problem between cloud systems and edge systems. This chapter presents the reader with various edge frameworks such as EdgeX and OpenFog, as well as lambda architectures, to build a more robust system.

    Chapter 12, Data Analytics and Machine Learning in the Cloud and Edge. This chapter provides the architect with an understanding of how to extract meaningful data from sensors and IoT systems. Data without understanding is useless. Here, we explore edge and cloud-based analytics using rules engines, statistical analysis, and various artificial intelligence and machine learning techniques. We explore where the correct analytics apply to the problem and dive deep into the mechanics of these tools.

    Chapter 13, IoT and Edge Security. Security is paramount to a robust enterprise and industrial IoT and edge solution. We examine security from a holistic point of view in this chapter. We look at physical, network, and data security from sensor to cloud.

    Chapter 14, Consortiums and Communities. Industry consortiums and professional societies provide many of the standards and guidelines that are necessary to bridge IoT and edge systems together. This chapter captures many relevant industry groups to consider following and joining when designing a system. We also present a list of recommended and commercially deployed sensor, hardware, and software systems that have proven to meet the requirements of commercial, enterprise, and industrial IoT.

    To get the most out of this book

    This book includes various degrees of technical depth and breadth. While you may have significant experience in one or more areas, perhaps you have gaps in others. Don't be discouraged. The book attempts to provide overviews of technologies as well as go technically deep in areas that may be relevant.

    We carefully selected areas to go significantly deep in. These areas are aspects of IoT and edge systems that have been problematic and prone to design challenges that necessitate a good deal of depth and understanding.

    While it is fine to read the book from cover to cover, you can skip between various chapters. There is little dependency on order.

    Understand that the book moves from sensors to near-range communication to long-range communication. It then migrates to edge and cloud systems. We attempt to emulate how data moves along the path from sensor to cloud.

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839214806_ColorImages.pdf.

    Conventions used

    There are a number of text conventions used throughout this book.

    CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: "Simply sending a GET request to /.well-known/core will disclose a list of known resources on the device."

    A block of code is set as follows:

      def set_content(self, content):
      #Apply padding 
      self.content = content
      while len(self.content) &lt;= 1024:
      self.content = self.content + b"0123456789\n"


    When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

      def set_content(self, content):
      #Apply padding 
      self.content = content
      while len(self.content) &lt;= 1024:
      self.content = self.content + b"0123456789\n"


    Any command-line input or output is written as follows:

    $ openstack server create --image 8a9a114e-71e1-aa7e-4181-92cc41c72721 \
  --flavor 1 --hint query='["&gt;=","$vcpus_used",16]' IoT_16


    Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "The protocol is unique as it is first tailored for machine-to-machine (M2M) communication between edge nodes."

    Screen Text: Indicates text that appears on a screen.

    
      Warnings or important notes appear like this.

    

    
      Tips and tricks appear like this.

    

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

    Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

    Reviews

    Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

    For more information about Packt, please visit packt.com.
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    IoT and Edge Computing Definition and Use Cases

    You wake up Tuesday, May 17, 2022, around 6:30 A.M. PST, as you always do. You never really needed an alarm clock. You are one of those types with some form of physiological clock. Your eyes open to a fantastic sunny morning as it's approaching 70°F outside. You will take part in a day that will be completely different than the morning of Wednesday, May 17, 2017. Everything about your day, your lifestyle, your health, your finances, your work, your commute, even your parking spot will be different. Everything about the world you live in will be different: energy, healthcare, farming, manufacturing, logistics, mass transit, environment, security, shopping, and even clothing. This is the impact of connecting ordinary objects to the Internet, or the Internet of Things (IoT). I think a better analogy is the Internet of Everything.

    Before you even awakened, a lot has happened in the IoT that surrounds you. Your sleep behavior has been monitored by a sleep sensor or smart pillow. Data was sent to an IoT gateway and then streamed to a cloud service you use for free that reports to a dashboard on your phone. You don't need an alarm clock, but if you had a 5 A.M. flight, you would set it—again, controlled by a cloud agent using the if this, then that (IFTTT) protocol. Your dual-zone furnace is connected to a different cloud provider and is on your home 802.11 Wi-Fi, as are your smoke alarms, doorbell, irrigation systems, garage door, surveillance cameras, and security system. Your dog is chipped with a proximity sensor using an energy harvesting source that lets him open the doggy door and tell you where he is.

    You don't really have a PC anymore. You certainly have a tablet-style computer and a smartphone as your central creation device, but your world is based on using a VR/AR headset since the screen is so much better and larger. You do have an edge computing gateway in your closet. It's connected to a 5G service provider to get you on the Internet and WAN because wired connections don't work for your lifestyle—you are mobile, connected, and online no matter where you are, and 5G and your favorite carrier make sure your experience is great in a hotel room in Miami or your home in Boise, Idaho. The gateway also performs a lot of actions in your home for you, such as processing video streams from those webcams to detect whether there's been a fall or an accident in the house. The security system is being scanned for anomalies (strange noises, possible water leaks, lights being left on, your dog chewing on the furniture again). The edge node also acts as your home hub, backing up your phone daily because you have a tendency to break them, and serves as your private cloud even though you know nothing about cloud services.

    You ride your bike to the office. Your bike jersey uses printable sensors and monitors your heart rate and temperature. That data is streamed over Bluetooth Low Energy to your smartphone simultaneously while you listen to Bluetooth audio streamed from your phone to your Bluetooth earphones. On the way there, you pass several billboards all displaying video and real-time ads. You stop at your local coffee shop, and there is a digital signage display out front calling you out by name and asking if you want the last thing you ordered yesterday: a 12 oz Americano with room for cream. It did this by a beacon and gateway recognizing your presence within five feet and approaching the display. You select yes, of course. Most people arrive at work via their car and are directed to the optimal parking space via smart sensors in each parking slot. You, of course, get the optimal parking space right out front with the rest of the cyclists.

    Your office is part of a green energy program. Corporate policies mandate a zero-emission office space. Each room has proximity sensors to detect not only whether a room is occupied, but also who is in the room. Your name badge to get in the office is a beaconing device on a 10-year battery. Your presence is known once you enter the door. Lights, HVAC, automated shades, ceiling fans, even digital signage are connected. A central fog node monitors all the building information and syncs it to a cloud host. A rules engine has been implemented to make real-time decisions based on occupancy, time of day, and the season of the year, as well as inside and outside temperatures. Environmental conditions are ramped up or down to maximize energy utilization. There are sensors on the main breakers listening to the patterns of energy and making a decision on the fog nodes if there are strange patterns of energy usage that need examination.

    It does all this with several real-time streaming edge analytics and machine learning algorithms that have been trained on the cloud and pushed to the edge. 

    The office hosts a 5G small cell to communicate externally to the upstream carrier, but it also hosts a number of small-cell gateways internally to focus signals within the confines of the building. The internal 5G acts as a LAN as well.

    Your phone and tablet have switched to the internal 5G signal, and you switch on your software-defined network overlay and are instantly on the corporate LAN. Your smartphone does a lot of work for you; it is essentially your personal gateway to your own personal area network surrounding your body. You drop into your first meeting today, but your co-worker isn't there and arrives a few minutes late. He apologizes but explains his drive to work was eventful.

    His newer car informed the manufacturer of a pattern of anomalies in the compressor and turbocharger. The manufacturer was immediately informed of this, and a representative called your co-worker to inform him that the vehicle has a 70 percent chance of having a failed turbo within two days of his typical commute. They scheduled an appointment with the dealership and have the new parts arriving to fix the compressor. This saved him considerable cost in replacing the turbo and a lot of aggravation.

    For lunch, the team decides to go out to a new fish taco place downtown. A group of four of you manage your way into a coupe more comfortable for two and make your way. Unfortunately, you'll have to park in one of the more expensive parking structures.

    Parking rates are dynamic and follow a supply-and-demand basis. Because of some events and how full the lots are, the rates doubled even for midday Tuesday. On the bright side, the same systems raising the parking fees also inform your car and smartphone exactly which lots and which space to drive to. You punch in the fish taco address, the lot and capacity pop up, and you reserve a spot before you arrive. The car approaches the gate, which identifies your phone signature, license plate, or a combination of multiple factors and opens up. You drive to the spot, and the application registers with the parking cloud that you are in the right spot over the correct sensor.

    That afternoon, you need to go to the manufacturing site on the other side of town. It's a typical factory environment: several injection molding machines, pick-and-place devices, packaging machines, and all the supporting infrastructure. Recently, the quality of the product has been slipping. The final product has joint connection problems and is cosmetically inferior to last month's lot. After arriving at the site, you talk to the manager and inspect the site. Everything appears normal, but the quality certainly has been marginalized. The two of you meet and bring up the dashboards of the factory floor.

    The system uses a number of sensors (vibration, temperature, speed, vision, and tracking beacons) to monitor the floor. The data is accumulated and visualized in real time. There are a number of predictive maintenance algorithms watching the various devices for signs of wear and error. That information is streamed to the equipment manufacturer and your team as well. The manufacturing automation and diagnostics logs didn't pick up any abnormal patterns, as they had been trained by your best experts. This looks like the type of problem that would turn hours into weeks and force the best and brightest in your organization to attend expensive daily SWOT (strengths, weaknesses, opportunities, and threats) team meetings. However, you have a lot of data. All the data from the factory floor is preserved in a long-term storage database. There was a cost to that service. At first, the cost was difficult to justify, but now you believe it may have paid for itself a thousand-fold. Taking all that historical data through a complex event processor and analytics package, you quickly develop a set of rules that model the quality of your failing parts. Working backward to the events that led to the failures, you realize it is not a point failure, but has several aspects:

    
      	The internal temperature of the working space rose 2°C to conserve energy for the summer months.

      	The assembly slowed down output by 1.5 percent due to supply issues.

      	One of the molding machines was nearing a predictive maintenance period, and the temperature and assembly speed pushed its failing case over the predicted value.

    

    You found the issue and retrained the predictive maintenance models with the new parameters to catch this case in the future. Overall, not a bad day at work.

    While this fictional case may or may not be true, it's pretty close to reality today. Wikipedia defines the IoT this way: The Internet of things (IoT) is the inter-networking of physical devices, vehicles (also referred to as "connected devices" and "smart devices"), buildings, and other items embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data. (https://en.wikipedia.org/wiki/internet_of_things)

    History of the IoT

    The term "IoT" can most likely be attributed to Kevin Ashton in 1997 and his work at Procter and Gamble using RFID tags to manage supply chains. The work brought him to MIT in 1999 where he and a group of like-minded individuals started the Auto-ID Center research consortium (for more information, visit http://www.smithsonianmag.com/innovation/kevin-ashton-describes-the-internet-of-things-180953749/). 

    Since then, IoT has taken off from simple RFID tags to an ecosystem and industry that will have 1 trillion Internet-connected devices by 2030. The concept of things being connected to the Internet up through 2012 was primarily connected smartphones, tablets, PCs, and laptops. Essentially, things that first functioned in all respects as a computer. Since the humble beginnings of the Internet, starting with ARPANET in 1969, most of the technologies surrounding the IoT didn't exist. Up to the year 2000, most devices that were associated with the Internet were, as stated, computers of various sizes. The following timeline shows the slow progress in connecting things to the Internet:

    
      
        
        
        
      
      
        
          	
            Year
          
          	
            Device
          
          	
            Reference
          
        

        
          	
            1973

          
          	
            Mario W. Cardullo receives the patent for first RFID tag.

          
          	
            US Patent US 3713148 A

          
        

        
          	
            1982

          
          	
            Carnegie Mellon Internet-connected soda machine.

          
          	
            https://www.cs.cmu.edu/~coke/history_long.txt

          
        

        
          	
            1989

          
          	
            Internet-connected toaster at Interop '89.

          
          	
            IEEE Consumer Electronics Magazine (Volume: 6, Issue: 1, Jan. 2017)

          
        

        
          	
            1991

          
          	
            HP introduces HP LaserJet IIISi: the first Ethernet-connected network printer.

          
          	
            http://hpmuseum.net/display_item.php?hw=350

          
        

        
          	
            1993

          
          	
            Internet-connected coffee pot at University of Cambridge (the first Internet-connected camera).

          
          	
            https://www.cl.cam.ac.uk/coffee/qsf/coffee.html

          
        

        
          	
            1996

          
          	
            General Motors OnStar (2001 remote diagnostics).

          
          	
            https://en.wikipedia.org/wiki/OnStar

          
        

        
          	
            1998

          
          	
            Bluetooth Special Interest Group (SIG) formed.

          
          	
            https://www.bluetooth.com/about-us/our-history

          
        

        
          	
            1999

          
          	
            LG Internet Digital DIOS refrigerator.

          
          	
            https://www.telecompaper.com/news/lg-unveils-internetready-refrigerator--221266

          
        

        
          	
            2000

          
          	
            First instances of the Cooltown concept of pervasive computing everywhere: HP Labs, a system of computing and communication technologies that, combined, create a web-connected experience for people, places, and objects.

          
          	
            https://www.youtube.com/watch?v=U2AkkuIVV-I

          
        

        
          	
            2001

          
          	
            First Bluetooth product launched: KDDI Bluetooth-enabled mobile phone.

          
          	
            http://edition.cnn.com/2001/BUSINESS/asia/04/17/tokyo.kddibluetooth/index.html

          
        

        
          	
            2005

          
          	
            United Nation's International Telecommunications Union report predicting the rise of IoT for the first time.

          
          	
            http://www.itu.int/osg/spu/publications/internetofthings/internetofThings_summary.pdf

          
        

        
          	
            2008

          
          	
            IPSO Alliance formed to promote IP on objects, first IoT-focused alliance.

          
          	
            https://www.ipso-alliance.org

          
        

        
          	
            2010

          
          	
            The concept of Smart Lighting formed after success in developing solid-state LED light bulbs.

          
          	
            https://www.bu.edu/smartlighting/files/2010/01/BobK.pdf

          
        

        
          	
            2014

          
          	
            Apple creates iBeacon protocol for beacons.

          
          	
            https://support.apple.com/en-us/HT202880

          
        

      
    

    Certainly, the term IoT has generated a lot of interest and hype. One can easily see that from a buzzword standpoint. The number of patents issued (https://www.uspto.gov) has grown exponentially since 2010. The number of Google searches (https://trends.google.com/trends/) and IEEE peer-reviewed paper publications hit the knee of the curve in 2013:
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    Figure 1: Analysis of keyword searches for IoT, patents, and technical publications

    IoT potential

    The IoT is already affecting every segment in industrial, enterprise, health, and consumer products. It is important to understand the impact, as well as why these disparate industries will be forced to change in the ways they build products and provide services. Perhaps your role as an architect forces you to focus on one particular segment; however, it is helpful to understand the overlap with other use cases.

    As previously mentioned, there is an opinion that the impact of IoT-related industries, services, and trade will affect 3 percent (The route to a trillion devices, ARM Ltd 2017) to 4 percent (The Internet of Things: Mapping Value Beyond the Hype, McKinsey and Company 2015) of global GDP by 2020 (extrapolated). Global GDP for 2016 was $75.64 trillion dollars, with an estimate that by 2020 it will rise to $81.5 trillion. That provides a range of value from IoT solutions of $2.4 trillion to about $4.9 trillion.

    The scale of connected objects is unprecedented. Speculation of industry growth is imperiled with risks. To help normalize the impact, we look at several research firms and reports on the number of connected objects. The range is large, but still in the same order of magnitude. The average of these 10 analyst forecasts is about 33.4 billion connected things by 2020-2021. ARM recently conducted a study and forecast that by 2035 one trillion connected devices will be operational. By all accounts, the IoT deployment growth rate in the near term is about 20 percent year over year.
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    Figure 2: Analysts and industry claims of the number of connected objects

    These numbers should at first glance impress the reader. For example, if we took a very conservative stance and predicted that only 20 billion newly connected devices would be deployed (excluding the traditional computing and mobile products), we would be saying that 211 new Internet-connected objects will come online every second.

    Why this is of significance to the technology industry and IT sector is the fact that world population currently has a growth rate of roughly 0.9 percent to 1.09 percent per year (https://esa.un.org/unpd/wpp/). World population growth rate peaked in 1962 at 2.6 percent year over year and has steadily been declining due to a number of factors. First and foremost, improvement in world GDP and economies has a propensity to reduce birth rates. Other factors include wars and famine. That growth implies that human-connected objects will plateau, and machine to machine (M2M) and connected objects will represent the majority of devices connected to the Internet. This is important because the IT industry applies value to a network not necessarily by how much data is consumed, but by how many connections there are. This, generally speaking, is Metcalfe's law, and we will talk about that later in this book. It is also worth noting that after the first public website went live at CERN in 1990, it then took 15 additional years for 1 billion people to be regular users of the Internet. IoT is looking to add 6 billion connected devices per year. This, of course, is swaying the industry.
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    Figure 3: The disparity between human population growth versus connected thing growth. The trend has been a 20 percent growth of connected objects versus a nearly ﬂat 0.9 percent human growth. Humans will no longer drive network and IT capacity.

    It should be noted that economic impact is not solely revenue generation. The impact from IoT or any technology comes in the form of:

    
      	New revenue streams (for example, green energy solutions)

      	Reducing costs (for example, in-home patient healthcare)

      	Reducing time to market (for example, factory automation)

      	Improving supply chain logistics (for example, asset tracking)

      	Reducing production loss (for example, theft or spoilage of perishables)

      	Increasing productivity (for example, machine learning and data analytics)

      	Cannibalization (for example, Nest replacing traditional thermostats)

    

    In our discussion throughout this book, it should be at the top of our minds as to what value an IoT solution delivers. If it is simply a new gadget, there will be a limited market scope. Only when the foreseeable benefit outweighs the cost will an industry thrive.

    Generally speaking, the target used should be a 5x improvement over a traditional technology. That has been my goal in the IT industry. When considering the cost of change, training, acquisition, support, and so on, a 5x differential is a fair rule of thumb.

    Definition of the Internet of Things

    One should look at some of these claims with a degree of skepticism. It is nearly impossible to quantify the exact number of devices that are Internet-connected. Additionally, we have to separate those devices that are naturally Internet-connected like smartphones, PCs, servers, network routers, and IT infrastructure. We should also not include in the realm of IoT those machines that have had presence in offices, homes and workplaces for decades that are essentially connected through some form of networking. We do not include office printers, copiers, or scanners as part of the IoT spectrum.

    This book will examine IoT from the perspective of connecting devices that have not necessarily been connected to each other or the Internet. These devices may have historically not had much if any computational or communication abilities. By that, we imply that devices historically have had cost, power, space, weight, size, or thermal limits. 

    As we see in the history of IoT devices, connecting traditionally unconnectable objects like refrigerators at Carnegie Mellon has been possible since the early 1980s, but the cost was significant. It required the processing power of a DEC PDP11 mainframe computer. Moore's Law demonstrates the increases in the number and density of transistors in silicon chipsets, while Dennard scaling improves the power profile of computers. With these two trends, we now produce devices that utilize more powerful CPUs and increased memory capacity and run operating systems capable of executing a full network stack. It is only with these requirements being met that the IoT has become an industry unto itself.

    The basic requirements of a device to be considered part of the IoT:

    
      	Computationally capable of hosting an Internet protocol software stack

      	Hardware and power capable of utilizing a network transport such as 802.3

      	Not a traditional Internet-connected device, such as a PC, laptop, smartphone, server, data center appliance, office productivity machine, or tablet computer

    

    We also include "edge" devices in this book. Edge devices themselves can be IoT devices or can "host" IoT devices. Edge devices as detailed later in this book will generally be managed computer nodes that extend closer to the sources of data generation or data action. They may not be typical servers and clusters found in data centers but space, power, and environmentally hardened devices that are in the field. For example, a data center blade would consist of electronics optimized for the climate-controlled atmosphere of a server farm with hot and cold aisles, heat exchangers, and uninterruptible power supplies. Edge devices may be found outside and exposed to weather elements and in areas where constant and consistent power is not an option. Other times, they may include traditional server nodes, but outside the constraints of a datacenter.

    Given these qualifiers, the true size of the IoT market is smaller than analyst forecasts. When we divide traditional IT and Internet-connected devices from IoT devices, we see a different growth rate as shown in the following figure.
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    Figure 4: Separating sales volume of IoT devices by definition from non-IoT devices (for example, IT equipment and mobile computing)

    Further analysis into actual components that are used in IoT devices reveals another interesting pattern. As already mentioned, most Internet-connected devices require a certain level of performance and hardware to communicate through standard protocols. Yet the following graphic shows a difference in the number of communication chips and processors versus the number of sensors that are shipping. This reinforces the concept that there is a large fan-out from sensors to edge computers and communication devices.
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    Figure 5: Trend in sales of sensors, processors, and communication ICs within IoT sales

    What is notable is that most IoT installations are not a single device that has the capabilities of running an Internet hardware and software stack. Most sensors and devices have no capabilities of reaching the Internet directly. They lack the processing capabilities, memory resources, and power distribution required for full Internet connectivity. Rather, much of what is really the IoT relies upon gateways and edge computers in a hub-and-spoke model. There is a large fan-out of devices that connect to edge computers through local personal area networks, non-IP networks (Bluetooth), industrial protocols (ModBus), legacy brownfield protocols (RS232), and hardware signals.

    Industry and manufacturing

    Industrial IoT (IIoT) is one of the fastest-growing and largest segments in the overall IoT space by the number of connected things and the value those services bring to manufacturing and factory automation. This segment has traditionally been the world of operations technology (OT). This involves hardware and software tools to monitor physical devices in real time. These systems historically have been on-premises computers and servers to manage factory floor performance and output. We call these systems supervisory control and data acquisition (SCADA). Traditional information technology roles have been administered differently than OT roles. OT will be concerned with yield metrics, uptime, real-time data collection and response, and systems safety. The IT role will concentrate on security, groupings, data delivery, and services. As the IoT becomes prevalent in industry and manufacturing, these worlds will combine especially with predictive maintenance from thousands of factory and production machines to deliver an unprecedented amount of data to private and public cloud infrastructure.

    Some of the characteristics of this segment include the need to provide near real-time or actual real-time decisions for OT. This means latency is a major issue for IoT on a factory floor.

    Additionally, downtime and security are top concerns. This implies the need for redundancy and possibly private cloud networks and data storage. The industrial segment is one of the fastest-growing markets. One nuance of this industry is the reliance on brownfield technology, meaning hardware and software interfaces that are not mainstream. It is often the case that 30-year-old production machines rely on RS485 serial interfaces rather than modern wireless mesh fabrics.

    Industrial and manufacturing IoT use cases

    Following are the industrial and manufacturing IoT use cases and their impact:

    
      	Preventative maintenance on new and preexisting factory machinery

      	Throughput increase through real-time demand

      	Energy savings

      	Safety systems such as thermal sensing, pressure sensing, and gas leaks

      	Factory floor expert systems

    

    Consumer

    Consumer-based devices were one of the first segments to adopt things being connected to the Internet. Consumer IoT first took the form of a connected coffee pot at a university in the 1990s. It flourished with the adoption of Bluetooth for consumer use in the early 2000s.

    Now millions of homes have Nest thermostats, Hue lightbulbs, Alexa assistants, and Roku set-top boxes. People too are connected with Fitbits and other wearable technology. The consumer market is usually the first to adopt these new technologies. We can also think of these as gadgets. All are neatly packaged and wrapped devices that are essentially plug and play.

    One of the constraints in the consumer market is the bifurcation of standards. We see, for example, several WPAN protocols have a footing like Bluetooth, Zigbee, and Z-wave (all being non-interoperable).

    This segment also has common traits with the healthcare market, which has wearable devices and home health monitors. We keep them separate for this discussion, and healthcare will grow beyond simple connected home health devices (for example, beyond the functionality of a Fitbit).

    Consumer IoT use cases

    The following are some of the consumer IoT use cases:

    
      	Smart home gadgetry: Smart irrigation, smart garage doors, smart locks, smart lights, smart thermostats, and smart security

      	Wearables: Health and movement trackers, smart clothing/wearables

      	Pets: Pet location systems, smart dog doors

    

    Retail, finance, and marketing

    This category refers to any space where consumer-based commerce transacts. This can be a brick-and-mortar store or a pop-up kiosk. These include traditional banking services and insurers, but also leisure and hospitality services. The retail IoT impact is already in process, with the goal of lowering sales costs and improving customer experience. This is done with a myriad of IoT tools. For simplicity in this book, we also add advertising and marketing to this category.

    This segment measures value in immediate financial transactions. If the IoT solution is not providing that response, its investment must be scrutinized. This drives constraints on finding new ways to either save costs, or drive revenue. Allowing customers to be more efficient allows retailers and service industries to provide better customer experiences while minimizing overhead and loss in the cost of sales.

    Retail, finance, and marketing IoT use cases

    Some of the IoT use cases are as follows:

    
      	Targeted advertising, such as locating known or potential customers by proximity and providing sales information.

      	Beaconing, such as proximity sensing customers, traffic patterns, and inter-arrival times as marketing analytics.

      	Asset tracking, such as inventory control, loss control, and supply chain optimizations.

      	Cold storage monitoring, such as analyze cold storage of perishable inventory. Apply predictive analytics to food supply.

      	Insurance tracking of assets.

      	Insurance risk measurement of drivers.

      	Digital signage within retail, hospitality, or citywide.

      	Beaconing systems within entertainment venues, conferences, concerts, amusement parks, and museums.

    

    Healthcare

    The healthcare industry will contend with manufacturing and logistics for the top spot in revenue and impact on IoT. Any and all systems that improve the quality of life and reduce health costs are a top concern in nearly every developed country. The IoT is poised to allow for remote and flexible monitoring of patients wherever they may be. 

    Advanced analytics and machine learning tools will observe patients in order to diagnose illness and prescribe treatments. Such systems will also be the watchdogs in the event of needed life-critical care. Currently, there are about 500 million wearable health monitors, with double-digit growth in the years to come.

    The constraints on healthcare systems are significant. From HIPAA compliance to the security of data, IoT systems need to act like hospital-quality tools and equipment. Field systems need to communicate with healthcare centers 24/7, reliably and with zero downtime if the patient is being monitored at home. Systems may need to be on a hospital network while monitoring a patient in an emergency vehicle.

    Healthcare IoT use cases

    Some of the healthcare IoT use cases are as follows:

    
      	In-home patient care

      	Learning models of predictive and preventative healthcare

      	Dementia and elderly care and tracking

      	Hospital equipment and supply asset tracking

      	Pharmaceutical tracking and security

      	Remote field medicine

      	Drug research

      	Patient fall indicators

    

    Transportation and logistics

    Transportation and logistics will be a significant, if not the leading driver in IoT. The use cases involve using devices to track assets being delivered, transported, or shipped, whether that's on a truck, train, plane, or boat. This is also the area of connected vehicles that communicate to offer assistance to the driver, or preventative maintenance on behalf of the driver. Right now, an average vehicle purchased new off a lot will have about 100 sensors. That number will double as vehicle-to-vehicle communication, vehicle-to-road communication, and automated driving become must-have features for safety or comfort. This has important roles beyond consumer vehicles and extends to rail lines and shipping fleets that cannot afford any downtime. We will also see service trucks that can track assets such as workers' tools, construction equipment, and other valuable assets. Some of the use cases can be very simple, but also very costly, such as monitoring the location of service vehicles in the delivery of stock. 

    Systems are needed to automatically route trucks and service personnel to locations based on demand versus routine.

    This mobile-type category has the requirement of geolocation awareness. Much of this comes from GPS navigation. From an IoT perspective, the data analyzed would include assets and time, but also spatial coordinates.

    Transportation and logistics IoT use cases

    Following are some of the transportation and logistics IoT use cases:

    
      	Fleet tracking and location awareness

      	Municipal vehicle planning, routing and monitoring (snow removal, waste disposal)

      	Cold storage transportation and safety of food delivery

      	Railcar identification and tracking

      	Asset and package tracking within fleets

      	Preventative maintenance of vehicles on the road

    

    Agricultural and environment

    Farming and environmental IoT includes elements of livestock health, land and soil analysis, micro-climate predictions, efficient water usage, and even disaster predictions in the case of geological and weather-related disasters. Even as the world population growth slows, world economies are becoming more affluent. Even as famines are less common than 100 years ago, the demand for food production is set to double by 2035. Significant efficiencies in agriculture can be achieved through IoT. Using smart lighting to adjust the spectrum frequency based on poultry age can increase growth rates and decrease mortality rates based on stress on chicken farms. Additionally, smart lighting systems could save $1 billion annually on energy versus the common dumb incandescent lighting currently used. Other uses include detecting livestock health based on sensor movement and positioning. A cattle farm could find animals with the propensity of sickness before a bacterial or viral infection were to spread. Remote edge analysis systems could find, locate, and isolate heads of cattle in real time, using data analytics or machine learning approaches.

    This segment also has the distinction of being in remote areas (volcanoes) or sparse population centers (cornfields). This has impacts on data communication systems that we will need to consider later in Chapter 5, Non-IP Based WPAN and Chapter 7, Long-Range Communication Systems and Protocols (WAN).

    Agricultural and environmental IoT use cases

    Some of the agricultural and environmental IoT use cases are as follows:

    
      	Smart irrigation and fertilization techniques to improve yield

      	Smart lighting in nesting or poultry farming to improve yield

      	Livestock health and asset tracking

      	Preventative maintenance on remote farming equipment via manufacturer

      	Drone-based land surveys

      	Farm-to-market supply chain efficiencies with asset tracking

      	Robotic farming

      	Volcanic and fault line monitoring for predictive disasters

    

    Energy

    The energy segment includes the monitoring of energy production at the source of production to the consumer. A significant amount of research and development has focused on consumer and commercial energy monitors such as smart electric meters that communicate over low-power and long-range protocols to reveal real-time energy usage.

    Many energy production facilities are in remote or hostile environments such as desert regions for solar arrays, steep hillsides for wind farms, and hazardous facilities for nuclear reactors. Additionally, data may need real-time or near real-time response for critical responses to energy production control systems (much like manufacturing systems). This can impact how an IoT system is deployed in this category. We will talk about issues of real-time responsiveness later in this book.

    Energy IoT use cases

    The following are some of the use cases for energy IoT:

    
      	Oil rig analysis of thousands of sensors and data points for efficiency gains

      	Remote solar panel monitoring and maintenance

      	Hazardous analysis of nuclear facilities

      	Smart electric, gas, and water meters in a citywide deployment to monitor usage and demand

      	Time-of-use tariffs

      	Real-time blade adjustments as a function of weather on remote wind turbines

    

    Smart city

    "Smart city" is a phrase used to imply connected and intelligent infrastructure, citizens, and vehicles. Smart cities are one of the fastest growing segments and show substantial cost/benefit ratios especially when we consider tax revenues. Smart cities also touch citizens' lives through safety, security, and ease of use. For example, several cities such as Barcelona have embraced IoT connectivity to monitor trash containers and bins for pickup based on the current capacity, but also the time since the last pickup. This improves the trash collection efficiency allowing the city to use fewer resources and tax revenue in transporting waste, but also eliminates potential smells and odors of rotting organic material.

    One of the characteristics of smart city deployment may be the number of sensors used. For example, a smart camera installation on each street corner in New York would require over 3,000 cameras. In other cases, a city such as Barcelona will deploy nearly one million environmental sensors to monitor electric usage, temperature, ambient conditions, air quality, noise levels, and parking spaces. These all have low bandwidth needs versus a streaming video camera, but the aggregate amount of data transmitted will be nearly the same as the surveillance cameras in New York. These characteristics of quantity and bandwidth need to be considered in building the correct IoT architecture.

    Smart cities are also impacted by government mandates and regulations (as we will explore later); therefore, there are ties to the government segment.

    Smart city IoT use cases

    Some of the smart city IoT use cases are as follows:

    
      	Pollution control and regulatory analysis through environmental sensing

      	Microclimate weather predictions using citywide sensor networks

      	Efficiency gains and improved costs through waste management service on demand

      	Improved traffic flow and fuel economy through smart traffic light control and patterning

      	Energy efficiency of city lighting on demand

      	Smart snow plowing based on real-time road demand, weather conditions, and nearby plows

      	Smart irrigation of parks and public spaces, depending on weather and current usage

      	Smart cameras to watch for crime and real-time automated AMBER Alerts

      	Smart parking lots to automatically find best parking spaces on demand

      	Bridge, street, and infrastructure wear and usage monitors to improve longevity and service

    

    Military and government

    City, state, and federal governments, as well as the military, have a keen interest in IoT deployments. Take California's executive order B-30-15 (https://www.gov.ca.gov/news.php?id=18938), which states that by 2030 greenhouse gas emissions affecting global warming will be at levels 40 percent below 1990 levels. To achieve aggressive targets like this, environmental monitors, energy sensing systems, and machine intelligence will need to come into play to alter energy patterns on demand, while still keeping the California economy breathing. Other cases include projects like the Internet Battlefield of Things, with the intent of providing efficiencies for counterattacks on enemies. This segment also ties into the smart city category when we consider the monitoring of government infrastructures like highways and bridges.

    The government's role in the IoT also comes into play in the form of standardization, frequency spectrum allocation, and regulations. Take, for example, how the frequency space is divided, secured, and portioned to various providers. We will see throughout this text how certain technologies came to be through federal control.

    Government and military IoT use cases

    Following are some of the government and military IoT use cases:

    
      	Terror threat analysis through IoT device pattern analysis and beacons

      	Swarm sensors through drones

      	Sensor bombs deployed on the battlefield to form sensor networks to monitor threats

      	Government asset tracking systems

      	Real-time military personnel tracking and location services

      	Synthetic sensors to monitor hostile environments

      	Water level monitoring to measure dam and flood containment

    

    Example use case and deployment

    The most effective way to understand an IoT and edge computing system is to start with the use case of a real-world product. Here we will study what the solution is intended to deliver and then focus on the underlying technology. Users and customers will not detail full system requirements, and gaps will need to be derived from the constraints. This example will also illustrate that IoT deployments are a cross-domain collaboration between different engineering disciplines and sciences. Often, there will be digital designers, networking engineers, low-level firmware engineers, industrial designers, human factor engineers, board layout electrical engineers, as well as cloud and SaaS developers. However, the design can't be architected in various silos. Often a design choice in one area could lead to poor performance, bad battery life, exorbitant network charges, or unreliable communication to remote devices.

    Case study – Telemedicine palliative care

    A provider of in-home care and consultation for elderly and senior citizens intends to modernize their current practice of in-home nursing and nursing assistance care with better, more actionable, and economical solutions to address the growing crisis of costs and patient numbers. Currently the service maintains in-home care with 7-day routine visits to over 500 patients within a 100-mile radius of a metro area in Madison, Wisconsin. Visits consist of everything from delivery of medicine and special care services to measurements of patient vitals. Patients are typically over 70 years old and have no ability to administer any IT infrastructure brought into the home. Additionally, patient homes may not have any Internet connectivity or broadband connection.

    Requirements

    The provider wishes for a system to provide these minimum feature sets and services:

    
      	Each patient will be assigned a wearable device to monitor heart rate, blood oxygen, movement, temperature, and steps taken.

      	An additional device(s) will be installed in patient homes to monitor specific patient conditions and vitals such as blood pressure, blood glucose levels, weight, oral temperature, and so on.

      	The system must report data on patient vitals to a central operations dashboard.

      	The system will also remind patients of events such as when to take a certain pill or when to administer a vital test.

      	The system must be able to track status of a patient in the event of power failure.

      	A wearable system is provided with an easily identifiable push button that will signal an emergency situation (such as a fall) to the awaiting operator service. The device will flash to indicate an emergency has been activated. The device will have two-way audio communication with the operator. In the event of a hearing-impaired patient situation, an alternative method will be used to communicate to the patient.

      	The entire network must be able to manage 500 current patients and grow in scale at 10 percent per year.

      	The system must deliver an overall cost savings and ROI of 33 percent within three years of implementation. This key performance indicator (KPI) is measured by reducing in-home nursing and nursing assistance care from three hours per day to two hours per day while increasing the quality of healthcare for patients in the program.

    

    Implementation

    Medical IoT and telemedicine are one the most rapidly growing fields of IoT, AI/ML, and sensor systems. With a growth rate year over year (YoY) of 19 percent and a market of $534 billion by 2025, it has garnered much interest. However, we examine this specific case study because of the sizable constraints it places on the system designer. Specifically, in areas of healthcare, the stringent requirements and HIPAA and FDA regulations impose constraints that have to be overcome to build a system that affects patients well-being. For example, HIPAA will require patient data to be secured, so encryption and data security will have to be designed and qualified for the entire system. Additionally, here we examine constraints of the elderly, namely the lack of robust Internet connectivity, while attempting to build an Internet-connected system.

    The system will be broken down into three major components:

    
      	The far edge layer: This will consist of two devices. First will be a wearable device for the patient. The second will be a myriad of different medical-grade measurement tools. The wearable will be a wireless device while the other measurement devices may or may not be wireless. Both will establish secured communication to the PAN-LAN layer component described next.

      	The near-edge PAN-WAN layer: This will be a secured device installed within the locality of the patient home or where they may be cared for. It should be portable but once installed, it shouldn't be used and tampered with by the patient. This will house the PAN-LAN networking infrastructure equipment. It also contains the edge computing systems to manage the devices, control situational awareness, and securely store patient data in the event of a failure.

      	Cloud layer: This will be the aggregation point to store, record and manage patient data. It also presents dashboards and situational awareness rules engines. The clinician will manage a fleet of installed home-care systems through a single dashboard and pane-of-glass. Managing 500 patients with 10 percent growth YoY will present challenges in managing that amount of data quickly especially in emergency situations. Therefore, rules engines will be built to determine when an event or situation exceeds a boundary.

    

    The three layers of the architecture comprise the system from sensor to cloud. The next sections detail aspects of each layer.

    The single use case we chose is simply an IoT event from the wearable that must propagate to the cloud for dashboard visibility. The dataflow stretches through all three layers of this IoT use case as shown in the following figure:

    [image: ]
    Figure 6: Basic dataflow and software components in this use case example. Note the role of the edge computing device providing translation between a Bluetooth device and the cloud over a transport protocol. It also serves the roles of a caching server and encryption agent.

    This use case will read from integrated sensors and broadcast the data as BLE advertised packets as a paired BLE device to the edge computer. The edge system manages the relationship to the Bluetooth PAN and will retrieve, encrypt, and store the incoming data in the event of a power or communication failure to the cloud. The edge system has the additional responsibility of converting the Bluetooth data into TCP/IP packets wrapped in an MQTT transport. 

    It also must set up, manage, and control a cellular communication with a subscription provider. MQTT allows for the reliable and robust transport to the awaiting cloud system (Azure in this example). There data is encrypted over the wire through TLS and then ingested by the Azure IoT Hub. At that point, data will be authenticated and marshalled through the Stream Analytics engine and to the Logic Apps where cloud-based web services will host a dashboard of patient information and events.

    Far edge architecture

    Let's begin with the far edge and wearable design. For this project, we start with breaking down the user requirement into actionable system requirements:

    
      
        
        
        
      
      
        
          	
            Use case
          
          	
            Choices
          
          	
            Detailed description
          
        

        
          	
            Wearable patient monitor

          
          	
            
              	Wrist strap

              	Neck strap

              	Chest strap

              	Arm strap

            

          
          	
            Patient-wearable device.

            Device should maintain integrity under several environmental parameters such as water submersion, cold, heat, humidity and so on.

          
        

        
          	
            Wearable vital monitors

          
          	
            TI AFE4400 heart rate and pulse oximeter

          
          	
            Medical-grade heart rate monitor and blood oxygen sensor

          
        

        
          	
            ST Micro MIS2DH Medical Grade MEMS Accelerometer

          
          	
            Movement and pedometer sensor

          
        

        
          	
            Maxim MAX30205 Human Body Temperature Sensor

          
          	
            Medical-grade temperature sensor

          
        

        
          	
            Emergency call button

          
          	
            A single visible push button with an LED on the unit

          
          	
            The button should depress but not create false positive events. Additionally, a light should flash when an emergency situation is activated. Additionally, a two-way communication can be initiated.

          
        

        
          	
            Edge control system

          
          	
            ST Micro STM32WB microcontroller

          
          	
            System to interface sensors and provide PAN communication to PAN-WAN layer. Edge system contains necessary radio hardware and audio codecs.

          
        

        
          	
            Microphone

          
          	
            Knowles SPU0410LR5 audio, microphone and amplifier

          
          	
            Two-way communication in event of emergency.

          
        

        
          	
            Power system

          
          	
            Encased Li-ion battery in wearable.

          
          	
            The system should have multi-day rechargeable battery life with warnings to the patient and clinician in event of a low-power state. Power system should be rechargeable or replaceable.

          
        

        
          	
            Pairing

          
          	
            Bluetooth

            Zigbee

            Wi-Fi

          
          	
            Need a method to pair and associate wearable attributes within the home PAN-LAN hub.

          
        

      
    

    The intent of the wearable device in a palliative care situation is to be reliable, robust, and durable. We chose medical-grade components and environmentally tested electronics to withstand use cases that may arise in home care. The device also will have no serviceable parts. For example, for this use case, we chose not to burden the patient with recharging the wearable as this procedure may not be followed reliably. Since the project still requires in-home nursing and nursing assistance care, part of the task of the nursing assistance will be to recharge and monitor the health of the wearable.

    A system usually starts with the constraints of the embodiment of the components. In this case, a wearable system for in-home health care of the elderly could be in the form of a wristband, neck strap, arm strap and so on. This project has chosen a wrist strap akin to a hospital-style name band that a patient would already have some familiarity with. The wrist strap allows for fitting close to the skin and arteries to allow for collection of health characteristics. Other forms of wearables failed to provide more robust contact. The wrist strap does have significant constraints in size, power, and shape that must contain all the electronics, power supply, and radios described in the following.

    From a block diagram perspective, the wearable will consist of as few components as possible to minimize space and weight while conserving as much power as possible. Here we elect to use a very power-efficient microcontroller with a Bluetooth 5 radio (Bluetooth Low Energy – BLE). The BLE radio will serve as the PAN communication to the PAN-WAN hub. BLE 5 has a range of up to 100 meters (or further when LE Long-Range Mode is enabled). 

    This will be sufficient for in-home care situations where the patient will not necessarily leave.
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    Figure 7: Wearable computing device for in-home palliative care

    Edge layer architecture

    The PAN-WAN edge layer is the central edge computer, gateway, and router. In many instances this functionality is performed by a smartphone device; however, in this implementation, we need to construct a system using a different and more economical cellular service plan than what is typically offered for smartphone consumers. Because our scale is 500 users and growing, we decide to build a hub using off-the-shelf hardware components to deliver the best solution for the customer.

    The edge computer we chose is an industrial-grade single board computer capable of running an enterprise grade distribution of Linux. The Inforce 6560 acts as a gateway between the Bluetooth 5.0 PAN and a cellular WAN. The system on chip (SOC) conveniently incorporates the following hardware:

    
      	Snapdragon 660 processor with a Qualcomm Kryo 260 CPU

      	3 GB of onboard LPDDR4 DRAM

      	32 GB of eMMC storage

      	One microSD card interface

      	Bluetooth 5.0 radio

      	802.11n/ac Wi-Fi 2.4GHz and 5GHz radio
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    Figure 8: Edge system hardware block diagram

    The edge computer will also make use of a Bluetooth 5.1 location-tracking angle-of-arrival antenna array. This new standard will allow the edge system to obtain centimeter precision on the location of the wearable and patient within the Bluetooth field. This will allow for tracking the patient's movement, exercise, bathroom functions, and emergency situations.

    The edge relies on a failover power system or uninterruptible power supply (UPS). The UPS device will switch from line current to battery in the event of power removal or power outage. It will signal to the edge system that a power event occurred via a USB or serial UART signal. At that point the edge system will communicate back to the cloud management that a power event occurred, and some action may be necessary.

    Software architecture

    Along with three layers of communication protocols and hardware, there are three different models of software in this relatively simple system. Rather than belabor this use case example with every nuance of the design, including every fault recovery, device provisioning, security, and system state, we will examine the most common usage of delivering patient health data in real time.

    The software structure of the wearable device must be compatible with the hardware we have chosen. This implies we chose tools, operating systems, device drivers, and libraries compatible with the architecture and peripherals we are using. We'll start with the wearable, which has the most stringent requirements of code size, battery life, and performance limitations. Since the STM32WB microcontroller is designed as a dual core, we have essentially two systems to manage: the higher-performance ARM M4 core that will run our specific wearable firmware, and a lower-power M0 core that manages the I/O across Bluetooth. We chose a commercial real-time operating system such as ThreadX by Express Logic to allow for a modern development experience rather than a simple control loop which isn't appropriate for this product. We also want to be able to certify the product for medical-grade usage, which is easier when using commercial off-the-shelf operating systems.

    The software structure on the wearable is divided into two processes that host numerous threads to manage the wearable display, the speaker and microphone hardware, I/O to the heartbeat and movement sensors, and the Bluetooth stack. The Bluetooth stack communicates across to the M0 core which manages the hardware layers of the Bluetooth radio.
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    Figure 9: Wearable system software stack divided between two processing cores for application services and IO communication

    The edge computer has more processing resources as it must provide for a full TCP/IP stack, PAN and WAN communication and routing, encryption services, storage services, device provisioning, and failsafe firmware upgrades. For the edge system, we chose a Linux Debian-variant system as it provides more features and services than a tightly embedded RTOS. Coordination with the cloud system and all services on the edge computer or on the wearable are coordinated through the "rules engine." The rules engine could be simple "expert system" using custom logic for this customer or use case. A more robust design may use a standardized framework like Drools. Since each patient may need to have a different set of rules, it makes sense to use a dynamic and fungible rule engine that can be uploaded with different patient directives. This is an autonomous top-level supervisor that periodically captures health data, addresses security issues, releases new firmware updates reliably, manages authentication and security, and handles a significant number of error and failure conditions. The rules engine must be autonomous to satisfy the product requirement of the system working without direct control via the cloud.
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    Figure 10: Edge computer software stack consisting of a number of services managed by a single supervising and autonomous "rules engine"

    The cloud layer provides the services of ingestion, long-term data storage, stream analytics, and patient-monitoring dashboards. It provides the interface to the healthcare providers to manage hundreds of edge systems securely through a common interface. It also is the method to quickly provide alerts to health situations, error conditions, and system failures, and provide device upgrades securely. The partitioning of cloud services versus edge services are as follows:

    
      	Cloud services
          	Data ingestion and management for multiple edge patients and systems

          	Almost unlimited storage capacity

          	A controlled software deployment and updates to edge

        

      

      	Edge services
          	Low-latency and real-time reactions to events

          	PAN communication to sensors

          	Minimum connectivity requirements

        

      

    

    Commercial cloud services will come with a service agreement and recurring cost, while edge systems for the most part will only incur a single upfront hardware and development cost.

    When considering the cloud components, we require a service to ingest data from multiple edge devices securely. The data needs to be stored for analysis and monitoring. The cloud services should also include a method to manage and provision edge installations. Finally, we look for a method to get real-time data from the patients and display it to qualified staff.

    For this project, we have chosen to use Microsoft Azure IoT as the cloud provider to manage this large installation and allow for growth and scalability. Azure IoT provides an architecture shown in the following illustration:
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    Figure 11: Typical Microsoft Azure IoT software stack and cloud architecture

    Microsoft Azure IoT software architecture is usually consistent between designs at least on the front end of the IoT Hub. Data will stream from various authenticated sources to the Azure IoT Hub. This is the cloud gateway and capable of scaling to very large IoT installations. Behind the scenes, IoT Hub is a collection of data center processes and services listening and responding to incoming events. 

    The IoT hub will route qualified streams to the Stream Analytics engine. Here data will quickly be analyzed in real time as fast as data is capable of being ingested. Data can be marshalled to business intelligence services and stored for long persistence in an Azure SQL database and/or moved to a service bus. The service bus responds to events and faults in the form of queues to allow the system to respond to them. The final component in our architecture is the cloud "glue" layers which route data to the IoT device (Logic App Dynamics to Azure) or respond to incoming data (Logic App Azure to Dynamics). Microsoft Dynamics 365 interfaces as a logic app and allows for visibility of IoT events, creation of dashboards, web frameworks, and even mobile and smartphone alerting.

    This use case is but a fraction of the actual functionality to make a shipping commercial product. We have left off significant areas such as provisioning, authentication, error conditions, resilient firmware upgrades, system security and root of trust, failover conditions, audio communication, key management, LCD display work, and the dashboard control systems themselves.

    Use case retrospective

    What we have shown in this very brief introductory use case is that IoT and edge computing requirements for enterprise and commercial designs involve many disciplines, technologies, and considerations. Attempting to trivialize the complexity of bridging Internet connectivity to edge systems with modern expectations of performance, reliability, usability, and security can end in failure.

    As we have seen in the abbreviated medical wearable use case, our design involves many interoperable components that comprise a system. It is essential that an architect responsible for an IoT system should be knowledgeable to some level of these system components:

    
      	Hardware design

      	Power management and battery design

      	Embedded systems design and programming

      	Communication systems, radio signaling, protocol usage, and communication economics

      	Network stacks and protocols

      	Security, provisioning, authentication, and trusted platforms

      	Performance analysis and system partitioning

      	Cloud management, streaming systems, cloud storage systems, and cloud economics

      	Data analytics, data management, and data science

      	Middleware and device management

    

    This book is designed to help the architect navigate through the myriad of details and options for each of these levels.

    Summary

    Welcome to the world of the IoT. As architects in this new field, we have to understand what the customer is building and what the use cases require. IoT systems are not a fire-and-forget type of design. A customer expects several things from jumping on the IoT train.

    First, there must be a positive reward. That is dependent on your business and your customer's intent. From my experience, a 5x gain is the target and has worked well for the introduction of new technologies to preexisting industries. Second, IoT design is, by nature, a plurality of devices. The value of IoT is not a single device or a single location broadcasting data to a server. It's a set of things broadcasting information and understanding the value the information in aggregate is trying to tell you. Whatever is designed must scale or be scalable; therefore, that needs attention in upfront design.

    We have learned about the segments of IoT and the projected versus actual IoT growth rates. We also have explored a single commercial use case and seen that IoT and edge computing span multiple disciplines, technologies, and functionalities. These mechanics of developing a commercially viable IoT and edge computing system will require the architect to understand these various segments and how they interrelate.

    We now start exploring the topology of an IoT and edge computing system as a whole and then break down individual components throughout the rest of the book.

  








    2

    IoT Architecture and Core IoT Modules

    The edge computing and IoT ecosphere starts with the simplest of sensors located in the remotest corners of the earth and translates analog physical effects into digital signals (the language of the Internet). Data then takes a complex journey through wired and wireless signals, various protocols, natural interference, and electromagnetic collisions, before arriving in the ether of the Internet. From there, packetized data will traverse various channels arriving at a cloud or large data center. The strength of IoT is not just one signal from one sensor, but the aggregate of hundreds, thousands, potentially millions of sensors, events, and devices.

    This chapter starts with a definition of IoT versus machine-to-machine architectures. It also addresses the architect's role in building a scalable, secure, and enterprise IoT architecture. To do that, an architect must be able to speak to the value the design brings to a customer. The architect must also play multiple engineering and product roles in balancing different design choices.

    This chapter provides an outline to how the book is organized and how an architect should approach reading the book and performing their role as an architect. The book treats architecture as a holistic exercise involving many systems and domains of engineering. This chapter will highlight:

    
      	Sensing and power: We cover the transformation of physical to digital sensing, power systems, and energy storage.

      	Data communication: We delve into the communication of devices using near-meter, near-kilometer, and extreme-range communication systems and protocols as well as networking and information theory.

      	Edge computing: Edge devices have multiple roles from routing, to gateways, edge processing and cloud-edge (fog) interconnect. We examine the role of the edge and how to successfully build and partition edge machines. We also look at communication protocols from the edge to the cloud.

      	Compute, analytics and machine learning: We then examine dataflow through cloud and fog computing, as well as advanced machine learning and complex event processing.

      	Threat and security: The final content investigates security and the vulnerability of the largest attack surface on earth.

    

    A connected ecosystem

    Nearly every major technology company is investing or has invested heavily in IoT and the edge computing space. New markets and technologies have already formed (and some have collapsed or been acquired). Throughout this book, we will touch on nearly every segment in information technology, as they all have a role in IoT.
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    Figure 1: Example of the architectural layers of an IoT/edge computing system. This is one of the many potential configurations that must be considered by the architect. Here we show the sensor-to-cloud routes through direct communication and through edge gateways. We also highlight the functionality provided by the edge compute nodes and the cloud components.

    As illustrated in the preceding figure, here are some of the components within an IoT/edge solution that we will study:

    
      	Sensors, actuators, and physical systems: Embedded systems, real-time operating systems, energy-harvesting sources, micro-electro-mechanical systems (MEMs).

      	Sensor communication systems: Wireless personal area networks (WPANs) reach from 0 cm to 100 m. Low-speed and low-power communication channels, often non-IP based, have a place in sensor communication.

      	Local area networks (LANs): Typically, IP-based communication systems such as 802.11 Wi-Fi used for fast radio communication, often in peer-to-peer or star topologies.

      	Aggregators, routers, gateways: Embedded systems providers, cheapest vendors

      	Wide area networks (WANs): Cellular network providers using LTE or Cat M1, satellite network providers, low-power wide-area network (LPWAN) providers like Sigfox or LoRa. They typically use Internet transport protocols targeted for IoT and constrained devices like MQTT, CoAP, and even HTTP.

      	Edge computing: Distributing computing from on-premise data centers and cloud to closer to the sources of data (sensors and systems). This is to remove latency issues, improve response time and real-time systems, manage the lack of connectivity, and build redundancy of a system. We cover processors, DRAM, and storage. We also study module vendors, passive component manufacturers, thin client manufacturers, cellular and wireless radio manufacturers, middleware providers, fog framework providers, edge analytics packages, edge security providers, certificate management systems, WPAN to WAN conversion, routing protocols, and software-defined networking/software-defined perimeters.

      	Cloud: Infrastructure as a service provider, platform as a service provider, database manufacturers, streaming and batch processing manufacturers, data analytics packages, software as a service provider, data lake providers, and machine learning services.

      	Data analytics: As the information propagates to the cloud en masse, dealing with volumes data and extracting value is the job of complex event processing, data analytics, and machine learning techniques. We study different edge and cloud analytic techniques from statistical analysis and rules engines to more advanced machine learning techniques.

      	Security: Tying the entire architecture together is security. End-to-end security from edge hardening, protocol security, to encryption. Security will touch every component from physical sensors to the CPU and digital hardware to the radio communication systems to the communication protocols themselves. Each level needs to ensure security, authenticity, and integrity. There cannot be a weak link in the chain, as the IoT will form the largest attack surface on earth.

    

    This ecosystem will need talents from the body of engineering disciplines, such as:

    
      	Device physics scientists developing new sensor technologies and many-year batteries

      	Embedded system engineers working on driving sensors at the edge

      	Network engineers capable of working in a personal area network or wide area network, as well as on a software-defined networking

      	Data scientists working on novel machine learning schemes at the edge and in the cloud

      	DevOps engineers to successfully deploy scalable cloud solutions as a well as fog solutions

    

    IoT will also need service vendors such as solution provision firms, system integrators, value-added resellers, and OEMs.

    IoT versus machine-to-machine versus SCADA

    One common area of confusion in the IoT world is what separates it from the technologies that define machine to machine (M2M). Before IoT became part of the mainstream vernacular, M2M was the hype. Well before M2M, SCADA (supervisory control and data acquisition) systems were the mainstream of interconnected machines for factory automation. While these acronyms refer to interconnected devices and may use similar technologies, there are differences. Let's examine these more closely:

    
      	M2M: It is a general concept involving an autonomous device communicating directly to another autonomous device. Autonomous refers to the ability of the node to instantiate and communicate information with another node without human intervention. The form of communication is left open to the application. It may very well be the case that an M2M device uses no inherent services or topologies for communication. This leaves out typical Internet appliances used regularly for cloud services and storage. An M2M system may communicate over non-IP based channels as well, such as a serial port or custom protocol.

      	IoT: IoT systems may incorporate some M2M nodes (such as a Bluetooth mesh using non-IP communication), but they aggregate data at an edge router or gateway. An edge appliance like a gateway or router serves as the entry point onto the Internet. Alternatively, some sensors with more substantial computing power can push the Internet networking layers onto the sensor itself. Regardless of where the Internet on-ramp exists, the fact that it has a method of tying into the Internet fabric is what defines IoT.

      	SCADA: This term refers to supervisory control and data acquisition. These are industrial control systems that have been used in factory, facility, infrastructure and manufacturing automation since the 1960s. They typically involve programmable logic controllers (PLCs) that monitor or controls various sensors and actuators on machinery. SCADA systems are distributed and only recently have been connected to Internet services. This is where Industry 2.0 and the new growth of manufacturing is taking place. These systems use communication protocols such as ModBus, BACNET, and Profibus.

    

    By moving data onto the Internet for sensors, edge processors, and smart devices, the legacy world of cloud services can be applied to the simplest of devices. Before cloud technology and mobile communication became mainstream and cost-effective, simple sensors and embedded computing devices in the field had no good means of communicating data globally in seconds, storing information for perpetuity, and analyzing data to find trends and patterns. As cloud technologies advanced, wireless communication systems became pervasive, new energy devices like lithium-ion became cost-effective, and machine learning models evolved to produce actionable value. This greatly improved the IoT value proposition. Without these technologies coming together when they did, we would still be in an M2M world.

    The value of a network and Metcalfe's and Beckstrom's laws

    It has been argued that the value of a network is based on Metcalfe's law. Robert Metcalfe in 1980 formulated the concept that the value of any network is proportional to the square of connected users of a system. In the case of IoT, "users" may mean sensors or edge devices with some form of communication.

    Generally speaking, Metcalfe's law is represented as:
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    Where:

    
      	V = Value of the network

      	N = Number of nodes within the network

    

    A graphical model helps to understand the interpretation as well as the crossover point, where a positive return on investment (ROI) can be expected:
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    Figure 2: Metcalfe's law: The value of a network is represented as proportional to N2. The cost of each node is represented as kN where k is an arbitrary constant. In this case, k represents a constant of $10 per IoT edge sensor. The key takeaway is the crossover point occurs rapidly due to the expansion of value and indicates when this IoT deployment achieves a positive ROI.

    An example validating Metcalfe's law to the value of blockchains and cryptocurrency trends was recently conducted. We will go much deeper into blockchains in the security chapter.

    
      A recent white paper by Ken Alabi finds that blockchain networks also appear to follow Metcalfe's law, Electronic Commerce Research and Applications, Volume 24, C (July 2017), page number 23-29.

    

    Metcalfe's law does not account for service degradation in cases in which service degrades as the number of users and/or data consumption grows, but the network bandwidth does not. Metcalfe's law also doesn't account for various levels of network service, unreliable infrastructure (such as 4G LTE in a moving vehicle), or bad actors affecting the network (for example, denial of service attacks).

    To account for these circumstances, we use Beckstrom's law:
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    Where:

    
      	Vi,j: Represents the present value of the network for device i on network j

      	i: An individual user or device on the network

      	j: The network itself

      	k: A single transaction

      	Bi,j,k: The benefit that value k will bring to device i on network j

      	Ci,j,k: The cost of a transaction k to a device i on network j

      	rk: The discount rate of interest to the time of transaction k

      	tk: The elapsed time (in years) to transaction k

      	n: The number of individuals

      	m: The number of transactions

    

    Beckstrom's law teaches us that to account for the value of a network (for example, an IoT solution), we need to account for all transactions from all devices and sum their value. If the network j goes down for whatever reason, what is the cost to the users? This is the impact an IoT network brings and is a more representative real-world attribution of value. The most difficult variable to model in the equation is the benefit of a transaction B. While looking at each IoT sensor, the value may be very small and insignificant (for example, a temperature sensor on some machine is lost for an hour). At other times, it can be extremely significant (for example, a water sensor battery died, and a retailer basement is flooded, causing significant inventory damage and insurance adjustments).

    An architect's first step in building an IoT solution should be to understand what value they are bringing to what they are designing. In the worst case, an IoT deployment becomes a liability and actually produces negative value for a customer.

    IoT and edge architecture

    The coverage in this book will span many technologies, disciplines, and levels of expertise. As an architect, one needs to understand the impact that choosing a certain design aspect will have on scalability and other parts of the system. The complexities and relationships of IoT technologies and services are significantly more intercoupled than traditional technologies not only because of the scale but also due to the disparate types of architecture. There is a bewildering number of design choices. For example, as of this writing, we counted over 700 IoT service providers alone offering cloud-based storage, SaaS components, IoT management systems, middleware, IoT security systems, and every form of data analytics one can imagine. Add to that the number of different PAN, LAN, and WAN protocols that are constantly changing and varying by region. Choosing the wrong PAN protocol could lead to poor communications and significantly low signal quality that can only be resolved by adding more nodes to complete a mesh. The role of an architect should ask and provide solutions for problems that span the system as a whole:

    
      	The architect needs to consider interference effects in the LAN and WAN—how will the data get off the edge and on the Internet? 

      	The architect needs to consider resiliency and how costly the loss of data is. Should resiliency be managed within the lower layers of the stack, or in the protocol itself?

      	The architect must also make choices of Internet protocols such as MQTT versus CoAP and AMQP, and how that will work if he or she decides to migrate to another cloud vendor.

    

    Choices also need consideration with regards to where processing should reside. This opens up the notion of edge/fog computing to process data close to its source to solve latency problems, but more importantly to reduce bandwidth and costs of moving data over WANs and clouds. Next, we consider all the choices in analyzing the data collected. Using the wrong analytic engine may result in useless noise or algorithms that are too resource-intensive to run on edge nodes. How will queries from the cloud back to the sensor affect the battery life of the sensor device itself? Add to this litany of choice, and we must layer on security as the IoT deployment we have built is now the largest attack surface in our city. As you can see, the choices are many and have relationships with one another.

    There are many choices to consider. When you account for the number of edge computing systems and routers, PAN protocols, WAN protocols, and communication, there are over 1.5 million different combinations of architectures to choose from:
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    Figure 3: IoT design choices: The full spectrum of various levels of IoT architecture from the sensor to the cloud and back.

    Role of an architect

    The term architect is often used in technical disciplines. There are software architects, system architects, and solution architects. Even within specific domains, such as computer science and software engineering, you may see people with the title SaaS architect, cloud architect, data science architect, and so on. These are individuals who are recognized experts with tangible skills and experience in a domain. These types of specialized vertical domains cross several horizontal technologies. In this book, we are targeting the IoT architect.

    This is a horizontal role, meaning it will touch a number of these domains and bring them together for a usable, secure, and scalable system.

    
      We will go as deep as necessary to understand an entire IoT system and bring a system together. At times, we will go into pure theory, such as information and communication theory. Other times, we will brush on topics that are on the periphery of IoT systems or are rooted in other technologies. By reading and referencing this book, the architect will have a go-to guide on different aspects of IoT that are all needed to build a successful system.

    

    Whether you are disciplined in electrical engineering or computer science, or have domain expertise in cloud architectures, this material will help you understand a holistic system—which should be, by definition, part of the role of an architect.

    This book is also intended for geographically global and massive scaling. It is one thing to build a proof of concept with one or two endpoint devices. It is by far a different challenge to build an IoT solution that stretches multiple continents, different service providers, and thousands of endpoints. While every topic can be used for hobbyist and maker movements, this is intended to scale to global enterprise systems on the order of thousands to millions of edge devices.

    The architect will ask questions for the full stack of connected systems. He or she will be aware of how optimizing for one solution may in fact deliver a less than desirable effect in another part of the system.

    For example:

    
      	Will the system scale and to what capacity? This will affect decisions on wide area networking, edge-to-cloud protocols, and middleware-to-cloud provisioning systems.

      	How will the system perform with loss of connectivity? This will impact the choices of edge systems, storage components, 5G service profiles, and network protocols.

      	How will the cloud manage and provision edge devices? This will affect decisions on edge middleware and fog components, and security services.

      	How will my customer's solution work in a noisy RF environment? This will affect decisions on PAN communications and edge components.

      	How will software be updated on a sensor? This will affect decisions around security protocols, edge hardware and storage, PAN network protocols, middleware systems, sensor costs and resources, and cloud provisioning layers.

      	What data will be useful to improving my customer's performance? This will affect decisions on what analytics tools to use, where to analyze the data, how data will be secured and denatured, and edge/cloud partitioning.

      	How will devices, transactions, and communication be secured from end to end?

    

    Part 1 – Sensing and power

    An IoT transaction starts or ends with an event: a simple motion, a temperature change, perhaps an actuator moving on a lock. Unlike many IT devices in existence, IoT in a large part is about a physical action or event. It responds to affect a real-world attribute. Sometimes this involves considerable data being generated from a single sensor, such as auditory sensing for preventative maintenance of machinery. Other times, it's a single bit of data indicating vital health data from a patient. Whatever the case may be, sensing systems have evolved and made use of Moore's law in scaling to sub-nanometer sizes and significantly reduced costs. Part 1 explores the depths of MEMs, sensing, and other forms of low-cost edge devices from a physical and electrical point of view. The part also details the necessary power and energy systems to drive these edge machines. We can't take power for granted at the edge. Collections of billions of small sensors will still require a massive amount of energy in total to power. We will revisit power throughout this book, and how innocuous changes in the cloud can severely impact the overall power architecture of a system.

    Part 2 – Data communication

    A significant portion of this book surrounds connectivity and networking. There are countless other sources that dive deep into application development, predictive analytics, and machine learning. This book too will cover those topics, but an equal amount of emphasis is given to data communications. The IoT wouldn't exist without significant technologies to move data from the remotest and most hostile environment to the largest data centers at Google, Amazon, Microsoft, and IBM. The acronym IoT contains the word Internet, and because of that, we need to dive deep into networking, communications, and even signal theory. The starting point for IoT isn't sensors or the application; it's about connectivity, as we will see throughout this book. A successful architect will understand the constraints of Internetworking from a sensor to a WAN and back again.

    This communication and networking section starts with theory and mathematical foundations of communication and information. Preliminary tools and models are needed by a successful architect not only to understand why certain protocols are constrained, but also to design future systems that scale successfully at IoT levels. 

    These tools include wireless radio dynamics like range and power analysis, signal-to-noise ratio, path loss, and interference. Part 2 also details foundations of information theory and constraints that affect overall capacity and quality of data. The foundations of Shannon's law will be explored. The wireless spectrum is also finite and shared, so an architect deploying a massive IoT system will need to understand how the spectrum is allocated and governed.

    Theory and models explored in this part will be reused in other parts of the book.

    Data communication and networking will then build up from the near-range and near-meter communication systems known as personal area networks (PANs), typically using non-Internet protocol messages. The chapter on PAN will include the new Bluetooth 5 protocol and mesh, as well as Zigbee and Z-Wave in depth. These represent the plurality of all IoT wireless communication systems. Next, we explore wireless local area networks and IP-based communication systems including the vast array of IEEE 802.11 Wi-Fi systems, thread, and 6LoWPAN. The chapter also investigates new Wi-Fi standards such as 802.11p for in-vehicle communication.

    The part concludes with long-range communication using cellular (4G LTE) standards, and dives deep into the understanding and infrastructure to support 4G LTE and new standards dedicated to IoT and machine-to-machine communication, such as Cat-1 and Cat-NB. The last chapter also covers the 5G standard and publicly licensed cellular (MulteFire) to prepare the architect for future long-range transmissions where every device is connected in some capacity. A proprietary protocol like LoRaWAN and Sigfox are also explored to understand the differences between architectures.

    Part 3 – Edge computing

    Edge computing brings nontraditional computing power close to the sources of data. While embedded systems have existed in devices for the last 40 years, edge computing is more than a simple 8-bit microcontroller or analog-to-digital converter circuit used to display temperature. Edge computing attempts to solve critical problems as the number of connected objects and the complexity of use cases grows in the industry. For example, in IoT areas we need the following:

    
      	Accumulate data from several sensors and provide an entry point to the Internet.

      	Resolve critical real-time responses for safety-critical situations like remote surgery or automated driving.

      	Solutions that can manage an overwhelming amount of processing of unstructured data like video data or even streaming of video to save on costs of transporting the data over wireless carriers and cloud providers.

    

    Edge computing also comes in layers as we will examine with 5G infrastructure, multiaccess edge computing, and fog computing.

    We will closely examine the hardware, operating systems, mechanics, and power that an architect must consider for different edge systems. For example, an architect may need a system that delivers on a constraining cost and power requirement but may forgo some processing ability. Other designs may need to be extremely resilient as the edge computer may be in a very remote region and essentially need to manage itself.

    To bridge data from sensors to the Internet, two technologies are needed: gateway routers and supporting IP-based protocols designed for efficiency. This part explores the role of router technologies at the edge for bridging sensors on a PAN network to the Internet. The role of the router is especially important in securing, managing, and steering data. Edge routers orchestrate and monitor underlying mesh networks and balance and level data quality. The privatization and security of data is also critical. Part 3 will explore the router role in creating virtual private networks, virtual LANs, and software-defined wide area networks. There literally may be thousands of nodes serviced by a single edge router, and in a sense, it serves as an extension to the cloud, as we will see in the Chapter 11, Cloud and Fog Topologies.

    This part continues with the protocols used in IoT communication between nodes, routers, and clouds. The IoT has given way to new protocols rather than the legacy HTTP and SNMP types of messaging used for decades. IoT data needs efficient, power-aware, and low-latency protocols that can be easily steered and secured in and out of the cloud. This part explores protocols such as the pervasive MQTT, as well as AMPQ and CoAP. Examples are given to illustrate their use and efficiency.

    Part 4 – Compute, analytics, and machine learning

    At this point, we must consider what to do with the data streaming in from edge nodes into a cloud service. First, we begin by talking about the aspects of cloud architectures such as SaaS, IaaS, and PaaS systems. An architect needs to understand the data flow and typical design of cloud services (what they are and how they are used). We use OpenStack as a model of cloud design and explore the various components from ingestor engines to data lakes to analytics engines. 

    Understanding the constraints of cloud architectures is also important to make a good judgment on how a system will deploy and scale. An architect must also understand how latency can affect an IoT system. Alternatively, not everything belongs in the cloud. There is a measurable cost in moving all IoT data to a cloud versus processing it at the edge (edge processing) or extending cloud services downward into an edge computing device (fog computing). This part dives deep into new standards of fog computing such as the OpenFog architecture.

    Data that has been transformed from a physical analog event to a digital signal may have actionable consequences. This is where the analytics and rules engines of the IoT come in to play. The level of sophistication for an IoT deployment is dependent on the solution being architected. In some situations, a simple rules engine looking for anomalous temperature extremes can easily be deployed on an edge router monitoring several sensors. In other situations, a massive amount of structured and unstructured data may be streaming in real time to a cloud-based data lake, and require both fast processing for predictive analytics and long-range forecasting using advanced machine learning models, such as recurrent neural networks in a time-correlated signal analysis package. This part details the uses and constraints of analytics from complex event processors to Bayesian networks to the inference and training of neural networks.

    Part 5 – Threat and security in IoT

    We conclude the book with a survey of IoT compromises and attacks. In many cases, IoT systems will not be secured in a home, or in a company. They will be in public, in very remote areas, in moving vehicles, or even inside a person. The IoT represents the single biggest attack surface for any type of cyberattack. We have seen countless academic hacks, well-organized cyber assaults, and even nation-state security breaches with IoT devices being the target. Part 5 will detail several aspects of such breaches and the types of remediation any architect must consider when making a consumer or enterprise IoT deployment a good citizen of the Internet. We explore the proposed congressional act to secure the IoT and understand the motivation and impact of such a government mandate.

    This part will checklist the typical security provisions needed for IoT, or any network component. Details of new technologies such as blockchains and software-defined perimeters will also be explored to provide insight into future technologies that will be needed to secure the IoT.

    Summary

    This book will bridge the spectrum of technologies that comprise edge computing and the IoT. In this chapter, we summarized the domains and topics covered in the book. An architect must be cognizant of the interactions between these disparate engineering disciplines to build a system that is scalable, robust, and optimized. An architect will also be called upon to provide supporting evidence that the IoT system provides a value to the end user or the customer. Here, we learned about the application of Metcalfe's and Beckstrom's laws as tools for supporting an IoT deployment.

    In the next chapters, we will learn about communication from sensors and edge nodes to the Internet and cloud. First, we will examine the fundamental theory behind radio signals and systems and their constraints and limits, and then we will dive into near-range and long-range wireless communication.

  








    3

    Sensors, Endpoints, and Power Systems

    The Internet of Things (IoT) begins with sources of data or devices that perform an action. These we call endpoints or nodes, and they are the things associated with the Internet. When one discusses IoT, in general, the actual sources of data are often overlooked. These sources are sensors outputting a stream of time-correlated data that must be transmitted securely, possibly analyzed, and possibly stored. The value of IoT is in the data in aggregate. Therefore, the data a sensor provides is crucial. However, for an architect, it is critical to understand the data as well as how the data is interpreted. Besides understanding what data is collected and how it is acquired, in a massive IoT deployment, it is useful to know what can be sensed, and what the constraints are for various sensors. For example, a system must account for lost devices and erroneous data. An architect must understand the reasons why data may not be reliable from sensors, and how a sensor can fail in the field. Essentially, we are connecting the analog world to the digital. The majority of connected things will be sensors, so it is important to understand their role.

    This is what the IoT is in a nutshell. As we learned in Chapter 1, IoT and Edge Computing Definition and Use Cases, sensors and edge devices comprise most of the growth in IoT, so it is important to understand their relationship in the architecture. This chapter will highlight sensor devices from an electronics and system point of view. It is important to understand the principles of what is being measured, and why. 

    One should ask, "What type of sensor or edge device should I consider for the problem I'm trying to solve?" An architect should consider aspects of cost, features, size, usable life, and precision when deploying an IoT solution. Additionally, the power and energy of edge devices are rarely addressed in IoT literature but are critical to building reliable and long-lasting technology. The reader should leave this chapter with a high-level grasp of sensor technology and its constraints.

    In this chapter, we will cover the following topics:

    
      	Sensing devices from thermocouples to MEMS sensors to vision systems

      	Energy generation systems

      	Energy storage systems

    

    Sensing devices

    We begin by focusing on the sensing or input devices. These come in a variety of forms and complexities, from simple thermocouples to advanced video systems. One reason IoT is a large growth area is the fact that these sensing systems have been reduced in size and cost substantially, with advances in semiconductor fabrication and micromachining.

    Thermocouples and temperature sensing

    Temperature sensors are the most prevalent form of sensor products. They exist just about everywhere. From smart thermostats to IoT cold storage logistics, from refrigerators to industrial machinery, they are prevalent and most likely the first sensing device you will be exposed to in an IoT solution.

    Thermocouples

    A thermocouple (or TC) is a form of temperature-sensing apparatus that doesn't rely on an excitation signal to operate. Therefore, they produce very small signals (often microvolts in amplitude). Two wires of two different materials meet where a temperature measurement is to be sampled. Each metal develops a voltage differential independently of each other. This effect is known as the Seebeck electromotive effect, in which the difference between the voltage of the two metals has a nonlinear relationship to the temperature.

    The magnitude of the voltage depends on the metal material chosen. It is critical that the ends of the wires are thermally isolated from the system (and the wires need to be at the same controlled temperature). In the following diagram, you will see a thermal block whose temperature is controlled with a sensor. This is usually controlled via a technique called cold junction compensation, where the temperature can vary, but is measured accurately by the block sensor.
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    Figure 1: Thermocouple schematic

    When sampling the voltage differential, the software will usually have a lookup table to derive the temperature based on the nonlinear relationship of the metals chosen.

    Thermocouples should be used for simple measurements. The system can vary in accuracy as well, since subtle impurities can affect the wire composition and cause a mismatch in the lookup tables. Precision-grade thermocouples may be needed but come at a higher cost.

    Another effect is aging. Since thermocouples are often used in industrial settings, high-heat environments can degrade the accuracy sensors over time. Therefore, IoT solutions must account for changes over the life of a sensor.

    Thermocouples are good for wide temperature ranges, color-coded for different metal combinations, and labeled by type (for example, E, M and PT-PD, to name a few). In general, these sensors are good for long distance measurements with long leads and often used in industrial and high-temperature environments.

    Shown in the following figure are various thermocouple metal types and their respective energy linearities across a range of temperatures.
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    Figure 2: Thermocouple type characterization E(T):T

    Resistance temperature detectors

    Resistance temperature detectors (RTDs) operate within a narrow range of temperatures but have much better accuracy than thermocouples (below 600 degrees Celsius). These are usually constructed with very fine platinum wire tightly wrapped around ceramic or glass. This produces a resistance-to-temperature relationship. Because it is a resistance-based measurement, an excitation current is needed to operate an RTD (1 mA).

    The resistance of an RTD follows a predefined slope. RTDs are specified with a base resistance. A 200 PT100 RTD has a slope of 0.00200 Ohms/degrees Celsius from 0 to 100 degrees Celsius. Within that range (0 to 100 degrees Celsius), the slope will be linear. RTDs come in two-, three-, and four-wire packages, with four-wire models used for high-accuracy calibration systems. RTDs are often used with bridge circuits to increase resolution, with software linearizing the results. The following illustration shows the wire-round RTD design and form factor.
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    Figure 3: Wire-wound RTD

    RTDs are rarely used above 600 degrees Celsius, which limits their application in industry. At high temperatures, the platinum can become contaminated, leading to incorrect results; however, when measuring within their specified range, RTDs are fairly stable and accurate.

    Thermistors

    The last temperature sensing device is the thermistor. These are also resistance-based relationship sensors like RTDs but produce a higher degree of change for a given temperature than an RTD. Essentially, these are resistors that vary based on temperature. They are also used in circuits to alleviate in-rush currents. Whereas an RTD has a linear relationship with a change in temperature, thermistors have a highly nonlinear relationship and are suitable where a high resolution is needed for a narrow temperature range. There are two types of thermistors: NTC, where resistance decreases as temperatures rise; and PTC, where resistance increases with rising temperatures. The main difference from an RTD materially is the use of ceramics or polymers, whereas metals are the basis of RTDs.

    Thermistors are found in medical devices, scientific equipment, food handling equipment, incubators, and home appliances such as thermostats.

    Temperature sensor summary

    In summary, the following table highlights the use cases and benefits of particular temperature sensors:

    
      
        
        
        
        
      
      
        
          	
            Category
          
          	
            Thermocouples
          
          	
            RTDs
          
          	
            Thermistors
          
        

        
          	
            Temperature range (degrees Celsius)

          
          	
            -180 to 2,320

          
          	
            -200 to 500

          
          	
            -90 to 130

          
        

        
          	
            Response time

          
          	
            Fast (microseconds)

          
          	
            Slow (seconds)

          
          	
            Slow (seconds)

          
        

        
          	
            Size

          
          	
            Large (~1 mm)

          
          	
            Small (5 mm)

          
          	
            Small (5 mm)

          
        

        
          	
            Accuracy

          
          	
            Low

          
          	
            Medium

          
          	
            Very high

          
        

      
    

    Typically, a thermocouple will be used for measuring temperatures in industrial applications and consumer heating, such as a kiln or furnace. These require fast response times from electronics to make real-time adjustments in extreme temperature environments. Thermistors are used for general purpose temperature sensing, such as garden-variety Bluetooth or Zigbee sensors, digital thermometers, electric motors, fire alarms, cold storage, and refrigerators.

    Hall effect sensors and current sensors

    A Hall effect sensor consists of a strip of metal that a current runs across. A stream of charged particles passing through a magnetic field will cause the beam to deflect from a straight line. If a conductor is placed in the magnetic field perpendicular to the electron flow, it will gather charge carriers and produce a voltage differential between the positive side of the metal strip and the negative side. This will produce a voltage differential that can be measured. The differential is called the Hall voltage, which is responsible for the phenomenon known as the Hall effect. This is illustrated in the following image. If a current is applied to a metal strip (as shown in the diagram) within a magnetic field, electrons will be attracted to one side of the strip, and holes to the other (see the curved line). This will induce an electric field that can be measured. If the field is strong enough, it will cancel out the magnetic force, and electrons will follow the straight line.
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    Figure 4: Example of the Hall effect

    Current sensors use the Hall effect for measuring the AC and DC currents of a system. There are two forms of current sensors: open loop and closed loop. Closed loops are more expensive than open loop sensors and often used in battery-powered circuits.

    Typical uses of Hall sensors include position sensing, magnetometers, highly reliable switches, and water-level detection. They are used in industrial sensors to measure the rotational velocity of different machines and motors. Additionally, these devices can be created very inexpensively and tolerate harsh environmental conditions.

    Photoelectric sensors

    The detection of light and light intensity is used in many IoT sensor devices, such as security systems, smart switches, and smart street lighting. As the name implies, a photoresistor varies in resistance depending on light intensity, while photodiodes convert light into an electrical current.

    Photoresistors are manufactured using a high-resistance semiconductor. The resistance decreases as more light is absorbed. In the dark, a photoresistor can have quite a high resistance (in the megaohm range). Photons absorbed by the semiconductor allow electrons to jump to the conduction band and conduct electricity. Photoresistors are wavelength sensitive, depending on their type and manufacturer; however, photodiodes are true semiconductors with a p-n junction. The device responds to light by creating an electron-hole pair. 

    The holes move toward an anode, the electrons migrate to a cathode, and a current is produced. Traditional solar cells operate in this photovoltaic mode, producing electricity. Alternatively, a reverse bias can be used on the cathode to improve the latency and response time if needed. The following table contrasts photoresistors with photodiodes.

    
      
        
        
        
      
      
        
          	
            Category
          
          	
            Photoresistor
          
          	
            Photodiode
          
        

        
          	
            Light sensitivity

          
          	
            Low

          
          	
            High

          
        

        
          	
            Active/passive (semiconductor)

          
          	
            Passive

          
          	
            Active

          
        

        
          	
            Temperature sensitivity

          
          	
            Highly sensitive

          
          	
            Low

          
        

        
          	
            Latency to light changes

          
          	
            Long (10 milliseconds on, 1 second off)

          
          	
            Short

          
        

      
    

    PIR sensors

    Pyroelectric infrared (PIR) sensors contain two slots filled with material that reacts to IR radiation and heat. Typical use cases are security or warm-body movement. In its simplest form, a Fresnel lens sits on top of the PIR sensor, allowing both slots to form a widening arc outward. These two arcs create detection zones. When a warm body enters one of the arcs, or leaves one, it generates a signal that is sampled. The PIR sensors use a crystalline material that generates current when subjected to IR radiation. A field-effect transistor (FET) detects the change in current and sends the signal to an amplification unit. PIR sensors respond well in the 8 to 14 um range, which is typical of a human body.

    The following diagram illustrates two IR regions detecting two zones. While this is fine for some purposes, generally we need to inspect an entire room or area for movement or activity:
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    Figure 5: PIR sensor: Two elements responding to a source of IR moving across its ﬁeld of view

    To scan a larger area with a single sensor requires multiple Fresnel lenses that condense light from regions of the room to create distinct regions on the PIR array. This also has the effect of condensing the infrared energy to discrete FET areas. Typically, such devices allow the architect to control the sensitivity (range) as well as the hold time.

    The hold time specifies for how long to output a motion event after an object has been detected moving across the path of the PIR. The shorter the hold time, the more events may be output. 

    The following diagram shows a typical PIR sensor with a Fresnel lens focusing on the substrate by a fixed focal length:
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    Figure 6: Left: Fresnel lens condensing IR region onto PIR sensor

    LiDAR and active sensing systems

    This section will cover active sensing systems. We have discussed many passive sensors that simply respond to environmental changes. Active sensing involves broadcasting a signal that is referenced to measure the environment either spatially or temporally. While this area is broad, we will concentrate on LiDAR as a basis for active sensing systems.

    LiDAR stands for Light Detection and Ranging. This type of sensor measures the distance to a target by measuring a laser pulse reflection on the target. Where a PIR sensor will detect movement within a range, LiDAR is capable of measuring a range. The process was first demonstrated in the 1960s and is now used pervasively in agriculture, automated and self-driving vehicles, robotics, surveillance, and environmental studies. This type of active sensing machine is also capable of analyzing anything that crosses its path. They are used to analyze gases, atmospheres, cloud formations and compositions, particulates, the speed of moving objects, and so on.

    LiDAR is an active sensor technology and broadcasts laser energy. As a laser hits an object, some of the energy will be reflected back towards the LiDAR emitter. The lasers used are typically in the 600 to 1000 nm wavelength and relatively inexpensive. Power is constrained for safety reasons to prevent eye damage. Some LiDAR units operate in the 1550 nm range, as that wavelength cannot be focused by the eye, rendering them harmless even at high energy. 

    LiDAR systems are capable of very long ranging and scanning, even from satellites. The laser will pulse up to 150,000 pulses per second, which can reflect off an object back to a photodiode array. The laser apparatus can also sweep the scene via a rotating mirror to build a comprehensive 3D image of the environment. Each beam that is broadcast represents an angle, time-of-flight (ToF) measurement, and a GPS location. This allows the beams to form a representative scene.

    To calculate the distance to an object, the equation is relatively simple:
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    LiDAR and other active sensors behave in a similar manner. Each has a representative broadcasting signal that returns to a sensor to build an image or indicate that an event has occurred. These sensors are much more complex than simple passive sensors and also take more power, cost, and area.
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    Figure 7: LiDAR: An example of a LiDAR image used to analyze atmospheric wind gusts to protect wind turbines. Blue areas signify wind speeds of 0 to 2m/s. Green areas show wind speeds of 3 to 6m/s. Red line indicates wind gusts of 7+ m/s. Image courtesy of NASA.

    MEMS sensors

    Microelectromechanical systems (MEMS) have been in the industry since they were first produced in the 1980s; however, the origin of the first MEMS pressure sensor dates back to the 1960s at Kulite Semiconductor, which developed a piezoresistive pressure sensor.

    Essentially, they incorporate miniaturized mechanical structures that interact with electronic controls. Typically, these sensors are in the 1 to 100 um geometry range. Unlike the other sensors mentioned in this chapter, MEMS mechanical structures can spin, stretch, bend, move, or alter form, which in turn affects an electrical signal. This is the signal captured and measured by one particular sensor.

    MEMS devices are manufactured in a typical silicon fabrication process using multiple masks, lithography, deposition, and etching processes. MEMS silicon dies are then packaged with other components such as operational amplifiers, analog to digital converters, and support circuitry. Typically, MEMS devices will be fabricated in the relatively large 1- to 100-micron range, whereas typical silicon structures are fabricated at 28 nm or below. The process involves a thin layer deposition and etching to create the 3D structures for a MEMS device.

    Besides sensor systems, MEMS devices can be found in the heads of inkjet printers and modern overhead projectors such as digital light processor (DLP) projectors. The ability to synthesize MEMS sensing devices into packages as small as a pinhead has and will allow IoT growth into billions of connected things.

    MEMS accelerometers and gyroscopes

    Accelerometers and gyroscopes are common in many mobile devices today and used in positioning and movement tracking, such as with pedometers and fitness trackers. These devices will use a MEMS piezoelectric to produce a voltage in response to movement.

    Gyroscopes detect rotational motion, and accelerometers respond to changes in linear motion. The following diagram illustrates the basic principle of an accelerometer. Typically, a central mass that is fixed to a calibrated location via a spring will respond to changes in acceleration that are measured by varying capacitance in a MEMS circuit. The central mass will appear to be stationary in response to acceleration in one direction.

    An accelerometer will be synthesized to respond to multiple dimensions (X, Y, Z) rather than one dimension, as shown in this illustration:
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    Figure 8: Accelerometer: The principle of acceleration measurement using a central mass suspended by a spring. Typically, these will be used in multiple dimensions.

    Gyroscopes operate slightly differently. Rather than relying on the motion response to a central mass, gyros rely on the Coriolis effect of a rotating reference frame. The following figure demonstrates the concept. Without increasing velocity, the object would move in an arc and not reach the northbound target. Moving towards the outer edge of the disk requires additional acceleration to maintain a northbound course. This is the Coriolis acceleration. In a MEMS device, there is no spinning disk; rather, there is a resonant frequency applied to a series of MEMS-fabricated rings on a silicon substrate:
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    Figure 9: Accelerometer: Effect of a rotating disk on a path moving northward

    The rings are concentric and cut into small arcs. Concentric rings allow for more area to gauge the accuracy of rotational movement. Single rings would require rigid support beams and are not as reliable. By bifurcating the rings into arcs, the structure loses rigidity and is more sensitive to rotational forces. The DC source creates an electrostatic force that resonates within the ring, while the electrodes attached to the rings detect the changes in the capacitor. If the resonating rings are perturbed, the Coriolis acceleration is detected. The Coriolis acceleration is defined by the following equation:
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    This equation states that the acceleration is a product of the rotation of the system and the velocity of the rotating disk, as shown in the preceding diagram, or the resonant frequency of the MEMS device, as shown in the following diagram. Given a DC power source, a force changes the gap size and the overall capacitance of the circuit. 

    The outer electrodes detect deflection in the ring, while inner electrodes provide capacitance measurements:
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    Figure 10: Left: Concentric cut rings representing the gyro sensor sitting upon a silicon substrate. Right: The disk gap connected to a corresponding silicon substrate.

    Both gyroscopes and accelerometers will require power supplies and an op-amp for signal conditioning. After conditioning, the output is ready to be sampled by a digital signal processor.

    These devices can be synthesized in very small packages, such as the InvenSense MPU-6050, which includes a six-axis gyro and accelerometer in a small 4 mm x 4 mm x 1 mm package.

    The device draws on 3.9 mA of current and is good for low power sensing.

    A device such as the InvenSense MPU-6050 is typically used in gaming consoles, smart TVs, and smartphones. This allows a user to have an interactive and engaging experience with the appliance. A device like this can accurately track user motions in a three-dimensional space.

    MEMS microphones

    MEMS devices can also be used for sound and vibration detection. These types of MEMS devices are related to the accelerometers previously covered. For IoT deployments, sound and vibration measurements are common in the industrial IoT and predictive maintenance applications. For example, an industrial machine that rotates or mixes a load of material in chemical manufacturing, or in centrifuges to separate mixtures, needs precise leveling. A MEMS sound or vibration unit will typically be used to monitor the health and safety of such equipment.

    This type of sensor will require an analog-to-digital converter of sufficient sampling frequency. Additionally, an amplifier is used to strengthen the signal. 

    The impedance of a MEMS microphone is in the order of several hundred ohms (which requires careful attention to the amplifier used). A MEMS microphone can be analog or digital. An analog variety will be biased to some DC voltage and attached to a codec for analog-to-digital conversion. A digital microphone has the ADC close to the microphone source. This is useful when there is signal interference from cellular or Wi-Fi signals near the codec.

    The output of a digital MEMS microphone can either be pulse density modulated (PDM) or sent over I2S format. PDM is a high sampling rate protocol that has the ability to sample from two microphone channels. It does this by sharing a clock and data line, and sampling from one of the two microphones on different clock periods. I2S doesn't have a high sampling rate, and the decimation at audio rates (Hz to kHz range) results in fair quality. This still allows multiple microphones to be used in sampling, but may not require an ADC at all, since the decimation is happening in the microphone. A PDM, with its high sampling rate, will need to be decimated by a digital signal processor, or DSP.

    MEMS pressure sensors

    Pressure and strain gauges are used in a variety of IoT deployments, from smart cities monitoring infrastructure to industrial manufacturing. These are typically used to measure fluid and gas pressures. The heart of the sensor is a piezoelectric circuit. A diaphragm will be placed above or below a cavity on the piezoelectric substrate. The substrate is flexible and allows the piezo crystals to change shape. This change in shape results in a directly correlated resistance change in the material.
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    Figure 11: Pressure sensor anatomy

    This type of sensor, as well as others listed in this chapter based on an excitation current, relies on a Wheatstone bridge to measure changes. Wheatstone bridges may come in two-, four-, or six-wire combinations. 

    The change in voltage is measured across the bridge as the piezoelectric substrate flexes and changes resistance:
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    Figure 12: Wheatstone bridge used for ampliﬁcation of MEMS pressure sensor

    High performance IoT endpoints

    So far, we have examined simple sensors that simply return information in a binary or analog form that must be sampled. There are, however, IoT devices and sensors that have substantial processing power and performance for the tasks they undertake. Smart sensors include devices such as video cameras and vision systems. Smart sensors can include substantial amounts of processing capacity in the form of high-end processors, digital signal processors, FPGAs, and custom ASICs. In this section, we will explore the details of one form of smart sensor: a vision system.

    Vision systems

    In contrast with the simple sensors explored earlier, vision systems are much more complex, which results in substantial hardware, optics, and imaging silicon. Vision systems start with a lens that observes a scene. A lens provides focus, but also provides more light saturation to the sensing element. In modern vision systems, one of two types of sensing elements is used: charge-coupled devices (CCDs), or complementary metal-oxide semiconductor (CMOS) devices. The difference between CMOSes and CCDs can be generalized as follows:

    
      	CCD: Charge is transported from the sensor to the edge of the chip to be sampled sequentially via an analog-to-digital converter. CCDs create high-resolution and low-noise images. They consume considerable power (100x that of CMOS). They also require a unique manufacturing process.

      	CMOS: Individual pixels contain transistors to sample the charge and allow each pixel to be read individually. CMOS is more susceptible to noise but uses little power.

    

    Most sensors are built using CMOS in today's market. A CMOS sensor is integrated into a silicon die that appears as a two-dimensional array of transistors arranged in rows and columns over a silicon substrate. A series of microlenses will sit upon each red, green, or blue sensor focusing incidental rays onto transistor elements. Each of these microlenses attenuates a specific color to a specific set of photodiodes (R, G, or B) that respond to the level of light; however, lenses are not perfect. They can add chromatic aberrations where different wavelengths refract at different rates, which leads to different focal lengths and blur. A lens can also distort an image, causing pincushioning effects.

    Next will come a series of steps to filter, normalize, and convert the image several times into a usable digital image. This is the heart of the image signal processor (ISP), and the steps may be followed in this order:
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    Figure 13: Image sensor: Typical image signal processor pipeline for color video

    Note the numerous conversions and processing of each stage of the pipeline for each pixel in the image. The amount of data and processing requires substantial custom silicon or digital signal processors. The following lists the functional block responsibilities in the pipeline:

    
      	Analog-to-digital conversion: Amplification of sensor signal then converted to digital form (10-bit). Data is read in from the photodiode sensor array as a flattened series of rows/columns representing the image just captured.

      	Optical clamp: Removes sensor biasing effects due to sensor black level.

      	White balance: Mimics chromatic display in the eye for different color temperatures. Neutral tones appear neutral. This is performed using matrix conversions.

      	Dead pixel correction: Identifies dead pixels and compensates for their loss using interpolation. Dead pixels are replaced with the average of neighboring pixels.

      	Debayer filtering and demosaicing: Debayer filtering separates RGB data to saturate green over red and blue content for luminance sensitivity adjustment. It also creates a planar format of images from sensor-interlaced content. More advanced algorithms preserve edges in images.

      	Noise reduction: Sensors introduce noise due to aliasing effects, analog-to-digital conversions, and so on. Noise can be associated with the non-uniformity of pixel sensitivity at a transistor level, or leakage of the photodiode, revealing dark regions. Other forms of noise exist as well. This phase removes white and coherent noise introduced in the image capture through a median filter (3 x 3 array) across all pixels. Alternatively, a despeckle filter can be used, requiring pixels to be sorted. Other methods exist as well. However, they all walk the pixel matrix.

      	Sharpening: Applies a blur to an image using a matrix multiplication, and then combines the blur with detail in content regions to create a sharpening effect.

      	Color space conversion 3 x 3: Color space conversion to RGB data for RGB-particular treatments.

      	Gamma correction: Corrects for CMOS image sensor nonlinear response on RGB data to different irradiance. Gamma correction uses a lookup table (LUT) to interpolate and correct an image.

      	Color space conversion 3 x 3: Additional color space conversion from RGB to Y'CbCr format. YCC was chosen since Y can be stored at a higher resolution than CbCr without the loss of visual quality. This also uses 4:2:2-bit representation (4 bits Y, 2 bits of Cb, and 2 bits Cr).

      	Chroma subsampling: Due to nonlinearities in RGB tones, corrects images to mimic other media such as film for tonal matching and quality.

      	JPEG encoder: Standard JPEG compression algorithm.

    

    It should be emphasized here that this is a good example of how complex a sensor can be, and how much data, hardware, and complexity can be attributed to a simple vision system. The amount of data passing through a vision system or camera at a conservative 60 frames per second at 1080p resolution is massive. 

    All the phases (except JPEG compression) move through an ISP in fixed-function silicon (as in an ASIC) one cycle at a time. The total amount of data processed is 1.368 GB per second. Accounting for JPEG compression as the last step brings the amount of data to well over 2 GB/sec in processing through custom silicon and CPU/DSP cores. One would never stream raw Bayer image video to the cloud for processing—this work must be performed as close to the video sensor as possible.

    Sensor fusion

    One aspect that needs consideration with all the sensor devices described in this chapter is the concept of sensor fusion. Sensor fusion is the process of combining several different kinds of sensor data to reveal more about context than a single sensor can provide. This is important in the IoT space, since a single thermal sensor has no notion of what causes a rapid temperature change. However, when combined with data from other sensors nearby that look at PIR motion detection and light intensity, an IoT system could discern that a large number of people are congregating in a certain area while the sun is shining and could then make the decision to increase air circulation in a smart building. A simple thermal sensor only records the current temperature value and has no contextual awareness that the heat is rising due to people congregating and sunlight shining.

    With time-correlated data from multiple sensors (edge and cloud), processing can make better decisions based on more data. This is one of the reasons that there will be a large influx of data from sensors to the cloud, and this is causing big data growth. As sensors become cheaper and easier to integrate, as with the TI SensorTag, we will see more combined sensing to provide contextual awareness.

    There are two modes of sensor fusion:

    
      	Centralized: Where raw data is streamed and aggregated to a central service and fusion occurs there (cloud-based, for example)

      	Decentralized: Where data is correlated at the sensor

    

    The basis of correlating sensor data is usually expressed through the central limit theorem, where two sensor measurements, x1 and x2, are combined to reveal a correlated measurement, x3, based on the combined variances. This is simply adding two measures and weighting the sum by the variances:
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    Other sensor fusion methods used are Kalman filters and Bayesian networks.

    Chapter 8, Edge Computing, will discuss edge computing in depth and illustrate an example of "sensor fusion," which will reinforce that technologies like this have significant resource and processing requirements that extend beyond simple sensor electronics.

    Output devices

    Output devices in the IoT ecosphere can be just about anything, from a simple LED to a full video system. Other types of output include actuators, stepper motors, speakers and audio systems, industrial valves, and so on. It stands to reason that these devices need various control systems of differing complexity. Depending on the type of output and the use case they serve, it also should be expected that much of the control and processing needs to be located at the edge, or close to the device (versus complete control in the cloud). A video system, for example, can stream data from cloud providers, but needs output hardware and buffering capabilities at the edge.

    In general, output systems can require substantial energy to convert to mechanical movement, thermal energy, or even light. A small hobbyist solenoid to control fluid or gas flow can require 9 to 24 VDC and draw 100 mA to operate reliably and produce five Newtons of force. Industrial solenoids operate in hundreds of volts.

    Functional examples (putting it all together)

    A collection of sensors alone doesn't have much value until the data they collect is transmitted, processed, or acted upon. That processing can be performed by an embedded controller or sent upstream to a cloud. More hardware is needed to build the system. Typically, the sensors will use established IO interface and communication systems, such as I2C, SPI, UART, SPI, or other low-speed IOs (covered in Chapter 11, Cloud and Fog Topologies). Other devices, such as video systems, will need much faster IOs to maintain high resolution and fast video frame rates. Such IOs would include MIPI, USB, or even PCI-Express. To communicate wirelessly, the sensors will need to be used with wireless transport hardware like Bluetooth, Zigbee, or 802.11. All this requires extra componentry, which we will cover in this section.

    Functional example – TI SensorTag CC2650

    The Texas Instruments CC2650 SensorTag is a good example of an IoT sensor module for development, prototyping, and design. SensorTag has the following features and sensors in the package:

    
      	Sensor input
          	Ambient light sensor (TI Light Sensor OPT3001)

          	Infrared temperature sensor (TI Thermopile infrared TMP007)

          	Ambient temperature sensor (TI light sensor OPT3001)

          	Accelerometer (InvenSense MPU-9250)

          	Gyroscope (InvenSense MPU-9250) 

          	Magnetometer (Bosch SensorTec BMP280)

          	Altimeter/pressure sensor (Bosch SensorTec BMP280)

          	Humidity sensor (TI HDC1000)

          	MEMS microphone (Knowles SPH0641LU4H)

          	Magnetic sensor (Bosch SensorTec BMP280)

          	Two push-button GPIOs

          	Reed relay (Meder MK24)

        

      

      	Output devices
          	Buzzer/speaker

          	2 LEDs

        

      

      	Communications
          	Bluetooth Low Energy

          	Zigbee

          	6LoWPAN

        

      

    

    This package is powered by a single CR2032 coin cell battery. Finally, the device can be placed into beacon mode (iBeacon) and used as a message broadcaster. 

    The following is a block diagram of the CC2650 SensorTag module:
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    Figure 14: TI CC2650 SensorTag

    The next image is of the block diagram of the MCU. The MCU provides the IO and processing ability using an ARM Cortex M3 and ARM Cortex M0, which connect over various bus interfaces to sensor components on the module:
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    Figure 15: TI CC2650 MCU block diagram

    This device is packed with a number of sensors, communication systems, and interfaces, but the amount of processing power is limited. The device uses a processing module from TI (MCU CC265), which includes a small ARM Cortex M3 CPU with only 128 KB of flash memory and 20 KB of SRAM. This was chosen for its extremely low power consumption. The M0 core (notably lower in performance than the M3) manages the radio transmissions.

    While power-efficient, this limits the amount of processing and resources on this system. Typically, components like these will need to be accompanied by a gateway, router, cell phone, or some other smart device. Sensor devices such as these that are built for low power and low cost would not have the resources for more demanding applications such as MQTT protocol stacks, data aggregation, cellular communication, or analytics. For that matter, most endpoint sensing devices one will see in the field are simpler than this component to further reduce cost and power.

    Sensor to controller

    In many of the preceding examples for sensing components, the signal will require amplification, filtering, and calibration before going anywhere. Typically, the hardware will need an analog-to-digital converter of some resolution. The following is a simple 24-bit ADC that outputs a 5V signal:
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    Figure 16: Wheatstone bridge: Connected to an AD7730 analog-to-digital converter as input to a microcontroller or system on a chip

    The output can then be raw pulse-modulated data, or a serial interface such as I2C, SPI, or UART to a microcontroller or digital signal processor. A good example of this in a real system is the Texas Instruments infrared thermopile sensor (TMP007). This is a contactless MEMS temperature sensor that absorbs infrared wavelengths and converts them to a reference voltage while using a cold junction reference temperature. 

    It is rated for accurately detecting temperatures in environments between -40 degrees Celsius to +125 degrees Celsius. We can see the components covered in this chapter for this part in the following figure:

    [image: ]
    Figure 17: Texas Instruments TMP007 infrared thermopile sensor system

    Energy sources and power management

    Because sensors and edge devices number in the billions and will be used in very remote areas, delivering reliable power becomes a challenge. Furthermore, there will be IoT deployments where sensors will be buried undersea, or embedded into concrete infrastructures, further complicating power sources. In this section, we will explore the concepts of energy harvesting and power management. Both are very important concepts in the overall IoT story.

    Power management

    Managing power is a very broad topic and spans software and hardware. It is important to understand the role of power management in a successful IoT deployment, and how to manage power efficiently for remote devices and long-lived devices. The architect must build a power budget for the edge device, which includes:

    
      	Active sensor power

      	Frequency of data collection

      	Wireless radio communication strength and power

      	Frequency of communication

      	Microprocessor or microcontroller power as a function of core frequency

      	Passive component power

      	Energy loss from leakage or power supply inefficiency

      	Power reserve for actuators and motors

    

    The budget simply reflects the sum of these power contributors subtracted from the source of power (battery). Batteries also do not have a linear power behavior over time. As the battery loses energy capacity while discharging, the amount of voltage will drop curvilinearly. This poses problems for wireless communication systems. If the battery drops below a minimum voltage, a radio or microprocessor will not reach the threshold voltage and brown out.

    For example, the TI SensorTag C2650 has the following power characteristics:

    
      	Standby mode: 0.24 mA

      	Running with all sensors disabled (only powering LEDs): 0.33 mA

      	Running with all sensors on at 100 ms/sample data rate and broadcasting: 12.08 mA
          	BLE: 5.5 mA

          	Temperature sensor: 0.84 mA

          	Light sensor: 0.56 mA

          	Accelerometer and gyros: 4.68 mA

          	Barometric sensor: 0.5 mA

        

      

    

    The TI SensorTag uses a standard CR2032 coin cell battery rated at 240 mAh. Therefore, the maximum life is expected to be about 44 hours. However, the rate of decline changes and is not linear for battery-based devices, as we will see when we cover Peukert's capacity.

    Many power management practices are employed, such as clock gating components not being used in silicon, reducing the clock rates of processors or microcontrollers, adjusting the sensing frequency and broadcast frequency, back-off strategies to reduce communication strength, and various levels of sleep modes. These techniques are widely used in the computing business as a general practice.

    
      The techniques described here reflect reactionary power management techniques. They try to minimize energy usage based on dynamic voltage, frequency scaling, and other schemes. New techniques to consider on the horizon include approximate computing and probabilistic design. Both of these schemes rely on the fact that absolute precision is not necessary at all times in a sensor environment running at the edge, especially in use cases involving signal processing and wireless communication. Approximate computing can be done in hardware or software and simply reduces the level of precision in integers when used with functional units such as addresses and multipliers (for example, the value 17,962 is fairly close to 17,970). Probabilistic design realizes many IoT deployments can tolerate certain degrees of faultiness to relax design constraints. Both techniques can reduce the number of gates and power to an almost exponential drop over regular hardware designs.

    

    Energy harvesting

    Energy harvesting is not a new concept but is an important concept for IoT. Essentially, any system that represents a change in state (for example, hot to cold, radio signals, light) can convert its form of energy into electrical energy. Some devices use this as their sole form of energy, while others are hybrid systems that use harvesting to augment or extend the life of a battery. In turn, energy harvested can be stored and used (sparingly) to power low-energy devices such as sensors in IoT. Systems must be efficient in capturing energy and storing power. Therefore, advanced power management is needed. For example, if an energy harvesting system uses a piezoelectric mechanical harvesting technique embedded in a sidewalk, it will need to compensate when there is not enough foot traffic to keep the unit charged. Constant communication with energy harvesting systems can further drain the power. Typically, these IoT deployments will use advanced power management techniques to prevent complete loss of functionality.

    Techniques such as low standby currents, low-leakage circuits, and clock throttling are frequently used. The following figure illustrates the area where energy harvesting is ideal and the technology that it can power. Care must be taken by the architect to ensure the system is neither underpowered nor overpowered. Harvesting systems, in general, have a low energy potential and low conversion efficiency. An architect should consider energy harvesting in situations where there is a large supply of untapped waste energy, such as in industrial settings.
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    Figure 18: Energy harvesting sweet spots. The ﬁgure illustrates typical energy consumption for various devices.

    Energy harvesting techniques are common in IoT products for smart cities and remote communication. For example, many cities routinely use traffic count and safety monitors utilizing solar arrays as the main power source. Another example is mail and package drop boxes that use momentary mechanical energy that is captured when the box is opened to harvest the energy to later power electronics monitoring how full the drop box is.

    Solar harvesting

    Energy from light, whether it is natural or artificial, can be captured and used as an energy source. Earlier in this chapter, we discussed photodiodes and their relationship to sensing light. The same diode can be used in greater quantities to build a traditional solar array. The capacity of energy generation is a function of the area of the solar array. In practice, indoor solar generation is not as efficient as direct sunlight. Panels are rated by their maximum power output in the form of watts.

    Solar harvesting is only as effective as how much the sun shines, which varies seasonally and geographically. A region such as the Southwestern US can reclaim considerable energy from direct photovoltaic sources. The Photovoltaic Solar Resource of the United States map was created by the National Renewable Energy Laboratory for the U.S. Department of Energy, www.nrel.gov :
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    Figure 19: Solar energy map of United States in energy density of kWh/m2 1998-2009

    In the United States, Southwest regions fare particularly well with sun intensity, generally lack cloud light barriers, and have good atmospheric conditions, whereas Alaska has the weakest energy density. Solar photovoltaics are not typically efficient. One can expect an 8% to 20% efficiency, with 12% being typical. Regardless, a 25 cm2 solar array could produce 300 mW at peak power. Another factor is the incidence of light. For a solar collector to achieve such efficiency, the light source must be perpendicular to the array. If the angle of incidence changes as the sun moves, the efficiency drops further. A 12% efficiency collector when the sun is perpendicular will be roughly 9.6% efficient when the sun is 30 degrees from being perpendicular.

    The most basic solar collector is the solar cell that is a simple p-n semiconductor and similar to the photoelectric sensors discussed earlier. As explained earlier, an electric potential is generated between the p and n material when a photon is captured.

    Piezo-mechanical harvesting

    As mentioned earlier in this chapter, piezoelectric effects can be used as sensors, but they can also be used to generate power. Mechanical strains can be converted to energy through motion, vibration, and even sound. These harvesters could be used in smart roadways and infrastructures to harvest and change systems based on traffic movement, even when embedded in concrete. These devices produce currents on the order of milliwatts and thus are suitable for very small systems with some form of energy collection and storage. This process can be performed using MEMS piezo-mechanical devices, electrostatic, and electromagnetic systems.

    Electrostatic harvesting incorporates Faraday's law, which basically states that one can induce an electric current by changing the magnetic flux across a coil of wire. Here, the vibration is coupled either to the coil or a magnet. Unfortunately, this scheme in the IoT sensor area provides too little voltage for rectification.

    Electrostatic systems use the change in distance between two capacitive plates held at a constant voltage or charge. As the vibration causes the distance to change between the plates, energy (E) can be harvested based on the following model:
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    Here, Q is the constant charge on the plates, V is the constant voltage, and C represents capacitance in the preceding equation. Capacitance can also be represented by the length of the plate Lw, the relative static permittivity as [image: ], and the distance between plates d as shown:
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    An electrostatic conversion has the advantage of being scalable and cost-efficient to produce through micromachining and semiconductor fabrication.

    The last method for mechanical-to-electrical conversion is piezo-mechanical. Piezoelectric devices were talked about earlier in this chapter when discussing sensor input. The same basic concept applies to energy generation. As the piezo-mechanical MEMS device attempts to dampen the mass attached to it, the oscillations will be converted into an electrical current.

    Another consideration for the capture and conversion of vibrational or mechanical energy is the need for conditioning before the energy is used or stored. Normally, a passive rectifier is used for conditioning by incorporating a large filtering capacitor. Other forms of energy harvesting do not need such conditioning.

    RF energy harvesting

    Radiofrequency (RF) energy harvesting has been in production for years in the form of RFID tags. RFID enjoys the benefit of being a near-field communication that uses a transceiver that essentially powers the RFID tag due to its close proximity.

    For far-field applications, we need to harvest energy from broadcast transmissions. Broadcast transmissions are nearly everywhere, with service from televisions, cell signals, and radio. Capturing energy from radio frequencies versus other forms is particularly difficult, as RF signals have the smallest energy density of all harvesting techniques. The capturing of RF signals is based on having the appropriate antenna to capture a frequency band. Typical frequency bands used are in the 531 to 1611 kHz range (all in the AM radio range).

    Thermal harvesting

    Thermal energy can be converted into an electric current for any device exhibiting heat flow. Thermal energy can be converted into electrical energy by two basic processes:

    
      	Thermoelectric: Direct conversion of thermal energy into electrical energy through the Seebeck effect.

      	Thermionic: Also known as thermotunneling. Electrons are ejected from an electrode that is heated and inserted into an electrode that is cool.

    

    The thermoelectric effect (Seebeck effect) is produced when a gradient of temperature exists in conducting materials. The flow of carriers from a hot to a cold region between two dissimilar electrical conductors creates a voltage differential. A thermocouple, or thermoelectric generator (TEG), could effectively produce voltage simply based on the temperature difference of a human, based on their core body temperature and outside temperature. A temperature difference of 5°C could generate 40 uW at 3V. As heat flows through the conduction material, a hot-side electrode induces electron flow to a cold-side electrode-producing current. Modern thermoelectric devices use n or p-type bismuth telluride in series. One side is exposed to the source of heat (thermocouple), and the other is isolated.

    The energy harvested by the thermopile is proportional to the square of the voltage and equivalent to the temperature difference between the electrodes. One can model the energy harvested by a thermocouple by the following equation:
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    Here S1 and S2 represent the different Seebeck coefficients for each of the two materials (n and p-type) in the thermopile when there is a temperature differential, TH -TL. Since the Seebeck coefficients are functions of temperature and there exists a temperature difference, the result is a voltage difference. This voltage is generally very small, so many thermocouples are used in series to form a thermopile.

    
      The main differences between a thermopile and a thermocouple are the following:

      
        	Thermocouples produce a temperature dependent voltage output based on the two conductors forming an electrical connection and measuring the difference of two different temperatures. They are not as accurate for highly precise temperature measurement.

        	Thermopiles are also electronic devices using many thermocouples, typically in a series circuit. They measure the difference in temperature through the thermal resistance layers. They output voltage proportional to the local temperature difference.

      

    

    One substantial problem with current thermocouples is the poor efficiency of the energy conversion (less than 10%); however, their advantages are notable, including their small size and ease of manufacturing, resulting in fairly low costs. They also have a very long lifetime of over 100,000 hours. The main problem, of course, is finding a relatively constant source of thermal variance. Using such a device in an environment throughout multiple seasons and temperatures is challenging. For IoT devices, thermoelectric generation typically resides in the 50 mW range.

    Thermionic generation is based on the ejection of electrons from a hot electrode to a cold electrode over a potential barrier. The barrier is the work function of the material and best used when there is a significant source of heat energy. While its efficiencies are better than thermoelectric systems, the energy required to jump the potential barrier makes it generally unsuitable for IoT sensor devices. Alternative schemes such as quantum tunneling could be considered, but it currently remains a research activity.

    Energy storage

    Typical storage for an IoT sensor will be a battery or supercapacitor. When considering the architecture for sensor power, one must consider several aspects:

    
      	Volume allowance for a power subsystem. Will a battery even fit?

      	The battery energy capacity.

      	Accessibility. If the unit is embedded in concrete, limited forms of energy regeneration can be used, and the difficulty of replacing batteries can be costly.

      	Weight. Is the unit intended to fly as a drone, or float on water?

      	How often will the battery be recharged?

      	Is the renewable form of energy constantly available, or intermittent, as in solar?

      	The battery power characteristics. How the battery's energy will vary over time as it's discharged.

      	Is the sensor in a thermally constrained environment that can affect battery life and reliability?

      	Does the battery have a profile that guarantees minimum current availability?

    

    Energy and power models

    Battery capacity is measured in amp-hours. A simplified equation to estimate the life of a battery power source is given as:
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    In the equation, Cp is Peukert's capacity, I represents the discharge current, and n is Peukert's exponent. The Peukert effect, as it's known, helps predict the life of a battery where the capacity of a battery decreases at a different rate as discharge increases. The equation shows how discharging at higher rates removes more power from the battery. Alternatively, discharging at lower rates will increase the effective runtime of the battery. One way of thinking of this phenomenon is a battery rated at 100 Ah, and discharging it fully in 20 hours (5A, for this example). If one were to discharge it faster (say, in 10 hours), the capacity would be lower. If one were to discharge it more slowly (say, over 40 hours), it would be greater. However, when represented on a graph, the relationship is nonlinear. Peukert's exponent usually lies between 1.1 and 1.3. As n increases, we move further from a perfect battery to one that discharges faster as the current increases. Peukert's curve applies to lead-acid battery performance, and an example is shown in this next graph:
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    Figure 20: Peukert curves from 1.1 to 1.5 for a battery rated at 100 Ah over 20 hours. The curves show the declining capacity as the Peukert coefficient grows.

    One can see the difference in discharge rates for various types of batteries. One advantage of alkaline batteries is that the discharge rate is almost linear in a large portion of the graph. Lithium-ion has a stair-step function in performance, thus making battery charge predictions more difficult. That said, Li-ion provides a near steady and continuous voltage level over the life of the charge, and consistently powers electronics over the span of its charge:
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    Figure 21: An example of relative discharge rates for various batteries. Li-ion provides a nearly constant voltage over its life but has a precipitous drop towards the end of its storage capacity.

    The graph also illustrates that lead acid and Ni-Cd have less voltage potential and a curvilinear degradation in power that can be computed more reliably. The trailing slopes are also indicative of Peukert's capacity.

    Temperature greatly affects battery life, and specifically the electro-active carriers in a cell. As temperature increases, the internal resistance of a battery decreases when being discharged. Even when batteries are stored, they can self-discharge, which impacts the total lifetime of a battery.

    A Ragone plot is a useful way to show the relationship between energy storage systems when trading off energy capacity and power handling. It is a log-based scale where the energy density (Wh/kg) of a power source is plotted against the power density (W/kg). This relationship shows devices that tend to have a greater lifetime (batteries) versus devices that tend to store more energy (supercapacitors):
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    Figure 22: A Ragone plot depicting capacitor, supercapacitors, battery, and fuel cell differences in energy capacity versus lifetime supply of energy

    Batteries like Li-ion have higher energy density and discharge rates than nickel-cadmium and nickel-hydride batteries. Capacitors produce very high power densities but have relatively weak energy density. Note the plot is log-based and also shows the discharge time for various storage systems.

    Batteries

    Typically, a lithium-ion (Li-ion) battery is the standard form of power in mobile devices due to its energy density. In such a battery, lithium ions physically move from the negative electrode to the positive. During recharge, the ions move back to the negative region. This is known as an ionic movement.

    Batteries also develop memories with many charge-discharge cycles. This capacity loss is expressed as a measure of the initial capacity (for example, 30% loss after 1,000 cycles). This degradation is almost directly correlated to environmental temperature, and loss will increase in a high-temperature environment. Therefore, it is imperative that the architects manage thermals in a constrained environment if lithium-ion is to be used.

    Another factor in battery life is self-discharge. When unwanted chemical reactions occur in a battery cell, energy will be lost. The rate of loss depends on chemistry and temperature. Typically, a Li-ion can last for 10 years (at ~2% loss per month), while an alkaline battery will only last 5 years (15% to 20% loss per month).

    Supercapacitors

    Supercapacitors (or supercaps) store energy at significantly higher volumes than typical capacitors. A typical capacitor will have an energy density of somewhere between 0.01 watt-hours/kg. A supercap has an energy density of 1 to 10 watt-hours/kg, thus placing them closer to the energy density of a battery that can be on the order of 200 watt-hours/kg. Like a capacitor, energy is stored electrostatically on a plate and doesn't involve the chemical transfer of energy like a battery. Usually, supercaps are made of fairly exotic materials like graphene, which can impact on overall cost. Supercaps have the advantage of charging to their full potential in seconds, whereas Li-ion batteries will charge within minutes to approximately 80%, but require a trickle current to safely get higher.

    Additionally, supercaps can't be overcharged, whereas Li-ion can be overcharged and can result in serious safety concerns. Supercaps come in two forms:

    
      	Electric double-layer capacitors (EDLC): Use an activated carbon electrode and store energy electrostatically

      	Pseudocapacitors: Use a transition metal oxide and electrochemical charge transfer

    

    Supercaps have an advantage over batteries in predicting the remaining time power will be available. The remaining energy can be predicted from the terminal voltage, which changes over time. Li-ion batteries have a flat energy profile from fully charged to discharged, thus rendering time estimation difficult. Since the voltage profile of a supercap changes over time, a DC-DC converter is needed to compensate for wide variations in voltage.

    In general, the main issues with supercaps or capacitors are the leakage current and the cost. As can be seen in the table later in this section, supercaps have their place. One will often see them in a hybrid solution with regular batteries to provide instantaneous power (for example, electric vehicle acceleration), while the battery supply sustains running power.

    Radioactive power sources

    A radioactive source with a high energy density (105kJ/cm3) can generate thermal energy due to the kinetic energy of emitted particles. Sources such as cesium-137 have a half-life of 30 years and a power capacity of 0.015 W/gm. This method can generate power in the watt-to-kW range but isn't practical in low-power sensor levels for IoT deployments. Space vehicles have used this technology for decades. Promising developments using MEMS piezoelectronics that capture electrons and force a micro-armature to move can create mechanical energy that may be harvested. A secondary effect of radioactive decay is the relatively weak power density profile. A radiation source with a long half-life will have weaker power density. Thus, they are suitable for bulk-charging supercaps to provide momentary energy when needed. The final issue with radioactive sources is the significant weight of lead shielding required. Cesium-137 requires 80 mm/W of shielding, which can add significant cost and weight to an IoT sensor.

    
      Examples of radioactive power sources include space vehicles such as the Curiosity Mars Rover and New Horizon spaceship.

    

    Energy storage summary and other forms of power

    Choosing the correct power source is critical, as mentioned earlier. The following table provides a summary comparison of different components in a system to be considered when picking the correct power source:

    
      
        
        
        
      
      
        
          	
            Category
          
          	
            Li-ion Battery
          
          	
            Supercap
          
        

        
          	
            Energy density

          
          	
            200 Wh/kg

          
          	
            8-10 Wh/kg

          
        

        
          	
            Charge-discharge cycles

          
          	
            Capacity drops after 100 to 1,000 cycles

          
          	
            Nearly infinite

          
        

        
          	
            Charge-discharge time

          
          	
            1 to 10 hours

          
          	
            Milliseconds to seconds

          
        

        
          	
            Operational temperature

          
          	
            -20°C to +65°C

          
          	
            -40°C to +85°C

          
        

        
          	
            Operational voltage

          
          	
            1.2V to 4.2V

          
          	
            1V to 3V

          
        

        
          	
            Power delivery

          
          	
            Constant voltage over time

          
          	
            Linear or exponential decay

          
        

        
          	
            Charge rate

          
          	
            (Very slow) 40 C/x

          
          	
            (Very fast) 1,500 C/x

          
        

        
          	
            Operational life

          
          	
            0.5 to 5 years

          
          	
            5 to 20 years

          
        

        
          	
            Form factor

          
          	
            Very small

          
          	
            Large

          
        

        
          	
            Cost ($/kWh)

          
          	
            Low ($250 to $1,000)

          
          	
            High ($10,000)

          
        

      
    

    Summary

    This chapter summarized several different sensors and endpoints used in IoT deployments. The IoT isn't about simply connecting a device to the Internet. While that is a key component, the essence of IoT is connecting the analog world to the digital. Essentially, things and devices previously unconnected now have the opportunity to collect information and communicate it to other devices. This is powerful because data that had never been captured now has value. The ability to sense the environment will lead to more efficiencies, revenue streams, and value for customers. Sensing allows for smart cities, predictive maintenance, tracking assets, and analyzing the hidden meaning in massive aggregates of data. Powering such systems is also critical and must be understood by architects. A poorly designed system can lead to too short a battery life, which will end in substantial costs to remediate.

    The next chapter will bridge the endpoints to the Internet through non-IP communication. We will explore various wireless personal area networks and their various traits and functions that are prevalent in the IoT space.

  








    4

    Communications and Information Theory

    There are a significant number of technologies and data paths to move data, and a bulk of the material in this book will investigate the aspects, constraints, and comparisons of communication choices for the architect. The previous chapter detailed sensor architecture and design, and now we must marshal the data to the Internet. This requires an understanding of communications and the limitations of moving data.

    We begin the short-range and long-range communications discussion with a review of wireless RF signals and the contributing factors that impact signal quality, limitations, interference, models, bandwidth, and range. There are many PAN/WAN communication protocols to choose from in different bands, and the architect must understand the pros and cons of choosing one radio spectrum over the other.

    By the end of this chapter, you should understand the limits of radio communication speed and bandwidth. Whether you are architecting a Bluetooth-enabled IoT device or an edge router with a 5G radio, the rules and physics of radios all apply equally.

    The following graphic helps delineate the various range and data rates for wireless protocols we will cover in later chapters. 

    WPAN is often used with other near-range communication acronyms such as wireless field area network (FAN), wireless local area network (WLAN), wireless home area network (HAN), wireless neighborhood area network (NAN), and wireless body area network (WBAN):
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    Figure 1: Various wireless communication protocols and categories designed for different ranges, data rates, and use cases (power, vehicular, and so on)

    This chapter will provide foundational models and theory on communication systems, frequency spaces, and information theory. Communication constraints and comparison models will be provided to allow the architect to understand how and why certain types of data communication work and where they won't work.

    We start with communication theory as it plays a fundamental part in choosing the correct mix of wireless technologies to deploy an IoT solution.

    Communication theory

    The IoT is a conglomeration of many disparate devices autonomously producing and/or consuming data on the very far edge of layers of networks and protocols. It is important to understand the constraints in building communication systems for the IoT or any form of networking. The IoT will combine body area networks, personal area networks, local area networks, and long-range wide area networks into a web of communication channels. 

    Most of what makes the IoT possible is built around communication fabric; therefore, this chapter is dedicated to reviewing the fundamentals of network and communication systems. We will now focus on communication and signaling systems. We will explore the range, energy, and limitations of communication systems and how the architect will use these tools to develop a successful IoT solution.

    RF energy and theoretical range

    It is important when talking about wireless personal area networks, or any RF wireless protocol, to consider the range of transmission. Competing protocols use range, speed, and power as differentiators. As architects, we need to consider different protocols and design choices when implementing a complete solution. The range of transmission is based on the distance between transmitter and receiver antennas, the frequency of transmission, and the power of transmission.

    The best form of RF transmission is an unobstructed line of sight in a radio signal-free area. In most situations, this ideal model will not exist. In the real world, there are obstructions, reflections of signals, multiple wireless RF signals, and noise.

    When considering a particular WAN and a slower speed signal like 900 MHz versus a 2.4 GHz carrier signal, you can derive the attenuation of a function of wavelength for each frequency. This will provide guidance as to the signal strength at any range. The general form of the Friis transmission equation helps us here:
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    The decibel (dB) variant of the Friis equation is given as:
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    where GTx and GRx are the transmitter and receiver antenna gains, R is the distance between the transmitter and receiver, and PR and PT are the receiver and transmitter power respectively. 

    The following figure illustrates the equation:
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    Figure 2: Friis equation graphical representation

    A 900 MHz signal at 10 meters will have a loss of 51.5 dB and a 2.4 GHz signal at 10 meters will have a 60.0 dB loss.

    We can prove how power and range affect the quality of a signal by using a ratio referred to as the link budget. This is a comparison of the transmission power to sensitivity level and is measured in the logarithmic (dB) scale. One may simply want to increase the power level to meet range requirements, but in many instances, this violates regulatory compliance or affects battery life. The other option is to improve the receiver's sensitivity level, which is exactly what Bluetooth 5 did in the latest specification. The link budget is given by the ratio of transmitter power over the receiver sensitivity as shown:
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    The link budget is measured in the dB log scale; therefore, adding decibels is equivalent to multiplying the numeric ratios, which gives us the equation:
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    Assuming there is no factor contributing to any signal gains (for example, antenna gains), the only two ways of improving reception are increasing the transmission power or decreasing the loss.

    When architects must model the maximum range of a particular protocol, they will use the free-space path loss (FSPL) formula. This is the amount of signal loss of an electromagnetic wave over a line of sight in free space (no obstacles). The contributing factors of FSPL formula are the frequency (f) of the signal, the distance (R) between transmitter and receiver, and the speed of light (c). In terms of calculating FSPL formula in decibels, the equation is:
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    The FSPL formula is a simple first-order calculation. A better approximation takes into account reflections and wave interference from the earth ground plane, such as the plane earth loss formula. Here, ht is the height of the transmitting antenna, and hr is the height of the receiving antenna. k represents the free-space wave number and is simplified as shown. We convert the equation to use dB notation:
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    What is notable of the plane earth loss is the fact that the distance affects the loss by 40 dB per decade. Increasing the antenna height helps. The types of interference that can naturally occur include:

    
      	Reflections: When a propagating electromagnetic wave strikes an object and results in multiple waves

      	Diffraction: When a radio wave path between a transmitter and receiver is obstructed by objects with sharp edges

      	Scattering: When the medium the wave travels through is comprised of objects smaller than the wavelength and the number of obstacles is large

    

    This is an important concept since the architect must choose a WAN solution whose frequency balances the data bandwidth, the ultimate range of the signal, and the ability of the signal to penetrate objects. Increasing frequency naturally increases free-space loss (for example, a 2.4 GHz signal has 8.5 dB less coverage than a 900 MHz signal). 

    Generally speaking, 900 MHz signals will be reliable at twice the distance of 2.4 GHz signals. 900 MHz has a wavelength of 333 mm versus 125 mm for a 2.4 GHz signal. This allows a 900 MHz signal to have better penetration ability and not as much effect from scattering.

    Scattering is a significant issue for WAN systems as many deployments do not have a free line of sight between antennas—instead the signal must penetrate walls and floors. Certain materials contribute differently to the attenuation of a signal.

    
      A 6 dB loss equates to a 50% reduction in signal strength, while a 12 dB loss equates to a 75% reduction.

    

    We see that 900 MHz has an advantage over 2.4 GHz in material penetration:

    
      
        
        
        
      
      
        
          	
            Material
          
          	
            Loss (dB)
            900 MHz
          
          	
            Loss (dB)
            2.4 GHz
          
        

        
          	
            0.25" glass

          
          	
            -0.8 dB

          
          	
            -3 dB

          
        

        
          	
            Brick or masonry block wall (8")

          
          	
            -13 dB

          
          	
            -15 dB

          
        

        
          	
            Sheet rock

          
          	
            -2 dB

          
          	
            -3 dB

          
        

        
          	
            Solid wood door

          
          	
            -2 dB

          
          	
            -3 dB
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    Figure 3: Free space loss versus plane earth loss (in dB) using a 2.4 GHz signal with antennas at 1 meter high

    As we will see, many protocols are commercially available and used globally in the 2.4 GHz spectrum. 2.4 GHz provides up to five times the data bandwidth as a 900 MHz signal and can have a much smaller antenna. Additionally, the 2.4 GHz spectrum is unlicensed and available for use in multiple countries.

    
      
        
        
        
      
      
        
          	
          	
            900 MHz
          
          	
            2.4 GHz
          
        

        
          	
            Signal strength
          
          	
            Generally reliable

          
          	
            Crowded band subject to interference

          
        

        
          	
            Distance
          
          	
            2.67x further than 2.4 GHz

          
          	
            Shorter but can compensate with improved encoding (Bluetooth 5)

          
        

        
          	
            Penetration
          
          	
            Long wavelength can penetrate most materials and vegetation

          
          	
            Potential for interference with some building material. Potential interference with water vapor.

          
        

        
          	
            Data rate
          
          	
            Limited

          
          	
            About 2x to 3x faster than 900 MHz

          
        

        
          	
            Signal interference
          
          	
            Signal can be affected by tall objects and obstructions; better through foliage

          
          	
            Less chance of channel interference with certain objects

          
        

        
          	
            Channel interference
          
          	
            Interference with 900 MHz cordless phones, RFID scanners, cell signals, baby monitors

          
          	
            Interference with 802.11 Wi-Fi

          
        

        
          	
            Cost
          
          	
            Medium

          
          	
            Low

          
        

      
    

    These equations provide a theoretical model; no analytical equations give an accurate prediction for certain real-world scenarios such as multipath losses.

    RF interference

    We will see throughout this chapter several novel schemes to reduce interference of signals. This is an issue for many forms of wireless technology as the spectrum is unlicensed and shared. (We will discuss this more in the next section). Because there may be several devices emanating RF energy in a shared space, interference will occur.

    Take Bluetooth and 802.11 Wi-Fi; both operate in the shared 2.4 GHz spectrum but remain functional even in congested environments. Bluetooth Low Energy (BLE), as we will see, will randomly select one of 40-2 MHz channels as a form of frequency hopping. 

    We see in the following figure 11 free channels (three being advertising) on BLE that have a 15% chance of collision (especially since 802.11 does not hop between channels). The new Bluetooth 5 specification provides techniques such as slot availability masks to lock out Wi-Fi areas from the frequency hop list. Other techniques exist as well, which we will explore later. Here we show the ILM band for Zigbee and BLE. Also shown is a possible contention with three Wi-Fi channels in the 2.4 GHz spectrum.

    [image: A close up of a piano  Description automatically generated]
    Figure 4: Comparison of BLE and Zigbee interference with 802.11 Wi-Fi signals in the 2.4 GHz band. BLE provides more slots and frequency hopping to communicate in the event of Wi-Fi collisions.

    Information theory

    There are preliminary theories that need to be understood before detailing WAN specifics. One thing that is germane to communication is how bitrate affects transmission power, which in turn affects range. There are limits to the integrity of data and bitrates, as we will learn. Additionally, we need to classify narrowband versus wideband communication.

    Bitrate limits and the Shannon-Hartley theorem

    In long-range communication and short-range communication, the goal is to maximize bitrate and distance within the constraints of spectrum and noise. The Shannon-Hartley theorem is composed of work from Claude Shannon of MIT in the 1940s (C. E. Shannon (1949/1998). The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press) and Ralph Hartley from Bell Labs in the 1920s (R. V. L. Hartley (July 1928). "Transmission of Information" (PDF). Bell System Technical Journal). Foundational work was developed by Harry Nyquist, also of Bell Labs, who determined the maximum number of pulses (or bits) that could travel in a telegraph in a unit of time (H. Nyquist, Certain Topics in Telegraph Transmission Theory, in Transactions of the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617-644, April 1928).

    Essentially, Nyquist developed a sampling limit that determines how much theoretical bandwidth one has at a given sample rate. This is called the Nyquist rate and is shown in the following equation:
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    Here, fp is the pulse frequency and B is the bandwidth in hertz. This states that the maximum bitrate is limited to twice the sampling rate. Looking at it another way, the equation identifies the minimum bitrate at which a finite bandwidth signal needs to be sampled to retain all information. Undersampling leads to an aliasing effect and distortion.

    Hartley then devised a way to quantify the information in what is called the line rate. The line rate can be thought of as bits per second (for example, Mbps). This is known as Hartley's law and is the precursor to Shannon's theorem. Hartley's law simply states the maximum number of distinguishable pulse amplitudes that can be transmitted reliably is limited by the dynamic range of the signal and the precision with which a receiver can accurately interpret each individual signal. Shown here is Hartley's law in terms of M (number of unique pulse amplitude shapes), which is equivalent to the ratio of the number of voltage:
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    Converting the equation to a base-2 log gives us the line rate R:
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    If we combine this with the preceding Nyquist's rate, we get the maximum number of pulses that can be transmitted over a single channel of bandwidth B. Hartley, however, did not work out with precision; the value of M (number of distinct pulses) could be affected by noise.
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    Shannon reinforced Hartley's equation by considering the effects of Gaussian noise and completed Hartley's equation with a signal-to-noise ratio. Shannon also introduced the concept of error correction coding instead of using individually distinguishable pulse amplitudes. This equation is affectionately known as the Shannon-Hartley theorem:
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    Here, C is the channel capacity in bits per second, B is the channel bandwidth in hertz, S is the average received signal measured in watts, and N is the average noise on the channel measured in watts. The effect of this equation is subtle but important. For every decibel level increase in noise to a signal, capacity drops precipitously. Likewise, improving the signal-to-noise ratio will increase capacity. Without any noise, the capacity would be infinite.

    It is also possible to improve the Shannon-Hartley theorem by adding a multiplier n to the equation. Here, n represents additional antennas or pipes. We have reviewed this previously as multiple input, multiple output (MIMO) technology.
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    To understand how Shannon's rule applies to the limits of wireless systems mentioned in this book, we need to express the equation in terms of energy per bit rather than the signal-to-noise ratio (SNR). A useful example in practice is to determine the minimum SNR needed to achieve a certain bitrate. For example, if we want to transmit C=200 kbps over a channel with a bandwidth capacity of B=5000 kbps, then the minimum SNR required is given as:
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    This shows that it is possible to transmit data using a signal that is weaker than the background noise.

    There is a limit to data rate, however. To show the effect, let Eb represent the energy of a single bit of data in joules. Let N0 represent the noise spectral density in watts/hertz. Eb/N0 is a dimensionless unit (however, usually expressed in dB) that represents the SNR per bit, or commonly known as the power efficiency. Power efficiency expressions remove biases of modulation techniques, error coding, and signal bandwidth from the equation. We assume that the system is perfect and ideal such that RB= C where R is the throughput. The Shannon-Hartley theorem can be rewritten as:
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    This is known as the Shannon limit for an additive white Gaussian noise (AWGN). An AWGN is a channel and is simply a basic form of noise used commonly in information theory to express the effects of random processes in nature. These noise sources are always present in nature and include things such as thermal vibrations, black body radiation, and the residual effects of the Big Bang. The "white" aspect of noise implies equal amounts of noise are added to each frequency. 

    The limit can be drawn on a graph showing spectral efficiency versus SNR per bit:
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    Figure 5: Spectral efficiency to SNR (power efficiency) curve. The dotted line represents the Shannon limit, which converges at ln(2)=-1.6. Various modulation schemes are shown under the Shannon limit with the typical range of 4G-LTE signals.

    Regions of interest in the figure include the R>B Impossible Region. This region is above the Shannon limit of the curve. It states that no reliable form of information exchange can be above the limit line. The region below the Shannon limit is called the Realizable Region and is where R<B. Every protocol and modulation technique in any form of communication attempts to get as close as possible to the Shannon limit. We can see where typical 4G-LTE using various modulation forms exist.

    There are two other regions of interest. A Bandwidth Limited region toward the upper right allows for high spectral efficiency and good Eb/N0 SNR values. The only constraint in this space is trading off a fixed or mandated spectral efficiency against the unconstrained power of transmission P, meaning the capacity has grown significantly over the available bandwidth. The opposite effect is called the Power Limited region toward the bottom left of the chart. The Power Limited region is where the Eb/N0 SNR is very low; therefore, the Shannon limit forces us down to low values of spectral efficiency. Here, we sacrifice spectral efficiency to get a given transmission quality P.

    
      An example of a power limited use case is a space flight vehicle, such as the Cassini probe to Saturn. In that case, the free space path loss of signal is extremely large and the only way to get reliable data is to drop the data rate to very low values. We also see this in Bluetooth 5 using the new BLE Coded PHY. In that case, Bluetooth drops from 1 or 2 Mbps to as low as 125 kbps to improve range and data integrity.

    

    The chart also shows some typical modulation schemes used today such as phase shifting, QAM, and others. The Shannon limit also shows that arbitrarily improving a modulation technique such as quadrature amplitude modulation for 4-QAM to 64-QAM doesn't scale linearly. The benefit of higher orders of modulation (for example, 4-QAM versus 64-QAM) is the fact that you can transmit more bits per symbol (two versus six). The main disadvantages with higher orders of modulation are:

    
      	Using higher order modulations requires ever greater SNRs to operate.

      	Higher orders of modulation require much more sophisticated circuitry and DSP algorithms contributing to complexity.

      	Increasing the transfer of bits per symbol will increase the error rate.

    

    
      The Shannon theorem states that there is a maximum rate of information that can be transmitted over a communication channel in the presence of additive Gaussian white noise. As the noise decreases, the rate of information will increase but has an ultimate bound that cannot be breached. In any situation, if the transmission rate R is less than the channel capacity C, then there should be a method or technology to transmit the data without error.

    

    Bit error rate

    Another important characteristic of data transmission is the bit error rate (BER), which refers to the number of bit errors received over a communication channel. BER is a unitless measurement expressed as a ratio or percentage. For example:

    If an original transmission sequence is 1 0 1 0 1 1 0 1 0 0 and the received sequence is 0 0 1 0 1 0 1 0 1 0 (differences in bold) then the BER is 5 errors / 10 bits transferred = 50%

    BER is affected by channel noise, interference, multipath fading, and attenuation. Techniques to improve BER include increasing transmission power, improving receiver sensitivity, using less dense/lower order modulation techniques, or adding more redundant data. The last technique is typically referred to as forward error correction (FEC). FEC simply adds extra information to a transmission. In the most basic sense, one would add triple redundancy and a majority vote algorithm; however, this would reduce bandwidth by 3x. Modern FEC techniques include Hamming codes and Reed-Solomon error correct codes. The BER can be expressed as a function of Eb/N0 SNR.

    The following diagram shows a variety of modulation techniques and their respective BERs for various SNRs:
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    Figure 6: Bit error rates (Pb) versus power efficiency (Eb/N0) SNR for various modulation schemes. As the SNR increases toward the right the BER naturally decreases.

    What should be understood at this point is the following:

    
      	We can now calculate the minimum SNR needed to achieve a certain data rate for a system.

      	The only way to add more capacity or bandwidth to a wireless service is to:
          	Add more spectrum and channel capacity, which improves the bandwidth linearly.

          	Add more antennas (MIMO), which improves the bandwidth linearly.

          	Improve the SNR with advanced antennas and receivers, which only improves the equation logarithmically.

        

      

      	The Shannon limit is the ultimate bound of digital transmission; exceeding the limit is possible, but the data integrity will be lost.

      	The factors that contribute to noise and how SNR is represented.

      	One cannot simply increase modulation levels without incurring costs to error rates and complexity.

    

    For 4G-LTE cellular signals, which are covered later in this book, it operates in the 700 MHz to 5 GHz spectrum with dozens of segregated bands within that range. A cell phone (or battery-based IoT device) has substantially less power than a cell tower, but it is often the case that an IoT device will be transmitting sensor data to the cloud. The uplink from the IoT device is what we examine here. The limit to uplink power is 200 mW, which is 23 dBm. This limits the overall range of the transmission; that limit, however, is dynamic and will vary based on the bandwidth of the channel and the data rate. 4G systems, like several WPAN and WLAN devices, use orthogonal frequency-division multiplexing. Each channel has many subcarriers to address the multipath fading problems. If you sum all the data transmitting over subcarriers, you achieve high data rates.

    4G-LTE generally uses 20 MHz channels, and LTE-A can use 100 MHz channels. These wide channels are limited by the overall spectrum of availability and are in contention with multiple carriers (ATT, Verizon, and so on) and other technologies sharing the spectrum.

    An additional complexity of cellular communication is that a carrier may have portions of the spectrum divided up and disjointed from each other.

    
      Cat-3 LTE can use 5, 10, or 20 MHz channels. The smallest channel granularity is 1.4 MHz. LTE-A is allowed to aggregate up to five 20-MHz channels for an aggregate bandwidth of 100 MHz.

    

    A method to measure the distance a wireless device is functional within is the maximum coupling loss (MCL). The MCL is the maximum distance at which total channel loss occurs between a transmitter and a receiving antenna but data service can still be delivered. MCL is a very common way to measure the coverage of a system. MCL will include antenna gains, path loss, shadowing, and other radio effects. Generally, a 4G-LTE system will have an MCL of about 142 dB. We will revisit MCL when examining the cellular IoT technologies such as Cat-M1.

    
      What we should grasp at this point is that if we increase the listening time per bit, the noise level will go down. If we reduce the bitrate by 2x, then the following is true: (Bit_Rate / 2) = (Bit_Duration * 2). Additionally, energy per bit increases by 2x and noise energy increases by sqrt(2). For example, if we reduce the Bit_Rate from 1 Mbps to 100 kbps, then Bit_Duration = increases by 10x. The range improves by the sqrt(10) = 3.162x.

    

    Narrowband versus wideband communication

    Many of the wireless protocols that we will cover are known as wideband. We will see that the converse (narrowband) also has a place, especially for LPWAN. The differences between narrowband and wideband are as follows:

    
      	Narrowband: A radio channel whose operational bandwidth does not exceed the channel's coherence bandwidth. Generally, when we talk about narrowband, we mean signals that are 100 kHz or smaller in bandwidth. In narrowband, multipath causes amplitude and phase changes. A narrowband signal will fade uniformly, so adding more frequencies does not benefit the signal. Narrowband channels are also called flat fading channels because they usually will pass all spectral components with equal gain and phase to one another.

      	Wideband: A radio channel whose operation bandwidth may significantly exceed its coherence bandwidth. These are generally greater than 1 MHz in bandwidth. Here, multipath causes the "self-interference" problem. Wideband channels are also called frequency-selective since different parts of the overall signal will be affected by the different frequencies in wideband. This is why wideband signals use a diverse range of frequencies to distribute power across many coherence bands to reduce fading effects.

    

    Coherence time is a measure of the minimum time required for an amplitude or phase change to become uncorrelated from the previous value.

    We have covered some forms of fading effects; however, there are many more. Path loss is a typical case where the loss is proportional to distance. Shadowing is where terrain, buildings, and hills create signal obstructions versus free space, and multipath fading occurs with the recombined scattering and wave interference of a radio signal on objects (due to diffraction and reflections). Other loss includes doppler shifts if the RF signal is in a moving vehicle. There are two categories of the fading phenomenon:

    
      	Fast fading: This is characteristic of multipath fading when the coherence time is small. The channel will change every few symbols; therefore, coherence time will be low. This type of fading is also known as Rayleigh fading, which is the probability of random variances that cause an RF signal due to atmospheric particles or heavily built-up metropolitan areas.

      	Slow fading: This occurs when the coherence time is long and there is movement over long distances usually due to Doppler spreading or shadowing. Here, the coherence time is long enough to successfully transmit significantly more symbols than a fast fade path.

    

    The following figure illustrates the difference between fast and slow fading paths:
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    Figure 7: Different RF signal fading effects. From left to right: General path loss across a line of sight. Middle: Effects of slow fading due to large structures or terrains. Right: Combined effects of distance, slow fading, and fast fading.

    
      We will see that technologies employing narrowband signals use what is known as time diversity to overcome issues with fast fading. Time diversity simply means the signal and payload are transmitted multiple times in the hope that one of the messages gets through.

    

    In a multipath scenario, the delay spread is the time between pulses from various multipath signals. Specifically, it is the delay between the first arrival of a signal and the earliest arrival of a multipath component of the signal.

    The coherence bandwidth is defined as the statistical range of frequencies in which a channel is considered flat. This is a period of time when two frequencies are likely to have comparable fading. The coherence bandwidth Bc is inversely proportional to the delay spread D:
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    The time at which a symbol can be transmitted without intersymbol interference is 1/D. The following figure illustrates coherence bandwidth for narrowband and wideband communication. Since wideband is larger than the coherence bandwidth Bc, it is more likely to have independent fading attributes. That implies different frequency components will experience uncorrelated fading, whereas narrowband frequency components all fit within Bc and will experience uniform fading.
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    Figure 8: Coherence bandwidth and effects on narrowband and wideband: Frequencies f1 and f2 will fade independently if |f1 - f2| Bc. Here narrowband is clearly shown to reside within Bc, and wideband clearly exceeds the range of Bc by some margin.

    One must ensure that the time between sending multiple signals from a multipath scenario is spread far enough as not to interfere with symbols. This is called intersymbol interference (ISI). The following figure illustrates a delay spread being too short and causing ISI. Given that the overall bandwidth B>> 1/T (where T is the pulse width time) and B1/D is implied, we can then generally state that bandwidth must be much larger than the coherence bandwidth: B>>Bc.
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    Figure 9: Delay spread example: two signals from a multipath event. If the delay spread D is less than the pulse width T, then the signals may not be spread far enough to override another multipath component, whereas if the delay spread is large enough, there may be no multipath conﬂict.

    
      Generally, lower frequencies have a greater penetrating ability and less interference, but they require larger antennas and have less available bandwidth for transmission. Higher frequencies have greater path loss but smaller antennas and more bandwidth.

    

    The overall bitrate will be impacted by the delay spread. For example, say we use QPSK modulation and the BER is 10-4; then for various delay spreads (D) we have:

    
      	D = 256 μS: 8 KBps

      	D =2.5 μS: 80 KBps

      	D = 100 ns: 2 Mbps

    

    The radio spectrum

    Wireless communication is based on radio waves and bands of frequencies within the overall radio spectrum. We will cover long-range communication in the next chapter for cellular and other long-range mediums. Here we focus on the 1000-meter range or less. We will look at the spectrum allocation process as well as the typical frequency uses for WAN devices.

    Governing structure

    The spectrum ranges from 3 Hz to 3 THz, and allocation within the spectrum is governed by the International Telecommunication Union (ITU). A band is considered a portion of the spectrum that can be allocated, licensed, sold, or freely used depending on the frequency. From an ITU perspective, the bands are categorized as follows:
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    Figure 10: Frequency and band identification matrix for IEEE, EU, and ITU

    Within the United States, the Federal Communications Commission (FCC) and the National Telecommunications and Information Administration (NTIA) control the frequency spectrum usage rights. The FCC administrates the non-federal spectrum usage, while the NTIA administers the federal usage (US Army, FAA, FBI, and so on).

    The overall spectrum managed by the FCC ranges from the KHz spectrum through and including the GHz frequencies. The overall frequency distribution and allocation is shown in the following graphic. Highlighted are the interesting frequencies that will be discussed in this book.
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    Figure 11: Full frequency allocation spectrum of the FCC with highlights of ranges covered in this book

    The following figure shows a small portion of the allocation of frequencies within the 900 MHz to 2.7 GHz range (common for WPAN signals) and how the frequencies are currently allocated and distributed. If you'd like to see this image in greater detail, please refer to: https://www.fcc.gov/engineering-technology/policy-and-rules-division/general/radio-spectrum-allocation. In many areas, the usage is multipurpose and shared:
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    Figure 12: FCC and NTIA frequency allocation chart between 300 MHz and 3 GHz. The chart represents a small portion of the overall frequency allocation. Source: FCC, "United States Frequency Allocations: The Radio Spectrum", October 2003

    The FCC also assigns frequencies in licensed and unlicensed spectrums. In the "unlicensed" or "licensed exempt" areas, users can operate without an FCC license but must use certified radio equipment and comply with technical requirements such as power limits and duty cycles. These are detailed in the FCC Part 15 Rules document. Users can operate within these spectrums but are subject to radio interference.

    The licensed areas of the spectrum allow for exclusive usage for particular areas/locations. The allocation may be granted on a national basis or in discrete segments site by site. Since 1994, exclusivity and rights to these areas of the spectrum have been granted by auction for particular areas/segments/markets (for example, cellular market areas, economic areas, and so on). Some bands can be a hybrid of the two models, where bands may have been licensed on a site-by-site basis and later bands surrounding those licenses were auctioned for larger geographic or national areas. The FCC also allows for a secondary market and has established policies and procedures through spectrum leasing and transfer of control.

    
      Within Europe, frequency allocation governance is controlled by the European Commission (EC). The fellow members of the European Union attempt to create a fair and balanced spectrum allocation within the region. As European countries are small and share several borders, a central authority is necessary to achieve harmony. The EC also controls the trade and sale of frequencies within the region.

    

    IoT deployments will typically use the licensed regions for long-range communication, which is covered in the next chapter. The unlicensed spectrum is typically used for industrial, scientific, and medical (ISM) devices. For IoT, IEEE 802.11 Wi-Fi, Bluetooth, and IEEE 802.15.4 protocols all reside in the 2.4 GHz unlicensed spectrum.

    Summary

    This chapter has provided foundation material to understand the theory and limitations of wireless communication. More information and deeper study are encouraged to understand the second and third order constraints of data transport. The architect should understand different models and constraints of wireless signals, RF energy dispersion, range, and the fundamental limits of information theory provided by Shannon-Hartley theorem. The architect should also understand the frequency space governance and allocation strategy. This chapter also provides a dialogue and vernacular that will be reused in the upcoming chapters on WPAN, WLAN, and WAN.

    The next chapter will start the journey of IoT data from the sensor to the cloud on its first hop across a near-range personal area network. We build up from there to WLAN and WAN systems.
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    Non-IP Based WPAN

    Sensors, and other things connected to the Internet, need a method of transmitting and receiving information. This is the topic of personal area networks (PANs) and near-range communication. In an IoT ecosphere, communication to a sensor or actuator can be a copper wire or a wireless personal area network (WPAN). In this chapter, we concentrate on the WPAN as that is the prevalent method for industrial, commercial, and consumer connections to the things of the Internet. Wire-based connectivity is still used, but primarily in legacy industries and areas that are not radio-frequency friendly. There is a wide variety of different communication channels between the endpoint and the Internet; some may be built on a traditional IP stack (6LoWPAN) and others use non-IP (Internet protocol) communication to maximize energy savings (BLE).

    We separate IP and non-IP because IP-based communication systems need further details of the resources and requirements for a full TCP/IP stack that non-IP communication doesn't necessarily need. Non-IP communication systems are optimized for cost and energy usage, whereas IP-based solutions usually have fewer constraints (for example, 802.111 Wi-Fi). The next chapter will detail the overlap of IP on the WPAN and WLAN.

    This chapter will cover non-IP standards of communication, various topologies of WPANs (mesh, star), and constraints and goals of WPAN communication systems. These types of communication systems operate within the ranges of sub-meter to about 200-meter range (although some can reach much further). We will go deep into the Bluetooth® wireless protocol and the new Bluetooth 5.0 specification, as it sets a foundation to understand other protocols and is a prevalent and powerful part of IoT solutions.

    This chapter will include technical details on proprietary and open standards. Each communication protocol has been adopted for certain reasons and use cases; they too will be covered in this chapter. Focus topics of this chapter include:

    
      	RF signal quality and range

      	Wireless spectrum allocation

      	Bluetooth wireless protocol with special focus on the new Bluetooth 5 specification

      	802.15.4

      	Zigbee®

      	Z-Wave®

    

    This chapter will explore four relevant wireless personal area networks in the IoT space. A good portion of this section will be dedicated to Bluetooth as it provides a significant number of features and has a very deep presence in the IoT ecosphere. Additionally, Bluetooth 5.0 adds many features and abilities not seen before in the Bluetooth specification and provides range, power, speed, and connectivity that make it the strongest WPAN solution for many use cases. Zigbee, Z-Wave, and IEEE 802.15.4-based networks will also be investigated.

    It is also helpful to know that the term WPAN is overloaded. Originally, it was to be a literal body and personal area network on a specific individual connected to wearable devices, but it has now extended its meaning.

    802.15 standards

    Many of the protocols and network models described in this chapter are based upon or have a foundation in the IEEE 802.15 working groups. The original 802.15 group was formed to focus on wearable devices and coined the phrase personal area network. The group's work has expanded significantly and now focuses on higher data rate protocols, meter to kilometer ranges, and specialty communications. Over one million devices are shipped each day using some form of 802.15.x protocol.  The following is a list of the various protocols, standards, and specifications that the IEEE maintains and governs:

    
      	802.15: WPAN definitions

      	802.15.1: Original foundation of the Bluetooth PAN

      	802.15.2: Coexistence specifications for WPAN and WLAN for Bluetooth

      	802.15.3: High data rate (55 Mbps+) on WPAN for multimedia
          	802.15.3a: High-speed PHY (physical layer) enhancements

          	802.15.3b: High-speed MAC enhancements

          	802.15.3c: High speed (>1 Gbps) using mm-wave (millimeter wave) technology

        

      

      	802.15.4: Low data rate, simple, simple design, multiyear battery life specifications (Zigbee)
          	802.15.4-2011: Rollup (specifications a-c) includes UWB, China, and Japan PHYs

          	802.15.4-2015: Rollup (specifications d-p) includes RFID support, medical-band PHY, low energy, TV white spaces, rail communications

          	802.15.4r (on hold): Ranging protocol

          	802.15.4s: Spectrum Resource Utilization (SRU)

          	802.15.t: High-rate PHY of 2 Mbps

        

      

      	802.15.5: Mesh networking

      	802.15.6: Body area networking for medical and entertainment

      	802.15.7: Visible light communications using structured lighting
          	802.15.7a: Extends range to UV and near-IR, changed name to optical wireless

        

      

      	802.15.8: Peer Aware Communications (PAC) infrastructure-less peer to peer at 10 Kbps to 55 Mbps

      	802.15.9: Key Management Protocol (KMP), management standard for key security

      	802.15.10: Layer 2 mesh routing, recommend mesh routing for 802.15.4, multi PAN

      	802.15.12: Upper layer interface, attempts to make 802.15.4 easier to use than 802.11 or 802.3

    

    The consortium also has interest groups (IGs) investigating dependability (IG DEP) to address wireless reliability and resilience, high data rate communications (HRRC IG), and terahertz communications (THz IG).

    Bluetooth

    Bluetooth is a low-power wireless connectivity technology used pervasively in technology for cellular phones, sensors, keyboards, and video game systems. The name Bluetooth refers to King Harald Blatand in the region of what is now Norway and Sweden in around 958AD. King Blatand got his name from his liking of blueberries and/or the eating of his frozen enemies. Regardless, Bluetooth is derived from his name because King Blatand brought together warring tribes, and the same could be said for the formation of the initial Bluetooth SIG. Even the Bluetooth logo is a combination of runes from an ancient Germanic alphabet used by the Danes. Today, Bluetooth is prevalent, and this section will focus on the new Bluetooth 5 protocol ratified by the Bluetooth SIG in 2016. Other variants will be called out as well. To learn more about older Bluetooth technologies, refer to the Bluetooth SIG at www.bluetooth.org.

    Bluetooth history

    Bluetooth technology was first conceived at Ericsson in 1994 with the intent to replace the litany of cables and cords connecting computer peripherals with an RF medium. Intel and Nokia also joined in with the intent to wirelessly link cell phones to computers in a similar manner. The three formed a SIG in 1996 at a conference held at the Ericsson plant in Lund, Sweden. By 1998, there were five members of the Bluetooth SIG: Intel, Nokia, Toshiba, IBM, and Ericsson. That year, version 1.0 of the Bluetooth specification was released. Version 2.0 was later ratified in 2005 when the SIG had over 4000 members. In 2007, the Bluetooth SIG worked with Nordic Semiconductor and Nokia to develop Ultra Low Power Bluetooth, which now goes by the name Bluetooth Low Energy (BLE). BLE brought an entirely new segment to the market in devices that could communicate using a coin cell battery. By 2010, the SIG released the Bluetooth 4.0 specification, which formally included BLE. Currently, there are over 2.5 billion shipping Bluetooth products and 30,000 members in the Bluetooth SIG.

    Bluetooth has been used extensively in IoT deployments for some time, being the principal device when used in Low Energy (LE) mode for beacons, wireless sensors, asset-tracking systems, remote controls, health monitors, and alarm systems. The success and pervasiveness of Bluetooth over other protocols can be attributed to timing, licensing ease, and ubiquity in mobile devices. For example, BLE devices now are used in remote field IoT and industry 4.0 use cases such as oil tank monitoring.

    Throughout its history, Bluetooth and all the optional components have been under GPL license and are essentially open source.

    The revision history of Bluetooth as it has grown in features and abilities is shown in the following table:

    
      
        
        
        
      
      
        
          	
            Revision
          
          	
            Features
          
          	
            Release date
          
        

        
          	
            Bluetooth 1.0 and 1.0B

          
          	
            Basic rate Bluetooth (1 Mbps) initial version released

          
          	
            1998

          
        

        
          	
            Bluetooth 1.1

          
          	
            IEEE 802.15.1-2002 standardized

            1.0B specification defects resolved

            Non-encrypted channel support

            received signal strength indicator (RSSI)

          
          	
            2002

          
        

        
          	
            Bluetooth 1.2

          
          	
            IEEE 802.15.1-2005

            Rapid connection and discovery

            Adaptive frequency hopping spread spectrum (AFH):

            Host controller interface (three-wire UART)

            Flow control and retransmission modes

          
          	
            2003

          
        

        
          	
            Bluetooth 2.0 (+EDR optional)

          
          	
            Enhanced Data Rate Mode (EDR): 3 Mbps

          
          	
            2004

          
        

        
          	
            Bluetooth 2.1 (+EDR optional)

          
          	
            Secure Simple Pairing (SSP) using public key cryptography with four unique authentication methods

            Extended Inquiry Response (EIR) allows for better filtering and reduced power

          
          	
            2007

          
        

        
          	
            Bluetooth 3.0

            (+EDR optional) (+HS optional)

          
          	
            L2CAP enhanced retransmission mode (ERTM) for reliable and unreliable connection states

            Alternate MAC/PHY (AMP) 24 Mbps using 802.11 PHY Unicast connectionless data for low latency

            Enhanced power control

          
          	
            2009

          
        

        
          	
            Bluetooth 4.0

            (+EDR optional) (+HS optional) (+LE optional)

          
          	
            AKA BluetoothSmart

            Introduced Low Energy mode (LE)

            Introduced ATT and GATT protocols and profiles

            Dual mode: BR/EDR and LE mode

            Security manager with AES encryption

          
          	
            2010

          
        

        
          	
            Bluetooth 4.1

          
          	
            Mobile wireless service (MWS) coexistence

            Train nudging (coexistence feature)

            Interlaced scanning (coexistence feature)

            Devices support multiple simultaneous roles

          
          	
            2013

          
        

        
          	
            Bluetooth 4.2

          
          	
            LE secure connections

            Link layer privacy

            IPv6 support profile

          
          	
            2014

          
        

        
          	
            Bluetooth 5.0

          
          	
            Slot availability masks (SAMs) 2 Mbps PHY and LE

            LE long-range mode

            LE extended advertising modes

            Mesh networking

          
          	
            2016

          
        

        
          	
            Bluetooth 5.1

          
          	
            Direction finding

            GATT caching

            Randomized Advertising Channel Indexing

            Periodic advertising sync transfer

          
          	
            2019

          
        

      
    

    Bluetooth 5 communication process and topologies

    Bluetooth wireless is comprised of two wireless technology systems: Basic Rate (BR) and Low Energy (LE or BLE). Nodes can be advertisers, scanners, or initiators:

    
      	Advertiser: Devices transmitting advertiser packets

      	Scanner: Devices receiving advertiser packets without the intention to connect

      	Initiator: Devices attempting to form a connection

    

    There are several Bluetooth events that transpire in a Bluetooth WPAN:

    
      	Advertising: This is initiated by a device to broadcast to scanning devices to alert them of the presence of a device wishing to either pair or simply relay a message in the advertisement packet.

      	Connecting: This event is the process of pairing a device and a host.

      	Periodic advertising (for Bluetooth 5): This allows an advertising device to periodically advertise over the 37 non-primary channels by channel hopping at an interval of 7.5ms to 81.91875s.

      	Extended advertising (for Bluetooth 5): This allows for extended protocol data units (PDUs) to support advertisement chaining and large PDU payloads, possibly as well as new use cases involving audio or other multimedia (covered in the Beaconing section of this chapter).

    

    In LE mode, a device may complete an entire communication by simply using the advertising channel. Alternatively, communication may require pair-wise bidirectional communication and force the devices to formally connect. Devices that must form this type of connection will start the process by listening to advertising packets. The listener is called an initiator in this case. If the advertiser issues a connectable advertising event, the initiator can make a connection request using the same PHY channel it received the connectable advertising packet on.

    The advertiser can then determine whether it wants to form a connection. If a connection is formed, the advertising event ends, and the initiator is now called the master and the advertiser is called the slave. This connection is termed a piconet in Bluetooth jargon, and connection events transpire. The connection events all take place on the same starting channel between the master and slave. After data has been exchanged and the connection event ends, a new channel can be chosen for the pair using frequency hopping.

    Piconets form in two different fashions depending on Basic Rate / Enhanced Data Rate (BR/EDR) mode or BLE mode. In BR/EDR, the piconet uses 3-bit addressing and can only reference seven slaves on one piconet. Multiple piconets can form a union and then be called a scatternet, but there must be a second master to connect to and manage the secondary network. The slave/master node takes on the responsibility of bridging two piconets together. In BR/EDR mode, the network uses the same frequency hopping schedule, and all the nodes will be guaranteed to be on the same channel at a given time. In BLE mode, that system uses 24-bit addressing so the number of slaves associated with a master is in the millions. Each master-slave relationship is itself a piconet and can be on a unique channel. In a piconet, nodes may be a master (M), slaves (S), standby (SB), or parked (P). Standby mode is the default state for a device. In this state, it has the option to be in a low-power mode. Up to 255 other devices can be in an SB or P mode on a single piconet.

    
      Note that Bluetooth 5.0 has deprecated and removed parked states in piconets; only Bluetooth devices up to version 4.2 will support a parked state. Standby state is still supported by Bluetooth 5.0.

    

    A piconet topology is illustrated in the following diagram:
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    Figure 1: The difference between classic (BR/EDR) Bluetooth and BLE piconets. In BR/EDR mode up to seven slaves can be associated on a single piconet due to 3-bit addressing. They all share a common channel between the seven slaves. Other piconets can join the network and form a scatternet only if an associated master on the secondary network is present. In BLE mode millions of slaves can join in multiple piconets with a single master due to 24-bit addressing. Each piconet can be on a different channel but only one slave can associate with the master in each piconet. Practically speaking, BLE piconets tend to be much smaller.

    Bluetooth 5 stack

    Bluetooth has three basic components: a hardware controller, host software, and application profiles. Bluetooth devices come in single and dual-mode versions, which means either they support only the BLE stack or they support classic mode and BLE simultaneously. In the following figure, one can see the separation between the controller and host at the host controller interface (HCI) level. Bluetooth allows for one or more controllers to be associated with a single host.

    Bluetooth stack elements

    The stack consists of layers, or protocols and profiles:

    
      	Protocols: Horizontal tiers and layers representing functional blocks. The following diagram represents a stack of protocols.

      	Profiles: These represent vertical functions that use protocols. Profiles will be detailed later in this chapter.

    

    The following figure represents a comprehensive architectural diagram of the Bluetooth stack, including BR/EDR and BLE modes as well as AMP mode.
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    Figure 2: Bluetooth Single Mode (BLE only) and Dual Mode (Classic and BLE) versus a simpliﬁed OSI stack. The right-side diagram illustrates the AMP mode. Note the separation of responsibilities between the host software platform with the upper stack and the controller hardware for the bottom stack. HCI is the transport channel between the hardware and the host.

    There are essentially three Bluetooth modes of operation shown in the preceding figure (each requiring a different PHY):

    
      	LE mode: This uses the 2.4 GHz ISM band and employs frequency-hopping spread spectrum (FHSS) for interference protection. The PHY differs from BR/EDR and AMP radios by modulation, coding, and data rates. LE operates at 1M symbols/s at a bit rate of 1 Mbps. Bluetooth 5 allows for multiple configurable data rates of 125 Kbps, 500 Kbps, 1 Mbps, and 2 Mbps (more on this later).

      	BR/EDR mode: This uses a different radio than LE and AMP but operates in the ISM 2.4 GHz band. Basic radio operation is rated at 1 M symbols/s and supports a bit rate of 1 Mbps. EDR sustains a data rate of 2 or 3 Mbps. This radio uses FHSS for interference protection.

      	Alternative MAC/PHY (AMP): This is an optional feature that uses 802.11 for high-speed transport up to 24 Mbps. This mode requires both the master and slave device to support AMP. This is a secondary physical controller, yet it requires the system to have a BR/EDR controller to establish initial connection and negotiation.

    

    We will now detail the function of each element of the stack. We start with the common blocks of BR/EDR and LE and then list details for AMP. In all three cases, we will start with the physical layer and move up the stack toward the application layer.

    Core architectural blocks—controller level:

    
      	BR/EDR PHY (controller block): Responsible for transmitting and receiving packets through a physical channel on 79 channels.

      	LE PHY: Low-energy physical interface responsible for managing 40 channels and frequency hopping.

      	Link controller: Encodes and decodes Bluetooth packets from the data payload.

      	Baseband resource manager: Responsible for all access to the radio from any source. It manages the scheduling of physical channels and negotiates access contracts with all entities to ensure Quality of service (QoS) parameters are met.

      	Link manager: Creates, modifies, and releases logical links and updates parameters related to physical links between devices. It is reused for BR/EDR and LE modes using different protocols.

      	Device manager: Block in the controller baseband level that controls the general behavior of Bluetooth. This is responsible for all operations not related to data transmission, including making devices discoverable or connectable, connecting to devices, and scanning for devices.

      	HCI: A separation between the host and the silicon controller in layer four of the network stack. It exposes interfaces to allow a host to add, remove, manage, and discover devices on the piconet.

    

    Core architectural blocks—host level:

    
      	L2CAP: The logical link control and adaptation protocol. It is used to multiplex logical connections between two different devices using higher level protocols than the physical layer. It can segment and reassemble packets.

      	Channel manager: Responsible for creating, managing, and closing L2CAP channels. A master will use the L2CAP protocol to communicate to a slave channel manager.

      	Resource manager: Responsible for managing the ordering of submission of fragments to the baseband level. It helps ensure the quality of service conformance.

      	Security Manager Protocol (SMP): This block is responsible for generating keys, qualifying keys, and storing keys.

      	Service Discovery Protocol (SDP): Discovers services offered on other devices by UUID.

      	Audio: An optional efficient streaming audio playback profile.

      	RFCOMM: A block responsible for RS-232 emulation and interfacing. It is used for supporting telephony functionality.

      	Attribute protocol (ATT): A wire application protocol used mainly in BLE (but can apply to BR/EDR). ATT is optimized to run on BLE low-power battery-based hardware. It is tightly coupled to GATT.

      	Generic Attribute Profile (GATT): A block that represents the functionality of the attribute server and, optionally, the attribute client. The profile describes the services used in the attribute server. Every BLE device must have a GATT profile. It is principally, if not exclusively, used for BLE but could be used on a vanilla BR/EDR device.

      	Generic Access Profile (GAP): Controls connections and advertising states. GAP allows a device to be visible to the outside world and forms the basis of all other profiles.

    

    The AMP-specific stack:

    
      	AMP (PHY): Physical layer responsible for transmission and reception of data packets up to 24 Mbps.

      	AMP MAC: The media access control layer as defined in the IEEE 802 reference layer model. It provides address methods for the device.

      	AMP PAL: Layer interfacing the AMP MAC with the host system (L2CAP and AMP manager). This block translates commands from the host into specific MAC primitives and vice versa.

      	AMP manager: Uses L2CAP to communicate with a peer AMP manager on a remote device. It discovers remote AMP devices and determines their availability.

    

    Bluetooth 5 PHY and interference

    Bluetooth devices operate in the 2.4000 to 2.4835 GHz industrial, scientific, and medical (ISM) unlicensed frequency band. As mentioned earlier in this chapter, this particular unlicensed area is congested with a number of other wireless media, such as 802.11 Wi-Fi. To alleviate interference, Bluetooth supports frequency-hopping spread spectrum (FHSS).

    
      When having a choice between Bluetooth classic modes of BR/EDR, EDR will have a lower chance of interference and better coexistence with Wi-Fi and other Bluetooth devices since the on-air time is shorter due to its speed.

    

    Adaptive frequency hopping (AFH) was introduced in Bluetooth 1.2. AFH uses two types of channels: used and unused. Used channels are in play as part of the hopping sequence. Unused channels are replaced in the hopping sequence by used channels when needed in a random replacement method. BR/EDR mode has 79 channels and BLE has 40 channels.

    With 79 channels, BR/EDR mode has less than a 1.5 percent chance of interfering with another channel. This is what allows an office setting to have hundreds of headphones, peripherals, and devices all in the same range contending for frequency space (for example, fixed and continuous use sources of interference).

    AFH allows a slave device to report channel classification information to a master to assist in configuring the channel hopping. In situations where there is interference with 802.11 Wi-Fi, AFH is used with a combination of proprietary techniques to prioritize traffic between the two networks. For example, if the hopping sequence regularly collides on channel 11, the master and slaves within the piconet will simply negotiate and hop over channel 11 in the future.

    In BR/EDR mode, the physical channel is divided into slots. Data is positioned for transmission in precise slots and consecutive slots can be used if needed. By using this technique, Bluetooth achieves the effect of full-duplex communication through time division duplexing (TDD). BR uses Gaussian frequency-shift keying (GFSK) modulation to achieve its 1 Mbps rate, while EDR uses differential quaternary phase shift keying (DQPSK) modulation to 2 Mbps and 8-phase differential phase-shift keying (8DPSK) at 3 Mbps.

    LE mode, on the other hand, uses frequency division multiple access (FDMA) and time-division multiple access (TDMA) access schemes. With 40 channels rather than 79 for BR/EDR and each channel separated by 2 MHz, the system will divide the 40 channels into three for advertising and the remaining 37 for secondary advertising and data. Bluetooth channels are chosen pseudorandomly and are switched at a rate of 1600 hops/second. The following figure illustrates BLE frequency distribution and partitioning in the ISM 2.4 GHz space.
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    Figure 3: BLE frequencies partitioned into 40 unique bands with 2 MHz separation. Three channels are dedicated to advertising, and the remaining 37 to data transmission.

    TDMA is used to orchestrate communication by requiring one device to transmit a packet at a predetermined time and the receiving device to respond at another predetermined time.

    The physical channels are subdivided into time units for particular LE events such as advertising, periodic advertising, extended advertising, and connecting. In LE, a master can form a link between multiple slaves. Likewise, a slave can have multiple physical links to more than one master, and a device can be both a master and slave simultaneously.

    Role changes from master to slave or vice versa are not permitted.

    
      As noted previously, 37 of the 40 channels are for data transmission but three are dedicated to advertising. Channels 37, 38, and 39 are dedicated to advertising GATT profiles. During advertising, a device will transmit the advertising packet on all three channels simultaneously. This helps increase the probability that a scanning host device will see the advertisement and respond.

    

    Other forms of interference occur with mobile wireless standards in the 2.4 GHz space. Here, a technique called train nudging was introduced in Bluetooth 4.1.

    
      Bluetooth 5.0 introduced SAMs. A SAM allows two Bluetooth devices to indicate to each other the time slots that are available for transmission and reception. A map is built, indicating time slot availability. With the mapping, the Bluetooth controllers can refine their BR/EDR time slots and improve overall performance.

      For BLE modes, SAMs are not available. However, an overlooked mechanism in Bluetooth called channel selection algorithm 2 (CSA2) can help with frequency hopping in noisy environments susceptible to multipath fading. CSA2 was introduced in Bluetooth 4.1 and is a very complex channel mapping and hopping algorithm. It improves the interference tolerance of the radio and allows the radio to limit the number of RF channels it can use in high interference locations. A side effect of limiting channels with CSA2 is it allows the transmit power to increase to +20dBm. As mentioned, there are limits to transmitting power imposed by governing regulatory bodies since BLE advertising channels and connected channels are so few. CSA2 allows for more channels to be available in Bluetooth 5 than in previous versions, which may open up regulatory restrictions.

    

    Bluetooth packet structure

    Every Bluetooth device has a unique 48-bit address called the BD_ADDR. The upper 24 bits of the BD_ADDR refer to the manufacturer specific address and are purchased through the IEEE Registration Authority. This address includes the Organizationally Unique Identifier (OUI), also known as the company ID, and is assigned by the IEEE. The 24 least significant bits are free for the company to modify.

    Three other secure and randomized address formats are available but will be discussed in the BLE security portion of this chapter. The following diagram shows the BLE advertising packet structure and various PDU types. This represents some of the most commonly used PDUs.
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    Figure 4: Common BLE advertising and data packet formats. Several other packet types exist and should be referenced in the Bluetooth 5.0 speciﬁcation.

    BR/EDR operation

    Classic Bluetooth (BR/EDR) mode is connection-orientated. If a device is connected, the link is maintained even if no data is being communicated. Before any Bluetooth connection transpires, a device must be discoverable for it to respond to scans of a physical channel and subsequently respond with its device address and other parameters. A device must be in a connectable mode to monitor its page scan.

    The connection process proceeds in three steps:

    
      	Inquiry: In this phase, two Bluetooth devices have never associated or bonded; they know nothing of each other. The devices must discover each other through an inquiry request. If the other device is listening, it may respond with its BD_ADDR address.

      	Paging: Paging or connecting forms a connection between the two devices. Each device knows the other's BD_ADDR at this point.

      	Connected: There are four sub-modes of the connection state. This is the normal state when two devices are actively communicating:
          	Active mode: This is the normal mode of operation for transmission and receiving of Bluetooth data or waiting for the next transmission slot.

          	Sniff mode: This is a power-saving mode. The device is essentially asleep but will listen for transmissions during specific slots that can be changed programmatically (for example, 50 ms).

          	Hold mode: This is a temporary low-power mode initiated by the master or slave. It will not listen for transmissions like sniff mode, and the slave temporarily ignores access control list (ACL) packets. While in this mode, switching to the connected state occurs very quickly.

          	Park mode: As stated earlier, this mode is deprecated in Bluetooth 5.

        

      

    

    A state diagram of these phases is as follows:
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    Figure 5: Connection process for Bluetooth from the unconnected device in standby mode, device query, and discovery, connected/transmitting mode, and low-power modes

    If this process completes successfully, the two devices can be forced to automatically connect when they are in range. The devices are now pairing. The one-time pairing process is most common in connecting smartphones to a vehicle stereo, but it can apply anywhere in IoT as well. Paired devices will share a key that is used in the authentication process. More will be covered on keys and authentication in the section on security with Bluetooth.

    
      Apple recommends using a sniff mode set at a 15 ms interval. This saves significant power over keeping the device in an active mode, but also allows for better sharing of the spectrum with Wi-Fi and other Bluetooth signals in the area. Additionally, Apple recommends a device should first set an advertising interval for initial discovery by a host to 20 ms and broadcast that for 30 seconds. If the device still can't connect to the host, the advertising interval should be increased programmatically to increase the chance of completing the connection process. See Bluetooth Accessory Design Guidelines for Apple Products Release 8, Apple Computer, June 16, 2017.

    

    BLE roles

    Since Bluetooth has different nomenclature for the roles of devices and servers, this list helps clarify the differences. Some of the layers will be studied later in this chapter.

    
      	Link layer roles (pre-connection):
          	Master: Usually the host, which is responsible for scanning the field for new devices and beacon advertisements.

          	Slave: Usually the device attempting to connect to the master and initiating advertising messages.

        

      

      	GAP layer roles (pre-connection):
          	Central: The only device that can send a connection request and establish a fixed connection with a peripheral.

          	Peripheral: A device that can advertise Bluetooth messages to any other Bluetooth device.

        

      

      	GATT layer roles (post connection):
          	Client: Accesses remote information on a server. Initiates read or write requests to the server. A client is usually a master (but this is not a hard requirement).

          	Server: Maintains a local database of resources and characteristics (GATT) of the remote client(s). It responds to read or write requests from clients. A server is usually a slave.

        

      

    

    
      While confusing for many IoT projects, it must be understood that the remote Bluetooth sensor or asset tracking tag is actually the server while the host hub that may be managing many Bluetooth connections is the client.

    

    BLE operation

    In BLE mode, there are five link states that are negotiated by the host and device:

    
      	Advertising: Devices that transmit the advertising packets on the advertising channels.

      	Scanning: Devices that receive advertising on the advertising channels without an intention to connect. Scanning can be active or passive:
          	Active scanning: Link layer listens for advertising PDUs. Depending on the received PDU, it may request an advertiser to send additional information.

          	Passive scanning: Link layer will only receive packets; transmission disabled.

        

      

      	Initiating: Devices that need to form a connection to another device listen for connectable advertising packets and initiate by sending a connect packet.

      	Connected: There is a relationship between master and slave in the connected state. The master is the initiator and the slave is the advertiser:
          	Central: An initiator transforms the role and title to the central device.

          	Peripheral: Advertising device becomes the peripheral device.

        

      

      	Standby: Device in the unconnected state.

    

    After a link is established the central device may be referred to as the master, while the peripheral will be referred to as the slave.

    The advertising state has several functions and properties. Advertisements can be general advertisements where a device broadcasts a general invitation to some other device on the network. A directed advertisement is unique and designed to invite a specific peer to connect as fast as possible. This advertisement mode contains the address of the advertising device and the invited device.

    When the receiving device recognizes the packet, it will immediately send a connect request. The directed advertisement is to get fast and immediate attention, and the advertisements are sent at a rate of 3.75 ms, but only for 1.28 seconds. A non-connectable advertisement is essentially a beacon (and may not even need a receiver). We will describe beacons later in this chapter. Finally, the discoverable advertisement can respond to scan requests, but it will not accept connections. Shown in the following state diagram are the five link states of BLE operation.
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    Figure 6: The BLE link states

    A BLE device that has not previously bonded with a host initiates communication by broadcasting advertisements on the three advertising channels. The host can respond with a SCAN_REQ to request more information from the advertising device. The peripheral device responds with a SCAN_RSP and includes the device name or possibly services.

    
      The SCAN_RSP can affect power usage on a peripheral device. If the device supports scan responses, it must keep its radio active in receive mode, consuming power. This occurs even if no host device issues a SCAN_REQ. It is advisable to disable scan responses on IoT peripherals that are under power constraints.

    

    After scanning, the host (scanner) initiates a CONNECT_REQ, at which point the scanner and advertiser will send empty PDU packets to indicate acknowledgment. The scanner is now termed the master, and the advertiser is termed the slave. The master can discover slave profiles and services through the GATT. After discovery is complete, data can be exchanged from the slave to the master and vice versa. Upon termination, the master will return to a scanning mode and the slave will return to an advertiser mode. The following figure illustrates the BLE pairing process from advertising through data transmission.
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    Figure 7: Phases of BLE advertising, connecting, GATT service query, and data transmission

    Bluetooth profiles

    Applications interface with various Bluetooth devices using profiles. Profiles define the functionality and features for each layer of the Bluetooth stack. Essentially, profiles tie the stack together and define how layers interface with each other. A profile describes the discovery characteristics that the device advertises. They are also used to describe the data formats of services and characteristics that applications use to read and write to devices. A profile doesn't exist on a device; rather, they are predefined constructs maintained and governed by the Bluetooth SIG.

    The basic Bluetooth profile must contain a GAP as stated by the specification. The GAP defines the radio, baseband layer, link manager, L2CAP, and service discovery for BR/EDR devices. Likewise, for a BLE device, the GAP will define the radio, link layer, L2CAP, security manager, attribute protocol, and generic attribute profile.

    The ATT attribute protocol is a client-server wire protocol optimized for low-power devices (for example, the length is never transmitted over BLE but is implied by the PDU size). ATT is also very generic, and much is left to the GATT to provide assistance. The ATT profile consists of:

    
      	A 16-bit handle

      	A UUID to define the attribute type value containing the length

    

    The GATT logically resides on top of ATT and is used primarily, if not exclusively, for BLE devices. The GATT specifies the roles of the server and client. A GATT client is usually a peripheral device, and the GATT server is the host (for example, PC or smartphone). A GATT profile contains two components:

    
      	Services: A service breaks up data into logical entities. There can be multiple services in a profile and each service has a unique UUID to distinguish it from others.

      	Characteristics: A characteristic is the lowest level of a GATT profile and contains raw data associated with the device. Data formats are distinguished by 16-bit or 128-bit UUIDs. The designer is free to create their own characteristics that only their application can interpret.

    

    The following image represents an example of a Bluetooth GATT profile with corresponding UUIDs for various services and characteristics.

    
      The Bluetooth specification mandates that there can be only a single GATT server.
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    Figure 8: GATT proﬁle hierarchy and example GATT used on Texas Instruments CC2650 SensorTag

    The Bluetooth SIG maintains a collection of many GATT profiles. At the time of writing, there are 57 GATT profiles supported by the Bluetooth SIG: https://www.bluetooth.com/specifications/gatt. Profiles supported by the SIG include health monitors, cycling and fitness devices, environmental monitors, human interface devices, indoor positioning, object transfer, and location and navigation services, along with many others.

    BR/EDR security

    In some form, Bluetooth security has existed as part of the protocol since 1.0. We discuss security for BR/EDR mode and BLE separately as the mechanisms are different. Starting with BR/EDR mode, there are multiple modes of authenticating and pairing. For both BR/EDR and BLE security, it is recommended to read and follow the latest security guide provided by the US National Institute of Standards and Technology: Guide to Bluetooth Security, NIST Special Publication (SP) 800-121 Rev. 2, NIST, 5/8/2017.

    Pairing requires the generation of a secret symmetric key. In BR/EDR mode, this is called the link key, while in BLE mode it's termed the long-term key. Older Bluetooth devices used a personal identification number (PIN) pairing mode to initiate link keys. Newer devices (4.1+) use SSP.

    SSP provides a pairing process with a number of different association models for various use cases. SSP also uses public key cryptography to protect from eavesdropping and man-in-the-middle (MITM) attacks. The models supported by SSP include:

    
      	Numeric comparison: For use cases where both Bluetooth devices can display a six-digit numeric value allowing a user to enter a yes/no response on each device if the numbers match.

      	Passkey entry: Used in situations where one device has a numeric display and the other only has a numeric keyboard. In this case, the user enters the value seen on the first device's display on the second device's keyboard.

      	Just WorksTM : For situations where one device is headless and has no keyboard or display. It only provides minimal authentication and will not thwart an MITM attack.

      	Out-of-band (OOB): Used when the device has a secondary form of communication such as NFC or Wi-Fi. The secondary channel is used for discovery and cryptographic value exchange. It will only protect from eavesdropping and MITM if the OOB channel is secure.

    

    Authentication in BR/EDR mode is a challenge-response action, for example, entering a PIN on a keypad. If the authentication fails, the device will wait for an interval before allowing a new attempt. The interval grows exponentially with each failed attempt. This is simply to frustrate the individual attempting to manually break a key code.

    Encryption in BR/EDR mode can be set for the following:

    
      	Disabled for all traffic

      	Encrypted for data traffic but broadcast communication will be raw

      	All communication is encrypted

    

    The encryption uses AES-CCM cryptography.

    BLE security

    BLE pairing (explained earlier in this chapter) starts by a device initiating a Pairing_Request and exchanging capabilities, requirements, and so on. Nothing involving security profiles occurs at the initial phase of a pairing process. For that matter, the pairing security is similar to the four BR/EDR methods (also known as association models), but differs slightly in Bluetooth BLE 4.2:

    
      	Numeric comparison: This is the same as Just Works, but at the end, both devices will generate a confirmation value that is displayed on the host and device screens for the user to validate the match.

      	Passkey entry: Similar to BR/EDR mode, except that the non-initiating device creates a random 128-bit seed called a nonce to authenticate the connection. Every bit of the passkey is authenticated separately on each device by generating a confirmation value for that bit. The confirmation values are exchanged and should match. The process continues until all bits are processed. This provides a fairly robust solution for MITM attacks.

      	Just WorksTM : After devices exchange public keys, the non-initiating device creates a nonce to generate a confirmation value Cb. It transmits the nonce and Cb to the initiating device, which in turn generates its own nonce and transmits it to the first. The initiating device will then confirm the authenticity of the non-initiating nonce by generating its own Ca value, which should match Cb. If it fails to match, the connection is corrupt. This again is different to BR/EDR mode.

      	Out-of-band (OOB): This is the same as in BR/EDR mode. It will only protect from eavesdropping and MITM if the OOB channel is secure.

    

    In BLE (as of Bluetooth 4.2), key generation uses LE secure connections. LE secure connection was developed to resolve the security hole in BLE pairing that allowed an eavesdropper to see the pairing exchange. This process uses a long-term key (LTK) to encrypt the connection. The key is based on an elliptical-curve Diffie-Hellman (ECDH) public key cryptography. 

    Both the master and slave will generate ECDH public-private key pairs. The two devices will exchange their public portion of their respective pairs and process the Diffie-Hellman key. At this point, the connection can be encrypted using AES-CCM cryptography.

    BLE also has the ability to randomize its BD_ADDR. Remember, the BD_ADDR is a 48-bit MAC-like address. Rather than a static address for the value, as mentioned earlier in this chapter, there are three other options:

    
      	Random static: These addresses are either burned into the device's silicon during manufacture or generated when the device power cycles. If a device routinely power cycles, a unique address will be generated and this remains secure as long as the frequency of power cycling is high. In an IoT sensor environment, that may not be the case.

      	Random private resolvable: This addressing method can only be used if the Identity Resolving Key (IRK) is exchanged between the two devices during the bonding process. The device will use the IRK to encode its address into a random address in the advertisement packet. A second device that also possesses the IRK will convert the random address back into the authentic address. In this method, the device will periodically generate a new random address based off the IRK.

      	Random private non-resolvable: The device address is simply a random number and a new device address can be generated at any time. This offers the highest level of security.

    

    Beaconing

    Bluetooth beaconing is a secondary effect of BLE; however, it is an important and significant technology for IoT. Because beacons are not necessarily sensors, we didn't cover them explicitly in the Chapter 3, Sensors, Endpoints, and Power Systems (although some do provide sensing information in an advertisement packet). Beaconing simply uses Bluetooth devices in LE mode to advertise on some periodic basis. Beacons never connect or pair with a host. If a beacon were to connect, all advertisements would stop, and no other device could hear that beacon. The three use cases important to retail, healthcare, asset tracking, logistics, and many other markets are:

    
      	Static point of interest (POI)

      	Broadcasting telemetry data

      	Indoor positioning and geolocation services

    

    Bluetooth advertising uses a message to contain further information in the broadcast UUID. An app on a mobile device can respond to this advertisement and perform some action if the correct advertisement is received. A typical retail use case would make use of a mobile app that would respond to the presence of a beacon advertisement in the vicinity and pop up an ad or sale information on the user's mobile device. The mobile device would communicate over Wi-Fi or cellular to retrieve additional content as well as provide critical market and shopper data to the company.

    Beacons can transmit their calibrated RSSI signal strength as an advertisement. The signal strength of beacons is calibrated by manufacturers typically at a one-meter length. Indoor navigation can be performed in three different ways:

    
      	Multiple beacons per room: This is a simple triangulation method to determine a user's location based on the advertised RSSI signal strength collected from numerous beacons in a room. Given the advertised calibrated level from each beacon and the received strength from each beacon, an algorithm could determine the approximate location of a receiver in a room. This assumes all beacons are in a fixed place.

      	One beacon per room: In this scheme, one beacon is placed in each room, allowing a user to navigate between rooms and halls with the fidelity of the location being a room. This is useful in museums, airports, concert venues, and so on.

      	A few beacons per building: In combination with accelerometers and gyros in a mobile device, multiple beacons in a building can allow for dead reckoning ability in a large open space. This allows a single beacon to set a starting location and the mobile device to reckon its location based on user movement.

    

    There are two fundamental beaconing protocols used: Eddystone by Google and iBeacon by Apple. Legacy Bluetooth devices can only support a beacon message of 31 bytes. This restricts the amount of data a device can convey. 

    An entire iBeacon message is simply a UUID (16 bytes), a major number (two bytes), and minor number (two bytes). The UUID is specific to the application and use case. The major number further refines the use case and minor extends the use case to an even narrower case.

    iBeacons provide two ways to detect devices:

    
      	Monitoring: Monitoring works even if the associated smartphone application is not actively running.

      	Ranging: Ranging works only if the application is active.

    

    Eddystone (also known as UriBeacons) can transmit four different types of frames with varying length and frame encoding:

    
      	Eddystone-URL: The uniform resource location. This frame allows a receiving device to display web content based on the location of the beacon. An app does not need to be installed to activate the content. The content is variable in length and applies unique compression schemes to reduce the size of the URL to a limit of 17 bytes.

      	Eddystone-UID: 16-byte unique beacon ID with a 10-byte namespace and 6-byte instance. It uses Google Beacon Registry to return attachments.

      	Eddystone-EID: A short-lived identifier for beacons requiring higher levels of security. With no fixed namespace and ID, the identifiers constantly rotate and require an authorized app to decode. It uses Google Beacon Registry to return attachments.

      	Eddystone-TLM: Broadcasts telemetry data about the beacon itself (battery level, time since power-on, advertisement count). It broadcasts alongside URI or URL packets.

    

    The following diagram illustrates the Bluetooth BLE advertisement packet structure for Eddystones and iBeacons. The iBeacon is simplest with a single type of frame of consistent length. Eddystone consists of four different types of frames and has variable lengths and encoding formats. Note that some fields are hardcoded, such as the length, type, and company ID for iBeacon, as well as the identifier for Eddystone.
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    Figure 9: Example difference between iBeacon and Eddystone advertising packets (PDU)

    The scanning intervals and advertising intervals attempt to minimize the number of advertisements necessary to convey useful data within a period of time. The scanning window usually has a longer duration than the advertisement as scanners essentially have more power than a coin cell battery in a beacon. The following figure shows a process of a beacon advertising every 180ms while the host scans every 400ms.
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    Figure 10: An example of a host scanning with a scan interval of 400ms and a scan window of 180 ms.

    The beacon advertises every 150ms on the dedicated channels 37, 38, and 39. Notice the ordering of the advertising channels isn't consecutive as frequency hopping may have adjusted the order. Some advertisements have failed to reach the host since the scan interval and advertising interval are out of phase. Only a single advertisement in the second burst reaches the host on channel 37, but by design, Bluetooth advertises on all three channels in an attempt to maximize the chance of success.

    There are two fundamental challenges with architecting a beacon system. The first is the effect of advertising intervals versus the fidelity of location tracking. The second is the effect of advertising intervals versus the longevity of the battery powering the beacon. Both effects balance each other, and careful architecture is needed to deploy correctly and extend the life of the battery.

    The longer the interval between beacon advertisements, the less accuracy a system will have on a moving target. For example, if a retailer is tracking the location of patrons in a store, the patrons move at walking speed of 4.5 feet/second, and a set of beacons advertises every four seconds versus another deployment that advertises every 100 ms, it will reveal different paths of motion to the retailer gathering market data. The following figure illustrates the effects of slow and fast advertising in a retail use case.
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    Figure 11: The effects of high-frequency advertising versus low-frequency advertising on location ﬁdelity. The integers represent customer time spent at a particular point in the store.

    A four-second advertising interval loses accuracy of the customer locations as they move about a store. Additionally, the amount of time spent at a particular point can only be tracked at discrete intervals of four seconds. The time spent at positions B and C (as the customer leaves the store) may be lost. In this case, the retailer may want to understand why the customer spent 7.8 seconds at location B and why they went back to point C on their way out.

    The countereffect of frequent advertising is the impact on beacon battery life. Typically, the batteries in beacons are Li-ion CR2032 coin cells. The Hitchhikers Guide to iBeacon Hardware: A Comprehensive Report by Aislelabs. Web 14 March, 2016 (https://www.aislelabs.com/reports/beacon-guide/) has performed an analysis of battery life for some common beacons and altered their advertising interval (100 ms, 645 ms, and 900 ms). They also used different batteries with increasing stored energy. The results show that the average life ranges from 0.6 months to over one year depending on the chipset, but more importantly on the advertising interval. Along with the advertising interval, Tx power certainly affects the overall battery life, but so does the number of frames transmitted.

    
      Setting advertising intervals too long, while beneficial for battery life and bad for location awareness, has a secondary effect. If the beacon is operating in a noisy environment and the interval is set high (>700 ms), the scanner (smartphone) will have to wait another full period to receive the advertisement packet. This can lead to apps timing out.

      A fast 100 ms interval is useful to track fast-moving objects (such as asset tracking in fleet logistics or drone-based beacon harvesting). If the architect is designing to track human movement at a typical rate of 4.5 feet/second, then 250 ms to 400 ms is adequate.

    

    A valuable exercise for the IoT architect is to understand the cost of transmission in terms of power. Essentially, the IoT device has a limited number of PDUs it can send out before the battery reaches a point where it can no longer power the device unless refreshed or energy is harvested (see Chapter 4, Communications and Information Theory). Assume an iBeacon is advertised every 500 ms and the packet length is 31 bytes (it may be longer).

    Additionally, the device uses a CR2032 coin cell battery rated at 220mAh at 3.7V. The beacon electronics consume 49uA at 3V. We can now predict the life of the beacon and the efficiency of the transmission:

    
      	Power consumption = 49uA x 3V = 0.147mW

      	Bytes per second = 31 x (1 second/500 ms) x 3 channels = 186 bytes/second

      	Bits per second = 186 bytes/second x 8 = 1488 bits/second

      	Energy per bit = 0.147 mW / (1488 bits/second) = 0.098 uJ/bit

      	Energy used for each advertisement = 0.098 uJ/bit x 31 bytes x 8 bits/byte = 24.30 uJ/advertisement

      	Energy stored in battery: 220mAh x 3.7V x 3.6 seconds = 2930 J

      	Life of battery = (2930 J x (1,000,000 uJ/J)) / ((24.30 uJ/advertisement) x (1 advertisement / 0.5 seconds)) x 0.7 = 42,201,646 seconds = 488 days = 1.3 years

    

    The constant 0.7 is used for allowances in the decline of battery life, as described in Chapter 4, Communications and Information Theory. 1.3 years is a theoretical limit and most likely will not be obtained in the field due to factors such as leakage current, as well as other functionalities of the device that may need to run periodically.

    As a final note on beacons with respect to Bluetooth 5, the new specification extends the length of beacon advertisements by allowing for advertisement packets to be transmitted in the data channels as well as the advertisement channels. This fundamentally breaks the 31-byte limit of an advertisement.

    With Bluetooth 5, the message size can be 255 bytes. The new Bluetooth 5 advertisement channels are called secondary advertisement channels. They ensure backward compatibility with legacy Bluetooth 4 devices by defining a specific Bluetooth 5 extended type in the header. Legacy hosts will throw out the unrecognized header and simply not listen to the device.

    If a Bluetooth host receives a beacon advertisement that indicates there is a secondary advertisement channel, it recognizes that more data will need to be found in the data channels. The payload of the primary advertisement packet no longer contains beacon data, but a common extended advertising payload that identifies a data channel number and a time offset. The host will then read from that particular data channel at the indicated time offset to retrieve the actual beacon data. The data could also point to another packet (which is referred to as multiple secondary advertisement chains).

    This new method of transmitting very long beacon messages ensures large amounts of data could be sent to customer smartphones. Other use cases and features are now enabled as well, such as the advertisement being used to transmit synchronous data like audio streams. A beacon could send audio lectures to a smartphone as a visitor walks around a museum and looks at various art pieces.

    Advertisements can also be anonymized, meaning the advertisement packet does not need to have the transmitter's address bound to it. Thus, when a device produces an anonymous advertisement, it does not transmit its own device address. This can improve privacy and reduce power consumption.

    Bluetooth 5 can also transmit multiple individual advertisements (with unique data and different intervals) nearly simultaneously. This will allow Bluetooth 5 beacons to transmit Eddystone and iBeacon signals at nearly the same time without any reconfiguration.

    Additionally, the Bluetooth 5 beacon can detect if it is scanned by a host. This is powerful because the beacon can detect whether a user received an advertisement and then stop transmitting to conserve power.

    Bluetooth 5 range and speed enhancement

    Bluetooth beacon strength is constrained and can be affected by limits placed on the transmitter power to preserve battery life. Usually, a line of sight is needed for optimal beacon range and signal strength. The following figure shows the signal strength to distance curve for typical line-of-sight Bluetooth 4.0 communication. 

    Bluetooth 5 extends the range only when LE Coded mode is used, as we will examine later.
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    Figure 12: Beacon strength is limited. Often a manufacturer limits the Tx power of a beacon to preserve battery life. As one moves from the beacon, the signal strength drops as expected. Typically a 30-foot range is a usable beacon distance (Bluetooth 4.0).

    Bluetooth also has different power levels, ranges, and transmission power based on a classification for each device:
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    Bluetooth 5 has improved the range as well as data rate beyond legacy Bluetooth limits. A new radio PHY is available with Bluetooth 5 called LE2M. This doubles the raw data rate of Bluetooth from 1M symbol/second to 2M symbols/second. To transfer an equal amount of data on Bluetooth 5 as opposed to Bluetooth 4, less time will be needed for transmission.

    This is particularly relevant for IoT devices that operate on coin cells. The new PHY also increases the power from +10 dBm to +20 dBm, allowing for greater range.

    With respect to range, Bluetooth 5 has another optional PHY for extended range transmission in BLE. This auxiliary PHY is labeled LE Coded. This PHY still uses the 1M symbol/second rate as in Bluetooth 4.0, but reduces lower packet coding of 125 Kb/s or 500 Kb/s and increases the transmission power by +20 dBm. This has the effect of increasing the range by 4x over Bluetooth 4.0 and having better penetration within buildings. The LE Coded PHY does increase power consumption for the benefit of increased range.

    Bluetooth mesh

    Bluetooth also provides the adjunct specification for mesh networking using the BLE stacks. This section covers the Bluetooth mesh architecture in detail.

    Bluetooth mesh

    Before the Bluetooth SIG's official mesh specification with Bluetooth 5, there were proprietary and ad hoc schemes using older Bluetooth versions to build mesh fabrics. After the Bluetooth 5 specification was released, however, the SIG focused on formalizing mesh networking in Bluetooth. The Bluetooth SIG published the mesh profile, device, and model specification 1.0 on July 13, 2017. This came six months after the Bluetooth 5.0 specification was released. The three specifications published by the Bluetooth SIG are as follows:

    
      	Mesh profile specification 1.0: Defines the fundamental requirements to enable an interoperable mesh networking solution

      	Mesh model specification 1.0: Basic functionality of nodes on the mesh network

      	Mesh device properties 1.0: Defines the device properties required for the mesh model specification

    

    It is not yet known whether there is any limit to the size of the mesh network. There are some limits built into the specification. As of the 1.0 specification, there can be up to 32,767 nodes in a Bluetooth mesh and 16,384 physical groups. The maximum time-to-live(TTL), which is indicative of the depth of the mesh, is 127.

    
      Bluetooth 5 mesh theoretically allows for 2128 virtual groups. Practically, grouping will be much more constrained.

    

    Bluetooth mesh is based on BLE and sits on the BLE physical and link layer described earlier. On top of that layer is a stack of mesh-specific layers:

    
      	Models: Implements behaviors, states, and bindings on one or more model specifications.

      	Foundation models: Configuration and management of the mesh network.

      	Access layer: Defines the format of application data, encryption process, and data verification.

      	Upper transport layer: Manages the authentication, encryption, and decryption of data passing to and from the access layer. Transports control messages such as friendships and heartbeats.

      	Lower transport layer: Performs segmentation and reassembly (SAR) of fragmented PDUs if necessary.

      	Network layer: Determines which network interface to output messages on. It manages the various address types and supports many bearers.

      	Bearer layer: Defines how mesh PDUs are handled. Two types of PDUs are supported: advertising bearer and GATT bearer. The advertising bearer handles the transmission and reception of mesh PDUs, while the GATT bearer provides a proxy for devices that don't support the advertising bearer.

      	BLE: The complete BLE specification.

    

    Bluetooth mesh can incorporate mesh networking or BLE functions. A device that is capable of mesh and BLE support can communicate to other devices like smartphones or have beacon functions. Shown in the following figure is the Bluetooth mesh stack. What is important to realize is the replacement of the stack above the link layer.
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    Figure 13: Bluetooth mesh speciﬁcation 1.0 stack

    Bluetooth mesh topology

    Bluetooth mesh uses the concept of a flood network. In a flood network, each incoming packet received by a node in the mesh is sent through every outgoing link, except the link to the parent of the message. Flooding has the advantage that if a packet can be delivered, it will be delivered (albeit probably many times via many routes). It will automatically find the shortest route (which can vary by signal quality and distance in a dynamic mesh). The algorithm is the simplest to implement as far as routing protocols are concerned.

    Additionally, it requires no central manager such as a Wi-Fi network based around a central router. For comparison, the alternate types of mesh routing include tree-based algorithms. With tree algorithms (or cluster-tree algorithms), a coordinator is necessary to instantiate the network and becomes the parent node. Trees aren't necessarily true mesh networks, however. Other mesh routing protocols include proactive routing, which keeps up-to-date routing tables on each node, and reactive routing, which only updates routing tables on each node on demand; for example, when data needs to be sent through a node. Zigbee (covered later) is a form of proactive routing called an Ad Hoc On-Demand Distance Vector (AODV). The following figure illustrates a flood broadcast. The time of arrival at each level can vary dynamically from node to node. Additionally, the mesh network must be resilient to duplicate messages arriving at any node as in the case of node 7 and node D.
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    Figure 14: Flood mesh architecture (S = Source, D = Destination): Source produces data that propagates and ﬂows through every node in the mesh

    The main disadvantage with a flood network is bandwidth waste. Depending on the fan out from each node, the congestion on a Bluetooth mesh can be significant. Another issue is a denial-of-service attack. If the mesh simply fans out messages, a facility is needed to know when to stop transmissions. Bluetooth accomplishes this through time-to-live identifiers, which we will cover later in this chapter.

    The entities that comprise Bluetooth mesh include the following:

    
      	Nodes: Bluetooth devices that have been previously provisioned and are members of a mesh.

      	Unprovisioned devices: Devices with the potential to join a mesh fabric that is not yet part of a mesh and has not been provisioned.

      	Elements: If a node contains multiple constituent devices, those sub-devices are called elements. Each part can be independently controlled and addressed. An example could be a Bluetooth node with temperature, humidity, and lumens sensors. This would be a single node (sensor) with three elements.

      	Mesh gateway: A node that can translate messages between the mesh and a non-Bluetooth technology.

    

    Once provisioned, a node may support an optional set of features, which include:

    
      	Relay: A node that supports relay is termed a relay node and can retransmit messages received.

      	Proxy: This allows BLE devices that do not support Bluetooth mesh natively to interact with nodes on the mesh. It is performed using a proxy node. The proxy exposes a GATT interface with the legacy Bluetooth device, and a proxy protocol based on a connection-oriented bearer is defined. The legacy device reads and writes to the GATT proxy protocol, and the proxy node transforms the messages into true mesh PDUs.

      	Low power: Some nodes on the mesh need to obtain extremely low levels of power consumption. They may serve up environmental sensor information (such as temperature) once an hour and be configured by a host or cloud managed tool once a year. That type of device cannot be placed in a listening mode when a message will only arrive once a year. The node enters a role termed the low power node (LPN), which pairs it with a friend node. The LPN enters a deep sleep state and polls the associated friend for any messages that may have arrived while it was sleeping.

      	Friend: A friend node is associated with the LPN but is not necessarily power constrained like an LPN. A friend may use a dedicated circuit or wall power. The friend's duty is to store and buffer messages destined for the LPN until the LPN wakes and polls it for messages. Many messages may be stored, and the friend will transmit them in order using a more data (MD) flag.

    

    The following diagram illustrates a Bluetooth mesh topology with the various components as they would be associated with one another in a real mesh.
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    Figure 15: Bluetooth mesh topology. Note the classes including nodes, LPNs, friends, gateways, relay nodes, and unprovisioned nodes.

    A Bluetooth mesh will cache messages on each node; this is crucial in a flood network. As the same message may arrive at different times from different sources, the cache provides a lookup of recent messages received and processed. If the new message is identical to one in the cache, it is discarded. This ensures system idempotence.

    Each message carries a TTL field. If a message is received by a node and then retransmitted, the TTL is decremented by one. This is a safety mechanism to prevent endless loops of traversing messages in a mesh. It also prevents networks from creating amplifying denial-of-service attacks.

    A heartbeat message is broadcast periodically from each node to the mesh. The heartbeat informs the fabric that the node is still present and healthy. It also allows the mesh to know how far away the node is and if it has changed distance since the last heartbeat. Essentially, it is counting the number of hops to reach the node. This process allows the mesh to reorganize and self-heal.

    Bluetooth mesh addressing modes

    Bluetooth mesh uses three forms of addressing:

    
      	Unicast addressing: This uniquely identifies a single element in the mesh. The address is assigned during the provisioning process.

      	Group addressing: This is a form of multicast addressing that can represent one or more elements. These are either predefined by the Bluetooth SID as SIG fixed group addresses or assigned on the fly.

      	Virtual addressing: An address can be assigned to more than one node and more than one element. Virtual addressing uses a 128-bit UUID. The intent is the UUID can be preset by a manufacturer to allow them to address their product globally.

    

    The Bluetooth mesh protocol starts with 384-byte long messages that are segmented into 11-byte parcels. All communication in a Bluetooth mesh is message-orientated. There are two forms of messages that can be transmitted:

    
      	Acknowledged messages: These require a response from node(s) that receive the message. The acknowledgment also includes data that the originator requested in the original message. Therefore, this acknowledged message serves dual purposes.

      	Unacknowledged messages: These do not require a response from the receiver.

    

    To send a message from a node is also known as publishing. When nodes are configured to process select messages sent to particular addresses, it is termed subscribing. Each message is encrypted and authenticated using a network key and an application key.

    The application key is particular to an app or use case (for example, turning a light on versus configuring the color of an LED light). Nodes will publish events (light switches), and other nodes will subscribe to those events (lamps and lightbulbs). The following figure illustrates a Bluetooth mesh topology. Here, nodes can subscribe to multiple events (lobby lights and hallway lights). The circles represent group addresses. A switch would publish to a group.
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    Figure 16: Bluetooth mesh publish-subscribe model

    Bluetooth mesh introduces the concept of group messaging. In a mesh, you may have a grouping of similar objects such as bath lights or lobby lights. This aids in usability; for example, if a new light is added, only that light needs to be provisioned, and the rest of the mesh doesn't need any change.

    The light switches in the preceding example have two states: on and off. Bluetooth mesh defines states, and in this case, they are labeled generic On-Off. Generic states and messages support many types of devices from lights to fans to actuators. They are a quick way to reuse a model for a general (or generic) purpose. As the system moves from one state to another, this is termed a state transition on the mesh. States can also be bound to each other. If a state changes, it can affect the transition to another state. As an example, a mesh controlling a ceiling fan may have a speed control state that, when it gets to a value of zero, changes the generic On-Off state to off.

    Properties are similar to states but have more than binary values. For example, a temperature sensor may have a state Temperature 8 to signify and publish an eight-bit temperature value. A property can either be set as manufacturer (read-only) by the supplier of the element or as admin, which allows read-write access. Both states and properties are communicated through messages on the mesh. Messages come in three types:

    
      	Get: Requests a value of a given state from one or more nodes

      	Set: Changes a value of a state

      	Status: Is a response to a get that contains the data

    

    All of these concepts of states and properties ultimately form a model (the highest level of the Bluetooth mesh stack). A model can be a server, in which case it defines states and state transitions. Alternatively, a model can be a client that doesn't define any states; rather, it defines state interaction messages to use with get, set, and status. A control model can support a hybrid of server and client models.

    Mesh networking can also make use of Bluetooth 5 standard features such as anonymous advertisements and multiple advertisement sets. Take the case of a mesh that connects to a phone for voice communication, yet simultaneously is relaying packets for other uses. By using multiple advertisement sets, both use cases can be managed simultaneously.

    Bluetooth mesh provisioning

    A node may join a mesh by the act of provisioning. Provisioning is a secure process that takes an unprovisioned and insecure device and transforms it into a node in the mesh. The node will first secure a NetKey from the mesh. 

    At least one NetKey must be on each device in the mesh to join. Devices are added to the mesh through a provisioner. The provisioner distributes the network key and a unique address to an unprovisioned device. The provisioning process uses ECDH key exchange to create a temporary key to encrypt the network key. This provides security from an MITM attack during provisioning. The device key derived from the elliptical curve is used to encrypt messages sent from the provisioner to the device.

    The provisioning process is as follows:

    
      	An unprovisioned device broadcasts a mesh beacon advertising packet.

      	The provisioner sends an invitation to the device. The unprovisioned device responds with a provisioning capabilities PDU.

      	The provisioner and device exchange public keys.

      	The unprovisioned device outputs a random number to the user. The user enters the digits (or identity) into the provisioner, and a cryptographic exchange starts to complete the authentication phase.

      	A session key is derived by each of the two devices from the private key and the exchanged public keys. The session key is used to secure the data needed to complete the provisioning process, including securing the NetKey.

    

    
      	The device changes state from an unprovisioned device to a node and is now in possession of the NetKey, a unicast address, and a mesh security parameter called the IV index.

    

    Bluetooth 5.1 technology

    In January of 2019, the Bluetooth SIG presented the first update to the 5.0 specification: Bluetooth 5.1. Major enhancements included specific features for location tracking, advertising, and faster provisioning. Specific new features in the specification include:

    
      	Three-dimensional direction finding

      	GATT caching enhancements

      	Randomizing advertising channel indices

      	Periodic advertising sync transfers

      	A myriad of feature enhancements

    

    Bluetooth 5.1 direction finding

    A significant new ability in Bluetooth 5.1 is the ability to locate objects with a high degree of precision. This technology would be used where GPS is unavailable or impractical. For example, a museum could use directional beacons within large exhibit halls to guide patrons and also point them to or have them face exhibits of interest. These uses cases fall under real-time locating systems (RTLSes) and indoor positioning systems (IPSes). In previous Bluetooth designs (as well as other wireless protocols), proximity and positioning solutions were derived simply based on an object's RSSI signal strength. The further a receiver was from a transmitter, the lower the RSSI level. From this a derived form of distance could be generated. However, this had a high degree of inaccuracy and was subject to environmental conditions such as signal changes penetrating various barriers.

    Whereas previous Bluetooth versions provided roughly meter-level proximity tracking, Bluetooth 5.1 allows for near centimeter-level accuracy and tracking. In Bluetooth 5.1, two different methods can be used to derive distance and angle with a very high degree of accuracy. The two methods are:

    
      	Angle of arrival (AoA): A device (for example, a smart tag) transmits a specific direction-finding packet via a single antenna while a receiving device will collect the signal through an antenna array. This is primarily useful for RTLSes.

      	Angle of departure (AoD): A device (for example, beacon or IPS) uses its antenna array to transmit a specific packet to a receiving device (smartphone) where the signal is processed to determine the transmission coordinates. This is primarily useful for indoor wayfinding.
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    Figure 17: Bluetooth 5.1 positioning modes of operation: AoA and AoD

    In AoA cases, a receiver will utilize a linear array of antennas. If the transmitter broadcasts a signal in the same normal plane as the linear array, each antenna in the receiving system will see the same signal in the same phase. However, if the transmission angle is offset by some degree, the receiving antenna will each see the signal in a different phase. This is how the incident angle can be derived. 

    The antenna for this Bluetooth application would be a uniform linear array (ULA) or a uniform rectangular array (URA). The difference is that the linear array is a single straight line of antennas along a plane, whereas the rectangular array is a two-dimensional grid. The ULA can only measure a single incident angle (azimuth), while the URA can measure both the elevation and azimuth angles of a signal. URA systems can also be constructed to track and entire three-dimensional space by using an additional array to complete the x, y, and z axes. In general, the maximum distance between two antennas is half a wavelength. In Bluetooth, the carrier frequency is 2.4 GHz, while the speed of light is 300,000 km/s. This implies the wavelength is 0.125 m and that the maximum antenna separation is 0.0625 m.

    
      Note: There are considerable challenges in constructing a multidimensional antenna array. Antennas in close proximity to each other will attempt to affect each other through a process called mutual coupling. This is an electromagnetic effect in that a close antenna will absorb the energy from neighbors. This in turn decreases the amount of energy transmitted to the intended receiver and causes inefficiencies as well as scan blindness. Scan blindness creates nearly complete blind spots at certain angles from the transmitting array. Care must be taken to qualify the antenna source.

    

    In Bluetooth direction tracking, each antenna in the array is sampled in series. The order they are sampled is finely tuned the design of the antenna array. The IQ data captured is then passed up the traditional BLE stack through the HCI. Bluetooth 5.1 has changed the link layer and HCI to support a new field called the constant tone extension (CTE). CTE is a stream of logical "1" presented on the carrier signal. This presents itself as a logical 250 kHz wave upon the Bluetooth carrier signal. Since the CTE exists at the end of normal packets, it can be used simultaneously with normal advertising and BLE messages. The following graphic illustrates how and where CTE information is embedded within the existing Bluetooth advertising packet.

    
      The CTE message can only be used for Bluetooth systems not using an encoded PHY. Thus, long range modes of Bluetooth 5 are not supported for position tracking.
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    Figure 18: CTE packet structure. Note the CP bit within the header field must be enabled to use CTE structures. Details of the CTE reside in the CTE Info.

    The theory of operation is as follows. The phase difference between the two antennas is proportional to the difference between their respective distances from a transmitter. The path lengths are dependent on the direction of travel of the incoming signal. The measurement starts by sending the CTE constant tone signal (with no modulation or phase shifting). This allows enough time for the receiver to synchronize with the transmitter. The receiver samples retrieved from the array are called IQ-samples for "In-phase" and "Quadrature-phase." This pair is considered a complex value of phase and amplitude. It then stores the IQ samples and processes them in the HCI.
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    Figure 19: The received signal for two antennas will differ by a phase difference ([image: ]). This difference is proportional to the respective distances for each receiving antenna to the transmitting source.

    Another way to think about the phase difference is using polar coordinates as shown in the following figure. Because we are measuring the phase 2 signals or more signals (most likely many signals in modern antenna arrays), we must turn off all forms of phase shifting modulation for Bluetooth.
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    Figure 20: The received signal for two antennas will differ by a phase difference ([image: ]). Here d is the distance between antennas. The incoming angle that must be derived is [image: ]. This difference is proportional to the respective distances for the receiving antennas to the transmitting source.

    The positioning algorithm is executed within the HCI to determine phase angle. Bluetooth 5.1 does not define a specific angle estimation algorithm to use. The most basic algorithm to determine the angle of arrival, [image: ], based on the difference of phase [image: ] is through simple trigonometry. Since we know the distances of antennas in our array, we can derive the AoA by first calculating the phase difference:
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    And then resolving the angle:
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    While this method works, it has fundamental limitations. First, it works for only a single incoming signal. Bluetooth can make use of multipath scenarios, and this simple angle formula wouldn't compensate well. Additionally, this algorithm can be easily subject to noise.

    Other more advanced proximity and angle estimation algorithms to consider in the HCI layer are:

    
      
        
        
        
      
      
        
          	
            Technique
          
          	
            Theory of Operation
          
          	
            Quality
          
        

        
          	
            Classical beamforming

          
          	
            Beamforming algorithms use multiple antennas and adjust their respective signal weights through a steering vector a.

            [image: ]

            Here x is the collection of IQ samples, s is the signal, and n is the noise.

          
          	
            Poor accuracy.

          
        

        
          	
            Bartlett beamforming

          
          	
            Magnifies signals from certain directions by adjusting phase shift.

          
          	
            Low resolution when resolving multiple sources.

          
        

        
          	
            Minimum variance distortionless response

          
          	
            Attempts to maintain the target signal direction while minimizing signals from other directions.

          
          	
            Resolves better than the Bartlett method.

          
        

        
          	
            Spatial smoothing

          
          	
            Resolves multipath issues and can be used in conjunction with subspace algorithms like MUSIC.

          
          	
            Has a tendency to reduce the covariance matrix and therefore reduce the accuracy.

          
        

        
          	
            Multiple signal classification (MUSIC)

          
          	
            Subspace estimator that uses eigen decomposition on a covariance matrix.

            The algorithm will loop through all [image: ] to find the maximum value or peak – this is the desired direction.

          
          	
            Computationally the most complex but produces significant accuracy in direction tracking. It also requires a number of parameters to be known in advance.

            This can be problematic indoors or where multipath effects are prevalent.

          
        

        
          	
            Estimation of signal parameters via rotational invariant techniques (ESPRIT)

          
          	
            Adjusts the steering vector based on the fact that one element is in constant phase shift from an earlier element.

          
          	
            Even great computational load than MUSIC.

          
        

      
    

    ESPRIT and MUSIC are called subspace algorithms because they attempt to decompose the received signals into a "signal space" and a "noise space." Subspace algorithms are generally more accurate than beamforming algorithms but are also computationally heavy.

    
      These advanced angle resolution algorithms are extremely computationally expensive in terms of CPU resources and memory. From an IoT perspective, you should not expect that these algorithms would run on far edge devices and sensors, especially power-constrained battery-based devices. Rather, substantial edge computing devices with sufficient floating-point processing would be necessary to run these algorithms.

    

    Bluetooth 5.1 GATT caching

    A new feature in Bluetooth 5.1 is GATT caching, which attempts to better optimize the BLE service attachment performance. We learned that the GATT is queried during the service discovery phase of BLE provisioning. Many devices will never change their GATT profile, which typically consists of services, characteristics and descriptors. For example, a client Bluetooth thermal sensor probably will never change its characteristics, describing the type of values that can be queried on the device.

    Bluetooth 4.0 introduced the Service Change Indication feature. This feature allows clients that had cached GATT information of a device to set a characteristic flag (Service Changed) to force a server to report any changes in its GATT structure. This has several issues:

    
      	Each server would need to maintain storage information of every server it connected to and whether it had informed that server via the Service Change Indication that its GATT characteristics have changed. This placed storage burdens on small embedded IoT devices.

      	The Service Change feature only worked with devices that have already bonded. This rule in the previous specification caused unnecessary energy consumption and user experience issues for various devices.

      	There could be a race condition. For example, after connecting to a server, a client could time-out waiting for a Service Change notification. The client would then proceed to send regular ATT PDUs as normal but later receive a Service Change Indication from the server.

    

    GATT caching in Bluetooth 5.1 allows clients to skip the service discovery phase when nothing has changed in the GATT. This improves the speed and energy consumption as well as eliminate potential race conditions. Untrusted devices that have not previously bonded may now cache attribute tables across connections.

    To use this feature, two Generic Attribute Service members are used: Database Hash and Client Support Features. The Database Hash is a standard 128-bit AES-CMAC hash constructed from the server's attribute table. Upon establishing a connection, a client must immediately read and cache the hash value. If the server ever changes its characteristics (therefore generating a new hash), the client will recognize the difference. The client in this case most likely has more resources and storage than small IoT endpoints to store many hash values for a variety of trusted and untrusted devices. The client has the ability to recognize that it has previously connected to the device and the attributes are unchanged; therefore, it can skip service discovery. This offers a significant improvement in energy consumption and time to establish connections than previous architectures.

    The Client Support Features allow for a technique called Robust Caching. The system can now be in one of two states: change-aware and change-unaware. If Robust Caching is enabled, then the server that has visibility to these states can send a "database out-of-sync error" in response to any GATT operation. This informs the client that the database is out of date. The client will ignore all ATT commands received while the client believes the server is in a change-unaware state. If the client performs a service discovery and updates its tables and Database Hash, it can then send a Service Changed Indication, and the client will transition to a change-aware state. This is similar to the older Service Change Indication but eliminates the possibility of a race condition.

    Bluetooth 5.1 randomized advertising channel indexing

    BLE utilizes channels 37 (2402 MHz), 38 (2426 MHz), and 39 (2480 MHz) for advertising messages. In Bluetooth 5.0 and previous protocols, advertising messages rotate through these channels in a strict order when all the channels are in use. This often will lead to packet collisions when two or more devices are in the same proximity. As more devices enter the Bluetooth field, more collisions will occur. This will waste energy and degrade performance. To remedy this, Bluetooth 5.1 allows for advertising indices to be selected at random but follows a pattern of six potential orders: 

    
      	Channel 37 --> Channel 38 --> Channel 39

      	Channel 37 --> Channel 39 --> Channel 38

      	Channel 38 --> Channel 37 --> Channel 39

      	Channel 38 --> Channel 39 --> Channel 37

      	Channel 39 --> Channel 37 --> Channel 38

      	Channel 39 --> Channel 38 --> Channel 37

    

    The following figures show the difference between previous Bluetooth strict order advertising and Bluetooth 5.1 randomized advertising processes:
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    Figure 21: Legacy advertising process. Note the strict channel ordering 37 à 38 à 39. In a congested Bluetooth PAN, this has the potential to cause collisions.
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    Figure 22: Bluetooth 5.1 randomized advertising channel indexing

    Bluetooth 5.1 periodic advertising sync transfer

    As mentioned in the last section, all advertising messages transpire on channels 37, 38, and 39. Advertising event windows are separated from each other by a pseudorandom (advDelay) value of 0 ms to 10 ms. This assists with collision avoidance, but it is restrictive for a variety of applications. However, this complicates the roles of the scanning system that must by synchronized with advertisements being broadcast.
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    Figure 23: Legacy Bluetooth advertising: The advertising interval (advInterval) is always an integer multiple of 0.625 ms and will range from 20 ms to 10,485.759375 s. The delay between advertising events (advDelay) is a pseudo-random value ranging from 0 ms to 10 ms. The random gap between successive advertising events assists in collision avoidance but complicates the role of the scanner, which must attempt to synchronize with the random timing of packets being delivered.

    With periodic advertising, a device can specify a predefined interval that the scanning host can synchronize to. This is accomplished using extended advertising packets. This method of synchronized advertising can have substantial power savings benefits for energy constrained devices by allowing the advertiser (as well as the scanner) to sleep and wake up at set intervals to send and receive advertising messages. 
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    Figure 24: Enabling periodic advertising starts by using primary advertising channels and transmitting ADV_EXT_IND messages. This informs the scanner which PHY and secondary channel will be used for communication. The advertising device will then send information such as the channel map and the desired interval of messages. This predefined interval will then be fixed and used by the scanner to synchronize with the advertiser.

    Periodic advertising has a beneficial role in many use cases, but some power constrained devices may not have the resources capable of supporting frequent advertising. A feature called periodic advertising sync transfer (PAST) allows another proxy device that is not power- or resource-constrained to perform all the synchronization work and then pass the synchronization details to the constrained devices. A typical use case may be a smartphone that acts as a proxy for a paired smartwatch. If the phone (scanner) receives advertisements from a beacon, it can transmit data received from periodic AUX_SYNC_IND packets to the smartwatch. Since the watch most likely is more energy-constrained than the smartphone, the watch will only receive select advertising information.

    A new link layer control message called LL_PERIODIC_SYNC_IND has been created in Bluetooth 5.1 to allow for the smartphone to transfer advertising messages to the smartwatch without the need of the watch to be constantly scanning for advertising messages. Without PAST, the smartwatch would consume extra energy to receive periodic advertisements.
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    Figure 25: An example of using PAST. In this case, an energy-constrained device (smartwatch or wearable) has paired to a smartphone. Both receive periodic advertisements from an IoT temperature sensor and this is suboptimal in terms of system energy efficiency. The system on the right makes use of the LL_PERIODIC_SYNC_ADV allowing the wearable to request advertising synchronization from the smartphone. The smartphone in this case is a proxy for advertising messages that the wearable may want to use.

    Bluetooth 5.1 minor enhancements

    A number of additional issues and small features were added to the Bluetooth 5.1 design:

    
      	HCI support for debug keys in LE secure connections. When Bluetooth is using a secure Diffie-Hellman key protocol to establish secure communication, it is impossible to obtain the shared key and use it for the purpose of debugging, qualification, or development work. This change allows LE secure connections to work with Diffie-Hellman protocols by adding an HCI command to inform the host to use debug key values.

      

      	Sleep clock accuracy update mechanism. Normally when connections are established, a master device informs a slave of the accuracy of its internal clock using the sleep clock accuracy (SCA) field. If the master is connected to several devices, it may be required to change its clock accuracy. Previously a host had no way to inform the attached devices that the clock accuracy had changed. A new link layer message called LL_CLOCK_ACCURACY_REQ can be transmitted to connected devices to allow them to adjust the clock in sync with the master. This can lower system power.

      	Use of the AdvDataInfo (ADI) field in scan response data. This is a legacy defect exposed in extended advertising of Bluetooth 5.0. This field was not used in scan responses in Bluetooth 5.0 but is corrected in 5.1.

      	Interaction between QoS and flow specification. This is a legacy BR/EDR enhancement and clarification of rules.

      	Host channel classification for secondary advertising. Secondary advertising channels can now be classified as "bad" through the HCI command LE_Set_Host_Channel_Classification.

      	Allowance for advertising Set IDs (SIDs) to appear in scan response reports. These are used in extended advertising fields of Bluetooth 5.0 but never appeared in scan responses.

    

    IEEE 802.15.4

    The IEEE 802.15.4 is a standard WPAN defined by the IEEE 802.15 working group. The model was ratified in 2003 and forms the basis of many other protocols including Thread (covered later), Zigbee (covered later in this chapter), WirelessHART, and others.

    802.15.4 only defines the bottom portion (PHY and data link layer) of the stack and not the upper layers. It is up to other consortiums and working groups to build a full network solution. The goal of 802.15.4 and the protocols that sit on it is a low-cost WPAN with low power consumption. The latest specification is the IEEE 802.15.4e specification ratified on February 6, 2012, which is the version we will discuss in this chapter.

    IEEE 802.15.4 architecture

    The IEEE 802.15.4 protocol operates in the unlicensed spectrum in three different radio frequency bands: 868 MHz, 915 MHz, and 2400 MHz. The intent is to have as wide a geographical footprint as possible, which implies three different bands and multiple modulation techniques. While the lower frequencies allow 802.15 to have fewer issues with RF interference or range, the 2.4 GHz band is by far the most often used 802.15.4 band worldwide. The higher frequency band has gained its popularity because the higher speed allows for shorter duty cycles on transmitting and receiving, thus conserving power.

    The other factor that has made the 2.4 GHz band popular is its acceptance in the market due to the popularity of Bluetooth. The following table lists various modulation techniques, geographical areas, and data rates for various 802.15.4 bands.

    
      
        
        
        
        
        
      
      
        
          	
            Frequency range (MHz)
          
          	
            Channel numbers
          
          	
            Modulation
          
          	
            Data rate (Kbps)
          
          	
            Region
          
        

        
          	
            868.3

          
          	
            1 channel: 0

          
          	
            BPSK

            O-QPSK ASK

          
          	
            20

            100

            250

          
          	
            Europe

          
        

        
          	
            902-928

          
          	
            10 channels: 1-10

          
          	
            BPSK

            O-QPSK ASK

          
          	
            40

            250

            250

          
          	
            North America, Australia

          
        

        
          	
            2405-2480

          
          	
            16 channels: 11-26

          
          	
            O-QPSK

          
          	
            250

          
          	
            Worldwide

          
        

      
    

    The typical range of an 802.15.4-based protocol is roughly 200 meters in an open-air, line-of-sight test. Indoors, the typical range is roughly 30 m. Higher power transceivers (15 dBm) or mesh networking can be used to extend the range. The following graphic shows the three bands used by 802.15.4 and the frequency distribution.
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    Figure 26: IEEE 802.15.4 bands and frequency allocations: the 915 MHz band uses a 2 MHz frequency separation and the 2.4GHz band uses a 5 MHz frequency separation

    To manage a shared frequency space, 802.15.4 and most other wireless protocols use some form of carrier sense multiple access with collision avoidance (CSMA/CA). Since it is impossible to listen to a channel while transmitting on the same channel, collision detection schemes don't work; therefore, we use collision avoidance. CSMA/CA simply listens to a specific channel for a predetermined amount of time. If the channel is sensed to be "idle," then it transmits by first sending a signal telling all other transmitters the channel is busy. If the channel is busy, then the transmission is deferred for a random period of time. In a closed environment, CSMA/CA will provide 36 percent channel usage; however, in real-world scenarios, only 18 percent of the channels will be usable.

    The IEEE 802.15.4 group defines the operational transmit power to be capable of at least 3 dBm and the receiver sensitivity to be -85 dBm at 2.4 GHz and -91 dBm at 868/915 MHz. Typically, this implies a 15 mA to 30 mA current for transmission and a 18 mA to 37 mA current for the reception.

    The data rate as state peaks at 250 kbps using the offset quadrature phase shift key.

    The protocol stack only consists of the bottom two layers of the OSI model (PHY and MAC). The PHY is responsible for symbol encoding, bit modulation, bit demodulation, and packet synchronization. It also performs transmit-receiving mode switching and intra-packet timing/acknowledgment delay control. Shown in the following figure is the 802.15.4 protocol stack as a comparison to the OSI model.
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    Figure 27: IEEE 802.15.4 protocol stack: Only PHY and MAC layers are deﬁned; other standards and organizations are free to incorporate layers 3 to 7 above the PHY and MAC

    On top of the physical layer is the data link layer responsible for detecting and correcting errors on the physical link. This layer also controls the media access control (MAC) layer to handle collision avoidance using protocols such as CSMA/CA. The MAC layer is typically implemented in software and runs on a microcontroller (MCU) such as the popular ARM Cortex M3 or even an 8-bit ATmega core. There are a few silicon vendors that have incorporated the MAC in pure silicon, such as Microchip Technology Inc.

    The interface from the MAC to the upper layers of the stack are provided through two interfaces called the Service Access Points (SAPs):

    
      	MAC-SAP: For data management

      	MLME-SAP: For control and monitoring (MAC layer management entity)

    

    There are two types of communication in IEEE 802.15.4: beacon and beaconless communication.

    For a beacon-based network, the MAC layer can generate beacons that allow a device to enter a PAN as well as provide timing events for a device to enter a channel to communicate. The beacon is also used for battery-based devices that are normally sleeping. The device wakes on a periodic timer and listens for a beacon from its neighbors. If a beacon is heard, it begins a phase called a SuperFrame interval where time slots are pre-allocated to guarantee bandwidth to devices, and devices can call for a neighbor node attention. The SuperFrame interval (SO) and beacon interval (BO) are fully controllable by the PAN coordinator. The SuperFrame is divided into 16 equally sized time slots with one dedicated as the beacon of that SuperFrame. Slotted CSMA/CA channel access is used in beacon-based networks.

    The guaranteed time slots (GTSes) can be assigned to specific devices preventing any form of contention. Up to seven GTS domains are allowed. The GTS slots are allocated by the PAN coordinator and announced in the beacon it broadcasts. The PAN coordinator can change the GTS allocations on the fly dynamically based on system load, requirements, and capacity. The GTS direction (transmit or receive) is predetermined before the GTS starts. A device may request one transmit and/or one receive GTS.

    The SuperFrame has contention access periods (CAPs) where there is crosstalk on the channel and contention free periods (CFPs) where the frame can be used for transmission and GTSes. The following figure illustrates a SuperFrame consisting of 16 equal time slots bounded by beacon signals (one of which must be a beacon). A contention free period will be further divided into GTSes, and one or more windows (GTSWs) may be allocated to a particular device. No other device may use that channel during a GTS.
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    Figure 28: IEEE 802.15.4 SuperFrame sequence

    In addition to beacon-based networking, IEEE 802.15.4 allows for beacon-less networking. This is a much simpler scheme where no beacon frame is transmitted by the PAN coordinator. It implies, however, that all nodes are in a receiving mode all the time. This provides full-time contention access through the use of unslotted CSMA/CA. A transmitting node will perform a clear channel assessment (CCA) in which it listens to the channel to detect if it's used and then transmit if clear. CCA is part of a CSMA/CA algorithm and is used to "sense" whether a channel is used. A device can receive access to a channel if it is clear of other traffic from other devices (including non-802.15.4 devices). In the event a channel is busy, the algorithm enters a "back-off" algorithm and waits a random amount of time to retry the CCA. The IEEE 802.15.4 group speciﬁes the following for CCA usage:

    
      	CCA mode 1: Energy above threshold (lowest). The CCA will report a busy medium on detecting any energy greater than a threshold value (ED).

      	CCA mode 2: Carrier sense only (medium – default). This mode causes CCA to report a busy medium only if a direct-sequence spread spectrum (DSSS) signal is detected. The signal may be above or below the ED threshold.

      	CCA mode 3: Carrier sense with energy above threshold (strongest). In this mode, the CCA reports busy if it detects a DSSS signal with an energy above the ED threshold.

      	CCA mode 4: A carrier sense detection mode with a timer. The CCA starts a timer of some number of milliseconds and will report busy only if it detects a high-rate PHY signal. CCA will report the medium is idle if the timer expires and no high-rate signal is observed.

      	CCA Mode 5: A combination of carrier sense and energy above a threshold mode.

    

    Note regarding CCA modes:

    
      	Energy detection will be at most 10 dB above specified receiver sensitivity. CCA detection time will equal eight symbol periods.

      	It should be noted that CCA modes that are based on energy detection consume the least amount of energy for the device.

    

    This mode will consume much more power than beacon-based communication.

    IEEE 802.15.4 topology

    There are two fundamental device types in IEEE 802.15.4:

    
      	Full function device (FFD): Supports any network topology, can be a network (PAN) coordinator, and can communicate to any device PAN coordinator

      	Reduced function device (RFD): Limited to only a star topology, cannot perform as a network coordinator, and can only communicate with a network coordinator

    

    The star topology is the simplest but requires all messages between peer nodes to travel through the PAN coordinator for routing. A peer-to-peer topology is a typical mesh and can communicate directly with neighbor nodes. Building more complicated networks and topologies is the duty of the higher-level protocols, which we will discuss in the Zigbee section.

    The PAN coordinator has a unique role that is to set up and manage the PAN. It also has the duty of transmitting network beacons and storing node information. Unlike sensors that may use battery or energy harvesting power sources, the PAN coordinator is constantly receiving transmissions and is usually on a dedicated power line (wall power). The PAN coordinator is always an FFD.

    The RFD or even low-power FFDs can by-battery based. Their role is to search for available networks and transfer data as necessary. These devices can be put into a sleep state for very long periods of time. The following figure is a diagram of a star versus peer-to-peer topology.
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    Figure 29: IEEE 802.15.4 guidance on network topologies. Implementer of 802.15.4 is free to build other network topologies.

    Within the PAN, broadcast messages are allowed. To broadcast to the entire fabric, one only needs to specify the PAN ID of 0xFFFF.

    IEEE 802.15.4 address modes and packet structure

    The standard dictates that all addresses are based on unique 64-bit values (IEEE address or MAC address). However, to conserve bandwidth and reduce the energy of transmitting such large addresses, 802.15.4 allows a device joining a network to "trade in" its unique 64-bit address for a short 16-bit local address, allowing for more efficient transmission and lower energy.

    This trade-in process is the responsibility of the PAN coordinator. We call this 16-bit local address the PAN ID. The whole PAN network itself has a PAN identifier, as multiple PANs can exist. The following figure is a diagram of the 802.15.4 packet structure.
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    Figure 30: IEEE 802.15.4 PHY and MAC packet encoding

    Frames are the basic unit of data transport, and there are four fundamental types (some of the underlying concepts were covered in the last section):

    
      	Data frame: Application data transport

      	Acknowledgement frame: Confirmation of reception

      	Beacon frame: Sent by the PAN coordinator to set up a SuperFrame structure

      	MAC command frame: MAC layer management (associate, disassociate, beacon request, GTS request)

    

    IEEE 802.15.4 start-up sequence

    IEEE 802.15.4 maintains a process for startup, network configuration, and joining of existing networks. The process is as follows:

    
      	A device initializes its stack (PHY and MAC layers).

      	A PAN coordinator is created. Each network has only one PAN coordinator. The PAN coordinator must be assigned at this phase before proceeding.

      	The PAN coordinator will listen to other networks it has access to and derives a PAN ID that is unique to the PAN it will administer. It can do this over multiple frequency channels.

      	The PAN coordinator will choose a specific radio frequency to use for the network. It will do this using an energy detection scan where it scans the frequencies the PHY can support and listens to find a quiescent channel.

      	The network will be started by configuring the PAN coordinator and then starting the device in coordinator mode. At this point, the PAN coordinator can accept requests.

      	Nodes can join the network by finding the PAN coordinator using an active channel scan where it broadcasts a beacon request across all its frequency channels. When the PAN coordinator detects the beacon, it will respond back to the requesting device. Alternatively, in a beacon-based network (detailed earlier), the PAN coordinator will routinely send out a beacon, and the device can perform a passive channel scan and listen for the beacon. The device will then send an association request.

    

    
      	The PAN coordinator will determine if the device should or can join the network. This could be based on access control rules, or even if the PAN coordinator has enough resources to manage another device. If accepted, the PAN coordinator will assign a 16-bit short address to the device.

    

    IEEE 802.15.4 security

    The IEEE 802.15.4 standard includes security provisions in the form of encryption and authentication. The architect has flexibility in the security of the network based on cost, performance, security, and power. The different security suites are listed in the following table.

    AES-based encryption uses a block cipher with a counter mode. The AES-CBC-MAC provides authentication-only protection, and the AES-CCM mode provides the full suite of encryption and authentication. The 802.15.4 radios provide an access control list (ACL) to control which security suite and keys to use. Devices can store up to 255 ACL entries.

    The MAC layer also computes "freshness checks" between successive repetitions to ensure old frames or old data are no longer considered valid and will stop those frames from proceeding up the stack.

    Each 802.15.4 transceiver must manage its own ACL and populate it with a list of "trusted neighbors" along with the security policies. The ACL includes the address of the node cleared to communicate with, the particular security suite to use (AES-CTR, AES-CCM-xx, AES-CBC-MAC-xx), the key for the AES algorithm, and the last initial vector (IV) and replay counter.

    The following table lists the various 802.15.4 security modes and features.
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    Symmetric cryptography relies on both endpoints using the same key. Keys can be managed at a network level using a shared network key. This is a simple approach where all nodes possess the same key but are at risk of insider attacks. A pairwise keying scheme could be used where unique keys are shared between each pair of nodes. This mode adds overhead, especially for networks where there is a high fan out from nodes to neighbors. Group keying is another option. In this mode, a single key is shared among a set of nodes and is used for any two nodes of the group. Groups are based on device similarities, geographies, and so on. Finally, a hybrid approach is possible, combining any of the three schemes mentioned.

    Zigbee

    Zigbee is a WPAN protocol based on the IEEE 802.15.4 foundation targeted for commercial and residential IoT networking that is constrained by cost, power, and space. This section details the Zigbee protocol from a hardware and software point of view. Zigbee got its name from the concept of a bee flying. As a bee flies back and forth between flowers gathering pollen, it resembles a packet flowing through a mesh network – device to device.

    Zigbee history

    The concept of low-power wireless mesh networking became standard in the 1990s, and the Zigbee Alliance was formed to address this charter in 2002. The Zigbee protocol was conceived after the ratification of IEEE 802.15.4 in 2004. That became the IEEE 802.15.4.-2003 standard on December 14, 2004. Specification 1.0, also known as the Zigbee 2004 Specification, was brought public on June 13, 2005. The history can be profiled as follows:

    
      	2005: Zigbee 2004 released

      	2006: Zigbee 2006 released

      	2007: Zigbee 2007 released, also known as Zigbee Pro (introduced cluster libraries, some backward compatibility constraints with Zigbee 2004 and 2006)

    

    The alliance's relation to the IEEE 802.15.4 working group is similar to the IEEE 802.11 working group and the Wi-Fi Alliance. The Zigbee Alliance maintains and publishes standards for the protocol, organizes working groups, and manages the list of application profiles. The IEEE 802.15.4 defines the PHY and MAC layers, but nothing more.

    Additionally, 802.15.4 doesn't specify anything about multi-hop communications or application space. That is where Zigbee (and other standards built on 802.15.4) comes into play.

    Zigbee is proprietary and a closed standard. It requires a licensing fee and agreement provided by the Zigbee Alliance. Licensing grants the bearer Zigbee compliance and logo certification. It guarantees interoperability with other Zigbee devices.

    Zigbee overview

    Zigbee is based on the 802.15.4 protocol but layers additional network services on top that make it more akin to TCP/IP. This allows Zigbee to form networks, discover devices, provide security, and manage the network. It does not provide data transport services or an application execution environment. Because it is essentially a mesh network, it is self-healing and ad hoc in form. Additionally, Zigbee prides itself on simplicity and claims a 50 percent reduction in software support by using a lightweight protocol stack.

    There are three principal components in a Zigbee network:

    
      	Zigbee controller (ZC): This is a highly capable device on a Zigbee network that is used to form and initiate network functions. Each Zigbee network will have a single ZC that fulfills the role of an 802.15.4 2003 PAN coordinator (FFD). After the network is formed, the ZC can behave as a ZR (Zigbee router). It can assign logical network addresses and permit nodes to join or leave the mesh.

      	Zigbee router (ZR): This component is optional but handles some of a load of mesh network hopping and routing coordination. It too can fulfill the role of an FFD and has an association with the ZC. A ZR participates in multi-hop routing of messages and can assign logical network addresses and permit nodes to join or leave the mesh.

      	Zigbee end device (ZED): This is usually a simple endpoint device such as a light switch or thermostat. It contains enough functionality to communicate with the coordinator. It has no routing logic; therefore, any messages arriving at a ZED that are not targeted to that end device are simply relayed. It also cannot perform associations (detailed later in this chapter).

    

    Zigbee targets three different types of data traffic. Periodic data is delivered or transmitted at a rate defined by the applications (for example, sensors periodically transmitting).

    Intermittent data occurs when an application or external stimulus occurs at a random rate. A good example of intermittent data suitable for Zigbee is a light switch. The final traffic type Zigbee serves is repetitive low latency data. Zigbee allocates time slots for transmission and can have very low latency, which is suitable for a computer mouse or keyboard.

    Zigbee supports three basic topologies (shown in the following figure):

    
      	Star network: A single ZC with one or more ZEDs. It only extends two hops and is therefore limited in node distance. It also requires a reliable link with a single point of failure at the ZC.

      	Cluster tree: A multi-hop network that employs beaconing and extends the network coverage and range over a star network. ZC and ZR nodes can have children, but ZEDs remain true endpoints. Child nodes only communicate with their parent (like a small star network). A parent can communicate downstream to its children or upstream to its parent. The problem still exists with a single point of failure at the center.

      	Mesh network: Dynamic path formation and morphing. Routing can occur from any source device to any destination device. It uses tree and table-driven routing algorithms. ZC and ZR radios must be powered at all times to perform routing duties, consuming battery life. Additionally, calculating the latency in a mesh network can be difficult if not non-deterministic. In this mode, some routing rules are relaxed; however, routers within a certain range of each other can communicate between themselves directly. The main advantage is the network can grow beyond the line of sight and has multiple redundant paths.

    

    
      Zigbee, in theory, can deploy up to 65,536 ZEDs.
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    Figure 31: Three forms of Zigbee network topologies, from the simplest star network to the cluster tree to a true mesh

    Zigbee PHY and MAC (and difference from IEEE 802.15.4)

    Zigbee, like Bluetooth, operates primarily in the 2.4 GHz ISM band. Unlike Bluetooth, it also operates at 868 MHz in Europe and 915 MHz in the USA and Australia. Because of the lower frequency, it has better propensity to penetrate walls and obstacles over traditional 2.4 GHz signals. Zigbee does not use all of the IEEE 802.15.4 PHY and MAC specifications. Zigbee does make use of the CSMA/CA collision avoidance scheme. It also uses the MAC level mechanism to prevent nodes from talking over each other.

    
      Zigbee does not use the IEEE 802.15.4 beaconing modes. Additionally, the GTSes of SuperFrames are also not used in Zigbee.

    

    The security specification of 802.15.4 is slightly modified. The CCM modes that provide authentication and encryption require a different security for every layer. Zigbee is targeted for severely resource-constrained and deeply embedded systems and does not provide the level of security defined in 802.15.4.

    Zigbee is based on the IEEE 802.15.4-2003 specification before enhancements with two new PHYs and radios were standardized in the IEEE 802.15.4-2006 specification. This implies that the data rates are slightly lower than they could be in the 868 MHz and 900 MHz bands.

    Zigbee protocol stack

    The Zigbee protocol stack includes a network layer (NWK) and an application layer (APS). Additional components include a security service provider, a ZDO management plane, and a Zigbee device object (ZDO). The structure of the stack illustrates genuine simplicity over the more complex but feature-filled Bluetooth stack.
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    Figure 32: Zigbee protocol stack and the corresponding simpliﬁed OSI model as a frame of reference

    The NWK is used for all three principal Zigbee components (ZR, ZC, ZED). This layer performs device management and route discovery. Additionally, since it administers a true dynamic mesh, it is also responsible for route maintenance and healing. As the most basic function, the NWK is responsible for transferring network packets and routing messages. During the process of joining nodes to a Zigbee mesh, the NWK provides the logical network address for the ZC and secures a connection.

    The APS provides an interface between the network layer and application layer. It manages the binding table database, which is used to find the correct device depending on the service that is needed versus a service that is offered. Applications are modeled by what are termed application objects. Application objects communicate with each other through a map of object attributes called clusters. Communication between objects is created in a compressed XML file to allow for ubiquity. All devices must support a basic set of methods. A total of 240 endpoints can exist per Zigbee device.

    The APS interfaces the Zigbee device to a user. The majority of components in the Zigbee protocol reside here, including the Zigbee device object (ZDO). Endpoint 0 is called the ZDO and is a critical component that is responsible for overall device management. This includes managing keys, policies, and roles of devices. It can also discover new (one-hop-away) devices on the network and the services those devices offer. The ZDO initiates and responds to all binding requests for the device. It also establishes a secure relationship between network devices by managing the security policy and keys for the device.

    The bindings are connections between two endpoints with each binding supporting a particular application profile. Therefore, when we combine the source and a destination endpoint, the cluster ID, and profile ID, we can create a unique message between two endpoints and two devices. Bindings can be one-to-one, one-to-many, or many-to-one. An example of a binding would be multiple light switches connected to a set of light bulbs. The switch application endpoints will associate with light endpoints. The ZDO provides the binding management by associating the switch endpoints to light endpoints using application objects. Clusters can be created, allowing one switch to turn on all the lights while another switch is only able to control a single light.

    An application profile delivered by the original equipment manufacturer (OEM) will describe a collection of devices for specific functions (for example, light switches and smoke alarms). Devices within an application profile can communicate with each other through clusters. Each cluster will have a unique cluster ID to identify itself within the network.

    Zigbee addressing and packet structure

    The Zigbee protocol, as shown in the following figure, resides on top of the 802.15.4 PHY and MAC layers and reuses its packet structures. The network diverges at the network and application layers.

    The following figure illustrates breaking down one of the 802.15.4 PHY and MAC packets into the corresponding network layer frame packet (NWK) as well as the application layer frame (APS):
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    Figure 33: Zigbee network (NWK) and application layer (APS) frames residing over 802.15.4 PHY and MAC packets

    Zigbee uses two unique addresses per node:

    
      	Long address (64 bit): Assigned by the manufacturer of the device and is immutable. This uniquely identifies the Zigbee device from all other Zigbee devices. This is the same as the 802.15.4 64-bit address. The top 24 bits refer to the OUI, and the bottom 40 bits are managed by the OEM. The addresses are managed in blocks and can be purchased through IEEE.

      	Short address (16 bit): The same as the PAN ID of the 802.15.4 specification and also optional.

    

    Zigbee mesh routing

    Table routing uses AODV routing and the cluster tree algorithm. AODV is a pure on-demand routing system. In this model, nodes don't have to discover one another until there is some association between the two (for example, two nodes need to communicate). AODV also doesn't require nodes that aren't in the routing path to maintain routing information. If a source node needs to communicate to a destination and a path doesn't exist, then a path discovery process starts. AODV provides both unicast and multicast support. It is a reactive protocol; that is, it only provides a route to a destination on demand and not proactively. The entire network is silent until a connection is needed.

    The cluster tree algorithm forms a self-organizing network capable of self-repair and redundancy. Nodes in the mesh select a cluster head and create clusters around a head node. These self-forming clusters then connect to each other through a designated device.

    Zigbee has the ability to route packets in multiple manners:

    
      	Broadcasting: Transmit packet to all other nodes in the fabric.

      	Mesh routing (table routing): If a routing table for the destination exists, the route will follow the table rules accordingly. Very efficient. Zigbee will allow a mesh and table to route up to 30 hops away.

      	Tree routing: Unicast messaging from one node to another. Tree routing is purely optional and can be disallowed from the entire network. It provides better memory efficiency than mesh routing since a large routing table doesn't exist. Tree routing does not have the same connection redundancy as a mesh, however. Zigbee supports tree routing hops up to 10 nodes away.

      	Source routing: Used primarily when a data concentrator is present. This is how Z-Wave provides mesh routing.
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    Figure 34: Zigbee routing packet to issue a route request command frame and subsequent reply with a route reply command frame

    Route discovery or path discovery is the process of discovering a new route or repairing a broken route. A device will issue a route request command frame to the entire network. If and when the destination receives the command frame, it will respond with at least one route reply command frame. All the potential routes returned are inspected and evaluated to find the optimal route.

    
      Link costs that are reported during path discovery can be constant or based on the likelihood of reception.

    

    Zigbee association

    As previously mentioned, ZEDs do not participate in routing. End devices communicate with the parent, who is also a router. When a ZC allows for a new device to join a network, it enters a process known as an association. If a device loses contact with its parent, the device can at any time rejoin through the process known as orphaning.

    To formally join a Zigbee network, a beacon request is broadcast by a device to ask for subsequent beacons from devices on the mesh that are authorized to allow new nodes to join. At first, only the PAN coordinator is authorized to provide such a request; after the network has grown, other devices may participate.

    Zigbee security

    Zigbee builds off the security provisions of IEEE 802.15.4. Zigbee provides three security mechanisms: ACLs, 128-bit AES encryption, and message freshness timers.

    The Zigbee security model is distributed across several layers:

    
      	Application layer provides key creation and transport services to ZDO.

      	Network layer manages routing, and outgoing frames will use the link key defined by the routing if available; otherwise, a network key is used.

      	MAC layer security is managed through an API and controlled by the upper layers.

    

    There are multiple keys that are managed by a Zigbee network:

    
      	Master key: The master key may be preinstalled by a manufacturer or entered by a manual process with the user. It forms the basis of security of the Zigbee device. Master keys are always installed first and transmitted from the trust center.

      	Network key: This key will provide protection at a network level against outside attackers.

      	Link key: This forms a secure binding between two devices. If two devices have a choice between using installed link keys or network keys, they will always default to link keys to provide more protection.

    

    
      Link keys are resource heavy in the sense of key storage on constrained devices. Network keys can be used to alleviate some of the storage cost at the risk of decreased security.

    

    Key management is critical for security. The distribution of keys is controlled by establishing a trust center (one node to act as the distributor of keys to all other nodes in the fabric). The ZC is assumed to be the trust center. One may implement a Zigbee network with a dedicated trust center outside of the ZC. The trust center performs the following services:

    
      	Trust management: Authenticates devices joining the network

      	Network management: Maintains and distributes keys

      	Configuration management: Enables device-to-device security

    

    In addition, the trust center can be placed in a residential mode (it will not establish keys with network devices), or it can be in commercial mode (establishes keys with every device on the network).

    Zigbee uses 128-bit keys as part of its specification within the MAC and NWK layers. The MAC layer provides three modes of encryption: AES-CTR, AES-CBC-128, and AES-CCM-128 (all defined in the IEEE 802.15.4 section). The NWK layer, however, supports only AES-CCM-128 but is tweaked slightly to provide encryption-only and integrity-only protection.

    Message integrity ensures messages have not been modified in transit. This type of security tool is used for MITM attacks. Referring back to the Zigbee packet structure, the message integrity code and auxiliary header provide fields to add extra checks for each application message sent.

    Authentication is provided through a common network key and individual keys between pairs of devices.

    Message freshness timers are used to find messages that have timed out. These messages are rejected and removed from the network as a tool to control replay attacks. This applies to incoming and outgoing messages. Any time a new key is created, the freshness timers are reset.

    Z-Wave

    Z-Wave is another mesh technology in the 900 MHz band. It is a WPAN protocol used primarily for consumer and home automation, and about 2,100 products are using the technology. It has found its way into commercial and building segments in the areas of lighting and HVAC control. In terms of market share, however, Z-Wave is not at the market cap like Bluetooth or Zigbee.

    Its first manifestation was in 2001 at Zensys, a Danish company developing light control systems. Zensys formed an alliance with Leviton Manufacturing, Danfoss, and Ingersoll-Rand in 2005, formally known as the Z-Wave Alliance. The alliance acquired Sigma Designs in 2008 and Sigma is now the sole provider of Z-Wave hardware modules. Z-Wave Alliance member companies now include SmartThings, Honeywell, Belkin, Bosch, Carrier, ADT, and LG.

    Z-Wave is a closed protocol for the most part with limited hardware module manufacturers. The specification is starting to open up more in the public domain, but a substantial amount of material is not disclosed.

    Z-Wave overview

    Z-Wave's design focus is home and consumer lighting/automation. It is intended to use very low bandwidth for communication with sensors and switches. The design is based on the ITU-T G.9959 Standard at the PHY and MAC level. The ITU-T G.9959 is the International Telecommunications Union specification for short-range, narrow-band radio-communication transceivers in the sub-1 GHz band.

    There are several bands in the sub-1 GHz range that are used for Z-Wave depending on the country of origin. In the US, the 908.40 MHz center frequency is the standard. There are three data rates that Z-Wave is capable of with varying frequency spread for each:

    
      	100 Kbps: 916.0 MHz with a 400 KHz spread

      	40 Kbps: 916.0 MHz with a 300 KHz spread

      	9.6 Kbps: 908.4 MHz with a 300 KHz spread

    

    Each band operates on a single channel.

    Modulation performed at the PHY level uses frequency shift keying for data rates at 9.6 Kbps and 40 Kbps. At the fast 100 Kbps rate, Gaussian frequency shift keying is used. The output power will be roughly 1 mW at 0 dB.

    Channel contention is managed using CSMA/CA, as described in other protocols previously covered. This is managed in the MAC layer of the stack. Nodes start in receive mode and wait a period of time before transmitting data if there is data being broadcast.

    From a role and responsibility point of view, the Z-Wave network is composed of different nodes with specific functions:

    
      	Controller device: This top-level device provides the routing table for the mesh network and is the host/master of the mesh under it. There are two fundamental types of controllers:
          	Primary controller: The primary controller is the master, and only a single master can exist in a network. It has the ability to maintain the network topology and hierarchy. It also can include or exclude nodes from the topology and has the duty of allocating node IDs.

          	Secondary controller: These nodes assist a primary controller with routing.

        

      

      	Slave device/node: These devices perform actions based on commands they receive. These devices cannot communicate with neighbor slave nodes unless instructed to do so via a command. Slaves can store routing information but do not compute or update routing tables. Typically, they will act as a repeater in a mesh.

    

    Controllers can also be defined as portable and static. A portable controller is designed to move like a remote control. Once it has changed position, it will recalculate the fastest routes in the network. A static controller is intended to be fixed, such as a gateway plugged into a wall outlet. The static controller can always be "on" and receiving slave status messages.

    Controllers also can have different attributes within the network:

    
      	Status update controller (SUC): The static controller also has the advantage of taking the role of status update controller. In this case, it will receive notifications from a primary controller regarding topology changes. It also can assist in the routing of slaves.

      	SUC ID server (SIS): An SUC can also assist in including and excluding slaves for the primary.

      	Bridge controller: This essentially is a static controller that has the ability to act as a gateway between the Z-Wave mesh and other network systems (for example, WAN or Wi-Fi). The bridge is allowed to control up to 128 virtual slave nodes.

      	Installer controller: This is a portable controller that can assist in network management and QoS analysis.

    

    Slaves also support different attributes:

    
      	Routing slave: Fundamentally, this is a slave node but with the ability to send unsolicited messages to other nodes in the mesh. Typically, slaves are not allowed to send a message to another node without the command of a primary controller. The node stores a set of static routes that it uses when a message is sent.

      	Enhanced slave: These have the same abilities as a routing slave with the addition of a real-time clock and persistent storage for application data. An example might be a gas meter.

    

    
      Slave nodes/devices may be battery-based, such as a motion sensor in a home. For a slave to be a repeater, it would always have to be functional and listening for messages on the mesh. Because of this, battery-based devices are never used as repeaters.

    

    Z-Wave protocol stack

    Because Z-Wave is a very low bandwidth protocol that is intended to have a sparse network topology, the protocol stack attempts to communicate in as few bytes per message as possible. The stack consists of five layers, as shown in the following figure:
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    Figure 35: Z-Wave protocol stack and OSI model comparison: Z-Wave uses a ﬁve-layer stack with the bottom two layers (PHY and MAC) deﬁned by the ITU-T G.9959 speciﬁcation

    The layers can be described as follows:

    
      	PHY layer: Defined by the ITU-T G.9959 specification. This layer manages the signal modulation, channel assignment, and preamble binding at the transmitter and preamble synchronization at the receiver.

      	MAC layer: Manages the HomeID and NodeID fields, as defined in the previous section. The MAC layer also uses a collision avoidance algorithm and backoff strategy to alleviate congestion and contention on the channel.

      	Transfer layer: Manages the communication of Z-Wave frames. This layer is also responsible for the retransmission of frames as needed. Additional tasks include acknowledgment of transmissions and checksum binding.

      	Routing layer: Provides routing services. Additionally, the network layer will perform a topology scan and update the routing tables.

      	Application layer: Provides the user interface to applications and data.

    

    Z-Wave addressing

    Z-Wave has a fairly simple addressing mechanism compared to the Bluetooth and Zigbee protocols. The addressing scheme is kept simple because all attempts are made to minimize traffic and conserve power. There are two fundamental addressing identifiers that need definition before proceeding:

    
      	Home ID: This is a 32-bit unique identifier that is preprogrammed in controller devices to assist with identifying Z-Wave networks from each other. During network start, all Z-Wave slaves have a home ID of zero, and the controller will systematically populate the slave nodes with the correct home ID.

      	Node ID: This is an 8-bit value that is assigned to each slave by the controller and provides addressing of slaves in the Z-Wave network.
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    Figure 36: Z-Wave packet structure from PHY to MAC to the application layer. Three packet types are deﬁned as well: singlecast, routed, and multicast.

    The transport layer provides several frame types to assist with retransmission, acknowledgment, power control, and authentication. The four types of network frames include:

    
      	Singlecast frame: This is a packet sent to a single Z-Wave node. This type of packet must be followed by an acknowledgment. If the ACK doesn't occur, a retransmission sequence transpires.

      	ACK frame: This is the acknowledgment response to a singlecast frame.

      	Multicast frame: This message is transmitted to more than one node (up to 232). No acknowledgment is used for this type of message.

      	Broadcast frame: Similar to a multicast message, this frame is transmitted to all nodes in the network. Again, no ACK is used.

    

    For a new Z-Wave device to be used on the mesh, it must undergo a pairing and adding process. The process is usually started by a mechanical or user instantiated keypress on the device. As mentioned, the pairing process involves the primary controller assigning a home ID to the new node. At this point, the node is said to be included.

    Z-Wave topology and routing

    The topology of the Z-Wave mesh is shown in the following figure using some of the device types and attributes associated with slaves and controllers. A single primary controller manages the network and establishes the routing behaviors:
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    Figure 37: Z-Wave topology including the single primary controller, four slaves, and one enhanced slave. The bridge controller acts as a gateway to a Wi-Fi network. A portable controller and secondary controller also sit on the mesh for assistance to the primary controller.

    The routing layer of the Z-Wave stack manages the frame transport from one node to another. The routing layer will set up the correct repeater list if one is needed, scan the network for topology changes, and maintain the routing table. The table is fairly simple and just specifies which neighbor is connected to a given node. It only looks forward one immediate hop. The table is built by the primary controller by asking each node in the mesh what devices are reachable from its location.

    The use of source routing to navigate the mesh implies that as the message makes its way through the fabric. For every hop that receives the frame, it will forward the packet to the next node in the chain. As an example, in the following routing table, the shortest path from "Bridge" to "Slave 5" follows this logical path: Bridge | Slave 3 | Slave 2 | Slave 5.

    
      Z-Wave limits the routing hops to a maximum of four.

    

    A routing table of the preceding sample topology is given here:
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    Figure 38: Z-Wave source-routing algorithmic example

    
      Portable controllers have a challenge in maintaining an optimal routing path; therefore, portable controllers will use alternative techniques to find the best route to a destination node.

    

    Summary

    This chapter has covered the first step in delivering IoT data from devices to the Internet. The first step in connecting billions of devices is using the correct communication medium to reach sensors, objects, and actuators to cause some action. This is the role of the WPAN. We have explored the basis of the unlicensed spectrum and how as an architect we will measure the performance and behavior of a WPAN.

    The chapter went deep into the new Bluetooth 5 and Bluetooth 5.1 protocol and compared it to other standards such as the IEEE 802.15.4 basis protocol, Zigbee, and Z-Wave. We explored beaconing, various packet and protocol structures, and mesh architectures. An architect should have an understanding of how these architectures compare and contrast at this point.

    The next chapter will explore IP-based PAN and LAN networks such as the ubiquitous 802.11 Wi-Fi network, Thread, and 6LoWPAN, as well as future Wi-Fi communication standards. These networking chapters exploring WPAN, WLAN, and WAN architectures will routinely go back to the fundamentals, such as signal strength measures and range equations taught early in this chapter and should be used as a reference going forward.
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    IP-Based WPAN and WLAN

    WPAN networks have adopted protocols that are typically not Transmission Control Protocol/Internet Protocol (TCP/IP), at least from the outset. The protocol stacks for Bluetooth, Zigbee, and Z-Wave have similarities to a true TCP/IP protocol but don't inherently communicate over TCP/IP. There are adaptations of IP on Zigbee (using Zigbee-IP) and IP over Bluetooth (using IPSP to support 6LoWPAN) that do exist. Later in this chapter, we will cover an example of a WPAN using the 802.15.4 protocol with a true IPv6 (Thread) compatible layer capable of joining any IPv6 network.

    This chapter will also cover the standards around Wi-FiTM using the IEEE 802.11 protocols. While typically thought of as a wireless LAN (WLAN), 802.11 protocols are pervasive and of use in IoT deployments, especially in smart sensors and gateway hubs. This chapter will provide a formal treatment of the 802.11 Wi-Fi catalog of standards including the new IEEE802.11ac high-speed protocol. 802.11 also extends into the world of IoT for the vehicle-to-vehicle and transportation market using the 802.11p protocol, which will also be covered. Finally, this chapter will explore the IEEE 802.11ah specification, which is a wireless LAN solution built on the 802.11 protocol but targeted explicitly for power and cost-constrained IoT sensor devices.

    The following topics will be covered in the chapter:

    
      	TCP/IP

      	WPAN with IP – 6LoWPAN

      	WPAN with IP – Thread

      	IEEE 802.11 protocols and WLAN

    

    TCP/IP

    Supporting an IP layer in a protocol stack does consume resources that could be applied elsewhere. However, there are key benefits in building an IoT system that allows devices to communicate over TCP/IP. We will begin by enumerating these benefits; however, it is the role of the architect to balance the cost of these services and features against the impact on a system.

    From an ecosystem point of view, regardless of the protocol used at a sensor level, the sensor data will ultimately be fed into a public, private, or hybrid cloud for analysis, control, or monitoring. Outside of the WPAN, the world is TCP/IP-based, as we see in WLAN and WAN configurations.

    IP is the standard form of global communication for various reasons:

    
      	Ubiquity: IP stacks are provided by nearly every operating system and every medium. IP communication protocols are capable of running on various WPAN systems, cellular, copper wire, fiber-optic, PCI Express, and satellite systems. IP specifies the exact format for all data communications and the rules used to communicate, acknowledge, and manage connectivity.

      	Longevity: TCP was established in 1974, and the IPv4 standard still in use today was designed in 1978. It has withstood the test of time for 40 years. Longevity is paramount for many industrial and field IoT solutions that must support devices and systems for decades. Various other proprietary protocols have been designed by various manufacturers in those 40 years, such as AppleTalk, SNA, DECnet, and Novell IPX, but none have gained the market traction that IP has.

      	Standards-based: TCP/IP is governed by the Internet Engineering Task Force (IETF). The IETF maintains a set of open standards focused on the Internet protocol.

      	Scalability: IP has demonstrated scale and adoption. IP networks have demonstrated massive scaling to billions of users and many more devices. IPv6 could provide a unique IP address to every atom comprising Earth and still support 100 more worlds.

      	Reliability: IP at its heart is a reliable protocol for data transmission. It accomplishes this through a packet delivery system based on a connectionless network. IP is connectionless because each packet is treated independently from one another. The data delivery is also referred to as best-effort delivery because all attempts will be made to transmit a packet through various routes. The strength of this model allows an architect to replace the delivery mechanism with another—essentially replacing layers one and two of the stack with something else (for example, Wi-Fi with cellular).

      	Manageability: Various tools exist to manage IP networks and devices on an IP network. Modeling tools, network sniffers, diagnostic tools, and various appliances exist to assist in building, scaling, and maintaining networks.

    

    The transport layer is also worth considering. While IP addresses the need for a well-supported and robust network layer, TCP and Universal Datagram Protocol (UDP) are needed for the transport layer. The transport layer is responsible for end-to-end communication. The logical communication between different hosts and various network components is governed at this level. TCP is used for connection-oriented transmissions, whereas UDP is used for connectionless transmissions. UDP is naturally much simpler to implement than TCP, but not as resilient. Both services provide segment reordering as packets are not guaranteed to be delivered in order using an IP protocol. TCP also provides the layer of reliability to an unreliable IP network layer through the use of acknowledgment messages and retransmissions of lost messages. Additionally, TCP provides flow control using sliding windows and congestion avoidance algorithms. UDP provides a lightweight, high-speed method to broadcast data to various devices that may or may not be present or reliable.

    The following is the standard seven-layer Open Source Interconnection (OSI) model stack:
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    Figure 1: Full seven-layer OSI model. TCP/IP represent layers 3 and 4.

    The OSI stack provides a reference to how many protocols are built layer upon layer. The model starts at layer 1, which is usually a physical entity like a network port or physical interface (PHY). Each layer adds various headers and footers that surround a packet. This process continues up the stack as a larger and larger packet structure grows as headers and footers are appended.

    From an IoT perspective, bringing IP close to the source of data bridges two worlds of data management. The information technology (IT) role manages the infrastructure, security, and provisioning of networks and things on the network. The operational technology (OT) role manages the health and throughput of the system that functions to produce something. These two roles have traditionally been separated, as things such as sensors, meters, and programmable controllers have not been connected, at least directly.

    Proprietary standards have governed OT systems, at least from an industrial IoT perspective.

    WPAN with IP – 6LoWPAN

    In an effort to bring IP addressability to the smallest and most resource-constrained devices, the concept of 6LoWPAN was formed in 2005. A working group formalized the design in the IETF under the specification RFC 4944 (request for comment) and later updated with RFC 6282 to address header compression and RFC 6775 for neighbor discovery. The consortium is closed; however, the standard is open for anyone to use and implement.

    6LoWPAN is an acronym that stands for IPV6 over Low-Power Wireless Personal Area Networks. The intent is for IP networking over low-power RF communication systems for devices that are power and space constrained and do not need high-bandwidth networking services. The protocol can be used with other WPAN communications such as 802.15.4, as well as Bluetooth, sub-1 GHz RF protocols, and power-line controller (PLC). The principal advantage of 6LoWPAN is that the simplest of sensors can have IP addressability and act as a network citizen over 3G/4G/LTE/Wi-Fi/Ethernet routers. A secondary effect is that IPV6 provides significant theoretical addressability of 2128 or 3.4x1038 unique addresses. This would sufficiently cover an estimated 50 billion Internet-connected devices and continue to cover those devices well beyond that. Therefore, 6LoWPAN is well-suited for IoT growth.

    IEEE 802.11 protocols and WLAN

    One of the first adopters of the ISM bands that the FCC freed for unlicensed use was the IEEE 802.11 technology. The IEEE 802.11 is a suite of protocols with a rich history and different use cases. 802.11 is the specification defining the Media Access Control (MAC) and physical layer (PHY) of a networking stack. The definition and specifications are governed by the IEEE LAN/MAN Standards Committee. Wi-Fi is the definition of WLAN based on the IEEE802.11 standards but maintained and governed by the nonprofit Wi-Fi Alliance.

    802.11 owes its creation to NCR in 1991, which first developed the wireless protocol as a means of networking cash registers. It wasn't until 1999 when the Wi-Fi Alliance was formed that the technology became ubiquitous and pervasive in the burgeoning PC and notebook market. The original protocol is vastly different than modern 802.11 b/g/n/ac protocols. It only supported a 2 Mbps data rate with forward error correction.

    The success of IEEE802.11 can be attributed to the layered stack approach of the OSI model. Simply replacing the MAC and PHY layers with IEEE802.11 layers allowed existing TCP/IP infrastructure to be used effortlessly. 

    Today, nearly every mobile device, notebook, tablet, embedded system, toy, and video game incorporates an IEEE802.11 radio of some kind. That said, 802.11 has had a storied past, particularly in the security model. The original 802.11 security model was based on the UC Berkeley Wired Equivalent Privacy security mechanism, which was later proven to be unreliable and easily compromised. Several notable exploits, including the TJ Maxx data breach through 802.11 WEP in 2007, resulted in 45 million stolen credit cards. Today, Wi-Fi Protected Access (WPA) and WPA2 using AES 256-bit pre-shared keys have certainly tightened up security, and WEP is rarely used.

    This section will detail some of the differences in the 802.11 protocols and particular information relevant to the IoT architect. We will detail the current IEEE802.11ac design and then examine 802.11ah HaLow and 802.11p V2V, as all three are relevant to the IoT.

    
      An outstanding comparison of 802.11 standards can be found in R. Shaw, S Sharma, Comparative Study of IEEE 802.11 a, b, g & n Standards, International Journal of Engineering Research and Technology (IJERT), V3 Issue 4, April 2014.

    

    IEEE 802.11 suite of protocols and comparison

    The IEEE LAN/MAN Standards Committee maintains and governs the IEEE 802 specification(s). The original 802.11 goal was to provide a link layer protocol for wireless networking. This evolved from the 802.11 base specification to 802.11ac in 2013. Since then, the working group has focused on other areas, as the following chart illustrates. Specific 802.11 variants have been examined for use cases and segments such as low-power/low-bandwidth IoT interconnect (802.11ah), vehicle-to-vehicle communication (802.11p), reuse of television analog RF space (802.11af), extreme bandwidth near meter communication for audio/video (802.11ad), and of course the follow-on to the 802.11ac standard (802.11ax).

    The new variants are designed for different areas of the RF spectrum or to reduce latency and improve safety for vehicular emergencies. The following table should reflect the tradeoffs between range, frequency, and power. We will cover aspects in the chart such as modulation, MIMO streams, and frequency usage later in this section.
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    Figure 2: Various IEEE802.11 standards and speciﬁcations from the legacy 802.11 original speciﬁcations to the yet to be ratiﬁed 802.11ax

    IEEE 802.11 architecture

    The 802.11 protocol represents a family of wireless radio communications based on different modulation techniques in the 2.4 GHz and 5 GHz ISM bands of the unlicensed spectrum. 802.11b and 802.11g reside in the 2.4 GHz band, while 802.11n and 802.11ac open up the 5 GHz band. The last chapter detailed the 2.4 GHz band and the different protocols that reside in that space. Wi-Fi is susceptible to the same noise and interference as Bluetooth and Zigbee and deploys a variety of techniques to ensure robustness and resiliency.

    From a stack perspective, the 802.11 protocols reside in the link layer (one and two) of the OSI model, as shown in the following figure:
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    Figure 3: IEEE 802.11ac stack

    The stack includes various PHYs from older 802.11 specifications such as the 802.11 original PHYs (including infrared), a, b, g, and n. This is to ensure backward compatibility across networks. Most chipsets include the entire PHY collection, and it is difficult to find a part with an older PHY alone.

    802.11 systems support three basic topologies:

    
      	Infrastructure: In this form, a Station (STA) refers to an 802.11 endpoint device (like a smartphone) that communicates with a central access point (AP). An AP can be a gateway to other networks (WAN), a router, or a true access point in a larger network. This is also known as an infrastructure basic set service (BSS). This topology is a star topology.

      	Ad hoc: 802.11 nodes can form what is called an independent basic set service (IBSS) where each station communicates and manages the interface to other stations. No access point or star topology is used in this configuration. This is a peer-to-peer type of topology.

      	Distribution system (DS): The DS combines two or more independent BSS networks through access point interconnects.

    

    
      Note: IEEE802.11ah and IEEE802.11s support forms of a mesh topology.

    

    The following are examples of the three basic topologies of an IEEE 802.11 architecture:
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    Figure 4: 802.11 network architectures. BSS, IBSS, and a distribution system combine two independent BSSs.

    In total, the 802.11 protocol allows for up to 2,007 STAs to be associated with a single access point. This is relevant when we explore other protocols, such as the IEEE 802.11ah for IoT, later in this chapter.

    IEEE 802.11 spectrum allocation

    The first 802.11 protocol used a spectrum in the 2 GHz and 5 GHz ISM region and evenly spaced channels roughly 20 MHz apart from each other. The channel bandwidth was 20 MHz, but later amendments from IEEE allowed 5 MHz and 10 MHz to operate as well. In the United States, 802.11b and g allow for 11 channels (other countries may support up to 14). 

    The following figure depicts channel separation. Three of the channels are non-overlapping (1,6,11):
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    Figure 5: 802.11 2.4 GHz frequency space and non-interfering channel combinations. Note the 5 MHz channel separation across 14 channels, each 20 MHz wide.

    802.11 specifies a spectral mask, which defines the permitted power distribution across each channel. The spectral mask requires the signal be attenuated to certain levels (from its peak amplitude) at specified frequency offsets. That said, signals will tend to radiate into adjacent channels. 802.11b using direct-sequence spread spectrum (DSSS) has a completely different spectral mask than 802.11n using orthogonal frequency-division multiplexing (OFDM). OFDM has a much denser spectral efficiency and therefore also sustains much higher bandwidth. Shown in the following figure are the channel and modulation differences between 802.11 b, g, and n. Channel width limits the number of simultaneous channels from 4 to 3 to 1. The shape of the signal also varies between DSSS and OFDM, the latter being much denser and thus capable of higher bandwidth.

    [image: ]
    Figure 6: Differences between 802.11b, g, and n using DSSS versus OFDM and carrying channel widths

    
      While there are 14 channels in the 2.4 GHz range, the usage of the channels is governed by region and country. For example, North America allows the usage of channels 1 through 11, Japan allows all 14 channels for 802.11b and 1 through 13 for 802.11g/n, Spain allows only channels 10 and 11, and France allows 10 through 13. The allocations vary and designers should be aware of country restrictions. IEEE uses the nomenclature regdomain to describe country channel, power, and time restrictions that impact the PHY.

    

    IEEE 802.11 modulation and encoding techniques

    This section details the techniques of modulation and encoding in the IEEE 802.11 protocol. These techniques are not unique to 802.11; they also apply to 802.15 protocols and, as we will see, to cellular protocols as well. The methods of frequency hopping, modulation, and phase-shift keying are fundamental methods that you should understand, as different techniques balance range, interference, and throughput.

    Digital data transmitted by an RF signal must be transformed into analog. This occurs at the PHY no matter what RF signal is being described (Bluetooth, Zigbee, 802.11, and so on). An analog carrier signal will be modulated by a discrete digital signal. This forms what is called a symbol or a modulation alphabet. A simple way to think about symbol modulation is a piano with four keys. Each key represents two bits (00, 01, 10, 11). If you can play 100 keys per second, that implies you can transmit 100 symbols per second. If each symbol (tone from the piano) represents two bits, then it is equivalent to a 200 bps modulator. While there are many forms of symbol encoding to study, the three basic forms include:

    
      	Amplitude-shift keying (ASK): This is a form of amplitude modulation. Binary 0 is represented by one form of modulation amplitude and 1 a different amplitude. A simple form is shown in the following figure, but more advanced forms can represent data in groups using additional amplitude levels.

      	Frequency-shift keying (FSK): This modulation technique modulates a carrier frequency to represent 0 or 1. The simplest form shown in the following figure is binary frequency-shift keying (BPSK), which is the form used in 802.11 and other protocols. In the last chapter, we talked about Bluetooth and Z-Wave. Those protocols use a form of FSK called Gaussian frequency-shift keying (GFSK), which filters the data through a Gaussian filter, which smooths the digital pulse (-1 or +1) and shapes it to limit spectral width.

      	Phase-shift keying (PSK): This modulates the phase of a reference signal (carrier signal). Used primarily in 802.11b, Bluetooth, and RFID tags, PSK uses a finite number of symbols represented as different phase changes. Each phase encodes an equal number of bits. A pattern of bits will form a symbol. The receiver will need a contrasting reference signal and will calculate the difference to extract the symbols and then demodulate the data. An alternative method requires no reference signal for the receiver. The receiver will inspect the signal and determine if there is a phase change without referencing a secondary signal. This is called differential phase-shift keying (DPSK) and is used in 802.11b.

    

    The following figure pictographically depicts the various encoding methods:
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    Figure 7: Different forms of symbol encoding using keying techniques: amplitude keying, frequency keying, and phase keying. Note how phase keying changes phase for every "1" encountered.

    The next form of modulation technique is hierarchical modulation, specifically quadrature amplitude modulation (QAM). The following constellation diagram represents the encoding in a 2D Cartesian system. The length of any one vector represents the amplitude, and the angle to a constellation point represents the phase. Generally speaking, there are more phases that can be encoded than amplitudes, as shown in the following 16-QAM constellation diagram. The 16-QAM has three amplitude levels and 12 total phase angles. This allows for 16 bits to be encoded. 802.11a and 802.11g can use 16-QAM and even higher density 64-QAM. Obviously, the denser the constellation, the more encoding can be represented and the higher the throughput.

    The figure shown illustrates a QAM encoding process pictographically. On the left is a representation of a 16-point (16-QAM) constellation diagram. There are three amplitude levels indicated by the length of the vectors and three phases per quadrant indicated by the angle of the vector. This allows for 16 symbols to be generated. These symbols are reflected in varying the phase and amplitude of the signal generated. On the right is an 8-QAM example waveform diagram showing the varying phases and amplitudes that represent a 3-bit (8-value) modulation alphabet:
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    Figure 8: Quadrature amplitude modulation (QAM). Left: 16-QAM constellation. Right: 8-QAM waveform encoding.

    
      QAM has practical limits. Later, we will see very dense constellations that radically increase throughput. You can add only a certain number of phase angles and amplitudes before noise generated by analog-to-digital converters (ADC) and digital-to-analog converters (DAC) will introduce quantization errors. Noise will eventually become prevalent, and the system will need to sample signals at very high speeds to compensate. Additionally, the signal-to-noise ratio (SNR) must exceed a certain value to achieve a good bit error rate (BER).

    

    The 802.11 standards employ different interference mitigation techniques that essentially spread a signal across a band:

    
      	Frequency-hopping spread spectrum (FHSS): Spreads a signal over 79 non-overlapping channels that are 1 MHz wide in the 2.4 GHz ISM band. It uses a pseudorandom number generator to start the hopping process. Dwell time refers to the minimum time a channel is used before hopping (400 ms). Frequency hopping was also described in the last chapter and is a typical scheme for spreading signals.

      	Direct-sequence spread spectrum (DSSS): First used in 802.11b protocols and has 22 MHz-wide channels. Each bit is represented by multiple bits in the signal transmitted. The data being transmitted is multiplied by a noise generator. This will effectively spread the signal over the entire spectrum evenly using a pseudorandom number sequence, called the pseudo-noise (PN) code. Each bit is transmitted with an 11-bit chipping sequence (phase-shift keying). The resulting signal is an XOR of the bit and the 11-bit random sequence. DSSS delivers about 11 million symbols per second when we consider the chipping rate.

      	OFDM: Used in IEEE 802.11a and newer protocols. This technique divides a single 20 MHz channel into 52 sub-channels (48 for data and four for synchronization and monitoring) to encode data using QAM and PSM. A fast Fourier transform (FFT) is used to generate each OFDM symbol. A set of redundant data surrounds each subchannel. This redundant band of data is called the guard interval (GI) and is used to prevent intersymbol interference (ISI) between neighbor subcarriers. Notice the subcarriers are very narrow and have no guard bands for signal protection. This was intentional because each subcarrier is spaced equally to the reciprocal of the symbol time. That is, all the subcarriers transport a complete number of sine-wave cycles that, when demodulated, will sum to zero. Because of this, the design is simple and doesn't need the extra cost of bandpass filters. IEEE 802.11a uses 250,000 symbols per second. OFDM is generally more efficient and denser (hence more bandwidth) than DSSS and is used in the newer protocols.
          Using fewer symbols per second has an advantage in situations where there are reflections of signals on walls and windows. Since the reflections will cause what is called multipath distortion (copies of the symbol hit the receiver at different times), a slower symbol rate allows more time to transmit a symbol and there is more resilience to delay spread. However, if a device is moving, there can be Doppler effects that affect OFDM more than DSSS. Other protocols, such as Bluetooth, use one million symbols per second.

        

      

    

    The following figure depicts an OFDM system with 52 subcarriers in two 20-MHz channels:
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    Figure 9: An example of OFDM. Here a channel is subdivided into 52 smaller slots or subcarriers (each carrying a symbol).

    The set of different modulations available for each standard is called the Modulation and Coding Scheme (MCS). The MCS is a table of available modulation types, guard intervals, and coding rates. You reference this table with an index.

    
      802.11b devices entered the market before 802.11a came to market. 802.11b uses a different encoding scheme than 802.11a. The encoding schemes are not compatible. Thus, there is some confusion in the market regarding the difference, as the protocols were released nearly simultaneously.

    

    IEEE 802.11 MIMO

    MIMO is the acronym that for multiple-input multiple-output. MIMO exploits a previously mentioned RF phenomenon called multipath. Multipath transmission implies that signals will reflect off walls, doors, windows, and other obstructions. A receiver will see many signals, all arriving at different times via different paths. 

    Multipath tends to distort signals and cause interference, which eventually degrades signal quality. (This effect is called multipath fading.) With the addition of multiple antennas, a MIMO system can linearly increase the capacity of a given channel by simply adding more antennas. There are two forms of MIMO:

    
      	Spatial diversity: This refers to transmit-and-receive diversity. A single stream of data is transmitted on multiple antennas simultaneously using space-time coding. These provide improvements in the signal-to-noise ratio, and they are characterized by their improvement of link reliability and coverage of the system.
          In the previous chapter, we introduced frequency-hopping techniques in PAN networks such as Bluetooth. Frequency hopping is one method to overcome the multipath fading problem by constantly changing the angles of the multipath. This has the effect of distorting the RF signal size. Bluetooth systems typically have one antenna, thereby making MIMO difficult. As far as Wi-Fi is concerned, only the original 802.11 standard supported a form of FHSS. OFDM systems maintain a channel lock and thus can be subject to the multipath fading problem.

          Using multiple streams does impact overall power usage. IEEE 802.11n includes a mode to enable MIMO only when the effect will have a performance benefit, thus saving power at all other times. The Wi-Fi Alliance requires all products to support at least two spatial streams to receive 802.11n compliance.

        

      

      	Spatial multiplexing: This is used to provide additional data capacity by utilizing the multiple paths to carry additional traffic—that is, increasing the data throughput capability. Essentially, a single high-rate data stream will be split into multiple separate transmissions on different antennas.

    

    A WLAN will split data into multiple streams called spatial streams. Each transmitted spatial stream will use a different antenna on the transmitter. IEEE 802.11n allows for four antennas and four spatial streams. By using multiple streams sent separately for antennas spaced apart from each other, spatial diversity in 802.11n gives some confidence that at least one signal will be strong enough to reach the receiver. At least two antennas are needed to support MIMO functionality. Streaming is also modulation agnostic. BPSK, QAM, and other forms of modulation work with spatial streaming. 

    A digital signal processor on the transmitter and receiver will adjust for the multipath effects and delay the line-of-sight transmission by just enough time to have it line up perfectly with the non-line-of-sight paths. This will cause the signals to reinforce.

    The IEEE 802.11n protocol supports a four-stream single user MIMO (SU-MIMO) implementation, meaning that the transmitters would work in unison to communicate to a single receiver. Here, four transmit and four receive antennas deliver multiple streams of data to a single client. The following is an illustration of SU-MIMO and multipath use in 802.11n:
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    Figure 10: Left: Illustration of SU-MIMO in IEEE 802.11n. Right: The effect of spatial diversity MIMO in 802.11n.

    In the figure, four transmit and four receive antennas deliver multiple streams of data to a single client (SU-MIMO). On the right, two transmitters spaced a fixed distance apart communicate to two receivers. Multiple paths exist as reflections from the two transmitters. One line-of-sight path is stronger and will be favored. DSPs on the transmitters and receiver side also mitigate multipath fading by combining signals so the resulting signal exhibits little fading.

    
      The IEEE 802.11 protocol identifies MIMO streams by the notation M × N : Z, where M is the maximum number of transmit antennas and N is the maximum number of receiver antennas. Z is the maximum number of data streams that can be used simultaneously. So, a MIMO of 3 × 2 : 2 implies there are three transmit stream antennas and two receive stream antennas, but can only send or receive two simultaneous streams.

    

    802.11n also introduced the optional feature of beamforming. 80211.n defines two types of beamforming methods: implicit feedback and explicit feedback:

    
      	Implicit feedback beamforming: This mode assumes that the channel between the beamformer (AP) and the beamformee (client) are reciprocal (the same quality in both directions). If that is true, the beamformer transmits a training request frame and receives a sounding packet. With the sounding packet, the beamformer can estimate the receiver's channel and build a steering matrix.

      	Explicit feedback beamforming: In this mode, the beamformee responds to a training request by computing its own steering matrix and sends back the matrix to the beamformer. This is a more reliable method.

    

    The following diagram illustrates the effects of beamforming in a situation with no line-of-sight communication. In the worst case, the signals arrive 180 degrees out of phase and nullify each other. With beamforming, the signals can be adjusted in phases to strengthen each other at the receiver.
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    Figure 11: Examples of a system with and without beamforming. In this case, the system has no direct line of sight and relies on reﬂections to propagate a signal.

    Beamforming relies on multiple spaced antennas to focus a signal at a particular location. The signals can be adjusted in phases and magnitudes to arrive at the same location and reinforce each other, providing better signal strength and range. Unfortunately, 802.11n did not standardize on a single method for beamforming and left that up to the implementor. Different manufacturers used different processes and could only guarantee it would work with identical hardware. Thus, beamforming was not adopted heavily in the 802.11n timeframe.

    We will cover MIMO technologies in many other areas, such as 802.11ac, and in the next chapter, on long-range communication using cellular 4G LTE radios.

    IEEE 802.11 packet structure

    802.11 uses the typical packet structure we have seen before with headers, payload data, frame identifiers, and so on. Starting with the PHY frame organization, we have three fields: a preamble, which assists in the synchronization phase; a PLCP header, which describes the packet configuration and characteristics such as data rates; and the MPDC MAC data.

    Each IEEE 802.11 specification has a unique preamble and is structured by the number of symbols (described later) and not by the number of bits for each field. Examples of the preamble structures are as follows:

    
      	802.11 a/g: Preamble includes a short training field (two symbols) and a long training field (two symbols). These are used by the subcarriers for timing sync and frequency estimation. Additionally, the preamble includes a signal field that describes the data rate, length, and parity. The signal determines how much data is being transmitted in that particular frame.

      	802.11 b: Preamble will use either a long sequence of 144 bits or a short sequence of 72 bits. The header will include signal rate, service modes, length of data in microseconds, and a CRC.

      	802.11n: Has two operating modes: Greenfield (HT) and mixed (non-HT). Greenfield can only be used where no legacy systems exist. Non-HT mode is a compatibility mode with 802.11a/g systems and delivers no better performance than a/g. Greenfield mode allows for higher speed transport.

    

    The following illustration is the 802.11 PHY and link layer packet frame structure:
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    Figure 12: 802.11 generalized PHY and MAC frame structure

    The MAC frame structure is shown in the preceding figure. The MAC frame contains the plurality of representative fields. The frame control (FC field) subfields are detailed as follows:

    
      	Protocol version: This indicates the version of the protocol used.

      	Type: This identifies the WLAN frame as control, data, or management frame type.

      	Subtype: This provides further delineation of the frame type.

      	ToDS and FromDS: Data frames will set one of these bits to 1 to indicate if the frame is headed to a distribution system. This is an IBSS ad hoc network.

      	More fragments: If a packet is divided into many frames, then every frame except the last will have this bit-set.

      	Retry: This indicates a frame was resent and assists in resolving duplicate frames being transmitted.

      	Power management: This indicates the power state of the sender. APs cannot set this bit.

      	More data: An AP will use this bit to assist when STAs are in a power-saving mode. This bit is used to buffer frames in a distribution system.

      	Wired equivalent privacy: This is set to 1 when a frame is decrypted.

      	Order: If a strict order mode is used in the network, this bit will be set. Frames may not be sent in order, and strict order mode forces in-order transmission.

    

    Moving up the MAC frame from the frame control field, we first examine the duration/connection ID bit:

    
      	Duration/connection ID: This indicates duration, contention-free period, and association ID. The association ID is registered during the Wi-Fi initial handshaking. 

      	Address fields: 802.11 can manage four addresses, which may include the following information:
          	Destination address (DA)

          	Source address (SA)

          	Transmitting station address (TA)

          	Receiving station address (RA)

        

      

      	SC: Sequence control is a 16-bit field for message order.

    

    The 802.11 protocol has several types of frames represented by the type and subtype fields. There are three fundamental types: management frames, control frames, and data frames.

    Management frames provide network administration, security, and maintenance. The following table defines the types of management frames:

    
      
        
        
      
      
        
          	
            Frame name
          
          	
            Description
          
        

        
          	
            Authentication frame

          
          	
            An STA will send an authentication frame to an AP, which responds with its own authentication frame. Here, the shared key is sent and verified using a challenge response.

          
        

        
          	
            Association request frame

          
          	
            Transmitted from an STA to request an AP to synchronize. It contains the SSID the STA wants to join and other information for synchronization.

          
        

        
          	
            Association response frame

          
          	
            Transmitted from an AP to an STA and contains an acceptance or rejection message to an association request. If accepted, an association ID will be sent in the payload.

          
        

        
          	
            Beacon frame

          
          	
            This is the periodic beacon broadcast from an AP. It includes the SSID.

          
        

        
          	
            Deauthentication frame

          
          	
            Transmitted from an STA wishing to leave a connection from another STA.

          
        

        
          	
            Disassociation frame

          
          	
            Transmitted from an STA wishing to terminate a connection.

          
        

        
          	
            Probe request frame

          
          	
            Broadcast from an STA to another STA.

          
        

        
          	
            Probe response frame

          
          	
            Transmitted from an AP in response to a probe request. It contains information such as supported data rates.

          
        

        
          	
            Reassociation frame

          
          	
            Used when an STA loses signal strength with one AP but finds another AP associated with the network using a stronger signal. The new AP will attempt to associate with the STA and forward information stored in the original AP buffer.

          
        

        
          	
            Reassociation response frame

          
          	
            Transmitted from the AP with the acceptance or rejection of a reassociation request.

          
        

      
    

    The next major frame type is the control frame. Control frames help exchange data between STAs:

    
      
        
        
      
      
        
          	
            Frame name
          
          	
            Description
          
        

        
          	
            Acknowledgement frame (ACK)

          
          	
            A receiving STA will always ACK received data if no errors have occurred. If the sender does not receive an ACK after a fixed time, the sender will resend the frame.

          
        

        
          	
            Request to send frame (RTS)

          
          	
            This is part of the collision avoidance mechanism. An STA will begin by sending an RTS message if it wishes to transmit some data.

          
        

        
          	
            Clear to send frame (CTS)

          
          	
            This is an STA response to an RTS frame. The request STA can now send the data frame. This is a form of collision management. A time value is used to hold off transmissions from other STAs with the requesting STA transmits.

          
        

      
    

    The final frame type is the data frame. This is the bulk of the data-carrying function of the protocol.

    IEEE 802.11 operation

    As mentioned previously, an STA is considered a device equipped with a wireless network interface controller. An STA will always be listening for active communication in a specific channel. The first phase of connecting to Wi-Fi is the scanning phase. There are two types of scan mechanisms employed:

    
      	Passive scanning: This form of scanning uses beacons and probe requests. After a channel is selected, the device performing the scan will receive beacons and probe requests from nearby STAs. An access point may transmit a beacon, and if the STA receives the transmission, it may progress to join the network.

      	Active scanning: In this mode, the STA will attempt to locate an access point by instantiating probe requests. This mode of scanning uses more power but allows for faster network joins. The AP may respond to a probe request with a probe request response, which is similar to a beacon message.
          An access point will typically broadcast a beacon at a fixed time interval called the Target Beacon Transmit Time (TBTT), which is typically once every 100 ms.

        

      

    

    Beacons are always broadcast at the lowest basic rates to ensure every STA in the range has the ability to receive the beacon even if it can't connect to that particular network. After a beacon is processed, the next phase of Wi-Fi connectivity is the synchronization phase. This phase is necessary to keep clients attuned to the access point. The beacon packet contains information needed by the STA:

    
      	Service Set ID (SSID): A 1- to 32-character network name. This field can optionally be hidden by setting the SSID length to zero. Even if it is hidden,the other portions of the beacon frame are transmitted as usual. Generally speaking, using a hidden SSID offers no additional network security.

      	Basic Service Set ID (BSSID): A unique 48-bit following layer-2 MAC address conventions. It is formed by the combination of the 24-bit organization unique identifier and the manufacturer's assigned 24-bit identifier for the radio chipset.

      	Channel width: 20 MHz, 40 MHz, and so on.

      	Country: List of supported channels (country-specific).

      	Beacon interval: TBTT time mentioned previously.

      	TIM/DTIM: Wake-up times and intervals to retrieve broadcast messages—allows for advanced power management.

      	Security services: WEP, WPA, and WPA2 abilities.

    

    
      Beacons are an interesting concept with a likeness to Bluetooth beacons. Bluetooth wireless offers much greater message capabilities and flexibility in beacon broadcasts, but there is a range of products and services that make use of Wi-Fi beaconing as well.

    

    If the STA does find an AP or another STA to make a connection with, it then enters an authentication phase. More will be discussed on the variety of security standards used in 802.11 later in this chapter.

    If the security and authentication process succeeds, the next phase is association. The device will send an association request frame to the AP. The AP will subsequently reply with an association response frame that will allow the STA to join the network or be excluded. If the STA is included, the AP will release an association ID to the client and add it to the list of connected clients.

    At this point, data can be exchanged with the AP and vice versa. All data frames will be followed by an acknowledgment.

    IEEE 802.11 security

    In the previous section, we described the association process for a Wi-Fi device to join a network. One of the phases involved was authentication. This section will cover the various types of authentication used on Wi-Fi WLANs and various strengths and weaknesses:

    
      	Wired equivalent privacy (WEP): The WEP mode sends a key in plain text from the client. The key is then encrypted and sent back to the client. WEP uses different size keys, but they are typically 128-bit or 256-bit. WEP uses a shared key, which means that the same key is available to all clients. It can be easily compromised by simply listening and sniffing for all the authentication frames coming back to clients joining a network to determine the key used for everyone. Due to a weakness in the key generation, the first few bytes of the pseudorandom string may reveal (5% probability) a portion of the key. By intercepting 5-10 million packets, an attacker could with reasonable confidence get enough information to reveal the key.

      	Wi-Fi protected access (WPA): Wi-Fi protected access (or WPA-Enterprise) was developed as the IEEE 802.11i security standard to replace WEP and is a software/firmware solution requiring no new hardware. One significant difference is WPA uses a Temporal Key Integrity Protocol (TKIP), which performs per-packet key mixing and rekeying. This means that each packet will use a different key to encrypt itself, unlike in the case of WEP. WPA starts by generating a session key based on the MAC address, temporal session key, and the initialization vector. This is fairly processor-intensive but only performed once per session. The next step is to extract the lowest 16 bits of a received packet with the result of the bits generated in phase one. This is the 104-bit per-packet key. Data can now be encrypted.

      	WPA pre-shared key (WPA-PSK): The WPA-PSK, or WPA-Personal, mode exists where there is no 802.11 authentication infrastructure. Here, one uses a passphrase as a pre-shared key. Each STA can have its own pre-shared key associated with its MAC address. This is similar to WEP, and weaknesses have already been found if the pre-shared key uses a weak passphrase.

      	WPA2: This replaces the original WPA design. WPA2 uses AES for encryption, which is much stronger than TKIP in WPA. This encryption is also called CTR mode with CBC-MAC Protocol, or CCMP for short.

    

    
      To achieve high bandwidth rates in 802.11n, CCMP mode must be used, or the data rate will not exceed 54 Mbps. Additionally, WPA2 certification is needed to use the Wi-Fi Alliance trademark logo.

    

    IEEE 802.11ac

    IEEE802.11ac is the next-generation WLAN and the follow-on to the family of 802.11 standards. IEEE802.11ac was approved as a standard in December 2013 after five years of work. The goal is to deliver multistation throughput of at least 1 GBps and a single link throughput of 500 Mbps. The technology accomplishes this through wider channel bandwidth (160 MHz), more MIMO spatial streams, and extreme density modulation (256-QAM). 802.11ac exists only in the 5 GHz band, yet will coexist with previous standards (IEEE802.11a/n).

    The specifics of and differences between IEEE802.11ac and IEEE802.11n are:

    
      	80 MHz channel width minimum with 160 MHz maximum channel width 

      	Eight MIMO spatial streams:
          	Introduced downlink MU-MIMO with up to four downlink clients

          	Multiple STAs with multiple antennas can now transmit and receive independently on multiple streams

        

      

      	256-QAM optional modulation with the ability to use 1024-WAM standardized beamforming

    

    Multiuser MIMO is worth further details. 802.11ac extends 802.11n from four spatial streams to eight. One of the largest contributing factors to 802.11ac speed is spatial division multiplexing (SDM), referred to earlier. When combined with multiuser or multiple client aspects of 802.11ac, this technique goes by the name space-division multiple access (SDMA). Essentially, MU-MIMO in 802.11ac is a wireless analog of a network switch. The following illustration depicts an 802.11ac 4 × 4: 4 MU-MIMO system with three clients:
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    Figure 13: 802.11ac MU-MIMO usage

    802.11.ac also extends the modulation constellation from 64-QAM to 256-WAM. This implies there are 16 amplitude levels and 16 phase angles, requiring very precise hardware to implement. 802.11n represented six bits per symbol, while 802.11ac represents a full eight bits per symbol.

    Beamforming methods have been formally standardized by the IEEE committee. For example, the committee has agreed that explicit feedback is the standard approach to beamforming association. This will allow beamforming and the performance benefits to be available from multiple vendors.

    The increased bandwidth per channel (up to 80 MHz with the option of 160 MHz or two 80 MHz blocks) provides a substantial increase in throughput in the 5 GHz space.

    Theoretically, using an 8 × 8: 8 device, 160 MHz wide channels, and 256-QAM modulation, one could sustain 6.933 GBps throughput in aggregate.

    IEEE 802.11p vehicle-to-vehicle

    Vehicular networks (sometimes called vehicular ad hoc networks or VANET) are spontaneous and unstructured, operating like a car moves around a city while interacting with other vehicles and infrastructure. This model of network makes use of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) models.

    In 2004, the 802.11p task group formed and developed the first draft by April 2010. 802.11p is considered a dedicated short-range communication (DSRC) channel within the US Department of Transportation. The goal of this network is to provide a standard and secure V2V and V2I system used for vehicular safety, toll collection, traffic status/warnings, roadside assistance, and e-commerce within a vehicle.

    The topology and general use case for an IEEE 802.11p network is shown in the following figure. There are two types of nodes in the network. First is the road-side unit (RSU), which is a fixed location device much like an access point. It serves to bridge vehicles and moving devices to the Internet for application service usage and access to trust authorities. The other node type is the on-board unit (OBU), which resides in the vehicle. It is able to communicate with other OBUs and the fixed RSUs when needed.

    OBUs can communicate with RSUs and each other to relay vehicle and safety data. RSUs are used to bridge to application services and trust authorities for authentication. The following is an example 802.11p usage and topology:
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    Figure 14: IEEE 802.11p use case: OBUs within vehicles and ﬁxed infrastructure RSUs

    For transportation systems, several challenges exist in wireless communication. There is a heightened level of safety necessary in vehicular communication and control. Physical effects such as Doppler shifts, latency effects, and robust ad hoc networking are a few issues to consider.

    Many of the differences from the 802.11 standards are to ensure quality and range over the speed of transmission. Other factors are changes to reduce the latency in starting up a connection. The following is a summary of the features of IEEE 802.11p and differences from the IEEE 802.11a standards:

    
      	Channel width is 10 MHz instead of the 20 MHz used in 802.11a.

      	IEEE 802.11p operates in the 75 MHz bandwidth of the 5.9 GHz space. This implies there is a total of seven channels available (one control, two critical, and four service channels).

      	It supports half as many bit rates as 802.11a—that is, 3/4.5/6/9/12/18/24/27 Mbps.

      	It has the same modulation schemes, such as BPSK/QPSK/16QAM/64QAM and 52 subcarriers.

      	The symbol duration has become double that of 802.11a: IEEE 802.11p supports 8 µs, while 11a supports 4µs.

      	Guard time interval is 1.6µs in 802.11p, while 11a has 0.8µs.

      	Techniques such as MIMO and beamforming are not necessary or part of the specification.

    

    The 75 MHz channels are categorized as follows:

    
      
        
        
        
        
        
        
        
        
      
      
        
          	
            Channel
          
          	
            172

          
          	
            174

          
          	
            176

          
          	
            178

          
          	
            180

          
          	
            182

          
          	
            184

          
        

        
          	
            Center frequency (GHz)
          
          	
            5.860

          
          	
            5.870

          
          	
            5.880

          
          	
            5.890

          
          	
            5.900

          
          	
            5.910

          
          	
            5.920

          
        

        
          	
            Purpose
          
          	
            Critical life safety

          
          	
            Service

          
          	
            Service

          
          	
            Control

          
          	
            Service

          
          	
            Service

          
          	
            High power public safety

          
        

      
    

    The fundamental usage model of 802.11p is to create and associate to ad hoc networks rapidly. This link will come and go as vehicles move away from each other and other vehicles eventually reconstitute the fabric. In the standard 802.11 model, a BSS would be the network topology to use, which requires the synchronization, association, and authentication for a wireless network to form. 802.11p provides a wildcard BSSID in the header of all frames exchanged and allows links to start exchanging data frames immediately after arriving on a communication channel.

    The IEEE 802.11p protocol stack is derived from 802.11a but makes important changes to address vehicular safety and security. The following figure depicts the protocol stack. A significant departure from other IEEE 802.11 stacks is the use of the IEEE 1609.x standards to address application and security models. The full stack is called wireless access in vehicular environments (WAVE) and combines 802.11p PHY and MAC layers with IEEE 1609.x layers:
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    Figure 15: The 802.11p Automotive Protocol Stack

    Specific differences to highlight in the stack include:

    
      	1609.1: WAVE resource manager. It allocates and provisions resources as needed. 

      	1609.2: Defines security services for application and management messages. This layer also provides two modes of encryption. A public-key algorithm using the signing algorithm ECDSA can be used. Alternatively, a symmetric algorithm based on AES-128 in CCM mode is available.

      	1609.3: Assists with connection setup and management of WAVE-compliant devices.

      	1609.4: Provides multichannel operation above the 802.11p MAC layer.

    

    Security is critical in a VANET. There are potential threats that can directly affect public safety. Attacks can occur where bogus information is broadcast, affecting how other vehicles react or perform. An attack of this nature could be a rogue device broadcasting a hazard in a road and causing vehicles to hard stop. Security also needs to account for private vehicular data, masquerading as other vehicles and causing a denial of services attack. All these can lead to catastrophic events and need standards such as the IEEE 1609.2.

    IEEE 802.11ah

    Based on 802.11ac architecture and PHY, 802.11ah is a variant of the wireless protocols targeted for the IoT. The design attempts to optimize for constrained sensor devices that require long battery life and can optimize range and bandwidth. 802.11ah is also referred to as HaLow, which is essentially a play on words with "ha" referring to "ah" backward and "low" implying low power and lower frequency. Put together, it forms a derivative of "hello."

    The intent of the IEEE 802.11ah task group was to create a protocol with extended range for rural communications and offloading cell traffic. The secondary purpose was to use the protocol for low-throughput wireless communications in the sub-gigahertz range. The specification was published on December 31, 2016. The architecture is most different from other forms of 802.11 standards in the following ways in particular:

    
      	Operates in the 900 MHz spectrum. This allows for good propagation and penetration of materials and atmospheric conditions.

      	Channel width varies and can be set to 2, 4, 8, or 16 MHz-wide channels. The available modulation methods are diverse and include BPSK, QPSK, 16-QAM, 64-WAM, and 256-QAM modulation techniques.

      	Modulation based on the 802.11ac standard with specific changes. A total of 56 OFDM subcarriers with 52 dedicated to data and 4 dedicated to pilot tones. Total symbol duration is 36 or 40 microseconds.

      	Supports SU-MIMO beamforming.

      	Fast association for networks of thousands of STAs using two different authentication methods to limit contention.

      	Provides connectivity to thousands of devices under a single access point. It includes the ability to relay to reduce power on STAs and allow for a crude form of mesh networking using a one-hop reach method.

      	Allows for advanced power management on each 802.11ah node.

      	Allows for non-star topology communication through the use of restricted access windows (RAW).

      	Allows for sectorization, which enables antennas to be grouped to cover different regions of a BSS (called sectors). This is accomplished using beamforming adopted from other 802.11 protocols.

    

    The minimum throughput will be 150 Kbps, based on BPSK modulation on a single MIMO stream at 1 MHz channel bandwidth. The maximum theoretical throughput will be 347 Mbps based on a 256-WAM modulation using 4 MIMO streams and 16 MHz channels.

    
      The IEEE 802.11ah specification requires that STAs support 1 MHz and 2 GHz channel bandwidths. The access points must support 1, 2, and 4 MHz channels. 8 MHz and 16 MHz channels are optional. The narrower the channel bandwidth is, the longer the range but the slower the throughput.

      The wider the channel bandwidth is, the shorter the range but the faster the throughput.

    

    Channel width will vary depending on the region in which 802.11ah is deployed. Some combinations will not work due to regulations in specific regions, as shown:
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    Figure 16: Left: Different channelization options depending on regional regulations. Right: Varying bandwidth options and channel bonding within the US region from 1 MHz to 16 MHz channels.

    Every attempt in the architecture of the IEEE 802.11ah standard is aimed at optimizing overall range and efficiency. This reaches down as far as the length of the MAC headers.

    The goal to connect several thousand devices to a single AP is also accomplished using a unique association identifier (AID) assignment of 13 bits. This allows the grouping of STAs based on criteria (hallway lights, light switch, and so on). This allows an AP to connect to over 8191 STAs. (802.11 could support only 2007 STAs.) That many nodes, however, has the potential to induce a massive number of channel collisions. Even though the number of connected STAs increased, the goal was to reduce the amount of data in transit to address these stations. 

    The IEEE task group accomplished this by removing a number of fields that were not particularly relevant for the IoT use cases, such as the QoS and DS fields. The following figure illustrates the 802.11ah MAC downlink and uplink frames as compared to standard 802.11.
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    Figure 17: A comparison of the standard 802.11 MAC frame and 802.11ah condensed frames

    Another improvement for power management and channel efficiency is attributed to removing acknowledgment frames. ACKs are implicit for bidirectional data. That is, both devices are sending and receiving data from each other. Normally, an ACK would be used after the successful reception of a packet. In this bidirectional transport (BDT) mode, reception of the next frame implies that the previous data was successfully received and no ACK packet needs to be exchanged.

    To avoid a sea of collisions, which would prevent a functional network, 802.11ah uses a RAW. As the STAs are divided into various groups using the AID, channels will be split into time slots. Each group will be assigned a specific time slot and no others. There are exceptions, but for the general case, the grouping forms an arbitrary isolation. The additional benefit of RAW is that devices can enter a hibernation state to conserve power whenever it isn't their time slot for transmission.

    Topology-wise, there are three types of stations in an 802.11ah network:

    
      	Root access point: The principal root. Typically, it serves as a gateway to other networks (WAN).

      	STA: The typical 802.11 station or endpoint client.

      	Relay node: A special node that combines an AP interface to STAs residing on a lower BSS and an STA interface to other relay nodes or a root AP on the upper BSS.

    

    The following figure is the IEEE802.11ah topology. This architecture differs substantially from other 802.11 protocols in the use of single-hop relay nodes that act to create an identifiable BSS. The hierarchy of relays forms a larger network. Each relay acts as an AP and STA:
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    Figure 18: IEEE802.11ah network topology

    In addition to the basic node types, there are three power-saving states an STA can reside in:

    
      	Traffic indication map (TIM): Listens to AP for data transfer. Nodes will periodically receive information about data buffered for them from its access point. The message sent is called the TIM information element.

      	Non-TIM stations: Negotiates with AP directly during association to obtain transmission time on Periodic Restricted Access Windows (PRAW).

      	Unscheduled stations: Does not listen to any beacons and uses polling to access channels.

    

    Power is critical in IoT sensor and edge devices based on coin cell batteries or energy harvesting. 802.11 protocols are notorious for high power demands. To remediate the power of this wireless protocol, 802.11ah uses a Max Idle Period value, which is part of the regular 802.11 specifications. In a general 802.11 network, the Max Idle Period is roughly 16 hours based on a time of 16-bit resolution. In 802.11ah, the first two bits of the 16-bit timer are a scaling factor that allows the sleep duration to exceed five years.

    Additional power is mitigated through changes to the beacon. As previously covered, beacons relay information on the availability of buffered frames. Beacons will carry a TIM bitmap, which inflates their size since 8191 STAs will cause the bitmap to grow substantially. 802.11ah uses a concept called TIM segmentation where some beacons carry portions of the overall bitmap. Each STA calculates when their respective beacon with bitmap information will arrive and allows the device to enter a power-saving mode until the moment it needs to wake and receive beacon information.

    Another power-saving feature is called the Target Wake Time (TWT), which is intended for STAs that rarely transmit or receive data. This is very common in IoT deployments such as temperature sensor data. An STA and its associated AP will negotiate to arrive at an agreed upon TWT, and the STA will enter a sleep state until that timer is signaled.

    The process of implicit ACKs is called a Speed Frame Exchange, and it is shown in the following figure:
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    Figure 19: IEEE 802.11ah Speed Frame Exchange: An example of Target Wake Time (TWT) used to start an STA communicating. SIFS represents the gap between the AP and STA communicating. No ACKs are used between data pairs. Only a single ACK at the end of transmission is sent before the STA returns to a sleep mode.

    6LoWPAN topologies

    6LoWPAN networks are mesh networks residing on the periphery of larger networks. The topologies are flexible, allowing for ad hoc and disjointed networks without any binding to the Internet or other systems, or they can be connected to the backbone or the Internet using edge routers. 6LoWPAN networks can be conjoined with multiple edge routers; this is called multihoming. Additionally, ad hoc networks can form without requiring the Internet connectivity of an edge router. 

    These topologies are shown in the following figure:
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    Figure 20: 6LoWPAN topologies

    An edge router (also known as a border router) is necessary for a 6LoWPAN architecture as it has four functions:

    
      	Handles the communication to the 6LoWPAN devices and relays data to the Internet.

      	Performs compression of IPv6 headers by reducing a 40-byte IPv6 header and 8-byte UDP headers for efficiency in a sensor network. A typical 40-byte IPv6 header can compress to 2 to 20 bytes depending on usage.

      	Initiates the 6LoWPAN network.

      	Exchanges data between devices on the 6LoWPAN network.

    

    Edge routers form 6LoWPAN mesh networks on larger traditional network perimeters. They can also broker exchanges between IPV6 and IPV4 if necessary. Datagrams are handled in a similar manner as in an IP network, which has some advantages over proprietary protocols. All nodes within a 6LoWPAN network share the same IPv6 prefix that the edge router establishes. Nodes will register with the edge routers as part of the Network Discovery (ND) phase.

    ND controls how hosts and routers in the local 6LoWPAN mesh will interact with each other. Multihoming allows for multiple 6LoWPAN edge routers to manage a network—for example, when there is a need for multiple media (4G and Wi-Fi) for failover or fault tolerance.

    There are three types of nodes within the 6LoWPAN mesh:

    
      	Router nodes: These nodes marshal data from one 6LoWPAN mesh node to another. Routers can also communicate outward to the WAN and Internet.

      	Host nodes: Hosts in the mesh network cannot route data in the mesh and are simply endpoints consuming or producing data. Hosts are allowed to be in sleep states, occasionally waking to produce data or receive data cached by their parent routers.

      	Edge routers: As stated, these are the gateways and mesh controllers usually at a WAN edge. A 6LoWPAN mesh would be administered under the edge router.

    

    Nodes are free to move and reorganize/reassemble in a mesh. For that matter, a node can move and associate with a different edge router in a multihome scenario or even move between different 6LoWPAN meshes. These changes to the topology can be caused for various reasons, such as changes in signal strength or the physical movement of nodes. When a topology change occurs, the IPv6 address of the associated nodes will also naturally change.

    
      In an ad hoc mesh without an edge router, a 6LoWPAN router node could manage a 6LoWPAN mesh. This would be the case when WAN connectivity to the Internet is not necessary. Typically, this is seldom seen as IPv6 addressability for a small ad hoc network isn't necessary.

      The router node would be configured to support two mandatory functions:

      
        	Unique local unicast address generation 

        	Performing neighbor discovery ND registration

      

    

    
      The ad hoc mesh IPv6 prefix would be a local prefix rather than the larger global WAN IPv6 prefix.

    

    6LoWPAN protocol stack

    To enable 6LoWPAN on a form of communication media such as 802.15.4, there is a set of recommended features necessary to support an IP protocol. These features include framing, unicast transmission, and addressing. As shown in the following figure, the physical layer is responsible for receiving and converting data bits over the air. For this example, the link layer we speak to is IEEE 802.15.4. On top of the physical layer is the data link layer, responsible for detecting and correcting errors on the physical link. Detailed information on the physical and data link layer of 802.15.4 are covered earlier in this chapter. Here is the comparison between the 6LoWPAN stack and the OSI model:
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    Figure 21: 6LoWPAN protocol stack compared with the simpliﬁed OSI model. 6LoWPAN resides on top of other protocols like 802.15.4 or Bluetooth to provide the physical and MAC address.

    By enabling IP traffic at a sensor level, the relationship between the device and the gateway would use some form of application layer to convert data from the non-IP protocol to an IP protocol. Bluetooth, Zigbee, and Z-Wave all have some form of conversion from their base protocol to something that can communicate over IP (if the intent is to route the data). The edge routers forward datagrams at a network layer. Because of this, the router does not need to maintain an application state. If an application protocol changes, a 6LoWPAN gateway doesn't care. 

    If an application protocol changes for one of the non-IP protocols, the gateway will need to change its application logic as well. 6LoWPAN provides an adaptation layer within layer three (the network layer) and on top of layer two (the data link layer). This adaptation layer is defined by the IETF.

    Mesh addressing and routing

    Mesh routing operates in the physical and data link layers to allow packets to flow through a dynamic mesh using multiple hops. We previously talked about mesh-under and route-over routing, but we will go somewhat deeper in this section into that form of routing.

    6LoWPAN mesh networks utilize two schemes for routing:

    
      	Mesh-under network: In a mesh-under topology, routing is transparent and assumes a single IP subnet representing the entirety of the mesh. A message is broadcast in a single domain and sent to all devices in the mesh. As previously mentioned, this generates considerable traffic. Mesh-under routing will move from hop to hop in the mesh but only forward packets up to layer two (the data link layer) of the stack. 802.15.4 handles all the routing for each hop in layer two.

      	Route-over network: In a route-over topology, networks will incur the charge of forwarding packets up to layer three (the network layer) of the stack. Route-over schemes manage routes at an IP level. Each hop represents one IP router.

    

    The following graphic depicts the difference between mesh-under and route-over routing:
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    Figure 22: The difference between mesh-under and route-over networking. The intermediary hops reveal how far up each stack the packet is delivered before moving to the next node in the mesh.

    A route-over network implies that every router node is equally capable and can perform the larger set of functions as a normal IP router, such as duplicate address detection. RFC6550 formally defines the route-over protocol RPL (ripple). The advantage of the route-over architecture is the similarity with traditional TCP/IP communication. RPL provides multipoint-to-point communication (where traffic from devices in a mesh communicate to a central server on the Internet) and point-to-multipoint communication (central service to the devices in the mesh).

    The RPL protocol has two modes for managing the route tables:

    
      	Storing mode: All devices configured as routers in a 6LoWPAN mesh maintain routing and neighbor tables.

      	Non-storing mode: Only a single device, such as the edge router, maintains the routing and neighbor tables. To transmit data from one host to another in a 6LoWPAN mesh, the data is sent up to the router where its route is calculated then transmitted to the receiver.

    

    The routing table, as the name implies, contains the mesh routing paths, while the neighbor table maintains each node's directly connected neighbors. This implies that the edge router will always be referenced to deliver packets in the mesh. This allows the router nodes the freedom of not managing large routing tables, but it will add latency in moving packets since the edge router must be referenced. Storing mode systems will have higher processing and memory requirements to manage routing tables stored on each node, but will have a more efficient path to establishing a route.

    Note in the following figure the hop count, source address, and destination address fields. These fields are used during the address resolution and routing phase. The hop count is set to an initial high value and then decremented each time the packet propagates from node to node in the mesh. The intent is when the hop limit reaches zero, the packet is dropped and lost from the mesh. This provides a way to prevent runaway networks if a host node removes itself from the mesh and is no longer reachable. The source and destination address are 802.15.4 addresses and may be in short or extended format, as 802.15.4 allows. The header is constructed as follows:
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    Figure 23: 6LoWPAN mesh addressing header

    Header compression and fragmentation

    While the advantage of having virtually unlimited IP addresses for things is a significant milestone, placing IPv6 on an 802.15.4 link poses some challenges that must be overcome to make 6LoWPAN usable. First is the fact that IPv6 has a maximum transmission unit (MTU) size of 1,280 bytes, while 802.15.4 has a limit of 127 bytes. The second issue is that IPv6 in general adds significant girth to an already bloated protocol. For example, in IPv6 headers are 40 bytes long.

    
      Note that IEEE 802.15.4g does not have a limitation of 127 bytes for a frame length.

    

    Similar to IPv4, MTU path discovery in IPv6 allows a host to dynamically discover and adjust to differences in the MTU size of every link along a given data path. In IPv6, however, fragmentation is handled by the source of a packet when the path MTU of one link along a given data path is not large enough to accommodate the size of the packets. Having IPv6 hosts handle packet fragmentation saves IPv6 device processing resources and helps IPv6 networks run more efficiently. However, IPv6 requires that every link on the Internet has an MTU of 1,280 octets or greater. (This is what is known indeed as the IPv6 minimum link MTU.) On any link that cannot convey a 1,280-octet packet in one piece, link-specific fragmentation and reassembly must be provided at a layer below IPv6.

    Header compression is a means to compress and remove redundancy in the IPv6 standard header for efficiency reasons. Normally, header compression is status-based, meaning in a network with static links and stable connections, it works reasonably well. In a mesh network such as 6LoWPAN, this will not work. Packets hop between nodes and require compression/decompression on each traverse. Additionally, the routes are dynamic and allowed to change, and transmissions may not be present for long durations. Therefore, 6LoWPAN adopted stateless and shared-context compression. 

    The type of compression can be affected by whether certain specifications are met, such as using RFC4944 over RFC6922, as well as where the source and destination of a packet reside, shown as follows:
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    Figure 24: Header compression in 6LoWPAN

    The three cases of header compression for 6LoWPAN are based on whether the route is within the local mesh, outside of the mesh but to a known address, or outside of the mesh to an unknown address. Compared to standard IPv6 with a 40-byte header, 6 LoWPAN can compress to between 2 and 20 bytes.

    Case one (in the preceding figure) is the best-case communication between nodes in a local mesh. No data is sent outward to the WAN with this compressed header format. The second case implies data is sent outward to the WAN to a known address, and the last case is similar but to an address that is unknown. Even in the third case, which is the worst case, compression still accounts for a 50 percent reduction in traffic. 6LoWPAN also allows for UDP compression, which is beyond the scope of this book.

    Fragmentation is a secondary issue because MTU sizes are incompatible between 802.15.4 (127 bytes) and IPv6 at 1,280 bytes. The fragmentation system will divide each IPv6 frame into smaller segments. On the receiving side, the fragments will be reassembled. Fragmentation will differ depending on the type of routing elected during mesh configuration (we will discuss mesh-under and route–over routing later). The types of fragmentation and constraints are given as:

    
      	Mesh-under routing fragmentation: Fragments will be reassembled only at the final destination. All fragments need to be accounted for during reassembly. If any are missing, the entire packet needs retransmission. As a side note, mesh-under systems require all fragments to be transmitted immediately. This will generate a burst of traffic.

      	Route-over routing fragmentation: Fragments will be reassembled at every hop in the mesh. Each node along the route carries enough resources and information to rebuild all fragments.

    

    The fragmentation header includes a Datagram Size field, which specifies the total size of the unfragmented data. The Datagram Tag field identifies the set of fragments belonging to a payload, and the Datagram Offset indicates where the fragment belongs in a payload sequence. Note the datagram offset is not used for the first fragment sent, as the offset of a new fragment sequence should start at zero.
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    Figure 25: 6LoWPAN fragmentation header

    Fragmentation is a resource-heavy task that demands processing and energy ability that can tax a battery-based sensor node. It is advisable to limit the data sizes (at an application level) and use header compression to reduce the power and resource constraints in a large mesh.

    Neighbor discovery

    Neighbor discovery (ND) is defined by RFC4861 as a one-hop routing protocol. This is a formal contract between neighbor nodes in the mesh and allows nodes to communicate with each other. ND is the process of discovering new neighbors, as a mesh can grow, shrink, and transform, resulting in new and changing neighbor relations. There are two basic processes and four basic message types in ND:

    
      	Finding neighbors: This includes Neighbor Registration (NR) and Neighbor Confirmation (NC) phases.

      	Finding routers: This includes Router Solicitation (RS) and Router Advertisement (RA) phases.

    

    During ND, there can be conflicts that arise. For example, if a host node disassociates from a router and establishes a link with a different router in the same mesh. ND is required to find duplicate addresses and unreachable neighbors as part of the specification. DHCPv6 can be used in conjunction with ND.

    After an 802.15.4-capable device has bootstrapped through the physical and data link layers, 6LoWPAN can perform neighbor discovery and grow the mesh. This process will proceed as follows and as shown in the subsequent figure:

    
      	Finding an appropriate link and subnet for low-power wireless.

      	Minimizing node-initiated control traffic.

      	The host sending out an RS message to request the mesh network prefix.

      	The router responding with a prefix.

      	The host assigning itself a link-local unicast address (FE80::IID).

      	The host transmitting this link-local unicast address in an NR message to the mesh.

      	Performing duplicate address detection (DAD) by waiting for an NC for a set time. If the timeout expires, it assumes the address is unused.
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    Figure 26: A simpliﬁed neighbor discovery sequence from a 6LoWPAN mesh node through a mesh router to the edge router and then off to the wide area network

    After the host is configured, it can begin communicating over the Internet with a unique IPv6 address.

    If mesh-under routing is used, the link-local address retrieved in step five can be used to communicate to any other node in the 6LoWPAN mesh. In a route-over scheme, the link-local address can be used to communicate only with nodes that are a single hop away. Anything greater than one hop will require a full routable address.

    6LoWPAN security

    Since, in a WPAN system, it is easy to sniff and overhear communication, 6LoWPAN provides security at multiple levels. At the 802.15.4 level two of the protocol, 6LoWPAN relies on AES-128 encryption of data. Additionally, 802.15.4 provides a counter with CBC-MAC mode (CCM) to provide encryption and an integrity check. Most chipsets that provide an 802.15.4 network block also include a hardware encryption engine for performance improvement.

    At layer three (the network layer) of the protocol, 6LoWPAN has the option to use IPsec standard security (RFC4301). This includes:

    
      	Authentication Handler (AH): As defined in RFC4302 for integrity protection and authentication

      	Encapsulating Security Payload (ESP): In RFC4303, adds encryption to secure confidentiality in packets

    

    ESP is by far the most common layer-three secure packet format. Additionally, a mode of ESP defines reusing AES/CCM used in layer-two hardware for layer-three encryption as well (RFC4309). This makes layer-three security suitable for constrained 6LoWPAN nodes.

    In addition to link-layer security, 6LoWPAN also utilizes Transport Layer Security (TLS) for TCP traffic and Datagram Transport Layer Security (DTLS) for UDP traffic.

    WPAN with IP – Thread

    Thread is a relatively new networking protocol for IoT and is based on IPV6 (6LoWPAN). Its principal target is home connectivity and home automation. Thread was launched in July of 2014 with the formation of the Thread Group Alliance, which includes companies such as Alphabet (Google's holding company), Qualcomm, Samsung, ARM, Silicon Labs, Yale (locks), and Tyco.

    Based on the IEEE 802.15.4 protocol and 6LoWPAN, it has commonality with Zigbee and other 802.15.4 variants, but with a significant difference being Thread is IP addressable. This IP protocol builds on the data and physical layers provided by 802.15.4 and features such as security and routing from 6LoWPAN. Thread is also mesh-based, making it attractive for home lighting systems with up to 250 devices in a single mesh. The philosophy with Thread is that by enabling IP addressability in the smallest of sensors and home automation systems, one can reduce power consumption and cost because the Thread-enabled sensor doesn't need to persist the application state in storage. Thread is based on datagrams at the network layer which, by its very nature, eliminates the need to process application layer information – saving system power.

    Finally, being IPV6 compliant provides security options through encryption using the Advanced Encryption Standard (AES). Up to 250 nodes can exist on a Thread mesh all with fully encrypted transport and authentication. A software upgrade allows a preexisting 802.15.4 device to be Thread compatible.

    Thread architecture and topology

    Based on the IEEE 802.15.4-2006 standard, Thread uses the specification to define the Medium Access Control (MAC) and physical (PHY) layers. It operates at 250 Kbps in the GHz band.

    From a topology point of view, Thread establishes communications with other devices through a border router (usually a Wi-Fi signal in a household). The rest of the communication is based on 802.15.4 and forms a self-healing mesh. An example of such a topology is shown as follows:
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    Figure 27: Example Thread network topology containing border routers, Thread routers, lead devices, and eligible IoT devices that can combine in the mesh. Interconnections are variable and self-healing.

    The following are the roles of various devices in a Thread architecture:

    
      	Border router: A border router is essentially a gateway. In the home network, this would be a communications crossover from Wi-Fi to Thread and would form the entry point to the Internet from a Thread mesh running underneath a border router. Multiple border routers are allowable under the Thread specification.

      	Lead device: The lead device manages a registry of assigned router IDs. The lead also controls the requests for Router-Eligible End Devices (REED) to be promoted to routers. A leader can also act as a router and have device-end children. The protocol for the assignment of router addresses is the Constrained Application Protocol (CoAP). The state information a lead device manages can also be stored in the other Thread routers. This allows self-healing and failover if the leader loses connectivity.

      	Thread routers: Thread routers manage the routing services of the mesh. Thread routers never enter a sleep state but are allowed by the specification to downgrade themselves to become a REED.

      	REEDs: A host device that is a REED can become a router or a leader. REEDs are not responsible for routing in the mesh unless they are promoted to a router or leader. REEDs also cannot relay messages or join devices to the mesh. REEDs essentially are endpoints or leaf nodes in the network.

      	End devices: Some endpoints cannot become routers. These types of REEDs have two other categories that they can subscribe to: full end devices (FEDs) and minimal end devices (MEDs).

      	Sleepy end devices: Host devices that have entered a sleep state communicate only with their associated Thread router and cannot relay messages.

    

    The Thread protocol stack

    Thread makes use of the full benefits of 6LoWPAN and enjoys the benefits of header compression, IPv6 addressing, and security. Thread also uses the fragmentation scheme of 6LoWPAN as described in the previous section, but adds two additional stack components:

    
      	Distance vector routing 

      	Mesh link establishment
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    Figure 28: Thread protocol stack

    Thread routing

    Thread uses route-over routing, as described in the previous section, on 6LoWPAN routing. Up to 32 active routers are allowed in a Thread network. Route traversal is based on next-hop routing. The master route table is maintained by the stack. All routers have an up-to-date copy of the routing for the network.

    Mesh link establishment (MLE) is a method to update path traversal costs from one router to another in a network. Additionally, MLE provides a way to identify and configure neighboring nodes in the mesh and secure them. As a mesh network can expand, shrink, and change shape dynamically, MLE provides the mechanism to reconstitute the topology. MLE exchanges the path costs with all other routers in a compressed format. MLE messages will flood the network in a broadcast manner by the Multicast Protocol for Low-Power and Lossy Networks (MPL).

    Typical 802.15.4 networks use on-demand route discovery. This can be costly (bandwidth due to route discovery flooding the network), and Thread attempts to avoid that scheme. Periodically, a Thread network router will exchange MLE advertisement packets with link cost information to its neighbors, essentially forcing all routers to have a current path list. If a route terminates (the host leaves the Thread network), then the routers will attempt to find the next best path to a destination.

    Thread also measures link quality. Remember that 802.15.4 is a WPAN, and signal strength may change dynamically. Link quality is measured by the link cost of incoming messages for a neighbor with a value of zero (unknown cost) to three (good quality). The following table summarizes the quality to cost relation. Quality and cost are continually monitored and, as mentioned, periodically broadcast to the network for self-healing:

    
      
        
        
      
      
        
          	
            Link quality
          
          	
            Link cost
          
        

        
          	
            0

          
          	
            Unknown

          
        

        
          	
            1

          
          	
            6

          
        

        
          	
            2

          
          	
            2

          
        

        
          	
            3

          
          	
            1

          
        

      
    

    Thread addressing

    To determine the route to a child node, a 16-bit short address is used. The low-order bits determine the child address and the high-order bits determine the parent. In the case the node is a router, the low-order bits are set to zero. At this point, the source of transmission knows the cost to reach the child as well as the next-hop information to start the route.

    Distance vector routing is used to find paths to routers in the Thread network. The upper 6 bits of the 16-bit address indicate the destination router—this is the prefix. If the lower 10 bits of the destination are set to 0, then the final destination is that router. Alternatively, the destination router will forward the packet based on the lower 10 bits:
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    Figure 29: 2-byte Thread short address per 802.15.4-2006 speciﬁcation

    If a route extends outside of the Thread network, then a border router will signal to leaders of the particular prefix address information, such as the original prefix data, 6LoWPAN context, border routers, and the DHCPv6 server. This information is communicated via MLE packets through the Thread network.

    Within the Thread network, all addressing is UDP-based. If a retry is necessary, then the Thread network will rely on:

    
      	MAC-level retries: Where each device using MAC acknowledgments is an ACK that is not received from the next hop

      	Application retries: Where the application layer will provide its own retry mechanism

    

    Neighbor discovery

    ND in Thread decides which 802.15.4 network to join. The process is as follows:

    
      	The joining device contacts the router for commissioning.

      	The joining device scans all channels and issues a beacon request on each channel. It waits for a beacon response.

      	If a beacon containing the payload with the network service set identifier (SSID) and permit-joining message is seen, the device will join the Thread network.

      	Once a device is discovered, MLE messages will be broadcast to identify a neighbor router to the device. That router will perform commissioning. There are two commissioning modes:
          	Configuring: Uses an out-of-band method to commission a device. Allows a device to attach to the Thread network as soon as it is introduced to the network.

          	Establishing: Creates a commissioning session between the device and a commissioned application that is running on a smartphone or tablet or is web-based.

        

      

    

    
      	The device that is joining contacts the parent router and joins the network via MLE exchange.

    

    The device will exist as either a REED or an end device and is allocated a 16-bit short address by the parent.

    Summary

    This chapter covered a necessary portion of IoT communication. Using IP-based standard communication greatly simplifies design and allows for rapid and easy scaling. Scaling is critical for IoT deployments that reach into thousands or millions of nodes. Using IP-based transport allows for common tools to simply just work. 6LoWPAN and Thread demonstrate standards that can be applied to traditionally non-IP protocols such as 802.15.4. Both protocols allow for IPv6 addressing and mesh networking to massive IoT networks. 802.11 is a significant and extremely successful protocol that forms the basis of the WLAN but can also reach into IoT devices and sensors using 802.11ah or transportation systems using 802.11p. The following table contrasts a non-IP traditional protocol with an IP protocol. Typically, the difference will be in power, speed, and range.

    The architect needs to balance these parameters to deploy the correct solution:

    
      
        
        
        
      
      
        
          	
          	
            802.15.4
          
          	
            802.11ah
          
        

        
          	
            IP base

          
          	
            Non-IP based (needs 6LoWPAN or Thread)

          
          	
            IP-based

          
        

        
          	
            Range

          
          	
            100 m

          
          	
            Targeted to 1,000 m

          
        

        
          	
            Network structure

          
          	
            Full mesh

          
          	
            Hierarchical with a single node hop

          
        

        
          	
            Channelization

          
          	
            ISM 2.4 GHz with only DSSS

          
          	
            Sub 1 GHz ISM with various modulation coding schemes. Channel bandwidth: 1,2, 4, 8, 16 MHz

          
        

        
          	
            Channel interference management

          
          	
            CSMA/CA

          
          	
            RAW mechanism allowing STAs to associate group-based time slots

          
        

        
          	
            Throughput

          
          	
            250 Kbps

          
          	
            150 kbps to 347 Mbps

          
        

        
          	
            Latency

          
          	
            Good

          
          	
            Best (2x better than 802.15.4)

          
        

        
          	
            Energy efficiency

          
          	
            Best (17 mJ/Packet)

          
          	
            Good (63 mJ/packet)

          
        

        
          	
            Power savings

          
          	
            Sleep-wake mechanisms in frames

          
          	
            Multiple data structures to control and fine-tune power at various levels

          
        

        
          	
            Network size

          
          	
            Possible to 65,000

          
          	
            8192 STAs

          
        

      
    

    The next chapter will go into very long-range protocols, or wide area networks. This will include traditional cellular (4G LTE) and IoT cellular models such as Cat1. The chapter will also discuss LPWAN protocols such as Sigfox and LoRa. The WAN is the next necessary component for getting data onto the Internet.
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    Long-Range Communication Systems and Protocols (WAN)

    So far, we have discussed wireless personal area networks (WPANs) and wireless local area networks (WLANs). These types of communication bridge the sensors to a local net but not necessarily the Internet or other systems. We need to remember that the IoT ecosphere will include sensors, actuators, cameras, smart-embedded devices, vehicles, and robots in the remotest of places. For the long haul, we need to address the wide area network (WAN).

    This chapter covers the various WAN devices and topologies including cellular (4G LTE and 5G standard) as well as other proprietary systems including Long Range (LoRa) radio and Sigfox. While this chapter will cover cellular and long-range communication systems from a data perspective, it will not focus on the analog and voice portions of mobile devices. Long-range communication is usually a service, meaning it has a subscription to a carrier providing cellular tower and infrastructure improvements. This is different to the previous WPAN and WLAN architectures as they are usually contained in a device that the customer or developer produces or resells. A subscription or service-level agreement (SLA) has another effect on the architecture and constraints of systems that need to be understood by the architect.

    Cellular connectivity

    The most prevalent communication form is cellular radio and specifically cellular data. While mobile communication devices had existed for many years before cellular technology, they had limited coverage, shared frequency space, and were essentially two-way radios. Bell Labs built some trial mobile phone technologies in the 1940s (Mobile Telephone Service) and 1950s (Improved Mobile Telephone Service) but had very limited success. There were also no uniform standards for mobile telephony at the time. It wasn't until the cellular concept was devised by Douglas H. Ring and Rae Young in 1947 and then built by Richard H. Frenkiel, Joel S. Engel, and Philip T. Porter at Bell Labs in the 1960s that larger and robust mobile deployments could be realized. The handoff between cells was conceived and built by Amos E. Joel Jr., also of Bell Labs, which allowed for handoff when moving cellular devices. All these technologies combined to form the first cellular telephone system, first cellular phone, and the first cellular call made by Martin Cooper of Motorola on April 3, 1979. Following is an ideal cellular model where cells are represented as hexagonal areas of optimal placement.
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    Figure 1: Cellular theory: The hexagonal pattern guarantees separation of frequencies from the nearest neighbors. No two similar frequencies are within one hex space from each other, as shown in the case of frequency A in two different regions. This allows frequency reuse.

    The technologies and proof-of-concept designs eventually led to the first commercial deployments and public acceptance of mobile telephone systems in 1979 by NTT in Japan, and then in Denmark, Finland, Norway, and Sweden in 1981. The Americas didn't have a cell system until 1983. These first technologies are known as 1G, or the first generation of cellular technology. A primer for the generations and their features will be detailed next; however, the next section will specifically describe 4G LTE as that is the modern standard for cellular communication and data. 

    The following sections will describe other IoT and cellular standards such as NB-IoT and 5G.

    Governance models and standards

    The International Telecommunication Union (ITU) is a specialized agency that was founded in 1865; it took its present name in 1932, before becoming a specialized agency in the UN. It plays a significant role worldwide in wireless communication standards, navigation, mobile, Internet, data, voice, and next-gen networks. It includes 193 member nations and 700 public and private organizations. It also has a number of working groups called sectors. The sector relevant to cellular standards is the Radiocommunication Sector (ITU-R). The ITU-R is the body that defines the international standards and goals for various generations of radio and cellular communication. These include reliability goals and minimum data rates.

    
      The ITU-R has produced two fundamental specifications that have governed cellular communication in the last decade. The first was the International Mobile Telecommunications-2000 (IMT-2000), which specifies the requirements for a device to be marketed as 3G. More recently, the ITU-R produced a requirement specification called International Mobile Telecommunications-Advanced (IMT-Advanced). The IMT-Advanced system is based on an all-IP mobile broadband wireless system. The IMT-Advanced defines what can be marketed as 4G worldwide. The ITU was the group that approved of Long-Term Evolution (LTE) technology in the 3GPP roadmap to support the goals of 4G cellular communication in October of 2010. The ITU-R continues to drive the new requirements for 5G.

    

    Examples of the ITU-Advanced set of requirements for a cellular system to be labeled 4G include:

    
      	Must be an all-IP, packet-switched network interoperable with existing wireless

      	A nominal data rate of 100 Mbps when the client is moving and 1 GBps while the client is fixed

      	Dynamically share and use network resources to support more than one user per cell

      	Scalable channel bandwidth of 5 to 20 MHz

      	Seamless connectivity and global roaming across multiple networks

    

    The issue is that often the entire set of ITU goals are not met, and there is naming and branding confusion:

    
      
        
        
        
        
        
        
      
      
        
          	
            Feature
          
          	
            1G
          
          	
            2/2.5G
          
          	
            3G
          
          	
            4G
          
          	
            5G
          
        

        
          	
            First availability
          
          	
            1979

          
          	
            1999

          
          	
            2002

          
          	
            2010

          
          	
            2020

          
        

        
          	
            ITU-R
            specification
          
          	
            NA

          
          	
            NA

          
          	
            IMT-2000

          
          	
            IMT-Advanced

          
          	
            IMT-2020

          
        

        
          	
            ITU-R
            frequency specification
          
          	
            NA

          
          	
            NA

          
          	
            400 MHz to

            3 GHz

          
          	
            450 MHz to 3.6 GHz

          
          	
            600 MHz to 6 GHz

            24-86 GHz (mmWave)

          
        

        
          	
            ITU-R
            bandwidth specification
          
          	
            NA

          
          	
            NA

          
          	
            Stationary: 2 Mbps

            Moving: 384 Kbps

          
          	
            Stationary: 1 Gbps

            Moving: 100 Mbps

          
          	
            Min down: 20 Gbps

            Min up: 10 Gbps

          
        

        
          	
            Typical bandwidth
          
          	
            2 Kbps

          
          	
            14.4-64 Kbps

          
          	
            500 to 700 Kbps

          
          	
            100 to 300 Mbps (peak)

          
          	
            1 Gbps

          
        

        
          	
            Usage/features
          
          	
            Mobile telephony only

          
          	
            Digital voice, SMS text, caller-ID, one-way data

          
          	
            Superior audio, video, and data

            Enhanced roaming

          
          	
            Unified IP and seamless LAN/WAN/WLAN

          
          	
            IoT, ultra density, low latency

          
        

        
          	
            Standards and multiplexing
          
          	
            AMPS

          
          	
            2G: TDMA, CDMA, GSM 2.5G: GPRS, EDGE, 1xRTT

          
          	
            FDMA, TDMA WCDMA, CDMA-2000,

            TD-SCDMA

          
          	
            CDMA

          
          	
            CDMA

          
        

        
          	
            Handoff
          
          	
            Horizontal

          
          	
            Horizontal

          
          	
            Horizontal

          
          	
            Horizontal and vertical

          
          	
            Horizontal and vertical

          
        

        
          	
            Core network
          
          	
            PSTN

          
          	
            PSTN

          
          	
            Packet Switch

          
          	
            Internet

          
          	
            Internet

          
        

        
          	
            Switching
          
          	
            Circuit

          
          	
            Circuit for access network and air network

          
          	
            Packet-based except for air interface

          
          	
            Packet-based

          
          	
            Packet-based

          
        

        
          	
            Technology
          
          	
            Analog cellular

          
          	
            Digital cellular

          
          	
            Broad bandwidth CDMA, WiMAX, IP-based

          
          	
            LTE Advanced Pro-based

          
          	
            LTE

            Advanced Pro-based, mmWave

          
        

      
    

    The Third Generation Partnership Project (3GPP) is the other standard body in the cellular world. It is a group of seven telecom organizations (also known as the Organizational Partners) from across the globe that manage and govern cellular technology. The group formed in 1998 with the partnership of Nortel Networks and AT&T Wireless and released the first standard in 2000. Organizational Partners and Market Representatives contribute to 3GPP from Japan, the USA, China, Europe, India, and Korea. The overall goal of the group is to recognize standards and specifications for the Global System for Mobile Communications (GSM) in the creation of the 3G specifications for cellular communication. 3GPP work is performed by three Technical Specification Groups (TSG) and six Working Groups (WG). The groups meet several times per year in different regions. The main focus of 3GPP releases is to make the system backward and forward compatible (as much as possible).

    
      There is a degree of confusion in the industry as to the differences between the ITU, 3GPP, and LTE definitions. The easiest way to conceptualize the relationship is that the ITU will define the goals and standards worldwide for a device to be labeled 4G or 5G. The 3GPP responds to goals with technologies such as the family of LTE improvements. The ITU still ratifies that such LTE advancements meet their requirements to be labeled 4G or 5G.

    

    The following figure shows the 3GPP technology releases since 2008. Boxed are the LTE evolution technologies.
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    Figure 2: 3GPP releases from 2008 to 2020

    
      LTE and its role in the cellular vernacular are also often confused. LTE stands for Long-Term Evolution and is the path followed to achieve ITU-R speeds and requirements (which are initially quite aggressive). Mobile phone vendors will release new smartphones in an existing cellular neighborhood using legacy backend technology such as 3G. Carriers advertise 4G LTE connectivity if they demonstrated a substantial improvement in speed and features over their legacy 3G networks. In the mid- to late-2000s, many carriers did not meet the ITU-R 4G specification but essentially got close enough. Carriers used legacy technologies and rebranded themselves as 4G in many cases. LTE-Advanced is yet another improvement that gets even closer to ITU-R goals.

      In summary, the terminology can be confusing and misleading, and an architect needs to read beyond the branding labels to understand the technology.

    

    Cellular access technologies

    It is important to understand how cellular systems work with multiple users of voice and data. There are several standards worth reviewing, similar to concepts covered for WPAN and WLAN systems. Before LTE was supported by the 3GPP, there were multiple standards for cellular technology, particularly GSM devices and CDMA devices. It should be noted that these technologies are incompatible with each other, from infrastructure to the device:

    
      	Frequency-division multiple access (FDMA): Common in analog system systems but rarely used today in digital domains. It is a technique whereby the spectrum is divided up into frequencies and then assigned to users. One transceiver at any given time is assigned to a channel. The channel, therefore, is closed to other conversations until the initial call is finished, or until it is handed off to a different channel. A full-duplex FDMA transmission requires two channels, one for transmitting and one for receiving.

      	Code-division multiple access (CDMA): Based on spread-spectrum technology. CDMA increases spectrum capacity by allowing all users to occupy all channels at the same time. Transmissions are spread over the whole radio band, and each voice or data call is assigned a unique code to differentiate from the other calls carried over the same spectrum. CDMA allows for a soft hand-off, which means that terminals can communicate with several base stations at the same time. The dominant radio interface for third-generation mobile was originally designed by Qualcomm as CDMA2000 and targeted 3G. Because of its proprietary nature, it didn't achieve global adoption and is used in less than 18% of the global market. It manifested in the US with Verizon and Sprint being strong CDMA carriers.

      	Time-division multiple access (TDMA): Increases the capacity of the spectrum by splitting each frequency into time slots. TDMA allows each user to access the entire radio frequency channel for the short period of a call. Other users share this same frequency channel at different time slots. The base station continually switches from user to user on the channel. TDMA is the dominant technology for second-generation mobile cellular networks. The GSM organization adopted TDMA as a multi-access model. It resides in four distinct bands: 900 MHz/1800 MHz in Europe and Asia and 850 MHz/1900 MHz in North and South America.

    

    Some devices and modems may still support GSM/LTE or CDMA/LTE. GSM and CDMA are incompatible with each other. GSM/LTE and CDMA/LTE can be compatible, however, if they support the LTE bands. In older devices, voice information is delivered on a 2G or 3G spectrum, which are quite different for CDMA and GSM (TDMA). Data, too, is incompatible since LTE data runs on 4G bands.

    3GPP user equipment categories

    In release 8, there were five types of user equipment categories, each with different data rates and MIMO architectures. Categories allowed 3GPP to differentiate between LTE evolutions. Since release 8, more categories have been added. Categories combine the uplink and downlink capabilities as specified by the 3GPP organization. Typically, you will acquire a cellular radio or chipset that labels the category it is capable of supporting. While user equipment may support a particular category, the cell system (eNodeB, discussed later) must also support the category.

    Part of the association process between a cell device and infrastructure is the exchange of capability information such as the category:

    
      
        
        
        
        
        
      
      
        
          	
            3GPP Release
          
          	
            Category
          
          	
            Max L1 Downlink Data Rate (Mbps)
          
          	
            Max L1 Uplink Data Rate (Mbps)
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            8
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      Notice Cat M1 and Cat NB1 in release 13. Here the 3GPP organization reduced the data rates significantly to 1 Mbps or lower. These are the categories dedicated to IoT devices that need low data rates and only communicate in short bursts.

    

    4G LTE spectrum allocation and bands

    There are 55 LTE bands in existence, partly due to spectrum fragmentation and market strategies. The proliferation of LTE bands is also a manifestation of government allocation and the auctioning of frequency space. LTE is also split into two categories that are not compatible:

    
      	Time-division duplex (TDD): TDD uses a single frequency space for uplink and downlink data. The transmission direction is controlled via time slots.

      	Frequency-division duplex (FDD): In an FDD configuration, the base station (eNodeB) and the user equipment (UE) will open a pair of frequency spaces for uplink and downlink data. An example may be LTE band-13, which has an uplink range of 777 to 787 MHz and a downlink range of 746 to 756 MHz. Data can be sent simultaneously to both the uplink and downlink.

    

    Combination TDD/FDD modules exist that combine both technologies into a single modem allowing for multiple carrier usages.

    FDD will use a dedicated pair of frequencies for uplink and downlink traffic. TDD uses the same carrier frequency for both uplink and downlink. Each is based on a frame structure, and the total frame time is 10 ms in 4G LTE. There are 10 subframes that comprise each large 10 ms frame. Each of the 10 subframes is further composed of two time slots.

    For FDD, a total of 20 time slots, each 0.5 ms, composes the overall frame. In TDD, the subframes are actually two half-frames, each 0.5 ms in duration. Therefore, a 10 ms frame will have 10 subframes and 20 timeslots. TDD also uses a special subframe (SS). This frame divides a subframe into an uplink portion and downlink portion. 

    The SS carries what are called Pilot Time Slots (PTSs) for downlink and uplink traffic (DwPTS and UpPTS, respectively).

    [image: ]
    Figure 3: FDD versus TDD in 4G LTE: FDD uses dual simultaneous frequency pairs of uplink and downlink traffic. TDD will use a single frequency divided into organized "timeslots" for uplink and downlink traffic.

    TDD can have seven different uplink and downlink patterns that regulate its traffic:
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      Note that downlink will always refer to communication from the eNodeB to the user equipment, and uplink will refer to the opposite direction.

    

    A few other terms specific to LTE are needed to understand the spectrum usage:

    
      	Resource element (RE): This is the smallest transmission unit in LTE. The RE consists of one subcarrier for exactly one unit of symbol time (OFDM or SC-FDM).

      	Subcarrier spacing: This is the space between subcarriers. LTE uses 15 kHz spacing with no guard bands.

      	Cyclic prefix: Since there are no guard bands, a cyclic prefix time is used to prevent multipath intersymbol interference between subcarriers.

      	Time slot: LTE uses a 0.5 ms time period for LTE frames. That equals six or seven OFDM symbols depending on the cyclic prefix timing.

      	Resource block: This is one unit of transmission. It contains 12 subcarriers and 7 symbols, which is equal to 84 resource elements.

    

    An LTE frame that is 10 ms long would consist of 10 subframes. If 10% of the total bandwidth of a 20 MHz channel is used for a cyclic prefix, then the effective bandwidth is reduced to 18 MHz. The number of subcarriers in 18 MHz is 18 MHz/15 kHz = 1,200. The number of resource blocks is 18 MHz/180 kHz = 100:

     [image: ]
    Figure 4: One slot of an LTE frame. A 10 ms LTE frame consists of 20 slots. Slots are based on 12 15 kHz spaced subcarriers and 7 OFDM symbols. This combines into 12x7 = 84 resource elements.

    The bands allocated for 4G LTE are specific to regional regulations (North America, Asia-Pacific, and so on). Each band has a set of standards developed and ratified by the 3GPP and ITU. Bands are split between FDD and TDD areas and have common name acronyms routinely used in the industry, such as Advanced Wireless Service (AWS). The following tables separate the FDD and TDD bands for the North American region only:
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    Figure 5: 4G LTE frequency-division duplex band allocation and North American carrier ownership
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    Figure 6: 4G LTE time-division duplex band allocation for North America and North American carrier ownership

    
      Within Europe, band usage follows a different model. Member states of the European Union have agreed to the spectrum inventory. Typical bands used across various countries:800 MHz 1,452 MHz to 1,492 MHz 1,800, 2,300, 2,600 MHz

    

    LTE also has been developed to work in the unlicensed spectrum. Originally a Qualcomm proposal, it would operate in the 5 GHz band with IEEE 802.11a. The intent was for it to serve as an alternative to Wi-Fi hotspots. This frequency band of between 5,150 MHz and 5,350 MHz typically requires radios to operate at 200 mW maximum and indoors only. To this date, only T-Mobile supports the unlicensed use of LTE in areas of the USA. AT&T and Verizon are conducting public tests with LAA mode. There are two categories of unlicensed spectrum use for cellular:

    
      	LTE Unlicensed (LTE-U): As mentioned, this would coexist in the 5 GHz band with Wi-Fi devices. The control channel of LTE would remain the same while voice and data would migrate to the 5 GHz band. Within LTE-U is the concept that user equipment may only support unidirectional downlinks in the unlicensed band or full duplex.

      	Licensed-Assisted Access (LAA): This is similar to LTE-U but governed and designed by the 3GPP organization. It uses a contention protocol called listen-before-talk (LBT) to assist in coexisting with Wi-Fi.

    

    LTE allows for a process called carrier aggregation to increase usable bitrate. Since Release 8 and 9 of 3GPP, carrier aggregation has been used for FDD and TDD deployments. Simply put, carrier aggregation attempts to use multiple bands simultaneously if they are available for uplink and downlink traffic. For example, a user's device could use channels with bandwidths of 1.4, 3, 5, 10, 15, or 20 MHz. Up to five channels can be used in aggregate for a combined maximum capacity of 100 MHz. Furthermore, in FDD mode, the uplink and downlink channels may not be symmetric and use different capacities, but the uplink carriers must be equal to or lower than the downlink carriers.

    The channel carriers can be arranged using a contiguous set of carriers or can be disjointed as shown in the following graphic. There can be gaps within a band or even carriers distributed across bands.
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    Figure 7: 4G LTE carrier aggregation. Carrier aggregation attempts to use multiple bands to achieve higher data rates and allow for better usage of network capacity. Three different methods are used for carrier aggregation: intra-band contiguous, intra-band non-contiguous, and inter-band non-contiguous.

    There are three methods of carrier aggregation:

    
      	Intra-band contiguous: This is the simplest method. Frequencies are clustered together in the same frequency without gaps. The transceiver sees the aggregate channel as one large channel.

      	Intra-ban non-contiguous: This method will take two or more carriers and place them in the same frequency, but there may be gaps between blocks.

      	Inter-band non-contiguous: This is the most common form of carrier aggregation. Frequency blocks are spread across different frequencies and can be bundled in different combination.

    

    4G LTE topology and architecture

    The 3GPP LTE architecture is called the System Architecture Evolution (SEA), and its overall goal is to deliver a simplified architecture based on all-IP traffic. It also supports high-speed communication and low latency over radio access networks (RANs). In release 8 of the 3GPP roadmap, LTE was introduced. Since the network is entirely composed of IP packet-switched components, that means that voice data is also sent across as digital IP packets. This is another fundamental difference from the legacy 3G network.

    
      3G topology used circuit switching for voice and SMS traffic and packet switching for data. Circuit switching differs fundamentally from packet switching. Circuit switching manifests from the original telephone switching network. It will use a dedicated channel and path between a source and a destination node for the duration of the communication. In a packet switch network, messages will be broken into smaller fragments (called packets in the case of IP data) and will seek the most efficient route from a source of data to the destination. A header enveloping the packet provides destination information among other things.

    

    The typical 4G LTE network has three components: a client, a radio network, and a core network. The client is simply the user's radio device. The radio network represents frontend communication between the client and the core network and includes radio equipment such as the tower. The core network represents the management and control interface of the carrier and may manage one or more radio networks.

    The architecture can be decomposed as follows:

    
      	User equipment (UE): This is the client hardware and is composed of Mobile Terminations (MT), which perform all the communication functions, Terminal Equipment (TE), which manages terminating data streams, and the Universal Integrated Circuit Card (UICC), which is the SIM card for identity management.

      	Evolved Universal Terrestrial Radio Access Network (E-UTRAN): This is the 4G LTE air interface to LTE UE devices. E-UTRAN uses OFDMA for the downlink portion and SC-FDMA for the uplink. Subsequently, this makes it incompatible with the legacy 3G W-CDMA technology. The E-UTRAN consists of eNodeBs but can contain several that are interlinked by a channel called the X2 interface.

      	eNodeB: This is the core of the radio network. It handles communications between the UE and the core (EPC). Each eNodeB is a base station that controls eUEs in one or more cellular zones and allocates resources to a specific client in 1 ms chunks called TTI. It will allocate channel resources based on usage conditions to various UEs in its cell proximity. eNodeB systems are also responsible for triggering state transitions from IDLE to CONNECTED. It also handles the mobility of the UE, such as the handover to other eNodeBs, and is responsible for transmission and congestion control. The interface out of the eNodeB and into the EPC is the S1 interface.

      	Evolved Packet Core (EPC): In the design of LTE, the 3GPP decided to build a flat architecture and separate user data (called the user plane) and control data (called the control plane). This is allowed for more efficient scaling. The EPC has five basic components listed here:
          	Mobility Management Entity (MME): Responsible for control plane traffic, authentication and security, location and tracking, and mobility issue handlers. The MME also needs to recognize mobility in IDLE mode. This is managed using a Tracking Area (TA) code. The MME also governs the Non-Access Stratum (NAS) signaling and bearer control (described later).

          	Home Subscriber Server (HSS): A central database associated with the MME that contains information about the network operator subscribers. This may include keys, user data, maximum data rates on the plan, subscriptions, and so on. The HSS is a holdover from the 3G UMTS and GSM networks.

          	Servicing Gateway (SGW): Responsible for user plane and user data flow. Essentially, it acts as a router and forwards packets between the eNodeB and PGW directly. The interface out of the SGW is called the S5/S8 interface. S5 is used if two devices are on the same network, and S8 is used if they are on different networks.

          	Public Data Network Gateway (PGW): Connects mobile networks to external sources including the Internet or other PDN networks. It also allocates the IP address for the mobile devices connected. The PGW manages the Quality of Service (QoS) for various Internet services such as video streaming and web browsing. It uses an interface called the SGi to reach into various external services.

          	Policy Control and Charging Rules Function (PCRF): Another database that stores policies and decision-making rules. It also controls the flow-based charging functions.

        

      

      	Public Data Network (PDN): This is the external interface, and for the most part, the Internet. It can include other services, data centers, private services, and so on.

    

    In a 4G LTE service, a customer will have a carrier or operator known as their Public Land Mobile Network (PLMN). If the user is in that carrier's PLMN, they are said to be in Home-PLMN. If the user moves to a different PLMN outside their home network (for example, during international travel), then the new network is called the visited-PLMN. The user will connect their EU to a visited-PLMN which requires resources of the E-UTRAN, MME, SGW, and PGW on the new network. The PGW can grant access to a local-breakout (a gateway) to the Internet. This, effectively, is where roaming charges start to affect the service plans. Roaming charges are applied by the visited-PLMN and accounted for on the client's bill. The following graphic illustrates this architecture. On the left side is a top-level view of the 3GPP System Architecture Evolution for 4G LTE. In this case, it represents the client UE, the radio node E-UTRAN, and the core network EPC, all residing in a Home-PLMN. On the right is a model of the mobile client moving to a visited-PLMN and distributing the functionality between the visited-PLMN E-UTRAN and EPC, as well as crossing back to the home network. 

    The S5 interconnect is used if the client and carrier reside on the same network and the S8 interface if the client is crossing across different networks.
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    Figure 8: Top: 3GPP system architecture. Bottom: Top-level view of 4G LTE architecture.

    Non-access stratum (NAS) signaling was mentioned in the MME. It is a mechanism for passing messages between UE and core nodes such as switching centers. Examples may include messages such as authentication messages, updates, or attach messages. The NAS sits at the top of the SAE protocol stack.

    The GPRS Tunneling Protocol (GTP) is an IP/UDP-based protocol used in LTE. GTP is used throughout the LTE communication infrastructure for control data, user data, and charging data. In the preceding figure, most of the S* channel's connecting components use GTP packets.

    The LTE architecture and protocol stack use what are known as bearers. Bearers are a virtual concept used to provide a pipe to carry data from one node to another node. The pipe between the PGW and UE is called the EPS Bearer. As data enters the PGW from the Internet, it will package the data in a GTP-U packet and send it to the SGW. GTP stands for GPRS Tunneling Protocol (or General Packet Radio Service Tunneling Protocol). It is the mobile standard for packet-based cellular communication since 2G and allows services like SMS and push-to-talk to exist. GTP supports IP-based packet communication as well as Point-to-Point Protocol (PPP) and X.25. GTP-U represents user plane data, while GTP-C handles control plane data. The SGW will receive the packet, strip the GTP-U header, and repackage the user data in a new GTP-U packet on its way to the eN (eNodeB).

    
      The eNodeB is a critical component of cellular communication and referenced often in this text. The "e" in eNodeB stands for "evolved". This is the hardware that handles the radio communication and link between mobile handsets and the rest of the cellular network. It uses separate control and data planes where the S1-MME interface manages control traffic and the S1-U manages user data.

    

    Again, the eNodeB repeats the process and will repackage the user data after compressing, encrypting, and routing to logical channels. The message will then transmit to the UE through a radio bearer. One advantage bearers bring to LTE is QoS control. Using bearers, the infrastructure can guarantee certain bitrates dependent on customer, application, or usage.

    When a UE attaches to a cellular network the first time, it is assigned a default bearer. Each default bearer has an IP address, and a UE may have several default bearers, each with a unique IP. This is a best-effort-service, meaning it wouldn't be used for guaranteed QoS-like voices. A dedicated bearer, in this case, is used for QoS and good user experience. It will be initiated when the default bearer is incapable of fulfilling a service. The dedicated bearer always resides on top of the default bearer. A typical smartphone may have the following bearers running at any time:

    
      	Default bearer 1: Messaging and SIP signaling

      	Dedicated bearer: Voice data (VOIP) linked to default bearer 1

      	Default bearer 2: All smartphone data services such as email and browser

    

    The switching aspect of LTE is also worth mentioning. We looked at the different generations of 3GPP evolutions from 1G to 5G. One goal of the 3GPP and carriers was to move to a standard and accepted Voice over IP (VOIP) solution. Not only would data be sent over standard IP interfaces, but so would voice. After some contention between competing methods, the standards body settled on VoLTE (Voice over Long-Term Evolution) as the architecture. VoLTE uses an extended variant of the Session Initiation Protocol (SIP) to handle voice and text messages. A codec known as the Adaptive Multi-Rate (AMR) codec provides wideband high-quality voice and video communication. Later, we will look at new 3GPP LTE categories that drop VoLTE to support IoT deployments.

    
      It must be noted that LTE is one of two standards for mobile broadband. Wireless Mobility Internet Access (WiMAX) is the alternative. LTE WiMAX is a wideband, IP-based, OFDMA communication protocol.

      WiMAX is based on the IEEE 802.16 standards and managed by the WiMAX Forum. WiMAX resides in the 2.3 and 3.5 GHz range of the spectrum but can reach into the 2.1 GHz and 2.5 GHz range, like LTE. Introduced commercially before LTE took off, WiMAX was the Sprint and Clearwire choice for high-speed data.

      WiMAX, however, has only found niche uses. LTE is generally much more flexible and widely adopted. LTE also advanced slowly in an attempt to keep backward compatibility with older infrastructure and technologies in place, while WiMAX was meant for new deployments. WiMAX did have an advantage regarding ease of setup and installation over LTE; but LTE won the bandwidth race, and in the end, bandwidth defined the mobile revolution.

    

    4G LTE E-UTRAN protocol stack

    The 4G LTE stack has characteristics similar to other derivatives of the OSI model; however, there are other characteristics of the 4G control plane, as can be seen in the following figure. One difference is that the Radio Resource Control (RRC) has extensive reach throughout the stack layers. This is called the control plane. This control plane has two states: idle and connected. When idle, the UE will wait in a cell after associating with it and may monitor a paging channel to detect whether an incoming call or system information is targeted at it. In the connected mode, the UE will establish a downlink channel and information on the neighbor cell. The E-UTRAN will use the information to find the most suitable cell at the time:
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    Figure 9: E-UTRAN protocol stack for 4G LTE, and comparison to the simpliﬁed OSI model

    
      The control plane and user plane also behave slightly differently and have independent latencies. The user plane typically has a 4.9 ms latency, while the control plane will use a 50 ms latency.

    

    The stack is composed of the following layers and features:

    
      	Physical layer 1: This layer is the radio interface, also known as the air interface. Responsibilities include link adaption (AMC), power management, signal modulation (OFDM), digital signal processing, searching for cell signals, synchronization with cells, handover control, and cell measurements for the RRC layer.

      	Medium Access Control (MAC): Similar to other OSI-derived stacks, this performs a mapping between logical channels and transport layers. The MAC layer multiplexes various packets onto transport blocks (TB) for the physical layer. Other responsibilities include scheduling reporting, error correction, channel prioritization, and managing multiple UEs.

      	Radio Link Control (RLC): RLC transfers upper layer PDUs, performs error correction via ARQ, and handles the concatenation/segmentation of packets. Additionally, it provides a logical channel interface and detection of duplicate packets and performs reassembly of received data.

      	Packet Data Convergence Control Protocol (PDCP): This layer is responsible for packet compression and decompression. The PDCP also manages the routing of user plane data as well as control plane data with feedback into the RRC. The management of duplicate SDUs (such as in a handover procedure) is handled in this layer. Other features include ciphering and deciphering, integrity protection, timer-based discarding of data, and reestablishment of channels.

      	Radio Resource Control (RRC): The RRC layer broadcasts system information to all the layers, including non-access strata and access strata. It manages security keys, configurations, and the control of radio bearers.

      	Non-access Stratum (NAS): This represents the highest level of the control plane and is the main interface between a UE and the MME. The principal role is session management; therefore, the mobility of the UE is established at this level.

      	Access Stratum (AS): This is a layer below the NAS whose purpose is to convey non-radio signals between the UE and radio network.

    

    4G LTE geographical areas, dataflow, and handover procedures

    Before considering the process of cellular handover, we need to first define the vernacular surrounding areas and network identification. There are three types of geographical areas in an LTE network:

    
      	MME pool areas: This is defined as a region where a UE can move without changing the serving MME.

      	SGW service areas: This is defined as an area where one or more SGW will continue to provide service for a UE.

      	Tracking areas (TA): These define subareas composed of small MME and SGW areas that don't overlap. They are used to track the location of a UE that is in standby mode. This is essential for handover.

    

    Each network in a 4G LTE network must be uniquely identifiable for these services to work. To assist with identifying networks, the 3GPP uses a network ID consisting of:

    
      	Mobile country code (MCC): Three-digit identification of the country the network resides within (for example, Canada is 302)

      	Mobile network code (MNC): A two- or three-digit value indicating the carrier (for example, Rogers Wireless is 720)

    

    Each carrier also needs to uniquely identify each MME it uses and maintains. The MME is needed locally within the same network and globally when a device is moving and roaming to find the home network. Each MME has three identities:

    
      	MME identifier: This is the unique ID that will locate a particular MME within a network. It is composed of the following two fields:
          	MME Code (MMEC): This identifies all the MMEs that belong to the same pool area mentioned previously.

          	MME Group Identity (MMEI): This defines a group or cluster of MMEs.

        

      

      	Globally Unique MME Identifier (GUMMEI): This is the combination of a PLNM-ID and the MMEI described previously. The combination forms an identifier that can be located anywhere globally from any network.

    

    The Tracking Area Identity (TAI) allows a UE device to be tracked globally from any position. This is the combination of the PLMN-ID and the Tracking Area Code (TAC). The TAC is a particular physical subregion of a cell coverage area.

    The cell ID is constructed from a combination of the E-UTRAM Cell Identity (ECI), which identifies the cell in a network, the E-UTRAN Cell Global Identifier (ECGI), which identifies the cell anywhere in the world, and a physical cell identity (integer value 0 to 503) used to distinguish it from another neighbor EU.

    The handover process involves transferring a call or data session from one channel to another in a cell network. The handover most obviously occurs if the client is moving. A handover can also be instigated if the base station has reached its capacity and is forcing some devices to relocate to another base station in the same network. This is called intra-LTE handover. Handover can also occur between carriers while roaming, called inter-LTE handover. It is also possible to hand over to other networks (inter-RAT handover), such as moving between a cellular signal and a Wi-Fi signal.

    If the handover exists in the same network (intra-LTE handover), then two eNodeBs will communicate through the X2 interface and the core network EPC is not involved in the process. If the X2 isn't available, the handover needs to be managed by the EPC through the S1 interface. In each case, the source eNodeB initiates the transaction request. If the client is performing an inter-LTE, the handover is more complicated as two MMEs are involved: a source (S-MME) and a target (T-MME).

    The process allows for seamless handover, as shown in the series of steps in the next figure. First, the source eNodeB will decide to instantiate a handover request based on capacity or client movement. The eNodeB does this by broadcasting a MEASUREMENT CONTROL REQ message to the UE. 

    These are network measurement reports sent out when certain thresholds are hit. A direct tunnel setup (DTS) is created where the X2 transport bearer communicates between the source eNodeB and the destination eNodeB. If the eNodeB determines it is appropriate to launch a handover, it finds the destination eNodeB and sends a RESOURCE STATUS REQUEST over the X2 interface to determine if the target can accept a handover. The handover is launched with the HANDOVER REQUEST message.

    The destination eNodeB prepares resources for the new connection. The source eNodeB will detach the client UE. Direct packet forwarding from the source eNodeB to the destination eNodeB ensures no packets in flight are lost. Next, the handover completes by using a PATH SWITCH REQUEST message between the destination eNodeB and the MME to inform it that the UE has changed cells. The S1 bearer will be released, as will the X2 transport bearer, because no residue packets should be flowing to the EU client at this time:
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    Figure 10: An example of intra-LTE handover between two eNodeBs

    
      A number of IoT gateway devices using 4G LTE allow multiple carriers (such as Verizon and ATT) to be available on a single device gateway or router. Such gateways can switch and handover between carriers seamlessly without data loss. This is an important characteristic for mobile and transportation-based IoT systems such as logistics, emergency vehicles, and asset tracking. Handover allows such moving systems to migrate between carriers for better coverage and efficient rates.

    

    4G LTE packet structure

    The LTE packet frame structure is similar to other OSI models. The figure here illustrates the decomposition of the packet from PHY up to the IP layer. The IP packet is enveloped in the 4G LTE layers:
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    Figure 11: 4G LTE packet structure: IP packets are reformed in the PDCP SDUs and ﬂow through the RLC, MAC, and PHY layers. The PHY creates slots and subframes of transport blocks from the MAC layer.

    Cat-0, Cat-1, Cat-M1, and NB-IoT

    The connectivity of an IoT device to the Internet is different from typical consumer-based cellular devices like a smartphone. A smartphone mainly pulls information off the Internet in a downlink. Often that data is large and streaming in real time, such as video data and music data. In an IoT deployment, the data can be very sparse and arrive in short bursts. The majority of data will be generated by the device and travel over the uplink. The LTE evolution has progressed in building a cellular infrastructure and a business model focused and optimized for mobile consumers. The new shift is to satisfy the IoT producers of data at the edge as that will dwarf the number of consumers. The following sections cover low-power wide-area networks (LPWANs) and specifically the LTE variety of LPWAN. These are suitable for IoT deployments and the features vary.

    The "Cat" abbreviation stands for "Category." Until release 13, the lowest data rate suitable for typical IoT devices was Cat-1. As the mobile revolution demanded higher speeds and services, Cat-1 was overlooked in the 3G and 4G timeline. Release 12 and 13 addressed the IoT device requirements for low cost, low power, sparse transmission, and range extensions.

    
      One thing all these protocols share by design is that they are all compatible with the existing cellular hardware infrastructure. However, to enable new features, software changes to the protocol stack are necessary for the infrastructure. Without such changes, Cat-0, Cat-M1, and Cat-NB UEs will not even see the network. The IoT architect needs to ensure that the cellular infrastructure they intend to deploy into has been updated to support these standards.

    

    Cat-1 hasn't gained significant traction in the market, and we won't go into the specification here as it is similar to the 4G LTE material discussed previously.

    LTE Cat-0

    Cat-0 was introduced in release 12 and was the first architecture outside of Cat-1 targeted to IoT needs. The design, like many other LTE specifications, is IP-based and runs in the licensed spectrum. A significant difference is in the uplink and downlink peak data rates (1 Mbps each), as opposed to Cat-1 at 10 Mbps for the downlink and 5 Mbps for the uplink.

    While the channel bandwidth stays at 20 MHz, the reduction in data rates greatly simplifies the design and reduces cost. Additionally, moving from a full-duplex to a half-duplex architecture further improves cost and power.

    Usually, the NAS layer of the LTE stack doesn't have much of a role in servicing UEs. In Cat-0, the 3GPP architects changed the NAS abilities to assist in power saving at the UE level. Cat-0 introduces Power Save Mode (PSM) to the LTE specification to address hard power constraints. In a traditional LTE device, the modem remains connected to a cellular network, consuming power whether the device is active, idle, or sleeping. To prevent connection power overhead, a device can disconnect and disassociate from a network, but it would incur a 15- to 30-second reconnect and search phase. PSM allows the modem to enter a very deep sleep state—at any time it is not actively communicating—yet wake quickly. It does this by performing a Tracking Area Update (TAU) periodically and remaining reachable via paging for a programmable period of time. Essentially, an IoT device could enter an idle period of 24 hours and wake once a day to broadcast sensor data all while staying connected. All the negotiations for setting these individual timers are managed via the changes at the NAS level and are relatively simple to enable by setting two timers:

    
      	T3324: Time the UE stays in idle mode. If the IoT device application is certain no messages are pending, it can reduce the value of the timer.

      	T3412: Once the T3324 timer expires, the device will enter PSM for a period of T3412. The device will be at the lowest possible energy state. It cannot participate in paging or network signaling. The device, however, maintains all UE state (bearers, identities). The maximum time allowed is 12.1 days.

    

    
      When using PSM or other advanced power management modes, it is wise to test compliance with carrier infrastructure. Some cell systems require a ping every two to four hours to the UE. If the carrier loses connectivity for periods greater than two to four hours, they may deem the UE unreachable and detach.

    

    There is little coverage and adoption of Cat-0, and it has seen limited growth. Most of the new features of Cat-0 have been included in Cat-1 and other protocols.

    LTE Cat-1

    LTE Cat-1 reuses the same chipsets and carrier infrastructure as Cat-4, so it can be used throughout the USA on Verizon and AT&T infrastructure. Cat-1 has significant market traction in the M2M industry. The specification was part of release 8 and was later updated to support power saving mode and the single LTE antenna of Cat-0.

    Cat-1 is considered a medium-speed LTE standard, meaning the downlink is 10 Mbps and the uplink is 5 Mbps. At these rates, it is still capable of transporting voice and video streams as well as M2M and IoT data payloads. By adopting the Cat-0 PSM and antenna design, Cat-1 operates with less power than traditional 4G LTE. It is also significantly less costly to design radios and electronics.

    
      Cat-1 is currently the best choice in cellular connectivity for IoT and M2M devices with the widest coverage and lowest power. While significantly slower than regular 4G LTE (10 Mbps versus 300 Mbps downlink), the radio can be designed to fall back to 2G and 3G networks as needed. Cat-1 reduces design complexity by incorporating time-slicing, which also reduces the speed considerably.

    

    Cat-1 can be thought of as a complement to newer narrowband protocols, which are covered next.

    LTE Cat-M1 (eMTC)

    Cat-M1, also known as enhanced machine-type communication (and sometimes just called Cat-M), was designed to target IoT and M2M use cases with low cost, low power, and range enhancements. Cat-M1 was released in the 3GPP release 13 schedule. The design is an optimized version of the Cat-0 architecture. The single largest difference is that the channel bandwidth is reduced from 20 MHz to 1.4 MHz. Reducing the channel bandwidth from a hardware point of view relaxes timing constraints, power, and circuitry. Costs are also reduced by up to 33% compared to Cat-0 since the circuitry doesn't need to manage a wide 20 MHz spectrum. The other significant change is in the transmit power, which is reduced from 23 dB to 20 dB. Reducing the transmit power by 50% reduces cost further by eliminating an external power amplifier and enables a single-chip design. Even with the reduction in transmit power, the coverage improves by +20 dB.

    Cat-M1 follows other late 3GPP protocols that are IP-based. While not a MIMO architecture, throughput is capable of 375 Kbps or 1 Mbps on both the uplink and downlink. The architecture allows for mobile solutions for in-vehicle or V2V communication. The bandwidth is wide enough to allow voice communication, as well, using VoLTE. Multiple devices are allowed on a Cat-M1 network using the traditional SC-FDMA algorithm. Cat-M1 also makes use of more complex features such as frequency hopping and turbo-coding.

    Power is critical in IoT edge devices. The most significant power reduction feature of Cat-M1 is the transmission power change. As mentioned, the 3GPP organization reduced the transmission power from 23 dB to 20 dB. This reduction in power does not necessarily mean a reduction in range. The cell towers will rebroadcast packets six to eight times. This is to ensure reception in particularly problematic areas. Cat-M1 radios can turn off reception as soon as they receive an error-free packet.

    Another power saving feature is the extended discontinuous reception (eDRX) mode, which allows a sleep period of 10.24 seconds between paging cycles. This reduces power considerably and enables the UE to sleep for a programmable number of hyper-frames (HF) of 10.24 seconds each. The device can enter this extended sleep mode for up to 40 minutes. This allows the radio to have an idle current as low as 15 µA.

    Additional power mitigation abilities and features include PSM, as introduced in Cat-0 and release 13:

    
      	Relaxing neighbor cell measurements and reporting periods. If the IoT device is stationary or slow moving (sensor on a building, cattle in a feedlot), then the call infrastructure can be tuned to limit the control messages.

      	User and control plane CIoT EPS optimization. Such optimization is a feature that is part of the RRC in the E-UTRAN stack. In normal LTE systems, a new RRC context must be created every time the UE wakes from IDLE mode. This consumes the majority of power when the device simply needs to send a limited amount of data. Using the EPS optimization, the context of the RRC is preserved.

      	Header compression of TCP or UDP packets.

      	Reduction of sync time after long sleep periods.

    

    
      The next section covers Cat-NB. The market has developed a perception that Cat-NB is substantially lower in power and cost than all other protocols such as Cat-M1. That is partially true, and an IoT architect must understand the use cases and carefully choose which protocol is correct. For example, if we hold the transmit power constant between Cat-NB and Cat-M1, we see Cat-M1 has an 8 dB gain in coverage. Another example is power; while Cat-M1 and Cat-NB have similar and aggressive power management features, Cat-M1 will use less power for larger data sizes.

      Cat-M1 can transmit the data faster than Cat-NB and enter a deep sleep state that much sooner. This is the same concept Bluetooth 5 used to reduce power, simply by sending the data faster and then entering a sleep state. Also, as of the time of writing, Cat-M1 is available today while Cat-NB has not hit USA markets.

    

    LTE Cat-NB

    Cat-NB, also known as NB-IoT, NB1, or Narrowband IoT, is another LPWAN protocol governed by the 3GPP in release 13. Like Cat-M1, Cat-NB operates in the licensed spectrum. Like Cat-M1, the goal is to reduce power (10-year battery life), extend coverage (+20 dB), and reduce cost ($5 per module). Cat-NB is based on the Evolved Packet System (EPS) and optimizations to the Cellular Internet of Things (CIoT). Since the channels are much narrower than even the 1.4 MHz Cat-M1, cost and power can be reduced even further with the simpler designs of the analog-to-digital and digital-to-analog converters.

    Significant differences between Cat-NB and Cat-M1 include:

    
      	Very narrow channel bandwidth: As with Cat-M1, which reduced the channel width to 1.4 MHz, Cat-NB reduces it further to 180 kHz for the same reasons (reducing cost and power).

      	No VoLTE: As the channel width is so low, it does not have the capacity for voice or video traffic.

      	No mobility: Cat-NB will not support handover and must remain associated with a single cell or remain stationary. This is fine for the majority of secured and fastened IoT sensor instruments. This includes handover to other cells and other networks.

    

    Regardless of these significant differences, Cat-NB is based on OFDMA (downlink) and SC-FDMA (uplink) multiplexing and uses the same subcarrier spacing and symbol duration.

    The E-UTRAN protocol stack is also the same with the typical RLC, RRC, and MAC layers; it remains IP-based, but is considered a new air interface for LTE.

    Since the channel width is so small (180 kHz), it provides the opportunity to bury the Cat-NB signal inside a larger LTE channel, replace a GSM channel, or even exist in the guard channel of regular LTE signals. This allows flexibility in LTE, WCDMA, and GSM deployments. The GSM option is simplest and fastest to market. Some portions of the existing GSM traffic can be placed on the WCDMA or LTE network. That frees up a GSM carrier for IoT traffic. In-band provides a massive amount of spectrum to use as the LTE bands are much larger than the 180 kHz band. This allows deployments of up to 200,000 devices in theory per cell. In this configuration, the base cell station will multiplex LTE data with Cat-NB traffic. This is entirely possible since the Cat-NB architecture is a self-contained network and interfaces cleanly with existing LTE infrastructure. Finally, using Cat-NB as the LTE guard band is a unique and novel concept. Since the architecture reuses the same 15 kHz subcarriers and design, it can be accomplished with existing infrastructure.

    The following figure illustrates where the signal is allowed to reside:
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    Figure 12: Cat-NB deployment options as a guard band, within a GSM signal, or in-band with LTE

    Since the maximum coupling loss (MCL) is 164 dB, it allows deep coverage in basements, tunnels, rural areas, and open environments. The 20 dB improvement over standard LTE is a 7x increase in the coverage area. The data rate obtainable is a function of the SNR and the channel bandwidth, as we have seen in Shannon-Hartley's theorem. For the uplink communication, Cat-NB will assign each UE one or more 15 kHz subcarriers in a 180 kHz resource block. Cat-NB has the option to reduce the subcarrier width to as low as 3.75 kHz, which allows more devices to share the space. However, one must carefully inspect the interference potential between edge 3.75 kHz subcarriers and the next 15 kHz subcarrier.

    
      The data rate, as we have learned, is a function of coverage. Ericsson has conducted tests illustrating the effect of varying coverage and signal strength. Data rates affect both power consumption (almost linearly) and latency. Higher data rates equate to higher power but lower latency.

      At the cell border: Coverage = +0 dB, Uplink Time = 39 ms, Total Transmit Time = 1,604 ms.

      At medium coverage: Coverage = +10 dB, Uplink Time = 553 ms, Total Transmit Time = 3,085 ms.

      Worst case: Coverage = +20 dB, Uplink Time = 1,923 ms, Total Transmit Time = 7,623 ms.

      From: NB-IoT: a sustainable technology for connecting billions of devices, Ericsson Technology Review, Volume 93, Stockholm, Sweden, #3 2016.

    

    Power management is very similar to Cat-M1. All the power management techniques in release 12 and 13 apply to Cat-NB, as well. (PSM, eDRX, and all the other features are included.)

    Multefire, CBRS, and shared spectrum cellular

    We have concentrated on radio networks using licensed spectrum allocation. There is an alternative long-range network solution based on cellular architecture and topology that makes use of unlicensed spectrum.

    Citizen Broadband Radio Service (CBRS) is a 150 MHz wide band in the 3.5 GHz space. The CBRS Alliance is a consortium of North American industries and operators. This space was allocated by the FCC for government radar systems as well as unlicensed wireless carriers.

    Another system is called Multefire, which was drafted in January of 2017. This technology builds upon the 3GPP standard but operates in the 5 GHz unlicensed spectrum band. The current specification is Multefire Release 1.1, ratified in 2019.

    CBRS and Multefire 1.1 specify the following bands of availability:

    
      	800 and 900 MHz: Multefire with NB-IoT-U 200 kHz bandwidth

      	1.9 GHz (unlicensed): Multefire Japan (global), 20 MHz channel with 5 MHz bandwidth

      	2.4 GHz (unlicensed): Multefire eMTC-U, 80 MHz channel with 1.4 MHz bandwidth

      	3.5 GHz (3550 to 3700 MHz): CBRS for North America, 150 MHz channel with 10/20 MHz bandwidth

      	5 GHz (unlicensed): Multefire 1.0 most countries, 500 MHz channel with 10/20 MHz bandwidth

    

    The 800/900 MHz range is intended for ultra-low-power applications, while the 2.4 GHz range provides the largest available space for low-bandwidth IoT applications.

    Multefire is based on the LAA standards that define LTE communication and is based on the 3GPP Release 13 and 14. For that matter, the use of these unlicensed bands is considered an enabler to faster adoption of 5G technology as well. We will cover 5G later in this chapter.

    Specific technical differences between Multefire and 4G LTE include the removal of requiring an anchor point. LTE and LAA require an anchor channel in the licensed spectrum. Multefire operates solely in unlicensed space and requires no LTE anchor. This allows any Multefire device to essentially be carrier agnostic. Any Multefire device can essentially connect to any service provider in the 5 GHz band. This allows private operators or end users to deploy private infrastructure without requiring a service agreement with a wireless operator.

    To meet international regulations operating within this unlicensed spectrum, it uses a listen before talk (LBT) protocol. Since the channel must be clear before sending, this represents a significant difference between traditional LTE communication with Multefire. This form of frequency negotiation is common in protocols such as 802.11, which, coincidentally, share the same operating spectrum.
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    Figure 13: Multefire use of LBT for ease of coexistence in the 2.4 GHz and 5 GHz shared space

    To maintain additional fairness in this contested band, Multefire also uses a method of channel aggregation when available (refer to channel aggregation earlier in this chapter).
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    Figure 14: Multefire channel aggregation

    
      The 5G band is sliced in 20 MHz channels. Future versions of Multefire may grow to 100 MHz.

    

    From an IoT architect point of view, Multefire can serve many use cases more effectively than cellular or Wi-Fi. For example, a port may need to track assets like shipping containers and cargo, as well as provide communication to ships arriving and leaving. If the port covers an area of 10 square kilometers, blanket coverage would require 120 small Multefire cells. A Wi-Fi system would require over 500 access points. In this case, the cost of Multefire for deployment alone is a quarter of the cost of Wi-Fi. Cellular coverage would be based on a service agreement and subscription. Depending on the cost of subscription compared to the upfront cost of Multefire deployment and years of amortization, it may be substantially less costly to incorporate a CBRS system like Multefire.

    5G

    5G (or 5G-NR for New Radio) is the next generation IP-based communication standard being drafted and designed to replace 4G LTE. That said, it draws on some technologies of 4G LTE but comes with substantial differences and new capabilities. So much material has been written on 5G that it dwarfs even current Cat-1 and Cat-M1 material. In part, 5G promises to deliver substantial abilities for IoT, commercial, mobile, and vehicular use cases. 5G also improves bandwidth, latency, density, and user cost. 

    Rather than build different cellular services and categories for each use case, 5G attempts to be a single umbrella standard to serve them all. Meanwhile, 4G LTE will continue to be the predominant technology for cellular coverage and will continue to evolve. 5G is not a continuing evolution of 4G; it derives from 4G but is a new set of technologies. In this section, we will only discuss elements that are particular to IoT and edge computing use cases.

    5G is aiming for initial customer launch in 2020; however, mass deployment and adoption may follow years later in the mid-2020s. The goals and architecture of 5G are still evolving and have been since 2012. There have been three distinct and different goals for 5G (http://www.gsmhistory.com/5g/). Goals include:

    
      	Converged fiber and cellular infrastructure

      	Ultra-fast mobiles using small cells

      	Lowered cost barriers of mobile

    

    Again, the ITU-R has approved the international specifications and standards, while the 3GPP is following with a set of standards to match the ITU-R timeline. The 3GPP RAN has already begun analyzing study items as of Release 14. The intent is to produce a two-phase release of 5G technologies.

    We extend the ITU and 3GPP roadmap for 5G in the graphic below. Here we show a phased roll out of 5G over several years. Release 14 and Release 15 can be considered eLTE eNodeB, which means that an eLTE cell can be deployed as a standalone Next Gen Core or eLTE eNodeB non-standalone.
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    Figure 15: Expanded view of 3GPP, LTE, and ITU roadmaps for 5G

    
      3GPP has accelerated 5G using a concept termed non-standalone (NSA). NSA reuses the LTE core infrastructure. Conversely, standalone (SA) will rely solely on the 5G Next Generation Core infrastructure.

    

    The World Radio Conference (WRC) meetings at the ITU have allocated the frequency distribution for the initial 5G trials at the WRC-15 meeting. The distribution and use cases for various markets and markets are represented in the following graphic.
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    Figure 16: ITU WRC goals. Note the decisions around frequency usage and bandwidth. Also note the combination of licensed and unlicensed spectrum for 5G

    There are three use case categories for 5G. These use cases have some similar but differentiating features. The same network infrastructure will be designed to support these customers and use cases simultaneously. This will be done through virtualization and network slicing, which is covered later in this chapter.

    
      	Enhanced mobile broadband (eMBB):
          	1 to 10 GBps connections to UEs/endpoints in the field (not theoretical)

          	100% coverage across the globe (or perception of)

          	10 to 100x the number of connected devices over 4G LTE

          	Connectivity at a speed of 500 km/h

        

      

      	Ultra-reliable and low-latency communications (URLLC):
          	< 1 ms end-to-end round-trip latency

          	99.999% availability (or perception of)

        

      

      	Massive machine-type communications (mMTC):
          	1,000x bandwidth per unit area; implies roughly 1 million nodes in 1 km2

          	Up to a 10-year battery life on endpoint IoT nodes

          	90% reduction in network energy usage

        

      

    

    Two primary types of 5G deployments are considered. First is traditional mobile wireless. This uses the sub-2 GHz spectrum and is intended for range, mobility, and power uses. It relies heavily on macrocells and current LTE compatibility. It also must be able to penetrate signals against rain, fog, and other obstacles. The peak bandwidth is toughly 100 MHz.

    The second deployment is fixed wireless. This will use frequencies above the 6 GHz range. It relies heavily on new small cell infrastructure and is intended for low-mobility or fixed geographic cases. Range will be limited, as will penetration ability. The bandwidth, however, will be substantial at 400 MHz.
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    Figure 17: 5G topologies: From left to right: 1 million node density through small cells and macrocell deployment. Indoor and home use of 60 GHz with macrocell at 4 GHz backhaul. Dual connectivity example with split control and data planes using two radios for user data and 4 GHz macrocells for the control plane. Device-to-device connectivity. Massive MIMI with beamforming from a single mmWave antenna. Density increase with a mix of small cells in mmWave for blanket coverage of user data.

    5G frequency distribution

    Current 4G LTE systems mainly use frequencies below the 3 GHz range. 5G will radically change the spectrum usage. While the space below 3 GHz is significantly congested and sliced into slivers of bandwidth, 5G may use a multitude of frequencies. Under strong consideration is the use of millimeter waves (mmWave) in the unlicensed 24 to 100 GHz range. These frequencies directly address Shannon's Law by increasing the bandwidth B of the law with extremely wide channels. Since the mmWave space is not saturated or sliced up by various regulatory bodies, channels as wide as 100 MHz in the 30 GHz to 60 GHz frequencies are possible. This will provide the technology to support multi Gbps speeds.

    The principal issues with mmWave technology are free space path loss, attenuation, and penetration. If we remember that free space path loss can be calculated as Lfs = 32.4 + 20log10f + 20log10R (where f is the frequency and R is the range), then we can see how the loss is affected by a 2.4, 30, and 60 GHz signal as:

    
      	2.4 GHz, 100 m range: 80.1 dB 

      	30 GHz, 100 m range: 102.0 dB

      	60 GHz, 100 m range: 108.0 dB

      	2.4 GHz, 1 km range: 100.1 dB

      	30 GHz, 1 km range: 122.0 dB

      	60 GHz, 1 km range: 128.0 dB

    

    5G-NR allows better efficiency of the spectrum. 5G-NR uses OFDM numerology, but the subcarrier spacing can differ depending on which band is being used. Sub 1 GHz bands may use 15 kHz subcarrier spacing and have less bandwidth but deliver better outdoor macro coverage, whereas mmWave frequencies at 28 GHz can use larger 120 kHz spacing and carry more bandwidth.
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    Figure 18: 5G differences in subcarrier spacing and bandwidth for different bands (700 to 28 GHz)

    20 dB is significant, but with mmWave, antennas can accommodate significantly more antenna elements than a 2.4 GHz antenna. Free path loss is significant only if the antenna gain is independent of frequency. If we keep the antenna area constant, it is possible to mitigate the effects of path loss. This requires Massive-MIMO (M-MIMO) technology. M-MIMO will incorporate macrocell towers with 256 to 1,024 antennas. Beamforming at the macrocell will be used as well. When combined with mmWaves, M-MIMO has challenges in terms of contamination from nearby towers, and multiplexing protocols like TDD will need to be re-architected.

    MIMO allows a higher density of UE equipment within an area, but also allows a device to increase bandwidth by receiving and transmitting on more frequencies simultaneously.
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    Figure 19: 5G multifrequency beamforming and MIMO allows multiple frequencies and bands to be used simultaneously and directed to a single UE.

    
      Another challenge with 5G is the need for very large antenna arrays to support M-MIMO with hundreds of antennas in a dense tower configuration. Under consideration are tightly packed 3D structures of antennas to support beamforming at the tower. Factors such as wind and storm effects on these towers still need to be resolved.

    

    Attenuation is a very significant issue. At 60 GHz, a signal will be absorbed by oxygen in the atmosphere. Even vegetation and the human body itself will have a serious effect on signals. A human body will absorb so much RF energy at 60 GHz that it will form a shadow. A signal traveling at 60 GHz will have a loss of 15 dB/km. Thus, long-range communication will be subpar using 5G at 60 GHz and will require either a blanket of small cells or a drop to a slower frequency space. This is one of the reasons the 5G architecture will require multiple bands, small cells, macrocells, and a heterogeneous network.

    Material penetration in the mmWave spectrum is challenging. mmWave signals attenuate through drywall at 15 dB and glass windows on buildings contribute to a 40 dB loss. Therefore, indoor coverage with a macrocell is close to impossible. This and other types of signaling issues will be mitigated through the widespread use of indoor small cells:
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    Figure 20: Various frequencies versus penetration loss (dB): Typical building composite materials were tested (glass, brick, wood) from external to internal areas. The loss of infrared reduction glass is particularly difficult for mmWave frequencies.

    UEs may use multiple bands simultaneously. For example, an endpoint device may use lower frequencies for long-range communication and switch to mmWave for indoor and personal communication. Another scheme being considered is dual connectivity, which steers data traffic across multiple bands dependent on data type. For example, the control plane and user plane of the stack are already divided. User plane data may steer to a nearby small cell using a 30 GHz frequency, whereas control data may be steered to a long-range eNodeB macrocell tower at the typical 4 GHz rate.

    Another improvement for increased speed is spectral efficiency. The 3GPP is focusing on certain design rules:

    
      	15 kHz subcarrier spacing to improve multiplexing efficiency

      	Flexible and scalable numerology of symbols from 2M symbols to 1 symbol to reduce latency

    

    As previously discussed, spectral efficiency is given in units of bps/Hz. Using D2D and M-MIMO along with changes to the air interface and new radio one can improve spectral efficiency. 4G LTE uses OFDM, which works well for large data transmissions. However, for IoT and mMTC, the packets are much smaller. The overhead for OFDM also impacts latency in very dense IoT deployments. Hence, new waveforms are being architected for consideration:

    
      	Non-orthogonal multiple access (NOMA): Allows multiple users to share a wireless medium

      	Filter Bank Multicarrier (FBMC): Controls the shape of subcarrier signals to remove side-lobes through DSPs

      	Sparse code multiple access (SCMA): Allows data to be mapped to different code from different codebooks.

    

    Latency reduction is also a goal of the ITU and 3GPP. Latency reduction is crucial for 5G use cases such as interactive entertainment and virtual reality headsets, but also for industrial automation. However, it plays a large role in power reduction (another ITU goal). 4G LTE can have a latency of up to 15 ms on 1 ms subframes. 5G is preparing for sub-1 ms latency. This too will be accomplished using small cells to marshal data rather than congested macrocells. The architecture also plans for device-to-device (D2D) communication, essentially taking the cell infrastructure out of the data path for communication between UEs.

    4G systems will continue to exist, as the rollout of 5G will take several years. There will be a period of coexistence that needs to be established. Release 15 will add further definitions to the overall architecture such as channel and frequency choices. From an IoT architect perspective, 5G is a technology to watch and plan for. IoT devices may predicate a WAN that will need to operate for a dozen years or more in the field. For a good perspective on the key points, constraints, and the detailed design of 5G, readers should refer to 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice, by M. Shafi et al., in IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221, June 2017.

    5G RAN architecture

    The 5G architecture and stack evolves from the 4G standards. This section examines the high-level architectural components, decomposition, and trade-offs of different 5G designs.

    The interface between the radio unit (RU) and distribution unit (DU) has been the legacy CPRI fiber interface. New types of interfaces based on different architectures are in consideration as we will examine later in this chapter. CPRI is a vendor proprietary serial interface with bandwidth of 2.5 Gbps. 

    Enhanced CPRI or e-CPRI is an alternate interface for 5G based on open standards without vendor lock-in. e-CPRI also allows for the functional split architecture described later and decomposing the network using IP or Ethernet standards versus IQ over CPRI. 

    The 5G architecture is designed for flexibility and regional infrastructure. For example, regions in Asia have extensive preexisting fiber, but North America and Europe do not. The RAN architecture has been designed to be flexible so it can be deployed without fiber infrastructure. This requires different connectivity options. As mentioned, 5G will rely on traditional 4G LTE infrastructure, which was not designed for the capacity or speed of 5G. The non-standalone versions will differ more in architecture than standalone systems. For flexibility, the architecture is fungible. For example, the traditional interface between the DU and RU is the CPRI interface. The CPRI interface requires a dedicated link to each antenna. Since 5G is based on MIMO technology, it exacerbates the bandwidth issue. Take a 2x2 MIMO antenna that is using three vectors. This requires 2*2*3=12 CPRI channels or wavelengths for just one antenna. The actual number of MIMO antennas will be much higher in 5G towers. CPRI simply cannot scale to the capacity and demand. Therefore, we introduce the notion of "functional splits" between layers 1, 2 and/or 3 of the cell network. We have flexibility as to which functions reside where in the architecture and respective systems. The following graphic illustrates some options as to where the split would occur between the RU and BBU.
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    Figure 21: Flexible configuration of using "functional splits" of the 5G RAN between the baseband unit and radio unit. Note the difference in data rates. Moving more functionality to the RU places a higher level of processing burden on each radio and decreases the overall speed, whereas moving more functionality to the BBU will place significant stress on the CPRI interface but provide the fastest speeds.

    The other factor contributing to this functional decomposition is the added latency of CPRI. The distance between a cell tower and a DU can extend to 10 km. This added latency on top of addition compute at the RU can be adversarial to certain 5G applications like AR/VR and streaming video. This causes a juxtaposition in architecture. Either reduce latency with additional compute at the BBU/DU and use bandwidth-hungry CPRI, or move more processing to the RU, which will reduce latency but decrease bandwidth.

    The baseband unit (BBU), sometimes called the central unit or CU, is a logical node responsible for transfer of data, mobility control, radio access network sharing, positioning, and session management. The BBU controls all DU operations under its service management through the fronthaul interface.

    The DU, sometimes called the remote radio head (RRH), is also a logical node and provides a subset of the gNB functionality. Functionality can be split so what resides where can be dynamic. Its operations are controlled by the BBU.

    As can be seen in the diagram, the middle tiers of the 5G architecture allow what is termed multi-access edge computing, or MEC. This topic will be covered later in the edge computing chapter, but essentially it allows applications that are not communication and carrier focused to coexist on common edge hardware through virtualization interfaces. It brings cloud computing closer to the edge and end users or to data sources that need higher bandwidth or lower latency than what can be provided through multiple network hops to a traditional cloud service.

    5G Core architecture

    The 5G Core (or 5GC) is a service-based architecture based on different network functions. These functions either exist in the 5GC exclusively or have interfaces and connections to the RAN via the control plane. This differs from legacy 4G LTE where all of the core functionality had a common reference point. References points still exist within the user plane, but functions like authentication and session management will be services.

    The architecture is organized as follows:

    
      	Authentication Credential Repository (ARPF/UDM): Responsible for storing long-term security credentials and resides in the operator's home network.

      	Authentication Server Function (AUSF): Interacts with ARPF and terminates requests from the SEAF. It resides in the operator's home network.

      	Security Anchor Function (SEAF): Receives intermediate key from AUSF. This is the security system of the core network. SEAF and AMF must be collocated, and there must be a single anchor point for each PLMN.

      	Policy Control Function (PCF): Analogous to the existing 4G LTE policy and Charging Rules Function (PCRF).

      	Session Management Function (SMF): Identifies idle and active sessions. It allocates IP addresses to UE devices, manages IP addresses, and adapts policy and offline/online charging interface termination.

      	User Plane Function (UPF): Configures the network for a reduction in overall latency. It sets the anchor point of intra- and inter-RAT mobility. The UPF also bears the external IP address for interconnect. Additionally, it manages packet routing, packet forwarding, and user plan QoS.

      	Application Functions (AF): Additional services trusted by the carrier. These services can be provisioned to access network functions directly.

      	Data Network (DN): Generally outward Internet access but also direct operator services and third-party services.

    

    These core services are designed to be cloud-aligned and cloud-agnostic meaning that the services can exist through multiple vendors. However, a fundamental difference between 5G and 4G LTE is the addition of user plane functions (UPF) in 5G. These are intended to decouple packet gateway control from the user plane of data. This again takes from SDN architectures.
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    Figure 22: 3GPP conceptual picture of 5GC architecture

    5G security and registration

    Aside from new security capabilities using NFV and virtualization, 5G improves on security through unified authentication. This is termed a unified authentication framework. This technology decouples authentication from access points. Additionally, it allows extensible authentication algorithms, adaptable security policies, and the use of subscriber permanent identifiers (SUPI).

    SUPI starts the process by creating a subscriber concealed identifier (SUCI). The concealing can be performed in the UE SIM card if present or in the UE equipment if not present.
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    Figure 23: Top-level diagram of 5G security actors

    When a UE wants to register with a network, it first sends a registration request. This message includes all the information elements (IE) and other details needed to identify the device. The AMF/SEAF (Authentication Server Function and Security Anchor Function) will prepare an Authentication Initiation Request (5G-AIR) and send it to the AUSF. The AUSF resides in the home network while the SEAF resides in the service network.

    After the AUSF receives and validates the 5G-AIR message, it will generate an Auth-Info-Req message and marshal the data to the UDM/ARPF (Authentication Credential Repository). Here the authentication vector is generated and the SUPI response is delivered back to the AMF layer. 

    A generalized view of this transaction is illustrated in the following figure:
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    Figure 24: Typical process flow for 5G authentication and security exchange. After the SUCI frame is sent to the UDM, its response is either accepted or denied via the SUPI authentication response. All new registrations may reuse the same SUPI if the mapping already exists

    Ultra-Reliable Low-Latency Communications (URLCC)

    One of the three use cases of 5G is low-latency communication and high reliability. These services would be tailored for high-value and life-critical situations like remote surgery, drones, or public safety systems. These systems have hard real-time dependencies and must respond to a signal within a specified time. Think of an autonomous car that needs to respond to a braking command in real time. To meet this requirement, the designers have altered the physical scheduler and channel encoder. Essentially all URLCC traffic can preempt all other forms of traffic. Uplink communication can reduce its latency through better channel encoding schemes. These schemes involve the ability to decode multiple uplink transmissions simultaneously. Retransmissions are another notorious factor in impacting latency. Low-latency HARQ is a method incorporated into 5G to resolve the retransmission performance impact. We will cover HARQ later in the chapter. Finally, reliability of the signal is enhanced using shortened blocks in the channel coding as well as increasing the diversity and mix of blocks.

    The following illustration is of flexible slot-based 5G-NR traffic. eMBB, mMTC, and URLCC traffic will coexist in the same frequency and time space. However, only URLCC traffic has the ability to preempt all other traffic classes by injecting URLCC symbols into the same channels as other traffic sources. Refer to J. Hyoungju et. al., Ultra Reliable and Low Latency Communications in 5G Downlink: Physical Layer Aspects, IEEE Wireless Communications Vol 25, No 3. 2018.

    This technique allows for scalable slot durations where multiplexing of traffic of different types, durations, and QoS requirements coexist. The slot structure itself is self-contained. This means that the ability to decode slots and avoid static timing relationships stretches across all slots.
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    Figure 25: Multiple traffic types can coexist seamlessly in 5G transmissions across multiple frequencies and variable time spaces. Notice the URLCC structure spreads across all frequencies simultaneously. URLCC also can be injected at any time in the sequence to achieve its goal of 1 ms latency. Also note the transmission times are not equal or fixed length. The transmission time intervals (TTI) are scalable, dynamic, and variable.

    Fine-grain time-division duplexing (TDD) and low-latency HARQ

    HARQ stands for hybrid automatic repeat request. This is another 5G-specific change from LTE systems to support low-latency requirements of URLCC. LTE-Advanced does have the concept of HARQ and allows for a round trip time (RTT) of ~10 ms. URLCC, as stated by 3GPP, is targeted to 1 ms. To accomplish this 10x improvement in latency, 5G permits slot reorganization of the carrier signal. This is termed fine-grain TDD.

    5G allows for efficient multiplexing of mission critical data with other services. This was discussed in the last section. The HARQ design allows for the injection of URLCC traffic at any time in the overall sequence and flow of data.

    The transmission time is also scalable and flexible. The Transmission Time Interval (TTI) is no longer fixed. The TTI can be tuned shorter for low latency and highly reliable communications, or it can be lengthened for higher spectral efficiency. Multiple traffic types and different TTI lengths can coexist in the same dataflow. Long TTIs and short TTIs can be multiplexed to allow transmissions to start on symbol boundaries.

    [image: ]
    Figure 26: Illustrating the different in TDD retransmission. In 4G LTE, a retransmission could incur a large latency penalty of up to 10 ms. 5G URLLC TDD can reduce the round-trip time (RTT) and overall latency by acknowledging data received in the same subframe. Since the TTI is variable, this can be accomplished. Here we illustrate the NAK of the first packet can be transmitted almost immediately after reception.

    The URLCC packet also can be scheduled abruptly. 3GPP recommends two solutions to schedule this packet:

    
      	Instant scheduling: This allows an existing transmission to interrupt and then to initiate a URLCC packet.

      	Reservation-based scheduling: Here, URLCC resources are reserved prior to data scheduling. A base station may broadcast a new scheduling policy and frequency numerology. As an example, the base station may select 14 OFDM symbols for eMBB traffic but guarantee 4 of the symbols will be for URLCC traffic. If no traffic exists, the bandwidth would be wasted.

    

    Network slicing

    Part of the architecture of 5G involves decoupling the control and data plane technology stacks common in current cellular architecture. Network slicing involves the use of software-defined networking (SDN) and network function virtualization (NFV). These are types of network virtualization designs common in enterprise, data centers, and hyperscale implementations. Network virtualization techniques allow easier flexibility of hardware for service providers, methods to sell or partition services differently for customers, and the ability to move and route data on shared physical infrastructure but present the service as a trusted private network. A deep dive into SDN architecture will be presented in the edge routing chapter.

    In short, SDN separates the control plane, which manages the routing of a network, from the data plane, which handles the forwarding of information. NFV virtualizes network applications like deep packet inspection and security services. Rather than bind these features into a single vendor-specific hardware device, we can break out these functions and even run services in the cloud. These technologies allow very fast and adaptive network changes based on subscriptions, security, and demand.

    For 5G, network slicing enables:

    
      	The ability to create virtual subnets over existing private and shared infrastructure

      	End-to-end tailored networks

      	Controlled and adaptive quality of service and provisioning methods

      	Dynamic load adjustment for specific traffic types

      	Fee-based subscription models and SLAs for faster or lower latency services

    

    From the IoT architecture point of view, slicing becomes an option or a necessity dependent on how 5G is used and consumed by the product and deployment. In a virtual use case, a network slice can be provisioned through an SLA for premium service, low-latency guarantee, higher bandwidth, or secure dedicated networking. IoT devices that are immobile or require high bandwidth can be provisioned for services specific to their use case on the same 5G network infrastructure.

    In 4G LTE systems, many of the components in the RAN (DU) and Core used OEM-specific hardware. This prevents the ability to customize and tailor communications traffic to customers and use cases efficiently. 

    5G migrates to virtualized infrastructure and SDN, allowing flexibility and adaptability in network design.
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    Figure 27: 5G network slicing. 4G LTE systems at the top of the illustration show a linear flow from UE to Core using dedicated OEM-specific equipment and software. Provisioning dependent on UE use case is not an option in 4G LTE, whereas 5G allows for service-level network slicing. Here the edge systems can divide and provision services based on customer needs and SLAs. Services can migrate from cloud to edge dynamically via software-defined infrastructure.

    5G energy considerations

    A consideration when using 5G (or any wireless protocol) is the energy it consumes not only on the client device but also the server infrastructure such as an eNodeB. As 5G can theoretically deliver 1,000 times as much data as previous cellular architectures and density, it does this with a cost in energy.

    First, the architect must consider that 5G is built on a massive scale of small-cell systems rather than large towers. Small cells will operate at lower power than traditional cellular systems, but the sheer volume of them will contribute to larger energy density.

    A secondary problem is the use of MIMO in 5G. 5G-NR, as stated earlier, is based on a phased roll out and makes use of existing 4G LTE infrastructure. Part of that includes the use of orthogonal frequency-division multiplexing (OFDM). OFDM will divide a transmitting portion of data on different frequencies simultaneously. This is what gives the technology the basis of being "orthogonal." However, this ability to spread into multiple frequencies has a side effect called peak-to-average power ratio (PAPR). OFDM is known to have a very high PAPR (A. Zaidi, et. al. Waveforms and Numerology to 5G Services and Requirements, Ericsson Research, 2016). To allow OFDM to work, a receiver of an OFDM signal must be capable of absorbing the combined energy of multiple frequencies and a transmitter must be capable of generating and broadcasting that energy. PAPR is the relation of the maximum power of a sample for a given OFDM symbol to the average power of that symbol as measured in dB.

    Release 15 from 3GPP standardized on OFDM as the encoding method as it was used on 4G LTE.

    An example of the power can be shown by an example. If a transmitter produces a signal at 31 dBm, that is equivalent to 1.259 W of power. If the PAPR is 12 dB, then the saturation point is 31 dBm + 12 dBm = 43 dBm. This is equivalent to 19.95 W. 

    
      What this means to IoT devices is the potential for significant degradation in battery life and increase in power usage. A transceiver radio never operates at 100% efficiency converting DC power to RF energy. Nearly 30% of a transceiver's power is lost to heat and power amplifier inefficiencies. The effect of PAPR means that the power amplifier will need to reduce its operational power to compensate for the peak power bursts of MIMO.

    

    There are techniques to mitigate the effects of PAPR:

    
      	Clipping: This is essentially the removal of part of the signal that exceeds the permitted area. This technique causes distortion. Likewise, it increases bit error rates and reduces spectral efficiency, but is easiest to implement.

      	SLM: This technique uses different symbol sequences generated by multiplying the transmitted data with the phase sequence. The one with the minimal PAPR is transmitted. It can be overly complex to implement. There is no distortion, but it causes a reduction in data rates.

      	PTS: This method generates extra encoded information sent to the receiver to assist in determining the best possible phase factors. It can be overly complex to implement. There is no distortion, but it causes a reduction in data rates.

      	Non-orthogonal multiple access: This serves multiple UEs on the same time/frequency resources either through power domain multiplexing or code domain multiplexing. This is contrary to OFDM, which is entirely a frequency domain multiplexing scheme. The primary issue with this method is it breaks compatibility with 4G LTE and will incur a considerable cost to transform every base station and small cell. It also has challenges with complexity and a reduction in the number of users serviced simultaneously.

    

    This effect on power versus performance and density should be considered by the architect when considering and/or deploying 5G for an IoT use case versus other standards.

    LoRa and LoRaWAN

    LPWAN also includes technologies that are proprietary and not sponsored by 3GPP. It can be argued that some IEEE 802.11 protocols should also be classified in LPWAN, but the next two sections will highlight LoRa and Sigfox. LoRa is a physical layer for a long-range and low-power IoT protocol while LoRaWAN represents the MAC layer.

    
      These proprietary LPWAN technologies and carriers have the advantage of using the unlicensed spectrum and that, simply, is data plan cost.

      LoRa/LoRaWAN can be built, customized, and managed by anyone. There is no carrier or service-level agreement if you choose not to use a carrier. LoRa and LoRaWAN offer a degree of flexibility only seen in CBRS and Multefire. It is important to understand the monetization impact on scaling when building an architecture using any communication.

      Typically, technologies like Sigfox and LoRaWAN will be 5x to 10x lower in their data rates compared to traditional 3G or LTE connections for large volume deployments (>100,000 units). That may change with more competition from Cat-M1, Cat-NB, and Cat-5, but it is too early to tell.

    

    The architecture was originally developed by Cycleo in France but then acquired by the Semtech Corporation (a French mixed-signal electronics manufacturer) in 2012 for $5 million in cash. The LoRa Alliance was formed in March of 2015. The alliance is the standard body for the LoRaWAN specification and technology. They also have a compliance and certification process to ensure interoperability and conformity to the standard. The alliance is supported by IBM, Cisco, and over 160 other members.

    LoRaWAN has gained traction in Europe with network deployments by KPN, Proximus, Orange, Bouygues, Senet, Tata, and Swisscom. Other areas have sparse coverage to date.

    
      One reason for the price difference, besides being in the unlicensed spectrum, is that a single LoRaWAN gateway has the potential to cover a significant amount of area. Belgium, with a land area of 30,500 km2, is completely covered by seven LoRaWAN gateways. Typical range is 2 to 5 km in urban areas and 15 km in suburban areas. This reduction in infrastructure cost is very different than 4G LTE with much smaller cells.

    

    Since LoRa is the bottom of the stack, it has been adopted in architectures competing with LoRaWAN. Symphony Link, for example, is Link Labs's LPWAN solution based on the LoRa PHY, using an eight-channel, sub-GHz base station for industrial and municipal IoT deployments. Another competitor using LoRa is Haystack, which produces the DASH7 system. DASH7 is a full network stack on the LoRa PHY (not just the MAC layer).

    The next section will focus exclusively on LoRaWAN.

    LoRa physical layer

    LoRa represents the physical layer of a LoRaWAN network. It manages the modulation, power, receiver and transmission radios, and signal conditioning.

    The architecture is based on the following bands in ISM license-free space:

    
      	915 MHz: In the USA with power limits but no duty cycle limit

      	868 MHz: In Europe with a 1% and 10% duty cycle

      	433 MHz: In Asia

    

    A derivative of chirp spread spectrum (CSS) is the modulation technique used in LoRa. CSS balances data rate with sensitivity in a fixed channel bandwidth. CSS was first used in the 1940s for military long-range communication by using modulated chirp pulses to encode data and was found to be especially resilient against interference, Doppler effects, and multipath. Chirps are sinusoidal waves that increase or decrease over time. Since they use the entire channel for communication, they are relatively robust in terms of interference. We can think of chirp signals with increasing or decreasing frequencies (sounding like a whale call). The bitrate LoRa uses is a function of the chirp rate and the symbol rate. The bitrate is represented by Rb, the spreading factor by S, the bandwidth by B. 

    Therefore, the bitrate (bps) can range from 0.3 kbps to 5 kbps and is derived as:
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    This form of modulation allows for low power over long distances, as the military found. Data is encoded using the increasing or decreasing frequency rate and multiple transmissions can be sent with different data rates on the same frequency. CSS allows signals to be received at 19.4 dB below the noise floor using FEC. The band is also subdivided into multiple sub-bands. LoRa uses 125 kHz channels and dedicates six 125 kHz channels and pseudorandom channel hopping. A frame will be transmitted with a specific spreading factor. The higher the spreading factor, the slower the transmission but the longer the transmission range. The frames in LoRa are orthogonal, meaning multiple frames can be sent simultaneously as long as each is sent with a different spreading factor. In total there are six different spreading factors (SF = 7 to SF = 12).

    The typical LoRa packet contains a preamble, header, and 51- to 222-byte payload.

    LoRa networks have a powerful feature called Adaptive Data Rate (ADR). Essentially this enables dynamically scalable capacity based on the density of nodes and infrastructure.

    ADR is controlled by the network management in the cloud. Nodes that are close to a base station can be set to a higher data rate because of signal confidence. Those nodes in close proximity can transmit data, release their bandwidth, and enter a sleep state quickly versus distant nodes which transmit at slower rates.

    The following table describes the uplink and downlink features:

    
      
        
        
        
      
      
        
          	
            Feature
          
          	
            Uplink
          
          	
            Downlink
          
        

        
          	
            Modulation

          
          	
            CSS

          
          	
            CSS

          
        

        
          	
            Link budget

          
          	
            156 dB

          
          	
            164 dB

          
        

        
          	
            Bitrate (adaptive)

          
          	
            0.3 to 5 kbps

          
          	
            0.3 to 5 kbps

          
        

        
          	
            Message size per payload

          
          	
            0 to 250 bytes

          
          	
            0 to 250 bytes

          
        

        
          	
            Message duration

          
          	
            40 ms to 1.2 s

          
          	
            20 to 160 ms

          
        

        
          	
            Energy spent per message

          
          	
            Etx = 1.2s * 32 mA = 11 µAh at full sensitivity

            Etx = 40 ms * 32 mA = 0.36 µAh at min sensitivity

          
          	
            Etx=160 ms * 11 mA = 0.5 µAh

          
        

      
    

    LoRaWAN MAC layer

    LoRaWAN represents the MAC that resides on top of a LoRa PHY. The LoRaWAN MAC is an open protocol, whereas the PHY is closed. There are three MAC protocols that are part of the data link layer. These three protocols balance latency with energy usage. Class-A is the best for energy mitigation while having the highest latency. Class-B is between Class-A and Class-C. Class-C has the minimum latency but the highest energy usage.

    Class-A devices are battery-based sensors and endpoints. All endpoints that join a LoRaWAN network are first associated as Class-A with the option of changing class during operation. Class-A optimizes power by setting various receive delays during transmission. An endpoint starts by sending a packet of data to the gateway. After the transmission, the device will enter a sleep state until the receive delay timer expires. When the timer expires, the endpoint wakes and opens a receive slot and awaits a transmission for a period of time and then reenters the sleep state. The device will wake again as another timer expires. This implies that all downlink communication occurs during a short period of time after a device sends a packet uplink. However, that time-period can be an extremely long time.

    Class-B devices balance power and latency. This type of device relies on a beacon being sent by the gateway at regular intervals. The beacon synchronizes all endpoints in the network and is broadcast to the network. When a device receives a beacon, it creates a ping slot, which is a short reception window. During these ping slot periods, messages can be sent and received. At all other times, the device is in a sleep state. Essentially this is a gateway-initiated session and based on a slotted communication method.

    Class-C endpoints use the most power but have the shortest latency. These devices open two Class-A receive windows as well as a continuously powered receive window. Class-C devices are usually powered on and may be actuators or plug-in devices. There is no latency for the downlink transmission. Class-C devices cannot implement Class-B.

    The LoRa/LoRaWAN protocol stack can be visualized as follows:
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    Figure 28: The LoRa and LoRaWAN protocol stack compared with a standard OSI model. Note: LoRa/LoRaWAN represents only layer 1 and layer 2 of the stack model

    LoRaWAN security encrypts data using the AES128 model. One difference in its security compared to other networks is that LoRaWAn separates authentication and encryption. Authentication uses one key (NwkSKey), and user data a separate key (AppSKey). To join a LoRa network, devices will send a JOIN request. A gateway will respond with a device address and authentication token. The application and network session keys will be derived during the JOIN procedure. This process is called the Over-the-Air-Activation (OTAA). Alternatively, a LoRa-based device can use Activation by Personalization (ABP). In this case, a LoRaWAN carrier/operator preallocates 32 bits of network and session keys. A customer will purchase a connectivity plan and obtain a set of keys from an endpoint manufacturer with the keys burned into the device.

    LoRaWAN is an asynchronous, ALOHA-based protocol. The pure ALOHA protocol was initially devised at the University of Hawaii in 1968 as a form of multiple access communication before technologies such as CSMA existed. In ALOHA, clients can transmit messages without knowing if other clients are in the process of transmitting simultaneously. There are no reservations or multiplexing techniques. The basic principle is the hub (or gateway in the case of LoRaWAN) immediately retransmits packets it has received. If an endpoint notices one of its packets was not acknowledged, it will wait and then retransmit the packet. In LoRaWAN, collisions only occur if transmissions use the same channels and spreading factor.

    LoRaWAN topology

    LoRaWAN is based on a star network topology. LoRa communication is also based on broadcasting rather than establishing a peer-to-peer relationship. For that matter, it can be said it supports a star of stars topology. Rather than a single hub-spoke model, a LoRaWAN can assume multiple gateways. This allows improved networking ability and range. It also implies that a cloud provider may receive duplicate messages from multiple gateways. The responsibility is placed upon the cloud provider to manage and deal with duplicate broadcasts.

    
      A critical component of LoRaWAN that sets it apart from most of the transports listed in this book is the fact that user data will be transported from an end-node to the gateway over the LoRaWAN protocol. At that point, the LoRaWAN gateway will forward the packet over any backhaul (such as 4G LTE, Ethernet, or Wi-Fi) to a dedicated LoRaWAN network service in the cloud. This is unique because most other WAN architectures release any control of customer data at the time it leaves their network to a destination on the Internet.

    

    The network service has the rules and logic to perform the necessary upper layers of the network stack. A side effect of this architecture is that a handoff from one gateway to another isn't necessary as it is in LTE communication. If a node is mobile and moves from antenna to antenna, the network services will capture multiple identical packets from different paths. These cloud-based network services allow LoRaWAN systems to choose the best route and source of information when an end-node is associated with more than one gateway. Responsibilities of the network services include:

    
      	Duplicate packet identification and termination security services

      	Downlink routing

      	Acknowledgement messages

    

    Additionally, LPWAN systems like LoRaWAN will have 5x to 10x fewer base stations for similar coverage to a 4G network. All base stations are listening to the same frequency set; therefore, they are logically one very large base station. 

    This, of course, reinforces the statement that LPWAN systems can be a lower cost point than a traditional cellular network:
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    Figure 29: LoRaWAN network topology: LoRaWAN is built on a star of star type topology with gateways acting as the hubs as well as communication agents over traditional IP networks to LoRaWAN administration in the cloud. Multiple nodes can associate with multiple LoRaWAN gateways.

    LoRaWAN summary

    LoRaWAN is a Long Range wide area network energy saver. It is one of the most suitable technology for objects using batteries. Its transmission distance and penetration make it very suitable for smart city usage (streetlights, parking place detectors, and so on), which is a key IoT application. However, it indeed has a low data rate and limited payload, and duty cycle regulation may not meet application requiring real-time communication.

    LoRaWAN does have gaps in the architecture and protocols that need careful consideration from the IoT architect:

    
      	Some features common in LTE networks are simply not designed into the LoRaWAN architecture. LoRaWAN is not a complete network stack in the OSI model. It lacks the common features of a network layer, session layer, and transport layer: roaming, packetizations, retry mechanisms, QoS, and disconnects. It is up to the developer and integrator to add those services if necessary.

      	LoRaWAN relies on a cloud-based network interface. At some point in the value chain, a cloud subscription is needed.

      	The chip vendor is Semtech, which is the single source of the technology, although there have been announced partnerships with ST Microelectronics. This is similar to the Z-Wave value chain.

      	LoRaWAN is based on the ALOHA protocol. ALOHA complicates validation and acknowledgment and contributes to error rates over 50%.

      	Downlink ability is still limited. In certain use cases that is sufficient, but it tempers flexibility.

      	LoRaWAN has high latency and no real-time ability.

      	Very slow OTA firmware updates.

      	Mobility and moving nodes are challenging to manage in LoRaWAN. A 40- to 60-byte message can take 1 to 1.5 s to transmit. This can be problematic for moving vehicles at highway speed. 

      	A LoRa base station also needs to be linear time invariant (LTI), which means the radio waveform shouldn't change the time of flight.

      	Geolocation precision is about 100 m. Using RSSI signal strength measurements or time-of-flight measurements, a degree of accuracy can be obtained. The best solution is for three base stations to triangulate a node. More base stations can improve the accuracy.

    

    Sigfox

    Sigfox is a narrowband LPWAN (like NB-IoT) protocol developed in 2009 in Toulouse, France. The founding company goes by the same name. This is another LPWAN technology using the unlicensed ISM bands for a proprietary protocol. Sigfox has some traits that significantly narrow its utility:

    
      	Up to 140 messages per device daily on uplink (duty cycle of 1%, 6 messages/hour).

      	A payload size of 12 bytes for each message (uplink) and 8 bytes (downlink). A throughput of up to 100 bps uplink and 600 bps downlink.

    

    Originally, Sigfox was unidirectional and intended as a pure sensor network. That implies that only communication from the sensor uplink was supported. Since then a downlink channel has become available.

    Sigfox is a patented and closed technology. While their hardware is open, however, the network is not and requires a subscription. Sigfox hardware partners include Atmel, TI, Silicon Labs, and others. 

    Sigfox builds and operates its network infrastructure similar to the arrangement of LTE carriers. This is a very different model than LoRaWAN. LoRaWAN requires a proprietary hardware PHY be used on their network, whereas Sigfox uses several hardware vendors but a single managed network infrastructure. Sigfox calculates rates by the number of devices that are connected to a customer's network subscription, the traffic profile per device, and the duration of the contract.

    
      While there are strict limitations of Sigfox in terms of throughput and utilization, it is intended for systems sending small and infrequent bursts of data. IoT devices like alarm systems, simple power meters, and environmental sensors would be candidates. Data for various sensors can typically fit within the constraints, such as temperature/humidity data represented in 2 bytes with 0.004-degree precision. You must be careful with the degree of precision the sensor provides and the amount of data that can be transmitted. One trick to use is state data; a state or event can simply be the message without any payload. In that case, it consumes 0 bytes. While this doesn't eliminate the restrictions in broadcasting, it can be used to optimize for power.

    

    Sigfox physical layer

    As mentioned previously, Sigfox is ultra-narrowband (UNB). As the name implies, the transmission uses a very narrow channel for communication. Rather than spreading the energy across a wide channel, a narrow slice of that energy is confined to these bands:

    
      	868 MHz: Europe (ETSI 300-200 regulations)

      	902 MHz: North America (FCC part 15 regulations)

    

    
      Some regions such as Japan have strict spectral density limitations currently making ultra-narrowband difficult to deploy.

    

    The band is 100 Hz in width and uses Orthogonal Sequence Spread Spectrum (OSSS) for the uplink signal and 600 Hz using Gaussian frequency-shift keying (GFSK) for the downlink. Sigfox will send a short packet on a random channel at a random time delay (500 to 525 ms). This type of encoding is called random frequency and time-division multiple access (RFTDMA). Sigfox, as stated, has strict parameters of use, notably data size limitations. The following table highlights these parameters for the uplink and downlink channels:

    
      
        
        
        
      
      
        
          	
          	
            Uplink
          
          	
            Downlink
          
        

        
          	
            Payload limit (bytes)
          
          	
            12

          
          	
            8

          
        

        
          	
            Throughput (bps)
          
          	
            100

          
          	
            600

          
        

        
          	
            Maximum messages per day
          
          	
            140

          
          	
            4

          
        

        
          	
            Modulation scheme
          
          	
            DBPSK

          
          	
            GFSK

          
        

        
          	
            Sensitivity (dBm)
          
          	
            <14

          
          	
            <27

          
        

      
    

    Bidirectional communication is an important characteristic of Sigfox versus other protocols. However, bidirectional communication in Sigfox does require some explanation. There is no passive reception mode, meaning a base station cannot simply send a message to an endpoint device at any time. A receive window opens for communication only after the transmission windows complete. The receive window will open only after a 20-second period after the first message was sent by an endpoint node. The window will remain open for 25 seconds, allowing reception of a short (4 byte) message from a base station.

    333 channels, each 100 Hz in width, are used in Sigfox. The receiver sensitivity is -120 dBm/-142 dBm. Frequency hopping is supported using a pseudorandom method of 3 out of the 333 channels. Finally, the transmission power is specified to be +14 dBm and +22 dBm in North America:
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    Figure 30: Sigfox transmission timeline: Three copies of the payload are transmitted on three unique random frequencies with various time delays. A window for downlink transmission opens only after the last uplink.

    Sigfox MAC layer

    Each device in a Sigfox network has a unique Sigfox ID. The ID is used for the routing and signing of messages. The ID is used to authenticate the Sigfox device. Another characteristic of Sigfox communication is that it uses fire and forget. Messages are not acknowledged by the receiver. Rather, a message is sent three times on three different frequencies at three different times by the node. 

    This assists in ensuring the integrity of transmission of a message. The fire-and-forget model has no way of ensuring the message was actually received, so it is up to the transmitter to do as much as possible to ensure accurate transmission:
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    Figure 31: Sigfox MAC frame packet structure for uplink and downlink

    The frames contain a preamble of predefined symbols used for synchronization in transmission. The frame sync fields specify the types of frames being transmitted. The frame check sequence (FCS) is used for error detection.

    No packet contains a destination address or other node. All data will be sent by the various gateways to the Sigfox cloud service.

    The data limit can be understood and modeled from the MAC layer packet format:
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    Given each packet is transmitted three times, and we know that European regulations (ETSI) limit transmission to a 1% duty cycle, we can calculate the number of messages per hour using the maximum payload size of 12 bytes:
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    Even though 12 bytes is the limit of a payload, that message may take over one second to transmit. Early versions of Sigfox were unidirectional, but the protocol now supports bidirectional communication.

    Sigfox protocol stack

    The protocol stack is similar to other stacks following the OSI model. There are three levels, detailed here:

    
      	PHY layer: Synthesizes and modulates radio signals using DBPSK in the uplink direction and GFSK in the downlink direction as previously detailed.

      	MAC layer: Adds fields for device identification/authentication (HMAC) and error correcting code (CRC). The Sigfox MAC does not provide any signaling. This implies that devices are not synchronized with the network.

      	Frame layer: Generates the radio frame from application data. Also, it systematically attaches a sequence number to the frame:
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    Figure 32: The Sigfox protocol stack versus the simpliﬁed OSI model

    With regards to security, messages are not encrypted anywhere in the Sigfox protocol stack. It is up to the customer to provide an encryption scheme to the payload data. No keys are exchanged over a Sigfox network; however, each message is signed with a key unique to the device for identification.

    Sigfox topology

    A Sigfox network can be as dense as one million nodes per base station. The density is a function of the number of messages sent by the network fabric. All nodes that attach to a base station will form a star network.

    All data is managed through the Sigfox backend network. All messages from a Sigfox base station must arrive at the backend server through IP connectivity. The Sigfox backend cloud service is the only destination for a packet. 

    The backend will store and send a message to the client after authenticating it and verifying there are no duplicates. If data needs to be transmitted to an endpoint node, the backend server will select a gateway with the best connectivity to the endpoint and forward the message on the downlink. The backend has already identified the device by packet ID, and prior provisioning will force the data to be sent to a final destination. In a Sigfox architecture, a device cannot be directly accessed.

    Neither the backend nor the base station will directly connect to an endpoint device.

    The backend is also the administration, licensing, and provide service for customers. The Sigfox cloud routes data to the destination the customer chose. The cloud service offers APIs via a pull model to integrate Sigfox cloud functions in a third-party platform. Devices can be registered through another cloud service. Sigfox also offers callbacks to other cloud services. This is the preferred method to retrieve data:
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    Figure 33: Sigfox topology: Sigfox utilizes its proprietary non-IP protocol and converges the data to a Sigfox network backend as IP data.

    To assist with ensuring data integrity of the fire-and-forget communication model, multiple gateways may receive a transmission from a node; all the subsequent messages will be forwarded to the Sigfox backend and duplicates will be removed. This adds a level of redundancy to the reception of data.

    Attaching a Sigfox endpoint node is intended to ease installation. There is no pairing or signalization.

    Summary

    While there is some commonality between the types of long-range communication technologies, they also are targeting different use cases and segments. The IoT architect should choose wisely which long-range system they intend to adopt. Like other components of the IoT system, the LPWAN is difficult to change once deployed.

    Considerations in picking the correct LPWAN include:

    
      	What data rate does the IoT deployment need to use?

      	Can the solution scale with the same LPWAN across regions? Is there proper coverage or does it need to be built?

      	What range of transmission is appropriate?

      	Is there any latency requirement for this IoT solution? Can the solution work with very high (multiple seconds) latencies?

      	Are the IoT endpoints battery powered and what is the cost of servicing them? What are the cost constraints of the endpoints?

    

    For reference, the following table details the similarities and differences between the LPWAN protocols highlighted in this chapter:

    
      
        
        
        
        
        
        
        
      
      
        
          	
            Specification
          
          	
            Cat-0 (LTE-M)
            Release 12
          
          	
            Cat-1 Release
            8
          
          	
            Cat-M1 Release 13
          
          	
            Cat-NB Release 13
          
          	
            LoRa/LoRaWAN
          
          	
            Sigfox
          
        

        
          	
            ISM bands
          
          	
            No

          
          	
            No

          
          	
            No

          
          	
            No

          
          	
            Yes

          
          	
            Yes

          
        

        
          	
            Total bandwidth
          
          	
            20 MHz

          
          	
            20 MHz

          
          	
            1.4 MHz

          
          	
            180 kHz

          
          	
            125 kHz

          
          	
            100 kHz

          
        

        
          	
            Downlink peak rate
          
          	
            1 Mbps

          
          	
            10 Mbps

          
          	
            1 Mbps or

            375 Kbps

          
          	
            200 Kbps

          
          	
            0.3 to 5 Kbps adaptive

          
          	
            100 bps

          
        

        
          	
            Uplink peak rate
          
          	
            1 Mbps

          
          	
            5 Mbps

          
          	
            1 Mbps or

            375 Kbps

          
          	
            200 Kbps

          
          	
            5 Kbps to 5 Kbps adaptive

          
          	
            600 bps

          
        

        
          	
            Range
          
          	
            LTE

            Range

          
          	
            LTE

            Range

          
          	
            ~4x Cat-1

          
          	
            ~7x Cat-1

          
          	
            5 km urban, 15 km rural

          
          	
            Up to 50 km

          
        

        
          	
            Maximum Coupling Loss (MCL)
          
          	
            142.7 dB

          
          	
            142.7 dB

          
          	
            155.7 dB

          
          	
            164 dB

          
          	
            165 dB

          
          	
            168 dB

          
        

        
          	
            Sleep power
          
          	
            Low

            --

          
          	
            High

            ~2 mA idle

          
          	
            Very low

            ~15 µA idle

          
          	
            Very low

            ~15 µA idle

          
          	
            Extremely low

            1.5 µA

          
          	
            Extremely low 1.5 µA

          
        

        
          	
            Duplex configuration
          
          	
            Half/Full

          
          	
            Full

          
          	
            Half/Full

          
          	
            Half

          
          	
            Half

          
          	
            Half

          
        

        
          	
            Antennas (MIMO)
          
          	
            1

          
          	
            2 MIMO

          
          	
            1

          
          	
            1

          
          	
            1

          
          	
            1

          
        

        
          	
            Latency
          
          	
            50-100

            ms

          
          	
            50-100

            ms

          
          	
            10-15 ms

          
          	
            1.6-10 s

          
          	
            500 ms to 2 s

          
          	
            up to 60 seconds

          
        

        
          	
            Transmit power (UE)
          
          	
            23 dB

          
          	
            23 dB

          
          	
            20 dB

          
          	
            23 dB

          
          	
            14 dB

          
          	
            14 dB

          
        

        
          	
            Design complexity
          
          	
            50%

            Cat-1

          
          	
            Complex

          
          	
            25% Cat-1

          
          	
            10% Cat-1

          
          	
            Low

          
          	
            Low

          
        

        
          	
            Cost (relative pricing)
          
          	
            ~$15

          
          	
            ~$30

          
          	
            ~$10

          
          	
            ~$5

          
          	
            ~$15

          
          	
            ~$3

          
        

        
          	
            Mobility
          
          	
            Mobile

          
          	
            Mobile

          
          	
            Mobile

          
          	
            Limited

          
          	
            Mobile

          
          	
            Limited

          
        

      
    

    Having covered the capture of data from a sensor to the communication of that data through PAN and WAN architecture, it is now time to discuss the marshaling and processing of IoT data. The next chapters will study edge computing and its role in computing upon data and marshaling data to and from a cloud or other services. We will examine the protocols to package data, secure it, and route it to the correct location. That location may be an edge/fog node or the cloud. We also will detail the type of IP-based communication protocols, like MQTT and CoAP, needed to stream data from the edge to the cloud. Later chapters will cover the ingestion, storage, and analysis of the data generated by the IoT.
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    Edge Computing

    IoT receives much industry and economic focus because of the number of devices that will eventually be deployed and the amount of data those devices will produce. There are two methods regarding how edge devices and sensors will operate and communicate with the internet:

    
      	Edge-level sensors and devices will provide a direct path to the cloud. This implies that these edge-level nodes and sensors will have enough resources, hardware, software, and service-level agreements to transmit data across the WAN directly.

      	Edge-level sensors will form aggregations and clusters around gateways and routers to provide staging areas, protocol conversions, and edge/fog processing abilities, and they will manage security and authentication between the sensors and the WAN.

    

    This chapter will detail edge computing. The role of edge computing involves a lot of what we have already learned about communications, but we also need to care for IT management and cloud interfacing. We will explore different functions of edge computing, such as processors and hardware considerations, operating system design, management techniques, containerization, storage and caching, and example use cases. The design of edge computers is so varied, being dependent on each solution and customer, it is unfair to focus on a single use case. One use case is in 5G systems, which we will explore when we cover "multi-access" edge computing. Another use case for edge computing is in gateways, hubs, and routers, which will be covered in a separate chapter. 

    An additional use case is in processing for advanced sensors like video capture and machine learning devices close to data sources. We therefore will generalize as much as possible and assist the architect in making informed decisions about the underlying technology.

    Additionally, we will dive deep into various aspects of edge electronics, computer architectures, memory systems, and middleware. While these topics are broad, an architect must be versed in how various aspects and choices in hardware design can affect cost, reliability, and value.

    Edge purpose and definition

    While computing platforms running outside of IT-managed corporate environments and data centers are not new, edge systems today are extensions of general IT-managed components as though they were within the control and security of a corporate data center. Edge systems are essentially remote computing systems and borrow elements from established engineering domains of embedded systems, cloud computing, computer security, and telecommunications.

    
      One of the earliest forms of remote managed computing existed long before cloud systems and general computing. In the 1930s and 1940s, energy generation was rapidly expanding across the United States as hydro projects and the electric grid were forming. To manage the wide expanse of electric switching stations, a system of remote control was established using pilot wires. We can think of pilot wires as being sideband control signals outside of the high-power lines and attached to an emergency circuit to control energy flow and remotely address capacity issues and detect AC faults. Remote operators could control the national grid from central operation centers rather than manning each power station and substation. Later, these devices advanced and became what are termed programmable logic controllers (PLCs).
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    Figure 1: Difference in proximity and resources between near-edge and far-edge computing

    For definition purposes, we will refer to near-edge and far-edge components as follows:

    
      	Near-edge components: Part of the infrastructure between the far edge and the cloud layers. Near-edge systems may coexist with WAN carrier infrastructure such as the colocation of hardware at cell towers and cellular switching stations. This layer may host computationally complex services like a software-defined wide-area network (SDWAN) (which we will examine later in this chapter).

      	Far-edge components: Consist of processing devices capable of communication, management, and the exchange of data with cloud and/or near-edge appliances. This layer is furthest from the overall cloud layer, but it still maintains a relationship with the cloud, as well as its parent near-edge components. This layer is closest to end users or sensor systems. This layer has requirements such as hard real-time or safety-critical design and low latency, and may host large PAN networks as a gateway.

    

    It should be understood that simply connecting a sensor to a computer device at a remote location isn't edge computing, just as a person using an unconnected PC to play a video game isn't an online gamer. However, as soon as that sensor is delivering data to a cloud service or the human plays an interactive virtual reality game, then they are working with edge computing devices that must act in concert with centralized cloud services.

    Generally, the further from the cloud layers they are, the more resource constrained the computing systems will be. However, there will be more endpoints as we move further away from the cloud layers in the form of non-IP systems like Bluetooth sensors and SCADA systems. We call this expansion fan-out.

    In addition to the broad definition of edge computing there is also jargon related to the approach of edge computing design:

    
      	Fog computing: Fog computing refers to an architecture of cloud services that span from central data center cloud systems to near-edge and far-edge devices. The fog represents a single abstraction of a geographically disparate set of cloud and edge computers to behave and act as a single entity. More will be discussed on fog computing in later chapters.

      	Multi-access edge computing (MEC): Previously called mobile edge computing, MEC enables low-latency, high-bandwidth, and real-time applications to exist and be distributed at the edge of larger networks. MEC is defined by the European Telecommunications Standards Institute (ETSI) and involves allowing developers to run applications within a telecommunication carrier's radio access network (RAN). RAN was defined earlier in the Chapter 7, Long Range Communication Systems and Protocols (WAN). Typically, the RAN physically exists with the radio network controller at a cellular base station. MEC could allow low-latency video streaming or cloud-based gaming.

      	Cloudlets: A cloudlet is a small-scale cloud data center. You can think of it as a "cloud-in-a-box". In other words, it's a device to support resource-intensive use cases in client-server types of applications. This is similar to the MEC concept to facilitate better response times and lower latency but doesn't necessarily associate with a telecommunication or carrier infrastructure.

    

    Edge use cases

    Edge systems are collocated as shown in the preceding figure, close to where data is generated or people are located. Currently, about 20% of data in enterprises is collected outside of corporate walls. Gartner predicts that by 2023 up to 75% of corporate and enterprise data will be collected and managed by systems outside the physical borders of enterprise IT and data centers.

    Edge computing serves four primary usage patterns:

    
      	Reduced latency: Edge systems can be placed closer to end users and services. This naturally can avoid various network hops and propagation. Certain latency-sensitive applications, such as cloud-based gaming and video streaming, have strict real-time latency and performance requirements. This also includes devices that need real-time decision-making or the execution of rules engines for safety-critical machinery.

      	Bandwidth preservation: Certain environments have limited bandwidth to and/or from the edge system. In other cases, data costs for cloud or data centers can grow to be prohibitive at scale or at a sizable volume. Many carriers have data caps or fee schedules based on usage. Edge computing can best serve this issue through filtering, caching, and data compression techniques to efficiently maximize available bandwidth.

      	Resilient computing: Some situations do not have reliable communication. An example may be a transportation or logistics application that tracks a fleet of vehicles and cargo in real time as well as critical cargo temperature data. A moving vehicle may, at times, lose its carrier connection as it travels through tunnels, rural areas, and underpasses. It is unacceptable in these use cases to simply "lose" data. Therefore, these types of systems must look at edge local caching to store data until communication is restored. These systems may also have failover or handover routing techniques to switch to different carriers in the event of a primary carrier loss.

      	Security and privacy: Some situations must secure or even remove certain data before it travels further into the cloud or other edges. This is especially true for situations involving health data and image or personal privacy for surveillance. In many cases, the data security is defined by government regulations. As an example, an edge system used for video surveillance may need to denature images containing pictures of children if the images are being used in a public broadcast. This can involve tremendous amounts of computing resources at the edge.

    

    With these patterns, some use cases common in the industry include the following:

    
      
        
        
        
      
      
        
          	
            Category
          
          	
            Description
          
          	
            Edge Usage
          
        

        
          	
            Device automation

          
          	
            Interaction, control, and monitoring of edge-based "things", sensors, systems, and environments. These require cloud-based interaction, but have real-time requirement needs.

          
          	
            Industrial control systems, autonomous vehicles.

          
        

        
          	
            Immersion environments

          
          	
            AR and VR types of interactions, remote surgery, voice command systems (Alexa).

          
          	
            Edge systems used to reduce latency and increase bandwidth for applications sensitive to proper timing and synchronization. 

          
        

        
          	
            Patient monitoring

          
          	
            Healthcare, in-home care, and patient monitoring solutions that must be robust, foolproof, and secure.

          
          	
            Edge systems may coexist with patients to provide secure and resilient communication with upstream healthcare provider systems.

          
        

        
          	
            PAN aggregation

          
          	
            Environments with non-IP-based systems and mesh environments requiring a bridge and translation between protocol stacks.

          
          	
            Edge systems acting as hubs, bridges, and gateways can be managed and participate as secured components' in an enterprise network.

          
        

        
          	
            Resilient communication management 

          
          	
            Transportation and logistics, fleets, and trucking companies that require consistent communication with cloud or data center systems.

          
          	
            Edge systems can monitor and maintain resiliency in a communication-faulty environment through caching, failover techniques, and carrier switching methods. 

          
        

        
          	
            Immersive entertainment and client delivery networks

          
          	
            Cloud-based gaming, video streaming, and mobile entertainment.

          
          	
            Edge systems may be placed in strategic locations to assist in balancing latency, and capacity for large-scale video and game-streaming applications generally hosted in large disparate data centers.

          
        

        
          	
            IoT processing

          
          	
            Management of multiple sensors and inputs. Data needs to be filtered, scrubbed for anomalies, packaged, and compressed. Data can also be passed through rules engines, inference engines, or signal processing hardware and acted upon locally.

          
          	
            Edge systems provide the ability to process bulk data locally in real time efficiently without the cost of moving that data to the cloud. 

          
        

        
          	
            Device management

          
          	
            IoT and edge devices that require system management, firmware upgrades, and patching.

          
          	
            Edge systems can maintain a "manifest" of qualified and authenticated patches and upgrades of devices it manages. They can stage and qualify firmware upgrades without human intervention.

          
        

      
    

    Edge hardware architectures

    Edge systems can be server-class blades identical to the systems used in enterprise data centers or can be remote far-edge computing devices more akin to a hardened embedded computer. In this section, we explore some of the aspects of the hardware for far-edge appliances that must exist outside of the confines of data center infrastructure. 

    Dependent on the circumstances and environment, many choices in hardware design exist. You can use an off-the-shelf computing module provided by various OEMs or could chose to build hardware up from a set of discrete components or subsystem modules. Regardless of the method, the end hardware must serve the workload and use cases that are intended to be placed on the edge system.

    No matter the architecture, all modern computing devices consist of a compute unit, bus, and memory. This is known as the von Neumann architecture. Whether we are working with a multi-access edge computer in the form of a dual socket Intel Xeon blade with 512 GB of DRAM and consuming 1,000 watts of power or a far-edge computer responsible for aggregating traffic from a number of Bluetooth sensors and filtering the data to a low-power wide area network (LPWAN) service, all have similar architectures.

    There are differences that we will examine and understand, starting with the hardware. We'll examine each piece in a thought model edge computer shown in the following figure. Here, we represent a typical system on chip (SOC) with two cores, an embedded digital signal processor (DSP), and several IO blocks. 

    This can be extended to larger topologies like server class hardware just as easily:
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    Figure 2: Example block diagram architecture of a typical SOC and interconnects. Note the general construct of processors, bus, and memory as per the von Neumann architectural principal.

    Processors

    The central element of the compute device is the processor. Modern processor architectures routinely used include x86 variants like Intel and AMD, ARM, and to a much lesser extent MIPS, RISCV, SuperH, Sparc, and PowerPC. This subsection will examine some of the common traits of various processors and their usage at the edge. For some edge applications, it may make sense to have a robust multithreaded multicore CPU with out-of-order execution. For other use cases and edge customers, a more tightly embedded single-core system may suffice.

    Speed and power

    The most fundamental unit of measure for processor performance is the clock speed. Each processor has a cycle time to which all its components are synchronized. Typical processors today will have speeds of 1, 2 or 3 GHz. The speed of the design is a function of the process geometry and methodology used in creating the silicon structures. We are no longer doubling the processor speed every 2 years as we did in the mid-1990s. It has become progressively more difficult to improve processor speed because of the challenges associated with shrinking the silicon structures. Today's lithography processes used in creating SOCs and ASICs build nodes at 14 nm and 7 nm using the most advanced extreme UV lithography and wet immersion systems and advanced types of transistors like FINFETs. Clocking a device faster simply doesn't work. The limiting factor in forcing a device to run faster is heat. All electronics dissipate waste energy in the form of heat. Power generated by switching circuits, like a transistor, is a function of the operating frequency of the device, the internal capacitance, and the square of the voltage:
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    As the frequency increases, often you must also increase the voltage to raise the threshold voltage VT of the circuits. Increasing the voltage will then reduce the propensity of errors during digital transitions (from logic 0-to-1 or 1-to-0). However, using the V2 portion of the power equation has a detrimental effect on the operating power of the electronics.

    TJ is the highest operating temperature at which a semiconductor is specified to operate properly. If the temperature exceeds the maximum junction temperature allowed, a phenomenon known as ionic migration will occur. Silicon structures are doped with special ions such as boron and infused within the crystal lattice of silicon atoms. This is what gives semiconductors their structure and conductive or non-conductive traits. These dopant ions are not natural in silicon crystals and will tend to migrate away to a more natural state based on the laws of thermodynamics. If the temperature increases, this phenomenon accelerates rapidly to the point the chip loses all properties of being a semiconductor.

    Most modern processors will protect themselves from out of range overclocking to prevent a thermal runaway situation and severe damage to the circuits. They will either throttle down their core speed or shut down safely. Intel's Thermal Monitor, for example, is an internal system that monitors TJ to prevent damage.

    For IoT and edge devices, processor speed decisions are critical:

    
      	To conserve power and battery life in far-edge electronics and devices harvesting electricity. In these situations, underclocking and reducing voltage is critical.

    

    
      	To increase performance (statically or dynamically) to handle significant workloads of the most demanding performance such as imaging, computer vision, and machine learning.

    

    Registers

    All modern CPUs have some sort of register set. The registers are the fastest form of storage and are essentially SRAMs located close to the processor pipelines and accessible in a single clock cycle. ARM architectures have 16 registers with 3 being special purpose: R13 holds the stack point, R14 is the link register for call returns, and R15 is the program counter. X86 architectures are different. X86 has 16 general-purpose registers with the core 9 commonly used called:

    
      	AX/EAX/RAX: Accumulator register

      	BX/EBX/RBX: Base register

      	CX/ECX/RCX: Counter

      	DX/EDX/RDX: Extended precision accumulator

      	SI/ESI/RSI: Source index

      	DI/EDI/RDI: Destination index

      	SP/ESP/RSP: Stack pointer

      	BP/EBP/RBP: Stack base pointer

      	IP/EIP/RIP: Instruction pointer

    

    The registers are multipurpose and serve 16-bit/32-bit/64-bit operations, hence the nomenclature in register naming. ARM architectures are a type called load-store where all data must be loaded from the main memory into the registers before they can be operated upon. X86 can operate on registers and memory space as well.

    Instruction set architectures (ISAs)

    An ISA is the internal assembly mnemonic language used at a machine instruction level to execute basic operations. X86 ISA instruction encoding is not compatible with ARM. The ISA dictates what instructions exist on the machine, what they do, and how memory is accessed. For example, an ARM architecture operates exclusively by addressing data in a local register set to the execution unit. 

    An x86 architecture can operate on an internal register set or address DRAM memory directly. The following is an x86 CISC instruction to simply compare the value of a memory address to that stored in a local register:

    cmp 0x400A101C, %ECX : compare the value within memory address 0x400A101C to the register ECX


    The following is the same instruction on a RISC-V RISC instruction set computer. Here, we require three opcodes to perform the work of a single CISC instruction. However, the CMP instruction may require multiple clock cycles to execute on a CISC architecture versus one cycle on a RISC:

    lui x6, 0x010C4   : load unsigned integer into register 6 from memory located at 0x010C4
lw x1, 0x6900(x6) : load word into register x1 from offset of 0x6900 from value in x6
slt x5, x2, x1    : set x5 if x2 is less than x1


    In general terms, this also delineates the differences between a complex instruction set computer (CISC) and a reduced instruction set computer (RISC). A CISC architecture will have more instructions and functionality at the cost of more hardware and silicon to support various addressing modes and abilities, while a RISC design will have a simpler more efficient hardware architecture at the cost or relying more on the compiler and software to perform complex operations.

    
      
        
        
      
      
        
          	
            RISC
          
          	
            CISC
          
        

        
          	
            Emphasis on software design for functionality

          
          	
            Emphasis on hardware design for functionality

          
        

        
          	
            Register-to-register operations

          
          	
            Memory-to-memory, register-to-memory, and memory-to-memory operations

          
        

        
          	
            Loads and stores opcodes to and from memory/registers only

          
          	
            Memory to register loads and stores like RISC but also memory references also built into general opcodes. For example, the x86 ADD instruction can reference memory directly:

            add BYTE PTR[var], 10 will add 10 to the single byte located at memory address var.

          
        

        
          	
            Large code sizes

          
          	
            Small code sizes

          
        

        
          	
            Fixed-length assembly instructions

          
          	
            Variable-length assembly instructions

          
        

        
          	
            Single CPU clock cycle per instruction executed

          
          	
            Multiple clock cycles per instruction executed

          
        

      
    

    Endianness

    The other critical factor in processor selection is the endianness, which refers to the order of bytes when representing a number in binary form. It indicates to which end of a multibyte word address in computer memory is the most significant bit (MSB) and least significant bit (LSB). Usually, a system will support one form of endianness at runtime, but many modern processor cores can set the endianness at boot. That said, precompiled software and binaries must be compatible with the correct form.

    It is important to understand data formats when building an IoT system that involves multiple components, processors, and heterogeneous systems. The data collected by a sensor may be little endian while the edge computer that processes that data may be big endian, and finally the cloud computing layers may be little endian.
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    Figure 3: Difference between big endian and little endian byte ordering of a 32-bit word in computer memory

    
      A problem in legacy software that has been ported over generations of CPUs, operating systems, and frameworks is endianness conversions. An easy method to migrate software from one processor to another where endianness is swapped (for example, big to little) is to write software byte swappers. There have been commercial products that have had a dozen byte swap methods wrapped around functions as the code has been ported to different processors. This results in significant performance loss and energy usage.

    

    When we examine processor designs, we also consider core count and multithreading. Many modern SOCs today come with multiple CPU cores. The cores can either be designed to be coherent or placed on the SOC independently. In the Figure 2 SOC block diagram earlier in this chapter, the processor shown has two identical CPU cores. 

    These cores have independent first-level caches but a shared second-level cache. Additionally, the two cores act as a single CPU complex when accessing other hardware blocks on the SOC or DRAM memory off the SOC. Access to the first-level caches are isolated and independent of each core, but access to the second-level cache will be coherent as that is a shared entity. The two cores act as a single logical CPU from a software and operating system perspective. Threads can be assigned to a particular core through methods known as thread affinity, but generally the OS will schedule processes and threads on whichever core is available.

    The DSP shown in the block diagram has no coherency with the processor. Even though a digital signal processor is a programmable device, it has no ability in this example to snoop or peer into the processor caches or memory space. Therefore, from a software perspective, if data must be shared between two processors or programmable entities that are not cache coherent, software-based semaphores, shared memory techniques, or message passing interfaces (MPI) would need to be constructed.

    Processor parallelism

    Modern processors attempt various microarchitectural techniques and coarse methods to gain parallelism wherever possible. It is the goal of the computer architecture to keep as much silicon and processor area useful in performing tasks efficiently rather than waiting idle.

    One technique to achieve instruction-level parallelism (ILP) is through pipelining. Almost all modern processors have a pipeline of phases that each instruction in a program follows. Typically, the pipeline phases include:

    
      	Instruction fetch: Processor will read an incoming instruction as pointed to by that current instruction counter pointer.

      	Instruction decode: The instruction will be decoded and portions of the instruction that use values in the register file will be accessed immediately.

      	Execution: This is known as the arithmetic logic unit (ALU) and is where the logical and mathematical operations will occur.

      	Memory access: This stage will service memory operands that need to be read or written from/to memory addresses.

    

    
      	Writeback: The final stage will write back data to the register file.

    

    Increasing the number of stages in a pipeline has the effect of simplifying the circuitry in each stage and allowing the circuit to run faster, although there is a limit to this type of design. Each stage of the pipe needs a hardware latch to store data to feed to the next stage. 

    By increasing the number of stages, there is an increased risk that a dependency at some point of the pipeline will cause a "bubble" and the pipeline will need to flush. Large pipelines have diminishing returns. Modern cores like ARM A15 systems used in many IoT projects have 15 stages and Intel designs like Skylake will have 14 to 19 stages:
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    Figure 4: The classic RISC 5-stage pipeline. Shown is a pipeline with a stream of incoming instructions. The pipeline breaks up the tasks of execution into the respective five stages and processes the next incoming instruction when the current stage is free. When the instruction completes the pipe, it is said to be "retired."

    When selecting processors for the edge, the other consideration is multithreading and superscalar design. These are hardware techniques to improve performance and power efficiency through thread-level parallelism (TLP). However, using multiple cores comes at the cost of silicon area and contributes to cost, and certain applications may not make use of TLP. Multithreading does add complexity to the core but allows for more efficiency in using CPUs when they are idle. It does this by taking advantage of stall cycles in microprocessor pipelines as they wait for data to be fetched from DRAM or somewhere in the memory hierarchy. For definition purposes:

    
      	Superscalar: A superscalar architecture is a basic form of CPU instruction-level parallelism. A superscalar core can execute more than one instruction per cycle by using multiple independent pipelines.

      	Coarse-grain multithreading: This is a form of multithreading where threads switch on large memory stalls (for example, L2 miss). Only upon a significant stall will a different ready-to-run thread be launched. This form suffers from large pipeline startup penalties.

      	Fine-grain multithreading: This form of multithreading switches between available threads at an instruction level on each successive clock cycle. Threads can be interleaved on different pipelines.

      	Multiprocessing: The multiprocessing technique of thread-level parallelism simply separates a traditional superscalar pipeline into two or more isolated and differentiable execution units. Threads maintain affinity to a particular pipeline and will not migrate.

      	Symmetric multithreading: SMT is the most advanced form of multithreaded parallelism. This form of TLP essentially expands fine-grain multithreading by allowing runnable threads to execute on any available pipeline. Notice how fine-grain only launches a single thread to one or two of the pipelines. SMT allows the pipelines to split.

    

    Typically, you can expect a 30% improvement using SMT parallelism. A secondary effect is better power utilization. However, you have to have a software architecture that is multithreaded in the first place. Additionally, there will be instances where execution units are idle. This can be the result of threads that are not ready-to-run or threads that are all waiting for cache refills from memory. Depending on memory access patterns, the results can vary:
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    Figure 5: Thread-level parallelism techniques. Shown from simple superscalar pipelines through SMT.

    Caches and memory hierarchy

    All modern processors have some associated high-speed memory on die that acts as caches. The memory hierarchy breaks up caches into tiers or levels: L1, L2, and so on. L1 is usually associated with the memory that is fastest and closest to the instruction execution pipelines. L2 being the next layer, which may have slightly slower access and may have a uniform and cache coherent design to share data between multiple cores. The intent with cache spaces and a tiered memory hierarchy is to place recently used and valuable data closest to the instruction execution pipelines. Cache space is one of the biggest cost drivers in chips as it takes a considerable amount of die area versus the instruction execution pipelines. Large cache spaces may be needed if data is being reused, but for temporal or streaming data (for example, video streaming analytics), a smaller cache space may be as useful but cost less.

    There are three ways a CPU may not have the data or instructions at a referenced address in its cache:

    
      	Conflict misses: This type of miss occurs when addresses of referenced memory alias to the same cache line. Multiway associative caches help here to a limit. In the event that the line is aliased, the old data will be written back to memory while the new data is loaded.

      	Compulsory misses: The first access to a cache line will not have the data populated in it from main memory. This will require a forced cache line refill.

      	Capacity misses: A cache miss occurs when cache line blocks are discarded or evicted to make room for newer cache line refills. The cache has limited capacity (for example, 32 KB), and the working set of an executing program may be megabytes in size.

    

    Cache misses can be extremely costly, especially if the result implies the system must access main DRAM memory to reload a cache line. Using processors with larger and larger caches does improve performance, but the associative cost can be completely out of scope for certain edge use cases. The following table shows a typical memory hierarchy performance and latency impact chart for an Intel Skylake i7 processor:

    
      
        
        
      
      
        
          	
            Cache Hierarchy
          
          	
            Latency
          
        

        
          	
            L1 data cache 

            (32 KB, 64-bytes/line, 8-way set associative)

          
          	
            1.1 ns (4 cycles)

          
        

        
          	
            L1 instruction cache

            (32 KB, 64-bytes/line, 8-way set associative)

          
          	
            1.1 ns (4 cycles)

          
        

        
          	
            L2 cache unified

            (1024 KB, 64 bytes/line, 16-way set associative)

          
          	
            3.8 ns (14 cycles)

          
        

        
          	
            L3 cache

            (11 MB, 64 bytes/line, 11-way set associative)

          
          	
            20 ns (68 cycles)

          
        

        
          	
            DDR4-3400 memory

          
          	
            70 ns (79 cycles + 60ns)

          
        

      
    

    Increasing the cache space comes at a cost, as mentioned. Cache memory built into a processor uses a different process than what is used to manufacture DRAM. This is why the density of the cache area is fairly small kilobytes to megabytes whereas DRAM now comes in gigabyte packages. The other effect is that an SOC cache memory is fundamentally much fast than DRAM. You can gauge the respective amount of area that cache memory hierarchy uses in a modern processor, like the Intel Skylake microprocessor, as shown in the following figure. Here, the die shows a large area for a GPU; however, the four Skylake CPU cores have a significant area for L2, and last-level cache space.

    [image: ]
    Figure 6: Die micrograph of an Intel Skylake processor. Large areas accounting for GPU and quad-CPU complex. Note the areas for different levels of caches within each CPU and the shared LLC between all four.

    Other processor characteristics

    A complete analysis of processor cores requires an in-depth understanding of computer architecture. However, it is important to understand what you are designing for and avoid unnecessary hardware. The following CPU functions address different forms of performance through parallelism and changes in code flow. Any of these types of enhancements can be performed using software. For example, floating-point units are common, yet many ARM M series cores do not have an included floating-point hardware unit as standard (only as an optional add-on). That does not prevent floating-point code from executing. You may still use float and double types, but all operations are emulated at the cost of lower performance and excess power.

    Out-of-order execution: Advanced modern processors have some form of speculative execution or out-of-order execution mechanics built into the pipelines. Out-of-order execution, as the name implies, will not follow the logical execution stream of a program. Rather, the hardware makes heuristic and implied assumptions about what instruction to execute next based on code traces, branch predictions, and load/store delay slots.

    Out-of-order execution relies on a tremendous amount of hardware support to manage. Registers can be renamed, pipelines can be restarted, and branches are tracked on the fly. This hardware comes at a significant cost in die area and dollars; therefore, the architect must have knowledge of the underlying workload(s) and how they may take advantage of speculative execution.

    Floating-point units (FPUs): FPUs are common in most large CPU designs but not all. Most floating-point operations are standardized by IEEE754 format, which mandates how rounding occurs, mantissa generation, and so on. As mentioned, many ARM cores have floating-point units as an optional add on. The FPU adds at least one additional pipeline and register set to a CPU's integer register set. The FPU registers can be 64 bits wide or larger.

    
      FPUs are critical for certain workloads such as machine learning using single or double precision values, imaging and vision workloads, digital signal processing, and statistical math. Without a floating-point unit, results run through a floating-point emulator. This can be an extreme performance bottleneck. Floating-point emulation typically is 10x to 100x slower than hardware floating points.

    

    SIMD/AVX units: Related to floating-point units are single-instruction multiple-data (SIMD) execution engines. AVX stands for Advanced Vector Extensions, which are the Intel/AMD ISA for these types of offloads. These are adjunct coprocessors that specialize in media processing and bulk data processing workloads. They execute upon unit vectors using a single instruction to a very wide vector of data units. The width of the SIMD register unit can be 256 bits wide or larger, and many times they share the same register space as the FPU. Data units are segmented in like-size quantities in each register. For example, a 256-bit wide register may be broken into sixteen 16-bit vectors.

    There is some compiler support for these vector extensions; however, often you must rely upon intrinsic functions within C or C++ code, inline assembly within C or C++ code, or raw assembly to enable these. Intrinsics are easier to use; they can be coded directly into existing C files and use their call stack, but generally perform subpar to raw assembly.

    SIMD units rely on a special instruction set and pipeline to execute these operations. These typically operate on vector data types within a larger register. Shown in the following figure is an ARM Neon 128-bit register set that can be broken into many smaller vector units addressed by extension:
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    Figure 7: An example of an ARM NEON SIMD register space broken into respective vectors.

    To illustrate how SIMD instructions work, we will examine two ARM AArch64 Neon SIMD instructions:

    UADDLP    V0.8H, V1.16B
FADD V0.4S, V0.4S, V0.4S


    UADDLP translates to:

    
      	U: Unsigned integer

      	ADD: ADD operation

      	L: Long data type 

      	P: Pairwise, operates on pairs of two-source vectors

      	V0.8H: Destination register v0 arranged as eight halfwords

      	V1.16B: Source register v1 arranged as 16 bytes

    

    FADD translates to:

    
      	FADD: Floating-point add vectors

      	V0.4S: Destination register v0 arranged as four single precision values

      	V0.4S: First source register v0 arranged as four single precision values

      	V0.4S: Second source register v0 arranged as four single precision values

    

    To illustrate how this works, take UADDLP. Here, we are adding pairs of 8-bit vectors in register V1 and storing the result in register V0. This performs eight parallel additions in one cycle and one instruction:
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    Figure 8: Simple example of SIMD execution using pairwise addition

    DRAM and volatile memory

    Volatile memory in edge systems is like the garden variety seen in mobile, embedded, and server-class hardware. However, the closer to the edge and more power-conscious the system must be, the tighter the coupling of memory to the SOC. Some SOCs will even bind internal SRAM into the chip or add DRAM and a wire-bound module on a multi-module chip.

    Typically, you will find systems with double data rate DRAM (DDR), low-power DDR (LPDDR), and graphics DDR (GDDR). All are essentially the same from a DRAM cell perspective. The form factor, price, and power differ considerably.

    Take for example this table that contrasts memory types and their differences:

    
      
        
        
        
        
      
      
        
          	
            Memory
          
          	
            DDR4
          
          	
            LPDDR4
          
          	
            GDDR5
          
        

        
          	
            Max data rate per pin

          
          	
            3.2 Gbps

          
          	
            4.267 Gbps

          
          	
            8 Gbps

          
        

        
          	
            Interface width

          
          	
            64+8 bits

          
          	
            Dual 16-bit channels

          
          	
            Multiple 32-bit channels

          
        

        
          	
            Max density

          
          	
            128 GB

          
          	
            2 GB

          
          	
            1 GB

          
        

        
          	
            Voltage

          
          	
            1.2V

          
          	
            1.1V

          
          	
            1.6V

          
        

        
          	
            Mounting

          
          	
            Surface or DIMM

          
          	
            Surface or module

          
          	
            Surface

          
        

        
          	
            Cost

          
          	
            $

          
          	
            $$

          
          	
            $$$

          
        

      
    

    For most workloads on edge systems, standard DDR in either surface-mounted packages or DIMM packages will be used for general-purpose computing. GDDR will be used when we add GPU hardware assist functionality. GPUs require high-bandwidth memory and achieve this using multiple GDDR modules connected to multiple channels on the chip. GPUs will be used for imaging, vision, and machine learning applications at the edge.

    Another concern is data center robustness. Most server-class infrastructure relies on error-correcting code memory or ECC for short. ECC memory will detect and correct most common faults in DRAM. DRAM memory is susceptible to the random effects of cosmic rays, solar flares, or neutrons that tend to affect the charge carry capacitors within a DRAM cell and "flip a bit." The effect becomes more pronounced as the system gains elevation and has less of the Earth's atmosphere as a barrier. In a system with ECC memory, the computer may operate normally, hang, crash, or report erroneous results.

    Storage and non-volatile memory

    Storage is a central component for many edge systems. We have talked about how storage can be used as a caching service to hold data in the event of communication failure or how storage may be used to hold data that will be streamed out to endpoints from an edge computer to reduce latency.

    Managing edge storage is critical to the robustness of the solution. Since the edge system may not be inherently accessible, self-managing storage is necessary.

    Storage classes and interfaces

    Storage can come in a variety of forms:

    
      	Directly attached SATA drives: These are legacy mass storage components that interface using the SATA standard interconnect. The drives may be rotating hard disks or newer solid-state drives. SATA is ubiquitous, and drivers are common in Linux and Windows to support this form of storage. They are also the lowest-cost on the market today. SATA-based drives have neither the throughput nor the low latency of newer NVMe mass storage, however. SATA has progressed through several generations of interfaces with progressively higher performance. First-generation SATA I was capable of 1.5 Gb/s, SATA II increased to 3 Gb/s, and modern SATAIII is capable of 6 Gb/s.

      	Directly attached NVMe storage: NVMe stands for non-volatile memory. This is a form of storage that uses a PCI Express interface and an optimized protocol to communicate to NAND flash chips on the module. Modules can come in the form of small socketed M.2 devices or standard 2.5 U.2 form factors. Other forms also exist. NVMe provides a compact footprint from a hardware point of view and the fastest/lowest latency solution for all memory components.

      	eMMC modules: eMMC stands for embedded multimedia card. The current generation of the specification is eMMC version 5.0. These storage modules are typical of consumer electronics, and variants come in the form of SDIO flash cards. They are noted for their small size and ease of removability, but do not have the performance or density of other media. For example, a typical eMMC device will have densities from 16 GB to 64 GB and performance of about 250 MB/s for sequential reads. This is far below the speed and densities of NVMe, but the cost, power, and size of the parts is much less.

      	USB flash: Storage may also come in the form of a USB attached storage device. The same NAND parts are used; however, the interface to the host is a USB bus. They can be found in densities of over 1 TB and support speeds of approximately 30 MB/s using USB 2.0 interfaces and 20 Gb/s (2.6 GB/s) using USB 3.2 Superspeed mode and dedicated USBC cables. 

      	SPI flash: All the memory devices listed are based on raw memory (NAND memory for most cases) and a controller that manages the NAND cells, sparing, error correction, and interface API to a host. A host CPU does not need the controller to access NAND memory. In the case of SPI flash, raw NAND parts can be placed on a circuit board and accessed by a host CPU through a low-speed SPI interface. This is typically how devices boot. In our example edge computer, there is an SPI flash connected to the Trusted Platform Module (TPM) that holds to initial boot code as a root-of-trust. The bandwidth will be severely limited by the speed of SPI. At 10 Mb/s, the interface will not perform as well as any of the other storage devices listed. This is primarily good for booting and critical onboard storage.

      

    

    The following table identifies pros and cons of these types of storage devices.

    
      
        
        
        
        
        
      
      
        
          	
            Storage Class
          
          	
            Performance
          
          	
            Available Density
          
          	
            Cost per Bit
          
          	
            Use Case
          
        

        
          	
            SATA

          
          	
            High: 300 to 500 MB/s

          
          	
            128 GB to 32 TB

          
          	
            $$ (note rotating SATA drives are typically higher-density and lower-cost than solid state)

          
          	
            Standard storage low-cost storage. Edge may use this for general-purpose software, logs, and operating systems.

          
        

        
          	
            NVMe

          
          	
            Very high. 1 to 32 GB/s

          
          	
            512 GB to 32 TB

          
          	
            $$$$

          
          	
            Extreme performance applications (video capture). These also require less space than typical 2.5" drives.

          
        

        
          	
            USB

          
          	
            High: 30 MB/s to 2.6 GB/s

          
          	
            512 MB to 4 TB 

          
          	
            $$

          
          	
            Space constrained devices. Externally connected storage. Security keys.

          
        

        
          	
            eMMC

          
          	
            Low: <250 MB/s

          
          	
            1 MB to 128 GB

          
          	
            $

          
          	
            Boot code. Small embedded edge systems.

          
        

        
          	
            SPI

          
          	
            Very Low, 1 KB/s to 10 MB/s

          
          	
            1 KB to 128 MB

          
          	
            $

          
          	
            Security keys. System identity information. Serial numbers. Immutable data. 

          
        

      
    

    Storage performance characteristics are usually measured and advertised by vendors using IOPS (input/output per second). This is a measure of non-contiguous read and write requests to storage.

    We can also translate IOPS to bytes per second using the following formula:

    Bytes per Second = IOPS × TransferSizeInBytes
    To understand this unit of measurement, we need to go back to rotating hard disk technology. In the days of a magnetic head over a rotating platter, a significant amount of time in storage performance was lost to the movement of the head to different platter positions. This is called seek time.

    To illustrate the issue, we'll examine a rotating disk that needs to read the same amount of data in two ways:

    
      	Example Workload 1: Reading 10 1,000 MB files. We measure this to take a total of 120 seconds. The transfer rate is: 83.33 MB/s. Since there are 10 requests, the number of IOPS is 10. Even an older rotating hard disk can support this.

    

    
      	Example Workload 2: Reading 10,000 1 MB files. Even though the total amount of data read is the same as example 1, the rotating disk will struggle to achieve 10,000 IOPS due to the head seek motion time. This would be nearly impossible to support using a rotating hard disk.

    

    Since flash devices have no moving parts, there is no seek time. However, there are new effects that will impact flash performance:

    
      	Wear leveling and garbage collection. This is the slow erase problem and fragmentation issue covered in the next section.

      	NAND controller channels (how many NAND parts are accessed in parallel).

      	Read and write mixture as a percentage.

      	Use or misuse of OS-generated Trim commands.
          When analyzing IOPS performance in NAND flash systems, the results can vary from vendor to vendor. Ensure that the IOPS are compared with the same transfer size (4 KB). It is also important to treat the mix of read and write times similarly. Typically, 70% of data is reads and 30% is writes. This affects the overall performance as we will see in the next section. Ultimately, it is better to gauge the performance using a specific suite of benchmarks for your particular use case and simulate multiple-year usage with full overwrites of the storage.

        

      

    

    Finally, storage durability is usually listed as drive writes per day (DWPD). As we will study in the next section, this is particularly important for NAND flash type devices that have a limited number of write cycles. This measurement lists the number of times the entire capacity of the device can be fully overwritten per day.

    NAND flash memory design and considerations

    When determining the storage for an edge system, there are factors that need to be accounted for using solid-state flash media. The way flash media works is much different than older rotating magnetic discs. Flash memory is based on cell storage using a "floating gate" principal. The floating gate accumulates electronics during the process of writing. The floating gate sits above a 1um channel connected by a typical source and drain electrodes found in a transistor. Above the floating gate rests a control gate.

    Essentially, data is stored in the form of trapped electronics in each cell. A "1" read at the output of a cell represents a low-resistance state, and the corresponding value is a logical "1." Writing data is a more difficult process, known as hot-electron injection:

    
      	The control gate raises the voltage of the floating gate through the dielectric.

      	This raises the floating gate to the programming voltage level and inverts the channel underneath it.

      	Electrons in the channel under the floating gate increase their drift velocity and energy.

      	These electrons collide with one another in the lattice, which causes heat and raises the temperature of the silicon.

    

    
      	The electrons have enough energy to overcome the "barrier effect" and accumulate in the floating gate as a stored bit of information.

    

    The only method to remove these trapped electrons is through an erase cycle (also known as the Fowler-Nordheim tunneling effect). The erase process is as follows:

    
      	The source electrode is set to the "programming voltage," and the control gate is grounded. The drain is left floating.

    

    
      	This forces any captured electrons in the floating gate to propagate towards the source, leaving the floating gate with no charge – effectively erasing it.

    

    [image: A screenshot of a cell phone  Description automatically generated]
    Figure 9: Floating gate NAND cell: The floating gate resides "sandwiched" between oxide insulator layers. The oxide tunnel presents the barrier for electron flow from the substrate to the floating gate.

    NAND devices are sold in different forms: single-level cells (SLC), multilevel cells (MLC), triple-level cells (TLC), and soon to be produced quad-level cells (QLC). The difference being the amount of bit storage that can be held in a single cell. An MLC NAND, for example, can store four states per cell: 00, 01, 10, 11. These states correspond to voltage levels. In contrast, an SLC device has two states (0 and 1) and therefore two voltage levels.

    Any multilevel cell will need to read the same data from NAND multiple times to register with different threshold voltages: TLC reads three times, and a QLC reads four times. With more capacity in the same NAND structure comes decreased overall performance and decreased longevity. That is something to account for in edge system designs.

    Flash cells can only be erased a set amount of times. Although processes have improved, there still is a set number of times a cell can effectively be used. A cell can be erased roughly 3,000 to 5,000 times before the electrical characteristics of the cell break down to render it unreliable to hold a charge. This occurs over time as electrons become trapped in the oxide layer of the tunnel. This reduces the electrical field in the tunnel and the ability to have a successful erase cycle.

    To alleviate this, NAND flash controllers use wear leveling strategies. All wear leveling algorithms keep track of which blocks of data on the flash device have been used and how often. There are two methods used: dynamic and static wear leveling.

    Dynamic wear leveling uses a structure called the logical block address, or LBA. Anytime new data is written to the storage device, the original blocks used by the data are marked invalid and the new blocks are mapped to the data written. The issue here is that wear leveling occurs only for data in motion and being rewritten. 

    In many systems, there can be pathological system behaviors where some files are constantly being rewritten (such as logs). This form of wear leveling is better than no wear leveling, but some areas of the NAND may wear out prematurely:

    
      
        
        
        
        
        
      
      
        
          	
            Memory
          
          	
            SLC
          
          	
            MLC
          
          	
            TLC
          
          	
            QLC
          
        

        
          	
            Bit capacity per cell

          
          	
            1 bit

          
          	
            2 bits

          
          	
            3 bits

          
          	
            4 bits

          
        

        
          	
            Read time

          
          	
            25us

          
          	
            50us

          
          	
            ~75us

          
          	
            >100us

          
        

        
          	
            Program time

          
          	
            200-300us

          
          	
            600-900us

          
          	
            900-1350us

          
          	
            >1500us

          
        

        
          	
            Erase time

          
          	
            1.2-2ms

          
          	
            3ms

          
          	
            5ms

          
          	
            >6ms

          
        

        
          	
            P/E cycles

          
          	
            100,000

          
          	
            3,000

          
          	
            1,000

          
          	
            ~100

          
        

        
          	
            Cost

          
          	
            $$$$

          
          	
            $$$

          
          	
            $$

          
          	
            $

          
        

        
          	
            Typical density

          
          	
            1 Gbit to 32 Gbit

          
          	
            32 Gbit to 128 Gbit

          
          	
            128 Gbit to 256 Gbit

          
          	
            >256 Gbit

          
        

      
    

    Static wear leveling is more advanced. As the name implies, all the data on the NAND device will be moved to balance out the effects of certain files being heavily rewritten. Even for data that remains unchanged, it will eventually migrate to different physical pages. This type of wear leveling is what is necessary to provide the 300,000+ program-erase (PE) cycle durability that vendors now claim.

    The pages that were earmarked to be erased by dynamic or static algorithms do not necessarily have to be erased immediately. Many devices use "garbage collection" to clear out the invalid pages. During this process, the controller will read all the "good pages" in a block and migrate them to a newly erased block. As you can see from the table above, erase cycles can be prohibitively long, so the garbage collection can introduce "jitter" into real-time demands placed on the drive.

    Overprovisioning and write performance: One consideration when using flash of any kind is to reserve extra unused capacity on the drive. A memory manufacturer may minimally reserve some space on the flash for spares. The minimum is typically the difference between the binary size of the drive and the decimal size of the drive. In other words, if you purchase a 32-gigabyte drive, the actual usable area is 32,000,000,000 bytes, while the actual area is the binary form at: 32,073,741,824 bytes. This equates to 7.37% extra capacity used for failed blocks and other features. While 7% is good, drive write performance declines as the drive gets close to 50% full. Without overprovisioning more space, when writing data randomly, there is a high probability you will not have a spare block and must free a block through a garbage collection cycle. 

    With overprovisioning, random writes have a higher probability of a spare block being available for repurposing. Sequential writes are not affected by this behavior, however. If your data streams are sequential in nature, they will tend to be written and rewritten in whole blocks from the beginning of the file to the end.

    [image: ]
    Figure 10: NAND array layout in pages and blocks. The figure illustrates the configuration of the cell array pages and spare cells. Data is read in page quantities and written in block quantities sequentially.

    
      Mass storage devices access storage memory as blocks of data rather than randomly like DRAM. Cells are arranged in pages consisting of a data area (called the cell array) and a "spare area." The spare area is blocks set aside for remapping bad cells. An array of cells will be separated into many blocks consisting of smaller pages. New data is written to the NAND in page quantities. Cells are erased on block quantities. MLC NAND uses 128 pages per block, while SLC NAND uses 64 pages per block. So, for a 2 gigabit NAND part, there will be 2,048 blocks consisting of 64 (2,112-byte) pages per block. The page is 2,112 bytes because it includes 2,048 bytes of cell array and 64 bytes of spare cells.

    

    The tendency of garbage collection and wear leveling to rewrite blocks of data that have not changed is called write amplification. The unit of measure of amplification is the number of rewrites that occur. For example, if you write a 256 MB file once to a NAND device and it rewrites 96 MB of the file through wear leveling techniques, the write amplification value is 1.375. The higher the value, the worse the synthetic wear on the drive.

    
      The final advice for edge design is the use of the trim command. NAND device manufacturers introduced the trim command to inform the part that space on the SSD has become available and could be used for overprovisioning. The device has no concept of what data is valid and what is invalid in the array, only the operating system knows that. The OS can issue a trim command to alert the device of pages that have unneeded data. These could be deleted files. The NAND device can disregard all the pages that were captured with the trim from wear leveling and garbage collection – saving time on the next write cycle. This also reduces write amplification and wear of the part, and increases performance.

    

    Low-speed IO

    Most SOCs will require some low-speed IO. These are used to interface to different components like serial flash, microcontrollers, and on-board devices. In the IoT space, many sensors and actuators use low-speed signals, or even general-purpose IO for digital controls or analog signals that are sampled and processed through analog-to-digital converters.

    
      
        
        
      
      
        
          	
            Use Case
          
          	
            Solution
          
        

        
          	
            Interface to sensors that have no processing or wireless interface

          
          	
            Sensors like the Texas Instruments TMP-122 and TMP-125 series have no interface except for SPI. 

          
        

        
          	
            Automotive interfacing

          
          	
            Automotive systems control and monitor various devices in a vehicle from windows to engine characteristics. This interface has used the CAN bus for decades.

          
        

        
          	
            Industrial controls and factory automation

          
          	
            Factory machinery and control systems have used a serial protocol called ModBus for several decades to monitor the health and control of industrial processes. 

          
        

      
    

    Low-speed interfaces to consider and that you will find in most SOCs can include the following:

    
      	Serial Peripheral Interface (SPI): This is a synchronous low-speed communication interface used for communication to TPM modules, LCD screens, and secure digital storage cards. It can support up to 10 Mbps of bandwidth. It communicates in full duplex in a master–slave relationship. There is only one master, but there may be different slaves using an independent chip select line to address different slaves. SPI has higher throughput than I2C or SMbus but can only tolerate short distances of communication. The architecture is flexible, allowing for Dual SPI and Quad SPI interfacing for more bandwidth where full duplex may not be needed.

      

      	I2C: This is a synchronous multi-master and multi-slave packet-based serial communication system. Typical uses cases include communicating with socketed DRAM memory DIMMS in PCs and servers and managing display information for HDMI and VGA monitors. Whereas SPI may use four communication lines, I2C uses only two. I2C supports 100 Kbps in standard mode, 400 Kbps in Fast mode, 3.4 Mbps in High-Speed mode, and 5 Mbps in Ultra-Fast mode. As stated, this is a packet-based format using start and stop symbols.

      	Universal asynchronous receiver/transmitter (UART): This is one of the simplest and oldest forms of computer communication and is used extensively. It is an asynchronous serial two-wire communication and signaling system, not a protocol like I2C. A UART only supports a single master and a single slave. A UART uses a shift register to push bits across the wire. Because it is only a wire interface, it can be used in many ways such as full-duplex, half-duplex, or even simplex modes. Data is framed by a start and stop bit around each transmitted 8 bits of data. A UART will be the basis of communication for SCADA IoT systems like RS485 or RS232. RS232 specifies the voltage levels specific to that implementation and would require additional line drivers to assist in the voltage control. In contrast, the highly popular and legacy ModBus protocol is typically used on RS485 interfaces and specifies its own electrical signaling, which is not compatible with RS232. 

      	General-purpose input/output (GPIO): These are used extensively in computing and are essentially digital signal pins on the SOC or integrated circuit that have no specific function but are programmatically controlled. GPIO pins can be used as output drivers or capture input. They can be bidirectional or unidirectional. GPIOs also can be assigned to interrupt on the chip to signal events. They can even be used in groups as a form of software-defined bus or bit-banging interface. GPIOs will be used to control devices, attached to sensors, or strapped to resistor values and read at boot as a form of ID or security.

      	Controller Access Network (CAN): This is a vehicular standard synchronous bus architecture designed for microcontrollers to communicate with each other without a hosting computer. It is a proprietary standard with patents held by Bosch who also licenses the technology. It uses a packet-based layered protocol for communication between multiple masters and multiple slaves. CAN communication can be used with as few as four signals or a standard DB9 connector. The speed of CAN ranges from 40 Kbps to 125 Kbps when used in a low-speed fault-tolerant mode to 40 Kbps to 1 Mbps in a high-speed mode.

      

    

    High-speed IO

    We categorize high-speed IO as anything obtaining a speed of about 100 Mbps or using advanced IO such as differential pairs. These require special design rules, PHYs, and cabling. You will see high-speed interconnects in the form of simple Ethernet transceivers, USB interfaces, and PCI Express buses. While common, these interfaces deserve special attention.

    PCI Express (PCIe) is the most common form of chip-to-chip and peripheral interconnect. PCIe utilizes a differential pair of transceivers and has limited range as a function of the generation of PCIe you use.

    From a systems architectural point of view, PCIe is a preferred choice of interconnect for high-speed IO to and from peripherals like NVMe storage devices, external GPUs, and high-speed modems. PCI utilizes what is called serializer/deserializer (SerDes) signaling. SerDes are essentially complementary signals that are 180 degrees out of phase with each other. This allows for extremely high-speed communication with less impact to noise and signal aberrations. It does require specific OS functionality to perform a PCI bus enumeration and discover the bus topology and interconnects. USB is a preferred interconnect for more robust plug-and-play devices. USB will have less throughput than PCI Express and require more software overhead in the operating system kernel, but it will provide the option to use a wide range of generic devices and externally mounted components like USB flash sticks, wireless transmitters, and external modems. Ethernet is the oldest specification and is primarily used for network-based communication.

    
      
        
        
        
        
        
      
      
        
          	
            Bus
          
          	
            Ethernet
          
          	
            USB 3.0
          
          	
            PCIe Gen3
          
          	
            PCIe Gen4
          
        

        
          	
            Bus width

          
          	
            1 twisted pair to 10+

          
          	
            9 pins

          
          	
            1 to 32 lanes

          
          	
            1 to 32 lanes

          
        

        
          	
            Speed range

          
          	
            1 Mbps to 400 Gbps

          
          	
            5 Gbps

          
          	
            984.6 MBps per lane

          
          	
            1969 MBps

          
        

        
          	
            Signaling

          
          	
            Twisted air or optical fiber

          
          	
            Twisted pair differential signaling

          
          	
            Differential SerDes

          
          	
            Differential SerDes

          
        

        
          	
            Topology

          
          	
            Switched connection

          
          	
          	
            Single master–multiple slave

          
          	
            Single master–multiple slave

          
        

        
          	
            Power management

          
          	
            None

          
          	
            Built into protocol

          
          	
            Built into protocol

          
          	
            Built into protocol

          
        

        
          	
            Routing distance

          
          	
            Feet to miles

          
          	
            Feet

          
          	
            Inches

          
          	
            Inches

          
        

      
    

    Hardware assist and coprocessing

    Hardware assist within edge systems is common in the form of GPUs, DSP, analog-to-digital converters, and a myriad of other functionality. Server-class blade systems will use discrete components, whereas more tightly embedded systems will incorporate super integrated hardware into a single SOC or a multi-module chip.

    Why include hardware for algorithmic functionality? Fixed-function silicon or hardware assist has two main advantages over programming an algorithm in software:

    
      	1. Hardware algorithms will be orders of magnitude faster than software can process. Data can be pipelined between hardware assist blocks and streamed directly to and from IO.

      	2. Power consumption will generally be lower. Fixed-function silicon and coprocessors require extra work on hardware and software teams and new device drivers, but the benefits can be significant.

    

    The example SOC we presented earlier in this chapter included a digital signal processor. There are many forms of fixed-function silicon to aid processing and data flow:

    
      	Image signal processing blocks and pipelines (as we examined in the chapter on sensor technology)

      	Graphics processing units for imaging, general-purpose computing on graphics processing units (GPGPU) programming, machine learning acceleration, and SIMD acceleration

      	Digital signal processors for audio input, audio output, and real-time signal analysis

      	Compressors and decompressors

      	Encryption accelerators (Advanced Encryption Standard, or AES)

      	Hardware-assisted inference engines for matrix multiplication and convolutional neural networks acceleration

    

    Using these types of hardware-assisted modules comes at a cost. First is the additional silicon area and licensing cost of the hardware. Second is the software and architectural impact on the dataflow. Architects should weigh these options carefully when building an edge computer system.

    Boot and security modules

    We have discussed security aspects of IoT throughout the book and at various levels of the stack. More will be discussed in depth in the Chapter 13, IoT and Edge Security. When deploying at the edge, it is critical to have an assurance of software integrity from boot. Today, we use Trusted Platform Modules (TPMs) to accomplish this task. A TPM is a hardware module dedicated to authenticating software, storing encrypted keys, and protecting passwords.

    A hardware TPM module provides:

    
      	Root-of-Trust reporting

      	Root-of-Trust storage interface

      	Storage for keys

      	Random number generation for key generation

      	Cryptographic functions: encrypt/decrypt, signing, key certification, SHA-1 hash generation

    

    A TPM can be a standalone hardware module as in our earlier example block diagram. It communicates with the main SOC through a low-speed SPI interface. The role of a TPM in the boot process is to verify the integrity of the very first boot phase stored in flash that the TPM accesses. When the system comes out of reset, the TPM will verify the signature of the boot code. If the signature is verified, the boot progresses normally. Additionally, the TPM can also verify each phase of the boot process in a full trusted boot of the operating system and other loaded components.

    Examples of edge hardware

    Now that we have examined the characteristics of processors, storage, memory, and associated hardware components for edge computing, we will look at different devices deployed in real-world edge processing deployments to contrast their abilities and features.

    The three different modules serve different use cases. The NXP device is for far-edge computing such as a voice assistant like Alexa or a mobile or moving vehicle telematics computer. It has a rich set of low speed IO and the best thermal characteristics and lowest power of the three. The Advantech Edge Server is a small form factor computer in a hardened case. It is meant for harsh environments but maintains compatibility with x86 software and is capable of running a full Microsoft Windows stack at the edge. Finally, the Supermicro device is a full 1U data center blade enclosure intended for edge computing. It uses a lower-end Intel Xeon chipset, but it is still the most computationally powerful device of the three. It lacks any ability to be used in a harsh environment, however:

    
      
        
        
        
        
      
      
        
          	
            Component
          
          	
            NXP LPC54018 IoT Module
          
          	
            Advantech Edge Server EIS-D210
          
          	
            Supermicro 
            1019C-HTN2
          
        

        
          	
            CPU

          
          	
            ARM M4

          
          	
            Intel Celeron

          
          	
            Intel Xeon E-2200

            (9th generation)

          
        

        
          	
            Architecture, bit width

          
          	
            ARM-7, 32-bit

          
          	
            X86, 64-bit

          
          	
            X86, 64-bit

          
        

        
          	
            Cores

          
          	
            1

          
          	
            2

          
          	
            4

          
        

        
          	
            Multithreading

          
          	
            No

          
          	
            No

          
          	
            Yes 2x

          
        

        
          	
            Speed

          
          	
            180 MHz

          
          	
            1.1 GHz

          
          	
            3.4 GHz

          
        

        
          	
            Floating point

          
          	
            Yes

          
          	
            Yes

          
          	
            Yes

          
        

        
          	
            Hardware virtualization

          
          	
            No

          
          	
            No

          
          	
            Yes

          
        

        
          	
            HWA, GPU

          
          	
            DAC and ADC subsystem

          
          	
            Intel HD Graphics @ 200 MHz

          
          	
            UHD Graphics @ 350 MHz

          
        

        
          	
            TDP, TJ

          
          	
            1.2W, 150°C

          
          	
            8W, 105°C

          
          	
            95W, 73°C

          
        

        
          	
            Caches

          
          	
            None –

            see on chip SRAM

          
          	
            16 KB L1

            2 MB L2

          
          	
            64 KB L1 per core

            256 KB L2 per core

            8 MB L3 shared

          
        

        
          	
            Memory

          
          	
            360 KB on-chip SRAM

          
          	
            4 GB DDR3

          
          	
            64 GB DDR4 - ECC

          
        

        
          	
            Storage

          
          	
            4 MB on chip SPI flash,

            microSD card

          
          	
            64 GB SATA III SSD

          
          	
            4 TB M.2 NVMe

            SATA Optional

          
        

        
          	
            Wireless communication

          
          	
            802.11 b/g/n

          
          	
            802.11 2.4 and 5 GHz

            Bluetooth 4.1

          
          	
            None

          
        

        
          	
            Low-speed IO

          
          	
            10 Flexcomm serial ports, SPI, I2C, I2S, GPIO, CAN, SDIO,

          
          	
            2 RS232 UART

          
          	
            UART, I2C

          
        

        
          	
            High-speed IO

          
          	
            USB

          
          	
            802.3 Gbit Ethernet, 4 USB 3.0, VGA, PCI Express Gen2

          
          	
            2 SATA2, 2 802.3 Gbit Ethernet, 3 USB 3.1, 2 DisplayPort, 1 VGA. PCI Express Gen3

          
        

        
          	
            Security

          
          	
            Encrypted image boot

          
          	
            TPM module

          
          	
            TPM module

          
        

        
          	
            Operating temp

          
          	
            -40°C to 105°C

          
          	
            -20°C to 60°C

          
          	
            10°C to 40°C

          
        

      
    

    The highlighted cells in the table illustrate each edge computer's strength.

    Ingress protection

    When deploying hardware that must exist outside or within any area where the environmental conditions cannot be controlled, the architect must choose how to protect the electronics against contamination and humidity as well as mitigating thermal issues. Typically, electronics will be housed in some enclosure. The electronics industry uses an international convention to qualify the hardness of electronics enclosures.

    This standard is called the Ingress Protection mark, or IP for short. IP testing tests a product's ability to protect against the infiltration of water, dust, and foreign objects. In general, products requiring IP testing include computers, laboratory equipment, many medical devices, light fixtures, and products that must remain dust-free or moisture-resistant. Items that are sealed and will likely be placed in hazardous places also need IP ratings. There are standards related to IP testing, in particular MIL-STD-810 (Military), RTCA/DO-160 (Radio Technical Commission for Aeronautics), and IEC 60529 (International Electrotechnical Commission). They are defined to the international standard EN 60529.

    The following table details the two-digit encoding for IP ratings:

    
      
        
        
        
        
      
      
        
          	
            Foreign Body Ingress Protection
          
          	
            Moisture Ingress Protection
          
        

        
          	
            First Digit Marker
          
          	
            Description
          
          	
            Second Digit Marker
          
          	
            Description
          
        

        
          	
            0 or X

          
          	
            Not rated

          
          	
            0 or X

          
          	
            Not rated

          
        

        
          	
            1

          
          	
            Protection against large object intrusion such as a hand or anything larger than 50 mm in diameter. No protection for deliberate access.

          
          	
            1

          
          	
            Protects against falling droplets and condensation (1 mm rainfall per minute).

          
        

        
          	
            2

          
          	
            Protects against objects not greater than 80 mm in length and 12 mm in diameter, such as a finger.

          
          	
            2

          
          	
            Protects against vertically dripping water when the enclosure is tilted up to 15° off vertical (3 mm rainfall per minute).

          
        

        
          	
            3

          
          	
            Protection from intrusion by tools or objects with a diameter of 2.5 mm or larger.

          
          	
            3

          
          	
            Protects against moisture spray up to 60° off vertical.

          
        

        
          	
            4

          
          	
            Protects against solid objects larger than 1 mm (wires, nails, insects).

          
          	
            4

          
          	
            Protects against splashing water from any direction tested for a minimum of 10 minutes.

          
        

        
          	
            5

          
          	
            Partial protection against dust—"dust protected."

          
          	
            5

          
          	
            Protects against low-pressure jets (6.3 mm) at 30 kPa from directed water spray at any angle from 3 m distance.

          
        

        
          	
            6

          
          	
            Complete protection against dust and other particulates including a vacuum seal tested against continuous airflow—"dust tight."

          
          	
            6

          
          	
            Protects against directed high-pressure water jets at 100 kPa.

          
        

        
          	
          	
          	
            7

          
          	
            Full protection against complete immersion for up to 30 minutes at depths of 15 cm to 1 m.

          
        

        
          	
          	
          	
            8

          
          	
            Protects against extended immersion under high pressure and depths up to 3 m.

          
        

        
          	
          	
          	
            9K

          
          	
            Protects against high pressure (80-100bar), high-temperature jet spray (80° C), wash downs, and steam cleaning. Often seen in auto and transport systems ISO 20653:2013.

          
        

      
    

    As an example, an enclosure for an edge system that is rated by a manufacturer as IP65 implies it is "dust-tight" and protected against water projected at it from a low-pressure jet spray such as a garden hose. A device with a rating of IP68 would imply it is "dust-tight" and protected again complete immersion for extended periods of time.

    Operating systems

    The operating system choices for an edge system are numerous and deserve significant attention. From an architect's perspective, the choice must be given a fair degree of diligence as it will be the foundation for possibly generations of software solutions deployed in that environment. An operating system exists as a software abstraction and protection layer between hardware and applications. However, an OS also provides an application binary interface (ABI) for software to exist upon. It may provide real-time response and guaranteed servicing, it forms software process and thread-level protections, and it provides interfaces to share memory and IO between software applications and manages system memory and resources.

    Operating system choice points

    In many situations, a hardware OEM will provide or recommend an operating system and board support package (BSP) for hardware they have designed. Other times, the OS choice will not be as clean-cut, which is true for purpose-built and custom hardware.

    The following are questions the architect should consider and weigh in making an OS choice:

    
      	Cost of the OS distribution. Is this a public license like Linux or a commercial license such as Windows?

      	Is there a support contract?

      	Is there a real-time need, does the OS support RT, or are there extensions?

      	Which processor architecture is the OS support upon (ARM, x86)?

      	Does the OS support all the processor characteristics needed: virtual memory, multilevel caches, SIMD extensions, floating-point emulation?

      	How are packages or extensions obtained? Linux: APT, yum, RPM, PACMAN.

      	How many packages or extensions have been created for this OS distribution?

      	How will you boot the device—Flash, network (PXEboot)?

      	What form of security services are built into the OS and kernel?

      	For deeply embedded and far-edge systems, how small can the OS be trimmed in RAM and storage size?

      	Is boot time a concern?

      	What filesystems are needed?

      	If software and driver support comes with peripheral hardware, which OS does it target?

      	Does the OS support the forms of communication, networking, and protocol stacks desired?

      	Is there a need for a GUI?

    

    This is not an exhaustive list but should indicate that there are many factors in picking an OS. The OS exists as a fundamental layer that the rest of the system relies upon. Changing an OS often requires significant refactoring of software and drivers. Later we will examine a container-based approach to software deployment that helps somewhat in abstracting an operating system, but at some fundamental level, an OS (or kernel) needs to exist.

    Typical boot process

    A typical Unix boot process is shown in the following figure. This is a Linux variant boot from a reset vector after power-on to a graphical user interface. The diagram illustrates the most meaningful elements of the boot flow. Early boot may start even earlier through the use of a TPM, which will be discussed later, Chapter 13, IoT and Edge Security. The TPM guarantees a root of trust when powering on the electronics and ensures that the next code image loaded from various media is qualified and authentic.

    Aside from the special case of a TPM, the system will typically issue a power-on self-test (POST) in hardware to ensure components have come up reliably. Systems traditionally used a legacy BIOS to boot from, but modern systems now use the Extensible Firmware Interface (EFI) system as an alternative to the older BIOS code. EFI is a true 32-bit interface built using modern tools and encapsulation, whereas the BIOS architecture is a 16-bit interface and monolithic.

    A Linux variant operating system will typically start after its image has been loaded by EFI or GRUB and enters kernel init. A temporary RAM disk is used to help marshal the bootstrap process. An important step is the execution of various runlevels. Runlevels are software semantic operating levels to signify specific modes the OS will run in. By convention there are seven runlevels numbered 0 through 7:
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    Figure 11: Typical boot process from cold reset to a user-level prompt in Linux. Note the two different paths of early boot from a traditional BIOS and GRUB versus an EFI boot.

    Operating system tuning

    An operating system like Linux allows for the flexibility of adding volumes of different frameworks, tools, utilities, and packages to the firmware image of the system. However, care must be taken when building reliable and robust edge-based systems. The philosophy you should use in building the base image of an edge machine is to provide the minimal set of packages and libraries necessary to perform the given task. This methodology differs from traditional cloud-based virtual machine installations that come with prepackaged Linux images consisting of gigabytes of packages and software.

    At the edge, we are concerned about the security of the device, how robust the device is to its environment, and how difficult the device is to maintain. It is most often the case that the edge computer is resource constrained and non-critical packages are consuming storage and RAM that could be used for actual use cases.

    Edge platforms

    The software and applications running on the edge define its purpose. As you scale edge devices, managing them remotely becomes the challenge. Certainly, custom control and deployment models exist and are used in production. However, today, we have commercial off-the-shelf edge management frameworks as well as container-based methodologies that ease the burden of deploying software in a secure and controlled manner to remote edge computers.

    In either case, we want the software and system to be:

    
      	Robust: Capable of receiving, reimaging, and rerunning software as it is deployed

      	Controlled: Having a central cloud or service that manages and monitors the deployment

    

    
      	Responsive: Reporting back information on the success or failure of software reimaging

    

    Virtualization

    We can contrast the types of virtualization as follows:

    Hardware virtualization: A hardware-level abstraction that is generally capable of running any software that can run on bare metal. It uses a hypervisor to manage one or more virtual machines on the processor and can support the virtual replication of hardware to multiple virtual operating systems through hardware IO virtualization. These techniques require processor and hardware support for virtualization usually found on higher-end processors like ARM Cortex A series parts.

    As a subcategory, there are two types of hypervisors: Type-1 hypervisors run directly on bare metal, and Type-2 have a hosted underlying operating system. An example of a Type-1 hypervisor is Microsoft HyperV. An example of a Type-2 hypervisor is Microsoft Virtual PC.

    Para-virtualization: Provides an abstraction layer called a hardware abstraction layer (HAL) and requires special drivers. These drivers are linked through the underlining hypervisor and access the hardware through hypercalls. It requires modifications to the guest OS to enable this form of virtualization and offers the guest OS higher performance and the ability to communicate directly with the hypervisor.

    Containers: Manage abstraction at an application level. There is no hypervisor or guest operating system. Rather, containers require only the hosting operating system to provide basic services. 

    Containers maintain separation from each other, providing a level of protection similar to a VM. Container mangers can also adapt to changing machine resources. For example, they can dynamically assign more memory to a container at runtime.

    For some edge computing applications, container-based abstractions are particularly attractive. Containers do require system-level resources that need to be considered, such as compute performance, storage capacity, and even processor features. They offer a very lightweight and portable method of building and deploying applications to edge computers. Since the container approach uses no guest OS, it is naturally leaner and more resource-efficient than traditional virtualization. This is critical for resource-constrained edge devices. Additionally, a qualified and working image can be containerized, and changes and tests can be executed against that image. A container is also very portable and can be deployed in any environment and on nearly any host OS. For this reason, we will focus on containers as the method for edge deployment:
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    Figure 12: Four types of virtual abstractions: Full virtualization, paravirtualization, Type-2 hypervisors, and containers

    
      While a Type-2 hypervisor may appear similar to a container design in the preceding diagram, it is not analogous to containers. A type-2 hypervisor still has a high overhead and performance impact. Essentially, you are running at least one guest operating system over a full host operating system. Taking into account the hypervisor and runtime services, the amount of memory and processing required are much greater than lightweight containers.

    

    Containers

    Containers are a method to virtualize underlying hardware and services like a virtual machine (VM). Whereas a traditional virtual machine will require a hypervisor that sits above the hardware and provides a level of abstraction, a contain requires no hypervisor. Rather, its services reside above the operating system layer.

    Container architecture

    The act of creating a container and running an application as a process in it is called containerization. There are two fundamental definitions needed to understand the basic elements of a container:

    
      	Container: This is a single instantiation of a container image. Multiple instances can exist on a single host.

      	Image: The container image is a set of files containing no state but defines the package (or snapshot) of a container.

    

    To understand the container architecture, we will explore Docker. It is a tool to build and manage containers and offers a free version called DockerEE for basic services. A container deployment will consist of an application container management engine and a repository.

    To bind an application into a container image, we start by gathering the application code and required dependencies. These dependencies are associated libraries, binaries, middleware, and software components that may be needed by the application. All dependencies must be included in the container image to ensure they are resident even for functionality that may seldom execute. This aggregation of applications and dependencies is called the container.

    The creation of a new container is straightforward in Docker. First, we choose a base image to reference. Docker has many base images of various operating systems and environments like Fedora or Ubuntu. 

    A list of minimal base images can be found at https://hub.docker.com/search?q=&type=image. Next, we create a Docker image file. This file details how the image will be built. An example is as follows:

    FROM ubuntu
RUN apt-get update
RUN apt-get install iostat -y
CMD ["/usr/bin/iostat"]


    In this example, the dockerfile pulls from the Ubuntu base image and then uses the installation tool apt-get to install the iostat utility and then executes it.

    After the dockerfile is constructed, we then need to build this Docker image. The field dockerID is needed only if you intend to upload the image to the global Docker Hub system, where you need to register for an account:

    docker build -t <dockerID>/<image-name> .


    The resulting image can then be deployed and instantiated anywhere given the following command on the host:

    docker run [options] [dockerID/image-name][command]


    An edge computer device, as well as any other connected system using Docker, can pull this new image and execute it in a similar manner. This greatly eases the task of deployment and development. Additionally, it allows development models for edge devices to be like processes on large SaaS (software as a service) solutions using techniques like continuous integration and continuous delivery (CI/CD).

    An Edge platform ‒ Microsoft Azure IoT Edge

    While an entire management platform that can be used in concert with other IT tools, security services, and management requirements can be designed from scratch, there are several management platforms that provide many of the services needed to deploy edge computing as a fleet.

    Microsoft Azure IoT Edge is a container deployment engine and management service that runs on a Windows or Linux edge computer or device. It provides a free and open source runtime, a container platform (Docker), a compatible container management and deployment process for edge devices, a cloud interfacing API to the Azure IoT Hub, and provisioning services. Many routine edge tasks are also provided, such as the ability to operate offline or with intermittent connections; cache and locally store data; sync to cloud on demand, security services for end-to-end threat protection, and posture management; and filter/denature data before sending results to the cloud for archive or analytics.

    The general requirements for Azure IoT Edge consist of:

    
      	An edge computer running x64, AMD64, ARM32v7, or ARM64

      	An edge operating system: Linux or Windows
          	Linux variants tested: Ubuntu Server 16.04, Ubuntu Server 18.04. Others not fully qualified: CentOS, Debian 8, Debian 9, Debian 10, Raspian Buster, RHEL 7.5, Wind River 8, Yocto Linux

          	Windows variants tested: Windows 10 IoT Core, Windows 10 IoT Enterprise, Windows Server 2019, Windows Server IoT 2019

        

      

      	Container runtime: An OCI-compatible container runtime such as the Moby-based engine. Docker CE/EE container images are compatible with Moby.

      	Resources for workload and use case: Storage for the offline caching of data, RAM, and processing for module workloads.

    

    
      	An upstream TCP/IP WAN interface back to Azure IoT hub through MQTT or AMPQ protocols.

    

    If these basic requirements are met, the runtime and container manager should work:
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    Figure 13: Microsoft Azure IoT Edge. Shown is the edge device hosting the Edge IoT Edge runtime. Multiple modules are managed as container deployments through the runtime in concert with the Azure IoT Hub. A manifest controls which modules are qualified for use and general routing between modules.

    The overall architecture of Azure IoT Edge in concert with Azure's IoT Hub running in the cloud can be seen in the preceding diagram. The diagram shows three sensors connected to an edge computer. The edge computer hosts the Azure IoT Edge runtime service. The edge service runtime is lightweight and the heart of the system. The edge runtime manages module/workload installs, security, health monitoring, and all communication. The hub has two roles: IoT Edge Agent and IoT Edge Hub. The agent service manages the modules while the hub manages communication and acts as a proxy for the larger Microsoft Azure IoT Hub. This requires some further explanation.

    IoT Hub running in Azure cloud performs a superset of functions, and it is the main interface used in Azure to connect to IoT devices. IoT Edge Hub is not a full version of IoT Hub, but it allows a programmer to interface to the edge as they would design software to interface to the IoT Hub in the cloud through the Azure IoT Device SDK. The IoT Edge Hub also maintains a manifest. This manifest identifies qualified and authenticated modules allowed to run on the edge device. It also declares the routing rules between different modules running on the edge.

    The IoT Edge Agent manages the container image for each module running on the device, the credentials to access private container registries, and the rules on module creation and management.

    The manifest that controls the edge runtime may look like the following example. Notice every route needed a source and a sink. The condition is an optional field allowing you to filter messages. The IoT Edge Hub will guarantee "at-least-once" delivery of messages. Any destination in the sink field will have its message delivered at least once. If there is a communication issue or failure, it will store and cache all messages locally. This can be fine-tuned to store messages for a set amount of time.

    The first portion details the module content and login credentials:

    {
    "modulesContent": {
        "$edgeAgent": { 
            "properties.desired": {
                // This section lists Edge agent properties, locations, and credentials
"runtime": {
                      "type": "docker",
                      "settings": {
                      "minDockerVersion": "v1.25",
                      "loggingOptions": "",
                      "registryCredentials": {
                      "ContosoRegistry": {
                                  "username": "testaccount",
                                  "password": "<password>",
                                  "address": "test.microsoft.io"
                      }
                      }
            }
        },


    The manifest must also include $edgeHub and $edgeAgent sections. The edgeHub section defines routes and IoT Edge Hub properties. The edgeAgent section lists the URIs of the modules and credentials:

            "systemModules": {
          "edgeAgent": {
            "type": "docker",
            "settings": {
              "image": "mcr.microsoft.com/azureiotedge-agent:1.0",
              "createOptions": ""
            }
          },
        "$edgeHub": { //required
            "properties.desired": {
                      // IoT Edge Hub properties and routing rules
"type": "docker",
                      "status": "running",
                      "restartPolicy": "always",
                      "settings": {
                      "image": "mcr.microsoft.com/azureiotedge-hub:1.0",
                      "createOptions": ""
               }
         "routes": {
               "route1": "FROM <source> WHERE <condition> INTO <sink>",
                      "route2": "FROM <source> WHERE <condition> INTO <sink>"
          },
            }
        },


    The modules section defines all properties of each module running within the edge device: 

            "modules": {
          "Sensor": {
            "version": "1.0",
            "type": "docker",
            "status": "running",
            "restartPolicy": "always",
            "settings": {
              "image": "mcr.microsoft.com/sensor:1.0",
              "createOptions": "{}"
            }
          },


    One of the most powerful concepts of Azure IoT Edge is that certain services and features specifically designed to run on the Azure cloud can now be run locally on the edge device if it meets the minimum requirements of the runtime. Such functionality includes:

    
      	Deploying and using Azure Functions in an Azure IoT Edge module

      	Using Azure's Stream Analytics systems as an IoT Edge module

      	Using Azure's machine learning subsystems within an IoT Edge module

      	Performing image classification with Azure's Custom Vision Service as an IoT Edge module

      	Running SQL databases as an IoT Edge container

    

    This ability to migrate cloud data center class services allows for rapid development and ease of execution.

    Use cases for edge computing

    Edge computing offers the ability to bring processing closer to the sources of data. We have explored several traditional use cases so far in this book, but new uses of edge computing have emerged recently. Ambient computing offers the concept of natural computing that blends into an environment, while synthetic sensing offers the ability to aggregate edge-level sensors into a broad environmentally aware system.

    Within this book, we have studied different types of sensors that are used on the far edge. Devices like MEMs sensors, thermal sensors, and PIR motion sensors are designed to measure specific traits of the environment like pressure, temperature, or motion. These sensors alone don't have the ability to understand more complex actions within an environment, for example, a stove burner left on or if the coffee has completed brewing. While these tasks can be accomplished simply by adding sensors directly to each appliance, synthetic sensing attempts to condense all sensors into a single confined hardware device that analyzes the entire environment of a room or office.

    Ambient computing

    Ambient computing (sometimes called pervasive computing) is a paradigm of how we interact with machines. Typically, human interactions with a computer involve a human machine interface through a monitor, keyboard, and mouse. Perhaps it is through a touchscreen on a smartphone. Regardless, there is an association with the computing device as a separable unit of distinction that one must interact with. 

    In ambient computing, there is not a computer to interact with – the computer is the environment. The interaction is with the environment you are in. Things themselves are used, manipulated, consumed, or worn. The things themselves are part of the computing fabric. Devices work together with AI to assist and serve when needed and then fade into the background when not. For all intents and purposes, no typical computer is seen in the foreground playing an active role.

    This works by incorporating what we have learned so far about sensors, IoT, and edge computing. Essentially, gathering and analyzing the collection of data within an environment and acting upon it. From an edge computer perspective, the goal is to do this without being obtrusive. Rather, the edge computer has an important role, but it should not be obvious that it is center of that role. The tenets of ambient computing are:

    
      	Invisible: Systems should not draw attention to themselves. Computing should be ubiquitous and all around, but not associated with a device. Technology is in sight when needed and out of sight when not needed.

      	Embedded: Objects can embed intelligence within themselves in the form of sensors and computing.

      	Frictionless: Ambient computing is about making complex interactions with computers seamless. It puts humans at the center of computing rather than a PC, mouse, and keyboard. Computing is where you are and cognitive of your environment.

    

    
      	Interconnected: An environment consisting of different things and objects should work together and communicate with each other. This becomes challenging with competing standards and protocols.

    

    Edge computing is at the heart of ambient computing. Early vestiges of this are things like Amazon Alexa, which attempts to place a voice assistant and cloud-connected device within an environment. For the most part, you may not even be aware that this edge computer is in the environment until you signal it through a halo message "Alexa." It can interface with some environmental sensors and IoT devices and interact in a frictionless and invisible manner.

    The challenge for the edge computing designer is taking the technologies described earlier in this chapter and building an appliance that interacts with humans but is not seen by humans. Edge systems can have profound amounts of computing power – as much as data center blades; but, however they make their functionality apparent, making their physical structure transparent is the engineering challenge. This implies we must take the hardware, communication systems, and infrastructure, and design for form, space, sound, and sight: no blinking lights, no high-speed fans, no obtrusive cabling.

    A good example of ambient computing using an edge computing device is synthetic sensing, which we'll look at in the following section.

    Synthetic sensing

    Synthetic sensing was introduced by Gierad Laput, Yang Zhang, and Chris Harrison in Synthetic Sensors: Towards General Purpose Sensing (Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. pp 3986-3999. ACM, 2017). Here, a device is placed in an environment where it has been trained to learn what is occurring based on different sensors built into the edge computer. These sensors may include accelerometers, temperature sensors, sound pressure sensors, and so on. The device is trained to understand how these sensors are affected by the environment. For example, one of these synthetic sensor computers can be placed within a room and learn which burner on a stove is lit, whether the dishwasher is running, whether the faucet was left on.

    In the following diagram, we show five sensors accumulating data to a single edge computer. These real-time signals are processed and marshalled through a trained inference engine to detect events. What is missing from this set of sensors is an actual camera. Synthetic sensing may never use video or photographic data. Rather, all the other sets of environmental characteristics are gathered as a set of time-correlated signals. Video represents a "blob" of unstructured data that requires a different form of machine learning (which we will discuss later in the book):
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    Figure 14: Synthetic sensing using five environmental sensors accumulating time-correlated signals processed in real time through an edge inference engine. Events are trained based on the signature of these signals such as how temperature and humidity events may indicate a window being opened or closed within a room.

    As the edge device acquires sensor data, it first attempts to remove noise and aberrations in the signals. Next it will attempt to normalize the time bases and timestamps of the collected data. In other words, some sensors may be sampled at a higher frequency and some at lower frequencies; software will correctly adjust the numerous samples to a common derived time base. After correcting the signals, the edge device will execute a trained inference model upon the data in as near real-time as possible. The end product will be a classification of the state the environment is in.

    From a hardware point of view, an edge computer could use something like a Particle Photon IC that incorporates an ST Micro STM32F205 microcontroller. The goal is to blend as many time-correlated sensor inputs as possible within a single module. In this case, the sensors of interest include:

    
      	Grideye AMG833 for infrared-level sensing

      	AMS TCS34725 color and luminosity sensor

      	Xtrinsic MAG3110 three-axis magnetometer

      	Bosch BM280 Temperature, Barometer and, Humidity Sensor

      	TDK Invensense MPU6500 six-axis gyro and accelerometer sensor

      	2.4 GHz Wi-Fi detection of RSSI field strength changes

      	Panasonic AMN2111 PIR motion sensor

      	Analog ADMP401 MEMS microphone sensor

      	100mH inductor EMI sensor

    

    All devices, processor, and memory, as well as USB and a Wi-Fi network interface, fit on a module 45.4mm by 48.6mm. This follows the ambient computing paradigm by creating a space-sensing device that is cognitive of user-centric behaviors but does not require a plethora of sensors and devices to be connected to each object. The device can be hidden from view but provide useful information on the state of an environment to a homeowner or business owner.

    Summary

    Edge computing is a broad space that requires the discipline of both the computer engineer and computer scientist (as well the network administrator, business manager, and security professional) to build a robust solution. In this chapter, we learned about edge uses cases and definitions and how they map from embedded systems to designs analogous to data centers on the edge. It is also imperative to understand the hardware architecture of the edge machine as a start. 

    We dove deep into the silicon and processor architectures and which types of architectures are relevant for various edge computing problems. There is also the consideration of the physical device and how it will be protected in a remote and unsupervised area. Next comes the software and operating system design. Building a robust and reliable system on the edge means the software needs to be self-managing, lean, and reliable. We explored ways to tune the edge surface area to reduce the upkeep, image size, and potential vulnerabilities. To manage edge systems, the architect should also consider container-based virtualization paradigms. We explored such methods and how they would work at scale on edge machines.

    In the next chapter we will continue our learning of edge computing and explore its specific role in networking and communications.
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    Edge Routing and Networking 

    Edge routers, bridges, and gateways play an integral role in IoT development. One primary function of edge computing is its ability to bridge networks, route across networks, and provide advanced network management to allow for a seamless enterprise-level of management from a corporate-managed data center to a remote edge device. This requires robust, autonomous, and failsafe networking.

    We have already discussed the different PAN and WAN protocols earlier in this book. A significant function of the far-edge router or gateway is to perform the bridging between non-IP networks and other IP-based networks, including cellular and 5G.

    We begin this chapter by reviewing some of the fundamentals of routing in general. The edge is where we aggregate data from sensors and PAN communication as well as outbound connections to cloud sources through the Internet. IoT devices require some type of communication to the Internet. Often, these devices do not have the resources themselves to reach the Internet directly (for example, a lack of TCP/IP networking hardware and software); therefore, edge computing and routing is needed to assist with data movement.

    It is important to understand and correctly design the routing of data into and out of the edge nodes. We then address topics of VLANs and software-defined networks, which are taking hold in IoT deployments. These technologies allow for edge-managed routers to intelligently separate traffic.

    TCP/IP network functions at the edge

    Routing refers to the steering of data between multiple clients and networks. For this discussion, we will examine TCP/IP based routing and its applicability on the edge.

    Routing functions

    The basic function of a router is to bridge connections between network segments. Routing is considered a layer-three function of the OSI standard model because it makes use of the IP address layer to guide packet movement. Essentially, all routers rely on a routing table to guide the flow of data. The routing table is used to find the best match to a packet's destination IP address.

    There are several proven algorithms used for efficient routing. One type of routing is dynamic routing, where the algorithms react to changes in the network and topology. Information about the state of the network is shared through a routing protocol on a timed basis or upon a triggered update. Examples of dynamic routing are distance-vector routing and link-state routing. Alternatively, static routing is important and useful for small networks that need specific paths configured between routers. Static routes are non-adaptive and thus have no need to scan topologies or update metrics. These are preset on the router:

    
      	Shortest path routing: A graph is constructed representing routers on the network. An arc between nodes represents a known link or connection. The algorithm simply finds the shortest path from any source to any destination.

      	Flooding: Every packet is repeated and broadcast from every router to every endpoint on its link. This generates a massive number of duplicate packets and requires a hop counter in the packet header to ensure packets have a limited time to live. An alternative is selective flooding, which only floods a network in the general direction of the destination. Flood networks are the basis of Bluetooth mesh networking.

      	Flow-based routing: This algorithm inspects the current flow in the network before determining a path. For any given connection, if the capacity and average flow are known, then it computes the mean packet delay on that link. This algorithm finds the minimum average.

      	Distance-vector routing: The router table contains a best-known distance to each destination. The tables are updated by neighboring routers. The table contains an entry for each router in the subnet. Each entry contains a preferred route/path and the estimated distance to the destination. The distance can be a metric of a number of hops, latency, or queue lengths.

      	Link-state routing: A router initially discovers all its neighbors through a special HELLO packet. The router measures the delay to each of its neighbors by sending an ECHO packet. That topology and timing information is then shared with all routers on the subnet. A complete topology is built and shared between all routers.

      	Hierarchical routing: Routers are divided into regions and have a hierarchical topology. Each router maintains an understanding of its own region, but not the entire subnet. Hierarchical routing is also an efficient means of controlling router table size and resources in constrained devices.

      	Broadcast routing: Each packet carries a list of destination addresses. A broadcast router investigates the addresses and determines the set of output lines to transmit to the packet. The router will generate a new packet for each output line and include only the destinations needed in that newly formed packet.

      	Multicast routing: The network is partitioned into well-defined groups. An application can send a packet to an entire group rather than a single destination or a broadcast.

    

    
      An important metric in routing is the time of convergence. Convergence occurs when all routers in a network share the same topological information and state.

    

    Typical edge routers will support routing protocols such as Border Gateway Protocol (BGP), Open Shortest Path First (OSPF), Routing Information Protocol (RIP), and RIPng. An architect using edge routers in the field needs to be aware of the congestion and costs of using a certain routing protocol over others, especially if the interconnection between routers is a data-capped WAN connection:

    
      	BGP: BGP-4 is the standard for Internet domain routing protocols and is described in RFC 1771; it is used by most ISPs. BGP is a distance-vector dynamic routing algorithm and advertises entire paths in routing update messages. If routing tables are large, this requires substantial bandwidth. BGP will send a 19-byte keep-alive message every 60 seconds to maintain a connection. BGP may be a poor routing protocol for mesh topologies since BGP maintains a connection to neighbors. BGP also struggles with the growth of routing tables in large topologies. BGP is also unique as it's one of the only routing protocols based on TCP packets.

      	OSPF: This protocol is described in RFC 2328 and provides network scaling and convergence advantages. Internet backbone and enterprise networks use OSPF heavily. OSPF is a link-state algorithm that supports IPv4 and IPV6 (RFC 5340) and operates on IP packets. It has the advantage of detecting dynamic link changes in seconds and responding.

      	RIP: Version 2 of RIP is a distance-vector routing algorithm based on hop counts using an interior gateway protocol. Originally based on the Bellman-Ford algorithm, it now supports variable-size subnets, overcoming the limitations in the original version. Loops in a routing table are restricted by limiting the maximum number of hops in a path (15). RIP is UDP-based and supports only IPv4 traffic. RIP has a longer convergence time than protocols such as OSPF but is easy to administer for small edge router topologies. Still, convergence for RIP with only a few routers can take several minutes.

      	RIPng: RIPng stands for RIP next generation (RFC 2080). This allows for the support of IPv6 traffic and IPsec for authentication.

    

    A typical routing table is as follows:

    [administrator@Edge-Computer: /]$ route 
Table: wan
Destination         Gateway      Device UID         Flags    Metric    Type
default             96.19.152.1    wan              onlink   0         unicast
Table: main
Destination         Gateway      Device UID         Flags    Metric    Type
96.19.152.0/21      *            wan                         0         unicast
172.86.160.0/20     *            iface:cloud-edge1           0         unicast
172.86.160.0/20     None         None                        256       blackhole
192.168.1.0/24      *            primarylan                  0         unicast
2001:470:813b::/48  *            *iface:cloud-edge1          256       unicast
fe80::/64           *            lan                         256       unicast
Table: local
Destination         Gateway      Device UID         Flags    Metric    Type
96.19.152.0         *            wan                         0         broadcast
96.19.153.13        *            wan                         0         local
96.19.159.255       *            wan                         0         broadcast
127.0.0.0           *            *iface:lo                   0         broadcast
.
.


    In this example, there are three tables: wan, main, and local. A router may have a single routing table or multiple routing tables. The example above was from a real edge routing system in the field that had a used cellar WAN uplink and had a local subnet with multiple networks and a virtual LAN. Each table contains particular routing paths specific to that interface:

    
      	Destination: The complete or partial IP address of the packet destination. If the table contains the IP, it will reference the rest of the entry to resolve the interface and route. It does this by using a partial address, which can be prefixed by a slash (/). This specifies the fix bit positions of the address to resolve. For example, /24 in 192.168.1.0/24 specifies the top 24 bits of 192.168.1 are fixed and the lower 8 bits can resolve any address on the 192.168.1.* subnet.

      	Gateway: This is the interface taken for direct packets that match the destination lookup. In the previous case, the gateway is specified as 96.19.152.1 and the destination is default. This implies the outbound WAN at 96.19.152.1 will be used for all destination addresses. This is essentially an IP passthrough.

      	Device UID: This is an alphanumeric identifier for the interface to direct data to. For example, any destination in the 172.19.152.0/21 subnet will route packets to an interface labeled iface: cloud-edge1. Often, this field will be expressed with a numeric IP address rather than a symbolic reference.

      	Flags: These are used for diagnostics and indicate route state. Specific state flags used may be: route-up, route-down, or use-gateway.

      	Metric: This is the distance to the destination and is usually counted by the number of hops.

      	Type: Several route types can be used:
          	unicast: The route is a real path to a destination.

          	unreachable: Destination is unreachable. Packets are discarded, and an ICMP message is generated indicating the host is unreachable. The local sender receives an EHOSTUNREACH error.

          	blackhole: Destinations are unreachable. Unlike prohibit types, packets will drop quietly. Local senders get an EINVAL error. 

          	prohibit: Destinations are unreachable. Packets will be discarded and ICMP messages generated. Local senders receive an EACCES error.

          	local: Destinations are assigned to this host. The packets are looped back and delivered locally.

          	broadcast: Packets will be sent as broadcasts over the interface to all destinations.

          	throw: This is a special control route to force packets to drop and generate ICMP unreachable messages.

        

      

    

    It should also be noted in the preceding example that IPv6 addresses are intermixed with IPv4 addresses. For example, 2001:470:813b::/48 in the main table is an IPv6 address with a /48 bit subnet.

    PAN-to-WAN bridging

    A critical area of IoT and bridging is the conversion of non-IP communication to IP-based WAN networking. An example is converting from captured Bluetooth advertising packets to MQTT streams across 5G. This is a complex process involving multiple hardware components, radios, device drivers, and communication stacks. However, it is fundamental to the process.

    At this point, we assume there is the proper PAN and necessary WAN hardware installed on the edge computer. Normally, the process will either be event-driven or polled. For event-driven traffic generation, the arrival of PAN data will signal an event (the arrival of a Bluetooth advertising message). If the event is qualified, it may have the following actions:

    
      	Ignored: Packet has been filtered, as per a set of rules, for power management reasons, or because the packet or advertising message was not authenticated.

      	Cached: Packet may be stored locally in RAM or in non-volatile storage. Relevant packet data, a timestamp, and perhaps other metadata may be stored in a growing log file for later transmission or retrieval. Caching is also effective in the event of unreliable communication where retries are necessary for resiliency.

      	Transmitted: Packet is wrapped in an outbound protocol such as MQTT or HTTP and sent over a trusted and secure network to an authenticated service such as a cloud ingestion engine or data lake. 

    

    While this is a simple representation of a bridge, the logic within the control system is what makes the edge a powerful technology with rules engines, machine learning, advanced power management techniques, and edge analytics. These concepts will be discussed in detail later in this book.

    An example of such bridging is shown in the following figure. Here, a typical cellular NBIOT module is used (in this case a Telit cellular module). These modules typically connect to a hosting computer across UART or USB interfaces (for up to 480 Mbit/s communications). Modules such as the Telit cellular module can operate using a built-in Hayes-compatible AT command set and use a TCP stack built into the module or connect in a raw format across USB using the Remote Network Driver Interface Specification (RNDIS) or Ethernet over USB. Both are protocols that transport Ethernet frames over USB.

    
      Since typical 802.3 Ethernet transports data in frames and USB doesn't, a protocol must be used if you attempt to use a USB connection as a TCP networking component. Ethernet Control Model (ECM) and Ethernet Emulation Model (EEM) are two such protocols. Of the two, ECM is the simplest to implement and use.

    

    The non-IP side of the bridge is controlled by the edge router as captured packets or advertisements from a Bluetooth device propagate up the typical BLE stack to the application. In this case, the binding application is the edge control application that performs all the necessary initialization and network bindings to bridge the two disparate network segments. 

    The application is also the correct entity to filter, denature (filtering data based on rules such as privacy rules), cache, and analyze the incoming stream of data and make the decision to transmit the data up towards the WAN:
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    Figure 1: PAN-to-WAN conversion on edge routing. Here a Telit Cellular NB-IoT module is used that communicates to the hosting edge computer over a high-speed USB interface. RNDIS is used to force ethernet frames across the USB link. The edge control application performs most of the setup, binding, and network interfacing. Additionally, it controls the rules engine and logic as to which packets should be propagated from the PAN to the WAN.

    
      While all cellular radios require a SIM to identify the device to the cellular carrier, there are two methods to consider for edge designs. A traditional SIM card can be used and built into a card carrier on the PCB board. Alternatively, devices like the Telit HE910 support "SIM-on-chip," which is a fixed and nonremovable SIM design intended to be surface-mounted permanently on the PCB. This is intended for resiliency in harsh or hostile IoT deployments like off-road vehicles or where moisture is a problem. 

    

    The following example shows how a communication session will work with a cellular radio, such as the Telit HE910, using AT commands. The edge computer or processor in this case can have multiple applications intending to open network sockets and transmit or receive data across the Internet. Each application will be assigned an AT (attention) virtual port (AT0, AT1 and so on). The Hayes AT command set operates in either COMMAND mode or ONLINE mode. In COMMAND mode, AT prefixed instructions configure and control the modem, whereas in ONLINE mode, data entered by the application or user is freely sent upstream to the network. An IP address is assigned to each AT port on the modem to match the application.

    Here's an example of opening a cellular-based socket on the Telit module.

    In COMMAND mode, open the socket using:

    AT#SD=3,0,80,"host name"
CONNECT
[data is delivered]
+++ 
OK


    The AT command SD signifies "socket dial" and will open a TCP/UDP connection to a known host like azure.microsoft.com. The command is parsed as:

    AT#SD=<connId>,<txProt>, <rPort>, <IPaddr> [, <closureType> [, <IPort>[,<connMode>]]] 


    
      	connId refers to the virtual AT interface in the graphic, also known as the connection ID.

      	txProt is the transmission protocol (either 0 for TCP or 1 for UDP).

      	rPort is the host receiver port to connect to. In this example, we are connecting to Microsoft Azure on port 80.

      	IPaddr can be a valid IP address in the form xxx.xxx.xxx.xxx or a name that should resolve through a DNS query.

      	closureType is the action to take when the host closes a connection. The default (0) is the host closes immediately, or 255, which requires the host to issue an AT#SH command to disconnect.

      	IPort is for UDP local connection using a port of choice.

      	connMode is the connection mode, which can be 0 for ONLINE mode connections or 1 for COMMAND mode connections.

    

    There are hundreds of unique and vendor-defined AT commands. This has been a very short look into how the radio forms an IP-based connection. Different models of modules may use different commands or interfaces. It is up to the architect to understand the radio characteristics for the solution they are developing.
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    Figure 2: Telit HE910 cellular radio example. Here, three applications create virtual AT ports that reach across a USB connection from the edge processor to the Telit radio module.

    Failover and out-of-band management

    Failover is a critical feature for certain IoT edge routers, particularly for moving vehicles and patient care applications. Failover, as the name implies, is switching from one WAN interface to another when a primary source is lost. Loss of WAN could be attributed to the loss of cellular connectivity in a tunnel. A logistics company with a fleet of cold-storage trucks may need to guarantee connectivity where cellular service varies nationwide. A failover from one cellular provider to another by use of multiple SIM identities can help mitigate and smooth over connectivity. Another use case could be using customer Wi-Fi as a primary WAN interface for in-home health monitoring but enabling a failover to cellular WAN if the Wi-Fi signal is lost. Failover should be seamless and automatic without packet loss or a noticeable impact on data latency.

    Out-of-band management (OOBM) should also be considered for IoT devices. OOBM is useful in conditions where a dedicated and isolated channel is needed for the management of equipment. Sometimes this is called light-out management (LOM) if the primary systems are offline, damaged, or have power loss; one is still able to manage and inspect the equipment remotely through a sideband channel. In IoT, this can be useful for situations that need guaranteed uptime and remote management, such as oil and gas monitoring or industrial automation. A well-designed OOBM system should have no reliance on the system being monitored to be functional. Typical management planes, such as VNC or SSH tunnels, require the device to be booted and functional.

    When building an IoT architecture, you must ask what assets need OOBM. Typically, you want that form of management for crucial points in your edge-to-cloud network. If an edge router could be compromised or is crucial to manage (for example, fiduciary transactions or emergency services), it is useful to have OOBM to determine the health of the machine without relying on the normal network. This allows an IT manager to reset the device, stop malware attacks, and reprogram the device even if the traditional network path is lost.

    An OOBM needs to be adjunct and isolated from the system, as shown in the following figure:

    [image: ]
    Figure 3: Example conﬁguration for out-of-band management

    
      An example of a use case where failover is used in IoT deployments is in areas of supermarket retail. Modern grocers, as well as the new Amazon (cashier-less grocers), will have point-of-sale machines like cash registers as well as IoT sensors, Bluetooth beacons, and security systems. They also include Internet-based music services and customer Wi-Fi. In the event of a failure with a traditional Internet service, the system will switch to a failover cellular service. That service has less bandwidth and costly service agreements, so the edge systems cap the quality of service for things like customer Wi-Fi and Internet-based music in preference of keeping the cashiers and financial transactions working.

    

    Edge-level network security

    Security must be considered from sensor to cloud when architecting IoT solutions. The edge has a significant role in secure data communication as well as isolating different data paths from each other. This section will explore some network standards that should be deployed at the edge.

    VLANs

    A virtual LAN (VLAN) functions like any other physical LAN, but it enables computers and other devices to be grouped together even if they are not physically attached to the same network switch. The partitioning occurs in the data link layer (two) of the OSI model. VLANs are a form of network segmentation of devices, applications, or users, although they share the same physical network. A VLAN can also group hosts together, although they are not on the same network switch, essentially easing the burden of partitioning networking without running extra cables. IEEE 802.1Q is the standard by which VLANs are built. Essentially, a VLAN uses an identifier or tag consisting of 12 bits in the Ethernet frame. Therefore, there is a hard limit of 4,096 potential VLANs on a single physical network.

    A switch can assign a port to directly map to a particular VLAN. Since the VLAN is designed in layer two of the stack, traffic can be tunneled through layer three, allowing geographically separated VLANs to share a common topology.

    The following figure shows a corporate point-of-sale (POS) and a VOIP system that is virtually isolated from a set of IoT devices as well as the guest Wi-Fi. This is done through VLAN addressing, although the system shares the same physical network. Here, we assume this is a smart IoT deployment where all edge IoT devices and sensors carry an IP stack and are addressable through the LAN:
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    Figure 4: An example VLAN architecture in a franchise or retail scenario

    
      VLAN design is particularly useful in the IoT space. Isolating IoT devices from other corporate functions is a typical scenario. VLANs are only useful when dealing with IP addressable devices.

    

    VPN

    VPN tunnels are used to establish a secure connection to a remote network over a public network. For example, VPN tunnels can be used across the Internet by an individual to connect to a secure corporate network while traveling, or by two office networks to function as one network. The two networks set up a secure connection to the (normally) unsecured Internet by assigning VPN encryption protocols.

    
      For IoT deployment, a VPN is necessary to move data from remote sensors and edge devices into a corporate or private LAN. Typically, a corporation will be behind a firewall, and a VPN is the only means to move data directly into a private on-premises server. In these cases, a VPN may be a necessary component of the router to bridge the networks. Later in this chapter, a discussion of software-defined networks will present an alternative method to securing networks.

    

    Several VPNs exist:

    
      	Internet Protocol Security (IPsec) VPN: The traditional form of VPN technology that resides on the network layer of the OSI stack and secures data through a tunnel between two endpoints.

      	OpenVPN: An open source VPN for secure point-to-point and site-to-site connections in routed or bridged configurations. It incorporates a custom security protocol utilizing SSL/TLS (OpenSSL) for key exchanging and encrypting control and data planes. It can run over UDP and TCP transports. SSL is common in most browser applications; therefore, SSL VPN systems can provide secure tunnels on an application basis rather than an entire network.

      	WireGuard: Another open source VPN. WireGuard is often much easier to configure and set up than OpenVPN or IPSec. The entire VPN code base is all of 4,000 lines long. It has less functionality and configurability than OpenVPN (500,000 source lines of code) but can adequately serve most of the important functions.

      	Generic Routing Encapsulation (GRE): Creates point-to-point connections between endpoints through a tunnel similar to a VPN tunnel but encapsulates its payload. It wraps this inner packet within an outer packet. This allows the data payload to pass across other IP routers and tunnels unperturbed. Additionally, GRE tunnels can transport IPV6 and multicast transmissions.

      	Layer 2 Tunneling Protocol (L2TP): Creates a connection between two private networks via UDP datagrams typically used for VPNs or as part of the delivery services by ISPs. There is no security or encryption built into the protocol, and it often relies on IPsec for that ability.

    

    
      When comparing VPN functionality, it is important to look at functions such as logging (logs of user bandwidth, number of users' connections) if the service has its own DNS, IPV6 support, SSL and SSH support, data encryption and handshake encryption methods (for example, AES256), and SSL service ratings. SSL service ratings are reported by Qualsys SSL Lab test tools (www.qualsys.com).

    

    A VPN must either trust the underlying network protocols or provide its own security. VPN tunnels typically use IPsec to authenticate and encrypt packets exchanged across the tunnels. To set up a VPN tunnel router on one end, there must be another device (usually a router) that also supports IPsec on the other end. Internet Key Exchange (IKE) is the security protocol in IPsec. IKE has two phases. The first phase is responsible for establishing a secure communication channel, and in the second phase, the established channel is used by IKE peers. The router has several different security protocol options for each phase, but the default selections will be sufficient for most users. Each IKE exchange uses one encryption algorithm, one hash function, and one DH group to make a secure exchange:

    
      	Encryption: Used to encrypt messages sent and received by IPsec. Typical encryption standards and algorithms include AES 128, AES 256, DES, and 3DES.

      	Hash: Used to compare, authenticate, and validate data across the VPN, ensuring it arrives in its intended form, and to derive keys used by IPsec. Typical hash functions one should expect in an enterprise-grade router include MD5, SHA1, SHA2 256, SHA2 384, and SHA2 512. Note that some encryption/hash combinations (such as 3DES with SHA2 384/512) are computationally expensive, impacting WAN performance. AES provides good encryption and performs much better than 3DES.

      	Diffie-Hellman (DH) groups: A property of IKE used to determine the length of prime numbers associated with key generation. The strength of the key generated is partially determined by the strength of the DH group. Group 5, for instance, has greater strength than group 2:
          	Group 1: 768-bit key

          	Group 2: 1024-bit key

          	Group 5: 1536-bit key

        

      

    

    In IKE phase one, you can only select one DH group if you are using an aggressive exchange mode.

    The algorithms are listed in order of priority. You can reorder this priority list by clicking and dragging algorithms up or down. Any selected algorithm may be used for IKE, but the algorithms at the top of the list are likely to be used more often.

    
      A word of caution on mobile and power-constrained IoT deployments: A traditional VPN cannot withstand moving in and out of a persistent network connection (such as cellular roaming, carrier switching, or occasionally powered devices). If the network tunnel is disrupted, it causes timeouts, disconnects, and failures. Some mobile VPN software, such as Host Identity Protocol (HIP) from the IETF, attempts to resolve the problem by disassociating different IP addresses used when roaming to the VPN logical connection. Another alternative is software-defined networking (SDN), which will be covered later in this chapter.

    

    Traffic shaping and QoS

    Traffic shaping and quality of services (QoS) features are useful in deployments that need a guaranteed level of service when dealing with congestion or variable network loads. For example, in an IoT use case, when mixing live video streams as well as public Wi-Fi, the video feeds may need priority and a guaranteed level of quality, especially in a situation of public safety or surveillance. Left to itself, incoming data from the WAN to an edge router will be serviced on a first-come, first-served basis:

    
      	QoS functions: These functions allow the administrator to assign levels of priority for a given IP address hosted by the router or a specific port. QoS functions only control the uplink channel. They are particularly useful in cases where the uplink channel has much less capacity than the downlink. Typically, consumer broadband will have something like a 5 Mbps uplink and a 100 Mbps downlink, and QoS does provide a method of load balancing the constrained upstream link. QoS does not assign hard limits nor segment the link like traffic shaping does.

      

      	Traffic-shaping functions: Traffic shaping is a static form of preallocating bandwidth. For example, a 15 Mbps link could be partitioned into smaller 5 Mbps segments. These segments would be preassigned. Generally, this is wasteful since that bandwidth would not necessarily be returned to the aggregate if needed.

      	Dynamic shaping and packet priority: Modern routers enable dynamic shaping attributes. These allow the administrator to dynamically assign bandwidth segmentation rules to both ingress and egress traffic. It also can manage latency sensitive packets (such as video or user interface) for real-time applications.

    

    Dynamic shaping and packet priority allow rules to be created based on the type of data or application rather than just the IP address or port.

    
      A method to classify and manage network traffic is differentiated services (DiffServ). DiffServ uses a 6-bit differentiated service code point (DSCP) in the IP header for packet classification. The concept of DiffServ is that complex functions (such as packet classification and policing) can be carried out at the edge of the network by edge routers, which then mark the packet to receive a particular type of per-hop behavior. Traffic entering a DiffServ router is subject to classification and conditioning. Additionally, a DiffServ router is free to change the classification of a previously marked packet by a different router. DiffServ is a coarse-grain tool for traffic management since the chain of routers in a link do not all need to support it. The router will then manage the different packet classes through QoS features. Alternatively, IntServ, which stands for integrated services, assists in QoS and mandates that all routers in the chain support it. This is a form of fine-grain QoS.

    

    Another aspect of network quality is the mean opinion score (MOS). MOS is the arithmetic mean of individual values on a scale of the quality of a system from a user perspective. This is commonly used in Voice over Internet Protocol (VOIP) applications but certainly can be used for vision systems, imaging, streaming data, and user interface usability. It is based on a subjective rating of one to five (one being the worst quality, five being the best quality) and should be used in a feedback loop to increase capacity or reduce data sizes to match capacity.

    An edge router bridging a PAN to an IP-based WAN has several options at its disposal to respond to changes in link quality and degradation of network services, for example, in an IoT deployment for fleet trucking where the carrier signal may degrade. In these situations, the router can employ TCP performance-enhancing proxies (PEPs) to overcome and compensate for quality changes (RFC 3135). PEPs can be used in the transport layer or application layer of the stack and differ based on the physical medium. Forms of PEP include:

    
      	Proxy PEP: Here, the proxy acts as the middle-man to mimic an endpoint.

      	Distribution PEP: A PEP can run on one end of the link or both (distribution model).

    

    A PEP consists of the following functions:

    
      	Split TCP: The PEP breaks the end-to-end connection into multiple segments to overcome large delay times that affect TCP windows. These are typically used in satellite communication.

      	ACK filtering: In links where the data rates are not symmetric (such as Cat-1: 10 Mbps down, 5 Mbps up), an ACK filter helps by accumulating or decimating TCP ACKs to improve performance.

      	Snooping: This is a form of integrated proxy and is used to hide interference and collisions on wireless links. It intercepts duplicate ACKs in the network and drops and replaces them with a lost packet. This prevents the sender from arbitrarily reducing the TCP window size.

      	D-Proxy: PEP to assist in wireless networks by distributing a TCP proxy to each side of the link. The proxies monitor TCP data packet sequence numbers by looking for packet loss. Upon detection, the proxies open a temporary buffer and absorb packets until the missing one is recovered and re-sequenced.

    

    Security functions

    An edge router or gateway fulfills another important role by providing a layer of security between the WAN, Internet, and the underlying PAN/IoT devices. Many devices will lack the necessary resources, memory, and computational power to provide robust security and provisioning. Whether the architect is building their own gateway service or purchasing one, the following features should be considered to secure IoT components.

    Firewall protection is the most basic form of security. There are two basic forms of firewalls for telecommunications. The first is a network firewall that filters and controls information flow from one network to another. The second is a host-based firewall that protects applications and services local to that machine. In the case of IoT edge routers, we focus on network firewalls. By default, a firewall will prevent certain types of network traffic from flowing into a firewall-protected zone, but any traffic originating within that zone is allowed to flow outward. A firewall will find and isolate information based on packets, states, or applications depending on the sophistication of the firewall. Typically, zones will be created around network interfaces with rules designed to control traffic flow between zones. An example would be an edge router with a guest Wi-Fi zone and a corporate private zone.

    A packet firewall can isolate and contain certain traffic based on the source or destination IP, ports, MAC addresses, IP protocols, and other information contained in the packet header. A stateful firewall operates in layer four of the OSI stack. It gathers and aggregates packets looking for patterns and state information such as new connections versus existing connections. Application filtering is yet more sophisticated in that it can search for certain types of application network flows, including FTP traffic or HTTP data.

    A firewall can also utilize a demilitarized zone (DMZ). A DMZ is simply a logical zone. A DMZ host is effectively not firewalled, in the sense that any computer on the Internet may attempt to remotely access network services at the DMZ IP address. Typical uses involve running a public web server and sharing files. The DMZ host is usually specified by a direct IP address.

    Port forwarding is a concept that enables certain ports behind a firewall to be exposed. Several IoT devices need an open port to provide services that are controlled by cloud components. Again, a rule is constructed that allows a specified IP address within the firewalled zone to have an exposed port.

    
      Both DMZs and port forwarding open ports and interfaces within an otherwise protected network. Caution should be exercised to ensure this is the intention of the architect. In a mass IoT deployment with many edge routers, a generic rule to open a port may be useful for one location but a significant security risk for another. Additionally, keeping an audit of DMZ and open ports should be a security process as network topology and configurations change with time. A DMZ, at any one time, could lead to an open hole in the network security later.

    

    Metrics and analytics

    In many instances, IoT edge devices will be under service-level agreements or data caps when using metered data such as 4G LTE. In other situations, the edge router or gateway is a host of other PAN networks and IoT devices. It should serve as a central (but local) authority on the health of the PAN network/mesh. Metrics and analytics are useful for collecting and resolving connectivity and cost challenges, especially as the scale of IoT grows. Typical metrics and collections should include the following:

    
      	WAN uptime analytics: Historical trends, service levels

      	Data usage: Ingress, egress, aggregate, per client, per application

      	Bandwidth: Random or scheduled bandwidth analysis on ingress and egress

      	Latency: Ping response time, average latency, peak latency

      	PAN health: Bandwidth, abnormal traffic, mesh reorganization

      	Signal integrity: Signal strength, site survey

      	Location: GPS coordinates, movement, location changes

      	Access control: Clients attached, administrator logins, router configuration changes, PAN authentication success/failure

      	Failover: Number of failover events, time and duration

    

    
      An example of metrics usage is in mobile IoT for municipal vehicles. In this case, a large Midwestern municipality required that their fleet of snow-removal vehicles be connected to the Internet and report information such as GPS location, salt status, and plow status. This was needed to create real-time maps of the city streets and efficiently position plows where needed. Metrics were gathered to understand signal integrity and WAN uptime. Some areas were in cellular "shadows" in more hilly areas. This information was used to build an edge solution that cached data until the cellular signal was reestablished.

    

    These types of metrics should be collected and monitored on a scheduled and automatic basis. Additionally, advanced routers should be able to construct rules and alerts when certain events or abnormal behaviors are seen at the edge.

    Software-defined networking

    Software-defined networking (SDN) is a method of decoupling the software and algorithms that define the networking control plane from the underlying hardware that manages the forwarding plane. 

    Additionally, network function virtualization (NFV) is defined as providing network functions that run on vendor-agnostic hardware. NFV describes virtualizing network features typically found in layers four through seven of the stack. These two paradigms provide the industry methods to build, scale, and deploy significantly complex network architecture in a very flexible manner. Preceding all, this greatly reduces enterprise cost in network infrastructure since most of the services can run in the cloud.

    Why is this important for devices at the edge and where does it fit in with the IoT? We have spent a good deal of this book detailing data movement from a sensor to a cloud and yet have taken for granted how the overall inter-networking infrastructure will scale to a billion additional nodes on a network. One needs only to ask an IT administrator to put an additional million endpoints on a corporate network where the nodes are heterogeneous, in remote locations, and some moving in vehicles to understand the impact on the overall networking infrastructure. Traditional networking does not scale, and we are forced to consider alternative means for building large networks with minimal impact and cost.

    
      SDN is important for IoT deployments and should be considered when dealing with devices that must be segregated for security or performance reasons. For example, a mobile and moving edge system that is SDN capable can establish a secure cloud SDN host. The edge system can move between different carriers and communication systems but always maintain a static IP address to the Internet.

    

    SDN architecture

    The journal article Software-Defined Networking: A Comprehensive Survey (D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015) defines SDN as having four characteristics:

    
      	The control plane is decoupled from the data plane. Data plane hardware becomes simple packet-forwarding devices.

      	All forwarding decisions are flow-based rather than destination-based. A flow is a set of packets that match a criterion or filter. All packets in a flow are treated with the same forwarding and service policies. Flow programming allows for easy scaling and flexibility with virtual switches, firewalls, and middleware.

      	The control logic is also known as the SDN controller. This software version of legacy hardware is capable of running on commodity hardware and cloud-based instances. Its purpose is to command and govern the simplified switching nodes. The reach from the SDN controller abstraction to the switching nodes is the southbound interface.

      	Network application software can reside over the SDN controller through a northbound interface. This software can interact with and manipulate the data plane with services such as deep packet inspection, firewalls, and load balancers.

    

    An SDN's infrastructure is similar to a traditional network since it utilizes similar hardware: switches, routers, and middleboxes. The principal difference, however, is that an SDN utilizes the fast server-class off-the-shelf computing power without complex and unique embedded control hardware. These server platforms are usually in the cloud performing network services in software rather than custom ASICs. The edge routers are essentially dumb without autonomous control. The SDN architecture separates the control plane (the logic and function control) and the data plane (that executes datapath decisions and forwards traffic). The data plane consists of routers and switches that have an association with an SDN controller.

    Everything above the data plane forwarding hardware typically can reside in the cloud or on private data center hardware, as shown in the following figure:
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    Figure 5: Typical SDN architecture abstraction

    The illustration shows simplified switching and forwarding nodes that reside on the data plane and marshal information along prescribed paths determined by an abstracted SDN controller that can live in a cloud instance. The SDN controller manages the control plane via a southbound interface to the forwarding nodes. Network applications can reside on top of the SDN controller and manipulate the data plane with services such as threat monitoring and intrusion detection. These services typically require custom and unique hardware solutions to be deployed and managed by the customer.

    Traditional internetworking

    A typical internetworking architecture will use a collection of managed hardware/software components that are single-purposed and contain embedded software/solutions. Often, these use no-commodity hardware and dedicated ASIC designs. Typical functions include routing, managed switches, firewalls, deep packet inspection and intrusion detection, load balancers, and data analyzers. Such dedicated appliances need to be managed by the customer and staffed with trained network IT personnel to maintain and administer them. These components may come from multiple vendors and require significantly different methods of management.

    In this configuration, the data plane and control plane are unified. When the system needs to add or remove another node or set up a new data path, many of the dedicated systems need to be updated with new VLAN settings, QoS parameters, access control lists, static routes, and firewall pass-throughs. This may be manageable when dealing with several thousand endpoints. However, when we scale to millions of nodes that are remote, moving and connecting/disconnecting, such traditional technology regularly becomes untenable:
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    Figure 6: Traditional networking components. In a typical inter-networking scenario, systems providing services such as security, deep packet inspection, load balancing, and metric gathering require custom vendor hardware and management systems. This introduces difficulty in management and scaling for large installations, remote devices, and moving systems since the control and data planes are uniﬁed.

    SDN benefits

    An SDN model of networking should be considered for mass IoT deployments, especially when a customer needs to establish the provenance and security of a wide deployment of nodes. An architect should consider the following situations when using an SDN:

    
      	Servers and data centers that IoT edge devices must communicate with can be thousands of miles away.

      	The scale of IoT growth from millions of endpoints to billions of endpoints needs appropriate scaling technologies outside of the hub-and-spoke model of current Internet infrastructure.

    

    Three aspects of SDN makes it attractive to IoT deployments:

    
      	Service chaining: This allows a customer or provider to sell services à la carte. Cloud network services such as firewalls, deep packet inspection, VPNs, authentication services, and policy brokers can be linked and used on a subscription basis. Some customers may want a full set of features, others may not choose any or may change their configuration routinely. Service chaining allows for significant flexibility in deployments.

      	Dynamic load management: An SDN enjoys the flexibility of cloud architecture, and by design it can scale resources dynamically depending on load. This type of flexibility is crucial for the IoT as architects need to plan for capacity and scale as the number of things grows exponentially. Only virtual networking in the cloud provides the ability to scale capacity when needed. An example of this would be people-tracking at amusement parks and other venues. The number of people varies depending on the season, time of day, and weather. A dynamic network can adjust to the number of visitors without any change to the provider's hardware.

      	Bandwidth calendaring: This allows an operator to partition data bandwidth and usage to specified times and days. This is pertinent to IoT as many edge sensors only report data periodically or at a certain time of day. Sophisticated bandwidth sharing algorithms can be constructed to time slice capacity.

    

    Later in this book, Chapter 13, IoT and Edge Security, will explore Software-Defined Perimeters (SDPs) as another example of network function virtualization and how it can be used to create micro-segments and device isolation, which is critical for IoT security.

    Summary

    Edge routers, bridges, and gateways play an integral role in IoT development. The functionality provided by an edge router allows enterprise-level security, routing, resiliency, and quality of service. The bridge/gateway plays an important role in translating non-IP networks into the IP-based protocols necessary for Internet and cloud connectivity. It is also important to realize that the growth of IoT to billions of nodes will take shape with low-cost and constrained electronics. Features such as enterprise routing, tunneling, and VPNs require significant hardware and processing capabilities, and it makes sense to use routers and gateways for that service function. Later in this book, we will also look at how edge routers play a vital role in edge processing and fog computing.

    The next chapter will go deep into IoT-based protocols such as MQTT and CoAP, with working examples. These protocols are the lightweight language of IoT and more often than not use gateways and edge routers as translators.
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    Edge to Cloud Protocols

    So far in this book, we have generated data or an event from a device running at the network edge. We have discussed various telecommunication mediums and technologies to move that data from the WPAN, WLAN, and WAN. There are many complexities and subtleties in building and bridging these network connections from non-IP-based PAN networks to IP-based WAN networks. There are also protocol conversions that need to be understood.

    Standard protocols are the tools that bind and encapsulate raw data from a sensor and turn it into something meaningful and formatted for the cloud to accept. One of the principal differences between an IoT system and Machine-to-Machine (M2M) system is that M2M may communicate over a WAN to a dedicated server or system with no encapsulated protocol whatsoever. For example, a SCADA industrial automation system may use BACNET or ModBus exclusively for communication from machinery to various control computers. IoT by definition is based on communication between endpoints and services with the Internet being the common network fabric.

    This chapter will also detail the necessary protocols prevalent in the IoT space such as Message Queue Telemetry Transport (MQTT) and Constrained Application Protocol (CoAP).

    Protocols

    A natural question is, why are there any protocols outside of HTTP to transport data across the WAN? HTTP has provided significant services and abilities for the Internet for over 20 years yet was designed and architected for general purpose computing in client/server models. 

    IoT devices can be very constrained, remote, and bandwidth limited. Therefore, more efficient, secure, and scalable protocols are necessary to manage a plethora of devices in various network topologies such as mesh networks.

    That said, HTTP is used and has a purpose in IoT and edge systems. While HTTP is not efficient across a network, HTTP2 and HTTP3 protocols are relatively efficient. Additionally, security through TLS is natural and common in HTTP sessions. Finally, HTTP is everywhere and routinely used in an assortment of communication and RESTful APIs.

    In transporting data to the Internet, designs are relegated to the TCP/IP foundation layers. TCP and UDP protocols are the obvious and only choices in data communication, with TCP being significantly more complex in its implementation than UDP (being a multicast protocol). UDP, however, does not have the stability and reliability of TCP, forcing some designs to compensate by adding resiliency in the application layers above UDP. It is also worth noting that UDP is used for some IoT communication protocols such as NB-IoT, which was covered in the long-range communication chapter.

    Many of the protocols listed in this chapter are message-orientated middleware (MOM) implementations. The basic idea of a MOM is that communication between two devices takes places using distributed message queues. A MOM delivers messages from one user-space application to another. Some devices produce data to be added to a queue while others consume data stored in a queue. Some implementations require a broker or middleman to be the central service. In that case, producers and consumers have a publish and subscribe-type relationship with the broker. AMQP, MQTT, and STOMP are MOM implementations; others include CORBA and Java messaging services. A MOM implementation using queues can use them for resilience in design. Data can persist in the queues, even if the server fails.

    The alternative to MOM implementation is RESTful. In a RESTful model, a server owns the state of a resource, but the state is not transferred in a message to the server from the client. RESTful designs use HTTP methods such as GET, PUT, POST, and DELETE to place requests upon a resource's universal resource identifier (URI). No broker or middle agent is needed in this architecture. As they are based on the HTTP stack, they enjoy the majority of services offered, such as HTTPS security. RESTful designs are typical of client-server architectures. Clients initiate access to resources through synchronous request-response patterns.

    
      The URI is used as an identifier for web-based data traffic. The most notable URI is the universal resource locator (URL), such as http://www.iotforarchitects.net:8080/iot/?id="temperature". The URI can be broken into component parts that are used by various levels of the network stack:

      Scheme: http://

      Authority: www.iotforarchitects.net

      Port: 8080

      Path: /iot

      Query: ?id="temperature"

    

    Additionally, clients are responsible for errors, even if the server fails. The following figure illustrates a MOM versus a RESTful service. On the left is a messaging service (based on MQTT) using a middle broker server and publishers and subscribers to an event. Here, many clients can be both publishers and subscribers, and information may or may not be stored in queues for resiliency. On the right is a RESTful design where the architecture is built upon HTTP and uses HTTP paradigms for communicating from the client to the server:
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    Figure 1: An example comparing a MOM to a RESTful implementation

    MQTT

    The IBM WebSphere Message Queue technology was first conceived in 1993 to address problems in independent and non-concurrent distributed systems and help them to securely communicate. A derivative of the WebSphere Message Queue was authored by Andy Stanford-Clark and Arlen Nipper at IBM in 1999 to address the particular constraints of connecting remote oil and gas pipelines over a satellite connection. That protocol became known as MQTT. The goals of this IP-based transport protocol are to:

    
      	Be simple to implement

      	Provide a form of quality of service

      	Be very lightweight and bandwidth efficient

      	Be data agnostic

      	Have continuous session awareness

      	Address security issues

    

    MQTT provides for these requirements. A way to think of the protocol is best defined by the standard body MQTT.org (mqtt.org), which presents a very well-defined summary of the protocol:

    MQTT stands for MQ Telemetry Transport. It is a publish/subscribe, extremely simple and lightweight messaging protocol, designed for constrained devices and low-bandwidth, high-latency or unreliable networks. The design principles are to minimise network bandwidth and device resource requirements whilst also attempting to ensure reliability and some degree of assurance of delivery. These principles also turn out to make the protocol ideal of the emerging "machine-to-machine" (M2M) or "Internet of Things" world of connected devices, and for mobile applications where bandwidth and battery power are at a premium.

    MQTT was an internal and proprietary protocol for IBM for many years until being released in version 3.1 in 2010 as a royalty-free product. In 2013, MQTT was standardized and accepted into the OASIS consortium. In 2014, OASIS released it publicly as version MQTT 3.1.1. MQTT is also an ISO standard (ISO/IEC PRF 20922). More recently, OASIS released the MQTT 5 specification. 

    The following table illustrates the feature release and timeline of the OASIS MQTT standard, as well as HiveMQ releases. HiveMQ is a leading provider of MQTT brokers and client software and solutions.

    
      
        
        
        
      
      
        
          	
            MQTT Specification
          
          	
            Release Date
          
          	
            Features
          
        

        
          	
            Initial Release
          
          	
            1999

          
          	
            Initial creation and invention

          
        

        
          	
            MQTT 3.1
          
          	
            2010

          
          	
            Royalty-free release

          
        

        
          	
            HiveMQ
          
          	
            2013

          
          	
            Initial public release

          
        

        
          	
            MQTT3.1.1
          
          	
            2014

          
          	
            OASIS standard

          
        

        
          	
            MQTT 3.1.1
          
          	
            2016

          
          	
            ISO standard

          
        

        
          	
            HiveMQ 4
          
          	
            2018

          
          	
            MQTT compatibility release

          
        

        
          	
            HiveMQ MQTT Client
          
          	
            2019

          
          	
            Client public release

          
        

        
          	
            MQTT5
          
          	
            2019

          
          	
            OASIS standard

          
        

        
          	
            HiveMQ
          
          	
            2019

          
          	
            Open source edition

          
        

      
    

    MQTT 5 was released in 2019 and addresses two issues with the heavily used MQTT 3.1.1 protocol:

    
      	MQTT 3.1.1 has issues customizing or adding metadata to the protocol, which is common in HTTP data.

      	MQTT 3.1.1 has difficulty with interoperability when communicating across different vendor platforms, libraries, and data paths.

    

    To address these problems MQTT 5 introduced User Properties. We will discuss these new properties and abilities throughout this section and highlight differences with MQTT 5.

    MQTT publish-subscribe

    While client-server architectures have been the mainstay for data center services for years, publish-subscribe models represent an alternative that is useful for IoT uses. Publish-subscribe, also known as pub/sub, is a way to decouple a client transmitting a message from another client receiving a message. Unlike a traditional client-server model, the clients are not aware of any physical identifiers such as the IP address or port. MQTT is a pub/sub architecture but is not a message queue. 

    Message queues by nature store messages while MQTT does not. In MQTT, if no one is subscribing (or listening) to a topic, it is simply ignored and lost. Message queues also maintain a client-server topology where one consumer is paired with one producer.

    
      Retained messages are available in MQTT and will be covered later. A retained message is a single instance of one message that is preserved for future parsing.

    

    A client transmitting a message is called a publisher; a client receiving a message is called a subscriber. In the center is an MQTT broker who has the responsibility of connecting clients and filtering data. Such filters provide:

    
      	Subject filtering: By design, clients subscribe to topics and certain topic branches and do not receive more data than they want. Each published message must contain a topic, and the broker is responsible for either rebroadcasting that message to subscribed clients or ignoring it.

      	Content filtering: Brokers have the ability to inspect and filter published data. Thus, any data not encrypted can be managed by the broker before being stored or published to other clients.

      	Type filtering: A client listening to a subscribed data stream can apply their own filters as well. Incoming data can be parsed, and the data stream either processed further or ignored.

    

    MQTT may have many producers and many consumers, as shown in the following figure:
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    Figure 2: MQTT publish-subscribe model and topology: Clients run on the edge and publish and/or subscribe to topics that are managed by the MQTT broker. Here, two topics are considered—humidity and temperature. A client may subscribe to multiple topics. The ﬁgure represents smart sensors that include enough resources to manage their own MQTT client and edge routers that provide the MQTT client services on behalf of sensors or appliances that are not MQTT-enabled.

    
      One caveat of the publisher/subscriber model of computing is that both the publisher and subscriber must know the topic branch and data format before initiating transmission.

    

    MQTT successfully decouples publishers from consumers. Since the broker is the governing body between publishers and consumers, there is no need to directly identify a publisher and consumer based on physical aspects (such as an IP address). This is very useful in IoT deployments as the physical identity may be unknown or ubiquitous. MQTT and other pub/sub models are also time-invariant. This implies that a message published by one client may be read and responded to at any time by a subscriber. A subscriber could be in a very low-power/bandwidth-limited state (for example, Sigfox communication) and respond minutes or hours later to a message. Because of the lack of physical and time relationships, pub/sub models scale very well to extreme capacity.

    Cloud-managed MQTT brokers typically can ingest millions of messages per hour and support tens of thousands of publishers.

    MQTT is data format agnostic. Any type of data may reside in the payload, which is why both the publishers and subscribers must both understand and agree to the data format. It is possible to transmit text messages, image data, audio data, encrypted data, binary data, JSON objects, or virtually any other structure in the payload. JSON text and binary data, however, are the most common data payload types.

    
      The maximum allowable packet size in MQTT is 256 MB, which allows for an extremely large payload.

      Note, however, that the maximum data payload size is cloud-and broker-dependent. For example, IBM Watson allows for payload sizes up to 128 KB, while Google supports 256 KB. Alternatively, a published message can include a zero-length payload. The payload field is optional. It is advisable to check with your cloud provider to ensure the payload sizes are matched. Failure to do so will result in errors and disconnections from the cloud broker.

    

    One aspect of the publish-subscribe model that is new in MQTT 5 is the ability to have shared subscriptions. In previous versions of MQTT, different clients subscribing to a common subscription would each receive a copy of a message. This works in many instances, but for certain cases you may want to architect a solution that load balances the subscriptions for clients. In MQTT 5, this is called Shared Subscriptions. In this scheme, if a subscription is shared with multiple clients, they can be placed in their own subscription group. Each client receives messages from the group in a round-robin fashion. There is also no limit to the number of subscription groups allowed or the number of clients within a subscription group.

    A shared subscription has a different structure for the publish/subscribe model: $share/GROUPID/TOPIC :

    
      	$share: The static shared subscription identifier.

      	GROUPID: The identifier indicating which group to reference. Multiple groups may be used on the same subscription.

      	TOPIC: The standard MQTT 3.1.1 topic branch refence including wildcards.

    

    An illustrative example of shared subscriptions follows:
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    Figure 3: MQTT 5 shared subscriptions feature. Here a publisher sends data to the my/topic branch, and two independent shared subscription groups receive it. Data is sent to one of the two clients in the subscription group in round-robin fashion. This allows for load balancing. Multiple subscription groups are allowed.

    
      Using subscription groups in MQTT 5 is useful for scenarios when load balancing is needed, such as when MQTT clients are overwhelmed with data or worker functions on the backend cloud systems need to scale out.

    

    Another change in MQTT 5 is Topic Aliases. These allow an architect to address the issue of massive scalability with many devices constantly publishing small messages but at a high frequency. Certainly, shared subscriptions can assist on the backend data center, but the devices publishing data may have limited power available. Therefore, managing the amount of data transmitted is crucial. A significant portion of that data may be very long topic names such as data/US/Idaho/Ada/Boise/36/Hill/3607/home/temperature/. 

    Topic aliases allow lengthy topic names to be replaced by an integer value. The sender can assign a topic alias using a PUBLISH method. The number of available aliases is controlled during the connection establishment phase. The client will set a maximum limit using a Topic Alias Maximum during CONNECT and the broker will set it in the CONNACK response. Afterward, the topic branch can be addressed directly with the new alias. If no Topic Alias Maximum is assigned, then the default is that no aliases are allowed.

    MQTT architecture details

    MQTT is a misnomer. There are no message queues inherent in the protocol. While it is possible to queue messages, it's not necessary and often not done. MQTT is TCP-based and therefore includes some guarantee that a packet is transferred reliably.

    MQTT is also an asymmetric protocol, whereas HTTP is a nonsymmetric protocol. Say node A needs to communicate with node B. An asymmetric protocol between A and B would only require one side (A) to use the protocol; however, all information needed for the reassembly of packets must be contained in the fragmentation header sent by A. Asymmetric systems have one master and one slave (FTP being a classic example). In a symmetric protocol, both A and B would have the protocol installed. A or B can assume the role of master or slave (Telnet being a primary example). MQTT has distinct roles that make sense in sensor/cloud topology.

    MQTT can retain a message on a broker indefinitely. This mode of operation is controlled by a flag on a normal message transmission. A retained message on a broker is sent to any client that subscribes to that MQTT topic branch. The message is transmitted immediately to that new client. This allows a new client to receive a status or signal from a newly subscribed topic without waiting. Typically, a client subscribing to a topic may need to wait hours, or even days, before a client publishes new data.

    MQTT defines an optional facility called Last Will and Testament (LWT). An LWT (or simply Will) is a message a client specifies during the connect phase. The LWT contains the Last Will topic, Quality of Service (QoS), and the actual message. If a client disconnects from a broker connection ungracefully (for example, keep-alive timeout, I/O error, or the client closing the session without a disconnect), the broker is then obligated to broadcast the LWT message to all other subscribed clients to that topic.

    Even though MQTT is based on TCP, connections can still be lost, especially in a wireless sensor environment. A device may lose power, lose signal strength, or simply crash in the field, and a session will enter a half-open state. Here, the server will believe the connection is still reliable and expect data. To remedy this half-open state, MQTT uses a keep-alive system. 

    Using this system, both the MQTT broker and client have assurance that the connection is still valid even if there hasn't been a transmission for some time. The client sends a PINGREQ packet to the broker, which in turn acknowledges the message with a PINGRESP. A timer is preset on both the client and broker sides. If a message has not been transmitted from either within a predetermined time limit, a keep-alive packet should be sent. Either a PINGREQ or a message will reset the keep-alive timer.

    In the event that a keep-alive is not received and the timer expires, the broker will close the connection and send out the LWT packet to all clients. The client may at some later point attempt to reconnect. In that case, a half-open connection will be closed by the broker, which then opens a new connection to the client.

    
      The maximum keep-alive time is 18 hours, 12 minutes, and 15 seconds. Setting the keep-alive internal to 0 will disable the keep-alive functionality. The timer is controlled by the client and can be dynamically changed to reflect sleep modes or changes in signal strength.

    

    While keep-alive assists with broken connections, reestablishing all of a client's subscriptions and QoS parameters can result in unnecessary overhead on a data-capped connection. To alleviate this extra data, MQTT allows for persistent connections. A persistent connection will save the following on the broker side:

    
      	All client's subscriptions

      	All QoS messages that were not confirmed by the client

      	All new QoS messages missed by the client

    

    This information is referenced by the client_id parameter to identify unique clients. A client can request a persistent connection; however, the broker can deny the request and force a clean session to restart. Upon connection, the cleanSession flag is used by the broker to allow or deny persistent connections. The client can determine if a persistent connection was stored using the CONNACK message.

    
      For MQTT 3.1.1, persistent sessions should be used for clients that must receive all messages even when offline. They should not be used in situations where a client only publishes (writes) data to topics.

      MQTT 5 introduces the cleanStart field code, which simplifies session handling. The older alternative using MQTT 3.1.1 required cleanSession and the persist session concept. Now, all MQTT5 sessions are persistent by default. This greatly simplifies establishing connections.

    

    There are three levels of quality of service in MQTT:

    
      	QoS-0 (non-assured transmission): This is the minimal QoS level. This is analogous to a fire-and-forget model detailed in some of the wireless protocols. It is a best-effort delivery process without the receiver acknowledging a message or the sender reattempting transmission.

      	QoS-1 (assured transmission): This mode will guarantee delivery of the message at least once to the receiver. It may be delivered more than once, and the receiver will send an acknowledgment back with a PUBACK response.

      	QoS-2 (assured service on applications): This is the highest level of QoS, which ensures and informs both the sender and receiver that a message has been transmitted correctly. This mode generates more traffic with a multistep handshake between the sender and receiver. If a receiver gets a message set to QoS-2, it will respond with a PUBREC message to the sender. This acknowledges the message, and the sender will respond with a PUBREL message. PUBREL allows the receiver to safely discard any retransmissions of the message. The PUBREL is then acknowledged by the receiver with a PUBCOMP. Until the PUBCOMP message is sent, the receiver will cache the original message for safety.It is worth noting that not all MQTT implementations and libraries support all QoS values. QoS-2, for example, has been left out of many implementations.

    

    QoS in MQTT is defined and controlled by the sender, and each sender can have a different policy.

    
      Typical use cases:

      QoS-0: This should be used when message queuing isn't needed. It is best for wired connections or when the system is severely constrained on bandwidth.

      QoS-1: This should be the default usage. QoS-1 is much faster than QoS-2 and greatly reduces transmission cost.

      QoS-2: This is for mission-critical applications and in cases where retransmission of a duplicate message could cause faults.

    

    MQTT 5 has changed the behavior of QoS-1 and QoS-2 messages. MQTT 3.1.1 allows for retries and redelivery of messages if a TCP connection is operational, but there are situations when this is not optimal. For example, if a client is saturated with MQTT messages, adding retries puts further strain on that client. 

    In MQTT 5, brokers and clients may not retransmit MQTT messages if a TCP connection is working. Rather the clients and brokers must resend unacknowledged packets when the TCP session closes. Therefore, if you are architecting a solution that relies on retransmissions, you may want to reconsider using MQTT 5 for that solution.

    MQTT state transitions

    MQTT manages state based on the connection between the client and broker. Sessions start through a CONNECT message and are gracefully terminated through a DISCONNECT message. The Will is sent if the connection terminates. This is a difference between MQTT 3.1.1 and MQTT 5. In MQTT 3.1.1, if the network loses a connection or is dropped (ungracefully), then a Will message will be sent, and the broker will remove the session state. This is inconvenient at times when connection and network integrity may not be robust. It is better to have the session state kept intact until the client completes its work and gracefully terminates through a DISCONNECT message.

    Additionally, MQTT 3.1.1 did not have the notion of expiration timers. If a client does not connect within a certain amount of time in MQTT 5, the session will be discarded. This reduces the burden of work on clients. A client could not formally send a DISCONNECT message or simply go offline with the guarantee that the session will be cleaned up by the server at a set time. In MQTT3.1.1, clients would need to reconnect just to clean up state before gracefully disconnecting. The expiration timer applies not only to the state of the clients online but also any queued messages. Session expiration time can be controlled in units of seconds through the PUBLISH message.

    This new state transition process is called Simplified State Management in MQTT 5.
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    Figure 4: MQTT 3.1.1 and MQTT 5 state transitions. Note the use of session expiration timers and the cleanStart state in MQTT 5.

    MQTT packet structure

    An MQTT packet sits on top of the TCP layer of the OSI model network stack. The packet consists of a 2-byte fixed header, which must always be present, and a variably sized header (optional), and it concludes with the payload (again, optional):
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    Figure 5: Common packet structure of MQTT of MQTT 3.1.1 and MQTT 5 (note the AUTH packet type)

    MQTT 5 introduces the concept of User Properties to overcome some of the weaknesses in the extensibility, customization, and interoperability of MQTT 3.1.1. These properties allow for the use of custom key-value pairs or properties to be embedded within the header. This feature mimics HTTP and AMQP, which has allowed the use of headers to carry metadata. An example of custom metadata in HTTP:

    HTTP/1.1 200 OK
Date: Sat, 23 Jul 2011 07:28:50 GMT
Server: Apache/2
Content-Location: qa-http-and-lang.en.php
Vary: negotiate,accept-language,Accept-Encoding
TCN: choice
P3P: policyref="http://www.w3.org/2001/05/P3P/p3p.xml"
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
Content-Language: en


    Here metadata embedded within the HTML header contains the key Content-Language:, which contains the value en for English language.

    In MQTT 5, metadata is embedded within the header as a UTF-8 string of key-value pairs appended to each packet (even control packets like PUBREL and PUBCOMP). The meaning of these key-value pairs is not defined by the specification and is vendor customizable. User properties on PUBLISH are forwarded with the message and defined by the client applications. They are forwarded by the server to the receiver of the message. User properties on CONNECT and ACKS are defined by the sender and unique to the sender implementation. The user property is allowed to appear multiple times to represent multiple name-value pairs. The same name is allowed to appear more than once. An example using MQTT and user properties follows (assuming a generic representation of a MQTT client library):

    SUBSCRIBE "temperature" "Unit:Celsius"


    In this case, the client uses an MQTT 5-compatible library and subscribes to a topic branch called temperature but passes a user property called Unit with a value of Celsius. The broker may then use the key-value to perform a real-time conversion from Fahrenheit to Celsius when storing data.

    
      User properties are a powerful extension for the MQTT protocol. First, the feature allows for better interoperability because different platforms, vendors, and even development teams can use nearly any data format from JSON objects, compressed data, encrypted data, raw text, binary, or XML, and be guaranteed that their messages will arrive. Using user properties, each vendor-unique message format would include metadata in the MQTT 5 header to signify what the data is and what it is for. A broker can make decisions to pass the data or perform some action upon it. Metadata can also be used to timestamp data, system IDs, or any vendor-specific characteristic.

    

    Another additional element of MQTT 5 is the AUTH packet type. This new packet type can be used by MQTT brokers and clients after establishing a connection to enable complex challenge/response authentication sequences. 

    Kerberos and OAuth are examples of such an authentication scheme that could be enabled on MQTT 5 where it was not possible (or extremely complex) using older versions of the protocol.

    MQTT 5 also has altered the return codes (also known as reason codes) by including negative acknowledgements from all response messages. CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, UNSUBACK, DISCONNECT, SUBACK, and AUTH packets all support optional return codes. These negative acknowledgement return codes now allow a client to have better insight as to why a particular packet, message, or event has failed and improves error reporting. These are the potential negative acknowledgement return codes for various packets. Some use cases that should be architected into a well-designed system include:

    
      	A server issues a DISCONNECT message with a return code informing that the server is going down (return code 0x139). Clients can take appropriate action.

      	A server can respond to a client via CONACK that the client used incorrect credentials, username, or password (return code 0x86) when attempting to connect.

      	A server can inform a client that it has violated the maximum message length for data being sent through return code 0x95.

    

    There is no harm in sending the return codes as they are optional and can be ignored by a client. However, the use of these new return codes should be implemented by clients and servers in a well-formed and scalable system.

    MQTT data types

    MQTT supports multiple data types for different elements of the packet. There are seven data types supported in MQTT 5:

    
      	Bits

      	Two-byte integers

      	Four-byte integers

      	UTF-8 encoded strings

      	Variable byte integers

      	Binary data

      	UTB-8 string pairs (only in MQTT 5)

    

    The following table can be used to understand the various data type formats and the corresponding packets:

    
      
        
        
        
      
      
        
          	
            Name
          
          	
            Type
          
          	
            Packet / Will Properties
          
        

        
          	
            Payload Format Indicator

          
          	
            Byte

          
          	
            PUBLISH, Will Properties

          
        

        
          	
            Message Expiry Interval

          
          	
            Four-Byte Integer

          
          	
            PUBLISH, Will Properties

          
        

        
          	
            Content Type

          
          	
            UTF-8 Encoded String

          
          	
            PUBLISH, Will Properties

          
        

        
          	
            Response Topic

          
          	
            UTF-8 Encoded String

          
          	
            PUBLISH, Will Properties

          
        

        
          	
            Correlation Data

          
          	
            Binary Data

          
          	
            PUBLISH, Will Properties

          
        

        
          	
            Subscription Identifier

          
          	
            Variable Byte Integer

          
          	
            PUBLISH, SUBSCRIBE

          
        

        
          	
            Session Expiry Interval

          
          	
            Four-Byte Integer

          
          	
            CONNECT, CONNACK, DISCONNECT

          
        

        
          	
            Assigned Client Identifier

          
          	
            UTF-8 Encoded String

          
          	
            CONNACK

          
        

        
          	
            Server Keep Alive

          
          	
            Two-Byte Integer

          
          	
            CONNACK

          
        

        
          	
            Authentication Method

          
          	
            UTF-8 Encoded String

          
          	
            CONNECT, CONNACK, AUTH

          
        

        
          	
            Authentication Data

          
          	
            Binary Data

          
          	
            CONNECT, CONNACK, AUTH

          
        

        
          	
            Request Problem Information

          
          	
            Byte

          
          	
            CONNECT

          
        

        
          	
            Will Delay Interval

          
          	
            Four-Byte Integer

          
          	
            Will Properties

          
        

        
          	
            Request Response Information

          
          	
            Byte

          
          	
            CONNECT

          
        

        
          	
            Response Information

          
          	
            UTF-8 Encoded String

          
          	
            CONNACK

          
        

        
          	
            Server Reference 

          
          	
            UTF-8 Encoded String

          
          	
            CONNACK, DISCONNECT

          
        

        
          	
            Reason String

          
          	
            UTF-8 Encoded String

          
          	
            CONNACK, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK, UNSUBACK, DISCONNECT, AUTH

          
        

        
          	
            Receive Maximum

          
          	
            Two-Byte Integer

          
          	
            CONNECT, CONNACK

          
        

        
          	
            Topic Alias Maximum

          
          	
            Two-Byte Integer

          
          	
            CONNECT, CONNACK

          
        

        
          	
            Topic Alias

          
          	
            Two-Byte Integer

          
          	
            PUBLISH

          
        

        
          	
            Maximum QoS

          
          	
            Byte

          
          	
            CONNACK

          
        

        
          	
            Retain Available

          
          	
            Byte

          
          	
            CONNACK

          
        

        
          	
            User Property

          
          	
            UTF-8 String Pair

          
          	
            CONNECT, CONNACK, PUBLISH, Will Properties, PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK, DISCONNECT, AUTH

          
        

        
          	
            Maximum Packet Size

          
          	
            Four-Byte Integer

          
          	
            CONNECT, CONNACK

          
        

        
          	
            Wildcard Subscription Available

          
          	
            Byte

          
          	
            CONNACK

          
        

        
          	
            Subscription Identifier Available

          
          	
            Byte

          
          	
            CONNACK

          
        

        
          	
            Shared Subscription Available

          
          	
            Byte

          
          	
            CONNACK
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    MQTT communication formats

    A communication link using MQTT starts with the client sending a CONNECT message to a broker. Only a client can initiate a session, and no client can communicate directly with another client. The broker will always respond back to a CONNECT message with a CONNACK response and status code. Once established, the connection remains open. The following are the MQTT messages and formats:

    
      	CONNECT format (client to server): A typical CONNECT message will contain the following. (Only the clientID is required to initiate a session.)
          
            
            
            
          
          
            
              	Field
              	Requirement
              	Description
            

            
              	
                clientID

              
              	
                Required

              
              	
                Identifies client to the server. Each client has a unique client ID. It can be between 1 and 23 UTF-8 bytes long.

              
            

            
              	
                cleanSession

              
              	
                Optional

                MQTT 3.1.1

              
              	
                0: Server must resume communications with the client. Client and server must save session state after disconnecting.

                1: Client and server must discard the previous session and start a new one.

              
            

            
              	
                cleanStart

              
              	
                Required MQTT5

              
              	
                A client can use cleanStart as a flag to allow the broker to discard any previous session data. The client then starts a fresh session. The cleanStart flag does not purge the last session when the TCP connection closes. Rather, a timer called Session Expiry Interval will set a timeout when the session will actually clean up.

              
            

            
              	
                Username

              
              	
                Optional

                (Required in MQTT 3.1.1 if a password is used.)

              
              	
                Name used by the server for authentication.

              
            

            
              	
                password

              
              	
                Optional

              
              	
                0 to 65536 byte binary password prefixed by two bytes of length.

              
            

            
              	
                lastWillTopic

              
              	
                Optional

              
              	
                Topic branch to publish Will message.

              
            

            
              	
                lastWillQos

              
              	
                Optional

              
              	
                Two bits specifying QoS level when publishing Will message.

              
            

            
              	
                lastWillMessage

              
              	
                Optional

              
              	
                Defines the Will message payload.

              
            

            
              	
                lastWillRetain

              
              	
                Optional

              
              	
                Specifies if the Will is to be retained when published.

              
            

            
              	
                keepAlive

              
              	
                Optional

              
              	
                Time interval in seconds. The client is responsible for sending a message or a PINGREQ packet before the keepAlive timer expires. The server will disconnect from the network at 1.5x the Keep Alive period. A value of zero(0) will disable the keepAlive mechanism.

              
            

          
        

      

    

    It is worth noting that MQTT 3.1.1 requires usernames to be used if a password was chosen. This causes some inconvenience for certain solutions. For example, if your solution requires the use of a JSON object for a username, there was no prescribed method to do that in MQTT 3.1.1. This caused problems when using OAuth authentication services. The workaround was to use a static username. Now with MQTT 5, the username and password fields are truly optional. You may use a password or username field independently with MQTT 5.

    
      	CONNECT return codes (server to client): The broker will respond to a CONNECT message with a response code. A designer should be aware that not all connections may be approved by a broker. Please note that MQTT 5 has added additional return codes as mentioned earlier in this chapter. The return codes are as follows:

    

    
      
        
        
      
      
        
          	
            Return code
          
          	
            Description
          
        

        
          	
            0

          
          	
            Successful connection

          
        

        
          	
            1

          
          	
            Connection refused—unacceptable MQTT protocol version

          
        

        
          	
            2

          
          	
            Connection refused—client identified is the correct UTF-8, but not allowed by the server

          
        

        
          	
            3

          
          	
            Connection refused—server is unavailable

          
        

        
          	
            4

          
          	
            Connection refused—bad username or password

          
        

        
          	
            5

          
          	
            Connection refused—the client is not authorized to connect

          
        

      
    

    PUBLISH format (client to server): At this point, a client may publish data to a topic branch. Each message contains a topic:

    
      
        
        
        
      
      
        
          	
            Field
          
          	
            Requirement
          
          	
            Description
          
        

        
          	
            packetID

          
          	
            Required

          
          	
            Uniquely identifies the packet in the variable header. Client library responsibility. Always set to zero(0) for QoS-0.

          
        

        
          	
            topicName

          
          	
            Required

          
          	
            Topics branch to publish to (such as US/Wisconsin/Milwaukee/temperature).

          
        

        
          	
            qos

          
          	
            Required

          
          	
            QoS level 0,1, or 2.

          
        

        
          	
            retainFlag

          
          	
            Required

          
          	
            Name used by the server for authentication.

          
        

        
          	
            payload

          
          	
            Optional

          
          	
            Data format-agnostic payload.

          
        

        
          	
            dupFlag

          
          	
            Required

          
          	
            Message is a duplicate and is resent.

          
        

      
    

    SUBSCRIBE format (client to server): The payload of a subscribe packet includes at least one pair of UTF-8 encoded topic IDs and QoS levels. There may be multiple topic IDs subscribed to in this payload to spare the client from multiple broadcasts:

    
      
        
        
        
      
      
        
          	
            Field
          
          	
            Requirement
          
          	
            Description
          
        

        
          	
            packetID

          
          	
            Required

          
          	
            Uniquely identifies the packet in the variable header. Client library responsibility.

          
        

        
          	
            topic_1

          
          	
            Required

          
          	
            Subscribed topic branch.

          
        

        
          	
            qos_1

          
          	
            Required

          
          	
            QoS level of messages published to topic_1.

          
        

        
          	
            topic_2

          
          	
            Optional

          
          	
            Name used by the server for authentication.

          
        

        
          	
            qos2

          
          	
            Optional

          
          	
            QoS level of messages published to topic_2.

          
        

      
    

    Wildcards can be used to subscribe to multiple topics in a single message. For these examples, the topic will be the full path of "{country}/{states}/{cities}/{temperature,humidity}".

    
      	+ Single-level wildcard: Substitutes a single level in a topic string name. For example, US/+/Milwaukee will substitute the state level and replace it with all 50 states, Alaska to Wyoming.

      	# Multilevel wildcard: Replaces multiple levels rather than a single level. It is always the last character in the topic name. For example, US/Wisconsin/# will subscribe to all Wisconsin cities: Milwaukee, Madison, Glendale, Whitefish Bay, Brookfield, and so on.

      	$ Special topics: This is a special statistical mode for MQTT brokers. Clients cannot publish to $ topics. There is no official standard for use at the moment. One model uses $SYS in the following manner: $SYS/broker/clients/connected.

    

    
      An MQTT server should support wildcards in the topic name (but this is not explicitly required by specification). If it doesn't support wildcards, the server must reject them. Setting the packetID is the responsibility of the MQTT client library.

    

    Several other messages are in the MQTT specification. More details on the MQTT programming API can be found in OASIS MQTT Standards:

    
      	MQTT 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

      	MQTT 5: https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.pdf

    

    MQTT 3.1.1 working example

    For a working example, Google Cloud Platform (GCP) will be used as the MQTT 3.1.1 receiver and ingestor into their cloud. Most MQTT cloud services follow a similar model, so this framework can be used as a reference. We will use open source tools to start an MQTT client and a simple Python example to publish a hello world string to a topics branch.

    Preliminary steps are needed to start using GCP. Google accounts and payment systems need to be secured before proceeding. Please refer to these instructions regarding getting started with Google IoT Core: https://cloud.google.com/iot/docs/how-tos/getting-started.

    Proceed within GCP to create a device, enable the Google API, create a topics branch, and add a member to the pub/sub publisher.

    Google is unique in that it requires strong encryption (TLS) on top of MQTT to encrypt all data packets using JSON Web Token (JWT) and a certificate agent. Each device will create a public/private key pair. Google ensures each device has a unique ID and key; in the event one is compromised, it will only affect a single node and contain the surface area of an attack.

    The MQTT 3.1.1 broker starts by importing several libraries. The paho.mqtt.client Python library is an Eclipse-sponsored project and the referenced home of the original IBM MQTT project. Paho is also the core deliverable of the Eclipse M2M Industry Working Group. There are other variants of MQTT message brokers, such as the Eclipse Mosquitto project and Rabbit MQ:

    #Simple MQTT Client publishing example for Google Cloud Platform 
import datetime
import os
import time
import paho.mqtt.client as mqtt
import jwt

project_id = 'name_of_your_project'
cloud_region = 'us-central1'
registry_id = 'name_of_your_registry'
device_id = 'name_of_your_device'
algorithm = 'RS256'
mqtt_hostname = 'mqtt.googleapis.com'
mqtt_port = 8883
ca_certs_name = 'roots.pem'
private_key_file = '/Users/joeuser/mqtt/rsa_private.pem'


    The next step is authentication with Google through the use of a key. Here we use a JWT object to contain the certificate:

    #Google requires certificate-based authentication using JSON Web Tokens
(JWT) per device.
#This limits surface area of attacks

def create_jwt(project_id, private_key_file, algorithm): 
    token = {
        # The time that the token was issued
        'iat': datetime.datetime.utcnow(),

        # The time the token expires. 
        'exp': datetime.datetime.utcnow() +
        datetime.timedelta(minutes=60),

        # Audience field = project_id
        'aud': project_id
    }
    # Read the private key file.
    with open(private_key_file, 'r') as
        f: private_key = f.read()
    return jwt.encode(token, private_key, algorithm=algorithm)


    We define several callbacks using the MQTT library such as errors, connections, disconnects, and publishing:

    #Typical MQTT callbacks
def error_str(rc):
    return '{}: {}'.format(rc, mqtt.error_string(rc))

def on_connect(unused_client, unused_userdata, unused_flags,
    rc): print('on_connect', error_str(rc))

def on_disconnect(unused_client, unused_userdata,
    rc): print('on_disconnect', error_str(rc))

def on_publish(unused_client, unused_userdata,
    unused_mid): print('on_publish')


    The main structure of an MQTT client follows. First, we register the client as Google prescribes. Google IoT requires a project to be identified, a region, a registry ID, and a device ID. We also skip the username and use the password field via the create_jwt method. This is also where we enable SSL encryption in MQTT—many MQTT cloud providers require this provision. After connecting to Google's cloud MQTT server, the program's main loop publishes a simple hello world string to a topics branch, which is subscribed to. Also of note is the QoS level that is set in the PUBLISH message.

    If a parameter is required but not explicitly set in the program, the client library is obligated to use default values (for example, the RETAIN and DUP flags used as default values during the PUBLISH message):

    def main():
    client = mqtt.Client(
        client_id=('projects/{}/locations/{}/registries/{}/devices/{}'
            .format(
                project_id, 
                cloud_region, 
                registry_id,
                device_id))) #Google requires this format

client.username_pw_set(
    username='unused', #Google ignores the user name.
    password=create_jwt( #Google needs the JWT for authorization
        project_id, private_key_file, algorithm))
# Enable SSL/TLS support.
client.tls_set(ca_certs=ca_certs_name)
#callback unused in this example: 
client.on_connect = on_connect
client.on_publish = on_publish 
client.on_disconnect = on_disconnect

# Connect to the Google pub/sub 
client.connect(mqtt_hostname, mqtt_port)
# Loop
client.loop_start()
# Publish to the events or state topic based on the flag.
sub_topic = 'events'
mqtt_topic = '/devices/{}/{}'.format(device_id, sub_topic)

# Publish num_messages messages to the MQTT bridge once per second.
for i in range(1,10):
    payload = 'Hello World!: {}'.format(i)
    print('Publishing message\'{}\''.format(payload))
    client.publish(mqtt_topic, payload, qos=1)
    time.sleep(1)

if __name == '__main__':
    main()


    MQTT-SN

    A derivative of MQTT is called MQTT-SN (sometimes called MQTT-S) for sensor networks. It keeps to the same philosophy of MQTT as a lightweight protocol for edge devices but is architected specifically for the nuances of a wireless personal area network typical in sensor environments. These traits include support for low-bandwidth links, link failure, short message length, and resource-constrained hardware. MQTT-SN is, in fact, so light that it can be run successfully over BLE and Zigbee.

    MQTT-SN does not require a TCP/IP stack. It can be used over a serial link (preferred way), where a simple link protocol (to distinguish different devices on the line) overhead is really small. Alternatively, it can be used over UDP, which is less hungry than TCP.

    MQTT-SN architecture and topology

    There are four fundamental components in an MQTT-SN topology:

    
      	Gateways: In MQTT-SN, a gateway has the responsibility of protocol conversion from MQTT-SN to MQTT and vice versa (although other translations are possible). Gateways can also be aggregating or transparent (covered later in this chapter).

      	Forwarders: A route between a sensor and an MQTT-SN gateway may take many paths and hop across several routers along the way. Nodes between the source client and the MQTT-SN gateway are called forwarders and simply reencapsulate MQTT-SN frames into new and unchanged MQTT-SN frames that are sent to the destination until they arrive at the correct MQTT-SN gateway for protocol conversion.

      	Clients: Clients behave in the same way as in MQTT and are capable of subscribing and publishing data.

      	Brokers: Brokers behave in the same way as in MQTT.
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    Figure 6: MQTT-SN topology: Wireless sensors communicate either to MQTT-SN gateways (which translate MQTT-SN to MQTT), to other protocol forms, or to forwarders that simply encapsulate MQTT-SN frames received into MQTT-SN messages forwarded to a gateway.

    Transparent and aggregating gateways

    In MQTT-SN, gateways can take on two distinct roles. First, a transparent gateway will manage many independent MQTT-SN streams from sensor devices and convert each stream into an MQTT message. An aggregating gateway will coalesce a number of MQTT-SN streams into a reduced number of MQTT streams sent to the cloud MQTT broker. An aggregating gateway is more complex in design but will reduce the amount of communication overhead and number of simultaneous connections left open on the server. For an aggregating gateway topology to function, the clients need to publish or subscribe to the same topic:
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    Figure 7: MQTT-SN gateway conﬁgurations: A transparent gateway simply performs a protocol conversion on each incoming MQTT-SN stream and has a one-to-one relationship with MQTT-SN connections and MQTT connections to the broker. An aggregating gateway, however, will coalesce multiple MQTT-SN streams into a single MQTT connection to the server.

    Gateway advertisement and discovery

    Since the topology of MQTT-SN is slightly more complicated than MQTT, a discovery process is used to establish routes through multiple gateways and forwarder nodes.

    Gateways joining an MQTT-SN topology start by binding to an MQTT broker first. Afterward, they may issue an ADVERTISE packet to connected clients or other gateways. Multiple gateways can exist on the network, but a client can only connect to a single gateway. The client has the responsibility of storing a list of active gateways and their network addresses. This list is constructed from the various ADVERTISEMENT and GWINFO messages being broadcast.

    Because of the new types of gateways and topologies in MQTT-SN, several new messages are available to assist in discovery and advertising:

    
      	ADVERTISE: Broadcast periodically from a gateway to advertise its presence. 

      	SEARCHGW: Broadcast by a client when searching for a particular gateway. Part of the message is a radius parameter, which states how many hops the SEARCHGW message should follow in a network topology. For example, a value of 1 indicates a single hop in a very dense network where every client is reachable with a single hop.

      	GWINFO: This is the response by gateways upon receiving a SEARCHGW message. It contains the gateway ID and gateway address, which is only broadcast when the SEARCHGW is sent from a client.

    

    Differences between MQTT and MQTT-SN

    The main differences between MQTT-SN and MQTT are as follows:

    
      	MQTT-SN is not as popular as MQTT.

      	There are three CONNECT messages in MQTT-SN versus one in MQTT. The additional two are used to transport the Will topic and Will message explicitly. MQTT-SN can run over simplified mediums and UDP.

      	MQTT topic names are replaced by short, two-byte long topic ID messages in MQTT-SN. This is to assist with bandwidth constraints in wireless networks.

      	Predefined topic IDs and short topic names can be used without any registration in MQTT-SN. To use this feature, both the client and server need to use the same topic ID. Short topic names are short enough to be embedded in the PUBLISH message.

      	A discovery procedure is introduced in MQTT-SN to assist clients and to allow them to find the network addresses of servers and gateways. Multiple gateways may exist in the topology and can be used to load share communication with clients.

      	The cleanSession is extended in MQTT-SN to the Will feature. A client subscription can be retained and preserved, but now the Will data is also preserved.

      	A revised keepAlive procedure is used in MQTT-SN. This is to support sleeping clients in which all messages destined for them are buffered by a server or edge router and delivered upon awakening.

    

    Choosing a MQTT broker

    There are many commercial and open source brokers an architect can choose when building an MQTT solution. The following table assists in identifying some of the choice points and current features at the time of writing:

    
      
        
        
        
        
        
        
      
      
        
          	
            Broker
          
          	
            Developer
            Organization
          
          	
            Client and/or Broker
          
          	
            MQTT Version Support
          
          	
            Open Source / Commercial
          
          	
            Notable Features
          
        

        
          	
            Adafruit IO

          
          	
            Adafruit

          
          	
            Client

          
          	
            3.1.1

          
          	
            Open (MIT)

          
          	
            Written in Ruby on Rails, Node.js, Python

            Various OS Support

            Web Socket Support

            QoS 1 and 2 only

          
        

        
          	
            Mosquitto

          
          	
            Eclipse

          
          	
            Both

          
          	
            3.1, 3.1.1, 5

          
          	
            Open (EPL)

          
          	
            Written in C

            QoS 1,2,3

            Web Socket Support

            BSD, Linux, macOS, QNX, Windows

          
        

        
          	
            HiveMQ

          
          	
            dc-Square

          
          	
            Both

          
          	
            3.1 (Broker), 3.1.1, 5

          
          	
            Both:

            Open (APL v2)

            Commercial Version Available

          
          	
            Written in Java

            Web Socket Support

            CentOS, Debian, Docker, Ubuntu, Red Hat, macOS, Windows

          
        

        
          	
            MQTT-C

          
          	
            Liam Bindle

          
          	
            Client

          
          	
            3.1, 3.1.1

          
          	
            Open (MIT)

          
          	
            Written in C

            Thread-Safe

            Linux, macOS, Windows

            Bare Metal Capable

          
        

        
          	
            Paho MQTT

          
          	
            Eclipse

          
          	
            Client

          
          	
            MQTT-SN, 3.1, 3.1.1, 5

          
          	
            Open (EPL)

          
          	
            Available in C, C++, Java, JavaScript, Python, Go

            Multiple OS Support

          
        

        
          	
            PubSub+

          
          	
            Solace

          
          	
            Broker

          
          	
            3.1.1

          
          	
            Commercial

          
          	
            Written in C and C++

            CentOS, Debian, KVM, Ubuntu, Red Hat, macOS X, Windows 

          
        

        
          	
            Thingstream

          
          	
            Thingstream

          
          	
            Both

          
          	
            MQTT-SN, 3.1.1, 5

          
          	
            Commercial

          
          	
            LoRaWAN Integrated

          
        

        
          	
            WolfMQTT

          
          	
            woldSSL

          
          	
            Both

          
          	
            MQTT-SN, 3.1.1, 5

          
          	
            Open (GPLv2)

          
          	
            Windows, Linux, macOS, FreeRTOS, Harmony, Nucleus

            Bare Metal Capable

          
        

      
    

    
    Constrained Application Protocol

    The Constrained Application Protocol (CoAP) is the product of the IETF (RFC7228). The IETF Constrained RESTful Environments (CoRE) working group created the first draft of the protocol in June 2014 but had worked for several years on its creation. It is specifically intended as a communication protocol for constrained devices. The core protocol is now based on RFC7252. The protocol is unique as it was first tailored for M2M communication between edge nodes. It also supports mapping to HTTP through the use of proxies. This HTTP mapping is the on-board facility to get data across the Internet.

    CoAP is excellent at providing a similar and easy structure of resource addressing familiar to anyone with experience using the web but with reduced resources and bandwidth demands. 

    A study performed by Colitti et al., demonstrated the efficiency of CoAP over standard HTTP (Colitti, Walter & Steenhaut, Kris & De, Niccolò. 2017. Integrating Wireless Sensor Networks with the Web). CoAP provides a similar functionality with significantly less overhead and power requirements.

    Additionally, some implementations of CoAP perform up to 64x better than HTTP equivalents on similar hardware.

    
      
        
        
        
        
      
      
        
          	
          	
            Bytes per transaction
          
          	
            Power
          
          	
            Battery lifetime
          
        

        
          	
            CoAP
          
          	
            154

          
          	
            0.744 mW

          
          	
            151 days

          
        

        
          	
            HTTP
          
          	
            1451

          
          	
            1.333 mW

          
          	
            84 days

          
        

      
    

    CoAP architecture details

    CoAP is based on the concept of mimicking and replacing heavy HTTP abilities and usage with a lightweight equivalent for IoT. It is not an HTTP replacement as it does lack features; HTTP requires more powerful and service-oriented systems. CoAP features can be summarized as follows:

    
      	HTTP-like

      	Connection-less protocols

      	Security through DTLS rather than TLS in a normal HTTP transmission

      	Asynchronous message exchanges

      	Lightweight design and resource requirements and low header overhead

      	Support for URI and content-types

      	Built upon UDP versus TCP/UDP for a normal HTTP session

      	A stateless HTTP mapping allowing for proxies to bridge to HTTP sessions

    

    CoAP has two basic layers:

    
      	Request/response layer: Responsible for sending and receiving RESTful-based queries. REST queries are piggybacked on CON or NON messages. A REST response is piggybacked on the corresponding ACK message.

      	Transactional layer: Handles single message exchanges between endpoints using one of the four basic message types. The transaction layer also supports multicasting and congestion control:
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    Figure 8: HTTP stack compared to CoAP

    CoAP shares its context, syntax, and usage with to HTTP. Addressing in CoAP is also styled like HTTP. An address extends to the URI structure. As in HTTP URIs, the user must know the address beforehand to gain access to a resource. At the top-most level, CoAP uses requests such as GET, PUT, POST, and DELETE, as in HTTP. Similarly, response codes mimic HTTP, such as:

    
      	2.01: Created

      	2.02: Deleted

      	2.04: Changed

      	2.05: Content

      	4.04: Not found (resource)

      	4.05: Method not allowed

    

    The form of a typical URI in CoAP would be:

    coap://host[:port]/[path][?query]

    A CoAP system has seven main actors:

    
      	Endpoints: The sources and destinations of a CoAP message. The specific definition of an endpoint depends on the transport being used.

      	Proxies: CoAP endpoints that are tasked by CoAP clients to perform requests on their behalf. Reducing network load, access sleeping nodes, and providing a layer of security are some of the roles of a proxy. Proxies can be explicitly selected by a client (forward-proxying) or can be used as in-situ servers (reverse-proxying). Alternatively, a proxy can map from one CoAP request to another CoAP request or even translate to a different protocol (cross-proxying). A common situation is an edge router proxying from a CoAP network to HTTP services for cloud-based Internet connections.

      

      	Client: The originator of a request. The destination endpoint of a response.

      	Server: The destination endpoint of a request. The originator of a response. 

      	Intermediary: A client acting as both a server and client toward an origin server. A proxy is an intermediary.

      	Origin server: The server on which a given resource resides.

      	Observer: A client that can register itself using a modified GET message. The observer is then connected to a resource, and if the state of that resource changes, the server will send a notification back to the observer.

    

    
      Observers are unique in CoAP and allow a device to watch for changes to a particular resource. In essence, this is similar to the MQTT subscribe model where a node will subscribe to an event.

    

    The following figure is an example of CoAP architecture. Being a lightweight HTTP system allows for CoAP clients to communicate with one another or services in the cloud supporting CoAP. Alternatively, a proxy can be used to bridge to an HTTP service in the cloud. CoAP endpoints can establish relationships with each other, even at the sensor level. Observers allow for subscription-like attributes to facilitate that change in a similar manner to MQTT. The graphic also illustrates origin servers holding the resource being shared. The two proxies allow for CoAP to perform HTTP translation or allow forwarding requests on behalf of a client.
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    Figure 9: CoAP architecture

    
      CoAP makes use of port 5683. This port must be supported by a server that offers resources since the port is used for resource discovery. Port 5684 is used when DTLS is enabled.

    

    CoAP messaging formats

    Protocols based on UDP transport imply that the connection may not be inherently reliable. To compensate for reliability issues, CoAP introduces two message types that differ by either requiring acknowledgment or not. An additional feature of this approach is that messages can be asynchronous.

    In total there are only four messages in CoAP:

    
      	Confirmable (CON): Requires an ACK. If a CON message is sent, an ACK must be received within a random time interval between ACK_TIMEOUT and (ACK_TIMEOUT * ACK_RANDOM_FACTOR). If the ACK is not received, the sender transmits the CON message over and over at exponentially increasing intervals until it receives the ACK or an RST. This essentially is the CoAP form of congestion control. There is a maximum number of attempts set by MAX_RETRANSMIT. This is the resiliency mechanism to compensate for the lack of resiliency in UDP.

      	Non-confirmable (NON): Requires no ACK. It is essentially a fire-and-forget message or broadcast.

      	Acknowledgement (ACK): Acknowledges a CON message. The ACK message can piggyback along with other data.

      	Reset (RST): Indicates that a CON message has been received but the context is missing. The RST message can piggyback along with other data.

    

    CoAP is a RESTful design using request/response messages piggybacked on CoAP messages. This allows for greater efficiency and bandwidth preservation, as shown in the following figure:
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    Figure 10: CoAP NON and CON messaging

    The graphic shows three examples of CoAP non-confirmable and confirmable request/response transactions. These are enumerated and described as follows:

    
      	Non-confirmable request/response (left): A message broadcast between client A and B using the typical HTTP GET construct. B reciprocates with content data sometime later and returns the temperature of 20 degrees Celsius.

      	Confirmable request/response (middle): Included is the message ID, a unique identifier for each message. The token represents a value that must match during the duration of the exchange.

      	Confirmable request/response (right): Here the message is confirmable. Both client A and B will wait for an ACK after each message exchange. To optimize communication, client B can elect to piggyback the ACK with the returned data as shown in the far right.

    

    The actual log of CoAP transactions can be seen in the Copper Firefox extension on Firefox version 55:
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    Figure 11: Copper CoAP log: Here we see several CON-GET client-initiated messages to californium.eclipse org:5683. The URI path points to coap://californium.eclipse.org:5683/.well-known/core. The MID increments with each message while the token is unused and optional.

    The retransmission process is illustrated in the following figure:
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    Figure 12: CoAP retransmission mechanism: To account for the lack of resiliency in UDP, CoAP uses a timeout mechanism when communicating with conﬁrmable messages. If the timeout expires, either sending a CON message or receiving the ACK, the sender will retransmit the message. The sender is responsible for managing the timeout and retransmitting up to a maximum number of retransmissions. Note the retransmission of the failed ACK reuses the same message ID.

    While other messaging architecture requires a central server to propagate messages between clients, CoAP allows messages to be sent between any CoAP client including sensors and servers. CoAP includes a simple caching model. Caching is controlled through response codes in the message header. An option number mask will determine whether it is a cache key. The Max_Age option is used to control cache element lifetimes and ensure freshness of the data. That is, Max_Age sets the maximum time a response can be cached for before it must be refreshed. Max_Age defaults to 60 seconds and can span up to 136.1 years. Proxies play a role in caching; for example, a sleeping edge sensor may use a proxy to cache data and to preserve power.

    The CoAP message header is uniquely designed for maximum efficiency and bandwidth preservation. The header is four bytes in length with a typical request message taking only 10- to 20-byte headers. This is typically 10x smaller than an HTTP header. The structure consists of message type identifiers (T), which must be included in each header along with an associated unique message ID. The Code field is used to signal errors or success states across channels. After the header, all other fields are optional and include variable length tokens, options, and payload:

    [image: A screenshot of a cell phone  Description automatically generated]
    Figure 13: CoAP message structure

    UDP also can cause duplicate messages to arrive for both CON and NON transmissions. If identical Message_IDs are delivered to a recipient within the prescribed EXCHANGE_LIFETIME, a duplicate is said to exist. This clearly can occur, as shown in the previous figures, when an ACK is missing or dropped and the client retransmits the message with the same Message_ID. The CoAP specification states the recipient should ACK each duplicate message it receives but should only process one request or response. This rule may be relaxed if a CON message transports a request that is idempotent.

    As mentioned, CoAP allows for the role of an observer in a system. This is unique as it allows CoAP to behave in a similar manner to MQTT. The observation process allows a client to register for observation, and the server will notify the client whenever the resource being monitored changes state. 

    The duration of observation can be defined during registration. Additionally, the observation relationship ends when the initiating client sends an RST or another GET message:
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    Figure 14: CoAP observer registration and update process

    As mentioned previously, there is no inherent authentication or encryption in the CoAP standard; rather, the user must rely on DTLS to provide that level of security. If DTLS is used, then an example URI would be:

    //insecure coap://example.net:1234/~temperature/value.xml
//secure coaps://example.net:1234/~temperature/value.xml


    CoAP offers resource discovery mechanisms as well. Simply sending a GET request to /.well-known/core will disclose a list of known resources on the device. Additionally, query strings can be used in the request for applying specific filters.

    CoAP usage example

    CoAP is lightweight, and its implementation both on a client and server basis should take few resources. Here, we use the Python-based aiocoap library. More can be read about regarding aiocoap in Amsüss, Christian, and Wasilak, Maciej. aiocoap: Python CoAP Library. Energy Harvesting Solutions, 2013 – https://github.com/chrysn/aiocoap/. Many other free CoAP clients and servers exist with several written in low-level C code for extremely constrained sensor environments. Here, we use a Python environment for brevity.

    The client implementation is:

    #!/usr/bin/env python3

#necessary for asynchronous processing in Python from aiocoap 
import asyncio

#using the aiocoap library
import *


    The following is the main loop for the client. The client uses PUT to broadcast the temperature to known URIs:

    async def main():
  context = await Context.create_client_context()

  #wait 2 seconds after initialization
  await asyncio.sleep(2) 

  payload = b"20.2 C"
  request = Message(code=PUT, payload=payload)

  #URI for localhost address
  request.opt.uri_host = '127.0.0.1'

  #URI for path to /temp/celcius
  request.opt.uri_path = ("temp", "celcius")

  response = await context.request(request).response
  print('Result: %s\n%r'%(response.code,response.payload))

if __name__ == "__main__":
  asyncio.get_event_loop().run_until_complete(main())


    The server implementation is:

    #!/usr/bin/env python3
#necessary for asynchronous processing in Python
import asyncio

#using aiocoap library import aiocoap
import aiocoap.resource as resource


    The following code illustrates the services for PUT and GET methods:

    class GetPutResource(resource.Resource):

  def __init__(self):
      super().__init__()
      self.set_content(b"Default Data
      (padded) ")

  def set_content(self, content):	
      #Apply padding 
      self.content = content
      while len(self.content) &lt;= 1024:
      self.content = self.content + b"0123456789\n"

  #GET handler
  async def render_get(self, request):
  return aiocoap.Message(payload=self.content)

  #PUT handler 
  async def render_put(self, request):
  print('PUT payload: %s' % request.payload)

  #replaces set_content with received payload
  self.set_content(request.payload)

  #set response code to 2.04
  return aiocoap.Message(code=aiocoap.CHANGED, payload=self.content) 


    The main loop is:

    def main():
  #root element that contains all resources found on server
  root = resource.Site()

  #this is the typical .well-known/core and
  #resource list for well-known/core

  root.add_resource(('.well-known', 'core'),	
  resource.WKCResource(root.get_resources_as_linkheader))

  #adds the resource /tmp/celcius 
  root.add_resource(('temp', 'celcius'), GetPutResource())) 

  asyncio.Task(aiocoap.Context.create_server_context(root)
  ) asyncio.get_event_loop().run_forever()
if __name__ == "__main__":
  main()


    Other protocols

    There are many messaging protocols in use or proposed for IoT and M2M deployments. By far the most prevalent are MQTT and CoAP; the next sections explore a few alternatives for specific use cases.

    STOMP

    STOMP stands for Simple (or Streaming) Text Message-Oriented Middleware Protocol. It is a text-based protocol designed by Codehaus to operate with message-oriented middleware. A broker developed in one programming language can receive messages from a client written in another. The protocol has similarities to HTTP and operates over TCP. STOMP consists of a frame header and a frame body. The current specification is STOMP 1.2, dated October 22, 2012, and is available under a free license.

    
      STOMP is optimized for human readability, fault-tolerant parsing, and self-described data. It is not efficient over networks and communication protocols when accounting for bits/message (that is not its intended design goal). Anything with limited connectivity, high service charges for communication, or a constrained power envelope like a battery-based device should not use STOMP.

      Additionally, MOM protocols like STOMP have their message structures defined by the application. This forces the publisher and subscriber to have a message structure in lockstep. That is, if you make any changes to the publisher, you must also change the subscriber. This can cause significant turmoil in IoT devices that are massively deployed.

    

    It is different from many protocols presented in this chapter as it does not deal with subscription topics or queues. It simply uses HTTP-like semantics such as SEND with a destination string. A broker must dissect the message and map to a topic or queue for the client. A consumer of the data will SUBSCRIBE to the destinations provided by the broker.

    STOMP has clients written in Python (Stomp.py), TCL (tStomp), and Erlang (stomp.erl). Several servers have native STOMP support, such as RabbitMQ (via a plugin), and some servers have been designed in specific languages (Ruby, Perl, or OCaml).

    AMQP

    AMQP stands for Advanced Message Queuing Protocol. It is a hardened and proven MOM protocol used by massive data sources such as JP Morgan Chase in processing over 1 billion messages per day, and the Ocean Observatory Initiative in collecting over 8 terabytes of oceanographic data each day. It was originally devised at JP Morgan Chase in 2003, which led the creation of a working group of 23 companies in 2006 chartered with the architecture and governance of the protocol. In 2011, the working group was merged into the OASIS group where it is currently hosted. Additionally, AMQP version 0.9 and 1.0 coexist in various deployments.

    Today it is well established in banking and credit transaction industries but has a place in IoT as well. Furthermore, AMQP is standardized by ISO and IEM as ISO/IEC 19464:2014. A formal AMQP working group can be found at www.amqp.org.

    The AMQP protocol resides on top of the TCP stack and uses port 5672 for communication. Data is serialized over AMQP, meaning that messages are broadcast in unit frames. Frames are transmitted in virtual channels identified with a unique channel_id. Frames consist of headers, channel_ids, payload information, and footers. A channel, however, can only be associated with a single host. Messages are assigned a unique global identifier.

    AMQP is a flow-controlled, message-orientated communication system. It is a wire-level protocol and a low-level interface. A wire protocol refers to APIs immediately above the physical layer of a network. A wire-level API allows for different messaging services such as .NET (NMS) and Java (JMS) to communicate with each other. Similarly, AMQP attempts to decouple publishers from subscribers. Unlike MQTT, it has mechanisms for load balancing and formal queuing. A well-used protocol that is based on AMQP is RabbitMQ, which is an AMQP message broker written in Erlang. Additionally, several AMQP clients are available, such as the RabbitMQ client written in Java, C#, JavaScript, and Erlang, as well as Apache Qpid written in Python, C++, C#, Java, and Ruby.

    One or more virtual hosts with their own namespaces, exchanges, and message queues will reside on a central server(s). Producers and consumers subscribe to the exchange service.

    The exchange service receives messages from a publisher and routes the data to an associated queue. This relationship is called a binding, which can either be direct to one queue or fanned out to multiple queues (as in a broadcast). Alternatively, the binding can associate one exchange with one queue using a routing key; this is formally called a direct exchange. Another type of exchange is the topic exchange.

    Here a pattern is used to wildcard a routing key (such as *.temp.# matches idaho.temp.celsius and wisconsin.temp.fahrenheit):
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    Figure 15: AMQP architectural topology: There are producers and consumers in a typical AMQP implementation. Producers can use different languages and namespaces, as AMQP is language-agnostic given its APIs and a wire protocol. The broker resides in the cloud and provides exchanges for each producer. Exchanges route messages to proper queues based on binding rules. The queues are message buffers that produce messages to waiting consumers.

    The network topology of an AMQP deployment is hub-and-spoke with the ability for hubs to communicate with one another. AMQP consists of nodes and links. A node is a named source or a sink of messages. A message frame moves between nodes across unidirectional links. 

    If a message is passed through a node, the global identifier is unchanged. If the node performs any transformation, a new ID is assigned. A link has the ability to filter messages. There are three distinct messaging patterns that can be used in AMQP:

    
      	Asynchronous directed messages: Message is transmitted without requiring a receiver acknowledgment.

      	Request/reply or pub/sub: This is similar to MQTT, with a central server acting as a pub/sub service.

      	Store and forward: This is used for hub relaying, where a message is sent to an intermediate hub and then sent on towards its destination.

    

    A basic directed exchange written in Python is shown here, using the RabbitMQ and the Pika Python libraries. Here we create a simple direct exchange called Idaho and bind it to a queue called weather:

    #!/usr/bin/env python
#AMQP basic Python example the pika Python library
from pika import BlockingConnection, BasicProperties, ConnectionParameters 
#initialize connections
connection = BlockingConnection(ConnectionParameters('localhost'))
channel = connection.channel()
 
#declare a direct exchange
channel.exchange_declare(exchange='Idaho', type='direct')

#declare the queue
channel.queue_declare(queue='weather')

#bindings
channel.queue_bind(exchange='Idaho', queue='weather', routing_key='Idaho') 

#produce the message
channel.basic_publish(exchange='Idaho', routing_key='Idaho',
body='new important task')

#consume the message
method_frame, header_frame, body = ch.basic_get('weather')

#acknowledge 
channel.basic_ack(method_frame.delivery_tag)


    Protocol summary and comparison

    A summary and comparison of the various protocols is now given. It should be noted that there are exceptions to some of these categories. For example, while MQTT offers no built-in security provisioning, it can be layered at the application level. In all cases, there are exceptions and the table is built from the formal specifications:
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    Summary

    MQTT, CoAP, and HTTP are by far the predominant IoT Internet protocols in the industry with support from nearly every cloud provider. MQTT and MQTT-SN provide a scalable and efficient pub/sub model of data communication while CoAP provides all the relevant features of an HTTP RESTful model without the overhead. An architect must consider the overhead, power, bandwidth, and resources necessary to support a given protocol and have enough forward vision to ensure the solution scales.

    Now that a transport method has been defined to marshal data to the Internet, we can examine what to do with that data. The next chapter will concentrate on cloud and fog architecture, from the founding principles to more advanced configurations.
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    Cloud and Fog Topologies

    Without the cloud, IoT growth and its market would be nonexistent. Essentially, billions of endpoint devices that were historically dumb and not connected would need to manage themselves without the ability to share or aggregate data. Billions of such small embedded systems add no marginal value for customers. The value of the IoT is in the data it produces—not at a single endpoint but in thousands or millions of nodes. The cloud provides the ability to have simple sensors, cameras, switches, beacons, and actuators participate in a common language with each other. The cloud is the common denominator of the data currency.

    The ubiquitous cloud metaphor refers to an infrastructure of computing services that are generally on-demand. The pool of resources (computing, networking, storage, and the associated software services) can dynamically scale up or down based on load average or quality of service. Clouds are typically large data centers that provide outward facing services to customers on a pay-for-use model. These centers provide the illusion of a single cloud resource while, in fact, there may be many geographically dispersed resources being used. This gives the user a sense of location independence. Resources are elastic (meaning scalable), and services are on-demand, generating a recurring revenue stream for the provider. Services that run in the cloud differ in their construction and deployment from traditional software. Cloud-based applications can be developed and deployed faster and with fewer degrees of environmental variability. Thus, cloud deployment enjoys rapid feature velocity.

    There are accounts that the first description of the cloud originated at Compaq in the mid-1990s, where technology futurists predicted a computing model that moved computing to the web versus on host platforms. Essentially, this was the basis of cloud computing, but it wasn't until the advent of certain other technologies that cloud computing became practical for the industry. 

    The telecommunications industry traditionally was built on a point-to-point system of circuits. The creation of VPNs allows for secure and controlled access to clusters and has enabled private-public cloud hybrids to exist.

    This chapter studies cloud architecture and the following areas:

    
      	A formal definition of cloud topologies and a vernacular 

      	An architectural overview of the OpenStack cloud

      	A study of the fundamental problem with cloud-only architecture 

      	An overview of fog computing

      	OpenFog reference architecture

      	Fog computing topologies and use cases

    

    Throughout the chapter, several use cases will be talked about so you can understand the impact of big data semantics on IoT sensor environments.

    Cloud services model

    Cloud providers typically support a range of Everything as a Service (XaaS) products; that is, as a pay-for-use software service. Services include Networking as a Service (NaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Each model introduces more and more cloud vendor services. These service offerings are the value-add of cloud computing. At a minimum, these services should offset the capital expense a customer faces for purchasing and maintaining such data center equipment and replace it as an operational expense. The standard definition of cloud computing can be found via the National Institute of Standards and Technology: Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud Computing. Technical Report. NIST, Gaithersburg, MD, United States (https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf).

    The following figure illustrates the differences in management of cloud models that will be described in the subsequent sections:
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    Figure 1: Cloud architecture models. On-premises is where all services, infrastructure, and storage are managed by the owner.

    NaaS includes services like SDP and SDN. IaaS pushes the hardware systems and storage to the cloud. PaaS includes the infrastructure but also manages the OS and system runtime or containers in the cloud. Finally, SaaS pushes all services, infrastructure, and services to the cloud provider.

    NaaS

    Services such as software-defined networking (SDN) and software-defined perimeters (SDP) are typical of NaaS. These products are cloud-managed and organized mechanisms for providing overlay networks and enterprise security. Rather than building a worldwide infrastructure and capital to support a corporation's communications, a cloud approach can be used to form a virtual network. This allows for the network to optimally scale resources up or down based on demand, and new network features can be purchased and deployed rapidly. This topic will be covered in depth in the related SDN chapter.

    SaaS

    SaaS is the foundation of cloud computing. A provider usually has applications or services on offer that expose themselves to the end user through clients such as mobile devices, thin clients, or frameworks on other clouds. From a user point of view, the SaaS layer is virtually running on their client. This software abstraction has enabled the industry to achieve substantial growth in the cloud. SaaS services include such name brand appliances as Google Apps, Salesforce, and Microsoft Office 365.

    PaaS

    PaaS refers to the underlying hardware and lower-layer software facilities provided by the cloud. In this case, the end user simply uses a provider's data center hardware, OS, middleware, and assorted frameworks to host their private application or services.

    Middleware may be composed of database systems. Many industries have been built using cloud provider commodity hardware such as Swedbank, Trek Bicycles, and Toshiba.

    Examples of public PaaS providers are IBM Bluemix, Google App Engine, and Microsoft Azure. The value of a PaaS deployment versus IaaS is the fact that you get the benefits of scalability and operating expenses (OPEX) with a cloud infrastructure, but you also have proven middleware and operating systems from the provider. This is the realm of systems such as Docker, where software is deployed as containers. If your overall application stays within the constraints of the vendor-provided framework and infrastructure, you can achieve a faster time to market since most of the componentry, OS, and middleware are guaranteed to be available.

    IaaS

    IaaS was the original concept of cloud services. In this model, the provider builds scalable hardware services in the cloud and provides a modicum of software frameworks to build client virtual machines. This offers the most flexibility in deployment but requires more lifting on the part of the customer.

    Public, private, and hybrid cloud

    Within the cloud environment stand three different models of cloud topologies that are generally used: private cloud, public cloud, and hybrid cloud. Regardless of the model, cloud frameworks should all provide the ability to dynamically scale, develop, and deploy rapidly, and have the appearance of locality regardless of proximity:
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    Figure 2: Left: Public cloud. Middle: Private versus public cloud. Right: Hybrid cloud.

    Private clouds also imply on-premises managed components. Modern enterprise systems tend to use a hybrid architecture to ensure the safety of mission-critical applications and data on-premises, and use the public cloud for connectivity, deployment ease, and rapid development.

    Private cloud

    In a private cloud, the infrastructure is provisioned for a single organization or corporation. There is no concept of resource sharing or pooling outside of the owner's own infrastructure. Within the premises, sharing and pooling are common. A private cloud exists for a number of reasons, including security and assurance—that is, to guarantee information is confined solely to systems managed by the customer. To be considered a cloud, however, certain aspects of cloud-like services must exist, such as virtualization and load balancing. A private cloud may be on-premises, or it may be dedicated machinery provided by a third party exclusively for their use.

    Public cloud

    A public cloud is the opposite situation. Here, the infrastructure is provisioned on-demand for a multitude of customers and applications. The infrastructure is a pool of resources anyone can use at any time as part of their service-level agreements. The advantage here is that the sheer scale of cloud data centers allows for unprecedented scalability for many customers, who are only limited to how much of the service they wish to purchase. An example of public cloud is Microsoft Azure or Amazon AWS.

    Hybrid cloud

    The hybrid architectural model is a combination of private and public clouds. Such combinations may be multiple public clouds used simultaneously or a combination of public and private cloud infrastructure. Organizations tend to favor a hybrid model if sensitive data needs unique management, while the frontend interface can make use of the reach and scale of the cloud. Another use case is maintaining a public cloud agreement to offset conditions where scalability exceeds the corporation's private cloud infrastructure. In this case, the public cloud will be used as a load balancer until the swell of data and usage drops back to the private cloud constraints. This use case is called cloud bursting and refers to the use of clouds as contingent resource provisions. 

    Many corporations have public and private cloud infrastructure. This is especially prevalent in situations where frontend services and web portals may be services in the public cloud for scalability, while customer data is located in private systems for security.

    The OpenStack cloud architecture

    OpenStack is an open source Apache 2.0 licensed framework used to build cloud platforms. It is primarily an IaaS and has been in the developer community since 2010. The OpenStack Foundation manages the software and has support from more than 500 companies, including Intel, IBM, Red Hat, and Ericsson.

    OpenStack started as a joint project between NASA and Rackspace around 2010. The architecture has all the major components of other cloud systems, including compute and load balancing; storage components, including backup and recovery; networking components, dashboards, security and identity, data and analytics packages, deployment tools, monitors and meters, and application services. These are the components that an architect would look for when choosing a cloud service.

    Rather than focus on a single commercial cloud architecture, we will examine OpenStack in depth as many of the artifacts of OpenStack are used or analogous to components in commercial cloud services like Microsoft Azure.

    Architecturally, OpenStack is an interwoven layer of components. The basic form of an OpenStack cloud is shown in the following figure. Each service has a particular function and a unique name (such as Nova). The system acts as a whole, providing a scalable enterprise-class cloud functionality:

    All communication within the OpenStack components is done through Advanced Message Queueing Protocol (AMQP) message queues, specifically, the RabbitMQ or Qpid. Messages can either be non-blocking or blocking depending on how the message was sent. A message would be sent as a JSON object into RabbitMQ, and receivers would find and fetch their messages from the same service. This is a loosely coupled remote procedure call (RPC) method of communication between the major subsystems. The benefit in a cloud environment is that the client and server are completely decoupled, and this allows the servers to dynamically scale up or down. Messages are not broadcast but directed, which keeps traffic to a minimum. You may also recall that AMQP is a common messaging protocol used in the IoT space.
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    Figure 3: OpenStack top-level architectural diagram

    Keystone – identity and service management

    Keystone is the identity manager service of the OpenStack cloud. An identity manager establishes user credentials and login authorization. It is essentially the starting point or entry point into the cloud. This resource will maintain a central directory of users and their access rights. This is the top level of security to ensure that user environments are mutually exclusive and secure. Keystone can interface with services like LDAP in an enterprise-level directory. Keystone also maintains a token database and delivers temporary tokens to users similarly to how Amazon Web Services (AWS) establishes credentials. A service registry is used to query what products or services are available to the user programmatically.

    Glance – image service

    Glance provides the heart of virtual machine management for OpenStack. Most cloud services will provide some degree of virtualization and have an analog resource similar to Glance. The image service API is a RESTful service and lets a customer develop VM templates, discover available VMs, clone images to other servers, register VMs, and even move running virtual machines to different physical servers without interruption. Glance calls into Swift (the object store) to retrieve or store different images. Glance supports different styles of virtual images:

    
      	raw: Unstructured images

      	vhd: VMWare, Xen, Oracle VirtualBox

      	vmdk: Common disk format

      	vdi: QEMU emulator image

      	iso: Optical drive image (CD ROM)

      	aki/ari/ami: Amazon image

    

    
      A virtual machine consists of the entire hard drive volume image content, including guest operating systems, runtimes, applications, and services.

    

    Nova compute

    Nova is the heart of the OpenStack compute resource management service. Its purpose is to identify and appropriate compute resources based on demand. It also has the responsibility of controlling the system hypervisor and virtual machines. Nova will work with several VMs, as mentioned, such as VMware or Xen, or it can manage containers. On-demand scaling is part and parcel of any cloud offering.

    Nova is based on a RESTful API web service for simplified control.

    To get a list of servers, you would GET the following into Nova through the API:

    {your_compute_service_url}/servers


    To create a bank of servers (ranging from a minimum of 10 to a maximum of 20), you would POST the following:

    {
  "server": {
    "name": "IoT-Server-Array",
    "imageRef": "8a9a114e-71e1-aa7e-4181-92cc41c72721", "flavorRef": "1",
    "metadata": {
      "My Server Name": "IoT"
    },
    "return_reservation_id": "True", "min_count": "10",
    "max_count": "20"
  }
}


    Nova would respond with a reservation_id:

    {
  "reservation_id": "84.urcyplh"
}


    Thus, the programming model is fairly simple in order to manage the infrastructure.

    The Nova database is needed to maintain the current state of all objects in the cluster. For example, a few of the states the various servers in the cluster can include are as follows:

    
      	ACTIVE: The server is actively running.

      	BUILD: The server is in the process of being built and is not completed.

      	DELETED: The server has been deleted.

      	MIGRATING: The server is migrating to a new host.

    

    Nova relies on a scheduler to determine which task to execute and where to execute it. The scheduler can associate affinity randomly or use filters to choose a set of hosts that best match some sets of parameters. The filter end product will be an ordered list of host servers to use from best to worst (with incompatible hosts removed from the list).

    The following is the default filter used to assign server affinity:

    scheduler_available_filters = nova.scheduler.filters.all_filters


    A custom filter can be created (for example, a Python or JSON filter called IoTFilter.IoTFilter) and attached to the scheduler as follows:

    scheduler_available_filters = IoTFilter.IoTFilter


    To set a filter to find servers that have 16 VCPUs programmatically through the API, we construct a JSON file as follows:

    {
  "server": {
    "name": "IoT_16",
    "imageRef": "8a9a114e-71e1-aa7e-4181-92cc41c72721", "flavorRef": "1"
  },
  "os:scheduler_hints": {
    "query": "[&gt;=,$vcpus_used,16]"
  }
}


    Alternatively, OpenStack also allows you to control the cloud through a command-line interface:

    $ openstack server create --image 8a9a114e-71e1-aa7e-4181-92cc41c72721 \
  --flavor 1 --hint query='["&gt;=","$vcpus_used",16]' IoT_16


    OpenStack has a rich set of filters to allow for the custom allocation of servers and services. This allows for very explicit control of server provisioning and scaling. This is a classic and very important aspect of cloud design. Such filters include, but are not limited to:

    
      	RAM size

      	Disk capacity and type 

      	IOPS levels

      	CPU allocation 

      	Group affinities 

      	CIDR affinity

    

    Swift – object storage

    Swift provides a redundant storage system for the OpenStack data center. Swift allows clusters to scale by adding new servers. The object storage will contain things such as the accounts and containers. A user's virtual machine may be stored or cached in Swift. A Nova compute node can call directly into Swift and download the image on the first run.

    Neutron – networking services

    Neutron is the OpenStack network management and VLAN service. The entire network is configurable and provides services such as:

    
      	Domain name services 

      	DHCP

      	Gateway functions 

      	VLAN management 

      	L2 connectivity 

      	SDN

      	Overlay and tunneling protocols 

      	VPN

      	NAT (SNAT and DNAT)

      	Intrusion detection systems 

      	Load balancing

      	Firewalls

    

    Cinder – block storage

    Cinder provides OpenStack with the persistent block storage services needed for a cloud. It acts as a storage as a service for uses cases such as databases and dynamically growing file systems, including data lakes, which are of particular importance in streaming IoT scenarios. Like other components in OpenStack, the storage system is itself dynamic and scales as needed. The architecture is built on high availability and open standards.

    The functionality provided by Cinder includes the following:

    
      	Creation, deletion, and binding of storage devices to Nova compute instances 

      	Multiple storage vendor interoperability (HP 3PAR, EMC, IBM, Ceph, CloudByte, Scality)

      	Support for multiple interfaces (Fibre Channel, NFS, Shared SAS, IBM GPFS, iSCSI)

      	Backup and retrieval of disk images 

      	Snapshot images of a point in time 

      	Alternative storage for VM images

    

    Horizon

    The final element covered here is Horizon. Horizon is the OpenStack dashboard. It is the single-pane-of-glass view into OpenStack for the customer. It provides a web-based view of the various components that comprise OpenStack (Nova, Cinder, Neutron, and others).

    Horizon provides a user interface view of the cloud system as an alternative means over the API. Horizon is extensible so a third party can add their widgets or tools to the dashboard. A new billing component may be added, and a Horizon dashboard element can then be instantiated for customers.

    Most IoTs that use cloud deployments will include some form of dashboard with similar features.

    Heat – orchestration (optional)

    Heat can launch multiple composite cloud applications and manage cloud infrastructure based on templates on an OpenStack instance. Heat integrates with telemetry to autoscale a system to match load needs. Templates in Heat try to comply with AWS CloudFormation formats, and relationships between resources can be specified in a similar manner (for example, this volume is connected to this server).

    A Heat template may resemble the following:

    heat_template_version: 2015-04-30 description: 

example template

resources: 
  my_instance:
    type: OS::Nova::Server 
    properties:
      key_name: { get_param: key_name } image: { 
      get_param: image } flavor: { get_param: flavor }
      admin_pass: { get_param: admin_pass } user_data:
        str_replace: 
        template: |
          #!/bin/bash
          echo hello_world


    Ceilometer – telemetry (optional)

    OpenStack provides an optional service called Ceilometer that can be used for telemetry data gathering and the metering of resources used by each service. Metering is used to collect information about usage and convert that into customer bills. Ceilometer also provides rating and billing tools. Rating is converting a billed value into equivalent currency, and billing is used to start a payment process.

    Ceilometer monitors and meters different events, such as starting a service, attaching a volume, and stopping an instance. Metrics are gathered on CPU usage, the number of cores, memory usage, and data movement. All this is collected and stored in a MongoDB database.

    Constraints of cloud architectures for IoT

    A cloud service provider sits outside the IoT edge device and presides over the wide area network. One particular trait of the IoT architecture is that the PAN and WPAN devices may not be IP-compliant. Protocols such as Bluetooth Low Energy (BLE) and Zigbee are not IP-based, while everything on the WAN, including the cloud, is IP-based. 

    Thus, the role of the edge gateway is to perform that level of translation:
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    Figure 4: Latency effects in the cloud. Hard real-time response is critical in many IoT applications and forces processing to move closer to the endpoint device

    Latency effect

    Another effect is the latency and response time for events. As you get closer to the sensor, you enter the realm of hard real-time requirements. These systems are typically deeply embedded systems or microcontrollers that have latency set by real-world events. For example, a video camera is sensitive to the frame rate (typically 30 or 60 fps) and must perform a number of sequential tasks in a data flow pipeline (demosaicing, denoting, white balance and gamma adjusting, gamut mapping, scaling, and compression). The amount of data flowing through a video imaging pipeline (1080p video using 8-bits per channel at 60 fps) is roughly 1.5 GB/s. Every frame must flow through this pipeline in real time; therefore, most video image signal processors perform these transforms in silicon.

    If we move up the stack, the gateway has the next best response time and is usually in the single-digit millisecond range. The gating factor in the response time is the WPAN latency and the load on the gateway. As previously mentioned in the WPAN chapter, most WPANs, such as BLE, are variable and dependent on the number of BLE devices under the gateway, scan intervals, advertisement intervals, and so on. BLE connection intervals can be as low as a few milliseconds but can vary depending on how the customer adjusts the advertisement intervals to minimize power usage. Wi-Fi signals typically have a 1.5 ms latency. Latency at this level requires a physical interface to the PAN. You wouldn't expect to pass raw BLE packets to the cloud with any hope of near real-time control.

    The cloud component introduces another degree of latency over the WAN. The route between the gateway and cloud provider can take multiple paths based on the locations of the data centers and the gateway. Cloud providers usually provide a set of regional data centers to normalize traffic. To understand the true latency impact of a cloud provider, you must sample the latency ping over the course of weeks or months and across regions:
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    Data was analyzed using a service called CloudPing on Amazon AWS data centers and utilizing the US-West Client on CloudPing.info (for more information, visit http://www.cloudping.info)

    An exhaustive analysis of cloud latency and response times is kept by CLAudit (for more information, visit http://claudit.feld.cvut.cz/index.php#). Other tools exist to analyze latency, such as Azurespeed.com, Fathom, and SmokePing (for more information, visit https://oss.oetiker.ch/smokeping/). These sites research, monitor, and archive TCP, HTTP, and SQL database latency across AWS and Microsoft Azure on a daily basis across many regions worldwide. This produces the best visibility to the overall latency impact you can expect from a cloud solution. For example, the following figure illustrates the round-trip times (RTT) for a test client in the US communicating with a leading cloud solution provider and its various global data centers. It is also useful to note the variability in RTT. While a spike of 5 ms may be tolerable in many applications, it may lead to failure in a hard real-time control system or factory automation:
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    Figure 5: RTT and latency for a leading cloud provider from a client in the US Mountain time zone to various data centers globally

    Typically, cloud latency will be in the order of tens, if not hundreds, of milliseconds without accounting for any overhead of processing for the incoming data. This should now set an expectation for the varying levels of response when building a cloud-based architecture for the IoT. Near-device architectures allow for sub-10 ms responses and also enjoy the benefit of being repeatable and deterministic. Cloud solutions can introduce variability into response times as well as an order of magnitude/greater response time than a near-edge device. An architect needs to consider where to deploy portions of the solution based on these two effects. 

    Cloud providers should also be chosen based on their data center deployment models. If an IoT solution is being deployed worldwide or perhaps will grow to cover multiple regions, the cloud service should have data centers located in geographically similar areas to assist in normalizing the response time. The chart reveals the great variance in latency based on a single client reaching data centers worldwide. This is not an optimal architecture.

    Fog computing

    Fog computing is the evolutionary extension of cloud computing at the edge. Fog represents a system-level horizontal architecture that distributes resources and services across a network fabric. These services and resources include storage components, computing devices, networking functions, and so on. The nodes can be located anywhere between the cloud and the "things" (sensors). This section details the difference between fog and edge computing and provides the various topologies and architectural references for fog computing.

    The Hadoop philosophy for fog computing

    Fog computing draws its analogy from the success of Hadoop and MapReduce, and to better understand the importance of fog computing, it is worth taking some time to think about how Hadoop works. MapReduce is a method of mapping, and Hadoop is an open source framework based on the MapReduce algorithm.

    MapReduce has three steps: map, shuffle, and reduce. In the map phase, computing functions are applied to local data. The shuffle step redistributes the data as needed. This is a critical step as the system attempts to collocate all dependent data to one node. The final step is the reduce phase, where processing across all the nodes occurs in parallel.

    The general takeaway here is that MapReduce attempts to bring processing to where the data is and not to move the data to where the processors are. This scheme effectively removes communication overhead and a natural bottleneck in systems that have extremely large structured or unstructured datasets. This paradigm applies to IoT as well. In the IoT space, data (possibly a very large amount of data) is produced in real time as a stream of data. This is the big data in IoT's case. It's not static data like a database or a Google storage cluster, but an endless live stream of data from every corner of the world. A fog-based design is the natural way to resolve this new big data problem.

    Comparing fog, edge, cloud, and mist computing

    We have already defined edge computing as moving processing close to where data is being generated. In the case of IoT, an edge device could be the sensor itself with a small microcontroller or embedded system capable of WAN communication. Other times, the edge will be a gateway in architectures with particularly constrained endpoints hanging off the gateway. Edge processing is also usually referred to in a machine-to-machine context where there is a tight correlation between the edge (client) and a server located elsewhere. Edge computing exists, as stated, to resolve issues with latency and unnecessary bandwidth consumption, and to add services such as denaturing and security close to the data source. An edge device may have a relationship with a cloud service at the cost of latency and a carrier; it doesn't actively participate in the cloud infrastructure.

    Fog computing is slightly different from an edge computing paradigm. Fog computing, first and foremost, shares a framework API and communications standard with other fog nodes and/or an overlay cloud service. Fog nodes are extensions of the cloud, whereas edge devices may or may not involve a cloud whatsoever. Another key tenet of fog computing is that the fog can exist in layers of hierarchy. Fog computing can also load balance and steer data east-west and north-south to assist in resource balancing. From the previous section's definition of the cloud and the services it offers, you can think of these fog nodes as simply more (albeit less powerful) infrastructures in a hybrid cloud.

    Mist computing is sometimes called "cloudlets". The mist serves the extreme edge of a network, usually on low-cost and low-power microcontrollers or embedded computers. They are as physically close to the sensors as possible to gather data and perform near-source computing. They interface to fog nodes through standard protocols, and mist components are usually part of the overall network topology. An example of a mist device is a smart thermostat:
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    Figure 6: Relationship between cloud, edge, fog, and mist components

    OpenFog reference architecture

    A fog architectural framework such as a cloud framework is necessary to understand the interworking and data contracts between various layers. Here, we explore the OpenFog Consortium reference architecture: https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf. The OpenFog Consortium is a nonprofit industry group chartered with defining the interoperability standards for fog computing. While not a standards body, they influence the direction of other organizations through liaison and industry influence. The OpenFog reference architecture is a model to assist architects and business leaders in creating hardware, building software, and acquiring infrastructure for fog computing. OpenFog realizes the benefit of cloud-based solutions and the desire to move that level of computing, storage, networking, and scaling to the edge without sacrificing latency and bandwidth.

    The OpenFog reference architecture consists of a layered approach from edge sensors and actuators at the bottom to application services at the top. The architecture has some similarities with typical cloud architecture such as OpenStack, but extends this further since it is more analogous to a PaaS than an IaaS. For that matter, OpenFog provides a full stack and is generally hardware agnostic, or at least abstracts the platform from the rest of the system:
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    Figure 7: OpenFog reference architecture

    Application services

    The role of the service layer is to provide the pane-of-glass and custom services needed for the mission. This includes providing connectors to other services, hosting data analytics packages, providing a user interface if needed, and providing core services.

    The connectors in the application layer connect the services to the support layer. The protocol abstraction layer provides the pathway for a connector to talk directly to a sensor. Each service should be thought of as a microservice in a container. The OpenFog Consortium advocates container deployment as the proper method for software to be deployed at the edge. This makes sense when we think of the edge devices as extensions of the cloud. An example of a container deployment could look like the following diagram.

    Each cylinder represents an individual container that can be deployed and managed separately. Each service then exposes APIs to reach between containers and layers:
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    Figure 8: Example OpenFog application. Here, multiple containers can be deployed, each providing different services and support functions.

    Application support

    This is infrastructure componentry to help build the final customer solution. This layer may have dependencies in terms of how it was deployed (for example, as a container). Support comes in many forms, including:

    
      	Application management (image identification, image verification, image deployment, and authentication)

      	Logging tools

      	Registration of components and services

      	Runtime engines (containers, VMs)

      	Runtime languages (Node.js, Java, Python)

      	Application servers (Tomcat)

      	Message buses (RabbitMQ)

      	Databases and archives (SQL, NoSQL, Cassandra)

      	Analytic frameworks (Spark)

      	Security services

      	Web servers (Apache)

      	Analytics tools (Spark, Drool)

    

    OpenFog suggests these services should be packaged as containers, as shown in the preceding diagram. The reference architecture isn't a strict guideline, and the architect must choose the correct amount of support that can be enabled on a constrained edge device. For example, processing and resources may only allow for a simple rules engine and disallow anything like a stream processor, let alone a recurrent neural network.

    Node management and software backplane

    This refers to in-band (IB) management and governs how a fog node communicates with other nodes in its domain. Nodes are also managed through this interface for upgrades, status, and deployment. The backplane can include the operating system of the node, custom drivers and firmware, communication protocols and management, file system control, virtualization software, and containerization for microservices.

    This level of the software stack touches nearly every other layer in the OpenFog reference architecture. Typical features of the backplane include:

    
      	Service discovery: Allows for ad hoc, fog-to-fog trust models.

      	Node discovery: Allows for fog nodes to be added and for joins in a cluster similar to cloud-clustering techniques.

      	State management: Allows for different computational models for stateful and stateless computes with multiple nodes.

      	Pub/sub management: Allows for data to be pushed rather than pulled. Additionally, it allows for levels of abstraction in software construction.

    

    The OpenFog reference architecture, or, for that matter, any fog-based architecture, should allow for tiers of deployment. That is, a fog architecture isn't simply limited to a cloud connected to a fog gateway connected to a handful of sensors. In fact, there are multiple topologies dependent on the scale, bandwidth, processing load, and economies that can be designed. The reference architecture should provision itself for multiple topologies, just as the real cloud can dynamically scale and load balance itself based on demand.

    Hardware virtualization

    Like typical cloud systems, OpenFog defines the hardware as a virtualization layer. Applications should have no bindings to a particular set of hardware. Here, the system should load balance across the fog and migrate or add resources as needed. All hardware components are virtualized at this level, including compute, network, and storage.

    OpenFog node security

    The consortium defines this level as the hardware security portion of the stack. Higher-level fog nodes should be able to monitor lower-level fog nodes as part of the hierarchy in the topology (covered later in this chapter). Peer nodes should be able to monitor their east-west neighbors.

    This layer also has the following responsibilities:

    
      	Encryption

      	Tamper and physical security monitors

      	Packet inspection and monitoring (east-west and north-south)

    

    Network

    This is the first component of the hardware system layer. The network module is the east-west and north-south communication module. The network layer is cognizant of the fog topology and routing. It has the role of routing physically to other nodes. This is a major difference from a traditional cloud network that virtualizes all internal interfaces. Here the network has meaning and geographical presence in an IoT deployment. For example, a parent node hosting four child nodes all attached to cameras may have the responsibility of aggregating video data from the four sources and sticking (fusing) the image content together to create a 360-degree field of view. To do this, it must know which child node pertains to which direction, and it cannot do that arbitrarily or randomly.

    The network component requirements include:

    
      	Resilience in case a communication link goes down. In effect, it may need to understand how to rebuild a mesh to keep data flowing.

      	Translating and repackaging data from non-IP sensors to IP protocols. Examples of this are Bluetooth, Z-Wave, and wired sensors.

      	Handling failover cases.

      	Binding to a variety of communication fabrics (Wi-Fi, wired, 5G). 

      	Providing the typical network infrastructure needed for an enterprise deployment (security, routing, and so on).

    

    Accelerators

    Another aspect of OpenFog that differs from other cloud schemas is the notion of accelerator services. Accelerators are commonplace now in the form of GPGPUs and even FPGA to provide services for imaging, machine learning, computer vision and perception, signal processing, and encryption/decryption. 

    OpenFog envisions fog nodes that are able to be resourced and allocated on an as-needed basis. You can force a second- or third-level node farm in the hierarchy that could provide additional computing facilities dynamically as needed.

    We can even force other forms of acceleration into the fog, for example:

    
      	Nodes dedicated to bulk mass storage in the event a large data lake needs to be generated

      	Nodes that include alternative communication links such as satellite radio in the catastrophic event that all land-based communication is lost

    

    Compute

    The compute portion of the stack is similar to the compute functionality of the Nova layer in OpenStack. The principal functions include:

    
      	Task execution

      	Resource monitoring and provisioning 

      	Load balancing

      	Capability queries

    

    Storage

    The storage slice of the architecture maintains the low-level interface to the fog storage. The types of storage we spoke of earlier, such as data lakes or workspace memory, may be needed at the edge for hard real-time analysis. The storage layer will also manage all the traditional types of storage devices, such as:

    
      	RAM arrays 

      	Rotating disks 

      	Flash

      	RAID

      	Data encryption

    

    Hardware platform infrastructure

    The infrastructure layer isn't so much an actual layer between software and hardware, but more of the physical and mechanical structure of the fog node. As fog devices often will be in harsh and remote locations, they must be rugged and resilient as well as self-reliant.

    OpenFog defines the cases that need to be considered in a fog deployment, including:

    
      	Size, power, and weight characteristics 

      	Cooling systems

      	Mechanical support and retention 

      	Serviceability mechanics

      	Physical attack resistance and reporting

    

    Protocol abstraction

    The protocol abstraction layer binds the lowest elements of the IoT system (sensors) with other layers of the fog node, other fog nodes, and the cloud. OpenFog advocates an abstraction model to identify and communicate with a sensor device through the protocol abstraction layer. By abstracting the interface to sensors and edge devices, a heterogeneous mixture of sensors can be deployed on a single fog node, for example, analog devices that pass through digital-to-analog converters or digital sensors. Even the interfaces to the sensors can be individualized, such as Bluetooth to temperature devices in vehicles, the CAN bus for interfacing with engine diagnostic sensors, SPI interfaced sensors on various vehicle electronics, and general purpose input/output GPIO sensors to the various door and theft sensors. By abstracting the interface, the upper layers of the software stack can access such disparate devices through a standardized approach.

    Sensors, actuators, and control systems

    This is the bottom end of the IoT stack: the actual sensors and devices at the edge. These devices can be smart, dumb, wired, wireless, near-range, far-field, and more. The association, however, is that they are communicating in some manner to the fog node, and the fog node has the responsibility to provision, secure, and manage that sensor.

    EdgeX

    OpenFog represents one fog-level architecture, and EdgeX offers another example of fog-based frameworks to consider. EdgeX represents an open source project hosted by the Linux Foundation (as the LF Edge) with similar goals as OpenFog. Members in EdgeX include silicon and software providers such as ARM, ATT, IBM, HP, Dell, Qualcomm, Red Hat, and Samsung, and consortiums such as the Industrial Internet Consortium.

    The goals of EdgeX include:

    
      	Building an open platform for IoT edge computing

      	Ensuring components are interoperable and plug-and-play

      	Adding to positive business value through accelerating time-to-market, allowing users to add value, and providing easily adaptable tools

      	Reducing the risk of IoT adoption through certifying EdgeX components, building a global ecosystem of users and contributors, and reducing cost through economies of scale

      	Collaborating with other open source projects and standards groups

    

    EdgeX architecture

    EdgeX is intended to be compatible with any silicon and CPU architecture (for example, x86 or ARM), any operating system, and any application environment. Additionally, EdgeX uses cloud native concepts such as the use of microservices. Microservices are services that are structured as a loosely coupled software architecture. They are independently deployable and therefore highly maintainable and testable. This allows small teams to own a service that can be deployed to construct larger applications. Because the services are loosely coupled, EdgeX offers the ability to distribute various microservice components across different edge nodes or perhaps on a single node. The architecture is flexible to how the architect wants to adapt it for their solution.
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    Figure 9: EdgeX reference architecture. Note the use of container-based deployment and microservice-based architectural separation.

    EdgeX projects and additional components

    Because of the microservice architecture, more projects are being constructed to add to the EdgeX foundation. These include:

    
      	Akraino Edge Stack: An open source software stack for high-availability cloud services for edge computing.

      	Baetyl: Enables cloud solutions to work seamlessly (and migrate) to edge nodes using containers and serverless computing concepts. It was intended initially for smart home appliances, wearables, and other IoT devices.

      	EdgeX Virtual Engine (EVE): Builds a type-1 hypervisor on bare metal hardware. This project also has runtime deployment services and a container runtime engine. Using this solution, edge devices can be quickly managed using container "drops" of code. Refer to the chapter on edge computing to further understand container-based deployment engines.

      	Fledge: Intended for industrial IoT. Fledge is an open source framework to perform predictive maintenance and process sensor data in factory and manufacturing settings. It uses a RESTful API to develop, manage, and secure IoT applications.

      	Home Edge: Built by Samsung Electronics, an open source framework and platform for home-based IoT solutions.

    

    Amazon Greengrass and Lambda

    In this section, we cover an alternative fog service called Amazon Greengrass. Amazon has provided years of world-class leading cloud services and infrastructure such as AWS, S3, EC2, Glacier, and others. Since 2016, Amazon has invested in a new style of edge computing called Greengrass. It is an extension of AWS that allows a programmer to download a client to the fog, gateway, or smart sensor device.

    Similar to other fog frameworks, the intent of Greengrass is to provide a solution to reduce latency and response time, recuse bandwidth costs, and provide security for the edge. Features of Greengrass include:

    
      	Cache data in case a connection is lost

      	Syncing data and device state to AWS cloud on reconnect

      	Local security (authentication and authorization services)

      	Message broker on the device and outside of the device

      	Data filtering

      	Command and control of device and data

      	Data aggregation

      	Operation while offline

      	Iterative learning

      	Calling any AWS service directly from Greengrass on the edge

    

    To use Greengrass, a program will design a cloud platform in AWS IoT and define certain Lambda functions in the cloud. These Lambda functions are then assigned to edge devices and deployed to those devices running the client and authorized to execute Greengrass Lambda functions. 

    Currently, the Lambda functions are written in Python 2.7. Shadows are JSON abstractions in Greengrass that represent the state of the device and Lambda functions. These are synced back to AWS when desired.

    Behind the scenes, communication between Greengrass on the edge and AWS in the cloud is done through MQTT.

    
      Note that Lambda functions are not to be confused with Lambda architectures mentioned earlier. A Lambda function in the Greengrass context refers to an event-driven compute function.

    

    An example Lambda definition used in Greengrass would look like the following. From the console in AWS, we run a command line; we run the following tool and specify the Lambda function definition by name:

    aws greengrass create-function-definition --name "sensorDefinition"


    This will output the following:

    {
  "LastUpdatedTimestamp": "2017-07-08T20:16:31.101Z", 
  "CreationTimestamp": "2017-07-08T20:16:31.101Z", "Id": "26309147-58a1-490e-a1a6-
  0d4894d6ca1e",
  "Arn":"arn:aws:greengrass:us-west-2:123451234510:
  /greengrass/definition/functions/26309147-58a1-490e-a1a6-0d4894d6ca1e",
  "Name": "sensorDefinition"
}


    We now create a JSON object with the Lambda function definitions and use the ID provided in the preceding and call create-functiondefinition-version from the command line:

    
      	Executable is the Lambda function by name.

      	MemorySize is the amount of memory to allocate to the handler.

      	Timeout is the time in seconds before the timeout counter expires.

    

    The following is an example of the JSON object to use with a Lambda function:

    aws greengrass create-function-definition-version --function-definition-id "26309147-58a1-490e-a1a6-0d4894d6ca1e". --functions
'[
{
  "Id": "26309147-58a1-490e-a1a6-0d4894d6ca1e",
  "FunctionArn": "arn:aws:greengrass:us-west-2:123451234510:
  /greengrass/definition/functions/26309147-58a1-490e- a1a6-0d4894d6ca1e",
  "FunctionConfiguration": {
    "Executable": "sensorLambda.sensor_handler", "MemorySize": 32000,
    "Timeout": 3
  }
}]'


    Several other steps are necessary to provision and create a subscription between the edge node and the cloud, but the Lambda handler will be deployed. This provides an alternative view of fog computing, as provided by Amazon. You can think of this model as a method of extending cloud services to an edge node and the edge being empowered to call on any resource provided by the cloud. This is, by definition, a true fog computing platform.

    Fog topologies

    Fog topologies can exist in many forms, and the architect needs to consider several aspects when designing an end-to-end fog system. In particular, constraints such as cost, processing load, manufacturer interface, and east-west trafficking all come into play when designing the topology. A fog network can be as simple as a fog-enabled edge router connecting sensors to a cloud service. It can also grow in complexity to a multitier fog hierarchy with different degrees of processing ability and roles at each tier simultaneously distributing processing loads when and where necessary (east-west and north-south). The determining factors of the models are based on:

    
      	Data volume reduction: For example, is the system collecting unstructured video data from thousands of sensors or cameras, aggregating the data, and looking for particular events in real time? If so, then the dataset reduction will be significant as thousands of cameras will be producing hundreds of GBs of data daily, and fog nodes will need to distill large amounts of data into simple yes, no, danger, and safe event tokens.

      	The number of edge devices: If the IoT system is simply one sensor, then the dataset is small and may not justify a fog edge node at all. However, if the number of sensors grows, or in the worst case, the number of sensors is unpredictable and dynamic, then the fog topology may need to scale up or down dynamically. A use case would be a stadium venue using Bluetooth beaconing. As the audience grows for certain venues, the system must be able to scale nonlinearly. At other times, the stadium may seat only a fraction of its space and require marginal processing and connectivity resources.

      	Fog node capabilities: Depending on the topology structure and cost, some nodes may be better suited for connectivity to WPAN systems, while other nodes in the hierarchy may have additional processing capabilities for machine learning, pattern recognition, or image processing. An example would be edge fog nodes that manage a secure Zigbee mesh network and have special hardware for failover situations or WPAN security. Above that fog level would exist a fog processing node that would have extra RAM and GPGPU hardware to support the processing of raw data streaming from the WPAN gateways.

      	System reliability: An architect may need to consider forms of failure in an IoT model. If one edge fog node were to fail, another could take its place to perform an action or service. This case is important in life-critical or real-time environments. For example, in a first responder appliance, you may need edge computing devices that must be reliable, such as in a disaster response. If a fog node were to fail or lose connectivity a sibling node could take over its functions until connectivity is restored. In the same manner, extra fog nodes may be provisioned on demand; redundant nodes may be needed in fault-tolerant situations. In the case that there are no additional redundant nodes, some processing may be shared with neighbor nodes at the cost of system resources and latency, but the system will keep functioning. The final use case is where neighbor nodes act as watchdogs for each other. In the event a fog node fails or communication to the node fails, the watchdog will signal a failure event to the cloud and may perform some life-critical actions locally. A good example is when a fog node fails to monitor traffic on a highway; a neighbor node may see the point failure, alert the cloud of the event, and signal on a billboard on the highway to reduce speed.

    

    
      When referencing network topologies and fog architectures, we sometimes use terms such as north-south traffic or east-west traffic. This correlates to the direction in which the data moves. North-south implies moving data from one level of the network to a parent or a child (for example, from an edge router to the cloud). East-west implies moving to peers at the same level of the network hierarchy, such as sibling nodes in a mesh network or access points in a Wi-Fi network.

    

    The simplest fog solution is an edge processing unit (gateway, thin clients, router) placed in proximity to a sensor array. 

    Here, a fog node may be used as a gateway to a WPAN network or mesh and communicate with a host:
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    Figure 10: Simple fog topology. The edge-fog device manages an array of sensors and may communicate in an M2M manner with another fog node.

    The next basic fog topology includes the cloud as the parent over a fog network. The fog node, in this case, will aggregate data, secure the edge, and perform the processing necessary to communicate with the cloud. What separates this model from edge computing is that the service and software layers of the fog node share a relationship with the cloud framework:
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    Figure 11: Fog to cloud topology. Here, a fog node establishes a link to a cloud provider

    The next model uses multiple fog nodes responsible for services and edge processing, and each connects to a set of sensors. A parent cloud provisions each fog node as it would a single node. Each node has a unique identity so it can provide a unique set of services based on geography. For example, each fog node may be at a different location for a retail franchise. Fog nodes may also communicate and traffic data east-west between edge nodes. An example use case would be a cold storage environment where a number of coolers and freezers need to be maintained and governed to prevent food spoilage. A retailer may have multiple coolers in multiple locations, all managed by a single cloud service, but working with fog nodes at the edge:
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    Figure 12: Multiple fog nodes with a single master cloud

    Another model extends topology with the ability to communicate securely and privately to multiple cloud vendors from multiple fog nodes. In this model, multiple parent clouds may be deployed. For example, in smart cities, multiple geographical areas may exist and be covered by different municipalities. Each municipality may prefer one cloud provider over the other, but all municipalities are required to use one approved and budgeted camera and sensor manufacturer. In that case, the camera and sensor manufacturer would have their single cloud instance coexist with multiple municipalities.

    The fog nodes must be able to steer data to multiple cloud providers:
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    Figure 13: Multiple fog nodes with multiple cloud providers. Clouds could be a mixture of public and private clouds.

    Fog nodes also do not need a strict one-to-one relationship as regards bridging sensors to clouds. Fog nodes can be stacked, tiered, or even kept in stasis until needed. Tiering layers of fog nodes above each other may sound counterintuitive if we are trying to reduce latency, but, as mentioned previously, nodes can be specialized. For example, nodes closer to the sensors may provide hard real-time services or have cost constraints requiring them to have the minimal amount of storage and compute. A tier above them may provide the compute resources needed for aggregate storage, machine learning, or image recognition through the use of additional mass storage devices or GPGPU processors. The following example illustrates a use case in a city lighting scenario.

    Here, a number of cameras sense moving pedestrians and traffic; the fog nodes closest to the cameras perform aggregation and feature extraction and pass those features upstream to the next tier. The parent fog node retrieves the features and performs the necessary image recognition through a deep learning algorithm. If an event of interest is seen (such as a pedestrian walking at night along a path), the event will be reported to the cloud. The cloud component will register the event and signal to a set of streetlights in the pedestrian's vicinity to increase illumination. This pattern will continue as long as the fog nodes see the pedestrian moving. The end goal is the overall energy saved by not illuminating every streetlamp to full intensity at all times:
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    Figure 14: Multitier fog topology: Fog nodes stack in a tier hierarchy to provide additional services or abstractions

    Summary

    Collecting, analyzing, and acting upon data and deriving meaningful conclusions from a sensor is the goal of IoT. When we scale to thousands or to millions and potentially billions of objects communicating and streaming data nonstop, we have to introduce advanced tools to ingest, store, marshal, analyze, and predict meaning from this sea of data. Cloud computing is one element in enabling that service in the form of clusters of scalable hardware and software. Fog computing brings cloud processing closer to the edge to resolve issues with latency, security, and communication costs. Both technologies work together to run analytics packages in the form of rules engines with complex event processing agents. Choosing the model of cloud providers, frameworks, fog nodes, and analytics modules is a significant task and much literature goes deep into the semantics of programming and building these services. An architect must understand the topology and the end goal of the system to build a structure that meets today's needs and scales into the future.

    In the next chapter, we will discuss the data analytics portion of IoT. The cloud certainly can host a number of analytic functions. However, we need to be prepared to understand that certain analysis should be performed on the edge close to the data source (sensor) or, if it makes more sense, in the cloud (using long-term historical data).
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    Data Analytics and Machine Learning in the Cloud and Edge

    The value of an IoT system is not a single sensor event, or a million sensor events archived away. A significant amount of the value of IoT is in the interpretation of data and decisions based on that data.

    While a world of billions of things connected and communicating with each other and the cloud is well and good, the value lies in what is within the data, what is not in the data, and what the patterns of data tell us. These are the data science and data analytics portions of IoT, and probably the most valuable areas for the customer.

    Analytics for the IoT segment deals with:

    
      	Structured data (for example, SQL storage): A predictable format of data

      	Unstructured data (for example, raw video data or signals): A high degree of randomness and variance

      	Semi-structured (for example, Twitter feeds): Some degree of variance and randomness in form

    

    Data also may need to be interpreted and analyzed in real time as a streaming dataflow, or it may be archived and retrieved for deep analytics in the cloud. This is the data ingest phase. Depending on the use case, the data may need to be correlated with other sources in flight. In other cases, the data is simply logged and dumped to a data lake like a Hadoop database.

    Next comes some type of staging, meaning a messaging system like Kafka will route data to a stream processor, or a batch processor, or perhaps both. Stream processing tolerates a continuous stream of data. Processing is typically constrained and very fast, as the data is processed in memory. Therefore, processing must be as fast, or faster, than the rate of data entering the system. While stream processing provides near-real-time processing in the cloud, when we consider industrial machinery and self-driving cars, stream processing does not provide hard real-time operating characteristics.

    Batch processing, on the other hand, is efficient in dealing with high-volume data. It is particularly useful when IoT data needs to correlate against historical data.

    After this phase, there may be a prediction and response phase where information may be presented on some form of dashboard and logged, or perhaps the system will respond back to the edge device, where corrective actions can be applied to resolve some issue.

    This chapter will discuss various data analysis models from complex event processing to machine learning. Several use cases will be taught to help generalize where one model can work and others may fail.

    Basic data analytics in IoT

    Data analytics intends to find events, usually in a streaming series of data. There are multiple types of events and roles that a real-time streaming analysis machine must provide. The following is a superset of analytic functions based on the work of Srinath Perera and Sriskandarajah Suhothayan (Solution patterns for real-time streaming analytics. Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems (DEBS '15). ACM, New York, NY, USA, 247-255. The following is an enumerated listing of these analytic functions:

    
      	Preprocessing: This includes filtering out events of little interest, denaturing, feature extraction, segmentation, transforming data to a more suitable form (although data lakes prefer no immediate transformation), and adding attributes to data such as a tag (data lakes do need tags).

      	Alerting: Inspect data, and if it exceeds some boundary condition, then raise an alert. The simplest example is when the temperature rises above a set limit on a sensor.

      	Windowing: A sliding window of events is created that only draws rules upon that window. Windows can be based on time (for example, one hour), or length (2000 sensor samples). They can be sliding windows (for example, inspect only the 10 latest sensor events and produce a result whenever a new event arises), or batch windows (for example, produce an event only at the end of the window). Windowing is good for rules and for counting events. For instance, you could look for the number of temperature spikes in the last hour and resolve that a defect will occur on some machine.

      

      	Joins: These combine multiple data streams into a new single stream. A scenario where this applies is a logistics example, say a shipping company tracks their shipments with asset-tracking beacons and their fleet of trucks, planes, and facilities have geolocation information streaming, as well. There are initially two streams of data: one for the package and one for a given truck. When a truck picks up a package, those two streams become joined.

      	Errors: Millions of sensors will generate missing data, garbled data, and data that is out of sequence. This is important in IoT cases with multiple streams of asynchronous and independent data. For example, data may be lost in a cellular WAN if a vehicle enters an underground parking garage. This analytic pattern correlates data within its own stream to attempt to find these error conditions.

      	Databases: The analytics package will need to interact with some data warehouse. For example, if data is streaming in from a number of sensors. An example of this could be Bluetooth asset tags tracking whether an item is stolen or lost. A database of missing tag IDs would be referenced from all the gateways streaming in Bluetooth tag IDs to the system.

      	Temporal events and patterns: This is most often used with the window pattern mentioned previously. Here, a series or sequence of events constitutes a pattern of interest. You can think of this as a state machine. Say we are monitoring the health of a machine based on temperature, vibrations, and noise. A temporal event sequence could be as follows:
          	Detect whether the temperature exceeds 100° C.

          	Then detect whether vibrations exceed 1 m/s.

          	Next, detect whether the machine is emitting noise at 110 dB.

          	If those events take place in that sequence, only then raise an alert.

        

      

      	Tracking: Tracking involves when or where something exists or an event has occurred, or when something doesn't exist where it should. A very basic example is geolocation of service trucks where a company may need to know exactly where a truck has been and when it was last there. This has application in agriculture, human movement, tracking patients, tracking high-value assets, luggage systems, smart city garbage, snow removal, and so on.

      	Trends: This pattern is particularly useful for predictive maintenance. Here, a rule is designed to detect an event based on time-correlated series data. This is similar to temporal events but differs in the sense that temporal events have no notion of time, only sequence order. This model uses time as a dimension in the process. A running history of time-correlated data could be used to find patterns like a livestock sensor does in farming. Here, a head of cattle may wear a sensor that detects the animal movement and temperature. An event sequence can be constructed to see whether the cattle moved in the last day. If there was no movement, the cattle may be sick or dead.

      	Batch queries: Batch processing typically is more comprehensive and deeper than real-time stream processing. A well-designed streaming platform can fork analysis and call into a batch processing system. We will talk about this later in the form of lambda processing.

      	Deep analytics pathway: In real-time processing, we make a decision on the fly that some event has occurred. Whether that event really should signal an alarm may require further processing that will not operate in real time. An example is a video surveillance system. Say a smart city issues an amber alert for a lost child. The smart city can issue a simple feature extraction and classification model for the real-time streaming engines. The model would detect license plates for a vehicle the child may be in, or potentially a logo on the child's shirt. The first step would be to image-capture vehicles' license plate numbers or logos on pedestrians and send them to the cloud. The analysis package may identify a plate of interest or a logo out of millions of image samples as a first-level pass. That positively identified frame (and surrounding video frames) would be passed to a deeper analytics package that resolves the image with deeper object recognition algorithms (image fusion, super-resolution, machine learning) to eliminate false positives.

      	Models and training: The first-level model described previously may, in fact, be an inference engine for a machine learning system. These machine learning tools are built on trained models that can be used for in-flight, real-time analysis.

      	Signaling: It is often the case that an action needs to propagate back to the edge and sensor. A typical case is factory automation and safety. For example, if the temperature rises beyond a certain limit on a machine, log the event but also send a signal back to the edge device to slow the machine down. The system must be bidirectional in communication.

      	Control: Finally, we need a way to control these analysis tools. Whether that is starting, stopping, reporting, logging, or debugging, facilities need to be in place to manage this system.

    

    Now, we will concentrate on how to build a cloud-based analytics architecture that must ingest unpredictable and unstoppable streams of data and deliver interpretations of that data as close to real time as possible.

    Top-level cloud pipeline

    The following diagram is a typical flow of data from a sensor to a dashboard. Data will transit through several mediums (WPAN links, broadband, cloud storage in the form of a data lake, and so on). When we consider the following architectures to build a cloud analytics solution, we have to consider the effects of scaling. Choices made early in the design that are suitable to 10 IoT nodes and a single cloud cluster may not scale effectively when the number of endpoint IoT devices grows to the thousands and are based in multiple geographies:
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    Figure 1: A typical IoT pipeline from sensor to cloud

    The analytics (predict-respond) portion of the cloud can take on several forms:

    
      	Rules engines: These simply define an action and produce an outcome.

      	Stream processing: These are where events like sensor readings are injected into the stream processor. The processing path is a graph where nodes in the graph represent operators and send events to other operators. The nodes contain the code for that portion of the processing and a path to connect to the next node in the graph. This graph can be replicated and executed in parallel on a cluster so it is amenable to scaling up to hundreds of machines.

      	Complex event processing: This is based on queries like SQL and written in that higher-level language. It is based on event processing and tuned for low latency.

      	Lambda architecture: This model attempts to balance throughput and latency by performing batch processing and stream processing in parallel on massive data sets.

    

    The reason we talk about real-time analytics is that the data is streaming nonstop from millions of nodes simultaneously and asynchronously with various errors, format issues, and timings. New York City has 250,000 street lights (http://www.nyc.gov/html/dot/html/infrastructure/streetlights.shtml). Say each light is smart, meaning it monitors whether there is movement nearby, and if so, it brightens the light; otherwise, it remains dimmed to save power (2 bytes). Each light may also check whether there is a problem with the light that needs maintenance (1 byte). Additionally, each light is monitoring temperature (1 byte) and humidity (1 byte) to help generate microclimate weather predictions. Finally, the data also contains the light ID and a timestamp (8 bytes). The aggregate of all the lights nominally produces 250,000 messages a second and can peak at 325,000 due to periods of rush hour, crowds, tourist sites, holidays, and so on. All in all, say our cloud service can process 250,000 messages per second; that implies a backlog of up to 75,000 events/second. If rush hour is truly one hour, then we backlog 270,000,000 events/hour. Only if we provide more processing in the cluster or reduce the incoming stream will the system ever catch up. If the incoming stream drops to 200,000 messages/second during a quiet time, the cloud cluster will take 1.1 hours to resolve and consume 585 MB of memory (270 million backlogged messages at 13 bytes per message). Typically, you will have an autoscaling cloud backend to grow with demand and the length of the message queue.

    To formalize the process and anticipate the demands you will place on a cloud backend, the following equations can help model the capacity:
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    Where:

    REvent = Event Rate

    TBurst = Time of Burst Events

    Tc = Time to Complete Backlog

    MBacklog = Message Backlog (size)

    Msize = Message Size

    Rules engines

    A rules engine is simply a software construct that executes actions on events. For example, if the humidity in a room exceeds 50%, send an SMS message to the owner. These are also called business rule management systems (BRMSs).

    Rules engines may or may not have state and be called stateful. That is, they may have a history of the event and take different actions depending on the order, the amount, or the patterns of events as they occurred historically. Alternatively, they may not maintain state and only inspect the current event (stateless):
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    Figure 2: Simple rules engine example

    In our example of a rules engine, we will look at Drools. It is a BRMS developed by Red Hat and licensed under the Apache 2.0 license. JBoss Enterprise is a production version of the software. All objects of interest reside in the Drools working memory. Think of the working memory as the set of IoT sensor events of interest to compare to satisfy a given rule. Drools can support two forms of chaining: forward and backward. Chaining is a method of inference taken from game theory.

    Forward chaining takes in available data until a rule chain is satisfied. For example, a rule chain may be a series of if/then clauses, as shown in the preceding diagram. Forward chaining will continuously search to satisfy one of the if/then paths to infer from an action. Backward chaining is the converse. Rather than starting with the data to be inferred from, we start with the action and work backward. The following pseudocode demonstrates a simple rules engine:

    Smoke Sensor = Smoke Detected Heat Sensor = Heat Detected

if (Smoke_Sensor == Smoke_Detected) && (Heat_Sensor == Heat_Detected) then Fire
if (Smoke_Sensor == !Smoke_Detected) && (Heat_Sensor == Heat_Detected) then Furnace_On
if (Smoke_Sensor == Smoke_Detected) && (Heat_Sensor == !Heat_Detected) then Smoking
if (Fire) then Alarm
if (Furnace_On) then Log_Temperature
if (Smoking) then SMS_No_Smoking_Allowed


    Let us assume that:

    Smoke_Sensor: Off
Heat_Sensor: On


    Forward chaining would resolve the antecedent of the second clause and infer that temperatures are being logged.

    Backward chaining tries to prove that the furnace is on and works backward in a series of steps:

    
      	Can we prove the temperatures are being logged? Take a look at this code:
        if (Furnace_On) then Log_Temperature


      

      	Since the temperatures are being logged, the antecedent (Furnace_On) becomes the new goal:
        if (Smoke_Sensor == !Smoke_Detected) && (Heat_Sensor == Heat_Detected) then Furnace_On


      

      	Since the furnace is proven to be on, the new antecedent comes in two parts: Smoke_Sensor and Heat_Sensor. The rules engine now breaks it up into two goals:
        Smoke_Sensor off
Heat_Sensor on


      

    

    
      	The rules engine now attempts to satisfy both the subgoals. Upon doing so, the inference is complete.

    

    Forward chaining has the advantage of responding to new data as it arrives, which can trigger new inferences.

    Drools' semantic language is intentionally simple. Drools is composed of the following basic elements:

    
      	Sessions, which define the default rules 

      	Entry points, which define the rules to use 

      	when statements, the conditional clause 

      	then statements, the action to take

    

    A basic Drools rule is shown in the following pseudocode. The insert operation places a modification in the working memory. You normally make a change to working memory when a rule evaluates to true.

    rule "Furnace_On" when
Smoke_Sensor(value > 0) && Heat_Sensor(value > 0) then
insert(Furnace_On()) end


    After all the rules in Drools execute, the program can query working memory to see which rules evaluated to true using syntax like the following:

    query "Check_Furnace_On"
$result: Furnace_On() end


    A rule has two patterns:

    
      	Syntactic: It has the format of data, parity, hash, and range of values.

      	Semantic: Values must belong to a set in a list; the count of high-temperature values must not exceed 20 in 1 hour. Essentially, these are meaningful events.

    

    Drools supports the creation of very complex and elaborate rules to the point that a database of rules may be needed to store them. The semantics of the language allows for patterns, range evaluation, salience, times when a rule is in effect, type matching, and work on collections of objects.

    Ingestion – streaming, processing, and data lakes

    An IoT device is usually associated with some sensor or a device whose purpose is to measure or monitor the physical world. It does so asynchronously with respect to the rest of the IoT technology stack. That is, a sensor is always attempting to broadcast data, whether or not a cloud or fog node is listening. This is important, because the value of a corporation is in the data. 

    Even if most of the data produced is redundant, there is always the opportunity that a significant event can occur. This is the data stream.

    The IoT stream from a sensor to a cloud is assumed to be: 

    
      	Constant and never-ending

      	Asynchronous 

      	Unstructured, or structured

      	As close to real time as possible

    

    We discussed the cloud latency problem earlier in Chapter 11, Cloud and Fog Topologies. We also learned about the need for fog computing to help resolve the latency issue, but even without fog computing nodes, efforts are taken to optimize the cloud architecture to support IoT real-time needs. To do this, clouds need to maintain a flow of data and keep it moving. Essentially, data moving from one service to another in the cloud must do so as a pipeline, without the need to poll for data. The alternative form of processing data is called batch processing. Most hardware architectures treat data flow the same way, moving data from one block to another, and the process of data arrival triggers the next function.

    Additionally, careful use of storage and filesystem access is critical to reducing overall latency.

    For this reason, most streaming frameworks will support in-memory operations and avoid the cost of temporary storage to a mass filesystem altogether. Michael Stonebraker called out the importance of data streaming in this fashion. (See Michael Stonebraker, Ugur Çetintemel, and Stan Zdonik. 2005. The 8 Requirements of Real-time Stream Processing." SIGMOD Rec. 34, 4, December 2005, 42-47.) A well-designed message queue assists with this pattern. To build a successful architecture in a cloud that scales from hundreds of nodes to millions needs consideration.

    The data stream will also not be perfect. With hundreds to thousands of sensors streaming asynchronous data, more often than not, data will be missing (sensor lost communication), data will be poorly formed (error in transmission), or data will be out of sequence (data may flow to the cloud from multiple paths). At a minimum, a streaming system must:

    
      	Scale with event growth and spikes

      	Provide a publish/subscribe API to interface 

      	Approach near-real-time latency

      	Provide scaling of processing of rules 

      	Support data lakes and data warehousing

    

    Apache provides several open source software projects (under the Apache 2 license) that assist with building a stream processing architecture. Apache Spark is a stream processing framework that processes data in small batches. It is particularly useful when memory size is constrained on a cluster in the cloud (for example, &lt; 1TB). Spark is built on in-memory processing, which has the advantages of reducing filesystem dependency and latency, as mentioned previously. The other advantage of working on batch data is that it is particularly useful when dealing with machine learning models, which will be covered later in this chapter. Several models, such as convolutional neural networks (CNNs), can work on data in batches. An alternative from Apache is Storm. Storm attempts to process data as close to real time as possible in a cloud architecture. It has a low-level API versus Spark and processes data as large events rather than dividing them up into batches. This has the effect of being low latency (sub-second performance).

    To feed the stream processing frameworks, we can use Apache Kafka or Flume. Apache Kafka is an MQTT on the ingest from various IoT sensors and clients, and it connects to Spark or Storm on the outbound side. MQTT doesn't buffer data. If thousands of clients are communicating to the cloud over MQTT, some system will be needed to react to an incoming stream and provide the buffering needed. This allows Kafka to scale on demand (another important cloud attribute) and can react well to spikes in events. A stream of 100,000 events per second can be supported with Kafka. Flume, on the other hand, is a distributed system to collect, aggregate, and move data from one source to another, and it is slightly easier to use out of the box. It is also tightly integrated with Hadoop. Flume is slightly less scalable than Kafka, since adding more consumers means changing the Flume architecture. Both investors could stream in memory without ever storing it. Generally, however, we don't want to do that; we want to take the raw sensor data and store it in as raw a form as possible with all the other sensors streaming in simultaneously.

    When we think of IoT deployments in the thousands or millions of sensors and end nodes, a cloud environment may make use of a data lake. A data lake is essentially a massive storage facility holding raw unfiltered data from many sources. Data lakes are flat filesystems. A typical filesystem will be organized hierarchically, with volume, directories, files, and folders in a basic sense. A data lake organizes elements in its storage by attaching metadata element (tags) to each entry. The classic data lake model is Apache Hadoop, and nearly all cloud providers use some form of data lake underneath their services.

    Data lake storage is particularly useful in IoT, as it will store any form of data whether it is structured or unstructured. A data lake also assumes that all data is valuable and will be kept permanently. This bulk persistent mass of data is optimal for data analytics engines. Many of those algorithms function better based on how much data they are fed, or how much data is used to train their models.

    A conceptual architecture using traditional batch processing and stream processing is illustrated in the following diagram. In the architecture, the data lake is fed by a Kafka instance. Kafka could provide the interface to Spark in batches and send data to a data warehouse.

    There are several ways to reconfigure the topology in the following diagram, as the connectors between components are standardized:
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    Figure 3: Basic diagram of cloud ingestion engine to a data warehouse. Spark acts as the stream channel service.

    Complex event processing

    Complex event processing (CEP) is another analytics engine that is often used for pattern detection. From its roots in discrete event simulation and stock market volatility trading in the 1990s, it is by nature a method capable of analyzing a live feed of streaming data in near real time. As hundreds and thousands of events enter the system, they are reduced and distilled into higher-level events. These are more abstract than raw sensor data. CEP engines have the advantage of a fast turnaround time in real-time analysis over a stream processor. A stream processor can resolve an event in the millisecond time frame. The downside is a CEP engine doesn't have the same level of redundancy, or dynamic scaling, as Apache Spark.

    CEP systems use SQL-like queries, but rather than using a database backend, they search an incoming stream for the pattern or rule you suggest. A CEP system consists of the tuple: discrete data element with a timestamp. A CEP system makes use of the different analytics patterns described at the beginning of this chapter and works well with a sliding window of events. Since it is SQL-like in semantics, and it is designed to be appreciably faster than a regular database query, all the rules and data reside in memory (usually a multi-GB database). Additionally, they need to be fed from a modern stream messaging system such as Kafka.

    CEP has operations like sliding windows, joins, and sequence detection. Additionally, CEP engines can be based on forwarding or backward chaining as rules engines are. An industry-standard CEP system is the Apache WSO2 CEP. WSO2 coupled with Apache Storm can process over 1 million events per second, with no storage events needed. WSO2 is a CEP system using an SQL language but can be scripted in JavaScript and Scala. The additional benefit is that it can be extended with a package called Siddhi to enable services such as:

    
      	Geolocation

      	Natural language processing 

      	Machine learning

      	Time series correlation and regression 

      	Mathematical operations

      	String and RegEx

    

    Streams of data can be queried as in the following Siddhi QL code:

    define stream SensorStream (time int, temperature single); @name('Filter Query')
from SensorStream[temperature &gt; 98.6' select *
insert into FeverStream;


    This all operates as discrete events allowing for sophisticated rules to be applied to millions of events transpiring simultaneously.

    Now that we have described CEP, it is time that you understood where a CEP engine and a rules engine should be used. If the evaluation is a simple state, such as two ranges of temperatures, then the system is stateless, and a simple rules engine should be used. If the system maintains a temporal notion or a series of states, then a CEP engine should be used.

    Lambda architecture

    A lambda architecture attempts to balance latency with throughput. Essentially, it mixes batch processing with stream processing. Similar to the general cloud topology of OpenStack or other cloud frameworks, lambda ingests and stores to an immutable data repository. There are three layers of the topology:

    
      	Batch layer: The batch layer is usually based on Hadoop clusters. The batch layer is significantly slower in processing than the stream layer. By sacrificing latency, it maximizes throughput and accuracy.

      	Speed layer: This is the real-time in-memory data stream. The data can be erroneous, missing, and out of order. Apache Spark, as we have seen, is very good at providing a stream processing engine.

      	Service layer: The service layer is where the recombination of batch and stream results are stored, analyzed, and visualized. Typical components of the service layer are Druid, which provides facilities for combining batch and speed layers; Apache Cassandra for scalable database management; and Apache Hive for data warehousing.
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    Figure 4: Complexities of a Lambda architecture. Here, a batch layer migrates data to the HDFS storage, and the speed layer is delivered directly to a real-time analysis package via Spark.

    Lambda architectures are, by nature, more complex than the other analytics engines. They are hybrid and add additional complexity and resources to run successfully.

    Sector use cases

    We will now try to consider the typical use cases in a variety of industries adopting IoT and cloud analytics. When architecting the solution, we need to consider the scale, the bandwidth, real-time needs, and types of data to derive the correct cloud architecture, as well as the correct analytics architecture.

    These are generalized examples – it is imperative to understand the entire flow and future scale/capacity when drawing a similar table:

    
      
        
        
        
        
        
        
      
      
        
          	
            Industry
          
          	
            Use cases
          
          	
            Cloud services
          
          	
            Typical bandwidth
          
          	
            Real time
          
          	
            Analytics
          
        

        
          	
            Manufacturing

          
          	
            Operational technology

            Brownﬁeld

            Asset tracking

            Factory automation

          
          	
            Dashboards

            Bulk storage

            Data lakes

            SDN

            Low latency

          
          	
            500 GB/day/factory part produced

            2 TB/minute mining operations

          
          	
            Less than 1s

          
          	
            RNN

            Bayesian networks

          
        

        
          	
            Logistics and transport

          
          	
            Geolocation tracking

            Asset tracking

            Equipment sensing

          
          	
            Dashboards

            Logging

            Storage

          
          	
            Vehicles: 4 TB/day/vehicle (50 sensors)

            Aircraft: 2.5 to 10 TB/day (6000 sensors)

            Assets tracking: 1 MB/day/beacon

          
          	
            Less than 1s (real time)

            Daily (batch)

          
          	
            Rules engines

          
        

        
          	
            Healthcare

          
          	
            Asset tracking

            Patient tracking

            Home health monitoring

            Wireless health equipment

          
          	
            Reliability and HIPPA

            Private cloud option

            Storage and archival

            Load balancing

          
          	
            1 MB/day/sensor

          
          	
            Less than 1s: life critical

            Non-life critical: on each change

          
          	
            RNN

            Decision trees

            Rules engines

          
        

        
          	
            Agriculture

          
          	
            Livestock health and location tracking

            Soil chemistry analysis

          
          	
            Bulk storage – archiving

            Cloud-to-cloud provisioning

          
          	
            512 KB/day/livestock head

            1000 to 10000 head of cattle per feedlot

          
          	
            1 second (real time)

            10 minutes (batch)

          
          	
            Rules engines

          
        

        
          	
            Energy

          
          	
            Smart meters

            Remote energy monitoring (solar, natural gas, oil)

            Failure prediction

          
          	
            Dashboards

            Data lakes

            Bulk storage for historical rate prediction

            SDN

            Low latency

          
          	
            100-200 GB/day/wind turbine

            1 to 2 TB/day/oil rig

            100 MB/day/smart meter

          
          	
            Less than 1s: energy production

            1 minute: smart meters

          
          	
            RNN

            Bayesian networks

            Rules engines

          
        

        
          	
            Consumer

          
          	
            Real-time health logging

            Presence detection

            Lighting and heating/AC

            Security

            Connected home

          
          	
            Dashboards

            PaaS

            Load balancing

            Bulk storage

          
          	
            Security camera: 500 GB/day/camera

            Smart device: 1-1000 KB/day/sensor-device

            Smart home: 100 MB/day/home

          
          	
            Video: less than 1s

            Smart home: 1s

          
          	
            CNN (image sensing)

            Rules engines

          
        

        
          	
            Retail

          
          	
            Cold chain sensing

            POS machines

            Security systems

            Beaconing

          
          	
            SDN

            Micro-segmentation

            Dashboards

          
          	
            Security: 500 GB/day/camera

            General: 1-1000 MB/day/device

          
          	
            POS and credit transaction: 100ms

            Beaconing: 1s

          
          	
            Rules engines

            CNN for security

          
        

        
          	
            Smart city

          
          	
            Smart parking

            Smart trash pickup

            Environmental sensors

          
          	
            Dashboards

            Data lakes

            Cloud-to-cloud services

          
          	
            Energy monitors: 2.5 GB/day/city (70K sensors)

            Parking spots: 300 MB/day (80,000 sensors)

            Waste monitors: 350 MB/day (200,000 sensors)

            Noise monitors: 650 MB/day (30,000 sensors)

          
          	
            Electric meters: 1 minute

            Temperature: 15 minutes

            Noise: 1 minute

            Waste: 10 minutes

            Parking spots: every change

          
          	
            Rules engine

            Decision trees

          
        

      
    

    Machine learning in IoT

    Machine learning is not a new computer science development. On the contrary, mathematical models for data fitting and probability go back to the early 1800s, and Bayes' theorem and the least squares method of fitting data. Both are still widely used in machine learning models today, and we will briefly explore them later in the chapter.

    A brief history of AI and machine learning milestones

    It wasn't until Marvin Minsky (MIT) produced the first neural network devices called perceptrons in the early 1950s that computing machines and learning were unified. He later wrote a paper in 1969 that was interpreted as a critique of the limitations of neural networks. Certainly, during that period, computational horsepower was at a premium. The mathematics were beyond the reasonable resources of IBM S/360 and CDC computers. As we will see, the 1960s introduced much of the mathematics and foundations of artificial intelligence in areas such as neural nets, support vector machines, fuzzy logic, and so on.

    Evolutionary computation such as genetic algorithms and swarm intelligence became a research focus in the late 1960s and 1970s, with work from Ingo Rechenberg, Evolutionsstrategie (1973). It gained some traction in solving complex engineering problems. Genetic algorithms are still used today in mechanical engineering, and even automatic software design.

    The mid-1960s also introduced the concept of hidden Markov models as a form of probabilistic AI, like Bayesian models. It had been applied to research in gesture recognition and bioinformatics.

    Artificial intelligence research lulled with government funding drying up until the 1980s and the advent of logic systems. This started the field of AI known as logic-based AI and supporting programming languages called Prolog and LISP, which allowed programmers to easily describe symbolic expressions. Researchers found limitations with this approach to AI: principally logic-based semantics didn't think like a human. Attempts at using anti-logic or scruffy models to try to describe objects didn't work well either. Essentially, one cannot describe an object precisely using loosely coupled concepts. Later in the 1980s, expert systems took root. Expert systems are another form of logic-based systems for a well-defined problem trained by experts in that particular domain. One could think of them as a rule-based engine for a control system. Expert systems proved successful in corporate and business settings and became the first commercially available AI systems sold. New industries started to form around expert systems. These types of AI grew, and IBM used the concept to build Deep Thought to defeat chess grandmaster Garry Kasparov in 1997.

    Fuzzy logic first manifested itself in research by Lotfi A. Zadeh at UC Berkeley in 1965, but it wasn't until 1985 that researchers at Hitachi demonstrated how fuzzy logic could be applied successfully to control systems. That sparked significant interest in Japanese automotive and electronics firms to adopt fuzzy systems into actual products. Fuzzy logic has been used successfully in control systems, and we will discuss it formally later in this chapter.

    While expert systems and fuzzy logic seemed to be the mainstay for AI, there was a growing and noticeable gap between what it could do and what it would never be able to do. Researchers in the early 1990s saw that expert systems, or logic-based systems, in general, could never emulate the mind. The 1990s brought on the advent of statistical AI in the form of hidden Markov models and Bayesian networks. Essentially, computer science adopted models commonly used in economics, trade, and operations research to make decisions.

    Support vector machines were first proposed by Vladimir N. Vapnik and Alexey Chervonenkis in 1963, but became popular after the AI winter of the 1970s and early 1980s. Support vector machines (SVMs) became the foundation for linear and nonlinear classification by using a novel technique to find the best hyperplanes to categorize data sets. This technique became popular with handwriting analysis. Soon, this evolved into uses for neural networks.

    Recurrent neural networks (RNNs) also became a topic of interest in the 1990s. This type of network was unique and different from deep learning neural networks such as convolutional neural networks, because it maintained state and could be applied to a problem involving the notion of time, such as audio and speech recognition. RNNs have a direct impact on IoT predictive models today, which we will discuss later in this chapter.

    A seminal event occurred in 2012 in the field of image recognition. In a competition, teams around the globe competed on a computer science task of recognizing the object in a 50-pixel by 30-pixel thumbnail. Once the object was labeled, the next task was to draw a box around it. The task was to do this for 1 million images. A team from the University of Toronto built the first deep convolutional neural network to process images to win this competition. Other neural networks had attempted this machine vision exercise in the past, but the team developed an approach that identified images with more accuracy than any approach before, with an error rate of 16.4%. Google developed another neural net that brought the error rate down to 6.4%. It was also around this time that Alex Krizhevsky developed AlexNet, which introduced GPUs to the equation to greatly speed up training. All these models were built around convolutional neural networks and had processing requirements that were prohibitive until the advent of GPUs.

    Today, we find AI everywhere, from self-driving cars, to speech recognition in Siri, to tools emulating humans in online customer service, to medical imaging, to retailers using machine learning models to identify consumer interest in shopping and fashion as they move about a store:
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    Figure 5: The spectrum of artiﬁcial intelligence algorithms

    What does this have to do with IoT at all? Well, IoT opens up the spigot to a massive amount of constantly streaming data. The value of a system of sensors is not what one sensor measures, but what a collection of sensors measure and tell us about a much larger system. IoT, as mentioned earlier, will be the catalyst to generate a step function in the amount of data collected. Some of that data will be structured: time-correlated series. Other data will be unstructured: cameras, synthetic sensors, audio, and analog signals. The customer wants to create useful decisions for their business based on that data—for example, in a manufacturing plant that is planning to optimize operational expenses and potentially capital expenses by adopting IoT and machine learning (at least, that's what they were sold on). When we think about a factory IoT use case, the manufacturer will have many interdependent systems. They may have some assembly tool to produce a widget, a robot to cut parts out of metal or plastic, another machine to perform some type of injection molding, conveyor belts, lighting and heating systems, packaging machines, supply and inventory control systems, robots to move material around, and various levels of controls systems. In fact, this company may have many of these spaces spread across a campus or geography. A factory like this has adopted all the traditional models of efficiency, and its managers have read W. Edwards Deming's literature; however, the next industrial revolution will come in the form of IoT and machine intelligence.

    Specialized individuals know what to do when an erratic event occurs. For example, a technician who has been operating one of the assembly machines for years knows when the machine needs service based on how that machine is behaving. It may start creaking in a certain way. Perhaps it's worn out its ability to pick and place parts and dropped a few in the last couple of days. These simple behavioral effects are things that machine learning can see and predict even before a human can. Sensors can surround such devices and monitor actions both perceived and inferred. An entire factory could be perceived in such a case to understand how that factory is performing at that very instant based on a collection of millions or billions of events from every machine and every worker in that system.

    With that amount of data, only a machine learning appliance can sift through the noise and find what is relevant. These are not human-manageable problems, but the manageable problem of big data and machine learning.

    Machine learning models

    We will now focus on specific machine learning models that have applicability to IoT. There is no single winner for you to choose to sift through a collection of data. Each model has a particular strength and use cases it serves best. The goal of any machine learning tool is to arrive at a prediction or inference of what a set of data is telling you. You want to be better than the 50% outcome of flipping a coin.

    There are two types of learning systems to consider, which are as follows:

    
      	Supervised learning: It simply implies that the training data provided to the model has an associated label with each entry. For example, a set may be a collection of pictures each labeled with the content of that image: for example, cat, dog, banana, car. Many machine learning models today are supervised. Supervised learning involves a human (or groups of humans). It can be a lengthy process to train a model to a high degree of accuracy.Supervised learning allows for classification and regression problems to be solved. We will discuss classification and regression later in this chapter.

      

      	Unsupervised learning: It has no label for the training data. Obviously, this type of learning cannot resolve an image of a dog to the label dog. This type of learning model uses mathematical rules to reduce redundancy. A typical use case is to find clusters of similar things.

    

    There also exists a hybrid of both models, called semi-supervised learning, which mixes labeled data and unlabeled data. The goal is to force the machine learning model to organize data as well as make inferences.

    The three fundamental uses of machine learning are:

    
      	Classification

      	Regression 

      	Anomaly detection

    

    There are dozens of machine learning and AI constructs that could be talked about with application to IoT, but that would extend far beyond the scope of this book. We will concentrate on a small set of models to understand where they fit in relation to each other, what they target, and what their strengths are. We want to explore the uses and limitations of statistical, probabilistic, and deep learning, as they are the prevalent areas applicable for IoT artificial intelligence.

    Within each of these large segments, we will generalize and dive into the following:

    
      	Random forests: Statistical models (fast models, good for systems with many attributes needed for anomaly detection)

      	Bayesian networks: Probabilistic models

      	Convolutional neural networks (CNNs): Deep learning model for unstructured image data

      	Recurrent neural networks (RNNs): Deep learning model for time series analysis

    

    Some models are not applicable anymore in the artificial intelligence space, at least for the IoT use cases we consider. So, we will not focus on logic-based models, genetic algorithms, or fuzzy logic.

    We will first talk through some initial nomenclature around classifiers and regression.

    Classification

    Classification is a form of supervised learning where the data is used to pick a name, value, or category—for example, using a neural network to scan images to find pictures of a shoe. In this field, there are two variants of classification:

    
      	Binary or binomial classification: When you are picking between one of two groups or categories. For example: coffee versus tea, black versus white.

      	Multiclass classification: When there are more than two groups or categories. For example, classifying fruit may include the set of oranges, bananas, grapes, and apples. A fruit may be an apple or a banana but not both.

    

    We use the Stanford linear classifier tool to help understand the concept of hyperplanes (http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/). The following diagram shows a trained learning system's attempts to find the best hyperplane to divide colored balls. We can see that after several thousand iterations, the division is somewhat optimal, but there still are issues with the top-right region, where the corresponding hyperplane includes a ball that belongs to the top hyperplane. Shown below is an example of a less than optimal classification.

    Here, hyperplanes are used to create artificial segments. The top right shows a single ball that should be classified with the other two balls at the top but was classified to belong to the bottom-right set. The top left also shows a red ball that should be classified with the red balls to the top right, but the hyperplane is incorrectly forcing it to the green cluster.
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    Figure 6: Less than optimal classiﬁcation

    Notice in the preceding example from Stanford that the hyperplane is a straight line. This is called a linear classifier, and it includes such constructs as support vector machines (which attempt to maximize the linearity) and logistic regression (which can be used for binomial class and multiclass fitting). The following graph shows a binomial linear classification of two data sets: circles and diamonds.

    Here, a line attempts to form a hyperplane to divide two distinct regions of variables. Notice the best linear relationship does include errors:
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    Figure 7: Linear classiﬁer

    Nonlinear relationships are also common in machine learning when using a linear model would cause severe error rates. One issue with the nonlinear model is the tendency to overfit the test series. As we will see later, this has the propensity to make the machine learning tool accurate when executed on the training test data, but useless in the field. The following figure is a comparison of a linear versus nonlinear classifier:

    [image: ]
    Figure 8: Here, an nth order polynomial curve attempts to build a much more precise model of the set of data points. Highly precise models tend to ﬁt a known training set well but have failed when presented with real-world data.

    Regression

    Classification is concerned with predicting a discrete value (circle or diamonds), whereas regression models are used to predict a continuous value. For example, regression analysis would be used to predict the average selling price for your home based on the selling prices of all the homes in your neighborhood and surrounding neighborhoods.

    Several techniques exist to form regression analysis: the least squares method, linear regression, and logistic regression.

    The least squares method is the most frequently used method of standard regression and data fitting. Simply put, the method minimizes the sum of the square of all the errors in a set of data. For example, in a two-dimensional x,y plot, the curve fitting of a series of points attempts to minimize the error of all the points on the graph:
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    Figure 9: Linear regression method. Here we attempt to reduce the error in a curve fitting equation by squaring and summing each error value.

    Least squares methods are subject to outlier data that may skew the results incorrectly. It is recommended to scrub the data of outliers. In edge and IoT use cases, this can and most likely should be performed close to the sensors to avoid moving erroneous data in the first place.

    Linear regression is a very common method used in data science and statistical analysis where the relationship between two variables is modeled by fitting a linear equation to them. One variable assumes the role of an explanatory variable (also known as an independent variable), and the other is a dependent variable. Linear regression attempts to find the best-fitting straight line through a set of points. The best-fitting straight line is called the regression line. To compute the regression line a simple slope equation can be used: y=mx + b. 

    However, we can use a statistical approach where Mx is the mean value of the x variable, My is the mean of the y variable, Sx is the standard deviation of x, Sy is the standard deviation of y, and r is the correlation between x and y. The slope then becomes:
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    The intercept (A) becomes:
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    Logistic regression, also known as a sigmoid function, is a form of linear algebra used to model the probability of a class or an event. For example, you could model the probability of a turbine failing depending on the heat surrounding the engine. We are essentially modeling the probability that an input X belongs to class Y=1. Written another way:
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    The probability represented here is binary (0 or 1). This is a key difference from linear regression. The value b0 represents the intercept, and b1 represents the coefficient to be learned. These coefficients must be found through estimation and minimization methods. The best coefficients for logistic regression would have a value close to 1 for the default class and 0 for all other classes.
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    Applying this as a probabilistic function:

    [image: ]
    An example of a logistic regression is to predict whether a cold storage refrigerator can keep food frozen based on outside air temperature. Assume we used a minimization estimation procedure to calculate the b coefficients and found b0 to be -10 and b1 to be 0.5. If the outside temperature is 24 degrees Celsius, the result will be 99.5%. Plugging the values into the equation:
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    Random forest

    A random forest is a subset of another machine learning model called the decision tree. A decision tree, as the diagram at the start of this section shows, is a group of learning algorithms that are part of the statistical set. A decision tree simply takes several variables into consideration and produces a single output that classifies the elements. Each element evaluated is called the set. The decision tree produces a set of probabilities that a path has taken based on the input. One form of a decision tree is the Classification and Regression Tree (CART), developed by Leo Breiman in 1983.

    We now introduce the notion of bootstrap aggregating or bagging. When you have a single decision tree being trained, it is susceptible to noise injected into it and can form a bias. If, on the other hand, you have many decision trees being trained, we can reduce the chance of biasing the result. Each tree will pick a random set of the training data or samples.

    The output of the random forest training processes a decision tree based on a random selection of the training data and a random selection of variables:
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    Figure 10: Random forest model. Here, two forests are constructed to pick a random set, but not the whole set, of variables.

    Random forests extend bagging by not only selecting a random sample set, but also a subset of the number of features being qualified. This can be seen in the preceding image. This is counterintuitive, since you want to train on as much data as possible. The rationale is that:

    
      	Most trees are accurate and provide correct predictions for most data 

      	Errors in the decision tree may happen at different places, in different trees

    

    This is the rule of group think, also called majority decisions. If the outcomes of several trees agree with each other even though they arrived at that decision through different paths and a single tree is an outlier, one will naturally side with the majority. This creates a model with low variance, compared to a single decision tree model, which can be extremely biased. We can see the following example with four trees in a random forest. Each has been trained on a different subset of data, and each has chosen random variables. The result of the flow is that three of the trees produce a result of 9, while the fourth tree produces a different result.

    Regardless of what the fourth tree produced, the majority agreed by a different data set, different variable, and different tree structures that the result of the logic should be a 9:
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    Figure 11: Majority decision of a random forest. Here, several trees based on a random collection of variables arrive at 9 as a decision. Arriving at a similar answer based on different input generally reinforces the model.

    Bayesian models

    Bayesian models are based on Bayes' theorem from 1812. Bayes' theorem describes the probability that an event will occur based on prior knowledge of the system. For example, what is the probability that a machine will fail based on the temperature of the device?

    Bayes' theorem is expressed as:
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    A and B are the events of interest. P(A|B) asks, what is the probability that event A will occur, given event B has occurred? They have no relation to each other and are mutually exclusive.

    The equation can be rewritten using the theorem of total probability, which replaces P(B). We can also extend this to i number of events. P(B|A) is the probability that event B will occur, given event A has occurred. This is the formal definition of Bayes' theorem:
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    In this case, we are dealing with a single probability and its complement (pass/fail). The equation can be rewritten as:
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    An example follows. Supposing we have two machines producing identical parts for a widget. Say a machine can fail if its temperature exceeds a certain value. Machine A will fail 2% of the time if the temperature exceeds a certain temperature. Machine B will fail 4% of the time if it exceeds a certain temperature. Machine A produces 70% of the parts, and machine B produces the remaining 30%. If I pick up a random part and it fails, what is the probability it was produced by machine A and what is the probability it was produced by machine B?

    In this case, A is an item produced by machine A, and B is an item produced by machine B. F represents the failed chosen part. We know:

    
      	P(A) = 0.7

      	P(B) = 0.3

      	P(F|A) = 0.02 

      	P(F|B) = 0.04

    

    Therefore, the probability you pick a defective part from machine A or B is:
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    Replacing the values:
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    Therefore, P(A | F) = 53%, and P(B | F) is the complement (1 - 0.53) = 47%.

    A Bayesian network is an extension of Bayes' theorem in the form of a graphical probability model, specifically a directed acyclic graph. Notice the graph flows one way, and there are no loopbacks to previous states; this is a requirement of the Bayesian network:

    [image: A picture containing electronics  Description automatically generated]
    Figure 12: Bayesian network model

    Here, the various probabilities of each state come from expert knowledge, historical data, logs, trends, or combinations of these. This is the training process for a Bayesian network. These rules can be applied to a learning model in an IoT environment. As sensor data streams in, the model could predict machine failures. Additionally, the model could be used to make inferences. For example, if the sensors are reading an overheating condition, one could infer that there is a probability it may be related to the speed of the machine, or an obstruction.

    There are variants of Bayesian networks that go beyond the scope of this book, but have benefits for certain types of data and problem sets:

    
      	Naive Bayes

      	Gaussian naive Bayes

      	Bayesian belief networks

    

    A Bayesian network is good for environments in IoT that can't be completely observed. Additionally, in a situation where the data is unreliable, Bayesian networks have an advantage. Poor sample data, noisy data, and missing data have less of an effect on Bayesian networks than other forms of predictive analytics. The caveat is that the number of samples will need to be very large. Bayesian methods also avoid the overfitting problem, which we will discuss later when we look at neural networks. Additionally, Bayesian models fit well with streaming data, which is a typical use case in IoT. Bayesian networks have been deployed to find aberrations in signals and time-correlated series from sensors and also to find and filter malicious packets in networking.

    Convolutional neural networks

    A CNN is a form of artificial neural network in machine learning. We will first inspect the CNN and then move on to the RNN. A CNN has proven to be very reliable and accurate at image classification, and is used in IoT deployments for visual recognition, especially in security systems. It is a good starting point to understand the process and mathematics behind any artificial neural network. Any data that can be represented as a fixed bitmap (say, a 1024 x 768-pixel image in three planes). A CNN attempts to classify an image to a label (for example, cat, dog, fish, bird) based on an additive set of decomposable features. The primitive features that compose image content are built up from small sets of horizontal lines, vertical lines, curves, shades, gradient directions, and so on.

    First layer and filters

    This basic set of features in the first layer of a CNN would be feature identifiers such as small curves, tiny lines, color splotches, or small distinguishing features (in the case of image classifiers). The filters will convolve around the image looking for similarities. The convolution algorithm will take the filter and multiply-sum the resultant matrix values. Filters activate when a specific feature results in a high-activation value:
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    Figure 13: The first layer of a CNN. Here, large primitives are used to pattern match input.

    Max pooling and subsampling

    The next layer will typically be a pooling or max pooling layer. This layer will take as input all the values derived from the last layer. It then returns the maximum value for a set of neighbor neurons, which is used as input to a single neuron in the next convolution layer. This is essentially a form of subsampling. Typically, the pooling layer will be a 2x2 subregion matrix as the result:
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    Figure 14: Max pooling. Attempts to ﬁnd the maximum value in a sliding window across an image.

    Pooling has several options: maximizing (as shown in the preceding diagram), averaging, and other sophisticated methods. The purpose of max pooling is to state that a particular feature was found within a region of the image. We don't need to know the exact position, just a general locality. This layer also recurs the dimensions we have to deal with, which ultimately affect the neural network performance, memory, and CPU usage. Max pooling also controls overfitting. Researchers have learned that if the neural network becomes finely tuned to images without this type of subsampling, it will work well on the training set of data it was programmed with but will fail miserably with real-world images.

    The fundamental deep learning model

    The second convolutional layers use the results of the first layer as input. Remember, the input to the first layer was the original bitmap. The output of the first layer actually represents the location in the 2D bitmap where a specific primitive was seen. The features of the second layer are more comprehensive than the first. The second layer would have composite structures such as splines and curves. Here, we will describe the role of the neuron and the computations necessary to force an output from a neuron.

    The role of the neuron is to input the sum of all the weights entering it against the pixel values. In the following graph, we see the neuron accepting inputs from the previous layer in the form of weights and bitmap values. 

    The role of the neuron is to sum the weights and values and force them through an activation function as input to the next layer:
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    Figure 15: CNN basic element. Here, the neuron is a basic unit of computing with weights and other bitmap values taken as input. The neuron ﬁres (or not) based on the activation function.

    The equation for the neuron function is:

    [image: ]
    This can be a very large matrix multiplication problem. The input image is flattened into a one-dimensional array. The bias provides a method to influence the output without interacting with the real data. In the following diagram, we see an example of a weight matrix multiplied by a flattened one-dimensional image and with the added bias. Note that in actual CNN devices you can add the bias to the weight matrix and add a single 1.0 value to the bottom of the bitmap vector as a form of optimization. Here, the second value in the result matrix of 29.6 is the value chosen:
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    Figure 16: Matrix relationship of CNN. Here, the weights and bitmap are matrix multiplied and added to a bias.

    The input values are multiplied by the weighting on each entering the neuron. This is a simple linear transform in matrix math. That value needs to pass through an activation function to determine whether the neuron should fire. A digital system built on transistors takes voltages as input, and if the voltage meets a threshold value, the transistor switches on. 

    The biological analog is the neuron that behaves nonlinearly to the input. Since we are modeling a neural network, we attempt to use nonlinear activation functions. Typical activation functions that can be chosen include:

    
      	Logistic (sigmoid)

      	tanH

      	Rectified linear unit (ReLU)

      	Exponential linear unit (ELU) sinusoidal

    

    The sigmoid activation function is:
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    Without a sigmoid (or any type of activation function) layer, the system would be a linear transformation function and have substantially less accuracy for image or pattern recognition.

    CNN examples
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    Figure 17: Four-layer CNN. Here, an image is convolved to extract large features based on primitives and then use a max pool to scale the image down and feed it as input to the feature ﬁlters. The fully connected layer ends the CNN path and outputs the best guess.

    An example of primitive features that compose the layers comes courtesy of TensorFlow (http://playground.tensorflow.org). The TensorFlow example of a system with six features on input layer 1, followed by 33 hidden layers of four neurons, followed by two neurons and ending with two more is shown in the following diagram. In this model, the features attempt to classify the color groupings of dots.

    Here, we attempt to find the optimal set of features that describe a spiral of two colored balls. The initial feature's primitives are basically lines and stripes. These will combine and be strengthened through the trained weightings to describe the next layer of blobs and splotches. As you move to the right, more detailed and composite representations form.

    This test ran several thousand epochs in an attempt to show the regions that describe a spiral on the right. You can see the output curve on the upper right, which indicates the amount of error in the training process. Errors actually spiked in the middle of the training run, as chaotic and random effects were seen during backpropagation. The system then healed and optimized to the final result. The lines between neurons indicate the strength of the weight in describing the spiral pattern:

    [image: A close up of a map  Description automatically generated]
    Figure 18: Example CNN in TensorFlow Playground. Courtesy of Daniel Smilkov and TensorFlow Playground under Apache License 2.0.

    In the preceding image, a CNN is modeled using a learning tool called TensorFlow Playground. Here, we see the training of a four-layer neural network whose goal is to classify a spiral of different colored balls. The features on the left are the initial primitives, such as horizontal color changes or vertical color changes. The hidden layers are trained through backpropagation. The weighting factor is illustrated by the thickness of a line to the next hidden layer. The result is shown at the right, after several minutes of training.

    The last layer is a fully connected layer, so called because it is required that every node in the final layer is connected to every node in the preceding level. The role of the fully connected layer is to finally resolve the image to a label. 

    It does this by inspecting the output and features of the last layer and determining that the set of the features corresponds to a particular label, such as a car. A car will have wheels, glass windows, and so on; meanwhile a cat will have eyes, legs, fur, and so forth.

    Vernacular of CNNs

    The use of CNNs includes a litany of terms and constructs. TensorFlow Playground is a good tool to understand the behavior and effect of different models, feature identifiers, and the role batch sizes and epochs play in training a model. The following image is a mark-up on TensorFlow Playground describing the different terminology and parameters that compose a CNN model.
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    Figure 19: The different parameters of CNN deep learning models. In particular note the effects of batch sizes, epochs, and learning rate.

    Forward propagation, CNN training, and backpropagation

    We have seen the process of feedforward propagation as a CNN executes. Training a CNN relies on the process of backpropagation of errors and gradients, deriving a new result, and correcting errors over and over. 

    The same network, including all pooling layers, activation functions and matrices, is used as the backward propagation flows through the network in attempts to optimize or correct the weighting:
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    Figure 20: CNN forward propagation during training and inference

    Backpropagation is short for "back propagation of errors." Here an error function will calculate the gradient of an error function based on the neural network weights. The calculation of the gradient is forced backward through all the hidden layers. Shown below is the backpropagation process:
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    Figure 21: CNN backward propagation during training

    We will now explore the training process. First, we must provide a training set for the network to normalize to. The training set and feature parameters are crucial in developing a well-behaving system in the field. The training data will have an image (or just bitmap data) and a known label. This training set is iterated against using the backpropagation technique to ultimately build a neural network model that produces the most accurate classifications or predictions. Too small a training set will produce poor results. For example, if you were building a device to classify all brands of shoes, you would need more than a single image of a particular shoe brand. You want the set to include different shoes, different colors, different brands, and different images using various lighting and angles.

    Second, the neural network is composed of identical initial values or random values for each weight on each neuron that needs to be trained. The first forward pass results in substantial errors that go into a loss function:
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    Here, the new weights are based on the previous weight W(t - 1) minus the partial derivative of the error E over the weight W (loss function). This is also called the gradient. In the equation, lambda refers to the learning rate. This is up to the designer to tune. If the rate is high (greater than 1), the algorithm will use larger steps in the trial process. This may allow the network to converge to an optimal answer faster, or it could produce a poorly trained network that will never converge to a solution. Alternatively, if lambda is set low (less than 0.01), the training will take very small steps and much longer to converge, but the accuracy of the model may be better. In the following example, the optimal convergence is the very bottom of the curve representing error and weights. This is called the gradient descent. If the learning rate is too high, we could never reach the bottom and have to settle for a near bottom toward one of the sides:
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    Figure 22: Global minimum. This illustration shows the basis of a learning function. The goal is to ﬁnd the minimal value through a gradient descent. The accuracy of the learning model is proportional to the number of steps (time) taken to converge to a minimum.

    Finding a global minimum of an error function isn't guaranteed. That is, a local minimum may be found and resolved as a false global minimum. The algorithm often will have trouble escaping the local minimum once found. In the next graph, you see the correct global minimum and how a local minimum may be settled upon:
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    Figure 23: Errors in training. We see the true global minimum and maximum. Depending on factors such as the training step size or even the initial starting point of the descent, a CNN could be trained to a false minimum.

    While a neural network trains and attempts to find the global minimum, a problem arises called the vanishing gradient problem. As the weights in the neural network are updated the gradient may become artificially very small. This has the effect that the weight may not change its value. It may even stop a neural network from further training altogether. The TensorFlow Playground example uses an activation function whose values range from -1 to 1. When the neural network completes an epoch and backpropagates the errors to recalculate the weights, you may reach a point where the error signal (gradient) decreases exponentially and the system may train extremely slowly. The following example from TensorFlow Playground illustrates how the neural network stopped training due to the vanishing gradient problem after 1300 epochs. Further training of the model achieved no further accuracy.

    To alleviate the problem, techniques such as long short-term memory (covered in the Recurrent neural networks section) may help; fast hardware and fine-tuning the correct features and training parameters can be useful.

    We can see that there is still some degree of error that the training could not resolve:
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    Figurev 24: TensorFlow training example. The first image is the result of 100 epochs using a batch size of 10. The second image is the result after 400 epochs. The final result is after 1316 epochs and 10 minutes of training on a 3 GHz i7 processor. Note the final result shows incorrectly classified "balls" on the bottom left and top right area of the spiral. Courtesy of Daniel Smilkov and TensorFlow Playground under Apache License 2.0.

    Here, we see the training progress (from left to right) with more accuracy. The left illustration clearly shows the heavy influence of the horizontal and vertical primitive features. After a number of epochs, the training starts converging on the true solution. Even after 1316 epochs, there are still some error cases where the training didn't converge on the correct answer.

    Loss will be especially heavy during the initial runs of the network. We can visualize that with TensorFlow Playground. Here again, we are training a neural network to identify spirals. At first in the training, the loss is heavy at 0.516. After 1531 epochs, we arrive at this network's weights and a loss of 0.061.

    It is good to understand the difference between batches and epochs during the training process:

    
      	Batch: This refers to the number of training samples that are processed before a prediction is made and the weights are adjusted in the model.

      	Epoch: This refers to the number of iterations the training runs through the entire training data set. This is usually very high for well-trained models.

      	Learning rate: This is a parameter that controls the gradient. It can be adjusted, but the risk is the gradient descent problem.

    

    For example, say you have 200 images of different shoes that you are using to train a deep learning model to detect shoe brands. You start by training using 1000 epoch iterations to manage product schedules and maintain shipping dates.

    If you set a batch size of 5, then you will iterate through five images before correcting the model.

    The 5 images result in 40 training sets out of the 200 images. This implies that there are 40 batches of images to process the entire training set. Each time you go through the training set, you complete one epoch.

    Therefore, there are 40 batches * 1000 epochs, or 40,000 training sessions in total.

    
      Training can deliver unpredictable results. It takes training to understand how the various parameters affect the results. It also is a balance between the learning rate and the number of epochs to achieve the best model (e.g. the least loss on a training set). Reducing the learning rate or increasing the number of epochs doesn't necessarily mean you will achieve the best model. The following figure illustrates this point.

      A very high learning rate will often produce the worst model.

      A good (balanced) learning rate may not produce the best results compared to a high learning rate within a short number of epochs. However, over time it will generally train with the best results.
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    Figure 25: Example of learning rates and epochs as a function of accuracy (loss) in deep learning training. A balanced approach to training and learning rate is usually best for CNN models.

    Recurrent neural networks

    RNNs, or recurrent neural networks, constitute a separate field of machine learning and are extremely important and relevant to IoT data. The big difference between an RNN and a CNN is that a CNN processes input on fixed-size vectors of data. Think of them as two-dimensional images—that is, a known-size input. CNNs also pass from layer to layer as fixed-sized units of data. An RNN has similarities but is fundamentally different: instead of taking a fixed-size chunk of image data, it has as input a vector and as output another vector. At its heart, the output vector is influenced not by that single input we just fed it, but by the entire history of inputs it was fed. That implies an RNN understands the temporal nature of things or can be said to maintain state. There is information to be inferred from the data, but also from the order the data was sent.

    RNNs are of particular value in the IoT space, especially in time-correlated series of data, such as describing a scene in an image, describing the sentiment of a series of text or values, and classifying video streams. Data may be fed to an RNN from an array of sensors that contain a (time:value) tuple. That would be the input data to send to the RNN. In particular, such RNN models can be used in predictive analytics to find faults in factory automation systems, evaluate sensor data for abnormalities, evaluate timestamped data from electric meters, and even to detect patterns in audio data. Signal data from industrial devices is another great example. An RNN could be used to find patterns in an electrical signal or wave. A CNN would struggle with this use case. An RNN will run ahead and predict what the next value in a sequence will be if the value falls out of the predicted range, which could indicate a failure or significant event:
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    Figure 26: The main difference between an RNN and a CNN is the reference to time or sequence order

    If you were to examine a neuron in an RNN, it would look as if it were looping back on itself. Essentially, the RNN is a collection of states going back in time. This is clear if you think of unrolling the RNN at each neuron:
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    Figure 27: RNN neuron. This illustrates the input from previous step xn-1 feeding the next step xn as the basis of the RNN algorithm.

    The challenge with RNN systems is that they are more difficult to train over a CNNs or other models. Remember, CNN systems use backpropagation to train and reinforce the model. RNN systems don't have the notion of backpropagation. Anytime we send input into the RNN, it carries a unique timestamp. This leads to the vanishing gradient problem discussed earlier, which reduces the learning rate of the network to be useless. A CNN is also exposed to a vanishing gradient, but the difference with an RNN is that the depth of the RNN can go back many iterations, whereas a CNN traditionally has only a few hidden layers. For example, an RNN resolving a sentence structure like A quick brown fox jumped over the lazy dog will extend back nine levels. The vanishing gradient problem can be thought of intuitively: if weights in the network are small, then the gradient will shrink exponentially leading the vanishing gradient. If the components of the weights are large, then the gradient will grow exponentially and possibly explode, causing a NaN (not a number error). Exploding leads to an obvious crash, but the gradient is usually truncated or capped before that occurs. A vanishing gradient is harder for a computer to deal with.

    One method to overcome this effect is to use the ReLU activation function mentioned in the CNN section. This activation function delivers a result of 0 or 1, so it isn't prone to vanishing gradients. Another option is the concept of long short-term memory (LSTM), which was proposed by researchers Sepp Hochreiter and Juergen Schmidhuber. (Long Short-Term Memory, Neural Computation, 9(8):1735-1780, 1997.) LSTM solved the vanishing gradient issue and allowed an RNN to be trained. 

    Here, the RNN neuron consisted of three or four gates. These gates allow the neurons to hold state information and are controlled by logistic functions with a value between 0 and 1:

    
      	Keep gate K: Controls how long a value will remain in memory

      	Write gate W: Controls how much a new value will affect memory

      	Read gate R: Controls how much a value in memory is used to create the output activation function

    

    You can see that these gates are somewhat analog in nature. The gates vary how much information will be retained. The LSTM cell will trap errors in the memory of the cell. This is called the error carousel and allows the LSTM cell to backpropagate errors over long time periods. The LSTM cell resembles the following logical structure where the neuron is essentially the same, in terms of outward appearances, as a CNN, but internally it maintains state and memory. The LSTM cell of the RNN is illustrated as follows:
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    Figure 28: LSTM cell. Here is the RNN basic algorithm using internal memory to process arbitrary sequences of inputs.

    An RNN builds up memory in the training process. This is seen in the diagram as the state layer under a hidden layer. An RNN is not searching for the same patterns across an image or bitmap like a CNN; rather, it is searching for a pattern across multiple sequential steps (which could be time). 

    The hidden layer and state layer complement are shown in the following diagram:
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    Figure 29: Hidden layers are fed from previous steps as additional inputs to the next step

    One can see the amount of computation in training with the LSTM logistical math, as well as how the regular backpropagation is heavier than a CNN. The process of training involves backpropagating gradients through the network all the way to time zero. However, the contribution of a gradient from far in the past (say, time zero) approaches zero and will not contribute to the learning.

    A good use case to illustrate an RNN is a signal analysis problem. In an industrial setting, you can collect historical signal data and attempt to infer from it whether a machine was faulty or there were runaway thermals in some component. A sensor device would be attached to a sampling tool, and a Fourier analysis performed on the data. The frequency components could then be inspected to see if a particular aberration was present. In the following graph, we have a simple sine wave that indicates normal behavior, perhaps of a machine using cast rollers and bearings. We also see two aberrations introduced (the anomaly). A fast Fourier transform (FFT) is typically used to find aberrations in a signal based on the harmonics. Here, the defect is a high-frequency spike similar to a Dirac delta or impulse function.
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    Figure 30: RNN use case. Here, a waveform with an aberration from audio analysis could be used as input to an RNN.

    We see the following FFT registers only the carrier frequency and doesn't see the aberration:
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    Figure 31: High frequency spike via an FFT

    An RNN specifically trained to identify the time-series correlation of a particular tone or audio sequence is a straightforward application. In this case, an RNN could replace an FFT, especially when multiple sequences of frequencies or states are used to classify a system, making it ideal for sound or speech recognition.

    Industrial predictive maintenance tools rely on this type of signal analysis to find thermal and vibration-based failures of different machines. This traditional approach has limits, as we see. A machine learning model (especially an RNN) can be used to inspect the incoming stream of data for particular feature (frequency) components and could find point failures as shown in the preceding graph. Raw data, shown in the previous graph, is arguably never as clean as a sine wave. Usually, the data is quite noisy with periods of loss.

    Another use case is around sensor fusion in healthcare. Healthcare products, like glucose monitors, heart rate monitors, fall indicators, respiratory meters, and infusion pumps, will transmit periodic data samples, or may send a stream of data. All these sensors are independent of each other, but together comprise a picture of patient health. They also are time-correlated. An RNN can bridge this unstructured data in aggregate and predict patient health, all dependent on the patient's activity throughout the day. This can be useful for home health monitoring, sports training, rehabilitation, and geriatric care.

    You must be careful with RNNs. While they can make good inferences on time series data and predict oscillations and wave behaviors, they may behave chaotically and are very difficult to train.

    Training and inference for IoT

    While neural networks offer significant advantages of having a machine behave closer to a human in the areas of perception, pattern recognition, and classification, it is primarily up to the training to develop a model that works well with low loss, no overfitting, and adequate performance. In the IoT world, latency is a large issue, especially for safety-critical infrastructure. Resource constraints is another factor. Most of the edge computing devices that exist today do not have hardware accelerators such as General-Purpose Computation on Graphics Hardware (GPGPU) and field-programmable gate arrays (FPGAs) at their disposal to assist with the heavy matrix math and floating point surrounding neural networks. Data could be sent to the cloud, but that may have significant latency effects as well as bandwidth costs. The OpenFog group is provisioning a framework where edge fog nodes may be provisioned with additional compute resources and pulled on demand to provide assistance with the heavy lifting of these algorithms.

    Training, for now, should be the realm of the cloud, where the computing resources are available and test sets can be created. The edge devices should report to the cloud parent when a training model fails, or if new data appears that requires a retraining effort. The cloud allows for a train once-deploy many concept, which is a strength. Alternatively, it is wise to consider training on a regional basis with bias. 

    The concept here is that fog nodes in particular regions may be more sensitive to certain patterns that are environmentally different. For example, monitoring temperature and humidity on equipment in the field in the Arctic will differ significantly to a tropical region.

    The following table illustrates the CPU processing required for training. Generally, thousands to millions of images are needed to successfully train a model. The processors and GPUs shown come with a substantial cost and power demand that don't necessarily make sense to run at the edge.

    
      
        
        
      
      
        
          	
            Processor
          
          	
            TensorFlow speed of training (images/second)
          
        

        
          	
            AMD Opteron 6168 (CPU)

          
          	
            440

          
        

        
          	
            Intel i7 7500U (CPU)

          
          	
            415

          
        

        
          	
            Nvidia GeForce 940MX (GPU)

          
          	
            1190

          
        

        
          	
            Nvidia GeForce 1070

          
          	
            6500

          
        

        
          	
            Nvidia RTX2080

          
          	
            17000

          
        

      
    

    The edge is more adept at running trained models in an inference mode. However, deploying inference engines needs to be architected well. Some CNN networks such as AlexNet have 61 million parameters, consume 249 MB of memory, and perform 1.5 billion floating point operations to classify a single image.

    Reduced precision, pruning, and other techniques to perform first-run heuristics on image data are better suited for edge devices. Additionally, preparing data for upstream analytics can also help. Examples include:

    
      	Sending upstream: Only data that meets a specific condition (time, event of interest)

      	Data scrubbing: Reduce, crop, and clip a data set to only relevant content

      	Segment: Force data into grayscale to reduce traffic and prepare it for a CNN

    

    IoT data analytics and machine learning comparison and assessment

    Machine learning algorithms have their place in IoT. The typical case is when there is a plethora of streaming data that needs to produce some meaningful conclusion. A small collection of sensors may only need a simple rules engine on the edge in a latency-sensitive application. Others may stream data to a cloud service and apply rules there for systems with less-aggressive latency demands. 

    When large amounts of data, unstructured data, and real-time analytics come into play, we need to consider the use of machine learning to solve some of the hardest problems.

    In this section, we detail some tips and reminders in deploying machine learning analytics, and what use cases may warrant such tools.

    Training phase:

    
      	For a random forest, use bagging techniques to create ensembles.

      	When using a random forest, ensure you maximize the number of decision trees.

      	Watch overfitting. Overfitting will lead to inaccurate field models. Techniques such as regularization and even injecting noise into a system will reinforce the mode.

      	Don't train on the edge.

      	Gradient descent will lead to errors. RNNs naturally are susceptible.

    

    Model in field:

    
      	Update the model with new data sets as they become available. Keep the training set current.

      	Running models on the edge can be reinforced with larger and more comprehensive models in the cloud.

      	Neural network execution can be optimized in the cloud and at the edge with a minimum of loss by considering techniques such as pruning nodes and reducing precision.
          
            
            
            
            
            
          
          
            
              	Model
              	Best Application
              	Worst Fit and Side Effects
              	Resource Demands
              	Training
            

            
              	
                Random forests (statistical models)

              
              	
                Anomaly detection

                Systems with thousands of choice points and hundreds of inputs

                Regression and classiﬁcation

                Handles mixed data types

                Ignores missing values

                Scales linearly with input

              
              	
                Feature extraction

                Time and sequence analysis

              
              	
                Low

              
              	
                Training based on bagging techniques for maximum effectiveness

                Training fairly resource-light

                Mainly supervised

              
            

            
              	
                RNN 

                (temporal and sequence- based neural networks)

              
              	
                Prediction of an event based on a sequence

                Streaming data patterns

                Time-correlated series data

                Maintains knowledge of past states to predict new states (electrical signals, audio, speech recognition)

                Unstructured data

                Input variables may or may not be dependent

              
              	
                Image and video analysis

                Models that use thousands of features.

              
              	
                Very high for training

                High for inference execution

              
              	
                Training more cumbersome than CNN backpropagation

                Very hard to train

                Supervised

              
            

            
              	
                CNN

                (deep learning)

              
              	
                Prediction of an object based on surrounding values

                Pattern and feature identiﬁcation

                2D image recognition

                Unstructured data

                Input variables may or may not be dependent

              
              	
                Time-based and sequential predictions

                Models that use thousands of features. 

              
              	
                Very high for training (ﬂoating point precision, large training sets, large memory demands)

                High for inference execution

              
              	
                Supervised and unsupervised

              
            

            
              	
                Bayesian networks (probabilistic models)

              
              	
                Noisy and incomplete data sets

                Streaming data patterns

                Time-correlated series

                Structured data

                Signal analysis

                Models developed quickly

              
              	
                Assumes all input variables are independent

                Performs poorly with high orders of data dimensions

              
              	
                Low

              
              	
                Little training data need with respect to other artiﬁcial neural networks

              
            

          
        

      

    

    Summary

    This chapter was a brief introduction to data analytics for IoT in the cloud and in the fog. Data analytics is where the value is extracted out of the sea of data produced by millions or billions of sensors. Analytics is the realm of the data scientist and consists of attempts to find hidden patterns and develop predictions from an overwhelming amount of data. To be valuable, all this analysis needs to be at or near real time to make life-critical decisions. You need to understand the problem being solved and the data necessary to reveal the solution. Only then can a data analysis pipeline be architected well. This chapter exposed several data analysis models as well as an introduction to the four relevant machine learning domains.

    These analytics tools are the heart of value in IoT to derive meaning from the nuances of massive amounts of data in real time. Machine learning models can predict future events based on current and historical patterns. We see how RNN and CNN cases satisfy this context through proper training. As an architect, the pipeline, storage, models, and training all need to be considered.

    In the next chapter, we will talk about the security of IoT from a holistic point of view, from the sensor to the cloud. We will examine specific real-world attacks on IoT in recent years, as well as methods to counter such attacks in the future.
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    IoT and Edge Security

    The first chapter of this book revealed the size, growth, and potential of the Internet of Things (IoT). There are currently billions of devices, and the double-digit growth of connecting the analog world to the Internet also forms the largest attack surface on Earth. Exploits, damage, and rogue agents have already been developed, deployed, and spread globally, disrupting countless businesses, networks, and lives. As architects, we are responsible for understanding the IoT stack of technologies and securing them. As we place devices that have never been connected to the Internet, as good citizens, we are accountable for designing them.

    This has been particularly difficult for many IoT deployments, with security often being thought of last. Frequently, systems are so constrained that building enterprise-level security that modern web and PC systems enjoy is difficult if not impossible on simple IoT sensors. This book also talks about security after all other technologies have been understood. However, every chapter has touched on the provisions of security at each level.

    This chapter will explore some particularly heinous IoT-focused attacks and give thought to how weak security is in IoT and how much damage can be done. Later, we discuss the security provisions at each level of the stack: physical devices, communication systems, and networks. We then address software-defined perimeters and blockchains used to secure value in IoT data. The chapter wraps up by examining the United States Cybersecurity Improvement Act of 2017 and what it could mean for IoT devices.

    The most important thing in security is to use it at all levels from the sensor to the communication system, router, and cloud.

    Cybersecurity vernacular

    Cybersecurity has an associated set of definitions describing different types of attacks and provisions. This section briefly covers the jargon of the industry as presented in the rest of this chapter.

    Attack and threat terms

    The following are the terms and definitions of different attacks or malevolent cyber threats:

    
      	Amplification attack: Magnifies the bandwidth sent to a victim. Often an attacker will use a legitimate service such as NTP, Steam, or DNS to reflect the attack upon a victim. NTP can amplify 556x, and DNS amplification can escalate the bandwidth by 179x.

      	ARP spoof: A type of attack that sends a falsified ARP message resulting in linking the attacker's MAC address with the IP of a legitimate system.

      	Banner scans: A technique typically used to take inventory of systems on a network that can also be used by an attacker to gain information about a potential attack target by performing HTTP requests and inspecting the returned information of the operating system (OS) and computer (for example, nc www.target.com 80).

      	Botnets: Internet-connected devices infected and compromised by malware working collectively by common control, mostly used in unison to generate massive DDoS attacks from multiple clients. Other attacks include email spamming and spyware.

      	Brute force: A trial-and-error method to gain access to a system or bypass encryption.

      	Buffer overflow: Exploits a bug or defect in running software that simply overruns a buffer or memory block with more data than allocated. This overrun can write over other data in adjacent memory addresses. An attacker can lay malicious code in that area and force the instruction pointer to execute from there. Compiled languages such as C and C++ are particularly susceptible to buffer overflow attacks since they lack internal protection. Most overflow bugs are the result of poorly constructed software that does not check the bounds of input values.

      	C2: Command and control server that marshals commands to botnets.

      	Correlation power analysis attack: Allows one to discover secret encryption keys stored in a device through four steps:
          	Examine a target's dynamic power consumption and record it for each phase of the normal encryption process.

          	Next, force the target to encrypt several plaintext objects and record their power usage.

          	Next, attack small parts of the key (subkeys) by considering every possible combination and calculating the Pearson correlation coefficient between the modeled and actual power.

          	Finally, put together the best subkey to obtain the full key.

        

      

      	Dictionary attack: A method of gaining entry to a network system by systematically entering words from a dictionary file containing the username and password pairs.

      	Distributed denial-of-service (DDoS): An attack attempting to disrupt or make an online service unavailable by overwhelming it from multiple (distributed) sources.

      	Fuzzing: An attack that consists of sending malformed or nonstandard data to a device and observing how the device reacts. For example, if a device performs poorly or shows adverse effects, the fuzz attack may have exposed a weakness.

      	Man-in-the-middle attack (MITM): A common form of attack that places a device in the middle of a communication stream between two unsuspecting parties. The device listens, filters, and appropriates information from the transmitter and retransmits selected information to the receiver. A MITM may be in the loop acting as a repeater or can be sideband listening to the transmission without intercepting the data.

      	NOP sleds: A sequence of injected NOP assembly instructions used to "slide" a CPU's instruction pointer to the desired area of malicious code. It is usually part of a buffer overflow attack.

      	Replay attack: A network attack, also known as a playback attack, where data is maliciously repeated or replayed by the originator or an adversary who intercepts the data, stores the data, and transmits it at will.

      	RCE exploit: Remote code execution that enables an attacker to execute arbitrary code. This usually comes in the form of a buffer overflow attack over HTTP or other network protocols that injects malware code.

      	Return-oriented programming (ROP) attack: A difficult security exploit an attacker may use to potentially subvert protections with nonexecuting memory or executing code from read-only memory. If an attacker gains control of a process stack through a buffer overflow or some other means, they may jump to legitimate and unchanged sequences of instructions already present. The attacker looks for sequences of instructions to call gadgets that can be pieced together to form a malevolent attack.

      	Return-to-libc: A type of attack that starts with a buffer overflow where the attacker injects code to jump to libc or other popularly used libraries in the processes' memory space in an attempt to call system routines directly. Bypasses the protection offered by non-executable memory and guard bands. This is a specific form of ROP attack.

      	Rootkit: Typically, malicious software (although often used to unlock smartphones) used to enable other software payloads to be undetectable. Rootkits use several targeted techniques such as buffer overflows to attack kernel services, hypervisors, and user mode programs.

      	Side-channel attack: An attack used to gain information from a victim's system by observing the secondary effects of the physical system rather than finding runtime exploits or zero-day exploits. Examples of side-channel attacks include correlation power analysis, acoustic analysis, and reading data residue after it has been deleted from memory.

      	Social engineering: As it pertains to information security, a form of attack based on psychological manipulation and personal deception to obtain private information.

      	Spoofing: Malicious party or device impersonates another device or user on a network.

      	SQL injection: A form of attack intent on destroying database contents. It is used upon databases using structured query language (SQL) statements.

      	SYN flood: Occurs when a host sends a TCP:SYN packet that a rogue agent will spoof and forge. This will cause the host to create half-open connections to many nonexistent addresses causing the host to exhaust all resources.

      	XSS: A vulnerability, also called cross-site scripting, in web applications where attackers inject client-side scripts. It was the most prevalent form of information attacks up until 2007. 

      	Zero-day exploits: Security defects or bugs in commercial or production software unknown to the designer or manufacturer.

    

    Defense terms

    The following are the terms and definitions of different cyber defense mechanisms and technologies:

    
      	Address space layout randomization (ASLR): A defense mechanism that protects memory and thwarts buffer overflow attacks by randomizing where an executable is loaded in memory. A buffer overflow injecting malware cannot predict where it will be loaded in memory, thus manipulating the instruction pointer becomes extremely challenging. Protects against return-to-libc attacks.

      	Black hole (sinkhole): Defends against DDoS attacks. After detecting a DDoS attack, routes are established from the affected DNS server or IP address to force rogue data to a black hole or a nonexistent endpoint. Sinkholes perform further analysis to filter out good data.

      	Data Execution Prevention (DEP): Marks an area as executable or non-executable. This prevents an attacker from running code maliciously injected into such a region via a buffer overflow attack. The result is a system error or exception.

      	Deep packet inspection (DPI): A method of inspecting each packet (data and possibly header information) in a data stream to isolate intrusions, viruses, spam, and other criteria being filtered.

      	Firewall: A network security construct that grants or rejects network access to packet streams between an untrusted zone and a trusted zone. Traffic can be controlled and managed through access control lists (ACLs) on routers. Firewalls can perform stateful filtering and provide rules based on destination ports and traffic state.

      	Guard bands and non-executable memory: Protects regions of memory that are writeable and not executable. Protects against NOP sleds. Intel: NX bit, ARM XN bit.

      	Honeypots: Security tool to detect, deflect, or reverse engineer malicious attacks. Honeypots appear as legitimate websites or accessible nodes in a network but are actually isolated and monitored. Data and interactions with the device are logged.

      	Instruction-Based Memory Access Control: A technique to separate the data portion of a stack from the return address portion. This technique helps protect against ROP attacks and is particularly useful in constrained IoT systems.

      	Intrusion detection system (IDS): A network construct to detect threats in a network through the out-of-band analysis of the packet stream; therefore, not inline with the source and destination so as to affect real-time response.

      	Intrusion prevention system (IPS): Blocks threats to a network via true inline analysis and statistical or signature detection of threats.

      	Milkers: A defensive tool that emulates an infected botnet device and attaches to its malevolent host allowing one to understand and "milk" the malware commands being sent to the controlled botnet.

      	Port scanning: A method to find an open and accessible port on a local network.

      	Public key: A public key is generated with a private key and is accessible to external entities. A public key can be used to decrypt hashes.

      	Public key infrastructure (PKI): Provides a definition of hierarchies of verifiers to guarantee the origin of a public key. A certificate is signed by CAs.

      	Private key: Generated with a public key, never released externally, and stored securely. It is used to encrypt hashes.

      	Root of Trust (RoT): Starts execution on a cold booting device from an immutable trusted source of memory (such as ROM). If early boot software/BIOS can be changed without control, then no RoT exists. The RoT is usually the first phase in a multiphase secure boot.

      	Secure boot: A series of boot steps for a device that starts at a RoT and proceeds through OS and application loading where each component signature is verified as authentic. Verification is performed through public keys loaded at previous trusted boot stages.

      	Stack canaries: Guards process stack space from stack overruns and prevents the execution of code from a stack.

      	Trusted execution environment (TEE): A secure area of a processor that ensures code and data residing within this zone is protected. This is usually an execution environment on the main processor core where the code for secure booting, monetary transfers, or private key handling will be executed with a higher level of security than the majority of the code.

    

    Anatomy of IoT cyber attacks

    The area of cybersecurity is a broad and massive topic beyond the scope of this chapter. However, it is useful to understand three types of IoT-based attacks and exploits. Since the topology of the IoT consists of hardware, networking, protocols, signals, cloud components, frameworks, operating systems, and everything in between, we will now detail three forms of prevalent attacks:

    
      	Mirai: The most damaging DoS attack in history, which spawned from insecure IoT devices in remote areas.

      	Stuxnet: A nation-state cyber weapon targeting industrial SCADA IoT devices controlling uranium enrichment centrifuges and causing substantial and irreversible damage to Iran's nuclear program.

      	Chain Reaction: A research method to exploit PAN using nothing but a lightbulb—no Internet needed.

    

    By understanding the behaviors of these threats, the architect can derive preventative technologies and processes to ensure similar events are mitigated.

    Mirai

    Mirai is the name of malware that infected Linux IoT devices in August of 2016. The attack came in the form of a botnet that generated a massive DDoS storm. High-profile targets included Krebs on Security, a popular Internet security blog; Dyn, a very popular and widely used DNS provider for the Internet; and Lonestar cell, a large telecom operator in Liberia. Smaller targets included Italian political sites, Minecraft servers in Brazil, and Russian auction sites. The DDoS on Dyn had secondary effects on other extremely large providers that used their services, such as Sony Playstation servers, Amazon, GitHub, Netflix, PayPal, Reddit, and Twitter. In total, 600,000 IoT devices were infected as part of the botnet collective.

    Mirai source code was released on hackforums.net (a hacker blog site). From the source and through traces and logs, researchers have uncovered how the Mirai attack worked and unfolded:

    
      	Scan for victims: It first performed a rapid asynchronous scan using TCP SYN packets to probe random IPV4 addresses. It specifically looked for SSH/Telnet TCP port 23 and port 2323. If the scan and port attached successfully, it entered phase two.Mirai included a hardcoded blacklist of addresses to avoid. The blacklist consisted of 3.4 million IP addresses and contained IP addresses belonging to the US Postal Service, Hewlett-Packard, GE, and the US Department of Defense. Mirai was capable of scanning at about 250 bytes per second. This is relatively low as far as a botnet is concerned. Attacks like the SQL Slammer generated scans at 1.5 Mbps, the principle reason being that IoT devices typically are much more constrained in processing power than desktop and mobile devices.

      

      	Brute force telnet: At this point Mirai attempted to establish a functional Telnet session with a victim by sending 10 username and password pairs randomly using a dictionary attack of 62 pairs. If a login was successful, Mirai logged the host to a central C2 server. Later variants of Mirai evolved the bot to perform RCE exploits.

    

    
      	Infect: A loader program was then sent to the potential victim from the server. It was responsible for identifying the OS and installing device-specific malware. It then searched for other competing processes using port 22 or 23 and killed them (along with other malware that could already be present on the device). The loader binary was then deleted and the process name was obfuscated to hide its presence. The malware did not reside in persistent storage and didn't survive a reboot. The bot now stayed dormant until it received an attack command.

    

    The devices targeted were IoT devices consisting of IP cameras, DVRs, consumer routers, VOIP phones, printers, and set-top boxes. These consisted of 32-bit ARM, 32-bit MIPS, and 32-bit X86 malware binaries specific to the IoT device being hacked.

    The first scan occurred on August 1, 2016, from a US web hosting site. The scan took 120 minutes before it found a host with an open port and password in the dictionary. After one additional minute, 834 other devices were infected. Within 20 hours, 64,500 devices were infected. Mirai doubled in size in 75 minutes. Most of the infected devices that turned into botnets were located in Brazil (15.0%), Columbia (14.0%), and Vietnam (12.5%), although the targets of the DDoS attacks were in other regions.

    The damage was confined to DDoS attacks. The attacks came in the form of SYN floods, GRE IP network floods, STOMP floods, and DNS floods. Over the course of five months, 15,194 individual attack commands were issued by the C2 servers and hit 5,042 Internet sites. On September 21, 2016, the Mirai botnet unleashed a massive DDoS attack on the Krebs on Security blog site and generated 623 Gbps of traffic. That accounted for the single worst DDoS attack of all time. The following is a real-time screenshot captured during the Mirai attack using www.digitalattackmap.com: a collaboration between NETSCOUT Arbor and Google Jigsaw.

    [image: A close up of a map  Description automatically generated]
    Figure 1: A view of the Mirai DDoS attack on the Krebs on Security website, courtesy of DigitalAttackMap.com, a collaboration between NETSCOUT Arbor and Google Jigsaw

    Stuxnet

    Stuxnet was the first known documented cyber weapon released to permanently damage Iran's assets. In this case, it was a worm that was released to damage SCADA-based Siemens programmable logic controllers (PLCs) and used a rootkit to modify the rotational speed of motors under the direct control of the PLC. The designers went out of their way to ensure the virus targeted only devices with rotational spin rates of slave variable frequency drives attached to Siemens S7-300 PLCs rotating at 807 Hz and 1210 Hz, as they are typically used for pumps and gas centrifuges for uranium enrichment.

    The attack presumably started in April or March of 2010. The infection process followed these steps:

    
      	Initial infection: The worm started by infecting a host Windows machine exploiting vulnerabilities found in previous virus attacks. It is thought to have spread by the insertion of a USB drive in the initial machine. It used four zero-day exploits simultaneously (an unprecedented level of sophistication). The exploits used a rootkit attack using user-mode and kernel-mode code and installed a stolen yet properly signed and certified device driver from Realtek. This kernel-mode signed driver was necessary to hide Stuxnet from wary antivirus packages.

      	Windows attack and spread: Once installed through the rootkit, the worm began to search the Windows system for files typical of a Siemens SCADA controller, WinCC/PCS 7 SCADA, also known as Step-7. If the worm happened to find Siemens SCADA control software, it attempted to access the Internet through a C2 using malformed URLs (www.mypremierfutbol.com and www.todaysfutbol.com) to download more recent versions of its payload. It then dug further into the filesystem to search for a file called s7otbdx.dll, which served as a critical communications library between the Windows machine and the PLC. Step-7 included a hardcoded password database which was exploited through another zero-day attack. Stuxnet inserted itself between the WinCC system and the s7otbdx.dll to act as a man-in-the-middle attacker. The virus started its operation by recording the normal operation of the centrifuges.

    

    
      	Destruction: When it decided to coordinate the attack, it replayed the prerecorded data to the SCADA systems, which had no reason to believe anything was compromised or behaving erratically. Stuxnet delivered its damage by manipulating the PLCs with two different coordinated attacks to damage the entire array of Iran's facility. The damage to the rotors of the centrifuge occurred slowly over time, running in 15- or 50-minute increments separated by 27 days of normal operation. This resulted in improperly enriched uranium as well as cracked and destroyed rotor tubes in the centrifuges.

    

    It is believed that over 1,000 uranium enrichment centrifuges were crippled and damaged by this attack on Iran's main enrichment facility in Natanz, Iran. Today the Stuxnet code is available online and is essentially an open source playing field to create derivative exploits (https://github.com/micrictor/stuxnet).

    Chain Reaction

    Chain Reaction is an academic study that shows a new breed of cyber attacks focused on PAN mesh networks that can be executed without any link to the Internet. Additionally, it shows how vulnerable remote IoT sensor and control systems can be. The attack vector was Philips Hue light bulbs typically found in consumer homes that can be controlled by the Internet and smartphone apps. The exploit can be scaled up to smart city attacks and initiated by simply inserting a single infected smart light.

    Philips Hue lights use the Zigbee protocol to establish a mesh. Zigbee lighting systems fall under a program called the Zigbee Light Link (ZLL) to force a standard method for lighting interoperability. ZLL messages are not encrypted or signed, but encryption is used to secure keys exchanged if a light is added to the mesh. This master key is known to everyone in the ZLL alliance and was subsequently leaked. ZLL also forces light bulbs joining the mesh to be in very close proximity to the initiator. This prevents one from taking over their neighbor's lights. Zigbee also offers an over-the-air (OTA) reprogramming method; however, the firmware bundles are encrypted and signed.

    The researchers used a four-phase attack plan:

    
      	The attack would break the encryption and signing of the OTA firmware bundle.

      	It would write and deploy a malevolent firmware upgrade to a single light bulb using the broken encryption and signing keys.

      	The compromised bulb would join the network based on the stolen master key and exploit the proximity security through a found zero-day defect in the popularly used Atmel AtMega part.

    

    
      	After successfully joining a Zigbee mesh, it would then send its payload to neighboring lights and infect them rapidly. This would expand based on percolation theory and infect entire city populations of lighting systems.

    

    Zigbee uses AES-CCM (part of the IEEE 802.15.4 standard and covered later in this chapter) encryption to encrypt OTA firmware updates. To break the firmware encryption, the attackers used correlation power analysis (CPA) and differential power analysis (DPA). 

    This is a sophisticated form of attack where a device such as the light bulb controller hardware is placed on a bench and the power that it consumes is measured. Given sophisticated control, one can measure the dynamic power used by a CPU executing an instruction or moving data (for example, when an encryption algorithm is executed). This is called simple power analysis (SPA), in which it is still be very difficult to crack the key. CPA and DPA extend capabilities beyond SPA by using a statistical correlation.

    Rather than attempt to determine one bit at a time in cracking a key, CPA can resolve byte-wide quantities. Power traces are captured by an oscilloscope and split into two sets. The first set assumes an intermediate value being cracked is set to 1 and the other set assumes it is set to 0. By subtracting the mean of these sets, the true value of an intermediate value is exposed.

    Using both DPA and CPA, the researchers broke the Philips Hue lighting system as follows:

    
      	The researchers used the CPA to crack the AES-CBC. The attackers had no key, no nonce, no initialization vector. This resolved the key, which was used in the same manner to attack the nonce.

      	They used DPA to crack the AES-CTR counter mode to break the firmware bundling encryption. Researchers found 10 locations that the AES-CTR seemed to execute, which created 10x the possibilities.

      	They then focused on breaking the Zigbee proximity protection for joining a network. The zero-day exploit was the result found by inspecting Atmel's source code for the bootloader on the SOC. Upon reviewing the code, they found that the proximity check was valid when starting a scan request in Zigbee. If they started with any other message, the proximity check was bypassed. This allowed them to join any network.

    

    A true attack could force an infected bulb to infect others within a few hundred meters with a payload to remove the firmware update ability of each bulb so they can never be recovered. The bulbs would effectively be under malicious control and would have to be destroyed. The researchers were able to build a fully automated attack system and attached it to a drone that systematically flew within range of Philips Hue lights in a campus environment and hijacked each one.

    
      More information on the CPA attack on Zigbee can be found here: E. Ronen, A. Shamir, A. O. Weingarten and C. O'Flynn, IoT Goes Nuclear: Creating a ZigBee Chain Reaction, 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, 2017, pp. 195-212. An excellent tutorial and the source code to generate a CPA attack can be found on the ChipWhisperer Wiki: https://wiki.newae.com/AES-CCM_Attack.

    

    Physical and hardware security

    Many IoT deployments will be in remote and isolated areas leaving sensors and edge routers vulnerable to physical attack. Additionally, the hardware itself needs modern protection mechanisms common in processors and the circuitry of mobile devices and personal electronics.

    RoT

    The first layer of hardware security is the establishment of a RoT. The RoT is a hardware-validated boot process that ensures the first executable opcode starts from an immutable source. This is the anchor of the boot process that subsequently plays a role in bootstrapping the rest of the system from BIOS to the OS to the application. An RoT is a baseline defense against a rootkit.

    Each phase validates the next phase in the boot process and builds a Chain of Trust. An RoT can have different starting methods such as:

    
      	Boot from ROM or nonwritable memory to store the image and root key 

      	One-time programmable memory using fuse bits for root key storage

      	Boot from a protected memory region that loads code into a protected memory store

    

    An RoT also needs to validate each new phase of boot. Each phase of boot maintains a set of cryptographically signed keys that are used to verify the next phase of boot:
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    Figure 2: Establishing a RoT. Here is a ﬁve-phase boot building up a Chain of Trust and starting with a boot loader in immutable read-only memory. Each phase maintains a public key that is used to verify the authenticity of the next component loaded.

    Processors that support an RoT are architecturally unique. Intel and ARM support the following:

    
      	ARM TrustZone: ARM sells a security silicon IP block for SOC manufacturers that provides a hardware RoT as well as other security services. TrustZone divides hardware into secure and non-secure "worlds." TrustZone is a separated microprocessor from the non-secure core. It runs a Trusted OS specially designed for security that has a well-defined interface to the non-secure world. Protected assets and functions reside in the trusted core and should be lightweight by design. The switching between worlds is done through hardware context switching, eliminating the need for secure monitor software. Other uses for TrustZone are to manage system keys, credit card transactions, and digital rights management. TrustZone is available for A "application" and M "microcontroller" CPUs. This form of secure CPU, Trusted OS, and RoT is called a trusted execution environment (TEE).

      	Intel Boot Guard: This is a hardware-based mechanism that provides a verified boot that cryptographically verifies the initial boot block or uses a measuring process for validation. Boot Guard requires a manufacturer to generate a 2048-bit key for verifying the initial block. The key is split into a private and public portion. The public key is imprinted by programmatically "blowing" fuse-bits during manufacturing. These are immutable one-time fuses. The private portion generates the signature of the subsequently verified portion of the boot phase.

    

    Key management and trusted platform modules

    Public and private keys are critical to ensuring a secure system. The keys themselves need proper management to ensure their safety. There are hardware standards for key security and one particularly popular mechanism is the Trusted Platform Module (TPM). The specification for TPM was written by the Trusted Computing Group and is an ISO and IEC standard. The current specification is TPM 2.0 released in September of 2016. Computer assets sold to the DoD require TPM 1.2.

    A TPM is a discrete hardware component with a secret RSA key burned into the device at manufacturing.

    Generally, a TPM is used to hold, secure, and manage other keys for services such as disk encryption, RoT booting, verifying the authenticity of hardware (as well as software), and password management. 

    A TPM can create a hash of a litany of software and hardware in a "known good" configuration that can be used to verify tampering at runtime. Additional services include assisting in SHA-1 and SHA-256 hashing, AES encryption blocks, asymmetric encryption, and random number generation. Several vendors produce TPM devices such as Broadcom, Nation Semiconductor, and Texas Instruments.

    Processor and memory space

    We have already discussed various exploits and processor technologies that act as countermeasures. Two predominant technologies to look for in CPU and OS facilities include non-execution memory and address space layout randomization. Both types of technologies are meant to burden or prevent buffer-overflow and stack-overrun types of malware injection:

    
      	Non-execution protection (or executable space protection): This is a facility enabled by the hardware used by the OS to mark areas of memory as non-executable. The intent is to map only areas where verified and legitimate code resides to be the only regions of addressable memory that can execute an operation. If an attempt is made to implant malware through a stack-overflow type of attack, the stack will be marked as non-executing and an attempt to force the instruction pointer to execute there would result in a machine exception.Non-executable memory uses an NX bit as a means to map the region as non-executable (through the translation lookaside buffer). Intel uses the Execute Disable (XD) Bit, and ARM uses an Execute Never (XN) Bit. Most operating systems, such as Linux, Windows, and several RTOSes, support such features.

      

      	Address space layout randomization (ASLR): While more of an OS treatment of virtual memory space than a hardware feature, it is important to consider ASLR. This type of countermeasure targets buffer-overflow as well as return-to-libc attacks. These attacks are based on an attacker understanding the layout of memory and forcing calls to certain benign code and libraries. Calling these libraries becomes particularly laborious if the memory space is randomized on each boot. Linux provides the ASLR ability using the PAX and Exec Shield patches. Microsoft provides protection for heap, stack, and process blocks as well.

    

    Storage security

    Often, IoT devices will have persistent storage at the edge node or on a router/gateway. Intelligent fog nodes will require persistent storage of some kind as well. 

    The security of data on the device is imperative to prevent malicious malware from being deployed and to protect the data in the event the IoT device is stolen. Most mass storage devices, such as flash modules and rotating disks, have models with encryption and security technology.

    
      The FIPS 140-2 (Federal Information Processing Standard) is a government regulation detailing encryption and security requirements for IT devices that manage or store sensitive data. It not only specifies technical requirements but also defines policies and procedures. FIPS 140-2 has several levels of compliance:

      
        	Level 1: Software-only encryption. Limited security.

        	Level 2: Role-based authentication is necessary. Requires the ability to detect physical tampering using tamper-evident seals.

        	Level 3: Includes physical tamper resistance. If the device is tampered with, it will erase critical security parameters. Includes cryptographic protection and key management. Includes identity-based authentication. 

        	Level 4: Advanced tamper protection for products designed to work in physically unprotected environments.

      

    

    In addition to encryption, it is also necessary to consider the security of media when it's decommissioned or disposed of. It is fairly easy to retrieve contents from old storage systems. There are additional standards on how to wipe and erase content securely from media (whether it's a magnetically based disk or a phase-change flash component). NIST also publishes documents on securely erasing and wiping content such as the NIST Special Publication 800-88 for Secure Erase.

    Physical security

    Tamper resistance and physical security are particularly important for IoT devices. In many scenarios, an IoT device will be remote and without the safeguards of on-premises devices. This is analogous to the Enigma machine of World War Two. Retrieving a working machine from the German submarine U-110 helped break the cipher. An attacker with access to the IoT device can use whatever tools are at their leisure to crack the system, as we saw with the Chain Reaction exploit.

    Side-channel attacks, as shown, deal with power analysis; other forms are timing attacks, cache attacks, electromagnetic field emissions, and scan-chain attacks. The common theme of a side-channel attack is the compromised unit is essentially a device under test (DUT). This means the device will be observed and measured in a controlled environment.

    Additionally, techniques like differential power analysis (DPA) use statistical analysis approaches to look for the correlations of random input to output. The statistical analysis only works if the system behaves identically from run to run with the same input:
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            Attempts to exploit small differences in the timing of algorithms. For example, measuring the timing of a password decoding algorithm and observing early exits from the routine. Attackers also can observe cache utilization to witness the characteristics of the algorithm.

          
        

        
          	
            Simple power analysis (SPA)

          
          	
            Similar to a timing attack but measures large changes in dynamic power or current due to the behavior of an algorithm and opcodes. Public keys are particularly susceptible. The analysis needs few traces to work, but the traces need a high degree of precision. As most cryptographic algorithms are mathematically intensive, different opcodes will show up as different power signatures in a trace.

          
        

        
          	
            Differential power analysis (DPA)

          
          	
            Measures dynamic power but can observe changes that are too small to be observed directly as in SPA. By injecting random input (such as different random keys) into a system, the attacker can perform thousands of traces to build a data-dependent set. Attacking an AES algorithm, for example, simply means building two sets of traces depending on the value of the bit (0 or 1) being cracked. The sets are averaged, and the difference between the 0 and 1 set is plotted to show the effect of the random input to the output.

          
        

      
    

    Methods of prevention are well known, and several can be licensed and used in a variety of hardware. Countermeasures for these types of attacks include:

    
      	Modify the encryption function to minimize the use of the key. Use a short-lived session key based on a hash of the actual key.

      	For timing attacks, randomly insert functions that will not perturb the original algorithm. Use different random opcodes to create a large work function for the attacks.

      	Remove conditional branches that depend on the key.

      	For power attacks, decrease leakage at every opportunity and limit the number of operations per key. This reduces the attacker working set.

      	Induce noise into power lines. Use variable timing operations or skew clocks. Change the order of independent operations. This reduces correlation factors around the S-Box calculation.

    

    
      Other hardware considerations include:

      
        	Prevent access to debug ports and channels. Often these are exposed on the PCA as serial ports and JTAG ports. Headers should be removed and fuse bits blown to prevent debug access in the most hardened cases.

        	ASICs typically use ball grid array (BGA) pads to attach to a PCA. High- performance adhesives and thermally resistant glue should be used to surround the package and may cause irreparable damage if tampered with.

      

    

    Shell security

    We have examined hardware security up to this point, but the architect must also consider network and shell security of the system. Network security is covered in Chapter 9, Edge Routing and Networking. We will explore one area of shell connectivity in this section: SSH, or secure shell.

    SSH is a cryptographic network protocol used to provide services like login, command-line control, remote access, and root access to modern operating systems. SSH uses a secure channel over an unsecure network, employing methods such as SHA-2 and SHA25. Additionally, authentication is performed using various methods, such as public key exchange or simple passwords. Typically, SSH sessions use port 22.

    Although the protocol uses authentication and encryption methods, there are still vulnerabilities:

    
      	A preferred method is to use public key exchange when authenticating. These are far better than password-based security. 

      	A typical attack vector is brute force username/password attempts. SSH ports provide an easy opportunity for attacks as devices may keep the port open and exposed on the Internet. There should never be empty passwords on any system. Additionally, use very strong usernames and passwords, using psuedorandom password generators.

      	SSH sessions should never sit idle. It is possible for an SSH session to terminate if there is no activity by modifying the ClientAliveInterval.

      	Use another port beside port 22. Many people simply chose port 222 or 2222 for convenience. It is recommended to use an unused port far from these easily guessed integers.

      	Use two-factor authentication methods.

    

    Cryptography

    Encryption and secrecy are absolute requirements of IoT deployments. They are used for securing communication, protecting firmware, and authentication. Regarding encryption, there are generally three forms to consider:

    
      	Symmetric key encryption: Encryption and decryption keys are identical. RC5, DES, 3DES, and AES are all forms of symmetric key encryption.

      	Public key encryption: The encryption key is published publicly for anyone to use and encrypt data. Only the receiving party has a private key used to decrypt the message. This is also known as asymmetric encryption. Asymmetric cryptography manages data secrecy, authenticates participants, and forces non-repudiation. Well-known Internet encryption and message protocols such as elliptic curve , PGP, RSA, TLS, and S/MIME are considered public keys.

      	Cryptographic hash: This maps data of an arbitrary size to a bit string (called the digest). This hash function is designed to be "one way." Essentially, the only way to recreate the output hash is to force every possible input combination (it cannot be run in reverse). MD5, SHA1, SHA2, and SHA3 are all forms of one-way hashes. These are typically used to encode digital signatures such as signed firmware images, message authentication codes (MAC), or authentication. When encrypting a short message like a password, the input may be too small to effectively create a fair hash; in that case, a salt or non-private string is appended to the password to increase the entropy. A salt is a form of key derivation function (KDF):
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    Figure 3: Elements of cryptography. Here are symmetric, asymmetric, and hashing functions. Note the key usage in symmetric and asymmetric cryptography. Symmetric hashing has the requirement of using identical keys to encrypt and decrypt data. While faster than asymmetric encryption, the keys need to be secured.

    Symmetric cryptography

    In encryption, plaintext refers to the unencrypted input and the output is called ciphertext, as it is encrypted. The standard for encryption is the Advanced Encryption Standard (AES), which replaced older DES algorithms dating from the 1970s. AES is part of the FIPS specification and the ISO/IEC 18033-3 standard used worldwide. AES algorithms use fixed blocks of 128, 192, or 256 bits. Messages larger than the bit width will be split into multiple blocks. AES has four basic phases of operation during the cipher. The pseudocode for a generic AES encryption is shown here:

    // Psuedo code for an AES-128 Cipher
// in: 128 bits (plaintext)
// out: 128 bits (ciphertext)
// w: 44 words, 32 bits each (expanded key) state = in

w=KeyExpansion(key) //Key Expansion phase (effectively encrypts key itself)
AddRoundKey(state, w[0, Nb-1]) //Initial Round

for round = 1 step 1 to Nr–1 //128 bit= 10 rounds, 192 bit = 12 rounds, 256 bit = 14 rounds
  SubBytes(state) //Provide non-linearity in the cipher
  ShiftRows(state) //Avoids columns being encrypted independently 
  MixColumns(state) //Transforms each column and adds diffusion to the cipher
  AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) //Generates a subkey 
end for

SubBytes(state) //Final round and cleanup. 
ShiftRows(state)
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) out = state


    
      AES key lengths can be 128, 192, or 256 bits. Generally, the larger the key length the better the protection. The size of the key is proportional to the number of CPU cycles needed to encrypt or decrypt a block: 128-bit needs 10 cycles, 192-bit needs 12 cycles, and 256-bit needs 14 cycles.

      Since AES is a block cipher, the data needs to be padded to the multiple of the key length. The architect of an IoT or edge solution should consider this if the data in transit is length sensitive.

    

    Block ciphers represent encryption algorithms that are based on a symmetric key and operate on a single block of data. Modern ciphers are based on Claude Shannon's work on product ciphers in 1949. A cipher mode of operation is an algorithm that uses a block cipher and describes how to repeatedly apply a cipher to transform large amounts of data consisting of many blocks. Most modern ciphers also require an initialization vector (IV) to ensure distinct ciphertexts even if the same plaintext is entered repeatedly. There are several modes of operation, such as:

    
      	Electronic Codebook (ECB): The most basic form of AES encryption, but used with other modes to build more advanced security. Data is divided into blocks, and each is encrypted individually. Identical blocks will produce identical ciphers, which makes this mode relatively weak.

      	Cipher block chaining (CBC): Plaintext messages XOR'd with the previous ciphertext before being encrypted.

      	Cipher feedback (CFB) chaining: Similar to CBC but forms a stream of ciphers (the output of the previous cipher feeds into the next). CFB chaining depends on the previous block cipher to provide input to the current cipher being generated. Because of the dependency of previous ciphers, CFB chaining cannot be processed in parallel. Streaming ciphers allows for a block to be lost in transit, but subsequent blocks can recover from the damage.

      	Output Feedback (OFB) Chaining: Similar to CFB, a streaming cipher but allows error correcting codes to be applied before encryption.

      	Counter (CTR): Turns a block cipher into a stream cipher but uses a counter. The incrementing counter feeds each block cipher in parallel, allowing fast execution. The nonce and counter are concatenated together to feed the block cipher.

      	CBC with Message Authentication Code (CBC-MAC): A MAC (also known as tag or MIC) is used to authenticate a message and confirm the message came from the stated sender. The MAC or MIC is then added to the message for verification by the receiver.

    

    These modes were first constructed in the late 1970s and early 1980s and were advocated by the National Institute of Standards and Technology (NIST) in FIPS 81 as DES modes. These modes provide encryption for the confidentiality of information but will not protect against modification or tampering. To do that, a digital signature is needed and the security community developed CBC-MAC for authentication. Combining CBC-MAC with one of the legacy modes was difficult until algorithms like AES-CCM were established, which provide both authentication and secrecy. CCM stands for Counter with CBC-MAC Mode.

    
      CCM is an important encryption mode used to sign and encrypt data and is used in a plethora of protocols covered in this book including Zigbee, Bluetooth Low Energy, TLS 1.2 (after key exchange), IPSEC, and 802.11 Wi-Fi WPA2.

    

    AES-CCM makes use of dual ciphers: CBC and CTR. AES-CTR, or AES Counter Mode, is used for the general decryption of the ciphertext stream flowing in. The incoming stream contains an encrypted authentication tag. AES-CTR will decrypt the tag as well as the payload data. An "expected tag" is formed from this phase of the algorithm. The AES-CBC phase of the algorithm tags as input the decrypted blocks from the AES-CTR output and the original header of the frame. The data is encrypted; however, the only relevant data needed for authentication is the calculated tag. If the AES-CBC calculated tag differs from the AES-CTR expected tag, then there is the possibility that the data was tampered with in transit.

    The following figure illustrates an incoming encrypted stream of data that is both authenticated using AES-CBC and decrypted using AES-CTR. This ensures both the secrecy and authenticity of the origin of a message:
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    Figure 4: The AES-CCM mode

    
      One consideration for IoT deployments in a fully connected mesh is the number of keys necessary. For n nodes in a mesh that desire bidirectional communication, there are n(n-1)/2 keys or O(n2).

    

    Asymmetric cryptography

    As indicated earlier, asymmetric cryptography is also called public key cryptography. Asymmetric keys are generated in pairs (encrypting and decrypting). The keys can be interchangeable, meaning a key could both encrypt and decrypt, but that is not a requirement. The typical use, however, is to generate a pair of keys and keep one private and the other public. This section describes the three foundational public key cryptograms: RSA, Diffie-Hellman, and Elliptical Curves.

    
      Note that unlike symmetric key counts in a mesh where any node can communicate with any other node, asymmetric cryptography only requires 2n keys or O(n).

    

    The first asymmetric public key encryption method described is the Rivest-Shamir-Adleman algorithm, or RSA, developed in 1978. It is based on a user finding and publishing the product of two large prime numbers and an auxiliary value (public key). The public key can be used by anyone to encrypt a message, but the prime factors are private. The algorithm operates as follows:

    
      	Find two large primes, p and q.n = pq

        [image: ]

      

      	Public key exponent: Choose an integer e so that [image: ], e is coprime to [image: ]; a typical value is 216 + 1 = 65537.

    

    
      	Private key exponent: Compute d to solve the congruence relation [image: ].

    

    Therefore, to encrypt a message using the public key (n,e) and to decrypt a message using the private key (n,d):

    
      	Encrypt: Ciphertext = (plaintext)e mod n

      	Decrypt: Plaintext = (ciphertext)d mod n

    

    It is often the case that artificial padding is injected into a message before encryption to avoid cases of short messages failing to produce good ciphertext.

    Perhaps the best-known form of asymmetric key exchange is the Diffie-Hellman key exchange process (named after Whitfield Diffie and Martin Hellman). Typical of asymmetric cryptography is the notion of a trapdoor function, which takes a given value A and produces an output B. However, trapdoor function B does not produce A.

    The Diffie-Hellman method of key exchange allows two parties (Alice A and Bob B) to exchange keys without any previous knowledge of any shared secret key s. The algorithm is based on the plaintext exchange of a starting prime number, p, and a prime generator. The generator g is a primitive root modulo p. Let Alice's private key be a and Bob's private key be b. Then, A=ga mod p and B=gb mod p. Alice computes the secret key as s=Ba mod p, and Bob computes the secret key as s=Ba mod p.

    In general, (ga mod p)b mod p = (gb mod p)a mod p:
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    Figure 5: Diffie-Hellman key exchange. The process begins with the plaintext exchange of an agreed upon prime and generator of prime. With an independent private key generated by Alice and Bob, the public keys are generated and sent in plaintext over the network. This is used to generate a secret key used for encryption and decryption.

    The strength of this form of secure key exchange is generating a true random number for each private key. Even the slight predictability of a pseudo-random number generator (PRNG) can lead to breaking the encryption. However, the principal issue is the lack of authentication, which can lead to an MITM attack.

    The other form of key exchange is Elliptic-Curve Diffie-Hellman (ECDH) and was proposed by Koblitz and Miller in 1985. It is based on the algebra of elliptic curves over a finite field. NIST has endorsed ECDH, and the NSA allows ECDH for top-secret material using 384-bit keys. Elliptic curve cryptography (ECC) shares these basic tenets regarding the properties of an elliptical curve:

    
      	The curve is symmetrical about the x-axis. If (x,y) represents a point on the curve, then (x,-y) will also be on the curve. See the next figure, which illustrates this fact.

      	A straight line will intersect the elliptic curve at no more than three points.

    

    The process of ECC starts with drawing a straight line from a given point on the edge towards MAX. A line is drawn from point A to B. A dot function is used to draw a line between two points and then draw a line straight up (or down) from the new unlabeled intersection to its counterpart on the positive or negative y axis. This process is repeated n times, where n is the key size.

    This process is analogous to seeing the end results of a pool table after a ball has been hit and strikes the cushions many times. An observer seeing the ending location of the ball would have a difficult time determining where the original location of the ball was.

    MAX corresponds maximum value on the x axis, placing a limit on how far a vertex will stretch. If by chance the vertex is greater than MAX, the algorithm forces the value that would have extended beyond the MAX limit and sets a new point x-MAX distance away from the origin A. MAX is equivalent to the key size being used. A large key size results in more vertices being constructed and increasing strength of secrecy. Essentially this is a wraparound function:
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    Figure 6: Elliptical curve cryptography (ECC). Here is a standard elliptical curve on an x, y axis. The process starts by following straight line paths from a given point A to a second point and locating the third new unlabeled intersection. A line is drawn to the opposite but identical y plane coordinate, which now becomes a labeled entity. The process continues for n points, which correspond to the key length.

    
      Elliptical curves are becoming prevalent over RSA. Modern browsers are capable of supporting ECDH, which is the preferred method of authentication over SLL/TLS. ECDH is also found in Bitcoin, as we will see later, and several other protocols. RSA is only used now if an SSL certificate has a matching RSA key.

      The other advantage is that the key lengths can be kept short and still have the same cryptographic strength as a legacy method. For example, a 256-bit key in ECC is equivalent to a 3072-bit key in RSA. The importance of this should be considered for constrained IoT devices.

    

    Cryptographic hash (authentication and signing)

    Hashing functions represent the third type of cipher technology to consider. These are typically used to generate a digital signature. They are also considered "one-way" or impossible to invert. To recreate the original data after passing through a hash function would be a brute-force attack of every possible combination of inputs. The key attributes of a hashing function include:

    
      	The function always generates the same hash from the same input. 

      	It is quick to compute but not free (see proof of work).

      	It is non-reversible and cannot regenerate the original message from the hash value.

      	A small change to the input will result in significant entropy or a change in the output.
          Two different messages will never have the same hash value.

          The effects of cryptographic hashing functions like SHA1 (Secure Hash Algorithm) can be demonstrated by altering just one character in a longer string:

          Input: Boise Idaho

          SHA1 Hash Output: 375941d3fb91836fb7c76e811d527d6c0a251ed4

          Input: Milwaukee Wisconsin

          SHA1 Hash Output: 9e318d4243262e59e2515b47a5c99771071acd8d

        

      

    

    SHA algorithms are used extensively in applications such as:

    
      	Git repositories

      	TLS certificate signing for web browsing (HTTPS)

      	Validating file or disk image content authenticity

    

    Most hash functions are built upon the Merkle-Damgård construction. Here, the input is split into equally sized blocks that are processed serially with a compression function combined with the output of the previous compression. An initialization vector (IV) is used to seed the process. By using a compression function, the hash is resistant to collisions. SHA-1 is built upon this Merkle-Damgård construction:
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    Figure 7: SHA-1 algorithm. Input split into ﬁve 32-bit chunks

    In general, the SHA algorithm's input message must be less than 264 bits. The message is processed in 512-bit blocks sequentially. SHA-1 is now superseded with strong kernels such as SHA-256 and SHA-3. SHA-1 was found to have "collision" within the hash. While it would take approximately 251 to 257 operations to find a collision, it would take only a few thousand dollars of rented GPU time to resolve the hash. Thus, the recommendation is to move to the strong SHA models.

    
      MD5 is no longer considered safe and is no longer approved for used in cryptography. Rather stronger methods such as SHA-3 are recommended.

    

    Public key infrastructure

    Asymmetric cryptography (public key) is a mainstay of Internet commerce and communication. It has routinely been used for SSL and TLS connection on the web. A typical use is public key encryption, where data in transit is encrypted by anyone holding the public key but can only be decrypted by the holder of the private key. Another use is digital signatures, where a blob of data is signed with a sender's private key and the receiving party can verify the authenticity if they hold the public key.

    To assist with providing public keys with confidence, a process known as public key infrastructure (PKI) is used. To guarantee authenticity, trusted third parties known as certificate authorities (CAs) manage roles and policies to create and distribute digital certificates. Symantec, Comodo, Let's Encrypt, and GoDaddy are the largest public issuers of TLS certificates. X.509 is a standard that defines public key certificate formats. It is the basis of TLS/SSL and HTTPS secure communication. X.509 defines such things as the encryption algorithm used, expiration dates, and the issuer of the certificate.

    
      PKI consists of a registration authority (RA) that verifies the sender and manages specific roles and policies and can revoke certificates. The RA also communicates with a validation authority (VA) to transfer revocation lists. The CA issues the certificate to the sender. When a message is received, the key can be validated by the VA to verify that it hasn't been revoked.

    

    The following figure shows an example of PKI infrastructure. It includes the CA, RA, and VA systems used and the phases of granting and verifying a key granted for encrypting a message:
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    Figure 8: PKI infrastructure example

    Network stack – Transport Layer Security

    Transport Layer Security (TLS) has been covered in many areas of this book, from TLS and DTLS for MQTT and CoAP to network security over the WAN and PAN security. Each has had some form of reliance on TLS. It also brings together all the cryptographic protocols and technologies we have mentioned. This section briefly covers the TLS1.2 technology and process.

    Originally, SSL (Secure Sockets Layer) was introduced in the 1990s but was replaced by TLS in 1999. TLS 1.2 is the current specification in RFC5246 as of 2008. TLS 1.2 includes an SHA-256 hash generator to replace SHA-1 and strengthen its security profile.

    In TLS encryption, the process is as follows:

    
      	The client opens a connection to a TLS-capable server (port 443 for HTTPS).

      	The client presents a list of supported ciphers that can be used.

      	The server picks a cipher and hash function and notifies the client.

      	The server sends a digital certificate to the client that includes a CA and the server's public key.

      	The client confirms the validity of the secret.

      	A session key is generated either by:
          	Encrypting a random number with the server's public key and sending the result to the server. The server and client then use the random number to create a session key that is used for the duration of the communication.

          	Using a Dixie-Hellman key exchange to generate a session key used for encryption and decryption. The session key is used until the connection is closed.

        

      

    

    
      	Communication starts using the encrypted channel.

    

    Shown below is the handshaking process for TLS1.2 communication between two devices:
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    Figure 9: TLS 1.2 handshake sequence

    Datagram Transport Layer Security (DTLS) is a communications protocol at the datagram layer based on TLS. (DTLS 1.2 is based on TLS 1.2.) It is intended to produce similar security guarantees. The CoAP lightweight protocol uses DTLS for security.

    Software-Defined Perimeter

    Earlier in the book, Chapter 9, Edge Routing and Networking, the concepts of software-defined networks and overlay networks were discussed. Overlay networks and their ability to create microsegments is extremely powerful especially in mass IoT scaling and situations where a DDoS attack can be mitigated. An additional component of software-defined networking is called Software-Defined Perimeter (SDP) and is worth a discussion in terms of the overall security picture.

    SDP architecture

    An SDP is an approach to network and communication security where no trust model exists. It is based on the Defense Information Systems Agency (DISA)'s black cloud. Black cloud means information is shared on a need-to-know basis. An SDP can mitigate attacks such as DDoS, MITM, zero-day exploits, and server scanning, among others. Along with providing an overlay and micro-segmentation for each attached device, the perimeter creates an invitation-only (identity-based) security perimeter around users, clients, and IoT devices.

    An SDP can be used to create an overlay network, which is a network built on top of another network. A historical reference is legacy Internet services built upon the preexisting telephone network. In this hybrid networking approach, the distributed control plane remains the same. Edge routers and virtual switches steer data based on control plane rules. Multiple overlay networks can be built on the same infrastructure. Since an software-defined networking (SDN) remains persistent in much the same way as a wired network, it is ideal for real-time applications, remote monitoring, and complex event processing. The ability to create multiple overlay networks using the same edge components allows micro-segmentation, where different resources have a direct relationship with different consumers of data. Each resource-consumer pair is a separate immutable network that is only able to see outside of its virtual overlay as the administrator chooses.

    
      The ability to create multiple overlay networks using the same edge components allows for micro-segmentation where each endpoint in a globally distributed IoT network can build individual and isolated network segments over the existing network infrastructure. In theory, every sensor could be isolated from another. This is a powerful tool for enabling enterprise connectivity for IoT deployments as services and devices can be isolated and protected from each other.

    

    The following graphic depicts an SDN overlay example. Here, a corporation has three remote franchises with a number of different IoT and edge devices at each store. The network resides on an SDN overlay network with micro-segments isolating POS and VOIP systems that are corporately managed from various sensors for security, insurance, and cold storage monitoring. Third-party service providers can manage various remote sensors using an isolated and secure virtual overlay network only for the device they manage:
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    Figure 10: An example SDN overlay network

    An SDP can further extend security by developing an invitation system, forcing a pair of devices to authenticate first and connect second. Only a preauthorized user or client can be added to a network. That authorization is extended by an invitation from the control plane via email or some registration facility. If the user accepts the invitation, client certificates and credentials are extended to that system alone. The resource extending the invitation maintains a record of extended certificates and will provide an overlay connection only when both parties accept the role.

    
      The real-world analogy is how one sends invitations for a party. Invitations are mailed out to selected individuals with a date, time, address, and other details. Those individuals may or may not want to attend the party (it is up to them). The alternative is to advertise on the web, TV, and radio that you are having a party and then authenticate each person as they arrive at the door.

    

    Blockchains and cryptocurrencies in IoT

    Blockchains exist to solve a trust model (not necessarily a security issue). Blockchains are public, digital, and decentralized ledgers or cryptocurrency transactions. The original cryptocurrency blockchain was Bitcoin, but there are over 2000 new currencies on the market, such as Ethereum, Ripple, and Dash. The power of a blockchain is that there is no single entity controlling the state of transactions. It also forces redundancy in the system by ensuring everyone using a blockchain also maintains a copy of the ledger.

    Assuming there is no inherent trust in blockchain participants, the system must live in consensus.

    A good question to ask is if we have solved identity management and security with asymmetric cryptography and key exchanges, why are blockchains needed to exchange data or currency? This is not enough for the exchange of money or data of value. One thing to note is that since the inception of information theory, when two devices communicate, Bob and Alice, they send a message or a bit of data. That information is still retained by Bob even if Alice receives a copy. When exchanging money or contracts, that data must leave one source and arrive at another. 

    There is only a single instance. Authenticity and encryption are tools needed for communication, but a new method to transfer ownership had to be invented:
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    Figure 11: Ledger topologies. A centralized ledger is the typical process of a single controlling agent maintaining "the books." Cryptocurrencies use either decentralized or distributed ledgers.

    Blockchain secure cryptocurrencies are particularly relevant to IoT. Some example use cases include:

    
      	Machine to machine payments: The IoT needs to ready itself for machine exchanging services for currency.

      	Supply chain management: In this case, the movement and logistics in managing inventory, moving goods, and logistics can replace paper-based tracking with blockchain immutability and security. Every container, movement, location, and state can be tracked, verified, and certified. Attempts to forge, delete, or modify tracking information becomes impossible.

      	Solar energy: Imagine residential solar as a service. In this case, solar panels installed on a customer home are generating energy for the home. Alternatively, they can also send energy back to the grid to power someone else (perhaps in exchange for carbon credits).

    

    Bitcoin (blockchain-based)

    The cryptocurrency portion of Bitcoin is different from the blockchain itself. Bitcoin is an artificial currency. It has no commodity or value backing like gold or a government (in the case of a fiat currency). It is also not physical; it only exists in a network construct. Finally, the supply or number of Bitcoins is not determined by a central bank or any authority. It is completely decentralized. Like other blockchains, it is built up from public key cryptography, a large and distributed peer-to-peer network, and a protocol that defines the Bitcoin structure. While not the first to conceive of digital cash, Satoshi Nakamoto (alias) posted a paper in 2008 called Bitcoin: A Peer-to-Peer Electronic Cash System to a cryptography list. In 2009, the first Bitcoin network was online, and Satoshi mined the first block (the genesis block).

    The concept of a blockchain means that there is a block representing the current portion of a blockchain. A computer connected to the blockchain network is called a node. Each node participates in validating and relaying transactions by obtaining a copy of the blockchain and is essentially an administrator.

    A distributed network based on peer-to-peer topologies exists for Bitcoin. Metcalfe's Law applies here since the value of a cryptocurrency like Bitcoin is based on the size of the network. The network maintains the system of records (the ledger). The problem is, where do you find a source of computing willing to share their compute time for monitoring ledgers? The answer is to build a reward system called Bitcoin mining.

    The transaction process is shown in the following figure. It starts with a transaction request. The request is broadcast to a peer-to-peer (P2P) network of computers called nodes. The peer network is responsible for validating the authenticity of the user. Upon validation, the transaction is verified and combined with other transactions to create a new block of data for the distributed ledger. When a block is full, it is added to the existing blockchain, making it immutable. 

    The Bitcoin authentication, mining, and validation process is shown in the following illustration:

    [image: A screenshot of a cell phone  Description automatically generated]
    Figure 12: Bitcoin blockchain transaction process

    Shown in the graphic is the exchange of 0.000554 Bitcoins between Alice and Bob with a service fee of 0.0001 BTC. Alice initiates the transaction by signing the contents of the transaction with the previous transaction hash against Alice's private key. Alice also includes her public key in the inputScriptSig script. The transaction is then broadcast to the Bitcoin P2P network for inclusion in a block and validation. The network competes to validate and discover a working nonce based on the current strength of complexity. If a block is discovered, the server broadcasts the block to peers for validation and then inclusion in the chain.

    What follows is a qualitative analysis of the blockchain and in particular Bitcoin processing. It is important to understand these fundamentals, which build on all the security foundations from earlier in this chapter:

    
      	Digitally signed transaction: Alice intends to give Bob one Bitcoin. The first step is to announce to the world that Alice intends to give Bob one Bitcoin. Alice does this by writing this message: "Alice will give Bob one Bitcoin" and digitally signing it for authentication with her private key. Anyone can verify the message is authentic given the public key. However, Alice could replay the message and artificially forge money.

      	Unique identification: To resolve the forgery problem, Bitcoin creates a unique ID with a serial number. US-issued money has serial numbers, and Bitcoins do as well in a general sense. Bitcoin uses a hash rather than a centrally administered serial number. The hash that identifies the transactions are self-generated as part of a transaction.A serious problem arises with double-spending. Even if the transaction is signed and uniquely hashed, Alice could potentially reuse the same Bitcoin with other parties. Bob will check Alice's transaction, and everything will verify. If Alice also uses the same transaction but buys something from Charlie, she effectively is cheating the system. The Bitcoin network is very large, but there is still a small chance that theft could occur. Bitcoin users protect against double-spending by waiting for a confirmation when receiving payments on the blockchain. As a transaction becomes dated, more confirmations arise, and validating it becomes more irreversible.

      

      	Security through peer validation: To resolve the double-spending cheat, what is done in blockchains is that recipients of the transaction (Bob and Charlie) broadcast their potential payment to the network and request the peer network to help legitimize it. This service of requesting assistance in verifying a transaction doesn't come free.

      	Proof-of-work burden: This still hasn't completely resolved the double-spend problem. Alice could simply hijack the network with her own servers and claim all her transactions are valid. To finally resolve this issue, Bitcoin introduced the concept of proof-of-work. There are two aspects to proof-of-work concepts. The first aspect is validating the authenticity of a transaction should be computationally expensive for a computing device. It must be more computationally burdensome than just verifying keys, login names, transaction IDs, and other trivial steps in the authentication process. Second, users need to be rewarded to help resolve other people's money exchanges—this is covered in step 5.The method Bitcoin uses to force a work function on individuals validating transactions is to attach a nonce to the header of the transactions in process. Bitcoin then uses the cryptographically secure SHA-256 algorithm to hash the nonce and header message. The goal is to keep changing the nonce and deliver hash leading values that are less than 256-bit values, known as the target. 

        A low target makes it much more computationally intensive to resolve. Since each hash basically generates a completely random number, many SHA-256 hashes must be performed. On average this takes about 10 minutes to resolve.

        
          The 10-minute proof-of-work also implies that a transaction will take 10 minutes on average to validate. Miners work on blocks, which are collections of many transactions. A block is limited (currently) to 1 MB of transactions, which implies your transaction will not be processed until the current block is completed. This can have implications for an IoT device with real-time demands.

        

      

      	Bitcoin mining incentives: To encourage individuals to build a peer-to-peer network to validate other people's spending, incentives are used to reward those individuals for their service. There are two forms of reward. The first is Bitcoin mining, which rewards individuals who validate a block of transactions. The other form of reward is a transaction fee. The transaction fee is given to a miner who helps validate a block and is taken as part of the transaction. Initially, there was no fee, but as Bitcoins have gained popularity, the fee has grown. On average the fee is about $35 (in Bitcoin currency) for a successful transaction. As a further incentive, fees are dynamic and one can increase fees, which artificially forces the transaction to be processed faster for a user. Even when new Bitcoin generation is exhausted, there is still an incentive to manage transactions.
          Initially, the mining reward was very high (50 Bitcoins) but that reduces by half about every four years after 210,000 blocks have been found. This will continue until the year 2140 when the halving rate will reach a point of exhaustion and rewards will be less than the lowest unit value of a Bitcoin (called a Satoshi or 10-8 Bitcoins).

          Given that a block is mined every 10 minutes and the reward is halved every four years, we can come up to the maximum number of Bitcoins in existence. We also know the initial reward for a mined coin is 50 Bitcoins. This produces a series that converges to the Satoshi limit: 50 BTC + 25 BTC + 12.5 BTC... = 100 BTC. 210,000 * 100 = 21 million total Bitcoins possible.

        

      

    

    
      	Security through chaining order: The order in which transactions occur is also vital to the integrity of a currency. If a Bitcoin is transferred from Alice to Bob and then to Charlie, you don't want the ledgers to record the events as Bob to Charlie and then Alice to Bob. Blockchains manage the order by chaining the transactions. All new blocks added to the network contain a pointer to the last block validated in the chain. Bitcoin states that no transaction is valid until it is chained to the longest fork and that at least five blocks follow it in the longest fork.This provision solves the asynchronous problem of what happens if Alice tries to double-spend a Bitcoin with Bob and Charlie. She might try to broadcast the transaction with Bob for one set of the miners and with Charlie on a second set. However, the process will find this fraud when the network converges. Bob may have a valid transaction, but the network will invalidate Charlie's transaction.

        Even if Alice attempts to pay herself and attempts to pay Bob, the ordering rules stop her. She does this by sending Bob a Bitcoin and waiting for the moment when the transaction is verified (five blocks follow it). She then immediately pays herself the same Bitcoin, which causes a fork in the chain. She now has to validate five additional blocks of Bitcoins. This takes about 50 minutes (5 blocks at 10 minutes each) as stated in step 4. That requires an enormous amount of computing power as she has to process faster than all other miners combined.

        
          Another interesting concept about blockchains is their use in managing DoS attacks. A proof-of-work system (or protocol/function) is an economic measure to deter DoS attacks. An attack intends to saturate a network with as much data as possible to overwhelm a system. A blockchain involving a work function reduces the effectiveness of such an attack. A key feature of these schemes is their asymmetry: the work must be moderately hard (but feasible) on the requester side but easy to check with the service provider.

        

      

    

    IOTA and directed acyclical graph-based (DAG) trust models

    An interesting new cryptocurrency has been developed solely for IoT called IOTA. In this case, the IoT devices themselves are the backbone of the trust network, and the architecture is based on a directed acyclic graph (DAG). Bitcoin has an associated fee per transaction. IOTA has no fees. 

    This is very important in the world of IoT, which may be serving microtransactions. For example, a sensor may provide a service reporting to many subscribers of MQTT. The service has value in aggregate terms but is measurably very small per single transaction, so small that a Bitcoin fee to provide that information may be larger than the value of the data.

    The IOTA architecture has the following aspects:

    
      	No centralization of monetary control. With blockchain, miners can form large groups in order to increase the number of blocks they can mine as well as increase their rewards. This can potentially lead to a concentration of power and possibly harm the network.

      	No costly hardware equipment. In order to mine Bitcoin cryptocurrency, powerful processors are necessary due to the complexity of the processing logic required.

      	Microtransactions and nanotransactions at the IoT level of data.

      	Proven security even against quantum computing brute force attacks.

      	Data that can be transferred through IOTA just as currency can. The data is fully authenticated and tamper-proof.

      	It is agnostic to the payload of a transaction. As a result, a national tamper-proof voting system can be designed.

      	Anything with a small SOC can become a service. If you own a device such as a drill, personal Wi-Fi, microwave, or bicycle, devices with a small SOC or microcontroller can join IOTA and become leasing sources of revenue.

    

    The IOTA DAG is called a tangle and is used store transactions as a distributed ledger. Transactions are issued by nodes (IoT devices), and they constitute a set on the tangle DAG. If there is no directed edge between transaction A and transaction B, but there is a path of at least length two from A to B, it can be said A indirectly approves B.

    There is also the notion of a genesis transaction. Since there is no mining for graph edges (and no incentives or fees) to start the tangle, one node contains all tokens. The genesis event sends the tokens to other "founder" addresses. This is the static set of all tokens, and no new tokens will ever be created.

    When a new transaction arrives, it must approve (or deny) two previous transactions; this is called direct approval. This forms a direct edge on the graph. Anything performing a transaction is required to produce a "work" product on behalf of the tangle. 

    This work involves finding a nonce that works with the hash of a portion of the approved transaction. Thus, by using IOTA, the network becomes more distributed and more secure. The transaction may have many approvers. As more transactions occur, the confidence that the transaction is legitimate increases. If a node attempts to approve a transaction that for all intents is not legitimate, it risks having its own transaction be continuously disproved and falling into oblivion.

    While still early in the rollout, it is a technology to watch. More information can be found at http://iota.org.

    Government regulations and intervention

    Government bodies and regulatory agencies have stepped in to recommend and mandate levels of security that must be met by vendors to be considered secure. There has been more interest lately in the US government with regards to ensuring certain security standards are met for connected devices, especially with the growing attacks on IoT systems. It is important to be cognizant of these rules and laws as other countries may adopt similar or, in other cases, completely dissimilar regulations making the job of an IoT architect difficult when scaling globally. These laws affect privacy and security for the individual as well as the nation.

    US Congressional Bill – Internet of Things (IoT) Cybersecurity Improvement Act of 2017

    IoT security has received attention from various governments. A bipartisan bill (S.1691 – Internet of Things IoT Cybersecurity Improvement Act of 2017, https://www.congress.gov/bill/115th-congress/senate-bill/1691/text) was introduced in the US Senate on August 1, 2017. The bill's intent is to formalize and regulate the minimum security standards that must be met for Internet-connected devices to be sold to US federal agencies. While the bill has yet to become law, the provisions clearly show the degree of regulation for IoT security that is being considered.

    The bill specifically calls out the following requirements for a contractor providing federal IoT solutions:

    
      	Solutions hardware, software, and firmware must be free of vulnerabilities as stated in the NIST National Vulnerability Database.

      	Software and firmware must be capable of accepting authenticated updates and patches. Additionally, contractors must patch vulnerabilities in a timely manner. The contractor is also responsible for supporting deployments and stating when support will end and how support will be managed for IoT devices.

      	Only non-deprecated protocols and technologies for communications, encryption, and interconnection should be used.

      	No hardcoded credentials installed for remote administration.

      	A method must be provided for any Internet-connected device software or firmware to be updated or patched in any part to fix a vulnerability.

      	Written certification when the IoT device provides third-party technologies that they comply with these standards.

      	The Director of the Office of Management and Budget (OMB) may issue deadlines for the removal and replacement of existing IoT devices that are deemed to be insecure.

      	Sixty days after becoming law, the Cybersecurity and Infrastructure Security Agency (CISA) with the assistance of private and academic technologists will issue formal cybersecurity guidelines for any and all IoT devices used by the federal government.

    

    Written into the bill are provisions to allow for agencies to adopt or continue to use better security technologies than what is written into the bill (upon approval from the OMB director). Additionally, the bill recognizes some IoT devices are severely constrained in terms of processing power and memory and may not have parity with the provisions of the bill. Again, in that case, petitions for a waiver would be managed by the director with a plan to upgrade and replace. For these noncompliant devices, the bill states the following technologies may be approved with coordination between NIST and the director to mitigate the risk:

    
      	Software-defined network segmentation and micro-segmentation

      	OS-level controlled containers and microservices for isolating runtimes

      	Multifactor authentication

      	Intelligent network edge solutions such as gateways that can isolate and remediate threats

    

    While the bill is still in committee at the time of writing, it certainly shows the concern of IoT security and vulnerabilities at a federal level. The bill may morph or be killed, but the significance of IoT security has gained the attention of the US government and lawmakers.

    Other governmental bodies

    Other agencies in the US federal government have already issued guidelines and recommendations for a litany of technologies surrounding IoT. Most notable is the National Institute of Standards and Technology (NIST), which has produced several documents and guides for the security of connected devices. They also maintain national and internationally recognized standards regarding security. Supporting material can be found at http://csrc.nist.gov. Several important documents relating to cryptography and FIPS standards are listed here:

    
      	NIST Special Publication 800-121 Revision 2, Guide to Bluetooth Security. This specifies a set of recommended security provisions for Bluetooth Classic and Bluetooth BLE: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf.

      	NIST Special Publication 800-175A, Guidelines for Using Cryptographic Standards in the Federal Government: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175A.pdf.

      	NIST FIPS standards: https://www.nist.gov/itl/current-fips.

    

    The Department of Homeland Security (DHS) provides operational binding directives for all federal agencies in terms of national security including in the area of information technology. Recent directives include 18-01, which mandates "cyber hygiene" through email policies, key management, Domain-based Message Authentication, Reporting, and Conformance (DMARC), web security using HTTPS only, and other similar actions. DHS is also involved in prescriptive guidance for Congress, other agencies, and the private sector regarding cybersecurity standards: https://www.dhs.gov/topic/cybersecurity.

    The US-CERT, or Computer Emergency Response Team, is also critical for anyone concerned about security. The US-CERT has been chartered with finding, isolating, informing, and stopping cybersecurity threats on a national basis since 2000. They provide digital forensics, training, real-time monitoring, reports, and actionable defenses for known zero-day exploits and active security threats. Current active alerts and mitigations can be found here: https://www.us-cert.gov/ncas/alerts.

    In Europe, the European Union Agency for Cybersecurity issues standards and publications on various information security practices. Good information may be obtained at:

    
      	ENISA Security of the Internet of Things: https://www.enisa.europa.eu/news/enisa-news/defining-and-securing-the-internet-of-things

      	Internet of Things Privacy and Security Workshop's Report: https://ec.europa.eu/digital-single-market/en/news/internet-things-privacy-and-security-workshops-report

      	The Cybersecurity Act: For an enhanced cyber resilience: https://ec.europa.eu/digital-single-market/en/cyber-security

    

    In Australia, the IoT Alliance Australia maintains a set of guidelines and practices for information security located here: http://www.iot.org.au/wp/wp-content/uploads/2016/12/IoTAA-Security-Guideline-V1.2.pdf.

    IoT security best practices

    Security for IoT needs to be considered from the start of design and not retrofitted at the end of a program or in the field. At that point, it is too late. Security also needs to be viewed holistically from the hardware to the cloud. This section illustrates a simple IoT project from the sensor to the cloud and illustrates the "blanket" of security to consider. The intent is to deploy a system with various levels of safeguards, all there to increase the attacker's work function.

    Holistic security

    Narrowly focusing on one segment of IoT doesn't provide security and establishes a weak link in the security chain. One needs to establish security from the sensor to the cloud and back—a holistic approach. Each component in the chain of control and data should have a checklist of security parameters and enablers. The following diagram illustrates an example of the layers of security from the sensor to the cloud to consider in a deployment:
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    Figure 13: Sensor to cloud holistic security. Here is an example of Bluetooth-enabled sensors communicating through an edge gateway ultimately to a cloud service. Each layer needs to provide integrity and protection. Security involves both hardware and software components. This includes the security of physical devices to prevent tampering, radio signals to prevent jamming and DoS, RoT hardware and ASLR to prevent malicious code injection, data by use of encryption, pairing and association by use of authentication, network through VPNs and ﬁrewalls, and so on.

    Security checklist

    The following is a list of security recommendations and ideas that have traditionally worked. Again, it is important to have a blanket of security:

    
      	Use the most current OS and libraries with all relevant patches. 

      	Use industry standard conventions.

      	Don't reinvent or customize proven protocols and security processes.

      	Use hardware that incorporates security features like Trusted Execution.

      	Environments, Trusted Platform Modules, and non-execute spaces.

      	Sign, encrypt and protect your firmware and software images, especially those freely available on a company website. Obfuscating code in the hopes a hacker will not reverse engineer it is relatively useless.

      	Randomize default passwords.

      	Use a RoT and secure boot to ensure you have a "golden" image of software running on a customer device.

      	Eliminate hardcoded passwords in ROM images. 

      	Ensure all IP ports remain closed by default.

      	Use address space layout randomization, stack canaries, and guard bands in memory through modern operating systems.

      	Use automatic updates. Provide manufacturers with a mechanism to fix and patch bugs and vulnerabilities in the field. This requires a modular software architecture.

      	Plan for end-of-life. An IoT device may have a long usable life, but it will need to be disposed of eventually. This should include methods to securely wipe and destroy all persistent memory (flash) from the device.

      	Use bug bounties programs. Reward your customers and users for finding and reporting bugs, especially defects likely to expose a zero-day exploit.

      	Subscribe to and participate in US-CERT active threat management to become immediately aware of active exploits and cyber threats.

      	As tempting as it is to simply build a project with MQTT, HTTP, or other insecure protocols, only ship with security and authentication enabled through TLS or DTLS. Encrypt data from the sensor to the cloud.

      	Employ anti-debug fuses on the package. Blow fuses in manufacturing to securely debug channels prior to releasing a product.

    

    Summary

    This chapter detailed the risks of security in the IoT. With well-known attacks such as Mirai and Stuxnet, which target IoT devices as their intended hosts, architects should design security into an IoT deployment from the start. The IoT makes for the best play space to launch an attack. The systems are usually less security mature than server and PC systems. IoT devices provide the largest attack surface on the planet. Finally, the remoteness of some IoT systems allows for attackers to be physically present and manipulate hardware, which wouldn't happen in a secure office setting. These threats need to be taken seriously, as the ramifications could have a pronounced impact on a device, a city, or a nation.

    Further security links of interest are:

    
      	Black Hat: https://www.blackhat.com

      	Defcon: https://www.defcon.org

      	Digital Attack Map: http://www.digitalattackmap.com

      	Gattack: http://gattack.io

      	IDA Pro Interactive Disassembler: https://www.hex-rays.com 

      	RSA Conference: https://www.rsaconference.com 

      	Shodan: https://www.shodan.io

    

    We conclude the book with a list of consortiums and organizations to assist with IoT development, technologies, regulations, and standards.
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    Consortiums and Communities

    Industrial consortia exist for several reasons and are essential for the promotion, governance, and construction of standards. The IoT industry is similar to other technologies and has its fair share of proprietary and open standards. This chapter covers the various consortia across PANs, protocols, WANs, and fog and edge computing, as well as various umbrella consortia. A detailed and categorical description of each alliance will be detailed to help you decide which, if any, organization(s) is worth the time and investment to associate with. It should be noted that an organization doesn't need any involvement with an industrial alliance; many great products and businesses have been built without reliance on a consortium. However, some organizations will require corporate membership for logo usage or even the ability to productize certain standards.

    A growing market segment like IoT will spawn alliances early on in its hype cycle as a number of players vie for a stake in setting standards. This is a natural phenomenon during the rapid growth phase of any business. Oftentimes, alliances form when one similar standard competes with another, and organizations will align themselves across competitive lines. Other times, standards are defined for the industry through nonprofit and academic venues. If for no other reason, the list of consortia in this chapter should help steer architects to the resources and technical collateral needed for their designs.

    This chapter will provide context, history, and membership information for various organizations and consortia in the IoT space, including communications, cloud, and fog standard bodies.

    PAN consortia

    PANs (both IP and non-IP based) have several consortia and governance committees. Many are formed by founding partners and require membership or affiliation for usage rights.

    Bluetooth

    The details of the organization are as follows:

    
      	Founded: 1998

      	Corporate membership: 20,000

      	Website link: www.bluetooth.org

    

    The Bluetooth SIG was formed in 1998 by five member companies: Ericsson, IBM, Intel, Nokia, and Toshiba. By the end of 1998, they had 400 members in the organization. The charter of the organization is to advance the standards, forums, markets, and understanding of Bluetooth technologies. The organization oversees the development, as well as the licensing and trademarks, of Bluetooth. Organizationally, the SIG is divided into smaller focused groups: study groups for research, expert groups that span multiple Bluetooth domains, working groups that are dedicated to the development of new standards, and committees that focus on licensing and marketing. Membership is divided into Associate members, who can join working groups, obtain early and advanced specifications, gain marketing materials, attend PlugFest, and receive qualification listings; and Adopter membership, which is the only free membership level. Adopters cannot join a working group.

    Thread Group

    The details of the organization are as follows:

    
      	Founded: 2014

      	Corporate membership: 182

      	Website link: www.threadgroup.org

    

    The Thread Group was originally formed by Alphabet (Google holding company), Samsung, ARM, Qualcomm, NXP, and six others. Thread is a PAN protocol based on 6LoWPAN, which is based on 802.15.4. The working group licenses Thread using the public domain BSD license model. The intent of the group was to directly counter the Zigbee protocol, especially around the use of PAN mesh networks. There are three levels of corporate membership. 

    The bottom tier is the Academictier, and Affiliate level entitles an organization to logo usage, press interviews, and access to deliverables. The Implementer tier gains access to royalty-free IP and test products, but doesn't allow for logo certification. The mid-tier Contributor level allows access to working groups and committees and allows logo certification. The top-tier Sponsor level provides a board seat and oversees the organization's budget.

    Zigbee Alliance

    The details of the organization are as follows:

    
      	Founded: 2002

      	Corporate membership: 446

      	Website link: www.zigbee.org

    

    The Zigbee Alliance was formed around the Zigbee protocol first conceived in 1998 to address the gap in self-organizing and secure mesh networks. Zigbee sits on the 802.15.4 base layers like Thread but is not IP-based. The software stack has remained GPL-based after several requests to provide more flexibility in licensing. There are three levels of membership. Adopters gain early access to specification, attend conferences, and can use the Zigbee logo. Participant members can propose and work in various technical committees, as well as vote on specifications. Finally, Promoter members receive board seats and are the sole body to ratify specifications.

    Miscellaneous

    Various connectivity organizations of interest include:

    
      	DASH7 Alliance: The governing body of the DASH 7 protocol (www.dash7-alliance.org)

      	ModBus: An industry consortium governing the Modbus protocol for industrial use cases (www.modbus.org)

      	BACnet: The American Society of Heating, Refrigerating, and Air-Conditioning sponsored organization for BACnet industrial communication and standards (www.bacnet.org)

      	Z-Wave Alliance: An industry and governing body for Z-Wave-specific technology (z-wavealliance.org)

    

    Protocol consortia

    These organizations maintain higher layer protocols and abstractions such as MQTT. While many protocols are open source, such as MQTT, membership allows for voting rights and participation in new standards.

    Open Connectivity Foundation and Allseen Alliance

    The details of the organization are as follows:

    
      	Founded: 2015

      	Corporate membership: 300

      	Website link: www.openconnectivity.org

    

    The Open Connectivity Foundation was originally called the Open Interconnect Foundation but changed its name in 2016 to the Open Connectivity Foundation after the separation of Samsung from the working group and the addition of new members. For several years it was a separate entity from the Allseen Alliance, but in 2016 the organizations merged. Their combined charter is to build interoperability platforms for consumers, businesses, and industries through standards, frameworks, and a certification program under the name Open Connectivity Foundation. It spans multiple segments: automotive, consumer electronics, enterprise, healthcare, home automation, industrial, and wearables. Their frameworks are most famous for the Universal Plug and Play (UPnP) specification and now the IoTivity and AllJoyn connectivity framework. They use the Internet Systems Consortium (ISC) licensing model, which is meant to be functionally equivalent to BSD. There are five levels of membership with varying degrees on yearly dues. The Basic membership is free to all and grants access to test tools and read-only rights to specifications. There is a Nonprofit Educational Gold level that grants such organizations access to working groups and certification. Above that are the Gold, Platinum, and Diamond levels, each with varying degrees of access from working group participation to board membership.

    OASIS

    The details of the organization are as follows:

    
      	Founded: 1993

      	Corporate membership: 300

      	Website link: www.oasis-open.org

    

    OASIS is the Organization for the Advancement of Structured Information Standards. OASIS is a large nonprofit organization and was formed in 1993. It has been a major contributor to dozens of industry standard languages and protocols and defines the MQTT and AMQP protocols widely used in the IoT community. Their technologies touch on IoT, cloud computing, energy sectors, and emergency management to name a few. OASIS supports three types of membership. The Contributor level provides unlimited committee participation. The Sponsor level adds visibility and marketing benefits such as Interop demonstration and logo usage. Finally, the Foundational Sponsor level has the highest visibility, with perks such as OASIS presentations within a company and scholarship awards. Industry leaders representing open standards typically join at a foundational sponsor level. Company yearly dues are a function of the type of membership and the number of employees.

    Object Management Group

    The details of the organization are as follows:

    
      	Founded: 1989

      	Corporate membership: 250

      	Website link: www.omg.org

    

    The Object Management Group (OMG) is a nonprofit organization originally formed in partnership with Hewlett-Packard, IBM, Sun, Apple, American Airlines, and Data General to focus on heterogeneous object standards in computing. They are best known for setting the UML standard and CORBA, and recently in the IoT arena, the OMG consortium took over managing the Industrial Internet Consortium. They are involved in a number of aspects in industrial IoT, as well as software-defined networking (SDN). Focused IoT areas include distributed data services to ensure network interoperability as well as threat management in IoT. The group maintains a governance model with three segments: an architectural board, a platform technology committee, and a domain technology committee. There are six varying levels of membership. An Influencing membership allows companies the ability to participate and not vote in task forces (TFs) and is appropriate if your company is not entirely based on or adopting OMG specifications. Influencing members may not participate in platform or domain committees. The next three levels are called Submitting memberships and are intended to allow companies to participate with peer groups to help guide the industry. Platform and Domain tiers are intended for companies that will contribute to the standards for platforms or domains and join the respective TFs. They may also nominate candidates to sit on the architectural board (AB). 

    The Contributing membership allows access to all committees, board seats, and so on. The top level is a Board of Directors membership tier, which is the overall governing board of the entire organization. There are many other membership classes for government bodies, analysts, academics, and retailers, and there is even a trial membership.

    The following figure illustrates the organizations structure of OMG:
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    Figure 1: OMG membership levels. Influencing members may participate and vote below the dotted line in TFs. Submitting members may participate and vote above the dotted line in various committees.

    OMA Specworks

    The details of the organization are as follows:

    
      	Founded: 2008

      	Corporate membership: 60

      	Website link: www.omaspecworks.org

    

    The Open Mobile Alliance (OMA) and the IPSO Alliance (IPSO) conjoined their organizations in 2018 to form a joint venture called OMA Specworks. OMA has existed since 2002 as an organization to assist developers in transforming ideas into an industry specification. IPSO Alliance is not a standards organization but an alliance that promotes IP enablement for smart objects and leads the industry on using IP to resolve interoperability issues. 

    The group exists to complement the IETF through various working groups chartered with semantics (meta-information standards across objects), IoT protocols and the analysis of varying standards, and security and privacy. The new OMA Specworks manages LightWEightM2M (LwM2M) as a device management protocol for sensor networks and M2M solutions.

    There are four levels of membership: Supporter, which is designated for an organization wishing to contribute to specifications but has no voting rights; the Associate level, which grants the company half votes to specification drafts and the ability to fill a vice-president seat in a working group; the Full membership, which adds the ability to cast one full vote and be eligible for working group chair seats and board positions; and finally the Sponsor level, which automatically places the member on the board.

    Miscellaneous

    Various other organizations focusing on IoT protocols and security include:

    
      	Online Trust Alliance (OTA): A global nonprofit developing best practices for IoT security (https://otalliance.org)

      	oneM2M: Common service layer, protocols, and architecture for connected things (http://www.onem2m.org)

    

    WAN consortia

    These organizations cover the various long-range (LPWAN) communication and protocols. Some require membership for usage rights, while others are open protocols.

    Weightless SIG

    The details of the organization are as follows:

    
      	Founded: 2012

      	Corporate membership: Unknown

      	Website link: www.weightless.org

    

    The nonprofit Weightless SIG was formed to sponsor and support the various Weightless LPWAN protocols. There are three standards supported by the SIG: Weightless-N for low-cost and long battery life, Weightless-P for two-way communication with a full set of features, and Weightless-W, which includes an extensive set of features and capabilities.

    The intention is to set a standard for use cases such as smart meters, vehicle tracking, and even rural broadband. Weightless focuses predominantly on usage in medical and industrial environments. While the standard is open, there is a required qualification process. Members are entitled to use Weightless IP on a royalty-free basis and have access to the certification program. Membership is fairly simple at one level: Developer.

    LoRa Alliance

    The details of the organization are as follows:

    
      	Founded: 2014

      	Corporate membership: 419 (44 additional institutional members)

      	Website link: www.lora-alliance.org

    

    The LoRa Alliance is a nonprofit consortium that sponsors the LoRaWAN LPWAN technology. LoRaWAN is a protocol layer architecture for long-range communication in the sub-Gigahertz spectrum. LoRaWAN typically caters to M2M and smart city deployments. There are four paid levels of corporate membership, including the Adopter level, which grants the holder rights to certified products, access to final deliverables, and invitations to certain meetings. The next level is the Institutional membership, which grants the holder the right to participate in working groups and gain access to early drafts. Next is the Contributor level, which adds the right to vote within working groups. Finally, there is the Sponsor level, which entitles the company to request a board seat, oversee operational data, and chair a working group.

    Internet Engineering Task Force (IETF)

    The details of the organization are as follows:

    
      	Founded: 1986

      	Corporate membership: 1200 (general attendee counts within IETF meetings)

      	Website link: www.ietf.org

    

    Originally established with 21 US researchers, the IETF has grown significantly over the years and is best known as the body controlling industry standards such as TCP/IP and various RFC documents. They now cover broad areas that span into the IoT segment, such as LPWAN protocols, 6lo, and IPVS over 802.15.4. Within the IETF exists the Internet Engineering Steering Group, which governs the standardization process. 

    It is structurally divided into seven areas, such as routing area or transport area. Each area may also host dozens of different working groups. (There are over 140 working groups.) Joining the IETF is straightforward and can be done by simply subscribing to and participating in a working group email list, understanding the charter and standards, and actively engaging with the broader group. The standards process is rigorous as this group defines the foundation of Internet communication.

    Wi-Fi Alliance

    The details of the organization are as follows:

    
      	Founded: 1999

      	Corporate membership: 700

      	Website link: www.wi-fi.org

    

    The Wi-Fi Alliance is a nonprofit standard body that was constructed to address the gaps of wireless interoperability in the mid-90s. With the advent of 802.11b, an industry-wide consortium was formed to build an effective governance body. The alliance controls the Wi-Fi certification process and the associated logo and trademark for devices that meet their standard. There are 19 working areas and focus groups, such as 802.11ax, security, and IoT.

    There are two levels of membership: an Implementer membership allows the holder to leverage previously certified Wi-Fi products for their end solution, and the Contributor membership allows an organization to participate in certification programs and new technology definitions.

    Fog and edge consortia

    Fog and edge computing are becoming a growing need, and a bifurcated set of industry standards are being adopted. Industrial organization and industry standards are needed to help resolve growing interoperability problems with fog computing. This section highlights some of the organizations building standards and frameworks for industry interoperability.

    OpenFog

    The details of the organization are as follows:

    
      	Founded: 2015

      	Corporate membership: 55

      	Website link: www.openfogconsortium.org

    

    OpenFog joined under the umbrella of the Industrial Internet Consortium (IIC) in 2019. IIC information is listed in the next section.

    Eclipse Foundation and EdgeX Foundry

    The details of the organization are as follows:

    
      	Founded: Eclipse: 2001; EdgeX: 2017

      	Corporate membership: Eclipse: 275; EdgeX: 50

      	Website links: www.eclipse.org and www.edgexfoundry.org

    

    The Eclipse Foundation was created in 2001 by IBM. It is most noted for the Eclipse Project used by millions of developers daily. The nonprofit organization controls over 350 open source projects from various development environments to software frameworks.

    The EdgeX Foundry is chartered with delivering an edge platform designed to resolve hardware and operating system interoperability for the IoT ecosphere through open source software. Microservices include significant middleware for rules engines, alerting, logging, registration, and device connects. The project is hosted by the Linux Foundation and is licensed under the Apache model. Dell is a principal seed for the initial code design, which is a series of microservices designed to be hardware agnostic. There are two levels of membership: a General Member level and Premier members. A General member may participate in elected board seats, use logo materials, and participate in hosted events. The Premier membership adds the ability to work on committee budgets, change marketing strategies through voting seats, access to operational staff and leadership, change organization policies, and a voting seat on Technical Advisory Councils (TACs).

    Umbrella organizations

    The following organizations govern or steer a myriad of different technical and functional aspects of IoT (as well as other segments). They represent aspects of protocols, testing, operability, technology, communication, and theory.

    Industrial Internet Consortium

    The details of the organization are as follows:

    
      	Founded: 2014

      	Corporate membership: 258

      	Website link: www.iiconsortium.org

    

    A nonprofit that was started in 2014 by AT&T, Cisco, GE, IBM, and Intel, the consortium exists to bring together industry partners to assist in the adoption and development of the industrial IoT. The group is not a standards body but instead drives reference architectures and testbeds for manufacturing, health, transportation, smart cities, and the energy sector. There are currently 19 working groups that span areas such as connectivity, safety, energy, smart factories, and healthcare. 

    In 2019, the original OpenFog organization merged with the IIC. It performs the same function it did before the merger. OpenFog manages the standards and architecture of the OpenFog Architecture. They address challenges in edge and fog computing through open technologies with a mission to create a framework for secure and efficient processing and interoperability between cloud, endpoints, and services.

    The group has six levels of membership including Government and Nonprofit/Academia levels. The corporate memberships scale in influence and cost based on the company's annual sales. Those levels include Founding, Contributing, Large Industry, and Small Industry. The testbed definitions are broad and well defined and include specific industrial use cases such as airline baggage handling tests. As mentioned previously, the OMG group manages the operations of the group, but the IIC is itself its own organization.

    IEEE IoT

    The details of the organization are as follows:

    
      	Founded: 2014

      	Corporate membership: N/A 

      	Website link: iot.ieee.org

    

    While not a consortium, the IEEE IoT is a special interest group under the IEEE umbrella. It is a multidisciplinary organization comprised of academic institutions, government bodies, and industry and engineering professionals to drive IoT development. The IEEE IoT influences or hosts specific standards in the IoT world, such as 802.15 protocols and 802.11 Wi-Fi standards. The group offers free webinars, classes, and online material to help grow the knowledge base of the industry. World class conferences, workshops, and influential summits are managed by the IEEE IoT group, as well as one of the most active research journals: the IEEE Internet of Things Journal.

    Miscellaneous

    Various umbrella organizations of interest include:

    
      	Genivi: Open software group for in-vehicle infotainment and connected cars (www.genivi.org)

      	HomeKit: Apple consumer and mobile home automation standards (https://developer.apple.com/homekit/)

      	Open Automotive Alliance: Auto and technology group aimed at using Android in vehicles (https://www.openautoalliance.net/#about)

      	Wireless Life Sciences Alliance: Connected and wireless healthcare initiative and industry (http://wirelesslifesciences.org/)

    

    US government IoT and security entities

    The following are government and federal organizations you should be familiar with, especially in the area of IoT security:

    
      	National Institute of Standards and Technology: Defines national standards on security, encryption, and networking (https://www.nist.gov)

      	National Security Telecommunications Advisory Committee (Department of Homeland Security): Chartered with strengthening cybersecurity and global communication infrastructure (https://www.dhs.gov/national-security-telecommunications-advisory-committee)

      	National Telecommunications and Information Administration: Part of the US Department of Commerce that controls US radio spectrum allocation, domain naming, and security (https://www.ntia.doc.gov/home)

      	US-CERT: Computer Emergency Response Team that identifies and responds to national high-impact computer security emergencies (https://www.us-cert.gov/ncas/current-activity)

    

    Industrial and Commercial IoT and Edge

    It is also worth noting some of the top companies building systems and services for IoT and edge computing. This is based on recent headlines, employees, revenues, product offerings, market capitalization, product offerings, product reliability, and standards participation. The following sections include devices and services that I have successfully used and deployed in commercial projects.

    
      While hobbyist technologies such as Arduino and Raspberry Pi devices certainly have their place in IoT and edge computing, they are traditionally used in proof-of-concept or academic exercises. This book caters more to commercial and industrial mass scale IoT and edge computing solutions that require hardened field devices and scalable technologies for worldwide mass production and deployment. 

    

    Commercial and industrial sensor and MEMS manufacturers and vendors

    This table serves to highlight the leading sensor manufacturers and companies.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Analog Devices

          
          	
            Accelerometers, gyroscopes, inertial measurement sensors, magnetic field sensors, optical sensors, temperature and environmental sensors.

          
          	
            www.analog.com

          
        

        
          	
            Bosch

          
          	
            SensorTecTM, accelerometers, gyroscopes, magnetometers, inertial movement units, orientation sensors, environmental sensors, optical systems

          
          	
            www.bosch-sensortec.com

          
        

        
          	
            Broadcom

          
          	
            Optical sensors, motion control encoders

          
          	
            www.broadcom.com

          
        

        
          	
            Infineon Technologies

          
          	
            Magnetic sensors, current and electric sensors, MEMS microphones, pressure sensors, environmental sensors, radar sensing, image sensors

          
          	
            www.infineon.com

          
        

        
          	
            Invensense

          
          	
            All-in-one CPUs/sensors, motion sensors, imaging and optical sensors, sound sensing, location sensing and tracking, motion sensors

          
          	
            www.invensense.com

          
        

        
          	
            Microchip

          
          	
            CO and smoke sensors, fan controllers, inductive position sensors, thermocouples, current sense amplifiers

          
          	
            www.microchip.com

          
        

        
          	
            NXP Semiconductors

          
          	
            Motion sensors, pressure sensors, magnetic sensors, touch sensing, digital temperature sensors, silicon sensing, capacitive touch sensors, automotive sensors

          
          	
            www.nxp.com

          
        

        
          	
            Omron

          
          	
            Industrial and medical sensors, light fiber sensors, photoelectric sensors, displacement and geometry sensors, vision sensors, OCR readers, optical sensing, ultrasonic sensors, pressure sensors, contact sensing, leak and fluid sensors, hardened environmental sensors

          
          	
            www.omron.com

          
        

        
          	
            onSemi

          
          	
            Image sensors and image processors, thermal sensors, touch sensors, ambient light sensing, battery-free asset tags

          
          	
            www.onsemi.com

          
        

        
          	
            ST Microelectronics

          
          	
            Accelerometers, automotive sensors, gyroscopes, compass sensing, humidity sensors, MEMS microphones, inertial modules, high-performance industrial sensors, pressure sensors, proximity sensors, temperature sensors

          
          	
            www.st.com

          
        

        
          	
            TE Connectivity

          
          	
            Industrial, medical, and commercial sensors and cabling solutions; automotive sensors, piezo sensors, torque sensors, vibration sensors, etc.

          
          	
            www.te.com

          
        

        
          	
            Texas Instruments

          
          	
            Temperature sensors, mmWave sensors, current and electric sensing, ultrasonic sensors, time-of-flight sensors, Hall effect magnetic sensors, environmental sensors

          
          	
            www.ti.com

          
        

      
    

    Silicon, microprocessor, and component manufacturers

    This table serves to highlight the leading companies in IoT and edge computing hardware and component manufacturers.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            AMD

          
          	
            Mid-range to extreme performance x86 Cores, SOCs, GPUs

          
          	
            www.amd.com

          
        

        
          	
            ARM

          
          	
            Silicon IP, microcontrollers, real-time processors, 32- and 64-bit cores, machine learning cores, image processors, trusted execution environment security systems, GPUs, bus interconnect

          
          	
            www.arm.com

          
        

        
          	
            Intel

          
          	
            Mid-range to extreme performance x86 cores, SOCs, memory systems

          
          	
            www.intel.com

          
        

        
          	
            Microchip Technologies

          
          	
            8-bit to 32-bit ARM and MIPS microcontrollers

          
          	
            www.microchip.com

          
        

        
          	
            Nvidia

          
          	
            Edge Jetson SOCs, Smart City MetropolisTM Vision System, AI engines

          
          	
            www.nvidia.com

          
        

        
          	
            Qualcomm

          
          	
            SnapdragonTM CPU, GPU SOCs

          
          	
            www.qualcomm.com

          
        

        
          	
            ST Microelectronics

          
          	
            8-bit to 32-bit microcontrollers, fully integrated SOCs

          
          	
            www.st.com

          
        

        
          	
            Texas Instruments

          
          	
            SitaraTM ARM-based processors, automotive ICs, digital signal processors

          
          	
            www.ti.com

          
        

      
    

    PAN communication companies

    This table serves to highlight the leading companies in PAN and wireless connectivity manufacturers and providers.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Digi

          
          	
            Zigbee modules, system on modules, single-board computers

          
          	
            www.digi.com

          
        

        
          	
            Microchip

          
          	
            802.15.4, Bluetooth radios, infrared systems, LoRa modules, Wi-Fi modules, sub-1GHz radios, Zigbee

          
          	
            www.microchip.com

          
        

        
          	
            Nordic Semiconductor

          
          	
            Leading Bluetooth manufacturer, Bluetooth mesh, thread controllers, Zigbee radios, ANT protocols, direction finders

          
          	
            www.nordic.com

          
        

        
          	
            NXP

          
          	
            Wi-Fi modules, Bluetooth radios, 802.15.4 radios, NFC, RFID modules, Bluetooth modules, Zigbee, Thread, sub-1GHz radios

          
          	
            www.nxp.com

          
        

        
          	
            On Semiconductor

          
          	
            Monolithic microwave ICs, wireless RF transmitters (802.15.4, Bluetooth, Zigbee, Sigfox, EnOcean, 6LoWPAN, Thread), Wi-Fi, low-speed IO ICs

          
          	
            www.onsemi.com

          
        

        
          	
            Silicon Labs

          
          	
            Bluetooth, Thread, Wi-Fi, Zigbee, Zwave, proprietary RF, multiprotocol transceivers

          
          	
            www.silabs.com

          
        

        
          	
            ST Microelectronics

          
          	
            Bluetooth modules, Thread, Zigbee, LoRaWAN systems, Sigfox systems, sub-1GHz radios

          
          	
            www.st.com

          
        

        
          	
            Texas Instruments

          
          	
            SimpleLinkTM MCU controllers, Bluetooth radios, Thread, 6LoWPAN, Wi-Fi, sub-1GHz radios, multiprotocol radios

          
          	
            www.ti.com

          
        

      
    

    WAN technology companies

    This table serves to highlight the leading companies in IoT and edge WAN connectivity, networking, routing, and communications.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Cisco Meraki

          
          	
            WAN, access points, SD-WAN security, smart cameras, enterprise-class switches

          
          	
            meraki.cisco.com

          
        

        
          	
            Digi

          
          	
            FirstNet certified gateways and routers, industrial and transportation cellular routers (2G, 3G, 4G LTE), cloud management systems, system on modules

          
          	
            www.digi.com

          
        

        
          	
            Freewave

          
          	
            Industrial IoT routers, 900 MHz WAN, 436 MHz to 1.4 GHz radios, 2.4 GHz routers, SCADA systems

          
          	
            www.freewave.com 

          
        

        
          	
            Peplink

          
          	
            4G LTE cellular routers, SD-WAN solutions, enterprise and industrial Wi-Fi, mobile and fleet routers, multicarrier cellular routers

          
          	
            www.peplink.com 

          
        

        
          	
            Semtech

          
          	
            LoRa technologies

          
          	
            www.semtech.com

          
        

        
          	
            Sierra Wireless

          
          	
            AirVantageTM IoT platform, connectivity management services, 2G, 3G, 4G LTE, Cat-M1, and NB-IoT chips and modules, Wi-Fi modules, Bluetooth, edge routers, edge, GPS transceivers

          
          	
            www.sierrawireless.com

          
        

        
          	
            Telit

          
          	
            2G, 3G, 4G LTE, 5G, NB-IoT, Cat M1 cellular radios and modules, LoRa modules, GPS positioning modules, remote management software, global IoT data plans

          
          	
            www.telit.com 

          
        

        
          	
            Ublox

          
          	
            2G, 3G, 4G LTE, NB-IoT, Cat M1 cellular systems and modules, GPS modules

          
          	
            www.u-blox.com

          
        

      
    

    Edge computing and solutions companies

    This table serves to highlight edge computing hardware as well as IoT solution providers worldwide.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Advantech

          
          	
            Embedded modules, industrial edge computers, hardened environment edge systems, ARM and X86 edge computing, industrial automation, edge AI platforms, industrial gateways, medical computing systems

          
          	
            www.advantech.com

          
        

        
          	
            Dell

          
          	
            Edge gateways and hardened X86 boxes

          
          	
            www.dell.com

          
        

        
          	
            Digi

          
          	
            i.MX single-board computers, ConnectCoreTM industrial computing

          
          	
            www.digi.com

          
        

        
          	
            Inforce Computing

          
          	
            X86 and Qualcomm system on modules, single-board computers, enterprise- and commercial-ready computing platforms

          
          	
            www.inforcecomputing.com

          
        

        
          	
            Lenovo

          
          	
            High-performance ThinkSystemTM edge servers

          
          	
            www.lenovo.com

          
        

        
          	
            RUMBLE IoT

          
          	
            Edge systems, integrated solutions, vehicular and fleet telematics, industrial edge systems 

          
          	
            www.rumbleiot.com

          
        

      
    

    Operating system, middleware, and software companies

    This table serves to highlight the operating systems, middleware, software solutions, and services companies.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Amazon

          
          	
            Greengrass Lambda middleware 

          
          	
            www.amazon.com

          
        

        
          	
            ARM

          
          	
            MBed OSTM, security services and platforms, edge and IoT management software

          
          	
            www.arm.com

          
        

        
          	
            Bosch

          
          	
            IoT gateway edge platform and middleware services

          
          	
            www.bosch.com

          
        

        
          	
            DataMonsters

          
          	
            Edge analytics and machine learning

          
          	
            www.datamonsters.com

          
        

        
          	
            Eclipse Foundation

          
          	
            EdgeX Foundry, Eclipse development products

          
          	
            www.eclipse.org

          
        

        
          	
            Hitachi

          
          	
            VantaraTM industrial and IoT edge intelligence, edge machine learning, real-time visualization and dashboards, video data management

          
          	
            www.hitachivantera.com

          
        

        
          	
            Microsoft

          
          	
            Azure Edge IoT container and management system, edge analytics software, Microsoft Edge and IoT operating systems

          
          	
            www.microsoft.com

          
        

      
    

    Cloud providers

    This table serves to highlight leading cloud edge and IoT service and solution providers.

    
      
        
        
        
      
      
        
          	
            Company
          
          	
            Products and Services
          
          	
            URL
          
        

        
          	
            Amazon

          
          	
            Cloud provider, IoT device management, IoT analytics, IoT Device DefenderTM, AWS IoT CoreTM connector, AWS IoT EventsTM rules engine 

          
          	
            www.amazon.com

          
        

        
          	
            Google

          
          	
            Google cloud services, Cloud IoT Core device manager and protocol bridge, Cloud Pub/Sub stream analytics, FirebaseTM IoT development platform

          
          	
            www.google.com

          
        

        
          	
            IBM

          
          	
            IBM Watson IoT PlatformTM, IoT Connection Service, Blockchain Services, Cloud Analytics Engine

          
          	
            www.ibm.com

          
        

        
          	
            Microsoft

          
          	
            Azure Cloud Services, Azure IoT CentralTM connector, Azure Digital Twins physical modeler, IoT HubTM monitoring system, time series Insights visualizer and analytics, Azure Maps geolocation system

          
          	
            www.microsoft.com

          
        

      
    

    Summary

    Consortia and industry organizations provide significant benefits for the community in forms of standardization, technical roadmaps, and interoperability. Becoming a member allows an organization unfettered access to specifications and documentation. In many cases, membership and affiliation are necessary for usage rights. Strategically, member bodies also provide competitive strength in numbers, as various protocols and standards compete with one another in the IoT space.
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