

 Monte Carlo Data

Data Quality Fundamentals

A Practitioner’s Guide to Building Trustworthy Data Pipelines

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Barr Moses, Lior Gavish, and Molly Vorwerck

 Data Quality Fundamentals

 by
 Barr
 Moses,
 Lior
 Gavish, and
 Molly
 Vorwerck

 Copyright © 2022 Monte Carlo Data, Inc. All rights reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 Jessica Haberman

 	
 Development Editor:
 Jill Leonard

 	
 Production Editor:
 Gregory Hyman

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Karen Montgomery

 	
 Illustrator:
 Kate Dullea

 	
 September 2022:
 First Edition

 Revision History for the Early Release

 	
 2021-10-14:
 First Release

 	
 2022-01-13:
 Second Release

 	
 2022-04-19:
 Third Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098112042
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data
 Quality Fundamentals, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors, and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 This work is part of a collaboration between O’Reilly and Monte Carlo Data. See our statement of editorial independence.

 978-1-098-11204-2

 Chapter 1. Why Data Quality Deserves Attention—Now

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the first chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 Raise your hand (or spit out your coffee, sigh deeply, and shake your head) if this scenario rings a bell.

 Data is a priority for your CEO, as it often is for digital-first companies, and she is fluent in the latest and greatest business intelligence tools. Your CTO is excited about migrating to the cloud, and constantly sends your team articles highlighting performance measurements against some of the latest technologies. Your downstream data consumers including product analysts, marketing leaders, and sales teams rely on data-driven tools like CRMs, CXPs, CMSs, and any other acronym under the sun to do their jobs quickly and effectively.

 As the data analyst or engineer responsible for managing this data and making it usable, accessible, and trustworthy, rarely a day goes by without having to field some request from your stakeholders. But what happens when the data is wrong?

 Have you ever been about to sign off after a long day running queries or building data pipelines only to get pinged by your Head of Marketing that “the data is missing” from a critical report? What about a frantic email from your CTO about “duplicate data” in a business intelligence dashboard? Or a memo from your CEO, the same one who is so bullish on data, about a confusing or inaccurate number in his latest board deck?

 If any of these situations hit home for you, you’re not alone.

 This problem, often referred to as “data downtime,” happens to even the most innovative and data-first companies, and, in our opinion, it’s one of the biggest challenges facing businesses in the 21st century. Data downtime refers to periods of time where data is missing, inaccurate, or otherwise erroneous, and it manifests in stale dashboards, inaccurate reports, and even poor decision making.

 The root of data downtime? Unreliable data, and lots of it.

 Data downtime can cost companies upwards of millions of dollars per year, not to mention customer trust. In fact, ZoomInfo found in 2019 that 1 in 5 companies lost a customer due to a data quality issue.

 As you’re likely aware, your company’s bottomline isn’t the only thing that’s suffering from data downtime. Handling data quality issues consumes upwards of 40 percent of your team’s time that could otherwise be spent working on more interesting projects or actually innovating for the business.

 This statistic probably comes as no surprise. It certainly didn’t to us.

 In a former life, Barr Moses, served as VP of Operations at a customer success software company. Her team was responsible for managing reporting for the broader business, from generating dashboards for her CEO to use during All Hands meetings to setting strategy to reduce customer churn based on user metrics. She was responsible for managing her company’s data operations and making sure stakeholders were set up for success when working with data.

 Barr will never forget the day she came back to her desk from a grueling, hours-long planning session to find a sticky note with the words “The data is wrong” on her computer monitor. Not only was this revelation embarrassing, but unfortunately, it wasn’t uncommon. Time and again her and her team would encounter these silent and small, but potentially detrimental, issues with their data

 There had to be a better way.

 Poor data quality and unreliable data have been a problem for organizations for decades, whether it’s caused by poor reporting, false information, or technical errors. And as organizations increasingly leverage data and build more and more complex data ecosystems and infrastructure, this problem is only slated to increase.

 The concept of “bad data” and poor data quality has been around nearly as long as humans have existed, albeit in different forms. With Captain Robert Falcon Scott and other early Antarctic explorers, poor data quality (or rather, data-uninformed decision making) led them to inaccurately forecast where and how long it would take to get to the South Pole, their target destination.

 There are several in more recent memory that stick out, too. Take the infamous Mars Climate Orbiter crash in 1999. A NASA space probe, the Mars Climate Orbiter crashed as a result of a data entry error that produced outputs in non-SI (International System) units versus SI units, bringing it too close to the planet. This crash cost NASA a whopping $125 million dollars. Like spacecraft, analytic pipelines can be extremely vulnerable to the most innocent changes at any stage of the process. Another example comes from the 2008 financial crash, which was spurred in part by inaccurate data that overstated how much mortgage-backed securities and other derivatives.

 And this just scratches the surface.

 Barr’s unfortunate sticky note incident got her thinking: “I can’t be alone!”

 Alongside Lior Gavish, Barr set out to get to the root cause of the “data downtime” issue. Together, they interviewed hundreds of data teams about their biggest problems, and time and again, data quality sprang to the top of the list. From e-commerce to healthcare, companies across industries were facing similar problems: schema changes were causing data pipelines to break, row or column duplicates were surfacing on business critical reports, and data would go missing in dashboards, causing them significant time, money, and resources to fix. We also realized that there needed to be a better way to communicate and address data quality issues as part of an iterative cycle of improving data reliability -- and building a culture around driving data trust.

 These conversations inspired us to write this book to convey some of the best practices we’ve learned and developed related to managing data quality at each stage of the data pipeline, from ingestion to analytics, and share how data teams in similar situations may be able to prevent their own data downtime.

 For the purpose of this book, “data in production” refers to data from source systems (like CRMs, CSMs, and databases from any of the other analogies previously mentioned) that has been ingested by your warehouse, data lake, or other data storage and processing solutions and flows through your data pipeline (ETL) and surfaced by the analytics layer to business users. Data pipelines can handle both batch and streaming data, and at a high-level, the methods for measuring data quality for either type of asset are much the same.

 Data downtime draws corollaries to software engineering and developer operations, a world in which application uptime or downtime (meaning, how frequently your software or service was “available” or “up”, or “unavailable” or “down”) is measured scrutinously to ensure that software is accessible and performant. Many site reliability engineers use “uptime” as a measurement because it correlates directly to the impact of poor software performance on the business. In a world where “five nines” (in other words, 99.999% uptime) of reliability is becoming the industry standard, how can we apply this to data?

 In this book, we will address how modern data teams can build more resilient technologies, teams, and processes to ensure high data quality and reliability across their organizations.

 In Chapter 1, we’ll start by defining what data quality means in the context of this book. Next, we’ll frame the current moment to better understand why data quality is more important for data leaders than ever before. And finally, we’ll take a closer look at how best-in-class teams can achieve high data quality at each stage of the data pipeline and what it takes to maintain data trust at scale. This book focuses primarily on data quality as a function of powering data pipelines and production systems, as opposed to data science platforms or other more research-focused work.

 What Is Data Quality?

 Data quality as a concept is not novel—“data quality” has been around as long as humans have been collecting data!

 Over the past few decades, however, the definition of data quality has started to crystallize as a function of measuring the reliability, completeness, and accuracy of data as it relates to the state of what is being reported on. As they say, you can’t manage what you don’t measure, and high data quality is the first stage of any robust analytics program. Data quality is also an extremely powerful way to understand whether your data fits the needs of your business.

 For the purpose of this book, we define data quality as the health of data at any stage in its life cycle. Data quality can be impacted at any stage of the data pipeline, before ingestion, in production, or even during analysis.

 In our opinion, data quality frequently gets a bad rep. Data teams know they need to prioritize it, but it doesn’t roll off the tongue the same way “machine learning,” “data science,” or even “analytics does,” and many teams don’t have the bandwidth or resources to bring on someone full-time to manage it. Instead, resource-strapped companies rely on the data analysts and engineers themselves to manage it, diverting them away from projects that are conceived to be more interesting or innovative.

 But if you can’t trust the data and the data products it powers, then how can data users trust your team to deliver value? The phrase, “no data is better than bad data” is one that gets thrown around a lot by professionals in the space, and while it certainly holds merit, this often isn’t a reality.

 Data quality issues (or, data downtime) are practically unavoidable given the rate of growth and data consumption of most companies. But by understanding how we define data quality, it becomes much easier to measure and prevent it from causing issues downstream.

 Framing the Current Moment

 Technical teams have been tracking—and seeking to improve—data quality for as long as they’ve been tracking analytical data, but only in the 2020s has data quality become a top-line priority for many businesses. As data becomes not just an output but a financial commodity for many organizations, it’s important that this information can be trusted.

 As a result, companies are increasingly treating their data like code, applying frameworks and paradigms long-standard among software engineering teams to their data organizations and architectures. Developer Operations (DevOps), a technical field dedicated to shortening the systems development life cycle, spawned industry-leading best practices such as Site Reliability Engineering (SRE), CI/CD (continuous integration / continuous deployment), and microservices-based architectures. In short, the goal of DevOps is to release more reliable and performant software through automation.

 Over the past few years, more and more companies have been applying these concepts to data in the form of “DataOps.” DataOps refers to the process of improving the reliability and performance of your data through automation, reducing data silos and fostering quicker, more fault-tolerant analytics.

 Since 2019, companies such as Intuit, Airbnb, Uber, and Netflix have written prolifically about their commitment to ensuring reliable, highly available data for stakeholders across the business by applying DataOps best practices. In addition to powering analytics-based decision-making (i.e., product strategy, financial models, growth marketing, etc.), data produced by these companies powers their applications and digital services. Inaccurate, missing, or erroneous data can cost them time, money, and the trust of their customers.

 As these tech behemoths increasingly shed light on the importance and challenges of achieving high data quality, other companies of all sizes and industries are starting to take note and replicate these efforts, from implementing more robust testing to investing in DataOps best practices like monitoring and data observability.

 But what has led to this need for higher data quality? What about the data landscape has changed to facilitate the rise of DataOps, and as such the rise of data quality? We’ll dig into these questions next.

 Understanding the “Rise of Data Downtime”

 With a greater focus on monetizing data coupled with the ever present desire to increase data accuracy, we need to better understand some of the factors that can lead to data downtime. We’ll take a closer look at variables that can impact your data next.

 Migration to the cloud

 Twenty years ago, your data warehouse (a place to transform and store structured data) probably would have lived in an office basement, not on AWS or Azure. Now, with the rise of data-driven analytics, cross-functional data teams, and most importantly, the cloud, cloud data warehousing solutions such as Amazon Redshift, Snowflake, and Google BigQuery have become increasingly popular options for companies bullish on data. In many ways, the cloud makes data easier to manage, more accessible to a wider variety of users, and far faster to process.

 Not long after data warehouses moved to the cloud, so too did data lakes (a place to transform and store unstructured data), giving data teams even greater flexibility when it comes to managing their data assets. As companies and their data moved to the cloud, analytics-based decision making (and the need for high quality data) became a greater priority for businesses.

 More data sources

 Nowadays, companies use anywhere from dozens to hundreds of internal and external data sources to produce analytics and ML models. Any one of these sources can change in unexpected ways and without notice, compromising the data the company uses to make decisions.

 For example, an engineering team might make a change to the company’s website, thereby modifying the output of a data set that is key to marketing analytics. As a result, key marketing metrics may be wrong, leading the company to make poor decisions about ad campaigns, sales targets, and other important, revenue-driving projects.

 Increasingly complex data pipelines

 Data pipelines have become increasingly complex with multiple stages of processing and non-trivial dependencies between various data assets as a result of more advanced (and disparate) tooling, more data sources, and increasing diligence afforded to data by executive leadership. Without visibility into these dependencies, however, any change made to one data set can have unintended consequences impacting the correctness of dependent data assets.

 In short, there’s a lot that goes on in a data pipeline. Source data is extracted, ingested, transformed, loaded, stored, processed, and delivered, among other possible steps, with many APIs and integrations between different stages of the pipeline. At each juncture, there’s an opportunity for data downtime, just like there’s an opportunity for application downtime whenever code is merged. Additionally, things can go wrong even when data isn’t at a critical juncture, for instance, when data is migrated between warehouses or manually entered in a source system.

 More specialized data teams

 As companies increasingly rely on data to drive smart decision making, they are hiring more and more data analysts, data scientists, and data engineers to build and maintain the data pipelines, analytics, and ML models that power their services and products, as well as their business operations.

 While data analysts are primarily responsible for gathering, cleaning, and querying data sets to help functional stakeholders produce rich, actionable insights about the business, data engineers are responsible for ensuring that the underlying technologies and systems powering this analytics is performant, fast, and reliable. In industry, data scientists typically collect, wrangle, augment, and make sense of unstructured data to improve the business. The distinction between data analysts and data scientists can be a little vague, and titles and responsibilities often vary depending on the needs of the company. For instance, in the late 2010s, Uber changed all data analysts’ titles to data scientists after an organizational restructure.

 As data becomes more and more foundational to business, data teams will only grow. In fact, larger companies may support additional roles including data stewards, data governance leaders, operations analysts, and even analytics engineers (a hybrid data engineer-analyst role popular with startups and mid-sized companies who may not have the resources to support a large data team).

 With all of these different users touching the data, miscommunication or insufficient coordination is inevitable, and will cause these complex systems to break as changes are made. For example, a new field added to a data table by one team may cause another team’s pipeline to fail, resulting in missing or partial data. Downstream, this bad data can lead to millions of dollars in lost revenue, erosion of customer trust, and even compliance risk.

 Decentralized data teams

 As data becomes central to business operations, more and more functional teams across the company have gotten involved in data management and analytics to streamline and speed up the insights gathering process. Consequently, more and more data teams are adopting a distributed, decentralized model that mimics the industry-wide migration from monolithic to microservice architectures that took the software engineering world by storm the mid-2010s.

 What is a decentralized data architecture? Not to be confused with the data mesh, which is an organizational paradigm that leverages a distributed, domain-oriented design, a decentralized data architecture entails that data teams work from a centralized data infrastructure (including storage and data extraction, transformation, and loading, or ETL), managed by a data platform team, with analytical and data science teams distributed across the business. Increasingly, we’re finding that more and more teams leaning into the embedded data analyst model are relying on this type of architecture.

 For instance, your 200-person company may support a team of 3 data engineers and 10 data analysts, with analysts distributed across functional teams to better support the needs of the business. Either these analysts will report into operational teams or centralized data teams but own specific data sets and reporting functions. Multiple domains will generate and leverage data, leading to the inevitability that data sets used by multiple teams become duplicated, go missing, or go stale over time. If you’re reading this book, you’re probably no stranger to the experience of using a data set that’s no longer relevant, unbeknownst to you!

 Other Industry Trends Contributing to the Current Moment

 In addition to the aforementioned factors that frequently lead to data downtime, there are also several industry shifts occurring as a result of technological innovation that are driving transformation of the data landscape. These shifts are all contributors to this heightened attention to data quality.

 Data mesh

 Much in the same way that software engineering teams transitioned from monolithic applications to microservice architectures, the data mesh is, in many ways, the data platform version of microservices. It’s important to note that the concept of data mesh is nascent, and there is much discussion in the data community regarding how (or whether it makes sense) to execute on one at both a cultural and technical level.

 As first defined by Zhamak Dehghani, a ThoughtWorks consultant and the original architect of the term, a data mesh, Figure 1-1, is a type of data platform architecture that embraces the ubiquity of data in the enterprise by leveraging a domain-oriented, self-serve design. Borrowing Eric Evans’s theory of domain-driven design, a flexible, scalable software development paradigm that matches the structure and language of your code with its corresponding business domain.

 [image:]
 Figure 1-1. The data mesh, as pioneered by Zhamak Dehghani, pushes for a decentralized, domain-oriented data architecture that relies on high quality reliable data and universal governance

 Unlike traditional monolithic data infrastructures that handle the consumption, storage, transformation, and output of data in one central data lake, a data mesh supports distributed, domain-specific data consumers and views “data-as-a-product,” with each domain handling their own data pipelines. The tissue connecting these domains and their associated data assets is a universal interoperability layer that applies the same syntax and data standards.

 Data meshes federate data ownership among domain data owners who are held accountable for providing their data as products, while also facilitating communication between distributed data across different locations.

 While the data infrastructure is responsible for providing each domain with the solutions with which to process it, domains are tasked with managing ingestion, cleaning, and aggregation to the data to generate assets that can be used by business intelligence applications. Each domain is responsible for owning their pipelines, but a set of capabilities applied to all domains that stores, catalogs, and maintains access controls for the raw data. Once data has been served to and transformed by a given domain, the domain owners can then leverage the data for their analytics or operational needs.

 The data mesh paradigm is only successful if the data is reliable and trustworthy, and if this “universal interoperability layer” is applied across domains. The only way data can be reliable and trustworthy? A close attention to data quality through testing, monitoring, and observability.

 Many companies are adopting the data mesh paradigm, particularly larger organizations with the need for multiple data domains. For instance, in a January 2021 blog article written by Intuit’s former VP of Data Engineering, Mammad Zadeh, and Raji Arasu, Intuit’s SVP of Core Services & Experiences, Intuit positions itself as a “AI-driven expert platform company,” whose platform “collects, processes, and transforms a steady stream of data into a connected mesh of high quality data.” Another example is JPMorgan Chase, which built a data mesh architecture to help them delineate data ownership between discrete analytics functions and improve visibility into data sharing across the enterprise.

 Regardless of your perspective on the data mesh, it’s certainly taken the data community by storm and surfaced great conversation (and blog articles) on the future of our distributed data architectures and team structures.

 Streaming data

 Streaming data refers to the process of transmitting a continuous flow of data into your pipeline to quickly generate real-time insights. Traditionally, data quality was enforced via testing batch data before it entered production pipelines, but increasingly, businesses are seeking more real-time analysis. While this has the potential to make insights faster, it also opens up greater questions and challenges related to data quality since streaming data is data “in motion.”

 Increasingly, organizations are adopting both batch processing and stream processing, which forces data teams to rethink their approach to testing and observing their data.

 Rise of data lakehouse

 Data warehouse or data lake? That is the question—at least if you ask a data engineer. Data warehouses, a structured data repository, and data lakes, a pool of raw, unstructured data, both rely on high quality data for processing and transformation. Increasingly, data teams are opting to use both data warehouses and data lakes to accommodate the growing data needs of their business. Meet: the data lakehouse.

 Data lakehouses first came onto the scene when cloud warehouse providers began adding features that offer lake-style benefits, such as Redshift Spectrum or Delta Lake. Similarly, data lakes have been adding technologies that offer warehouse-style features, such as SQL functionality and schema. Today, the historical differences between warehouses and lakes are narrowing so you can access the best of both words in one package.

 This migration to the “lakehouse” model suggests that pipelines are growing more and more complex, and while some might choose one dedicated vendor to tackle both, others are migrating data to multiple storage and processing layers, leading to more opportunities for pipeline data to break even with ample testing.

 Summary

 The rise of the cloud, distributed data architectures and teams, as well as the move towards data productization have put the onus on data leaders to help their companies drive towards more trustworthy analytics and the data powering them. Achieving reliable data is a marathon, not a sprint, and involves many stages of your data pipeline. Further, committing to improving data quality is much more than a technical challenge; it’s very much organizational and cultural, too. In the next chapter, we’ll discuss some best practices your team can apply to build repeatable, iterative processes and frameworks with which to better communicate, address, and even prevent data downtime—and in the process, achieve more trustworthy data.

 Chapter 2. Architecting for Data Reliability

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the second chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 Airbnb, the global online vacation marketplace, wrote in a 2020 post on their engineering blog that “leadership [set] high expectations for data timeliness and quality,” leading to the need to make significant investment in their data quality and governance efforts. Meanwhile, Krishna Puttaswamy and Suresh Srinivas, former engineers at Uber, wrote in a 2021 Uber Engineering Blog article that high quality big data is “at the heart of this massive transformation platform.”

 It’s no secret: data quality is top of mind for some of the best data teams. Still, it’s one thing to write about it: how do we actually achieve this in practice?

 Data reliability—an organization’s ability to deliver high data availability and health throughout the entire data lifecycle—is the outcome of high data quality. As companies ingest more operational and third-party data than ever before, with employees from across the organization interacting with that data at all stages of its lifecycle, it’s become increasingly important for that data to be reliable.

 Data reliability has to be intentionally built into every level of your organization, from the processes and technologies you leverage to build and manage your data stack to the way you communicate and triage data issues further downstream. In this chapter, we’ll explore how to architect for data reliability at each stage of the pipeline—and data engineering experience.

 Measuring and Maintaining High Data Reliability at Ingestion

 Now that we have a better understanding of the state of data quality, let’s look at what all of this means in practice, starting with ingestion. However, we would be remiss not to discuss some of the fundamental best practices that ensure high data quality before ingestion to the data warehouse or lake.

 It is common for organizations to ingest data from both internal and external, third-party sources depending on the needs of the business. Your decision-making is only as good as the data you are using for insights and analysis: garbage in is garbage out. It’s important to make sure your organization has the right set of practices in place to ensure data quality.

 To achieve this, organizations have begun to establish rigorous data quality control standards for all data that enters their data ecosystem. While data quality issues can occur at any point in your data pipeline, most organizations will agree that catching and fixing data quality issues at the point of ingestion will help minimize the chances of poor quality data working its way downstream.

 Best practices such as data cleaning, data wrangling (the process of structuring and enriching your data into a desired format), and data testing are ways organizations are ensuring data quality is up to their organizations’ needs. And with technology advancing over the years in the data industry, an abundance of tools have emerged in the space to automate this process for companies.

 Such tools allow organizations to automatically examine aspects of data such as its format, consistency, completeness, freshness, and uniqueness. By automating this process, organizations not only save time and resources when data cleaning but ensure that the quality of incoming data is constantly controlled and managed whenever data enters their ecosystem.

 Data cleaning (also commonly referred to as cleansing) involves preparing and modifying data for future analysis by removing incomplete, irrelevant, incorrect, incorrectly formatted, or duplicate data from a data set. While the data cleaning process can be tedious, it is a very important responsibility for a data team. In fact, the data cleaning process in most organizations is owned by the data engineering and or data science team. However, it is important to educate the rest of the organization on the importance of data cleaning as everyone in the company plays a key role in ensuring the integrity of data.

 When dealing with missing or inaccurate data many companies turn to a process called data enrichment which is a process where organizations are able to merge and add either first or third-party data to datasets they already are working with. By enriching data, organizations are able to add more value to their datasets, which in the end makes data more useful and reliable.

 After data cleaning, data testing is your best line of defense against data quality before ingestion.

 Data testing is the process of validating your organizations’ assumptions about the data, either before or during production. Writing basic tests that check for things such as uniqueness and not_null are ways organizations can test out the basic assumptions they make about their source data. It is also common for organizations to ensure that data is in the correct format for their team to work with and that the data meets their business needs.

 There are a few basic types of data quality tests, each of which we’ll address later in this book:

 	Unit testing

 	
 Unit tests check that a line of code (SQL) does what it is supposed to do; they can be used with very, very small snippets of data. When unit testing data, you must separate the business logic from the “glue code.”

 	Functional testing

 	
 Functional tests are used with large data sets, and are often separated in data validation, integrity, ingestion, processing, storage, and ETL. This type of testing frequently occurs in the pipeline (pre-analytics layer).

 	Integration testing

 	
 Integration tests are used to ensure that your data pipeline meets your criteria for validity (i.e., within expected ranges); generally, teams will run fake data through the pipeline using these tests before leveraging production data.

 Some common data quality checks include:

 	Null values

 	
 Are any values unknown (NULL)?

 	Freshness

 	
 How up to date is my data? Was it updated an hour ago or two months ago?

 	Volume

 	
 How much data is represented by this data set? Did 200 rows turn into 2,000?

 	Distribution

 	
 Is my data within an accepted range? Are my units the same within a given column?

 	Missing values

 	
 Are any values missing from my data set?

 How would you write these? In a later chapter, we’ll go through a list of common data tests in SQL that can be applied to many open source languages (with varying syntax and glue code, of course), but for explanation’s sake, let’s walk through an example data set.

 Let’s assume you’re a media distributor working with a data set that tracks your global customer base, including location (CITY) and how much they’re paying for a subscription (PRICE) of your services. There are 500 entries in this data set, and 5 columns: CITY, COUNTRY, PRICE, CUSTOMER NAME, PRODUCT.

 If you wanted to test the data to ensure that you’re only running a pipeline on customers who live in BERLIN, you might run a SQL command that says:

 SELECT * FROM Customers WHERE City = "Berlin";

 And if you wanted to understand if there are any null values in CITY, you might query:

 SELECT * FROM Customers WHERE City IS NULL;

 If you wanted to understand if any product is more expensive than $4.50 and less expensive than $8.50, you might run:

 SELECT * FROM Products WHERE Price > 4.50 AND Price < 8.50;

 And this just scratches the surface of the types of tests you could run to better understand the health of your data.

 Based on the above examples, you can tell that data testing can be quite tedious. Before setting your tests, you have to have a clear understanding of the data, what to expect from it, and what “bad data” looks like. We often refer to these expectations as “assertions,” derived from the world of unit test-driven development in software engineering.

 As a result, data team members often split testing responsibilities over data sets, with individual analysts and engineers responsible for creating and maintaining tests for the data sets they’re building pipelines for and interacting with daily. And some companies hire entire Data Quality Assurance teams to handle data testing, with responsibilities including creating tests for business use cases and maintaining existing tests.

 In the last few years, tools, including open source solutions like Apache Griffin and Great Expectations have emerged in the data testing category to help data engineers and analysts automate the data testing process at different stages of the pipeline. dbt (data build tool) is another solution in the data space that has narrow testing capabilities. These tools also help data team members document important information about data sets (in other words, metadata), such as what the data represents, how to use the data in reporting as well as what other data a given asset relies on and feeds into. More on these later.

 We cannot emphasize enough the importance of testing your data before production; just as a software engineer would never (purposefully) push code to production without testing it first, a data engineer should never run a pipeline with untested data. But to test your data well, you need a clear understanding of your data health prior to running your pipelines—we’ll talk about ensuring data health and observability later.

 Keep in mind that data testing only catches expected data quality issues, and does not have the scalability or knowledge to account for “unknown” data quality issues. Data changes a lot, even during production, so it’s important to supplement testing with reactive monitoring and anomaly detection. More on that later.

 Measuring and Maintaining Data Quality in the Pipeline

 In the 1990s, when your website was down, most people wouldn’t notice by the time you were able to get it up and running again given the low volume of users to most websites (after all not everyone was using the worldwide web!). Now, in the 2020s, everyone notices when your service or application is down, for instance, Slack’s infamous outage in January 2021. Slack, a popular enterprise communication management platform with over 12 million daily active users at the time, went down on Monday, January 4, 2021, the first workday after the New Year’s Eve holiday, causing many companies to be without their primary means of inter-office communication. Consider the fact that many workers were homebound as a result of the COVID-19 pandemic, and you can imagine the frustration that ensued.

 Nowadays, nearly every business that hosts software relies on Site Reliability Engineers (SRE) to ensure that applications in production are reliable at all times. As organizations grow and the underlying tech stacks powering them become more complicated (think: moving from a monolith to a microservice architecture), it’s important for SRE teams to maintain a constant pulse on the health of their systems. Observability, a more recent addition to the engineering lexicon, speaks to this need, and refers to the monitoring, tracking, and triaging of incidents to prevent downtime.

 As a result of this industry-wide shift to distributed systems, site reliability engineering has emerged as a fast-growing engineering discipline. At its core, site reliability engineering is broken into three major pillars:

 	Metrics

 	
 Refer to a numeric representation of data measured over time

 	Logs

 	
 Records of an event that took place at a given timestamp; they also provide valuable context regarding when a specific event occurred

 	Traces

 	
 Represent causally related events in a distributed environment

 Increasingly, data teams are coming to rely on similar principles of observability and monitoring to track data quality in production pipelines, with companies developing their own unique methodology for how to measure it depending on the needs of the business.

 Similarly, data observability (i.e., ensuring data quality in the pipeline) can be broken down into five major pillars as shown in Figure 2-1.

 [image:]
 Figure 2-1. The five pillars of data observability, like the three pillars of SRE, highlight the elements of data health that should be closely monitored as an indicator of high data quality

 	Freshness

 	
 Is the data recent? When was the last time it was generated? What upstream data is included/omitted?

 	Distribution

 	
 Is the data within accepted ranges? Is it properly formatted? Is it complete?

 	Volume

 	
 Has all the data arrived?

 	Schema

 	
 What is the schema, and how has it changed? Who has made these changes and for what reasons?

 	Lineage

 	
 For a given data asset, what are the upstream sources and downstream assets which are impacted by it? Who are the people generating this data, and who is relying on it for decision making?

 The five pillars of data observability serve as key measurements for understanding the health of your data at each stage in its lifecycle, and provide a fresh (no pun intended) lens with which to view the quality of your data.

 [image:]
 Figure 2-2. A data pipeline refers to “data in production” and is composed of a data warehouse / lake (or both), ETL, and an analytics layer

 As previously mentioned, data downtime refers to periods of time where data is missing, erroneous, or otherwise inaccurate, and often suggests a broken data pipeline. By measuring data downtime, you can determine the reliability of your data and ensure the confidence necessary to use it. While SRE measures application downtime as a function of time, we can similarly measure data downtime.

 As data becomes increasingly tied to business outcomes, we’re observing a sea shift to less subjective, more quantifiable metrics, and for many teams, measuring uptime and downtime for data is broadly applicable and provides a good starting point for understanding data health.

 Understanding Data Quality Downstream

 Chances are, you won’t realize that your data is “bad” until it reaches the analytics layer—or even beyond, when data is piped back to the applications and services you collect it from (i.e., the list of acronyms we shared earlier). As previously mentioned, teams can leverage monitoring and observability tools to catch data quality issues, or even set up a sequence of tests based on assumptions about your data.

 Once data is in the analytics layer, teams can track quality and reliability in a few different ways, including:

 	
 Data Reliability Dashboard (Figure 2-3) that tracks the TTR, TDD, and other data quality metrics after data lands in the dashboard

 	
 Service-level agreements (SLAs), service-level objectives (SLOs), and service-level indicators (SLIs) regarding whether your data meets the standards outlined by your business

 	
 NPS score measuring how satisfied your stakeholders are with the data (i.e., was it delivered on time and do I trust it).

 [image:]
 Figure 2-3. A data reliability dashboard (in this case, rendered in Datadog and Grafana) can help your data team and stakeholders keep a pulse on the quality and reliability of your data

 However, when understanding data quality in the dashboard, the most important step is to align with your stakeholders around how they intend to use the data and what high quality, reliable data looks like to them. An easy way to do this is to understand what they’ll be using the data for, and which data should be prioritized. It’s nearly impossible to write data tests or even monitor for all critical data assets, but aligning on which data matters and to who will cover many of your bases.

 Traditionally, data quality is measured by data stewards and data governance leaders by a few defining characteristics. According to the Data Management Association UK, companies have measured data quality based on six key dimensions:

 	Completeness

 	
 How complete is my data?

 	Timeliness

 	
 Did my data arrive on time?

 	Validity

 	
 Does my data meet all syntax requirements (i.e., format, type, or range)?

 	Accuracy

 	
 Does data describe the real-world environment it’s trying to represent?

 	Consistency

 	
 Is data consistent against well-understood and accepted definitions?

 	Uniqueness

 	
 Is an individual data point recorded more than once?

 In the world of data engineering and data analytics, these measurements are useful, but they aren’t always directly applicable (i.e., accuracy). As a data engineer, you’re not usually the one working with the end result (clean, reliable data) in the context of the business; you’re just notified when something breaks, and trusted to apply testing and monitoring at each step of the process.

 For data engineers, measuring data quality in the dashboard might boil down to tracking:

 	
 The ratio of data to irrelevant or erroneous data (in other words, if you have 1TB of data, how much of that data is missing, inaccurate, or stale)

 	
 The number of null or missing values in a given data set, or the completeness of data (which won’t account for “accuracy,” given that “inaccurate values” can skew this metric)

 	
 The timeliness of data (in other words, was data late?)

 	
 The percent of duplicated values (which only accounts for uniqueness of data, and not any of the other possible ways data can break)

 	
 The consistency of data (i.e., does each value in this row or column have the same format and size?)

 	
 The number of functional teams who consistently access and use your data (this is applicable when applying distributed data architectures, like the data mesh, for which data quality is of the utmost importance)

 And the list goes on.

 Building Your Data Platform

 In addition to monitoring and alerting for data issues at all stages of the data pipeline, delivering reliable data requires a thoughtful data platform—a combination of technologies that enable you to manage data holistically, from ingestion to analytics.

 Data platform requirements change with your business. The “right” data platform for a 2,000-person e-commerce company will look quite different from a 20-person FinTech startup, but there are still a few core layers that all data platforms require. We think about the data stack in six layers: ingestion, storage and processing, transformation and modeling, business intelligence and analytics, discovery and governance, and quality and observability, as shown in Figure 2-4. It’s important to note that “layers” is used in the figurative sense; each of these elements are interconnected (vs. stacked), and are not listed in order of priority or importance. But we’ve found that best-in-class data teams invest in each of them, sometimes leveraging the same tools or technologies to account for 2–3 at a time.

 We’ll cover each of these layers in detail as we explore how to build your data stack.

 [image:]
 Figure 2-4. While building a data platform, it’s important to account for six foundational, interconnected layers: data ingestion; data storage and processing; data transformation and modeling; business intelligence and analytics; data observability; and data discovery and governance. Of course, as architectures grow to accommodate more advanced use cases, the number of layers will increase depending on the needs of your data team.

 Data Ingestion

 Modern data ingestion is complex, usually involving the collection of structured and unstructured data from a wide variety of sources. This is also known as the extraction and loading stage of Extract Transform Load (ETL) and Extract Load Transform (ELT).

 Most ETL tools extract data from external sources or internal systems, transform it within a staging area into an acceptable (usually relational) format for storage, and load it into databases. With the advent of modern cloud-based data warehouses that can store untransformed data, however, data teams can adopt the newer integration architecture of ELT—extracting raw data from a source, loading it directly into a data warehouse, and transforming it at the end of the process.

 There are numerous ingestion tools available on today’s market—both off-the-shelf and open-source—although some data teams choose to use custom code and build custom frameworks to handle ingestion.

 Orchestration and workflow automation are often folded into the ingestion layer—taking siloed data, combining it with other sources, and making it available for analysis. However, we would argue that orchestration can, and should, be weaved into the platform after you handle the storage, processing, and business intelligence layers. After all, orchestration requires an orchestra of functioning data!

 Keep in mind: it’s best practice to test your data at each step of the data pipeline and make the proper assertions to help concretize what data quality at each step looks like. Data tested at ingestion will not necessarily stay reliable as it evolves through the pipeline.

 Data Storage and Processing

 The storage layer is the workhorse of your data stack—it’s where your newly ingested data is stored and processed. Data storage today looks unrecognizable compared to the on-premises computing clusters of a decade ago, thanks to the evolution of cloud-native data storage solutions. These tools make it much more accessible and affordable for companies to store and process massive amounts of data at scale.

 There are three primary types of data storage solutions: data warehouses, data lakes, and data lakehouses. Data warehouses are fully managed solutions that typically require data to be structured according to specific schema—often forcing stricter data hygiene from the moment of ingestion. Data lakes, on the other hand, are often custom-built by data teams with a combination of open-source and off-the-shelf technologies, supporting raw, unstructured data and decoupled, distributed computing. Data lakehouses are an emerging hybrid, adding warehouse-style features like SQL functionality and schema to data lakes or providing more flexibility to traditional warehouses.

 The “right” solution will be different for every company, and even for the same company at different stages—evolving along with the number of data sources you leverage or the skillsets of the primary users of your data platform.

 Data Transformation and Modeling

 The terms “data transformation” and “data modeling” may be used interchangeably, but they are very distinct processes. Data transformation encompasses preparing raw data for analysis and reporting. Data modeling is the process of identifying the key concepts and relationships in your data that encapsulates your business logical, and then modeling these in the form of tables and the relationships between them.

 Data transformation usually includes exploratory data analysis (EDA, in other words, profiling data to understand its structure and characteristics), data mapping (defining how individual fields are formatted to produce the final output), code generation (producing executable code based on those defined rules or metadata), code execution (applying the generated code to produce the desired output), and data review (ensuring the transformed data meets requirements).

 Traditionally, data transformation has been performed by specialized engineers using scripting languages like Python, R, or SQL and time-consuming work cycles. Today, some data transformation can be accomplished by end-users—like business analysts—using cloud-based tools and technologies. This modern, self-service approach allows the business users literate in SQL (and often closest to the data) to maintain more control in setting requirements and speed up the time to actionable insights, and no-code or low-code approaches make this transition possible. That being said, transformation is still very much a data engineer-owned process that incorporates Python and languages outside of SQL.

 Data transformation can happen in batch or bulk processes, or even streaming, which is a less common but promising approach to handling transformation and modeling in real time for the rare use case (i.e., when having access to fresh data is more important than ensuring that data is accurate) in which it makes sense.

 Business Intelligence and Analytics

 Once data is collected, transformed, and stored, it must be made available to business users—after all, the best data in the world won’t do any good if your employees can’t use it.

 This highly visible layer of the data stack is known as business intelligence and analytics. If your data platform is a book, your BI and analytics layer is its cover, complete with a descriptive title, engaging visuals, and a summary of what the data is trying to tell you. The BI layer makes data actionable, and without it, your data lacks meaning.

 Analytics tools retrieve, analyze, and surface data through dashboards and data visualizations, allowing users to leverage data for actionable insights. Charts, graphs, maps, and other data visualization tools bring your data to life, giving employees an accessible way to explore and understand patterns and trends in your data. Without visualizations, your data remains virtually inaccessible—millions of rows on a spreadsheet that may be accurate, but aren’t easily understood.

 Experiencing data through visualizations empowers data storytelling, or the ability to convey data as a narrative that humans can comprehend and, therefore, act on. Data storytelling goes a step beyond visualizations by communicating the context around changes in data and sharing the why behind data trends. The discipline of data storytelling must be practiced and honed over time, but your team can’t begin to develop those skills without access to self-serve business intelligence and analytics tooling.

 Data Discovery and Governance

 Data teams need a scalable way to document and understand critical data assets. Historically, this has been accomplished through data catalogs, which serve as an inventory of metadata and provide an understanding of your data’s accessibility, health, and location. Data catalogs make it easy to keep track of where personally identifiable information is housed, as well as who within your organization has permission to access it across the pipeline—making them an integral part of data governance and regulatory compliance.

 Modern data teams, however, are encountering the limitations of traditional data catalogs. As data ecosystems grow increasingly complex and leverage large amounts of unstructured and schemaless data, traditional catalogs can fall short due to their lack of automation and inability to scale with the growth and diversity of modern data stacks. They tend to require data teams to do the heavy lifting of manual data entry, including updating the catalog as data assets evolve, and often don’t support the dynamic nature of unstructured data.

 Data discovery is a new approach increasingly applied to data cataloging that provides a domain-specific, dynamic understanding of your data based on how it’s being ingested, stored, aggregated, and used by a set of specific consumers. With data discovery, governance standards should remain federated across domains, but unlike more traditional approaches, data discovery enables a real-time understanding of the data’s current state—not its ideal or “cataloged” state.

 Data discovery can answer these questions not just for the data’s ideal state but for the current state of the data across each domain:

 	
 What data set is most recent? Which data sets can be deprecated?

 	
 When was the last time this table was updated?

 	
 What is the meaning of a given field in my domain?

 	
 Who has access to this data? When was the last time this data was used? By who?

 	
 What are the upstream and downstream dependencies of this data?

 	
 Is this production-quality data?

 	
 What data matters for my domain’s business requirements?

 	
 What are my assumptions about this data, and are they being met?

 Data discovery makes it possible for data teams to trust that their assumptions about data match reality, empowering dynamic discovery and a high degree of reliability across your data infrastructure.

 Developing Trust in Your Data

 Now that you know what steps to take to ensure data quality pre, during, and post-production as well as which technologies you need to build a robust data platform, the next step is to develop trust in your data through the right processes and culture. After all, the most advanced data stack in the world is useless unless that data you’re using can be trusted to deliver reliable insights to your business. Data for the sake of data is about as useful as a fish riding a bicycle.

 When it comes to building reliable and trustworthy data systems, the first step is to understand the health of your data in its current state. In the same way that software engineering teams develop trust in their software applications through observability and DevOps, data teams must embrace similar best practices when it comes to building trust in their data. Data Observability is a good first step.

 Data Observability

 The sixth layer of the modern data stack isn’t a final step per se, but rather, an interconnected approach that weaves throughout your entire data lifecycle: observability.

 Over the last two decades, Developer Operations (DevOps) engineers have developed best practices of observability to ensure applications stay up, running, and reliable. And just as application observability includes monitoring, tracking, and triaging of incidents to prevent downtime, modern data engineers are applying the same principles to data.

 Data observability refers to an organization’s ability to fully understand the health of the data in their system at every stage of the lifecycle.

 As mentioned in Chapter 1, data observability applies DevOps practices of automated monitoring, alerting, and triaging across five pillars: freshness, distribution, volume, schema, and lineage.

 End-to-end data observability is crucial for ensuring data quality. Effective observability tooling will connect to your existing data stack, providing end-to-end lineage that allows you to surface downstream dependencies and automatically monitor your data-at-rest—without extracting data from your data store and risking your security or compliance. Having observability makes audits, breach investigations, and other possible data disasters much easier to understand and resolve while keeping your CTO from having an ulcer!

 Measure the Cost of Broken Data

 Unreliable data can lead to wasted time, lost revenue, compliance risk, and erosion of customer trust. Many data leaders tell us their data scientists and engineers spend 40 percent or more of their time troubleshooting or firefighting data problems. Gartner estimates companies spend upwards of $15 million annually on data downtime, while over 88 percent of U.S. businesses have lost money because of data quality issues. And 1 in 5 companies have lost a customer due to data quality issues.

 Before you can improve your data quality, it’s important to measure the impact of poor data quality and delineate which data sets matter most to your organization. As you’re likely aware, all data is not created equal, but having a sense of the cost of data downtime on your business for key assets will be foundational to communicating the impact of data quality to your stakeholders.

 Measuring the ROI on data quality

 Quantifying and communicating the value of data quality is a complex endeavor. We’ve found that the following metrics, borrowed from DevOps practitioners, provide a good start: Time to Detection and Time to Resolution.

 Time to Detection (TTD) describes the length of time it takes for your data team to surface a data quality issue of any kind, from freshness anomalies to schema changes that break entire pipelines. For many teams, TTD is measured in days, weeks, or even months—because most often, data outages are first detected by downstream consumers when a dashboard or report “looks off.”

 These periods of time are incredibly costly because the more time that passes, the harder it becomes to recover data through re-processing or backfilling source data. Additionally, every business decision, marketing campaign, or product roadmap update that relied on the incorrect data needs to be re-validated or communicated to stakeholders.

 Time to Resolution (TTR) refers to how quickly your team is able to resolve a data incident once alerted. This can be minutes, hours, or days, depending on the complexity of the incident, the availability of your data lineage, the robustness of your data discovery or catalog, and the resources available. TTR metrics allow you to understand the severity of your data issue and track the amount of time it takes to resolve it. By converting to dollars—that is, articulating how much money is spent or saved as a result of TTR—it becomes considerably easier to communicate the impact of this broken data to your stakeholders (Figure 2-5).

 [image:]
 Figure 2-5. Data downtime is an effective measurement to understand how poor your data quality is as a representation of how long it takes you to fix it.

 Downtime hourly cost is a generalized metric to represent the engineering time spent per downtime hour and the impact of data downtime on data consumers and business decisions.

 Engineering time spent can be calculated as a factor of downtime hours. For example, we can estimate that 1 data engineer spends 1/4 of every downtime hour monitoring for and investigating issues, which contributes ~$14.75 per downtime hour (avg $59/hr salary + benefits for data engineer, a back-of-the-envelope calculation based on U.S. data engineering salary data from ZipRecruiter). Over time and as technical debt accrues, the cost of downtime only grows.

 Impact of data downtime cost varies significantly depending on the potential impact of a downtime hour on your business. If for example, you rely on data to report earnings to Wall Street, a downtime hour resulting in mis-reporting data is catastrophic, likely contributing $1000s/hr to the downtime cost. Additionally, you can add the cost of downtime on your analytics team. If, for example, you have 10 analysts, the cost of them sitting idle during a downtime incident is significant (avg $75/hr salary * 10 = $750/hr). Assuming not all analysts will be impacted by a downtime hour, we can conservatively reduce this by 75% to $175/hr.

 In this scenario, then, we can estimate a downtime hour to cost our business between $500/hr.

 Assuming you have ~100 downtime hours a month, the cost to your business could easily exceed $600,000/year (100hrs/month * $500/hr * 12 months).

 Often, the impact of data quality and reliability goes unnoticed (in fact, many of these issues often go unnoticed until it’s too late!), and it can be difficult to proactively justify budget and resources with executives and other stakeholders who aren’t on the data team. By calculating baseline TTD and TTR, it becomes much easier to then communicate exactly what impact you expect to generate on the business. Without this baseline, it’s much harder to get operational buy-in from the powers that be to grow your team, up-level your tech stack, and scale out the data quality program of your dreams.

 Calculating the cost of broken data

 Your annual cost of broken data can be approximated by the engineering or resources you must spend to resolve the problem. We believe the right equation factors in the cost of labor to tackle these issues, your compliance risk (we can use average General Data Protection Regulation, or GDPR, fines to quantify this risk), and the opportunity cost of losing stakeholder trust in your data.

 Based on available data as well as interviews and surveys conducted with over 150 different data teams across industries, we estimate that data teams spend 30-40 percent of their time handling data quality issues instead of working on revenue-generating activities.

 Bringing this together, we can use the following equation to calculate the cost of broken data:

 Labor cost: ([Number of data engineers] x [Annual salary of data engineer]) x 30%

 +

 Compliance risk: [4% of your annual revenue]

 +

 Opportunity cost: [Revenue you could have generated if you moved faster, releasing X new products, and acquired Y new customers]

 = Annual cost of broken data

 This framework is a starting point, but measuring the cost is the first step towards fully understanding the implications of broken data at your company—and, ultimately, preventing them altogether.

 How to Set SLAs, SLOs, and SLIs for Your Data

 Again, we can look to our DevOps counterparts for inspiration on architecting reliability into our data systems. Site reliability engineers use frameworks such as Service Level Agreements (SLAs), Service Level Objectives (SLOs), and Service Level Indicators(SLIs) to reduce application downtime and ensure reliability. Several of the data teams interviewed for this book have begun to implement these frameworks across their organizations to prioritize, standardize, and measure data reliability.

 Essentially, companies use SLAs to define and measure the level of service a given product, internal team, or vendor will deliver, along with potential remedies if those SLAs are not met. For example, Slack promises its customers on Plus plans and above 99.99% uptime every quarter—and if they fall short, Slack will provide service credits on their accounts for future use.

 Many software teams develop internal SLAs to help engineering, product, and business teams align on what matters most about their applications and prioritize incoming requests. The very practice of codifying SLAs—rather than counting on everyone to do their best and shoot for as close to 100% uptime as possible—helps set clear expectations. With these SLAs in place, engineering teams and their stakeholders can be confident they’re paying attention to the same metrics and speaking the same language.

 And setting those non-100% expectations leaves space for growth. Without some tolerance for minimal downtime, there’s zero room for innovation—and seasoned engineers know that even with all the best practices in place, systems will still break occasionally. But with solid SLAs in place, engineers know exactly how and when to intervene once something does go wrong.

 Similarly, SLAs can help data teams and their consumers define, measure, and track data reliability across its lifecycle. Setting data reliability SLAs builds trust between your data, your data team, and downstream consumers. Without agreed-upon metrics, consumers can make inaccurate assumptions or look to anecdotal evidence about the reliability of your data. With SLAs in place, your organization can become more “data-driven” about data.

 Additionally, by formalizing communication and prioritization processes, data reliability SLAs help your data team have a clearer grasp on business priorities and make it easier to respond swiftly when incidents occur.

 Still, setting SLAs in and of themselves is meaningless: you need alignment from data producers, engineers, analysts, and consumers on what these SLAs should be and how much attention and resources should be devoted to maintaining them.

 How to create data reliability SLAs

 Setting data SLAs requires specificity and collaboration, and clear, upfront alignment with everyone whom this SLA affects (data producers, data engineers, data analysts, business developers, data consumers, etc.). In fact, just setting SLAs for the sake of setting them can often leave your team in a poor position if there’s no investment or accountability in meeting them. Instead, teams should create and evangelize SLAs the same way they set key performance indicators (KPIs) to larger strategic projects:

 	
 Take stock of business priorities

 	
 Assess how these business priorities are enabled or tied to data analytics

 	
 Understand your consumer’s need for high data quality / tolerance for poor data quality

 	
 Set SLAs accordingly, and seek stakeholder feedback and alignment

 	
 Measure SLAs

 So, how do we get started?

 According to Google’s highly influential SRE Handbook, service level agreements (SLAs) require well-defined service level indicators (SLIs), quantitative measures of service quality, and agreed-upon service level objectives (SLOs), the ideal values or ranges each indicator should meet. For example, most engineering teams use availability as a site reliability indicator, and set an objective to maintain that availability at least 99% of the time.

 For data teams, setting reliability SLAs usually includes three steps: defining, measuring, and tracking.

 1. Defining data reliability with SLAs

 Setting SLAs first requires agreeing upon and clearly defining what reliable data means to your business. We recommend starting this process by conducting an inventory of your data, how it’s being used, and by whom—assessing the historical performance of your data to get a baseline metric of reliability.

 Data teams should also gather feedback from their consumers on what reliability looks like to them. Data engineers can be removed from their colleagues’ daily workflows, but it’s crucial to understand how consumers interact with data, what data matters most, and which potential issues require immediate attention. All relevant stakeholders, including data leaders or business consumers, should weigh in—and buy in—on the definitions of reliability you’re developing.

 After all, powerful technologies and workflows can facilitate proper incident response, but it can’t replace a poor culture. Data teams, partners, and consumers must align on SLAs before they are useful to the business.

 2. Measuring data reliability with SLIs

 With a baseline in place and thorough understanding of your data consumers’ needs, you can begin to target the metrics that will become your service-level indicators of reliability.

 Generally speaking, data SLIs should reflect the agreed-upon state of data you defined in the first step, providing boundaries of how data is and isn’t used and describing what data downtime looks like. Scenarios here could include missing, duplicative, or stale data.

 SLIs will vary based on your specific use case, but here are a few examples of metrics often used to quantify data health:

 The number of data incidents for a particular data asset (N). This may be beyond your control for external data sources, but is still a key driver of data downtime and typically worth measuring.

 3. Tracking data reliability with SLOs

 Once SLIs are identified, you can set objectives, or ranges of acceptable downtime for your data. These SLOs should be based on your real-world circumstances—for example, if you decide to track TTD but don’t use automated monitoring tools, your SLO should be more generous than a mature organization with robust data observability tooling.

 Setting these ranges makes it possible to create a uniform framework that rates incidents by level of severity, and makes it easy to respond swiftly when issues occur. With these objectives set and incorporated into your SLAs, you can build dashboards that track and report on progress—either custom, ad-hoc solutions or using dedicated data observability tools.

 These measurements can be quite useful for data teams when understanding the health of their data at an operational level, but when it comes to measuring the impact of data quality on the business, we suggest revisiting data downtime.

 Setting SLAs, SLOs, and SLIs for data is only the first piece of the puzzle. When data incidents occur, we also need a way to triage and manage incidents before they become a massive headache for downstream consumers.

 For this, we can again turn to our friends in DevOps for inspiration. Most engineering organizations allocate entire Site Reliability teams to identifying, resolving, and preventing downtime. In today’s modern data organization, data engineers often bear the brunt of the pain when pipelines break and dashboards turn wonky.

 To make the incident resolution process easier and more seamless, we can take a page out of the SRE’s handbook to effectively communicate and triage data issues as they arise.

 For example, let’s say one of your executive’s critical reports is surfacing stale data. From the outset, you’re not sure how this pipeline broke, but you need to communicate that it HAS broken and that your team is on the case. And as you’re resolving this issue, you need to consistently update not just your fellow data downtime sleuths but also your key stakeholders on the incident resolution process.

 While what it takes to achieve reliable data is ultimately up to the needs of your business, having a great communications strategy in place will make it that much easier to execute on your SLAs.

 Let’s shift gears from talking about principles and take a look at how all of these concepts were applied when an eBook subscription service was struggling with a lack of real-time data.

 Case Study: Blinkist

 With over 16 million users worldwide, Blinkist helps time-strapped readers fit learning into their lives through their ebook subscription service. Gopi Krishnamurthy, Director of Engineering, led the team responsible for data engineering, infrastructure, cloud center-of-excellence, growth, and monetization. For Blinkist, having trustworthy and reliable data is foundational to the success of their business.

 Lack of real-time data tracking caused marketing spend to decrease across critical distribution channels. Image courtesy of Blinkist. As a high-growth company, Blinkist leveraged paid performance marketing to fuel customer acquisition. Their 2020 strategy—with a 40 percent growth target—included a significant investment in channels like Facebook and Google, which would auto-optimize campaigns based on behavioral data shared between the Blinkist app and the channels themselves.

 Of course, like so many companies in 2020, the COVID-19 pandemic changed everything. Now, historic data didn’t reflect the current reality of their audience’s daily lives, and real-time data became essential—not just for determining advertising spend, but for understanding the current state of how users were interacting with the Blinkist app and content across the web.

 Any inaccuracies in this data could impact decision-making, from campaign spending to updating the product roadmap. It was crucial that no opportunities to innovate were missed, from adding new features to simplifying onboarding to testing new advertisements—because a campaign around “improving your commute” just wasn’t relevant anymore.

 As C-level execs and campaign managers grew increasingly dependent on real-time insights to drive marketing strategy, budget spend, and ROI, Gopi and his team were struggling with data downtime—issues with data quality, dashboard update delays, and broken pipelines.

 “Every Monday, we had executive calls,” said Gopi. “And almost every Monday, I was on this call trying to answer why we are not able to scale, what were the issues, how many problems we face in terms of tracking data…trying to explain the severity of the problem and trying to boost confidence with executive stakeholders.”

 Gopi estimates his team was spending 50 percent of their working hours firefighting data drills, trying to resolve data downtime issues while rebuilding trust with the rest of the organization. It wasn’t sustainable and something had to change.

 Foundational to achieving data reliability was a focus on data governance, data quality, and refactoring systems. Gopi and his team implemented a regimented approach to data testing and observability that tracked key data SLAs and SLIs.

 “At the core of this framework is data reliability engineering—that we treat data reliability as a first-class citizen, the same way engineering teams in the last decade have started to treat DevOps and site reliability engineering,” said Gopi.

 By investing in testing and data observability and setting clear data reliability SLAs to measure data reliability, Blinkist was able to remediate data downtime before it affected downstream consumers. As Gopi and his team worked to rebuild broken trust along with broken pipelines, they partnered with company leaders to build a shared understanding of data reliability principles and set concrete data SLAs.

 Outcome: Time savings of 120 hours per week for a team of 6 data engineers through testing, observability, and SLA-alignment.

 “The scale of growth that we’ve seen this year is overwhelming,” Gopi said. “Although the data teams can’t take full credit, I definitely think the things we were able to do—in terms of data observability and bringing transparency into data operations—improved how we target our audience and channels.”

 Summary

 For those beginning their data quality journeys, architecting for data reliability requires a three-pronged approach:

 	
 Invest in DevOps-inspired processes (testing and observability) upfront—and across functional domains

 	
 Build a resilient and performant data platform

 	
 Set and align on cross-organizational data SLAs

 Without these steps, data teams will have a challenging time achieving any semblance of reliable, high-quality data. Still, taking your data quality strategy from a siloed experience managed solely by data engineers and other upstream roles to something prioritized by your broader company is a gradual process. At the risk of sounding cliche: Rome wasn’t built in a day, and neither is your data quality strategy.

 In future chapters, we’ll dive into the meat of how teams can invest in a more proactive and collaborative approach to data reliability with technology, processes, and culture in mind. Stay tuned!

 Chapter 3. Fixing Data Quality Issues at Scale

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the third chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 Picture this: it’s Friday at 5 p.m., and you’re about to log off for the day. You start closing your tabs, packing up your bag, and settling into your weekend state of mind. Just as you’re about to turn off your laptop, you get an urgent Slack message from your CFO about a broken dashboard.

 “The numbers are wrong in our quarterly results report,” she Slacks you. “I didn’t sign off on this!”

 Assuming the issue is about the data itself and not rooted in your company’s shoddy financials, you have a serious case of data downtime on your hands.

 You frantically open Looker to find she’s right—the report looks way off and you have no idea why. You validated the numbers yesterday with her. Your charts and graphs were absolutely glowing with accuracy.

 You pull up the source data (an Excel spreadsheet living on your desktop, “Financial Report V. 212 GOOD_I_ PROMISE_YES_GOOD”), but that confuses you even more.

 Dozens of emails, two phone calls, a few Zoom meetings, and seven hours later, you determined the culprit of the errant dashboard: a schema change upstream with a source table.

 Great, you figured out what happened—now what?

 For most data teams, pausing the pipeline and identifying the root cause of the issue at hand is just the tip of the iceberg when it comes to restoring data reliability and trust in your data.

 Fixing Quality Issues in Software Development

 Fortunately, analysts and engineers don’t need to reinvent the wheel when it comes to managing these types of “data downtime” incidents in individual pipelines and even larger data systems. Instead, we can look to DevOps and Site Reliability Engineering (SRE) yet again for inspiration when it comes to handling incident management and resolution at scale.

 [image: The DevOps lifecycle gives engineers a framework with which to manage the reliability and performance of software applications. Image courtesy of Sawan Ajit on Shutterstock purchased by author for use with standard commercial license.]
 Figure 3-1. The DevOps lifecycle gives engineers a framework with which to manage the reliability and performance of software applications. Image courtesy of Sawan Ajit on Shutterstock, purchased by author for use with standard commercial license.

 To build and release more performant software, DevOps teams apply a feedback loop, called the DevOps lifecycle (as depicted in Figure 3-1), that helps teams reliably deliver features aligned with business objectives at scale.

 The DevOps lifecycle incorporates eight sections, or continuous stages, including:

 	Plan

 	
 The dev team aligns with product and business teams to understand the goals and SLAs for your software.

 	Code

 	
 Write new software.

 	Build

 	
 Release your software into a test environment.

 	Test

 	
 Test your software.

 	Release

 	
 Release the software to production.

 	Deploy

 	
 Integrate and deploy the software with your existing applications.

 	Operate

 	
 Run the software, adjust as necessary.

 	Monitor

 	
 Monitor and alert for issues in the software.

 And the cycle repeats itself. While many of our data technologies and frameworks (i.e., data testing, data SLAs, distributed architectures, etc.) have adapted to meet the standards and best practices set by our software engineering counterparts, our tendency to handle data quality reactively has prevented us from driving the adoption of analytics in a meaningful and scalable way. By leveraging the best practices of incident management from software engineering to data environments, we can approach data quality with a proactive and scalable approach that can meet the analytical demands of your business.

 According to Andrew Stribblehill and Kavite Guiliana, two authors collaborating on Google’s canonical SRE Handbook, “Effective incident management is key to limiting the disruption caused by a [software] incident and restoring normal business operations as quickly as possible. If you haven’t gamed out your response to potential incidents in advance, principled incident management can go out the window in real-life situations.”

 In short, incident management is the process of identifying, root causing, resolving, analyzing, and preventing issues that arise in your day-to-day engineering workflows. DevOps and SRE teams leverage incident management to programmatically discover and address buggy software, outages, and other performance issues in real time.

 In this chapter, we’ll discuss how data teams can fix data incidents at scale by applying principles of software incident management to their data systems, from investing in the right technology and tooling to implementing DevOps-inspired processes and organizational structures.

 Data Incident Management

 Francisco Alberini, a former Data Product Manager at Segment, a leading customer data platform, was responsible for building their data governance tool, Protocols. In this role, Francisco was no stranger to tackling broken data pipelines.

 “Data systems can break for a million different reasons, and there isn’t a one-size-fits all approach to understanding how or why,” he said. “As the PM for Protocols, I spent a lot of time thinking about and building dashboards to evaluate the quality of data our customers were receiving. When issues occurred, my approach consisted of two steps: (1) frantically ping that one data engineer who had been on our team for 4+ years (decades of historical knowledge in engineering time) to ask for urgent help; and (2) if she wasn’t available, spend hours debugging this pipeline by spot-checking 1,000s of tables. Neither were particularly scalable.”

 Francisco’s experience is not unique.

 As data systems become increasingly distributed and companies ingest more and more data, the opportunity for error (and incidents) only increases. For decades, software engineering teams have relied on a multi-step process to detect, resolve, and prevent issues from taking down their applications. As data operations mature, it’s time we treat our data systems with the same diligence, particularly when it comes to building more reliable pipelines.

 While not a ton of literature exists about how data teams can handle incident management for their data, there are already great resources and best practices we can leverage from our friends in software development. We recommend data teams apply a similar, but modified approach to incident management: the data reliability lifecycle (Figure 3-2).

 [image: Inspired by the DevOps lifecycle the Data Reliability lifecycle helps data teams manage the performance and reliability of data pipelines throughout its lifecycle.]
 Figure 3-2. Inspired by the DevOps lifecycle, the Data Reliability lifecycle helps data teams manage the performance and reliability of data pipelines throughout its lifecycle.

 By applying the data reliability lifecycle to data pipelines, data engineering teams can more seamlessly detect, resolve, and, ultimately, prevent data quality issues before they impact the business.

 And when it comes to building a data incident management workflow for your pipelines, critical steps include: incident detection, response, root cause analysis (RCA), resolution, and a blameless post-mortem.

 Incident Detection

 With the right tooling and processes, incident detection can easily be integrated into data engineering and analytics workflows, ensuring that all data stakeholders and end-users are alerted when issues arise across the proper communication channels (i.e., Slack, Microsoft Teams, email, SMS, PagerDuty, or carrier pigeon…)

 It goes without saying that you should, first and foremost, test your data before it enters production. Still, even with the most robust tests and checks in place, bad data will fall through the cracks and be pushed to prod before you can say “broken data pipeline.” When data pipelines break or dashboards go hay-wire, the first step is incident detection. Incidents can be detected through data monitoring and alerting, which can be both implemented manually on your data pipelines and triggered based on specific thresholds. Incident detection can also be layered as part of an anomaly detection or data observability solution and triggered automatically at regular intervals based on historical data patterns and custom rules.

 One critical component of incident detection is anomaly detection (Figure 3-3) or the ability to identify when pillars of data health (i.e., volume, freshness, schema, and distribution) veer from the norm. Anomaly detection is most valuable when implemented end-to-end (across your warehouses, lakes, ETL, and BI tools) as opposed to only in a specific silo of your data ecosystem. Good anomaly detection will also tune algorithms to reduce white noise and false positives leveraging precision and recall. We’ll go into detail about how to build your own anomaly detectors and data quality monitors in Chapter 4, but let’s walk through a high-level view here.

 [image: Anomaly detection can alert you to freshness volume and distribution issues across your data pipelines.]
 Figure 3-3. Anomaly detection can alert you to freshness, volume, and distribution issues across your data pipelines.

 Over the years, we’ve found that there is a predilection for data teams to rely on anomaly detection alone to “solve” incident management. There are a few issues with this statement. First and foremost, incident management is never truly “solved.” As long as companies continue to leverage data to power their digital services and drive decision making, data incidents will continue to happen. Pipelines will break; schema changes will disrupt downstream dashboards; and null values will crop up at the least opportune times.

 Second, relying on anomaly detection alone is a single point of failure; incident detection is a multi-layered process that relies not just on the ability to detect incidents, but also respond to, resolve, and prevent them in an iterative and repeatable way, as depicted in Figure 3-4.

 [image: While immensely valuable as part of a multi layered approach to incident management and data reliability anomaly detection and data monitoring alone aren t enough to build a repeatable workflow and guarantee consistent reliability.]
 Figure 3-4. While immensely valuable as part of a multi-layered approach to incident management and data reliability, anomaly detection and data monitoring alone aren’t enough to build a repeatable workflow and guarantee consistent reliability.

 Don’t get us wrong: anomaly detection is an extremely important part of the data reliability life cycle, and a key tool for the “detect” stage of your data incident management protocol. But relying on anomaly detection without the additional support of testing, versioning, observability, lineage, and the various other technologies and processes available to automation-inclined data teams is problematic at best and a recipe for frustration and long data downtime recovery times at worst. Anomaly detection is a tool, not a silver bullet.

 To articulate our point, imagine for a moment that you’re a car mechanic.

 A sedan drives into your garage, engine sputtering.

 “What’s wrong?” You ask, lifting your eyes from your desk.

 The driver rolls down their window. “Something’s wrong with my car,” they respond.

 Very descriptive, you think, wiping the sweat from your brow. Your sarcasm makes you chuckle.

 “Something is wrong with my car.” They repeat, this time without the contraction.

 After a few hours of poking around, you figure out that the car has a loose spark plug. Sure, their lack of information isn’t the end of the world, but imagine how much quicker this process could have been if they had been proactive and said:

 “I have trouble getting my engine to start, my car won’t accelerate, and my battery keeps dying.”

 What does this story have to do with data? Well, on the surface, not much. But we can learn a thing or two from our friendly mechanic when it comes to not relying on anomaly detection alone to resolve data quality issues.

 Nowadays, most data teams employ some measure of anomaly detection to solve for data quality. Anomaly detection is great for organizations that are looking to identify when the key pillars of data health (i.e., volume, freshness, schema, and distribution) are not meeting an organization’s expectations in production. Moreover, anomaly detection is extremely valuable to businesses when implemented end-to-end (such as across your data warehouse, lake, ETL, and BI tools), opposed to only living within one or two layers of your data platform.

 As most data teams are learning, however, anomaly detection alone is not cutting it when it comes to building the trust, accountability, and transparency demanded by insight-driven organizations.

 Recently, Barr was having (virtual) coffee with the VP of Analytics at a Fortune 500 software company who summarized this problem almost too perfectly.

 “I want things that are tied to impact so I can take action on them,” he said. “Anomaly detection is necessary as a starting point, but we need to do a lot more work to understand the root cause and assess the impact. Knowing there’s a problem is great, but it’s really hard to understand what to do with it. Instead, we need to understand exactly what broke, who’s impacted by it, why and where it broke, and what the root cause might be.”

 Here’s where the rest of the data incident management life cycle comes in.

 Response

 Good incident response starts—and ends—with effective communication, and fortunately, much of it can be prepared in advance and automated out through a workflow via PagerDuty and Slack when the time comes.

 Data teams should spend time writing runbooks and playbooks that walk through standard incident response. While runbooks give you instructions for how to use different services and common issues they encounter, playbooks provide step-by-step processes for handling incidents. Both will provide links to code, documentation, and other materials that can help teams understand what to do when critical pipelines break.

 One important part of a good runbook? Delegating roles when outages or breakages occur. (See the section “Establish a Routine of Incident Management” for more best practices regarding role delegation during incident management.)

 In traditional site reliability engineering programs, there is an on-call process that delegates specific roles depending on service, often segmented by hour, day, or week. In addition to an “incident responder,” there is often an “incident commander” responsible for assigning tasks and synthesizing information as the responder and other stakeholders troubleshoot the issue.

 The incident commander is also tasked with spearheading communication to upstream and downstream consumers that might be affected, i.e., those that work with the data products powered by the broken pipeline.

 With business context, metadata is a powerful tool for understanding which teams are affected by a given data downtime incident; coupled with end-to-end lineage, as depicted in Figure 3-5, communicating the upstream and downstream relationships between these affected assets can be a painless and quick process, saving teams hours of manual graphing.

 [image: End to end lineage is a valuable tool for understanding upstream and downstream dependencies when data pipelines break so that the appropriate parties can be notified before bad data affects the business.]
 Figure 3-5. End-to-end lineage is a valuable tool for understanding upstream and downstream dependencies when data pipelines break so that the appropriate parties can be notified before bad data affects the business.

 Once data downtime occurs, it’s important to communicate its impact to upstream and downstream consumers, both those that work with the data and those that use it. With the right approach, much of this can be baked into automated workflows using PagerDuty, Slack, and other communication tools.

 Root Cause Analysis

 In theory, root cause analysis (RCA) sounds as easy as running a few SQL queries to segment the data, but in practice, this process can be quite challenging. Incidents can manifest in non-obvious ways across an entire pipeline and impact multiple, sometimes hundreds, of tables.

 For instance, one common cause of poor data quality is freshness—i.e., when data is unusually out-of-date. Such an incident can be a result of any number of causes, including a job stuck in a queue, a time out, a partner that did not deliver its dataset timely, an error, or an accidental scheduling change that removed jobs from your directed acyclic graph (DAG).

 In our experience, we’ve found that most data problems can be attributed to one or more of these events:

 	
 An unexpected change in the data feeding into the job, pipeline or system, as depicted in Figure 3-6

 	
 A change in the logic (ETL, SQL, Spark jobs, etc.) transforming the data

 	
 An operational issue, such as runtime errors, permission issues, infrastructure failures, schedule changes, etc.

 Quickly pinpointing the issue at hand requires not just the proper tooling, but a holistic approach that takes into consideration how and why each of these three sources could break.

 [image: With the right approach and data observability tooling information pertaining to the data issue can be gleaned automatically and triaged according to relevance.]
 Figure 3-6. With the right approach and data observability tooling, information pertaining to the data issue can be gleaned automatically and triaged according to relevance.

 As software (and data) systems become increasingly complex, it becomes more and more difficult to pinpoint one exact cause (or root) of an outage or incident. Amazon’s 5-Whys approach provides a helpful framework through which to contextualize RCA:

 	
 Identify the problem.

 	
 Ask why the problem happened, and record the reason.

 	
 Decide if the reason is the root cause.

 	
 Could the reason have been prevented?

 	
 Could the reason have been detected before it happened?

 	
 If the reason is human error, why was it possible?

 	
 Repeat the process using the reason as the problem. Stop when you are confident that you have found the root causes.

 There is very rarely a single reason why your system broke. As data engineers work to reduce manual toil with smarter processes, tests, data freshness checks, and other solutions should be able to identify the issue before it surfaces downstream. When they don’t, it’s a strong indication that these failsafes are inadequate.

 To get started, we’ve identified the four steps data teams must take when conducting RCA on their data pipelines:

 	
 Look at your lineage: To understand what’s broken, you need to find the most upstream nodes of your system that exhibit the issue—that’s where things started and that’s where the answer lies. If you’re lucky, the root of all evil occurs in the dashboard in question and you will quickly identify the problem.

 	
 Look at the code: A peek into the logic that created the table, or even the particular field or fields that are impacting the incident, will help you come up with plausible hypotheses about what’s wrong.

 	
 Look at your data: After steps 1 and 2, it’s time to look at the data in the table more closely for hints of what might be wrong. One promising approach here is to explore how other fields in a table with anomalous records may provide clues as to where the data anomaly is occurring (Figure 3-6).

 	
 Look at your operational environment: Many data issues are a direct result of the operational environment that runs your ETL/ELT jobs. A look at logs and error traces from your ETL engines can provide some answers.

 Let’s look at this in practice. In the following sections, we’ll walk through the four steps necessary to conduct root cause analysis for a broken customer dashboard.

 Step 1: Look at your lineage

 You know the customer dashboard is broken. You also know this dashboard is built on top of a long chain of transformations, feeding off of several (or maybe several dozen…) data sources.

 To understand what’s broken, you will need to find the most upstream nodes of your system that exhibit the issue—that’s where things started and that’s where the answer lies. If you’re lucky, the root of all evil occurs in the dashboard in question and you will quickly identify the problem.

 On a bad day, the problem happened in one of the most upstream sources of your system, many transformation steps away from the broken dashboard—which would require a long day of tracing the issue up the DAG, and then backfilling all broken data.

 Tip

 Make sure everyone (data engineers, data analysts, analytics engineers, and data scientists) troubleshooting data problems have access to the most up-to-date lineage. Your lineage should include data products like BI reports, ML models or reverse-ETL sinks to be useful (Figure 3-7). Field-level lineage is a plus.

 [image: Often automated field level lineage is an important investment for data engineering teams seeking to easily and quickly understand which data assets are broken and how these breakages have impacted downstream data products and dashboards. Image courtesy of authors.]
 Figure 3-7. Often automated, field-level lineage is an important investment for data engineering teams seeking to easily and quickly understand which data assets are broken and how these breakages have impacted downstream data products and dashboards. Image courtesy of authors.

 Step 2: Look at the code

 You found the most upstream table that’s experiencing the issue. Congratulations, you’re one step closer to understanding the root cause! Now, you need to understand how that particular table was generated by your ETL or ELT processes (Figure 3-8).

 [image: After lineage your next best step towards understanding the root cause of a data issue is to look at how that query was generated via ETL or ELT. Image courtesy of authors.]
 Figure 3-8. After lineage, your next best step towards understanding the root cause of a data issue is to look at how that query was generated via ETL or ELT. Image courtesy of authors.

 A peek into the logic that created the table, or even the particular field or fields that are impacting the incident, as well as the metadata associated with that table, will help you come up with plausible hypotheses about what’s wrong.

 Ask yourself:

 	
 What code most recently updated the table? And when?

 	
 How are the relevant fields calculated? What could possibly have created the “wrong” data given this logic?

 	
 Have there been any recent changes to the logic, potentially introducing an issue?

 	
 Have there been any ad hoc writes to the table? Has it been backfilled recently?

 Tip

 Make sure everyone troubleshooting data problems can quickly trace back tables to the logic (SQL, Spark, or otherwise) that created them (Figure 3-9). To get to the bottom of things, you need to know not only what the code currently looks like, but also what it looked like when the table was last updated and ideally when that happened. While we all try to avoid them, backfills and ad hoc writes should be accounted for.

 [image: After assessing your lineage and metadata for the data asset in question the next step is to look at the query itself. Image courtesy of authors.]
 Figure 3-9. After assessing your lineage and metadata for the data asset in question, the next step is to look at the query itself. Image courtesy of authors.

 Step 3: Look at your data

 You now know how the data was calculated and how that might have contributed to the incident. If you still haven’t spotted the root cause, it’s time to look at the data in the table more closely for hints of what might be wrong.

 Ask yourself:

 	
 Is the data wrong for all records? For some records?

 	
 Is the data wrong for a particular time period?

 	
 Is the data wrong for a particular subset or segment of the data, e.g. only your android users or only orders from France?

 	
 Are there new segments of the data (that your code doesn’t account for yet…) or missing segments (that your code relies on…)?

 	
 Has the schema changed recently in a way that might explain the problem?

 	
 Have your numbers changed from dollars to cents? Your timestamps from PST to EST?

 	
 And the list goes on.

 One promising approach here is to explore how other fields in a table with anomalous records may provide clues as to where the data anomaly is occurring (Figure 3-10). For example, Lior’s team recently surfaced that an important Users table for one of our customers experienced a jump in the null rate for the user_interests field. We looked at the source field (i.e., Twitter, Facebook, or Google) to see if a relational pattern could point us in the right direction.

 [image: Generating a visualization of the statistical prevalence of anomalies like null values relative to other issues in the data can help pinpoint the root cause of a data problem.]
 Figure 3-10. Generating a visualization of the statistical prevalence of anomalies like null values relative to other issues in the data can help pinpoint the root cause of a data problem.

 This type of analysis provides two key insights, both of which would explain the increase of null records, but ultimately drive very different actions.

 The proportion of records associated with source=”Twitter” increased significantly, which normally has more records where user_interests=”null” than other sources. The proportion of records where user_interests=”null” increased for records with source=”Twitter”, while the proportion of records with source=”Twitter” did not change.

 For the first insight, we may just be experiencing a seasonality issue or the result of an effective marketing campaign. For the second insight, we likely have a data processing issue with user data coming from our Twitter source and can focus our investigation on the data coming from Twitter

 Tip

 Make sure everyone troubleshooting data problems can handily slice and dice data to find how the issue correlates with various segments, time periods and other cuts of the data. Visibility into recent changes to the data or its schema is a lifesaver. Keep in mind that while these statistical approaches are helpful, they are just one piece of the larger RCA process.

 Step 4: Look at your operational environment

 Okay, the data checks out. What now? Many data issues are a direct result of the operational environment that runs your ETL/ELT jobs (as depicted in Figure 3-11).

 [image: Often one of the final steps when it comes to conducting root cause analysis is taking a peek at your operational environment and associated ETL ELT job runs. One powerful open source tool for handling these runs is data build tool dbt . Image courtesy of authors.]
 Figure 3-11. Often, one of the final steps when it comes to conducting root cause analysis is taking a peek at your operational environment and associated ETL/ELT job runs. One powerful open source tool for handling these runs is data build tool (dbt). Image courtesy of authors.

 A look at logs and error traces from your ETL engines can help answer some of the following questions:

 	
 Have relevant jobs had any errors?

 	
 Were there unusual delays in starting jobs?

 	
 Have any long running queries or low performing jobs caused delays?

 	
 Have there been any permissions, networking or infrastructure issues impacting execution? Have there been any changes made to these recently?

 	
 Have there been any changes to the job schedule to accidentally drop a job or misplace it in the dependency tree?

 Tip

 Make sure everyone troubleshooting data problems understands how ETL jobs are performed and has access to the relevant logs and scheduling configuration (Figure 3-12). Understanding infrastructure, security, and networking can help as well.

 [image: Airflow an open source data orchestration tool allows teams to dive into job logs to better understand what might have gone wrong in the process.]
 Figure 3-12. Airflow, an open source data orchestration tool, allows teams to dive into job logs to better understand what might have gone wrong in the process.

 Step 5: Leverage your peers

 You did everything you can (or maybe you’re looking for shortcuts)—what’s next? You need to get guidance from your data team. Before you start bombarding Slack with questions, ask yourself:

 	
 What similar issues have happened in the past with this dataset? What has the team done to investigate and then resolve those issues?

 	
 Who owns the dataset that’s experiencing the issue right now? Who can I reach out to for more context?

 	
 Who uses the dataset that’s experiencing the issue right now? Who can I reach out to for more context?

 Tip

 Make sure everyone troubleshooting data problems has access to metadata about dataset ownership and usage, so they know who to ask. A history of data incidents with helpful documentation can help as well.

 Root cause analysis can be a powerful tool when it comes to addressing—and preventing—data quality issues in near-real time, but it’s important to remember a broken pipeline can rarely be traced to one specific issue. Like any distributed architecture, your data ecosystem is composed of a series of complex logic, events, and of course, pipelines that, like a science experiment, react in a multitude of ways.

 That being said, we’ve found that this five step approach can help turn root cause analysis from a stress-inducing wake-up call into a scalable and sustainable practice for your entire data organization. And in the process, you’ll give that one data engineer (you know, the human data pipeline encyclopedia on your data engineering team) a bit of a break.

 Resolution

 Once you identify that something has gone awry and understand its initial impact, the next step (sometimes even before root cause analysis) is to fix the issue and communicate next steps to the proper stakeholders. This could be as easy as pausing your data pipelines or models and re-running them, but since data can break for millions of reasons, this often involves a fair amount of troubleshooting.

 In many cases, there may be an “initial resolution” (i.e., pause or “circuit break” a pipeline—more on that later!) and a “final resolution,” in other words, implement a more permanent solution that addresses the underlying cause of the data downtime incident. Throughout this process, it’s important to communicate the status of the incident in a dedicated Slack channel, email chain, Wiki site, Google Document, JIRA workflow, or other collaboration tool that makes it easy for various stakeholders to keep track of the current state of affairs.

 After the incident is fixed, whether through changes to the code, data, or operational environment, teams should communicate next steps to the affected parties and in the coming days, schedule a post-mortem.

 Blameless Post-mortem

 Our friend, a site reliability engineer with over a decade of experience firefighting outages at Box, Slack, and other Silicon Valley companies, told us that I couldn’t write an article about incident management without making this abundantly clear:

 “For every incident, the system is what’s at fault, not the person who wrote the code. Good systems are built to be fault and human tolerant. It’s the system’s job to allow you to make mistakes.”

 When it comes to data reliability and DataOps, the same ethos rings true. Pipelines should be fault-tolerant, with processes and frameworks in place to account for both known unknowns and unknown unknowns in your data pipeline.

 Regardless of the type of incident that occurred or what caused it, the data engineering team should conduct a thorough, cross-functional post-mortem after they’ve fixed the problem and conducted root cause analysis. A post-mortem (which, literally, means after death) is a meeting, and corresponding document, created after an incident is resolved that highlights the key information, sequence of events, affiliated parties, associated technologies, and other relevant facts about the issue. A post-mortem is useful not just as a way to communicate the effects and outcome of an incident, but also to chronicle what happened so you can act more proactively to prevent similar issues from happening again.

 Here are a few best practices for conducting great post-mortems on your data pipelines:

 Frame everything as a learning experience

 To be constructive, post-mortems must be blameless (or if not, blame aware). It’s natural to try and assign “blame” for incidents, but it’s rarely helpful when it comes to instilling trust in your colleagues or fostering a collaborative culture. By reframing this experience around the goal of “learning and improvement,” it’s easier to proactively take the organizational (creating better workflows and processes) and technological steps (making a case for investing in new tools) necessary to eliminate data downtime.

 Use this as an opportunity to assess your readiness for future incidents

 Update runbooks and make adjustments to your monitoring, alerting, and workflow management tools. In short, runbooks are detailed how-to guides for completing a common task or procedure widely used by DevOps and IT teams. When applied to data, runbooks might include information about who owns what tooling or data assets at your company, as well as when jobs are regularly run or dashboards updated. As your data ecosystem evolves (adding new, third-party data sources, APIs, and even consumers), this step will become critical when it comes to incident prevention.

 Document each post-mortem and share with the broader data team

 As in software engineering, documenting what went wrong, how systems were affected, and what the root cause is often comes as an afterthought. But documentation is just as important as any other step in the incident management process because it prevents knowledge gaps from accruing if engineers with tribal knowledge leave the team or aren’t available to help.

 Revisit service-level agreements (SLAs)

 This isn’t the first (or last!) time we’ll be discussing service-level agreements (SLAs) in this book. Broadly speaking, SLAs are a method many companies use to define and measure the level of service a given vendor, product, or internal team will deliver—as well as potential remedies if they fail. As data systems mature or change over time, it’s important to consistently revisit your SLAs, service-level indicators (SLIs), and service-level objectives (SLOs). SLAs that made sense six months ago probably don’t anymore; your team should be the first to know and communicate these changes with downstream consumers.

 At the end of the day, post-mortems are just as important for data teams as they are for software engineers. As our field continues to advance (we’re in the decade of data, after all), understanding how and why data downtime occurs is the only way we can make continued improvements to the resiliency of our systems and processes.

 Proactive Incident Prevention

 Understanding how to instrument an effective incident management workflow is the first step when it comes to preventing data anomalies and other data downtime issues, but it only scratches the surface of what it takes to deliver comprehensive data reliability. After all, testing only covers your “known unknown” data quality issues; what about your “unknown unknowns” (Figure 3-13)?

 [image: A data engineer s first line of defense against data downtime is testing which usually only accounts for about 20 of unknown known issues. Without proactive incident prevention measures in place however the other 80 are often identified through disgruntled stakeholders downstream messaging them about broken reports and dashboards.]
 Figure 3-13. A data engineer’s first line of defense against data downtime is testing, which usually only accounts for about 20% of “unknown known” issues. Without proactive incident prevention measures in place, however, the other 80% are often identified through disgruntled stakeholders downstream messaging them about “broken reports and dashboards.”

 It helps to think of the first two sections of the data reliability life cycle (Detect and Resolve in Figure 3-2) as the “reactive” stages of this process, and Prevent as the “proactive” stage, ideally reducing the amount of time spent firefighting.

 Now that you’ve identified, root caused, resolved, and conducted a post-mortem on your incident, the next step is to prevent similar incidents from occurring again by implementing a data reliability stack that layers testing, CI/CD, discovery, and observability for a more proactive approach to incident management, as depicted by Figure 3-14.

 [image: A proactive approach to data reliability incorporates testing CI CD discovery and observability necessary components of managing and preventing data incidents. Image courtesy of authors.]
 Figure 3-14. A proactive approach to data reliability incorporates testing, CI/CD, discovery, and observability, necessary components of managing and preventing data incidents. Image courtesy of authors.

 The best part? These four elements are applicable to nearly any data architecture. In fact, layering these discrete processes will enable you to build more resilient data pipelines regardless of whether you’re building a centralized, distributed, or hybrid data stack.

 The first component of your data reliability stack, testing, is responsible for catching known unknown data quality issues, in other words, problems that you proactively test for and address before they reach production environments. In the next section, we go into depth about some common data tests and what it takes to run them.

 Testing

 Testing your data plays a crucial role in discovering data quality issues before it even enters a production data pipeline. With testing, engineers anticipate something might break and write logic to detect the issue preemptively.

 Data testing is the process of validating your organizations’ assumptions about the data, either before or during production. Writing basic tests that check for things such as uniqueness and not_null are ways organizations can test out the basic assumptions they make about their source data. It is also common for organizations to ensure that data is in the correct format for their team to work with and that the data meets their business needs.

 Some of the most common data quality tests include:

 	Null values

 	
 Are any values unknown (NULL)?

 	Volume

 	
 Did I get any data at all? Did I get too much or too little?

 	Distribution

 	
 Is my data within an accepted range? Are my values in-range within a given column?

 	Uniqueness

 	
 Are any values duplicated?

 	Known invariants

 	
 Is profit always the difference between revenue and cost, or some other well known facts about my data?

 From our own experience, two of the best tools out there to test your data are dbt tests and Great Expectations (as a more general-purpose tool). Both tools are open source and allow you to discover data quality issues before they end up in the hands of stakeholders. While dbt is not a testing solution per se, their out-of-the-box tests work well if you’re already using the framework to model and transform your data.

 To run data quality tests, you need to do two simple things:

 	
 Load the transformed data into a temporary staging table/dataset.

 	
 Run tests to ensure that the data in the staging table falls within the thresholds demanded of production (i.e., you need to answer “yes” to the question: is this what reliable data looks like?).

 If a data quality test fails, an alert is sent to the data engineer or analyst responsible for that asset, and the pipeline is not run. This allows data engineers to catch unexpected data quality issues before impacting end users/systems.

 Data testing can be done before transformation and after each step in the transformation process.

 We’ll go into greater detail about data testing in Chapter 4.

 Installing Circuit Breakers

 One increasingly popular approach to preventing data incidents is to apply a “circuit breaker” methodology to running data pipelines. In short, circuit breaking entails that pipelines stop running when data does not meet a set of quality thresholds.

 Circuit breakers are common practice in CI/CD workflows as a means of preventing systems from breaking due to new software deployments, and many of the same concepts can be applied to data pipelines, too. In data ecosystems, teams can integrate circuit breakers on top of testing and other steps in the CI/CD process, like versioning.

 For instance, a useful circuit breaker could be implemented after a metrics update completes to run integrity tests before allowing any downstream jobs to execute, as depicted in Figure 3-15. This could prevent false positive notifications from being sent to data analysts or data scientists if recent_metrics are experiencing any “data downtime.” Another common use case for circuit breakers is to pause data workflows in the middle of a pipeline if upstream data feeding the pipeline is found to be “bad” or “inaccurate.”

 [image: Circuit breakers prevent unreliable data in batch or real time from flowing into production data pipelines if certain data quality thresholds are not met.]
 Figure 3-15. Circuit breakers prevent unreliable data in batch or real time from flowing into production data pipelines if certain data quality thresholds are not met.

 Circuit breakers prevent data products from mixing high and low quality data, ensuring an implicit guarantee that the available data will be reliable. There are two states in the data circuit breaker pattern (Figure 3-15):

 	Circuit closed

 	
 Data is flowing through the pipeline

 	Circuit open

 	
 Data is now flowing through the pipeline

 According to Sandeep Uttamchandi, a former Chief Data Architect at Intuit, using circuit breakers requires three core solutions:

 	
 Data lineage

 	
 Data profiling across the pipeline

 	
 Ability to automatically trigger the circuit via issues unearthed through profiling

 In the wild, we’ve seen circuit breakers used to prevent freshness, volume, and distribution issues across siloed data pipelines, but similar principles can be applied with automation at scale.

 Establish a Routine of Incident Management

 All too often, data engineers are straddled with the burden of not just fixing data issues, but prioritizing what to fix, how to fix it, and communicating status as the incident evolves. For many companies, data team responsibilities underlying this firefighting are often ambiguous, particularly when it relates to answering the question: “who is managing this incident?”

 Sure, data reliability SLAs should be managed by entire teams, but when the rubber hits the road, we need a dedicated person to help call the shots and make sure these SLAs are met should data break.

 In software engineering, this role is often defined as an incident commander, and its core responsibilities include:

 	
 Flagging incidents to the broader data team and stakeholders early and often

 	
 Maintaining a working record of affected data assets or anomalies

 	
 Coordinating efforts and assigning responsibilities for a given incident

 	
 Circulating runbooks and playbooks as necessary

 	
 Assessing the severity and impact of the incident

 Data teams should assign rotating incident commanders on a weekly or daily basis, or for specific data sets owned by specific functional teams. Establishing a good, repeatable practice of incident management (that delegates clear incident commanders) is primarily a cultural process, but investing in automation and maintaining a constant pulse on data health gets you much of the way there. The rest is education.

 Here are four key steps every incident manager must take when triaging and assessing the severity of a data issue:

 Step 1: Route notifications to the appropriate team members

 When responding to data incidents, the way your data organization is structured will impact your incident management workflow, and as a result, the incident commander process.

 If you sit on an embedded data team, it’s much easier to delegate incident response (i.e., the marketing data and analytics team owns all marketing analytics pipelines), as depicted in Figure 3-16. If you sit on a centralized data team, fielding and routing these incident alerts to the appropriate owners requires a bit more foresight and planning (Figure 3-17). There are pros and cons to both data team structures when it comes to ensuring data reliability, but more on this in Chapter 6.

 [image: In a decentralized data team team members are spread out across different business units and data team members in each domain are responsible for fielding incidents for their stakeholders. In this structure data team members typically report either to the head of a business unit or in some cases the CDO or Head of Data.]
 Figure 3-16. In a decentralized data team, team members are spread out across different business units and data team members in each domain are responsible for fielding incidents for their stakeholders. In this structure, data team members typically report either to the head of a business unit or in some cases the CDO or Head of Data.

 [image: A centralized data team reports directly to the CDO or Head of Data and simultaneously field queries and incidents from data corresponding to different business units. Unless otherwise specified several business units are their stakeholders.]
 Figure 3-17. A centralized data team reports directly to the CDO or Head of Data and simultaneously field queries and incidents from data corresponding to different business units. Unless otherwise specified, several business units are their stakeholders.

 Either way, we suggest you set up dedicated Slack channels for data pipelines owned and maintained by specific members of your data team, inviting relevant stakeholders so they’re in the know if critical data they rely on is down. Many teams we work with set up PagerDuty or Opsgenie workflows to ensure that no bases are left uncovered.

 Step 2: Assess the severity of the incident

 Once the pipeline owner is notified that something is wrong with the data, the first step they should take is to assess the severity of the incident. Because data ecosystems are constantly evolving, there are an abundance of changes that can be introduced into your data pipelines at any given time. While some are harmless (i.e., expected schema change), some are much more lethal, causing impact to downstream stakeholders (i.e., rows in a critical table dropping from 10,000 to 1,000).

 Once your team starts troubleshooting the issue, it is a best practice to tag the issue based on its status, whether fixed, expected, investigating, no action needed, or false positive. Tagging the issue helps users with assessing the severity of the incident and also plays a key role in communicating the updates to relevant stakeholders in channels that are specific to the data that was affected so they can take appropriate action.

 What if a data asset breaks that isn’t important to your company? In fact, what if this data is deprecated?

 Phantom data haunts even the best data teams, and we can’t tell you how many times we have been on the receiving end of an alert for a data issue that, after all of the incident resolution was said and done, did not matter to the business; in fact, the data hadn’t been used in months! So, instead of tackling high priority problems, we spent hours or even days firefighting broken data only to discover we were wasting our time.

 So, how do you determine what data matters most to your organization? One increasingly common way teams have been able to discover their most critical data sets is by utilizing tools that help them visualize their lineage and understand how data is being used by the business (Figure 3-18). This allows them to have visibility into how all of their data sets are related when an incident does arise, and to be able to trace data ownership to alert the right people that might be affected by the issue. In many respects, data observability solutions fill these gaps by providing rich lineage and a way to explore the operational analytics of your data platform.

 [image: Operational analytics help data teams understand how data is being used across the company what data pipelines are more susceptible to data downtime how much cloud storage costs per data asset and other valuable insights about data health.]
 Figure 3-18. Operational analytics help data teams understand how data is being used across the company, what data pipelines are more susceptible to data downtime, how much cloud storage costs per data asset, and other valuable insights about data health.

 Once your team can figure out if the incident affected critical data, they will have a better understanding of the severity of the downtime. If it affects data that is directly powering financial insights, it’s likely a super high priority issue; if it’s not, it’s time to move on.

 Step 3: Communicate status updates as often as possible

 Good communication goes a long way in the heat of responding to a data incident, which is why we have already discussed how and why data teams should create a runbook that walks step-by-step through how to handle a given type of incident. Following a runbook is crucial to maintain correct lines of responsibility and reduce duplication of effort.

 Once you have “who does what” down, your team can then start updating a status page where stakeholders can follow along for updates in real time. A central status page also allows team members to see what others are working on and what the current status is of those incidents.

 In talks with fellow data leaders, we have seen incident command delegation handled in one of two ways:

 	Assign a team member to be on call to handle any incidents during a given time period

 	
 While on call, that person is responsible for handling all types of data incidents. Some teams have someone full time that does this for all incidents their team manages, while others have a schedule in place that rotates team members every week to cover.

 	Team members responsible for covering certain tables

 	
 This is the most common structure we see. With this structure, team members handle all incidents related to their assigned tables or reports while doing their normal daily activities. Table assignment is generally aligned based on the data or pipelines a given member works with most closely.

 Either approach works; it’s just a matter of figuring out what works best for your team structure, resources, and priorities.

 Step 4: Define and align on data SLAs and SLIs to prevent future incidents and downtime

 While the incident commander is not accountable for setting SLAs, they are often held responsible for meeting them. Simply put, service-level agreements (SLAs) are a method many companies use to define and measure the level of service a given vendor, product, or internal team will deliver—as well as potential remedies if they fail to deliver.

 For example, Slack’s customer-facing SLA promises 99.99% uptime every fiscal quarter, and no more than 10 hours of scheduled downtime, for customers on Plus plans and above. If they fall short, affected customers will receive service credits on their accounts for future use.

 Your service-level indicators (SLIs), quantitative measures of your SLAs, will depend on your specific use case, but here are a few metrics used to quantify incident response and data quality, as previously discussed in Chapter 2:

 	The number of data incidents for a particular data asset (N)

 	
 Although this may be beyond your control, given that you likely rely on external data sources, it’s still an important driver of data downtime and usually worth measuring.

 	Time-to-detection (TTD)

 	
 When an issue arises, this metric quantifies how quickly your team is alerted. If you don’t have proper detection and alerting methods in place, this could be measured in weeks or even months. “Silent errors” made by bad data can result in costly decisions, with repercussions for both your company and your customers.

 	Time-to-resolution (TTR)

 	
 When your team is alerted to an issue, this measures how quickly you were able to resolve it.

 By keeping track of these, data teams can work to reduce TTD and TTR, and in turn, build more reliable data systems.

 Why data incident commanders matter

 When it comes to responding to data incidents, time is of the essence, and as the incident commander, time is both your enemy and your best friend.

 In an ideal world, companies want data issues to be resolved as quickly as possible. However, that is not always the case and some teams often find themselves investigating data issues more frequently than they would like. In fact, while data teams invest a large amount of their time writing and updating custom data tests, they still experience broken pipelines.

 An incident commander, armed with the right processes, a pinch of automation, and organizational support, can work wonders for the reliability of your data pipelines.

 Case Study: Data Incident Management at PagerDuty

 PagerDuty helps over 16,800 businesses across 90 countries hit their uptime SLAs through their digital operations management platform, powering on-call management, event intelligence, analytics, and incident response.

 So how does PagerDuty approach data-specific incident management within their own organization? We sat down with Manu Raj, Senior Director of Data Platform and Analytics (aptly named the DataDuty team), to learn more about his team’s strategy for preventing “data downtime” and achieving more reliable data pipelines at scale.

 The DataOps Landscape at PagerDuty

 PagerDuty’s Business data platform team has a clear mandate: to provide its customers with trusted data anytime, anywhere, that is easy to understand and enables efficient decision-making.

 “The most critical part of that is data governance, data quality, security, and infrastructure operations,” said Manu. The team’s customers include “pretty much all the departments in PagerDuty, including finance, executives, customer success, engineering, sales, and marketing.”

 In terms of their platform itself, DataDuty team uses PagerDuty—”we absolutely have to eat our own dog food”—as well as Snowflake for data warehousing, Fivetran, Segment, Mulesoft, AWS, Monte Carlo, and Databricks.

 The team also recently integrated ML-powered data observability, giving them the ability to fully understand the health of data systems by monitoring, tracking, and troubleshooting data incidents at each stage of the pipeline.

 Data Challenges at PagerDuty

 Like most SaaS companies, PagerDuty uses a lot of SaaS cloud applications (think Salesforce, Marketo, and Netsuite) and ingests a lot of internal and third-party data. Structured data, unstructured data, data coming in at different cadences, and real-time batches across different granularities are all part of the overall data ecosystem at PagerDuty.

 The DataDuty team’s primary challenge is making sure the quality of the data meets end-user expectations by enabling them to make faster decisions based on accurate data.

 “The dynamic nature of the business is what drives data challenges,” said Manu. “The business data needs are changing continuously, quarter by quarter, and accurate decisions have to be made quickly. Everything is data driven, so we have to be agile.”

 Using DevOps Best Practices to Scale Data Incident Management

 To fulfill their ambitious mandate, the DataDuty team implemented a number of DevOps incident management best practices to their data pipelines.

 Best practice #1: Ensure your incident management covers the entire data lifecycle

 At PagerDuty, incident management for data engineers falls under what they call data operations, which is an extension of DevOps. It includes tracking, responding, and triaging for both data and pipeline issues.

 Once the data is in the warehouse and all the way until it appears in customer-facing reports, there is potential for various types of data downtime, from missing data to errant models. The DataDuty team monitors for data quality issues including anomalies, freshness, schema changes, metric trends, and more.

 Data observability is especially important to monitor and ensure data quality in your data warehouse. You could intervene at a data pipeline level through custom data quality checks via ETL tools, but over time the management of the logic, scripts, and other elements of your data ecosystem becomes cumbersome. Moreover, as Manu notes, issues with data trends cannot be identified by pipeline quality checks.

 Best practice #2: Incident management should include noise suppression

 Data noise is a major issue when it comes to implementing data monitoring and anomaly detection, and at the enterprise scale, you will have a variety of “alerts” coming in on a daily basis, many of which will indicate changes in your data but not necessarily net-new “issues.” Data teams need to be able to triage between customers, business owners, and respond to these alerts in a timely fashion while delegating clear ownership over the data products themselves.

 Manu’s DataDuty team uses PagerDuty to identify similar data incident alerts, suppressing multiple alerts for one incident that contains multiple data issues. This way, his team members aren’t overwhelmed with alerts and can focus on fixing the root cause(s) of the data issue at hand.

 Best practice #3: Group data assets and incidents to intelligently route alerts

 According to Manu, data observability is the first step before any data incident management steps, including incident response and escalation, can happen. After all, “my data is not refreshed” is an entirely different issue compared to an abnormal trend or metric. Teams need to be able to identify that this data issue exists over time.

 When the DataDuty team began to integrate data observability with PagerDuty across their own data platform, they followed best practices from DataOps, including grouping together data issues to enable easier routing and alerting based on that 360-degree view, including:

 By grouping similar data pipeline issues together with data observability and implementing triaging and alerting on top of this workflow, they were able to ensure that these alerts were properly routed to the DataDuty team.

 Since they use Airflow for scheduling, the team receives Airflow alerts via PagerDuty, too.

 Identifying the company’s most critical data assets, including executive-level reporting and financial reporting-level data, through data observability. Now, alerts related to those assets come via PagerDuty with an escalation policy and automatically go to additional stakeholders and the Business Intelligence team.

 By monitoring and alerting on the health of BI metrics, such as the number of customers, customer churn rate, the number of accounts, and the number of data incidents, Manu and his team can gain a better pulse on the reliability of their data. These alerts are then routed to the business intelligence team so they can monitor and take action as needed.

 With these best practices, PagerDuty’s platform team lives up to their mandate by approaching data incident management from a DevOps perspective—which aligns perfectly with the principles of data observability.

 Summary

 When it comes to fixing broken data pipelines at scale, data teams should invest in repeatable incident management, root cause analysis, and data reliability workflows. To recap, we suggest taking these four important steps:

 	
 Roll out an incident management program for critical data pipelines

 	
 Leverage anomaly detection as part of a larger indecent detection strategy

 	
 Conduct thorough root cause analysis and impact analysis when incidents occur

 	
 Tackle data quality proactively through testing, CI/CD, data observability, and data

 Without these steps, data engineers and analysts will have a challenging time handling data quality issues in near-real time, particularly as data systems evolve and companies ingest more and more data. In future chapters, we’ll take these best practices to the next level by showing you how to build your own data quality test, anomaly detectors, lineage graphs, and other solutions that allow you to conduct incident management—and fix data quality—across your own systems!

 Chapter 4. Preventing Broken Data Systems

 Chapter written by Ryan Kearns, Lior Gavish, Barr Moses, and Molly Vorwerck

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the fourth chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 While solving data quality issues in production is a critical skill set for any data practitioner, data downtime can often be prevented almost entirely with the right approach.

 Like software, data can rely on any number of operational, programmatic, or even data-related influences at various stages in the pipeline, and all it takes is one schema change or code push to send a downstream report into disarray.

 As mentioned in Chapter 3, solving for data quality and building more reliable pipelines is broken into three key components: process, technologies, and people. In this Chapter 4, we’ll tackle the technology component of this equation, mapping together the disparate pieces of the data pipeline, and what it takes to measure, fix, and prevent data downtime at each step.

 Data systems are ridiculously complex, with various stages in the data pipeline contributing to this chaos. And as companies increasingly invest in data and analytics, the pressure to build at scale puts serious pressure on data engineers to account for quality before data even enters the pipeline.

 Join us as we chart the “journey” of data through an enterprise system, from ingestion to dashboarding, with pauses when necessary to define relevant terms on our quest to solve for better data quality and trust.

 Understanding the Difference Between Operational and Analytical Data

 If you ask a data engineer for the most broad possible distinction between data within their organization, you might hear the terms “operational data” and “analytical data” brought up. The operational vs. analytical distinction is just one of many ways to cleave the data in your ecosystem in two. But it’s an important one, and one you’ll need to understand if you’re interested in adopting a culture of data quality.

 It’s important to note, however, that for the purpose of this book, we have been and will continue to focus on data quality as it relates to analytical data. Managing the quality and reliability of operational data often lies in the realm of Developer Operations, Site Reliability Engineering, and other software disciplines more concerned with building softwares products that are informed by analytical data.

 Operational data is data produced operationally – that is, by the day-to-day ongoing operations at your organization.1 Inventory snapshots at moments in time, customer impressions, and transaction records are all examples of operational data.

 Analytical data is, simply, data used analytically. This is to say, it’s the type of data behind data-driven business decisions. Marketing churn, clickthrough rates, and impressions by global region are all examples of analytical data categories.

 In a nutshell, operational data records data from actual business processes for quick updates to systems and processes, while analytical data is used for more robust and efficient analysis. One easy way of thinking about this is that operational data runs your business while analytical data manages your business. Given that analytical data drives business intelligence in a way operational data does not, one might be tempted to suspect this data is more important or more “central” to an organization’s success. Yet more often than not, analytical data rests on a backbone of operational data transformations and aggregations.

 A minor aside: this operational vs. analytical distinction is the same one made by the comparison between transaction-processing and analytic data systems (OLTP vs. OLAP), e.g. in Designing Data Intensive Applications.2

 What Makes Them Different?

 As you likely guessed, analytical and operational data are different in a few critical ways that inform how we manage their reliability.

 While not central to the definitions of either term, the notion of temporal precedence is an important one in the operational vs. analytical distinction. Almost always, operational data appears upstream from analytical data in your data pipelines. This is because analytical data can and often does contain aggregations or augmentations of operational datastores. The clickthrough of one certain John Doe from some browser at some time is one operational datum; the clickthrough rate for your December marketing campaign is a corresponding analytical datum, the progeny of some collection of operational motes like our John Doe one.

 One crucial reason for why the operational versus analytical data distinction is important is what’s called the throughput vs. latency tradeoff. The throughput-latency constraint is one affecting all networked systems, or really any system with fixed computational power. Traditionally throughput refers to the quantity of data processed within some unit time, and latency refers to the delay before data is processed.

 Think of a popular internet cafe with a line outside. How long before someone at the end of the line receives their coffee? This process involves standing in line, ordering, paying, and then waiting for the barista to make the drink. The sum total of this time describes the cafe’s latency. Conversely, the number of customers able to enjoy their coffees indoors in, say, an hour’s time describes the throughput of the cafe.

 Unfortunately, these two measures of data processing performance are doomed to compete. We cannot have both high throughput and low latency for our internet cafe. But why, you ask? It’s not like throughput and latency describe opposite ideals. The answer has to do with how data processing systems are architected in reality – specifically, with a limited number of request handlers.3

 Imagine, again, our internet cafe. We have a fixed number of employees at our cafe, and those robot serve-o-trons we ordered are on backlog due to the chip shortage. As managers, we have to decide how many employees should man the espresso machines and registers, and how many should go around bussing tables. Notice the tradeoff yet? Suppose we try at all costs to optimize our cafe latency. This would involve staffing nearly all of our employees at the registers and espresso machines, so that drinks could be ordered and picked up as fast as possible. Yet if we do this, we’re guaranteed to drastically reduce our throughput, since no one is around to bus tables and make space for the new customers. If, by contrast, we relegate most of our workers to hover around tables, snatching empty cups the moment they’re forfeited, our latency will increase – because no one is operating the cash register!

 This tradeoff is pernicious, sure, but there’s no need to abandon data engineering for a gardening career just yet. Rather than a constraint to be lamented, the throughput vs. latency trade-off is often just one that’s decided in the context of a singular application. In certain cases this is incredibly clear. Operational (transactional4) databases require certain things like order details to be fetched on page load in a snappy amount of time. Thus their architectures, through various design decisions, will be optimized for low latency. Analytical databases, by contrast, cater to users conducting large aggregations across massive datasets, and so must optimize for high throughput. This heuristic won’t pass for flawless advice as to which services to employ for what, but it at least explains why you won’t generally query Snowflake or Redshift from a customer UI or run trillion-row aggregations in your MySQL or Postgres instance.

 Data Warehouses vs. Data Lakes

 Data warehouses and data lakes…perhaps no two words receive as much headspace in the day-to-day vernacular of a data engineering team. While warehouses and lakes are not interchangeable, these technologies are rapidly converging, with each offering the best of both worlds.

 Many organizations genuinely require both kinds of systems within their data pipelines, but they’re used for quite different things. Generally, data warehouses store data in a structured (row-column) format. Such data is highly transformed (the result of defined pre-processing procedures) and only present because it has a determinate reason for being there – at least, in theory.

 Data lakes by contrast store anything – structured data, semi-structured data, unstructured data. Unlike warehouses, data lakes need not have highly specified procedures through which data enters – you can dump any format you like into a lake and directly access it. The result is a system that is typically higher volume though often messier in terms of its governance and data.

 Data Warehouses: Table Types at the Schema Level

 Data warehouses require “schema on write” access, meaning we set the structure of the data at the instant it enters the warehouse. Further transformations on this data must make its new structure explicit at every step.

 Data warehouses are fully integrated and managed solutions, making them simple to build and operate out-of-the-box. Unlike data lakes, data warehouses typically require more structure and schema, which often forces better data hygiene and results in less complexity when reading and consuming data.

 The modern data warehouse owes its conception in part to Kimball Group, who developed the Data Warehouse / Business Intelligence Lifecycle Methodology in the 1980s.5 This innovation in systems design championed business value across all levels of the enterprise, including the stages of data ingestion and pre-processing most often occupied by engineers. Kimball was influential in identifying data storage techniques as business assets instead of mere technological preferences.

 Modern data warehouses follow this methodology with their schema-on-write architectures and ready integrations to business intelligence tools like Looker and Tableau. Simply put, data in a data warehouse has reasons for being there, and those reasons should correspond to a business objective of some kind.

 Today, common data warehouse technologies include:

 	
 Amazon Redshift: The first widely popular (and readily available) cloud data warehouse, Amazon Redshift sits on top of Amazon Web Services (AWS) and leverages source connectors to pipe data from raw data sources into relational storage. Redshift’s columnar storage structure and parallel processing makes it ideal for analytic workloads.

 	
 Google BigQuery: Like Redshift, Google BigQuery leverages its mothership’s proprietary cloud platform (Google Cloud), uses a columnar storage format, and takes advantage of parallel processing for quick querying. Unlike Redshift, BigQuery is a serverless solution that scales according to usage patterns.

 	
 Snowflake: Unlike Redshift or GCP which rely on their proprietary clouds to operate, Snowflake’s cloud data warehousing capabilities are powered by AWS, Google, Azure, and other public cloud infrastructure. Unlike Redshift, Snowflake allows users to pay separate fees for compute and storage, making the data warehouse a great option for teams looking for a more flexible pay structure.

 Owing to its pre-packaged functionalities and strong support for SQL, data warehouses facilitate fast, actionable querying, making them great for data analytics teams.

 While data warehouses can be extremely valuable for business analytics use cases, there are a few drawbacks you should keep in mind, particularly as it relates to managing data quality:

 	
 Limited flexibility: Data warehouses are not the most flexible data storage solution on the market. This is not to say they don’t scale well – many of the best modern solutions famously do – but instead that the format of data in warehouses is limited. Entries into a data warehouse must be coerced into tabular form with a definite schema. Semi-structured data like JSON, and the querying thereof, is typically not naturally supported, and bad data often falls through the cracks.

 	
 SQL-only support: Querying a data warehouse will require the use of a query language like SQL. There’s generally no support for data manipulation with imperative languages like python, useful for machine learning due to a strong library ecosystem. Thus, many machine learning implementations require data to be moved out of a warehouse, via SQL, for further processing. Again, this movement of data is where it often breaks and volume, freshness, and schema anomalies occur.

 	
 Frictional workflows: A small team of data scientists, working closely together on a quickly iterating product, might find the cleanliness afforded by the schema-on-write system more cumbersome than beneficial. When you want to work fast, it’s to your benefit to have lax standards as to the structure of your data. That structure will be constantly changing, and constant schema change is not something a data warehouse happily supports.

 Data warehouses are frequently used for specific, often analytics-driven applications, such as building one-function data platforms (in other words, a solution dedicated to a specific task, like driving analytics for financial forecasts) or business intelligence systems.

 Data Lakes: Manipulations at the File Level

 Data lake architectures permit “Schema on read” access. This means we infer the structure of the data when we’re ready to use it.

 Data lakes are the do-it-yourself version of a data warehouse, allowing teams to pick and choose the various metadata, storage, and compute technologies they want to use depending on the needs of their systems. Data lakes are ideal for data teams looking to build a more customized platform, often supported by a handful (or more) of data engineers. With data lakes, data scientists, ML engineers, and data engineers can draw from a much larger pool of data that includes both semi-structured and unstructured formats.

 The concept of a data lake was first brought to life by James Dixon, the founder and former CTO of software company Pentaho, which he described as “as a large body of water in a more natural state. The contents of the data lake stream in from a source to fill the lake, and various users of the lake can come to examine, dive in, or take samples.”6

 Very early data lakes were built primarily on Apache Hadoop MapReduce and HDFS, leveraging Apache Hive to query their data with a SQL engine. In the early 2010s, Apache Spark made data lakes much more tenable, providing a generalized framework for distributed computations across large data sets in the data lake

 Some common features of data lakes include:

 	
 Decoupled storage and compute: Not only can this functionality allow for substantial cost savings, but it also facilitates parsing and enriching of the data for real-time streaming and querying.

 	
 Support for distributed compute: Distributed computing helps support the performance of large-scale data processing because it allows for better segmented query performance, more fault-tolerant design, and superior parallel data processing.

 	
 Customization and interoperability: Owing to their “plug and chug” nature, data lakes support data platform scalability by making it easy for different elements of your stack to play well together as the data needs of your company evolve and mature.

 	
 Largely built on open source technologies: This facilitates reduced vendor lock-in, and affords great customization, which works well for companies with large data engineering teams.

 	
 Ability to handle unstructured or weakly structured data: Data lakes can support raw data, meaning that you have greater flexibility when it comes to working with your data, ideal for data scientists and data engineers. Working with raw data gives you more control over your aggregates and calculations.

 	
 Supports sophisticated non-SQL programming models: Unlike most data warehouses, data lakes support Apache Hadoop, Apache Spark, PySpark, and other frameworks for advanced data science and machine learning.

 While data warehouses provide structure that makes it easy for data teams to efficiently operationalize data (i.e., gleaning analytic insights and supporting machine learning capabilities), that structure can make them inflexible and expensive for certain applications. On the other hand, data lakes are infinitely flexible and customizable to support a wide range of use cases, but with that greater agility comes a host of other issues related to data organization and governance.

 Here are a few salient ones:

 	
 Data integrity: resources in a data lake, being manipulated at the file level, have no guarantees as to their data’s schema. If you’re transforming data in a lake with some assumption as to its schema, you’re doing something called “blind ETL” which is incredibly dangerous. Transformations may fail at any point due to unforeseen upstream changes.

 	
 Swampification: Swampification refers to the tendency for data lakes to incur technical debt and tribal knowledge over time. Often, you’ll have to rely on a skilled data engineer or data scientist for knowledge about where certain data resides, who its stakeholders are, and how it might be expected to change. Lean too heavily on this and your data lake “swampifies,” meaning no one can get any work done because data literacy comes at a high learning curve.

 	
 More endpoints: Data reliability is often a bigger challenge in data lakes because there are more ways that data can be collected, manipulated, and transformed. More steps in the pipeline introduces more opportunity for error.

 Data lakes are often used as collection points for large quantities of unstructured data, such as application data or auto-generated data for the purposes of some machine learning task. This data can either remain in its raw format in the lake, or be intended to feed some upstream resource, possibly in a data warehouse or BI tool, via an integration layer like AWS Glue.

 Alternatively, smaller teams might operate with a data lake as their sole data store for the purposes of moving quickly and not settling on a robust infrastructure – though practitioners of this should always be wary of the “data swamp” problem.

 What About the Data Lakehouse?

 Data lakehouses first came onto the scene when cloud warehouse providers began adding features that offer lake-style benefits, such as Redshift Spectrum or Delta Lake. Similarly, data lakes have been adding technologies that offer warehouse-style features, such as SQL functionality and schema. Today, the historical differences between warehouses and lakes are narrowing so you can access the best of both words in one package.

 The following functionalities are helping data lakehouses further blur the lines between the two technologies:

 	
 High-performance SQL: technologies like Presto and Spark provide SQL interface at close to interactive speeds over data lakes. This opened the possibility of data lakes serving analysis and exploratory needs directly, without requiring summarization and ETL into traditional data warehouses.

 	
 Schema: file formats like Parquet introduced more rigid schema to data lake tables, as well as a columnar format for greater query efficiency.

 	
 Atomicity, Consistency, Isolation, and Durability (ACID): lake technologies like Delta Lake and Apache Hudi introduced greater reliability in write/read transactions, and takes lakes a step closer to the highly desirable ACID properties that are standard in traditional database technologies.

 	
 Managed services: for teams that want to reduce the operational lift associated with building and running a data lake, cloud providers offer a variety of managed lake services. For example, Databricks offers a managed version of Apache Hive, Delta Lake, and Apache Spark while Amazon Athena offers a fully managed lake SQL query engine and Amazon’s Glue offers a fully managed metadata service.

 With the rise of real-time data aggregation and streaming to inform lightspeed analytics (think Silicon Valley tech giant speeds: Uber, DoorDash, and Airbnb), data lakehouses are likely to rise in popularity and relevance for data teams across industries in the coming years.

 Syncing Data Between Warehouses and Lakes

 Bridging different data warehouses and lakes will be something called a data integration layer. Data integration tools, such as AWS Glue, Fivetran, and Matillion, collect data from disparate sources, unify those data, and transform them into an upstream source. A classic use case of data integration would be to collect lake data and load it in a structured format into one’s data warehouse.

 ETL, or Extract-Transform-Load, is one well-known process within data integration. ETL generally describes integration steps where data is first extracted from one or more data stores, transformed into a new structure or format, and finally loaded into a destination data store.

 Now that we’ve discussed these core elements of the modern data pipeline, let’s dive into how they all work together and what we can do to ensure high data quality at each step.

 Collecting Data Quality Metrics

 So far, we’ve covered various distinctions like operational vs. analytical data, transactional vs. analytical databases, and data lakes vs. data warehouses. Understanding all of these distinctions helps us know exactly where our data may reside. We also get a sense of the various advantages and risks of different storage formats and steps in one’s data pipeline. But when it comes to data quality, which metrics specifically should we be taking into account?

 In this next section we’ll talk about data quality metrics – what they are, where they might be found, and how you know you’re leveraging them correctly.

 What Are Data Quality Metrics?

 You can’t fix what you can’t measure. Likewise, you can’t have data quality without data quality metrics. Proper data quality metrics should measure whether your data is fit to your business objectives. Where your data falls flat, these metrics should encode and quantify the gap to appropriate data quality.

 We advocate measuring data quality in terms of data downtime – periods of time when your data is partial, erroneous, missing, or otherwise inaccurate.7 As earlier mentioned, e call it “downtime” to harken back to the early days of the Internet. Back then, online applications were a nice-to-have, and if they were down for a while — it was not a big deal. You could afford downtime, since businesses were not overly reliant on them. We’re now two decades into the Internet Age (or beyond it, depending on who you ask!), and online applications are mission-critical to almost every business. As a result, companies measure downtime meticulously and invest a lot of resources in avoiding service interruptions.

 Similarly, companies are increasingly reliant on data to run their daily operations and make mission critical decisions. But we aren’t yet treating data downtime with the diligence it demands. While a handful of companies are putting SLAs in place to hold data teams accountable to accurate and reliable data, it is not the norm yet. In the coming years, I expect there will be increased scrutiny around data downtime, and increased focus on minimizing it.

 In assessing whether your data is down, you might build a list of questions:

 	
 Is the data up-to-date?

 	
 Is the data complete?

 	
 Are fields within expected ranges?

 	
 Is the null rate higher or lower than it should be?

 	
 Has the schema changed?

 The exact list above might not be exhaustive for your own data quality needs, but it’s the right place to start. It moves us from answering one broad and difficult question (“Is my data down?”) to a sequence of more specific ones. We’re well on our way to data quality metrics, which should answer questions like the one above with quantitative and measurable results.

 How to Pull Data Quality Metrics

 The answers to those questions above come from analysis of specific data assets, which mostly take the form of the resources we discussed earlier in this chapter – data warehouses, lakes, the transformation layers between them, and so on.

 From Your Warehouse8

 How do we go about formulating data quality metrics from a warehouse environment? Recall from the section “Data Warehouses: Table Types at the Schema Level” that data warehouses are differentiated by their structured content and “schema-on-write” architecture. These architectural choices make some data monitoring techniques not possible on lakes.

 Snapshot: Pulling Data Quality Metrics from Snowflake

 Snowflake is one of the most popular cloud data warehousing tools, its design has prioritized data quality and integrity from the very beginning. One of the most important features of the warehouse when it comes to building more reliable data pipelines is the ability to pull data quality metrics directly from the warehouse and visualize them for easy analysis.

 Here are the four steps you need to take to successfully glean data quality metrics from Snowflake. (Keep in mind that this tutorial is applicable to other brands of data warehouse, too, with a few adjustments).

 Map Your Inventory

 For the purpose of this tutorial, let’s assume you have a single database on Snowflake called ANALYTICS (although, as with most data stacks, this is rarely the case). To run the queries below in your environment, simply replace ANALYTICS with the name of the database you are looking to track. To list the databases in your account, you can run “SHOW DATABASES”.

 Your first step will be to map all the tables you have in your warehouse so you know what needs to be tracked in the first place. While you do so, mapping schema can be a powerful tool in understanding what’s in each table, and how that changes over time.

 Here’s how to do that with Snowflake:

 SELECT
 TABLE_CATALOG,
 TABLE_SCHEMA,
 TABLE_NAME,
 TABLE_OWNER,
 TABLE_TYPE,
 IS_TRANSIENT,
 RETENTION_TIME,
 AUTO_CLUSTERING_ON,
 COMMENT
FROM "ANALYTICS".information_schema.tables
WHERE
 table_schema NOT IN ('INFORMATION_SCHEMA')
 AND TABLE_TYPE NOT IN ('VIEW', 'EXTERNAL TABLE')
ORDER BY TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME;

 This query will fetch a list of all tables along with helpful metadata about their settings. The comment property is particularly useful if you’ve been diligent about documenting your data with COMMENT.

 To get the schema for your tables – understanding how it evolves can really help prevent and troubleshoot data breakages – you might use this query:

 SELECT
 '"' || TABLE_CATALOG || '"."' || TABLE_SCHEMA || '"."' || TABLE_NAME || '"' AS FULL_NAME,
 COLUMN_NAME,
 DATA_TYPE,
 COLUMN_DEFAULT,
 IS_NULLABLE,
 COMMENT,
 CHARACTER_MAXIMUM_LENGTH,
 NUMERIC_PRECISION,
 NUMERIC_SCALE,
 DATETIME_PRECISION
FROM "ANALYTICS".information_schema.columns;

 Please note that the snippets above will help with tables, but we intentionally left out views and external tables. To pull metadata for those, we recommend using the following queries:

 SHOW VIEWS IN DATABASE "ANALYTICS";
SHOW EXTERNAL TABLES IN DATABASE "ANALYTICS";

 While it might add complexity to your implementation, these queries will fetch valuable information that is not available when querying information_schema.tables. For example, you will have the text property for views – which will provide insight about the underlying SQL query for your views.

 Monitor for Data Freshness and Volume

 Tracking volume and freshness for your tables is incredibly important in understanding Snowflake data observability and the overall health of your data pipelines. Luckily, Snowflake tracks that information as writes are made to tables in the warehouse. You can pull how many bytes and rows tables have, as well as the time they were most recently updated using this query:

 SELECT
 TABLE_CATALOG,
 TABLE_SCHEMA,
 TABLE_NAME,
 ROW_COUNT,
 BYTES,
 CONVERT_TIMEZONE('UTC', CREATED) as CREATED,
 CONVERT_TIMEZONE('UTC', LAST_ALTERED) as LAST_ALTERED
FROM "ANALYTICS".information_schema.tables
WHERE
 table_schema NOT IN ('INFORMATION_SCHEMA')
 AND TABLE_TYPE NOT IN ('VIEW', 'EXTERNAL TABLE')
ORDER BY TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME;

 By storing these metrics and observing how they change over time, you can map how frequently tables get updated, how much data is to be expected in each update and most importantly – identify missing or anomalous updates.

 Measuring the freshness and volume of views is not straightforward, as it is a function of the tables included in the underlying queries. As far as external tables go, we recommend using freshness information from “SHOW EXTERNAL TABLES…”.

 Step 3: Build Your Query History

 Having a solid history of all the queries running in your Snowflake environment is an invaluable tool when troubleshooting issues – it lets you see exactly how and when a table was most recently written to. More broadly, an analysis of your query logs can help map lineage (dependencies between tables), understand which users use which assets, and even optimize the performance and cost of your Snowflake instance.

 This is the query we use to extract query logs – notice we’ll be filtering out system and faulty queries to reduce noise:

 SELECT
 "QUERY_TEXT",
 "DATABASE_NAME",
 "SCHEMA_NAME",
 "QUERY_TYPE",
 "USER_NAME",
 "ROLE_NAME",
 "EXECUTION_STATUS",
 "START_TIME",
 "END_TIME",
 "TOTAL_ELAPSED_TIME",
 "BYTES_SCANNED",
 "ROWS_PRODUCED",
 "SESSION_ID",
 "QUERY_ID",
 "QUERY_TAG",
 "WAREHOUSE_NAME",
 "ROWS_INSERTED",
 "ROWS_UPDATED",
 "ROWS_DELETED",
 "ROWS_UNLOADED"
FROM snowflake.account_usage.query_history
WHERE
 start_time BETWEEN to_timestamp_ltz('2021-01-01 00:00:00.000000+00:00') AND to_timestamp_ltz('2021-01-01 01:00:00.000000+00:00')
 AND QUERY_TYPE NOT IN ('DESCRIBE', 'SHOW')
 AND (DATABASE_NAME IS NULL OR DATABASE_NAME NOT IN ('UTIL_DB', 'SNOWFLAKE'))
 AND ERROR_CODE is NULL
ORDER BY start_time DESC;

 You might also find it valuable to take a look at the history of copy and load operations to understand how data is loaded and moved around:

 SELECT
 "FILE_NAME",
 "STAGE_LOCATION",
 "LAST_LOAD_TIME",
 "ROW_COUNT",
 "FILE_SIZE",
 "ERROR_COUNT",
 "STATUS",
 "TABLE_CATALOG_NAME",
 "TABLE_SCHEMA_NAME",
 "TABLE_NAME",
 "PIPE_CATALOG_NAME",
 "PIPE_SCHEMA_NAME",
 "PIPE_NAME",
 "PIPE_RECEIVED_TIME"
FROM snowflake.account_usage.copy_history
WHERE
 LAST_LOAD_TIME between to_timestamp_ltz('2021-01-01 00:00:00.000000+00:00') AND to_timestamp_ltz('2021-01-01 01:00:00.000000+00:00')
 AND STATUS != 'load failed'
ORDER BY LAST_LOAD_TIME DESC;

 5. Check the Health

 Finally, for some of your critical tables, you might want to run data quality checks to make sure all fields are populated properly and have healthy values. By tracking health metrics over time and comparing them to past batches, you can find a range of data quality issues as soon as they appear in your data.

 Here’s how you might do it:

 SELECT
 DATE_TRUNC('HOUR', created_on) as bucket_start,
 DATEADD(hr, 1, DATE_TRUNC('HOUR', created_on)) as bucket_end,

 COUNT(*) as row_count,

 -- string field
 COUNT(account_id) / CAST(COUNT(*) AS NUMERIC) as account_id___completeness,
 COUNT(DISTINCT account_id) as account_id___approx_distinct_count,
 COUNT(DISTINCT account_id) / CAST(COUNT(*) AS NUMERIC) as account_id___approx_distinctness,
 AVG(LENGTH(account_id)) as account_id___mean_length,
 MAX(LENGTH(account_id)) as account_id___max_length,
 MIN(LENGTH(account_id)) as account_id___min_length,
 STDDEV(CAST(LENGTH(account_id) as double)) as account_id___std_length,
 SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), '^([-+]?[0-9]+)$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as account_id___text_int_rate,
 SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), '^([-+]?[0-9]*[.]?[0-9]+([eE][-+]?[0-9]+)?)$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as account_id___text_number_rate,
 SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), '^([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as account_id___text_uuid_rate,
 SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), '^(\\s+)$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as account_id___text_all_spaces_rate,
 SUM(IFF(UPPER(account_id) IN ('NULL', 'NONE', 'NIL', 'NOTHING'), 1, 0)) / CAST(COUNT(*) AS NUMERIC) as account_id___text_null_keyword_rate,

 -- numeric field
 COUNT(num_of_users) / CAST(COUNT(*) AS NUMERIC) as num_of_users___completeness,
 SUM(IFF(num_of_users = 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as num_of_users___zero_rate,
 SUM(IFF(num_of_users < 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) as num_of_users___negative_rate,
 COUNT(DISTINCT num_of_users) / CAST(COUNT(*) AS NUMERIC) as num_of_users___approx_distinctness,
 AVG(num_of_users) as num_of_users___numeric_mean,
 MIN(num_of_users) as num_of_users___numeric_min,
 MAX(num_of_users) as num_of_users___numeric_max,
 STDDEV(CAST(num_of_users as double)) as num_of_users___numeric_std,
 ARRAY_CONSTRUCT(APPROX_PERCENTILE(num_of_users, 0.00), APPROX_PERCENTILE(num_of_users, 0.20), APPROX_PERCENTILE(num_of_users, 0.40), APPROX_PERCENTILE(num_of_users, 0.60), APPROX_PERCENTILE(num_of_users, 0.80), APPROX_PERCENTILE(num_of_users, 1.00)) as num_of_users___approx_quantiles

FROM analytics.prod.client_hub
WHERE
 DATE_TRUNC('HOUR', measurement_timestamp) >= DATEADD(day, -1, CURRENT_TIMESTAMP())
GROUP BY bucket_start, bucket_end
ORDER BY bucket_start ASC;

 In this example, we are collecting health metrics for two fields in our client_hub table. For the field account_id, a string, we track metrics like completeness (% of non-null values), distinctness (% of unique values) and UUID rate (% of records that match a UUID format). Tracking those over time would help identify common issues like accounts that have no IDs, duplicate records and IDs that have the wrong format.

 For the numeric field num_of_users we track other kinds of metrics like Zero rate (% of records with the value 0), mean and quantiles. These metrics – when observed over time – can help us identify common issues like missing data causing our counts to 0 out, or bugs that would cause our user counts to be way off.

 For scalability, note that we only track recent data (1 day in this example) and assume that past data was previously queried and stored. This practice – along with sampling if necessary – will let you track some sizable datasets efficiently and cost effectively.

 When it comes to using this approach for Snowflake data observability in production, there are few considerations to keep in mind: scalability and end-to-end monitoring.

 Scalability

 Tracking a large number of tables and big datasets can become tricky. You’ll need to think about batching your calls, optimizing your queries for scale, deduplicating, normalizing the various schemas and storing all this information in a scalable store so you can make sense of it. This requires building a dedicated data pipeline that you operate, update, and maintain over time.

 Tip

 Don’t forget to keep track of your Snowflake credit consumption (you don’t want to be getting a call from your CFO…).

 Monitoring across other parts of your stack

 Building truly reliable data pipelines and achieving Snowflake data observability requires more than collecting metrics. In fact, as the modern data stack evolves, it has become critical to keep tabs on the reliability of real-time streaming data, data lakes, dashboards, ML models, and other assets.

 Making this Snowflake data observability approach scalable as your data stack grows to incorporate additional technologies and data sources, is a fundamental challenge. Since data can break literally anywhere in your pipeline, you will need a way to pull metrics and metadata from not just your warehouse, but other assets too.

 Investing in solutions that allow these integrations to play nice with each other and your end-users, whether that’s your data engineers, analytics engineers, ML teams, or data scientists, should be a top priority. True data observability extends beyond the warehouse to provide insights into the health of data in your lakes, ETL, business intelligence dashboards, and beyond before broken data snowballs into bigger problems down the road.

 Building workflows

 The information you pull needs to be readily available to other members of the team, particularly when things break or you’re in the throes of conducting root cause analysis on your data pipelines. Baking in automatic notifications when issues are detected and a centralized (and easy-to-navigate) UI to better handle these workflows can spell the difference between fast resolution and days-long data disaster.

 Using Query Logs to Understand Data Quality in the Warehouse

 A powerful source of metadata accessible in warehouse environments are query logs – records of the transformations made on the warehouse. Query logs let you answer questions such as:

 	
 Who is accessing this data?

 	
 Where does it come from upstream? Where is it going downstream?

 	
 How often, on average, is this particular transformation executed?

 	
 How many rows are affected?

 This information comes packaged in system tables in most major data warehouse vendors. The Snowflake QUERY_HISTORY9 family of tables, BigQuery’s AuditLogs resources, and the Redshift STL_QUERY10 table family are places to start. A Google search for “[vendor-name] query logs” is probably sufficient for finding the analogue from your warehouse provider.

 Query log tables typically (1) only store some single number of days of query history, and (2) contain way more information than you’ll need for your data quality initiative. This means that a robust solution handling query logs for data quality metrics will need to be proactive, and store the desired metrics and aggregations in a more permanent location. If we look at Snowflake and Redshift, the metrics appearing ready-made for you will include:

 	
 The user ID who executed the query

 	
 The SQL text of the query, as well as a hash that identifies it

 	
 The query’s total elapsed time, from start to end

 	
 An error code if one was produced

 	
 The size of the input / output of the query, in rows or in bytes

 This may not sound like a lot by itself, but think of the questions that now have answers if we apply our metadata collection in an intelligent way:

 	
 When was this table last queried?

 	
 Was that update part of a regular cadence, or does it break a pattern?

 	
 What’s the load on this warehouse as a function of the time of day?

 	
 Is this query taking progressively longer than it was two months ago?

 	
 Who (or what bot) has access to this resource who shouldn’t?

 Your query logs can answer these questions, and more.

 Using Query Logs to Understand Data Quality in the Lake

 Data lakes, as we discussed in the section “Data Lakes: Manipulations at the File Level,” differ from warehouses mainly in terms of the flexibility of storage format they permit. Lakes permit “schema-on-read” access protocols11, which allow data to be stored in raw file formats and manipulated as such. This has obvious advantages as we discussed above, but comes with the increased risk of the lake “swampifying.” Because schemas aren’t coerced by the system when data is inserted, many data quality metrics present in warehouse architectures are harder or impossible to get in these cases. But we need not lose hope, because there’s plenty a modern data lake can do to assure data quality.

 Some metadata in your lake you’ll get for free. Lakes collect and store object metadata when new data is added. Some of this metadata you’ll benefit from “accidentally” – for example, Amazon S3 happens to require storing object insertion times and payload size for their own object management. Yet you can harness this metadata to answer questions like “when was this object last updated?” Or “what is the average file size of files of this type, and has it recently been increasing?”

 System metadata present in most modern data lakes will include:

 	
 Object insertion times

 	
 Object size in bytes

 	
 Object file format, if recognized

 	
 Whether encryption is enabled

 In addition to metadata the system stores on your behalf, you can specify additional object headers at the time of creation. Here, the solution for data quality is more open-ended. Think about what’s missing from system-defined metadata that you’ll need to assess data downtime.

 Some examples include:

 	
 Which job pipeline or user was responsible for this object’s creation?

 	
 What schema is the object using or relying on? For example, you can hash the schema of an upstream transformation to tell whether the resource is configured for a certain ETL workflow, or whether one side of the transformation has been deprecated.

 Another key element of your data stack that plays a role in understanding data quality is the data catalog.

 Designing a Data Catalog

 Analogous to a physical library catalog, data catalogs serve as an inventory of metadata and give investors the information necessary to evaluate data accessibility, health, and location. Companies like Alation, Collibra, and Informatica tout solutions that not only keep tabs on your data, but also integrate with machine learning and automation to make data more discoverable, collaborative, and now, in compliance with organizational, industry-wide, or even government regulations.

 Since data catalogs provide a single source of truth about a company’s data sources, it’s very easy to leverage data catalogs to manage the data in your pipelines. Data catalogs can be used to store metadata that gives stakeholders a better understanding of a specific source’s lineage, thereby instilling greater trust in the data itself. Additionally, data catalogs make it easy to keep track of where personally identifiable information (PII) can both be housed and sprawl downstream, as well as who in the organization has the permission to access it across the pipeline.

 Data catalogs are designed to answer questions such as:

 	
 Where should I look for my data?

 	
 Does this data matter?

 	
 What does this data represent?

 	
 Is this data relevant and important?

 	
 How can I use this data?

 If you were the first to ever design a data catalog at your company, certainly the most low-tech approach to answering the above questions would be to amass all of your data information into one enormous spreadsheet. And traditionally, this was how data cataloging was solved – with Excel.

 The issues with manual data cataloging are easy to identify, though. With large warehouses sporting tens of thousands of tables, the need for automation is unavoidable. Traditional data catalogs and governance methodologies typically rely on data teams to do the heavy lifting of manual data entry, holding them responsible for updating the catalog as data assets evolve. This approach is not only time-intensive, but requires significant manual toil that could otherwise be automated, freeing time up for data engineers and analysts to focus on projects that actually move the needle.12

 Moreover, a greater majority of data stored today is unstructured and highly fluid – the type of data perfect for ingestion into machine learning pipelines, and the type of data you’d store in a data lake. It’s simply impossible to maintain a manual catalog of these forms of data, unless you’d like to relegate a handful of engineers to the task full-time. On top of this, rather than simply describing the data that consumers access and use, there’s a growing need to also understand the data based on its intention and purpose. How a producer of data might describe an asset would be very different from how a consumer of this data understands its function, and even between one consumer of data to another there might be a vast difference in terms of understanding the meaning ascribed to the data. All told, manual data catalogs just no longer cut it.

 Fortunately, data cataloging can be a matter of discovering and organizing the proper metadata that explains your data pipeline. We’ve already established that this is something we can automate.

 Building a Data Catalog

 Let’s say you did want to build a data catalog from scratch (may the force be with you!) - how would you go about getting started?

 Before building or investing in a catalog, you need to partner with downstream stakeholders on the operations and analytics teams to understand which data is most important to the business, and as such, needs to be documented and cataloged. Many teams tackle this first step (alignment) with a spreadsheet that highlights the data source, what it connects to, and when it was last updated (see Table 4-1).

 After alignment, teams should assign owners who are accountable for keeping their column (and data!) up to date. Some teams assign ownership based on source, schema, or even data domain.

 Table 4-1. A rough and dirty data catalog

 	Table Name
 	Dashboard / Report
 	Last Updated
 	Owner
 	Notes

 	LIOR_GOOD_TABLE_3
 	Exec Forecasting V3 (Looker)
 	March 3, 2022
 	Lior Gavish (lior@internet.org)
 	Lior’s table; used for executive financial forecasts, i.e., ARR

 	MEETINGS_DOWNTIME_2022.csv
 	Report 1234 (Tableau)
 	February 2, 2022
 	Barr Moses (Barr@internet.org)
 	Outages occurred during in-person meetings.

 	DONT_USE_4_MV
 	Dashboard Yikes (Chartio)
 	October 30, 2021
 	Molly Vorwerck (molly@internet.org)
 	Who knows?

 	RYANS_DATA.csv
 	Marketing Model (Looker)
 	March 3, 2022
 	Ryan Kearns (ryan@internet.org)
 	For demand generation models to inform ad spend across social channels.

 To actually populate the data catalog, data teams can manually comb through every table in the data warehouse or use automated SQL parsers to do the work for them. Sqlparse, ANTLR, and Apache Calcite, and MySQL’s SQL Parser are all popular open source SQL parsing solutions.

 SQL parsers separate pieces of a SQL statement (i.e., keywords, identifiers, clauses, etc.) into a data structure that other routines can process.

 Once you’ve parsed the SQL, you need somewhere to store and process it. Open source databases like the open ELK stack, PostgresQL, MySQL, and MariaDB are great options when building a data catalog from the ground up.

 While each parser and database application will function differently, here’s an example of code you can write to connect pull a query (in this case, pulling a query from a CSV file using ANTLR, and porting the “output” of the query into MySQL).

 String sql = "SELECT CUST_NAME FROM CUSTOMERS WHERE CUST_NAME LIKE 'Kash%'";

MySqlLexer lexer = new MySqlLexer(CharStreams.fromString(sql));
MySqlParser parser = new MySqlParser(new CommonTokenStream(lexer));
ParseTree root = parser.dmlStatement();

System.out.println(root.toStringTree(parser));

 With the output rendering:

 (dmlStatement
 (selectStatement
 (querySpecification SELECT
 (selectElements
 (selectElement
 (fullColumnName
 (uid
 (simpleId CUST_NAME)))))
 (fromClause FROM
 (tableSources
 (tableSource
 (tableSourceItem
 (tableName
 (fullId
 (uid
 (simpleId CUSTOMERS))))))) WHERE
 (expression (predicate
 (predicate
 (expressionAtom
 (fullColumnName
 (uid (simpleId CUST_NAME))))) LIKE
 (predicate
 (expressionAtom
 (constant
 (stringLiteral 'Kash%'))))))))))

 Open source query language tools like GraphQL, REST, and Cube.js will allow you to query SQL in the database and render it in a cataloging visualization service such as Amundsen, Apache Atlas, DataHub, or CKAN.

 Data catalogs work well when you have rigid models, but as data pipelines grow increasingly complex and unstructured data becomes the golden standard, our understanding of this data (what it does, who uses it, how it’s used, etc.) does not reflect reality.

 The next generation catalogs will have the capabilities to learn, understand, and infer the data, enabling users to leverage its insights in a self-service manner. Most importantly, data catalogs will support automated data-discovery and active metadata. Imagine being able to use Slack, Teams, or any other communication channel to query data in your warehouse - exciting, right? Well, we’re not too far off.

 In addition to cataloging data, data management strategies must also incorporate data discovery, a new approach to understanding the health of your distributed data assets in real-time. Borrowing from the distributed domain-oriented architecture proposed by Zhamak Deghani and Thoughtworks’ data mesh model, data discovery posits that different data owners are held accountable for their data as products, as well as for facilitating communication between distributed data across different locations. Once data has been served to and transformed by a given domain, the domain data owners can leverage the data for their operational or analytic needs.

 Data discovery replaces the need for a data catalog by providing a domain-specific, dynamic understanding of your data based on how it’s being ingested, stored, aggregated, and used by a set of specific consumers. As with a data catalog, governance standards and tooling are federated across these domains (allowing for greater accessibility and interoperability), but unlike a data catalog, data discovery surfaces a real-time understanding of the data’s current state as opposed to its ideal or “cataloged” state.

 Data discovery can answer these questions not just for the data’s ideal state but for the current state of the data across each domain:

 	
 What data set is most recent? Which data sets can be deprecated?

 	
 When was the last time this table was updated?

 	
 What is the meaning of a given field in my domain?

 	
 Who has access to this data? When was the last time this data was used? By who?

 	
 What are the upstream and downstream dependencies of this data?

 	
 Is this production-quality data?

 	
 What data matters for my domain’s business requirements?

 	
 What are my assumptions about this data, and are they being met?

 A data quality-first catalog has the following features:

 	Self-service discovery and automation

 	
 Data teams should be able to easily leverage their data catalog without a dedicated support team. Self-service, automation, and workflow orchestration for your data tooling removes silos between stages of the data pipeline, and in the process, making it easier to understand and access data. Greater accessibility naturally leads to increased data adoption, reducing the load for your data engineering team.

 	Scalability as data evolves

 	
 As companies ingest more and more data and unstructured data becomes the norm, the ability to scale to meet these demands will be critical for the success of your data initiatives. Data discovery leverages machine learning to gain a bird’s eye view of your data assets as they scale, ensuring that your understanding adapts as your data evolves. This way, data consumers are set up to make more intelligent and informed decisions instead of relying on outdated documentation (aka data about data that becomes stale, how meta!) or worse — gut-based decision making.

 	Data lineage for distributed discovery

 	
 Data discovery relies heavily on automated table and field-level lineage to map upstream and downstream dependencies between data assets. Lineage helps surface the right information at the right time (a core functionality of data discovery) and draw connections between data assets so you can better troubleshoot when data pipelines do break, which is becoming an increasingly common problem as the modern data stack evolves to accommodate more complex use cases.

 	Data reliability to ensure the gold standard of data — at all times.

 	
 The truth is — in one way or another — your team is probably already investing in data discovery. Whether it’s through manual work your team is doing to verify data, custom validation rules your engineers are writing, or simply the cost of decisions made based on broken data or silent errors that went unnoticed. Modern data teams have started leveraging automated approaches to ensuring highly trustworthy data at every stage of the pipeline, from data quality monitoring to more robust, end-to-end data observability platforms that monitor and alert for issues in your data pipelines. Such solutions notify you when data breaks so you can identify the root cause quickly for fast resolution and prevent future downtime.

 Data discovery empowers data teams to trust that their assumptions about data match reality, enabling dynamic discovery and a high degree of reliability across your data infrastructure, regardless of domain.

 To achieve truly discoverable data, it’s important that your data is not just “cataloged,” but also accurate, clean, and fully observable for ingestion to consumption — in other words: reliable.

 Only by understanding your data, the state of your data, and how it’s being used — at all stages of its lifecycle, across domains — can we even begin to trust it.

 Collecting, Cleaning, and Transforming Data

 Now that we have a better understanding of the various tools necessary to prioritize data quality - and how to use them to take a pulse on it - let’s discuss what it means to truly capture data quality and improve reliability end to end across your data pipeline.

 We’ve discussed some of the domain terminology and gone through a taxonomy of where data quality nuggets (mostly metadata) are to be found (see the section “Collecting Data Quality Metrics”). These next 4 sections approach the task of data quality a bit more chronologically. To get a thorough sense of data quality in your data pipeline, you need to look end-to-end, at the entire lifecycle of data as it persists at your organization.

 This section discusses entrypoints, the most upstream location in any data pipeline. If you’re familiar with Docker containerization, you might be familiar with the ENTRYPOINT keyword. This is the initial command run whenever we start a container. Likewise, “entry point” in software engineering parlance often refers to the initial point of execution in a program, like the main method. The spirit is similar in data engineering.

 We define an entrypoint as an initial point of contact where data from the outside world enters your pipeline. Data at your entrypoint is the most raw it will be, as it contains all of the noise and irregularity typical of the outside world it’s modeling. Such data might be collected from application or service logs, clickstream sources, or live sensors. This collection will probably be highly heterogeneous in terms of structure.

 Data Collecting

 The sources where we collect our data are, unfortunately, rarely up to us as data engineers. Most often they depend on some business objective or upstream tool, like an analytics service or an API. Yet the sources of data fall into mostly exhaustive categories, so we can go through them one by one here. Understanding the unique advantages and disadvantages of each type can be helpful when designing a processing solution.

 Application Log Data

 Application logs refer to data produced by actions within some software application. The application can be client-facing or internal, and the actions can be user-initiated or programmatic. Alongside descriptions of the events, which are often timestamped, you might find error or warning messages produced by the application software. Importantly, unlike in system logs – which might record the sequence of events as an operating system boots – what is included or discluded from application logs is up to the developers of the application. Thus, logs may not represent an exhaustive history of the application’s use. Yet, they remain a critical data source for many business uses.

 Here are a few examples to motivate this data collection use case:

 	
 A user reading a blog spends 10 minutes on a webpage, clicks three outgoing links in the blog’s text, and scrolls all the way to the bottom of the document.

 	
 An engineer creates a virtual machine instance on your cloud computing service. They select the instance type with 6 vCPUs, but that type is not available in their region, so they have to navigate back and change the config.

 	
 A machine learning model is fitting to a dataset. Logs record the different training epochs, the current accuracy, and a link to the external dashboard where the loss is plotted.

 Your business will likely collect application logs from a variety of sources and in plenty of different formats. Some caveats to consider when dealing with log data:

 	
 Structure: you’re likely to consume application logs in ASCII or binary, since they’re simply serializable text. This places very little constraint on how application logs are structured, though, or even how long they are (and how large your log files will be as a result). Since application programmers decide what goes into logs, their structure can be highly variable.

 	
 Timestamps: Most application log text will be discrete events, with descriptions, and separated by \n characters. If the programmers are doing their job right, these events will be timestamped. Timestamps, unlike event descriptions, should be highly standardized, most often in the ISO standard format (yyyy-mm-ddThh:mm:ss[.mmm]) or something similar.

 	
 Log levels: Good application logs use levels to codify, roughly, the type of log each event is. Frequently used log levels are INFO: this log contains purely descriptive information; WARN: this log is an application warning but not failing error; and ERROR: this log is a programmatic failure in the application.

 	
 Purpose: Application logs aren’t collected willy-nilly. Pushing around all that data costs money, so the logs should surely be useful for something. In fact, you’re probably collecting application logs for one of two generic reasons:

 	
 Diagnostics: How often does this request time out? Are page loads slowing down? Are we using a deprecated library function? All of these questions address diagnostic criteria, and are answered by intelligently collecting and parsing logs. If you are collecting log data for a diagnostic purpose, then answers to your questions could be in very specific WARN- or ERROR-level logs. Also, the vast majority of your collection will probably be unrelated to that one specific question you have right now.

 	
 Auditing: Who issued that request? How many times? How did the system respond? And does this behavior also occur on weekends, or is the pattern different? Unlike diagnostic logging, audit logging is all about recording a history of events within the application. Many INFO-level logs will be useful for this task, and the power of auditing often comes from large aggregations of application sessions.

 API Responses

 Your own application can’t do everything. That’s why you relegate certain functionalities to different applications. The standard method for doing this is with an application programming interface, or API. APIs are intermediaries between two programs. They require specifically-formatted requests and they deliver responses, which for our purposes are just semi-structured data.

 In addition to application logs, you may store data pulled from API endpoints. There are some important differences in the format of these data types to be aware of. With API data, pay attention to:

 	
 Structure: API response objects are objects – they may be serializable, like logs, but they unpack into a structured or semi-structured format. One common object format you will see, particularly with web APIs, is the JavaScript Object Notation – JSON. JSON objects are highly flexible, but they’re constrained by structure in important ways. Everything within a JSON object (or file) is either a key-value pair or a list of values. This is significantly different from log data, which can be just a stream of text! Other API response types have similar formats, for example the HTTP response specifications, like HTTP/1.1.

 	
 Response codes: Since API requests can succeed or fail, most API specifications have codes for different types of responses. The most famous you’ll hear about are HTTP status codes (200 OK, 404 Not Found, 500 Internal Server Error), but there are other code standards (for example, SOAP APIs). These codes are meaningful – for example, the rate of HTTP 500 responses is a key indicator for whether a server is having an outage. If you store API response data you should think about such code specifications if they exist.

 	
 Purpose: The world of possible API use cases is enormous, so we cannot predict all the use cases one might run into. But APIs are used in myriad ways, and the details of one’s particular use will affect what the data stored about it means. For example, HTTP responses often include response codes, some key-value pair information, and sometimes a long “body” which is the content requested. If we’re interested in, say, the rate of server errors, we will care fundamentally about the response code. If instead we’re pulling data from an external server via an API, the response code may be irrelevant. Instead, we’ll just want the body. In short, the use case can affect which information in the API response object is meaningful. Some information transferred may be useless in your specific context.

 Sensor Data

 A third form of data you may collect come from sensors, such as IoT devices or research equipment. Sensors aren’t necessarily applications since their internal logic may be brutally simple. For example, a temperature sensor just records the temperature with some hardware and sends it off for collection – no INFO-level logs alongside! If you work with sensor data there are some important considerations to be aware of:

 	
 Noise: Data collected from real-world sensors will likely be incredibly noisy. This isn’t necessarily something to care about at the collection phase. Yet, it underlines the importance of throughput when dealing with sensors. A little bit of sensor data is, simply put, probably garbage. Downstream processing (which we’ll talk about in the next section) will do lots of outlier removal, smoothing, and other transformations on sensor data, so a steady and consistent stream is almost always imperative.

 	
 Failure modes: Sensors aren’t smart like applications, which means they may not know to tell you when they fail. For example, a temperature sensor that has broken won’t send “ERROR: Device offline,” but may instead start sending crazy temperature values – or just nothing at all. This makes dealing with sensors more finnicky than applications. You cannot rely on the goodwill of an application designer in the same way, and may have to be more clever checking things like the volume of data received or the timedelta between batches.

 	
 Purpose: Sensor data, like application logs and API responses, is used for lots of downstream tasks. Much sensor data today is processed with machine learning systems. For this purpose, the volume of data collected can be an important factor. The best ML systems often consume and fit to the largest datasets. Thus, the throughput of sensor data used for ML is extremely important. But also, pay attention to when your sensor data is used for inference-based tasks: for example, alerting a user when there’s movement at their doorstep. In these cases latency should be of utmost importance instead.

 After you properly collect your data, the next step is to clean it.

 Data Cleaning

 Ask any data professional: one of the biggest hurdles to high data quality is data cleaning - in other words, removing inaccurate or unrepresentative data from an otherwise usable dataset. There are many flavors of data cleaning, too, depending on the type of data and state of data processing and data product development.

 As we just saw above with sensors, data at an entrypoint isn’t likely to be clean. After all, your data only just arrived from the chaos of the outside world! There will be omissions, error messages, extreme values, and incompatible formats. Yet this sorry state is no reason to despair. Data cleaning is a field of recent interest, especially in machine learning. There has been plenty of effort spent deciding how to do it right. Below, we’ll explore some of the common ways data needs to be cleaned, and what you can do about each case.

 	
 Outlier removal: The world is noisy, so your data will be noisy, too. But too noisy data often causes ML pipelines to fail or business dashboards to look wildly inaccurate. In some contexts, you’ll want to identify and remove outliers from your data as early as possible. Obviously this doesn’t make sense if, say, your downstream task is outlier detection. But consider something like sensor data again – a temperature reading of 99999º probably shouldn’t be passed along in good faith. Consider statistical techniques like standard scoring, or more snazzy algorithmic techniques like isolation forests, to remove your outliers. If your dataset is large, pay special attention to the time complexity of your detection procedure. We’ll discuss anomaly detection in depth in Chapter 5.

 	
 Assessing dataset features: Look at the structure of the data you’ve collected. Is everything (even remotely) relevant? As we talked about with HTTP status codes, sometimes whole sections of your data are irrelevant for a downstream task. Throw them out! Granted, the cost of cloud storage is decreasing, but storing meaningless data is more than just a storage problem. Other engineers might get confused why a certain field is present. In general, more features means more documentation or more domain-knowledge necessary to understand your system, both of which are bad things. Think hard about what dataset features are required to solve your problem.

 	
 Normalization: Some data points can be examined in isolation, and that’s ok. Other data is most meaningful when compared to other data of the same type. In those cases, it often helps you (and your ML system) to normalize the data during a cleaning or transformation step. Popular choices for normalization include L1 (“Manhattan”) Norm, L2 (“Unit”) Norm, demeaning, and unit variance, and the best choice will depend on the use case for the data.

 	
 Data reconstruction: Sometimes, certain fields from your collected data are missing. This is bound to happen with things like error-prone API calls, or sensors that can go offline. In many cases these omissions can be fine, but sometimes you might require all fields to have some value associated with them. In these cases it is often possible to recover missing values, with a bit of noise, using techniques like interpolation, extrapolation, or categorizing / labeling similar data.

 	
 Timezone conversion: You might consider timezone conversion like a kind of normalization. But this step is so important for many data cleaning tasks that it deserves its own section. Your application users or sensors may be worldwide, meaning they will be recording local timestamps that differ from each other. Comparing timestamps to one another is only possible with some standard of truth. Often, this is Coordinated Universal Time (UTC). UTC is not a time zone, but a time standard (countries using Greenwich Mean Time (GMT) happen to always agree with UTC, but they don’t use UTC). If you don’t do this, and snap off timezone information at collection like some kind of maniac, then you can never know when two international events happened relative to one another. Also, many software bugs can be traced back to timezone confusions (Y2K being maybe the most famous example), so check your timezones carefully.

 	
 Type coercions: Most structured data is typed, meaning it has to obey a certain format. Frequently in computing, we need to blur the line between these formats for applications to function. Floating point numbers might be truncated to integers, characters might become strings, and so on. If a downstream application requires data in a certain type, consider coercing it to that type as part of the cleaning process. Type coercion is also essential if you’re combining data from different formats. Many libraries and applications have their own data types for different things, and often they need to be explicitly cast to a new, more agreeable format.

 And the list of ways you can (and often should) clean data goes on. The next step? Data processing.

 Batch vs. Stream Processing

 It’s a debate as old as time (well, at least in data engineering): whether to process data in batches or to stream data in real-time.

 As mentioned in the previous section, there are two primary ways of collecting analytical data: batch processing vs. stream processing. Fundamentally, batch processing collects data over a period of time, “batching” large quantities of data in discrete packets, while stream processing is a lengthier process and processes data near-immediately.

 Up until the mid-2010s, batch processing was the most common approach; significantly cheaper than stream processing, batch was sufficient for even the most timely processing needs. As companies across industries became increasingly reliant on real-time data and technologies like Apache Kafka and Amazon Kinesis made streaming more accessible and affordable.

 A simple example of batch vs. stream processing is credit card processing. On the vendor side, it may take several hours or even days to process payments over a certain period of time, an activity often handled in batch. For instance, you may have purchased a new scarf at your local boutique on Monday, but the charge doesn’t settle until Wednesday evening. On the credit card provider side, once transactions are authorized, potentially fraudulent transactions can be immediately identified and alerts triggered to the credit card holder.

 Apache Hadoop is one of the most popular open source batch processing frameworks that can be used for distributed storage and processing of large data sets. Hadoop operates by splitting files into smaller packets of data and then distributing these more manageable chunks across nodes in a cluster. Managed alternatives to Hadoop include Google BigQuery, Snowflake (as previously described), Microsoft Azure, and Amazon Redshift.

 For stream processing, some of the most common open source technologies include Apache Spark, Apache Kafka, Apache Flink, Apache Storm, Apache Samza, and Apache Flume. Apache Spark employs a micro-batch processing approach, which splits incoming streams into smaller packets; Apache Kafka analyzes events as they unfold in closer to near-real time. Managed alternatives include Databricks, Cloudera, and Azure. (O’Reilly’s Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing goes into much more detail about these approaches, technologies and use cases.)

 Data Quality for Stream Processing

 When you boil it down, the major difference between batch and stream processing is the amount of data being processed per batch and the speed at which it’s being processed. For these reasons, batch processing lends itself to higher data quality, with lower data availability, and vice versa for stream processing.

 Still, there are ways to compensate for these differences - and it all starts with how you collect, clean, and process your data.

 Batch processing is the time-tested standard, and still a popular and common way for companies to ingest large amounts of data. But when organizations want to gain real-time insights, batch processing falls short.

 That’s where stream processing fills the gap. It’s a game-changer to have access to data in real-time, and can lead to an increased return on investment for products and services that rely on data to be constantly updated.

 That is, until the quality of data is impacted, and teams start using inaccurate data to drive decision-making. Because when data is streamed in real-time, the margin for error increases, with detrimental effects for the business.

 As previously mentioned, credit card companies use stream processing to monitor credit card transactions in real-time to detect anomalies in their customers’ spending habits—allowing them to detect fraudulent purchases before customers realize anything’s wrong. If the data isn’t accurate and up-to-date, fraud detection can be delayed or missed altogether.

 As another example, marketing teams position ads based on users’ behavior, using data that flows in real-time between a brand’s products, CRMs, and advertising platforms. One small schema change to an API can lead to erroneous data, causing companies to overspend, miss out on potential revenue, or serve irrelevant ads that create a poor user experience.

 These scenarios just scratch the surface of what’s possible when bad data powers your perfectly good pipelines.

 So, how do you solve for data quality with stream processing?

 Traditionally, data quality was enforced through testing: you were ingesting data in batches and would expect the data to arrive in the interval that you deemed necessary (i.e., every 12 hours or every 24 hours). Your team would write tests based on their assumptions about the data, covering some but not all of their bases.

 A new error in data quality would arise, and engineers would rush to conduct root cause analysis before the issue affected downstream tables and users. Data engineers would eventually fix the problem and write a test to prevent it from happening again.

 And as the modern data ecosystem becomes increasingly complex over the last decade—with companies ingesting anywhere from dozens to hundreds of internal and external data sources—traditional methods of processing and testing began to look more outdated. Testing was hard to scale and, as we found after talking to hundreds of data teams, only covered about 20 percent of possible data quality issues - your known unknowns.

 In the mid-2010s, when organizations began ingesting data in real time with Amazon Kinesis, Apache Kafka, Spark Streaming, and other tools, they followed this same approach. While this move to real-time insights was great for business, it opened up a whole new can of worms for dealing with data quality.

 If ensuring reliability for batch data is difficult, imagine running and scaling tests for data that evolves by the minute - or second! Missing, inaccurate, or late fields can have a detrimental impact on downstream systems, and without a way to catch data issues in real time, the effects can magnify across the business.

 While traditional data quality frameworks such as unit testing, functional testing, and integration testing might cover the bare bones, they cannot scale alongside data sets that are hard to predict - and evolving in real time. In order to ensure that the data feeding these real-time use cases is reliable, data teams need to rethink their approach to data quality when dealing with stream processing.

 In the following section, we share how to manage data quality for stream processing systems, specifically, AWS Kinesis.

 AWS Kinesis

 Amazon’s Kinesis service (Figure 4-1) is a popular serverless streaming tool for applications reliant on real-time data. Capacity for Kinesis scales “on-demand,” reducing the need to provision and scale resources before data volume increases.

 [image: AWS Kinesis streams data to various structured consumers including data warehouses databases and bespoke big data platforms. Image courtesy of AWS.]
 Figure 4-1. AWS Kinesis streams data to various structured consumers, including data warehouses, databases, and bespoke big data platforms. Image courtesy of AWS.

 Kinesis (and other streaming services) can be configured to capture data from other AWS services, microservices, application logs, mobile data, and sensor data, among others. The service can scale to stream gigabytes of data per second.

 Working with Amazon Kinesis has several advantages:

 	
 On-demand availability: AWS sets an industry standard for on-demand provisioning, meaning resource groups can scale up when loads increase. This makes the service more reliable and robust against unexpected spikes in data volume, and eliminates the need for an experienced data engineer to handle cluster and partition management.

 	
 Cost-efficiency: Kinesis’ payment plan scales in proportion to resource usage. This is a general benefit to serverless architectures of other kinds, as well, but is of special interest for a streaming service, where the volume of data throughput might change drastically as a function of time.

 	
 Thorough SDK: Kinesis supports development in Java, Android, .NET, and Go, significantly more languages than some competitors (for comparison, Kafka only supports Java).

 	
 Integration to AWS infrastructure: One of the key reasons to prefer Kinesis to alternatives is if you already have existing integration into the AWS stack. Amazon’s hegemony has its advantages; for example Kinesis is dramatically easier to integrate with S3, Redshift, and other Amazon data services than third party or open source alternatives.

 Apache Kafka

 Apache Kafka is an open source event streaming platform. Kafka Streams, specifically, is the client library supporting streaming data to and from Kafka clusters. The service provides a data streaming and integration layer as well as streaming analytics.

 Kafka streaming services are optimized for low latency – the service touts latencies as low as 2 milliseconds, subject to network-limited throughput (recall our previous discussion on the tradeoff between these two).

 Kafka Streams offer several advantages:

 	
 Open-source community: Kafka is open-source software, meaning the tool is free to use. Moreover, a vibrant online community exists to share best practices and learnings via forums, meetups, and online reference materials.

 	
 Increased customizability: While Kafka has a higher learning curve than more integrated streaming solutions like Kinesis, users have greater configurability including manually specifying the data retention period (Kinesis keeps this fixed at 7 days).

 	
 High throughput: In testing, Kafka has been shown to support throughput of up to 30,000 records per second, where Kinesis only supported single thousands of records per second.

 After you process your data, it’s time to actually make sense of it through transformations. When it comes to managing data quality, often the first step in this journey is data normalization.

 Data Normalization (or “Operational Data Transformations”)

 We call the first operational data transformation layer the data normalization stage, though this nomenclature may vary at your organization. In general, a data transformation is a program for moving data from one or more source formats to a destination format. Normalization is often the first of many such transformations your data will go through on its way down the pipeline. Since normalization occurs on entrypoint data, where noise, ambiguity, and heterogeneity are at their maximum, there are special challenges to consider at this step.

 Handling Heterogeneous Data Sources

 Here are several key features that most likely describe your data at this initial point in the pipeline:

 	
 Optimized for latency: data from streaming endpoints is optimized to be available immediately upon creation. As we discussed earlier, this comes at the expense of throughput given fixed network performance, which in practice determines the completeness of your data. This means to expect data batches that are incomplete, as they’ll be pushed through the pipeline immediately regardless of their terminal status.

 	
 Non-hierarchical format: data heading into data normalization will probably reside in a non-hierarchical, “flat” storage format for efficiency and ease of use. Rather than a clean warehouse + schema + table storage regimen, you’re more likely to have data “dumped” in some central repository like an S3 bucket for transformation.

 	
 Raw file format: in addition to being stored “flat,” entrypoint data likely reflects the original file format from wherever it was streamed. We don’t bother converting application log data and sensor data into tabular form; this would be much too expensive, and most of this data doesn’t need such conversion to be useful.

 	
 Optional data fields: unlike warehouse data, where schemas require a value for every field, raw file data like JSON can have optional fields. You may need to infer what the absence of that field means — NULL? 0? The current timestamp, or a timedelta of 0? Depending on the field in question anything might be the default, and its absence may or may not be a problem for upstream processing.

 	
 Heterogeneity: all of the above features point to a certain kind of heterogeneity. Data will come from various sources, in those various original file formats, and may be different amounts complete compared to previous data of the same form.

 Learning to be robust against a predictable kind of heterogeneity is key at this stage in the pipeline.

 Warehouse data vs. lake data: heterogeneity edition

 You may notice that a lot of the above features describe data in lake format. Recall our discussion on the difference between data warehouses and data lakes. Lakes are often the preferred storage solution for entrypoint data because they have much less rigid constraints on the type of data they can accept. This is why you will often see a separation where streaming services (Kinesis, Kafka, etc.) collect unstructured and semi-structured data from different source locations, dump said data into a lake format, and then rely on an initial level of operational transformations to lift pieces of this data into structured form on a warehouse. AWS Lambda functions for Kinesis, or Kafka consumers for Kafka Streams, are the typical ways to apply this kind of normalization. Also, a transformation layer like AWS Glue becomes helpful at this stage if you’re moving data across to your warehouse at regular intervals.

 Schema checking and type coercion

 Schema checking and type coercion are two more techniques you’ll want to apply in data normalization. Schema checking refers to the process where we validate that the structure of data is as we expect. Are the requisite fields present, and do they contain data in the format we require? Type coercion is something that happens – sometimes explicitly, sometimes implicitly – when data is not in the format required and must be “coerced” into a new format. In some programming languages this behavior is referred to as “casting.”

 Why should you check your schemas? More often than not, data arrives in some packaged format – Javascript Object Notation (JSON), comma separated values, and so on. Schemas let us know what to expect when we “unpackage” our data for the first time. Changing schemas are a major source of data breakage. Maybe a field you learned to rely on is no longer present in that one API call due to a versioning update. Maybe your engineering team renamed a field for consistency – the data presented is “the same,” but your custom scripts are no longer working. We need to check for these sorts of errors proactively, which often means keeping records of expected schemas and recording when they change in some way that’s visible.

 Type coercion can be a more sinister form of data failure. In some applications, types can be coerced or cast implicitly without throwing errors. Casting a string “4” to an integer 4 is no big deal – but what about casting floating point number 4.00 to integer 4? Now we’re throwing out significant digits, which seems bad. Even worse would be integer casting float 4.99 to integer 4 (this is called integer rounding and it doesn’t round like you learned in math class – it just truncates everything after the decimal place). In some data applications one may need to look out for type coercion and conversion problems – they sound basic but are definitely capable of producing some malicious bugs.

 Syntactic vs. semantic ambiguity in data

 This discussion leads us to a distinction that’s not so technical in nature but deserves mention to anyone data-literate. Data can be ambiguous – everyone knows that – but this ambiguity comes in importantly different flavors. Syntactic ambiguity refers to confusion in the way data is presented. Maybe the same metric appears in multiple places under different field names in a data warehouse. Your colleague’s “clickthrough_annual” might be your “clickthrough_rate_yr,” just renamed in some operational transformation. Likewise, the same metric might appear as an integer in your data lake but a float in your warehouse – say, always ending with “.00” so the value of the data isn’t changed, just its type. These are syntactic ambiguities in data and can present friction to data teams.

 More pernicious are semantic ambiguities, which refer to confusions in the purpose of data in a system. Some data engineer might think field X is present in a table because it tracks some pipeline performance metric. A business analyst might look at the same field, decide by it’s vague-sounding name that it tracks the business objective they’re interested in, and add it to a dashboard. This field is semantically ambiguous because employees cannot agree on the field’s purpose. Worse than presenting friction, something like this case might lead to data misrepresenting key metrics for the organization. Documentation is a key tool for avoiding situations like these, and should also be proactive in nature. Ambiguity can creep up quickly in a way that’s hard to root out, especially as teams scale quickly.

 Operational Data Transformations

 Alerting

 While operational data transforms handle data in a raw state, this doesn’t mean you need to run totally blind. Many data streaming and processing applications provide built-in alerting and the ability to configure more complex alerting as needed. In this section, we’ll go through some concrete technical examples.

 AWS Kinesis

 AWS Kinesis streams are managed via AWS Lambda functions. You can configure Lambdas for various preprocessing tasks, and their ubiquity allows for some data quality assurance to be built into that preprocessing.13 AWS Lambda functions can be written in .NET (PowerShell, C#), Go, Java, Node.js, Python, and Ruby, and need only to be uploaded to your AWS console to be invoked.

 To connect AWS Lambda to a running instance of AWS Kinesis, you’ll select “Connect to a Source” in the Kinesis application page and then select “Record pre-processing with AWS Lambda.” There you’ll have the opportunity to create a new Lambda function that runs before any application SQL code is executed or Amazon creates schema snapshots of the incoming data.

 Kafka14

 Apache Kafka is an application with a high learning curve, meaning it exposes lots of granular settings for the Kafka Streams, Producers, and Consumers in a given application. It would take too long for us to go through these exhaustively, but suffice it to say that Kafka presents plenty of configurability for data quality purposes.

 By default, Kafka streams reports streaming metrics through JMX, the Java Management Extensions specification. You can visualize JMX data with graphical tools like JConsole. Or, you can opt to go directly to the KafkaStreams Java class instance and access metrics with the KafkaStreams#metrics() method.

 In general, the checks you’ll be doing at the operational transformation step align with the priority for latency over throughput at this step. In other words, you might avoid the kinds of throughput-intensive aggregation checks, like data drift, at this stage. Instead, set your monitoring sights on lower latency verifications, like comparing historical schemas to incoming ones or tracking the volume of bytes scanned as they vary over time. A lot of the operational “monitoring” done here won’t even ensure data quality at all, since it will be focused on ensuring that incoming data doesn’t overwhelm the existing capacity, storage, and memory constraints.

 Running Analytical Data Transformations

 We use the phrase analytical data transformations to designate data transformations done on analytical data. This can also apply to the data integration layer between operational and analytical sources, such as AWS Glue configured between an S3 data lake and a Redshift data warehouse. Since analytical data differs from operational data in several key ways, there will be corresponding differences to look out for when transforming this data.

 Ensuring Data Quality During ETL

 In many contexts you may hear the phrase “ETL” used as synonymous with analytical data transformations. ETL stands for “extract-transform-load,” and describes a three-step process that’s becoming more and more ubiquitous for organizations with complex data.

 	
 In the extract step, raw data is exported from some number of upstream sources and moved into a staging area. Examples of such sources might include MySQL and NoSQL servers, CRM systems, or raw files in a data lake.

 	
 Next, in the transform step, the meatiest component of ETL, data in the staging area is combined and processed per the specification of a data engineer. In some cases the transform step may be menial and virtually consist of copying the source data. In other cases, transformations might be quite intensive. We’ll talk about what these transformations can consist in in the next section.

 	
 Finally, in the load step, we move the transformed data out of the staging area and into the destination, often a specific table in a data warehouse.

 What Is ELT?

 You might often hear “ELT” in place of “ETL.” ELT stands for (predictably) Extract-Load-Transform, and it switches the order of the latter two steps. In ELT, we load the raw source data directly into the destination location (like a data warehouse) for later transformation within that location. This means we don’t rely on an external server for processing, since the transform step doesn’t happen in the middle. In general ELT can be advantageous to big data organizations as it provides more flexibility for transformations, since raw data can be directly loaded into a warehouse for further meddling. This reversal can blur the line between operational and analytical data, since you can have raw operational data existing in an analytical data store. Practically speaking, though, the same advice applying to ETL applies to ELT, so we can move on while using the terms practically interchangeably.

 Ensuring Data Quality During Transformation

 As we said above, the “transform” step in either ETL or ELT can be the most intensive and varying between different applications. There can be several reasons one may want to transform source data:

 	
 You may simply be renaming fields to fit the target location’s schema requirements.

 	
 You may want to filter, aggregate and summarize, deduplicate or otherwise clean and consolidate source data.

 	
 You may need to perform both type and unit conversions, for example standardizing different currency fields to all be US Dollars and float types.

 	
 You may perform encryption at this step for sensitive data fields or to meet industry or government regulations.

 	
 Most important for our purposes, you may conduct data governance audits or data quality checks at this step.

 Alerting

 Like all software and data applications, ETL systems like dbt, WhereScape, or Informatica are prone to failure. You need a robust testing and alerting system to run such applications in high-volume production environments. In this section, we’ll talk about the type of alerting that’s typical for ETL/ELT systems and some best practices for data quality.

 Built-in quality checks and alerts

 Many data transforming systems have built-in mechanisms for data quality. These may take the form of unit tests, visibility metrics into pipeline health, alerting, or others. In the next sections we’ll go through some of the built-in tools to popular transforming tools, as well as some add-on tools that provide data quality.

 dbt Unit Testing

 dbt is one of the most popular choices for modern ELT, and their tool extends the ability to add unit tests to transformed tables. The dbt run command executes model transformations using SQL, and dbt test runs unit tests on transformed models. dbt unit tests can be defined in custom SQL queries, and assigned to individual models within .yml schema files.

 A dbt unit test in SQL is designed to fetch “failing” rows, e.g. records that do not match the tester’s assertion. This is a common testing paradigm with SQL – produce a query identifying the condition you want to avoid, and basically “assert” it is empty. This is a flexible and effective testing technique, though it does have its limitations, which we’ll discuss at the end of this section.

 A (maybe pedantic) note about parlance: the notion of a “unit test,” versus an “integration test,” is a little blurry in dbt.15 On one hand, dbt models are standalone SQL statements – they take input data, apply transformations, and load some result of the transformations into a destination table. Since this transformation logic can fail in a standalone fashion, it makes sense to define “unit tests” assessing the quality of each dbt model individually. At the same time, dbt (and really any ELT) models sit within long sequences of transformations, so it also makes sense to test their integration into the whole pipeline. This is why you may find yourself writing both unit and integration tests for dbt models, often side by side in the same tests repository. That’s ok! Documentation is key.

 There are two kind of dbt tests:

 	
 Singular tests (Example 4-1) are standalone SQL tests, referencing particular models. If you write a singular test in SQL and save it to a testing directory (indicated by your test-paths config variable), it will be run whenever you call dbt test.

 Example 4-1. This singular test from the dbt documentation checks a single dbt model (‘fct_payments’) to verify that no payment records have negative values. Source: dbt documentation.

 tests/assert_total_payment_amount_is_positive.sql
 —--
 -- Refunds have a negative amount, so the total amount should always be >= 0.
 -- Therefore return records where this isn't true to make the test fail
 select
 order_id,
 sum(amount) as total_amount
 from {{ ref('fct_payments')}}
 group by 1
 having not(total_amount >= 0)

 	
 Generic tests (Example 4-2) are “templatized” tests that can be reused on different models. These take the form of parameterized SQL queries, which can take arguments. In your .yml schema files, you can apply generic tests to particular models, and also feed in parameters like column names or thresholds / SLAs.

 dbt ships with four default generic tests: unique, not_null, accepted_values and relationships. unique tests that no two rows have the same value for a particular column. not_null tests that no values for a particular column are NULL. accepted_values ensures that all values for a column are one of a finite set, and relationships checks “referential integrity” between tables, basically ensuring 1-1 correspondance for critical fields like ids.

 Example 4-2. This generic test takes a model and column name, and fails whenever values from that column are NULL after the model runs. Source: dbt documentation.

 tests/test_not_null.sql
 —----------------------
 {% test not_null(model, column_name) %}

 select *
 from {{ model }}
 where {{ column_name }} is null

 {% endtest %}

 While generally great as testing standards for ELT goes, dbt tests are not a magic bullet (like all testing software). Some limitations you may note with dbt testing are:

 	
 Technical debt and upkeep: dbt tests are maintained manually as code, by developers at your organization. ELT models have a tendency to “drift” as business and data needs evolve, and updates to the models themselves means updates to the tests on them. Complex tests may ensure high quality data, but they’ll become a timesink on engineering resources, costing close to the time required developing the models themselves.

 	
 Test fatigue and tribal knowledge: a test failure has to be meaningful to be effective. Some developer might add a test to a model that is not well-founded, thinking that tested code is “better” than untested code. Another dev may come along (months later) and push changes that break the test. If they can’t understand why the test was there, they might go ahead and remove it just so their CI build completes and they can get on with the ticket. In this engineering culture, tests are a roadblock to get over to get development done, not insights into the performance of models. If you catch yourself viewing tests in this way, be careful – such ill-conceived tests add nothing to data quality and simply slow developers down. It would honestly be better to do no testing at all, if there’s no intention of taking them seriously.

 	
 Limited visibility: A dbt test might fail due to upstream problems. For example, a schema mismatch in the operational data store, like a misconfigured AWS Glue Lambda function, could break data well before it reaches your data warehouse. In this case, your failing test is a good indicator something is wrong, but it doesn’t quite afford a quick fix. You’ll still need to drill into your stack to get rid of the bug, because your ELT testing scheme is not properly end-to-end.

 Great Expectations Unit Testing

 Great Expectations is an open-source tool, providing another way to “assert what you expect” from your data in the form of unit tests. Great Expectations is more extensible than dbt testing as tests are written in python, and can be applied to various ETL/ELT solutions.

 Great Expectations provides a library of common “unit tests” you can apply to data, and makes it easy to apply these tests in flexible ways. For example, here’s how you might ensure the zip_code column represents a valid zip code:

 expect_column_values_to_be_between(
 column="zip_code",
 min_value=1,
 max_value=99999
)

 Great Expectations allows unit tests to be run on a range of different data volumes, from single small batches of data or complete transformations. After applying tests, the tool can render a human-readable results page called a “Data Doc” (Figure 4-2), which presents helpful analytics on the rates of failure of different tests and allows random sampling of failing rows.

 [image: An example Data Doc from Great Expectations showcasing a failing test and analytics describing the failure.]
 Figure 4-2. An example “Data Doc” from Great Expectations, showcasing a failing test and analytics describing the failure.

 Great Expectations has a number of advantages compared to competitors in data unit testing:

 	
 General ease of use: Great Expectations ships as a python package, extends a useful CLI, and uses tools like Jupyter for data validation. The software is quite easy to use and natural for data scientists most familiar with the python ecosystem. Also, while the number of data sources Great Expectations integrates with is immense, you can indicate all sources in a single .yaml configuration file and abstract away the difficulties of ingestion.

 	
 Slack integration: Great Expectations explains in their docs how to set up highly configurable Slack alerts when validation steps are completed. The same configuration can send emails as well, and in general the Great Expectations notification scheme seems to be well-conceived and not fatiguing.

 Yet, as with any tool, there are some limitations of the Great Expectations tool to be aware of:

 	
 Limited to Python: Great Expectations is a python tool, meaning if your data environment uses predominantly SQL, R, or some other language, you may be out of luck.

 	
 Separate from transformation / job orchestration tool: Unlike dbt unit tests, which are intimately linked to both the transformation (dbt models) and orchestration (dbt Cloud) pieces of the data engineering stack, Great Expectations is a wholly separate tool with a different learning curve. This slight distance might be a reason to prefer something integrated like dbt tests, should your organization have limited use for the analytics in Data Docs or extensive customization in testing.

 Deequ Unit Testing

 Deequ is an open source library built by AWS that runs “unit tests for data” (see Example 4-3). The software is built atop Apache Spark, and therefore enjoys lots of format flexibility. Anything that can fit into a Spark DataFrame – CSV data, JSON, warehouse table data, application log data – can be unit tested in Deequ. The developers also ship a PyDeequ package for use in python, which can be found on GitHub and PyPI.

 Like dbt testing and Great Expectations, Deequ works by asserting test conditions and returning failing rows, or batches, of data. Since Deequ can be integrated within a transformation and streaming environment in AWS, the application is designed to “quarantine” bad data before feeding it to upstream sources. This can make Deequ a better integrated tool for deployment in addition to testing.

 Technically, the entrypoint for a Deequ testing suite is the VerificationSuite class. With a VerificationSuite object, you can assign data to be tested with .onData(data), and add individual unit test Checks with addCheck(). For example, you can test that the data tested has a particular size, has unique and non-NULL columns, and has quantiles within respected ranges. When called, Deequ turns the VerificationSuite into a series of Spark jobs to run and report errors when assumptions are violated.

 Example 4-3. Some example Deequ code (in Scala) defining simple unit tests on a dummy dataset.

 import com.amazon.deequ.VerificationSuite
import com.amazon.deequ.checks.{Check, CheckLevel, CheckStatus}

val verificationResult = VerificationSuite()
 .onData(data)
 .addCheck(
 Check(CheckLevel.Error, "unit testing my data")
 .hasSize(_ == 5) // we expect 5 rows
 .isComplete("id") // should never be NULL
 .isUnique("id") // should not contain duplicates
 .isComplete("productName") // should never be NULL
 // should only contain the values "high" and "low"
 .isContainedIn("priority", Array("high", "low"))
 .isNonNegative("numViews") // should not contain negative values
 // at least half of the descriptions should contain a url
 .containsURL("description", _ >= 0.5)
 // half of the items should have less than 10 views
 .hasApproxQuantile("numViews", 0.5, _ <= 10))
 .run()

 Choosing to run Deequ over other unit testing software like dbt tests and Great Expectations has the following advantages:

 	
 Integration with AWS: If you’re an AWS shop, and keep the majority of your data engineering within the AWS stack, then Deequ could be for you. Deequ integration with AWS Glue is easy and extensively well-documented online in technical blogs.

 	
 High scalability: Running on top of Scala allows Deequ to take advantage of Scala job orchestration and parallelism, making it highly efficient. Data are stored in Scala DataFrames, which are already purpose-built for the big data ecosystem and challenges.

 	
 Stateful calculation: Deequ can calculate metric metadata, store said metadata in place, and then recalculate key metrics as more data is ingested. This incremental approach to metric calculation makes the library capable of working with datasets it could not afford to recalculate in entirety, which is a useful feature with massive streaming datasets that tend to be common in data engineering workflows.

 	
 Built-in anomaly detection: One place Deequ particularly stands out is their built-in capacity for advanced anomaly detection. Great Expectations can be configured to “detect” anomalies based on rates of change or simple thresholding. However, Deequ’s anomaly detection runs a bit deeper, allowing detection on running metric averages and deviations. It’s not as high-powered as something a data scientist could build in-house, but it provides an additional layer of sophistication to an already well-integrated tool.

 Of course, Deequ has some disadvantages it would only be honest to discuss:

 	
 Scala’s learning curve: Scala is not a friendly language for those immediately outside the data engineering community. For your org, this may be no problem whatsoever. Yet it is relevant to consider that data scientists and other python-happy folks would find more ease-of-use from Great Expectations or PyDeequ.

 	
 Limited applicability to integration testing: Unlike dbt testing, which runs per-model and naturally “integrates” testing assertions across an ELT pipeline, Deequ runs flexibly on any batch of data you give it. Deequ indeed doesn’t claim to be an integration testing software at all. If you wanted to leverage Deequ for testing that looked more like integration testing, you may have to dedicate considerably more development time compared with dbt testing.

 	
 Lack of intuitive UI: The authors of Deequ don’t pride their software on a snazzy looking interface. The software is very no-frills and functional for data engineering purposes. If you org derives a lot of benefit from a digestible report like the Data Doc from Great Expectations, or Slack notification routing, then Deequ may be a bit barebones for this purpose.

 Data Quality at the Orchestration Layer

 Tools like Apache Airflow, Luigi, Matillion, and Stitch give teams the ability to better manage data quality at the orchestration layer, where specific tasks related to programmatically author, schedule, and monitor workflows across your data pipelines. Given the multiple “checkpoints” in a workflow (often referred to as a DAG, or Directed Acyclic Graph), the opportunity for failures or errant changes to the structure of the data are not uncommon.

 For the purpose of this chapter, we’ll focus on how to improve data quality with Airflow, one of the most popular data engineering orchestration tools available today.

 The most common types of data downtime for Airflow (and other orchestration) DAGs are deteriorating queries and errant Python code. Buggy code is probably caused by human error (pesky indenting!), while deteriorating queries are when Airflow jobs run but take longer than expected; these are usually an indication that the pipeline isn’t scaling.

 Scheduler SLAs, Circuit Breaking, and SQL Check Operators

 Airflow users can schedule service-level agreements (SLAs) for the maximum amount of time a task should take; if the task runs longer, it is visible as an “SLA missed” in the Airflow UI or can be communicated via Slack, Microsoft Teams, email, or your preferred channels with a little bit of custom Python.

 To set an SLA for an Airflow task, users must pass a datetime.timedelta object to the Task/Operator’s SLA parameter. If you want to run your own logic for the SLA, you can include an sla_miss_callback to be triggered when an SLA is missed.

 The function signature of an sla_miss_callback requires 5 parameters:

 	
 dag: Parent DAG object for the DAGRun in which tasks missed their SLA.

 	
 task_list: List of all tasks that missed their SLA since the last time the sla_miss_callback ran.

 	
 blocking_task_list: Any task in the DAG run that is not in a SUCCESS state at the time that the sla_miss_callback runs, i.e. runs that failed.

 	
 slas: a list of SlaMiss objects associated with the tasks in the task list.

 	
 blocking_tis: List of the TaskInstance objects that are associated with the tasks in the blocking_task_list thresholds.

 See below for an example sla_callback query, as pulled from the Airflow website:

 def sla_callback(dag, task_list, blocking_task_list, slas, blocking_tis):
 print(
 "The callback arguments are: ",
 {
 "dag": dag,
 "task_list": task_list,
 "blocking_task_list": blocking_task_list,
 "slas": slas,
 "blocking_tis": blocking_tis,
 },
)

@dag(
 schedule_interval="*/2 * * * *",
 start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
 catchup=False,
 sla_miss_callback=sla_callback,
 default_args={'email': "email@example.com"},
)
def example_sla_dag():
 @task(sla=datetime.timedelta(seconds=10))
 def sleep_20():
 """Sleep for 20 seconds"""
 time.sleep(20)

 @task
 def sleep_30():
 """Sleep for 30 seconds"""
 time.sleep(30)

 sleep_20() >> sleep_30()

dag = example_sla_dag()

 Circuit Breaking

 Installing circuit breakers for your Airflow DAGs (Figure 4-3) is a more proactive way to prevent data quality issues by actually stopping the data pipelines at the orchestration layer if data doesn’t meet requirements for freshness, volume, and schema thresholds. Not only does circuit breaking prevent bad data from corrupting your otherwise perfectly good pipelines, but it ensures you don’t run into backfilling costs when DAGs with (silent) data quality issues are run.

 [image: Installing a custom Python circuit breaker is one way to pause a broken data pipeline and prevent data quality issues from migrating downstream.]
 Figure 4-3. Installing a custom Python circuit breaker is one way to pause a broken data pipeline and prevent data quality issues from migrating downstream.

 There are a few ways to “circuit break” your Airflow DAGs:

 	
 You can set the catchup parameter of a DAG to False.

 	
 You can include the LatestOnlyOperator operator inside the DAG, stopping the DAG from running.

 	
 Insert custom Python code into the orchestration layer to trigger “breaks” and surface relevant metadata related to root cause analysis directly in a data observability platform or data catalog.

 SQL check operators are another way to manually check data quality across an Airflow DAG, or even the entire data pipeline. Functioning the same way as a Great Expectations, dbt, or other data quality tests, SQL check operators validate that the content of a given DAG matches expectations across several key elements, including values, intervals, and thresholds. Additionally, Airflow will let you run custom SQL check operators that return a single row from a given SQL query to check and see if any of the returned values in that row are False.

 See below for an example of a SQL check operator that you can apply to your own Airflow DAGs:

 SQLCheckOperator(
 task_id="orange_carddata_row_quality_check",
 sql="row_quality_blue_bankdata_check.sql",
 params={"dropoff_datetime": "2021-01-01"},
)

 Like a circuit breaker, you can configure custom Python code to stop the pipeline if the check doesn’t pass.

 Summary

 Tackling data downtime isn’t about just responding to stakeholders when null values surface in downstream dashboards or revisiting your Snowflake queries when you receive a frantic email from your CEO about “missing data.” Data downtime can - and should! - be prevented proactively by integrating data quality checks at each stage in the data pipeline, from ingestion in the warehouse or lake down to the BI layer.

 While data quality can’t be solved by technology alone (let’s be real, there will always be a human component when it comes to solving technical problems – which we’ll discuss in Chapter 6), collecting, cleaning, ingesting, processing, and orchestrating data with reliability in mind can certainly help. Fortunately, many of the technologies listed in this section can proactively identify when assumptions about your data don’t meet reality, and with the right integrations and customizations, send alerts about these incidents to the proper communication channels.

 Still, even with the most ironclad SQL checks in place, unknown unknowns can fall through the cracks. As with many things in life, data will never be perfectly reliable, and the sooner we accept this fact, the better. Here is where anomaly detection, incident management, and lineage - in other words, data observability best practices – come into place. In Chapter 5, we’ll dive into these critical technologies and end-to-end processes, and share how to build your own data quality monitors that extend beyond the traditional capabilities of anomaly detection; in Chapter 6, we’ll highlight how to engineer more reliable data workflows, including CI/CD, alerting and triaging, incident management, and data lineage - from scratch.

 1 https://www.arkatechture.com/blog/the-difference-between-operational-and-analytical-data-systems

2 pp. 91.

3 A great explanation for this to be found at https://blog.danslimmon.com/2019/02/26/the-latency-throughput-tradeoff-why-fast-services-are-slow-and-vice-versa/.

4 https://www.stitchdata.com/resources/analytic-vs-transactional-database/

5 https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dw-bi-lifecycle-method/

6 https://www.dataversity.net/brief-history-data-lakes/#

7 https://towardsdatascience.com/the-rise-of-data-downtime-841650cedfd5

8 Useful documentation: https://docs.getmontecarlo.com/docs/data-warehouses

9 https://docs.snowflake.com/en/sql-reference/functions/query_history.html

10 https://docs.aws.amazon.com/redshift/latest/dg/r_STL_QUERY.html

11 https://www.dell.com/en-us/blog/schema-read-vs-schema-write-started/#:~:text=Schema%20on%20read%20differs%20from,be%20stored%20in%20the%20database.

12 From https://www.montecarlodata.com/data-catalogs-are-dead-long-live-data-discovery/

13 https://docs.aws.amazon.com/kinesisanalytics/latest/dev/lambda-preprocessing.html

14 Useful documentation: https://docs.confluent.io/platform/current/streams/monitoring.html

15 Credit to https://www.equalexperts.com/blog/our-thinking/writing-unit-tests-for-dbt-with-tdd/ for this insight.

 Chapter 5. Democratizing Data Quality

 A Note for Early Release Readers

 With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

 This will be the sixth chapter of the final book. Please note that the GitHub repo will be made active later on.

 If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 “Hey - is this good data?”

 “Can I trust this dashboard?”

 “Who owns this dataset?”

 If you’ve heard these questions - and many others like them – from business analysts and other data consumers at your company, congratulations!

 The onus on data trust falls on your heavy shoulders.

 As companies ingest more and more data and analytics becomes part and parcel of every organizational strategy, the need for high quality data only increases, putting pressure on data engineers, analytics engineers, and even data analysts to take ownership of this important, but challenging task.

 Still, it doesn’t matter how many data quality tests you run - data trust can only be achieved when the entire company is bought into it. Despite the data-driven nature of nearly all teams, data organizations are often shouldered with the brunt of the work when it comes to tracking, enforcing, and scaling data quality initiatives.

 After all, data quality isn’t just about building more reliable data pipelines and setting SLAs for data freshness. It’s also about education and communication. In fact, data quality is just as much of a technical process as it is a cultural one. And very often, it’s not about having fully accurate data - it’s about understanding to what extent we can trust it.

 Cindi Howson, Chief Data Strategy Officer at HubSpot and former VP at Gartner, summarized it best:

 “You build trust when people understand where the data comes from, and when they understand that even high-quality data will never be perfectly clean. I like how one of our data analytics leaders talks about ‘Is the data directionally accurate—accurate enough to make decisions on it?’ Now there are some things that have to be perfect. You have to get your blood type right, for instance. But if I’m looking at campaign analytics and customer experience trends, we can make decisions with accurate-enough data.”

 When it comes to democratizing data quality, it helps to make working with data as easy and iterative as possible, much in the same way as software engineers work with code.

 As previously discussed, DevOps and Software Engineering teams have been applying this “agile” approach to building applications for several years. To really give data quality the diligence it deserves, we can learn a thing or two from these processes and systems.

 The first step? Treating your data with the same diligence as production software.

 Treating Your “Data” Like a Product

 For the past few decades, most companies have kept data in an organizational silo.

 Analytics teams served business units, and even as data became more crucial to decision-making and product roadmaps, the teams in charge of data pipelines were treated more like plumbers and less like partners.

 Data is no longer a second-class citizen. With better tooling, more diverse roles, and a clearer understanding of data’s full potential, many businesses have come to view the entire ecosystem as a fully formed element of the company tech stack.

 And the most forward-thinking teams are adopting a new paradigm: treating data like a product. This is a hot topic in the data community right now, and in recent months, we’ve had the privilege of discussing data-as-a-product with several industry leaders—and uncovering their real-world takeaways on what it looks like to bring this new approach to life on a daily basis.

 But defining a data product is surprisingly difficult. The truth is, many things can be considered a data product, from a Looker dashboard or Tableau report, to an A/B testing platform or even a multi-layered data platform.

 So let’s get specific. Regardless of what data the product visualizes / crunches / puts to work, there are specific outcomes it should deliver:

 	
 Increased data accessibility (surface data where people need it when they need it)

 	
 Increased data democratization (make it easier for people to manipulate the data)

 	
 Faster ROI on data (quicker insights)

 	
 Time savings for the data team / data consumers

 	
 More precise insights (i.e., experimentation platforms)

 Similarly, there are important characteristics or qualities a data product should have.

 	
 Reliability and Observability. Acceptable downtime for a SaaS product is a discussion of “how many 9s?” As in 99.9% or 99.999% availability. Just as software engineers use products such as Datadog or New Relic to track SaaS product performance, data product managers need solutions to identify and solve data product performance issues in near real-time.

 	
 Scalability. The data product should scale elasticity as the organization and demand grows.

 	
 Extensibility. While the data product has likely been built from an integration of different solutions, it needs to maintain the ability to easily integrate with APIs and be versatile enough to be ingested in all the different ways end users like to consume data.

 	
 Usability. Great SaaS products focus on providing a great user experience. They are easy to learn, fun to use, and quick to get work done.

 	
 Security and Compliance. Data leaks are costly and painful, as are regulatory fines.

 	
 Release Discipline and Roadmap. SaaS products continually evolve and improve. Roadmaps are built at least a year into the future with a strong quality assurance process for updates.

 In the next section, we share how some of today’s most innovative data leaders describe what it means to “treat data like a product.”

 Perspectives on Treating Data Like a Product

 In the early 2000s, companies like LinkedIn, Netflix, and Uber had a problem. Teams across the organization were working with data, and lots of it, at scale.

 Data was powering their product roadmap, fueling executive-level decision making, and informing their paid marketing campaigns.

 Internal and external data was flowing in and out of the company. There were regulations, guidelines, and restrictions for how this data could be used and by whom. But nobody was in charge of developing data solutions to make analytics operational, scalable, and accessible.

 A new generation of data engineers, technical architects, managers, and even directors have started applying best practices of software engineering and site reliability to data systems, learning a few lessons along the way. In the following section, we spoke with data leaders at companies of various industries and sizes: Convoy, Uber, and Retool. While working with vastly different volumes and types of data, these three companies have one critical thing in common: data quality is a topline priority, and the means to this end, by and large, starts with treating data like a product.

 Convoy case study: Data as a service or output

 Until recently, disparate operational and analytical data was often managed in silos, with functional teams and associated analysts responsible for ensuring quality, availability, and performance. As data sharing and more distributed architectures like the data fabric or data mesh come to prominence, processes and workflows that treat data like an evolving, cross-disciplinary entity will become industry standard.

 At Convoy, a Seattle-based freight marketplace, data is treated like a product in two discrete ways: as a service or an output. Head of Product, Data Platform, Chad Sanderson, suggests that “there are two schools of thought that are still developing around what it means to treat data as a product: in the first, you have an external or internal product or service that generates data, meaning that the data—including the entire pipeline—is part of the product. In the second approach, you think of the output of any codebase that’s serving a customer as a product.”

 Chad suggests that in the first scenario, data must be subject to the same level of rigor as application code. Generally speaking, this product is a service, whether that service deploys ML models, queries the warehouse to gather insights, or something else entirely.

 In the second approach, data teams treat the output of the data (a report, dashboard, a platform, etc.) as a product. Chad uses the data warehouse as an example.

 “When you think about a data warehouse, it’s really just a codebase—primarily composed of SQL—that’s serving internal customers like other analysts, data scientists, and product managers who are using that data to go and make business decisions.”

 Anything that’s pushed to a “production data environment” that the company can access is a product. So if you’re using a dashboarding tool like Mode or Metabase, and you’re writing SQL and pushing that dashboard to a public environment where other people can access it, that is also a product.”

 In both scenarios, data is less of a siloed entity and more of a microservice, with discrete business functions leveraging the same data across multiple use cases, and more consumers beyond the data team actually accessing the data. Moreover, the data is often being applied to use cases outside corporate decision making: powering financial products, surfacing relevant advertisements to users, and even generating lists upon lists of movies and TV shows to watch online.

 In either case, Chad says, teams need good data testing, clear SLAs, SLIs, and SLOs, and extensive documentation and monitoring. In other words, data should be expected to be reliable, and if it’s not, data teams and stakeholders should know and be given the tools to fix the issue at hand.

 We couldn’t agree more.

 Uber case study: The rise of the data product manager

 Since its inception in 2009 as Ubercab, Uber, the global ridesharing company, has prioritized data as a competitive advantage and means of building more reliable and custom-tailored experiences for their users. Like LinkedIn, Netflix, Google, and other Silicon Valley giants, Uber employs a team of thousands to manage their data and analytics operations, from data scientists building real-time pricing models to operations analysts putting together forecasts to predict driver demand.

 To truly operationalize data at scale, Uber needed to treat data not like a discrete set of services for a discrete set of use cases, but instead, like production software that can be leveraged by multiple teams at the company.

 At a traditional software company, software solutions are managed from ideation to fruition by product managers. If data needs to be given the same attention to reliability, fulfilling multiple use cases at once, and accessibility, does it need a product manager, too?

 For Uber, the answer was yes. According to Atul Gupte, a former data product manager at the company, data product managers were responsible for data democratization and increasing the time to value for the data itself. They design, build and manage the cross-functional development of a data platform, or a suite of specific data tools, to serve multiple customers.

 At Uber, the data product manager was a role solely dedicated to answering questions like:

 	
 What data exists?

 	
 Who needs this data?

 	
 Where is this data flowing to/from?

 	
 What purpose does this data serve?

 	
 Is there a way to make it easier to work with/access this data?

 	
 Is this data compliant and/or actionable?

 	
 How can we make data more useful to more people at the company, faster?

 	
 Data product managers answer these questions by building internal tooling and platforms for employees.

 Like a product management role, data product managers are beholden to the needs of their stakeholders (data analysts, data scientists, and operations teams, to name a few) and executives. Their primary purpose is to ensure that the above questions are answered, and as a result, reliable, fresh, and usable data is generated and delivered to those who need it.

 Because the role is nascent, data product managers like Atul usually come from backgrounds like traditional B2B product management, internal tooling product management, data analysis, or back-end engineering.

 Applying the Data-as-a-Product approach

 From our conversations with these leaders and several others, we’ve identified five key ways modern data teams can apply this approach to their own organizations.

 Gain stakeholder alignment early – and often

 When data is your product, your internal customers are also your stakeholders. Make it a priority to partner with your key data consumers as you map out your own data product roadmap, develop SLAs, and begin treating data as a product.

 This means putting on your product manager hat—or, as Atul suggested above, having a role dedicated to data product management—to fully understand the needs, concerns, and motivations of your internal customers. You’ll want to have a clear grasp on who uses your data and how, and for what purposes. This will help you understand what types of data products you need to build to meet those needs.

 This understanding also helps you adopt data storytelling. Software, product, and UX teams use the practice of storytelling to share the context of their work through different perspectives that will help stakeholders understand its value based on what matters most to them. And you’ll be working to convince your stakeholders that data should be prioritized, and to justify the investments required to treat data as a product.

 Data storytelling is an invaluable tool when it comes to persuading stakeholders to invest in data infrastructure over flashier machine learning models or new features that promise to generate millions of dollars. By clearly communicating the “so what?” behind why the given data initiative will further business goals–and in turn, your company’s bottomline–it can be easier to justify budget, headcount, and resources, including those allocated to data quality.

 For years, the connection between data quality and revenue wasn’t always obvious. Data was managed in silos, and stakeholders accepted what little data they had access to; while the seasoned eye could probably tell if data was wrong or inaccurate, it was often a blurry line, eroding trust in the data itself. As technologies advanced and more employees across the enterprise became data literate, the appetite for data increased, as did the onus on data quality.

 Necessity is the mother of invention; as data needs grow, so do the ways in which we justify spending behind it. For example, sharing a tight narrative about how data reliability can lead to more accurate machine learning models that forecast revenue is a more compelling story than “data quality is good for the business.”

 Apply a product management mindset

 Another key step is to apply a product management mindset to how you build, monitor, and measure data products.

 So when it comes to building pipelines and systems, use the same proven processes as you would with production software, like creating scope documents and breaking projects down into sprints.

 Jessica Cherny, Lead Data Analyst at Ironclad, described her company’s agile-inspired workflow:

 “We’re treating data internally as a product, and that means applying product management principles to data and the data team. So when we have a big strategic project that requires data, we create data scoping documents, just like a product manager would create a spec, with the right stakeholders. And we keep iterating with engineers and the product managers to make sure it’s a cross-functional, stakeholder-aligned output—as opposed to just having data people working in a silo and not interacting with anyone.”

 And similar to engineering processes, data teams should be factoring in scalability and future use cases when building pipelines. According to Chad, this can represent a significant shift from how data teams have approached their work in the past. “Oftentimes, the data that actually lands in a production database is really just service-level events that get thrown in by engineers without really thinking about it. So one of the big reasons why data models get so messy as a company evolves is that we’re usually focused on rapidly building services first and thinking critically about data second. And this idea of data as a product is kind of a continuum shift to start to change that.”

 Kyle Shannon, Senior Data & Analytics Engineer at SeatGeek, shared in the same webinar that his company is focusing on scalability due to the rapid growth of their data team. “We’re really trying to understand how we can better onboard new people coming in and making better processes to make data more discoverable and accessible. People that have been at a company for a long time know where to go to find information, but if you’re hiring 20 or 30 data team members over the year, it’s really hard to say, ‘Oh, just go into the Slack channels and ask questions.’ It’s not going to scale. So as you are building your data products, you have to document everything and make sure it’s very clear—that you’re removing redundancies or any issues you might find along the way.”

 Another product mindset to adopt is setting up KPIs aligned with your business goals before you begin building any new data product. As Chad described earlier, storytelling can help illustrate the potential benefits of investments in data quality, but most organizations will still expect mature teams to measure the financial impact of their initiatives.

 Many data teams are adopting KPIs related to data quality, such as calculating the cost of data downtime—times when data is partial, erroneous, missing, or otherwise inaccurate—or by measuring the amount of time data team members spend troubleshooting or fixing data quality issues, rather than focusing on innovations or building new data products.

 Setting baseline metrics for your data will help quantify the impact of your data initiatives over time. Just ensure these metrics are applied consistently across use cases, particularly if you have a central data platform.

 Invest in self-service tooling

 In order for data to be brought out of silos and treated as a valued product in its own right, business users need to have the ability to self-serve and meet their own data needs. Self-service tooling that empowers non-technical teams to access data allows your data team to focus on innovative projects that add value, rather than functioning as an on-demand service to fulfill ad hoc requests.

 Self-serve tooling is also one of the main principles of the data mesh concept—a new approach to decentralized data architecture. Mammad Zadeh, the former VP of Engineering at Intuit for their Data Platform team, is an enthusiastic advocate of the data mesh and believes self-serve tooling is integral to both data architecture and data products.

 As he suggests, “We, in the central data teams, should make sure the right self-serve infrastructure and tooling is available to both producers and consumers of data so that they can do their jobs easily. Equip them with the right tools, let them interact directly, and get out of the way.”

 Prioritize data quality & reliability

 One key component of approaching data as a product is applying standards of rigor to the entire ecosystem, from ingestion to consumer-facing data deliverables. As we discussed in the context of storytelling earlier, this means prioritizing data quality and reliability throughout the data lifecycle.

 [image: The data reliability maturity curve buckets common approaches to data quality in four distinct camps reactive proactive automated and scalable. Where does your organization sit]
 Figure 5-1. The data reliability maturity curve buckets common approaches to data quality in four distinct camps: reactive, proactive, automated, and scalable. Where does your organization sit?

 Companies can assess their current state of data quality by mapping their progress against the data reliability maturity curve (Figure 5-1). Briefly, this model suggests there are four main stages of data reliability:

 	
 Reactive: Teams spend a majority of their time responding to fire drills and triaging data issues—resulting in a lack of progress on important initiatives, an organizational struggle to use data effectively in their product, machine learning algorithms, or business decision-making.

 	
 Proactive: Teams collaborate actively between engineering, data engineering, data analysts, and data scientists to develop manual checks and custom QA queries to validate their work. Examples might include validating row counts in critical stages of the pipelines or tracking time stamps to ensure data freshness. Slack messages or email alerts still pop up when things go wrong, but these teams do catch many issues through their proactive testing.

 	
 Automated: At this level, teams prioritize reliable, accurate data through scheduled validation queries that deliver broader coverage of pipelines. Teams use data health dashboards to view issues, troubleshoot, and provide status updates to others in the organization. Examples include tracking and storing metrics about dimensions and measures to observe trends and changes, or monitoring and enforcing schema at the ingestion stage.

 	
 Scalable: These teams draw on proven DevOps concepts to institute a staging environment, reusable components for validation, and/or hard and soft alerts for data errors. With substantial coverage of mission-critical data, the team can resolve most issues before they impact downstream users. Examples include anomaly detection across all key metrics and tooling that allows every job and table to be monitored and tracked for quality.

 Find the right team structure for your data organization

 Of course, team structure makes a huge impact on how your organization interacts with data on a daily basis. Do you have a centralized data team that handles every aspect of data management and application? Or analysts embedded across business units, meeting specific needs and gaining domain expertise—but suffering from silos and lack of cohesive governance?

 Different companies will require distinct approaches depending on their size and business needs, but many data leaders we’ve talked to have found the best outcomes with a hub and spoke model. In this structure, a centralized data platform team handles infrastructure and data quality, while decentralized, embedded analysts and engineers deal with semantic layers and apply data to the business. This model works well if your organization is growing fast and needs to move quickly, but can lead to duplication and repeated efforts on the embedded analysts’ part without solid alignment with the centralized data team.

 Greg Waldman, Senior Director of Business Intelligence at restaurant POS software Toast, led his team through a five-year organizational evolution that included switches from centralized to decentralized to hub and spoke models. He advises data leaders at growth companies to follow a key tenet of product management—stay agile. “The way I think about data teams, in a nutshell, is that you want everyone to add as much business value as possible. We’ve been very open to change and trying different things and understanding that what works with 200 people versus 500 people versus a thousand is not the same answer, and that’s okay. It can be somewhat obvious when you’ve reached those inflection points and need to try something new.”

 For Jessica Cherny, the advantage of decentralized analysts and engineers is their ability to understand the real business need behind data requests. “I want to understand how to design a deliverable that actually serves their needs. It happened recently when I was asked by someone on a strategic initiative to get a specific set of data right away. And I was able to say, ‘Wait, hold on. Do I really need to use this complex clustering method to answer this question? What is the actual need for this—so I don’t have to drop everything I’m working on, and can actually serve you in a timely and useful way? And we ended up completely reorganizing what her ask was, because I got to better understand the business need behind her question and how to answer that in a simple, easily understood way.”

 Again, every company will have its own cultural landscape and challenges to address, but a hub and spoke model can help growing teams move fast to meet business needs without giving up ownership of data quality and governance.

 Treating data like a product isn’t just a buzzworthy trend. It’s an intentional shift in mindset that leads to meaningful outcomes: increasing data democratization and the ability to self-serve, improving data quality so decisions can be made accurately and confidently, and scaling the overall impact of data throughout the organization.

 Building Trust in Your Data Platform

 Now that we have a better understanding of what it means to treat data like a product, how do we actually implement this approach in practice?

 In Chapter 2, we discussed what it takes to build a data platform, but how can we set the groundwork in place to ensure that a) your team uses it and b) stakeholders trust its outputs - In other words: treat your data platform like a product.

 Whether you’re just getting started or are in the process of scaling your platform, the best following practices will help you avoid common pitfalls while building trust in your data platform.

 Align Your Product’s Goals with the Goals of the Business

 For several decades, data platforms were viewed as a means to an end versus “the end,” as in, the core product you’re building. In fact, although data platforms powered many services, fueling rich insights to the applications that power our lives, they weren’t given the respect and attention they truly deserve until very recently.

 When you’re building or scaling your data platform, the first question you should ask is: how does data map to your company’s goals?

 To answer this question, you have to put on your data platform product manager hat. Unlike specific product managers, a data platform product manager must understand the big picture versus area-specific goals since data feeds into the needs of every other functional team, from marketing and recruiting to business development and sales.

 For instance, if your business’s goal is to increase revenue (go big or go home!), how does data help you achieve these goals? For the sake of this experiment, consider the following questions:

 	
 What services or products drive revenue growth?

 	
 What data do these services or products collect?

 	
 What do we need to do with the data before we can use it?

 	
 Which teams need this data? What will they do with it?

 	
 Who will have access to this data or the analytics it generates?

 	
 How quickly do these users need access to this data?

 	
 What, if any, compliance or governance checks does the platform need to address?

 By answering these questions, you’ll have a better understanding of how to prioritize your product roadmap, as well as who you need to build for (often, the engineers) versus design for (the day-to-day platform users, including analysts). Moreover, this holistic approach to KPI development and execution strategy sets your platform up for a more scalable impact across teams.

 Gain Feedback and Buy-In from the Right Stakeholders

 It goes without saying that receiving both buy-in upfront and iterative feedback throughout the product development process are necessary components of the data platform journey. What isn’t as widely understood is whose voice you should care about.

 Yes, you need the ultimate sign-off from your CTO or VP of Data on the finished product, but their decisions are often informed by their trusted advisors: staff engineers, technical program managers, and other day-to-day data practitioners.

 While developing a new data cataloging system for her company, one product manager we spoke with at a leading transportation company spent 3 months trying to sell her VP of Engineering on her team’s idea, only to be shut down in a single email by his chief-of-staff.

 Consider different tactics based on the DNA of your company. We suggest following these three concurrent steps:

 	
 Sell leadership on the vision.

 	
 Sell the brass tacks and day-to-day use case on your actual users.

 	
 Apply a customer-centric approach, no matter who you’re talking to. Position the platform as a means of empowering different types of personas in your data ecosystem, including both your data team (data engineers, data scientists, analysts, and researchers) and data consumers (program managers, executives, business development, and sales, to name a few categories).

 [image: When you re gaining buy in to build your data platform or simply scaling it it helps to have input from core users and stakeholders across the company. Image courtesy of Atul Gupte]
 Figure 5-2. When you’re gaining buy-in to build your data platform - or simply scaling it - it helps to have input from core users and stakeholders across the company. (Image courtesy of Atul Gupte)

 A great data platform will enable the technical users to do their work easily and efficiently, while also allowing less technical personas to leverage rich insights or put together visualizations based on data without much assistance from engineers and analysts.

 There are a variety of data personas (Figure 5-2) you have to consider when you’re building a data platform for your company, from engineers, data scientists, product managers, business function users, and general managers.

 At the end of the day, it’s important that this experience nurtures a community of data enthusiasts that build, share, and learn together. Since your platform has the potential to serve the entire company, everyone should feel invested in its success, even if that means making some compromises along the way.

 Prioritize Long-Term Growth and Sustainability vs. Short-Term Gains

 Unlike other types of products, data platforms are not successful simply because they benefit “first-to-market.” Since data platforms are almost exclusively internal tools, we’ve found that the best data platforms are built with sustainability in mind versus feature-specific wins (Figure 5-3).

 [image: Data solutions with short term usability in mind are often easier to get off the ground but over time end up being more costly than platforms built with sustainability in mind.]
 Figure 5-3. Data solutions with short-term usability in mind are often easier to get off the ground, but over time, end up being more costly than platforms built with sustainability in mind.

 Remember: your customer is your company, and your company’s success is your success. This is not to say that your roadmap won’t change several times over (it will), but when you do make changes, do it with growth and maturation in mind.

 For instance, Uber’s big data platform was built over the course of five years, constantly evolving with the needs of the business; Pinterest has gone through several iterations of their core data analytics product; and leading the pack, LinkedIn has been building and iterating on its data platform since 2008!

 Our suggestion: choose solutions that make sense in the context of your organization over time, and align your plan with these expectations and deadlines. Sometimes, quick wins as part of a larger product development strategy can help with achieving internal buy-in — as long as it’s not shortsighted. Rome wasn’t built in a day, and neither was your data platform.

 Sign off on Baseline Metrics for Your Data and How You Measure It

 It doesn’t matter how great your data platform is if you can’t trust your data, but data quality means different things to different stakeholders. Consequently, your data platform won’t be successful if you and your stakeholders aren’t aligned on this definition.

 To address this, it’s important to set baseline expectations for your data reliability, in other words, your organization’s ability to deliver high data availability and health throughout the entire data life cycle. Setting clear Service Level Objectives (SLOs) and Service Level Indicators (SLIs) for software application reliability is a no-brainer. Data teams should do the same for their data pipelines.

 This isn’t to say that different stakeholders will have the same vision for what “good data” looks like; in fact, they probably won’t, and that’s OK. Instead of fitting square pegs into round holes, it’s important to create a baseline metric of data reliability and, as with building a new platform feature, gain sign-off on the lowest common denominator.

 We suggest choosing a novel measurement like specific SLAs for hours of data downtime (as discussed in Chapter 2) or number of data quality issues per week that will help data practitioners across the company align on baseline quality metrics.

 Know When to Build vs. Buy

 One of the first decisions you have to make is whether or not to build the platform from scratch or purchase the technology (or several supporting technologies) from a vendor.

 While companies like — you guessed it — Uber, LinkedIn, and Facebook have opted to build their own data platforms, often on top of open source solutions, it doesn’t always make sense for your needs. While there isn’t a magic formula that will tell you whether to build vs. buy, we’ve found that there is value in buying until you’re convinced that:

 	
 The product needs to operate using sensitive/classified information (e.g., financial or health records) that cannot be shared with external vendors for regulatory reasons

 	
 Specific customizations are required for it to work well with other internal tools/systems

 	
 These customizations are niche enough that a vendor may not prioritize them

 	
 There is some other strategic value to building vs. buying (i.e., competitive advantage for the business or beneficial for hiring talent)

 For larger, more universal technical challenges (i.e., data warehouses, lakes, or data visualization tools), it often makes more sense to buy. When it comes to solving niche but critical problems for the business (for instance, aggregating GPS data on highways), you’ll probably need to build it.

 The good news for data teams? Data engineering is going through a renaissance reminiscent of software engineering’s rise to prominence in the early 2010s, meaning greater innovation and investment in tools that solve more complex and granular needs. (Reverse ETL, data science workbooks, behavioral analytics, and even ML feature stores come to mind as formerly niche technologies that are gaining widespread adoption. More on these tools and others in Chapter 8).

 Building your data platform as a product will help you ensure greater consensus around data priorities, standardize on data quality and other key KPIs, foster greater collaboration, and, as a result, bring value to your company.

 In addition to serving as a vehicle for effective data management, reliability, and democratization, the benefits of building a data platform as a product include:

 	
 Guiding sales efforts (giving you insights on where to focus your efforts based on how prospective customers are responding)

 	
 Driving application product road maps

 	
 Improving the customer experience (helps teams learn what your service pain points are, what’s working, and what’s not)

 	
 Standardizing data governance and compliance measures across the company (GDPR, CCPA, etc.)

 	
 Building a data platform might seem overwhelming at first blush, but with the right approach, your solution has the potential to become a force multiplier for your entire organization.

 Building a data platform might seem overwhelming, but with the right approach to ensuring and scaling data quality, your solution has the potential to become a force multiplier for your entire organization.

 Now that we’ve highlighted the “what” for building a data quality-first culture, it’s only fitting to discuss the “who.” Next, we dive into some of the data personas responsible for ensuring data quality at the cross-functional level and share best practices for assigning ownership along the way.

 Assigning Ownership for Data Quality

 In the modern data organization, there are so many answers to this question, and it really varies depending on the size of the company and the needs of the business.

 While many data professionals are quick to assign blame when data quality issues arise and data downtime strikes, few are set up for success when it comes to resolving it and communicating the impact downstream.

 In data, this growing sphere of impact is often called the Blast Radius (as shown in Figure 5-4), and refers to the extent of downtime experienced by downstream stakeholders when data breaks. Across your organization, there are several stakeholders involved when data breaks, from your Chief Data Officer to your resident data engineer.

 We’ll walk you through what data reliability looks like to a fictional data organization, and highlight their roles when it comes to ensuring data quality for the rest of the company.

 [image: Data downtime affects everyone that relies on data and analytics at your company with the impact of poor data quality only growing as data migrates down the pipeline.]
 Figure 5-4. Data downtime affects everyone that relies on data and analytics at your company, with the impact of poor data quality only growing as data migrates down the pipeline.

 We’ll introduce these roles, zero in on their hopes, dreams, and fears, and share our approach to conquering data reliability at your company.

 Chief Data Officer

 Meet Ophelia, your Chief Data Officer (CDO). Although she’s probably not (wo)manning your company’s data pipelines or Looker dashboards, Ophelia’s impact is tied to the consistency, accuracy, relevance, interpretability, and reliability of the data her team provides.

 Ophelia wakes up every day and asks herself two things. First, are different departments getting the data they need to be effective? And second, are we managing risk around that data effectively?

 She would sleep much easier with a clear, bird’s-eye view showing that her data ecosystem is operating as it should. At the end of the day, if bad data gets in front of the CEO, out to the public, or to any other data consumer, she’s on the line.

 Business Intelligence Analyst

 Betty, the business intelligence lead or data analyst, wants a punchy and insightful dashboard she can share with her stakeholders in marketing, sales, and operations to answer their multifarious questions about how their business functions are performing. When things go wrong at the practitioner-level, Betty is the first one called.

 To ensure reliable data, she needs to answer these questions:

 	
 Are we translating data into metrics and insights that are meaningful to the business?

 	
 Are we confident that the data is reliable and means what we think it means?

 	
 Is it easy for others to access and understand these insights?

 Null values and duplicated entries are Betty’s archnemeses and she’s a fan of anything that can prevent data downtime from compromising her peace of mind. She’s fatigued by business stakeholders that ask her to investigate a funny value in a report -- it’s a long process to chase the data upstream and validate if it’s right!

 Analytics Engineer

 Meet Anna, the analytics engineer. She sits at the intersection of business teams, data analytics, and data engineering, and is primarily responsible for ensuring that stakeholders can access and use the data required for their specific needs. Anna is fluent in dbt, the data build tool, and prides herself on being able to model her way out of nearly anything.

 That is, until an errant schema change causes her transformations to nosedive. When downtime strikes, Anna is on the hook for explaining why and how the data broke, often partnering with the data engineering and data platform teams to get to the root cause. As a result, data observability is her best friend.

 Data Scientist

 Sam, the data scientist, studied Forestry in undergrad, but decided to make the jump to industry to pay off his student loans. Somewhere between a line of Python code and a data visualization, he fell in love with data science. And the rest was history.

 To do his job well, Sam needs to know 1) where the data comes from and 2) that it’s reliable, because if it’s not, his team’s A/B tests won’t work and all downstream consumers (analysts, managers, executives, and customers) will suffer.

 Sam’s team spends roughly 80 percent of their time scrubbing, cleaning, and understanding the context of the data, so they need tools and solutions that can make their lives easier.

 Data Governance Lead

 Proud owner of a seven-month old puppy, Gerald is the company’s very first data governance specialist. He started off on the legal team, and then, when GDPR and CCPA entered the picture, eventually focused his efforts exclusively on data compliance. It’s a novel role, but becoming increasingly important as the organization grows.

 When it comes to data reliability, Gerald cares about 1) unified definitions of data and metrics across the company and 2) understanding who has access and visibility to what data.

 For Gerald, bad data can mean costly fines, erosion of customer trust, and lawsuits. Despite the criticality of his role, he sometimes jests that it’s like accounting: “you’re only front and center if something has gone wrong!”

 Data Engineer

 When it comes to data reliability, Emerson, the data engineer, is at the crux of the equation.

 Emerson started out as a full-stack developer at a small e-commerce startup, but then as the company grew, so too did their data needs. Before she knew it, she was responsible not just for building their data product but also integrating the data sources the team relies on to make decisions about the business. Now, she’s a Snowflake expert, PowerBI guru, and general data tooling whiz.

 Emerson and her team are the glue that holds the company’s data ecosystem together. They implement technologies that monitor the reliability of their company’s data, and if something goes awry, she’s the one who is paged by the analytics team at 3 a.m. to fix it. Like Betty, she’s lost countless hours of sleep because of this.

 To be successful at her job, Emerson must tackle a lot of things, including:

 	
 Designing a data platform solution that scales

 	
 Ensuring that data ingestion is reliable

 	
 Making the platform accessible to other teams

 	
 Being able to fix data downtime quickly when it happens

 	
 And above all else, making analytics sustainable for the entire data organization

 Data Product Manager

 Meet Peter, the data product manager. Peter got his start as a back-end developer, but made the jump to product management a few years ago. Like Gerald, he’s the company’s first-ever hire in this role, which is simultaneously exciting and challenging.

 He’s up to date on all the latest data engineering and data analytics solutions, and is often called upon to make decisions on what offerings his organization needs to invest in to be successful. He knows firsthand how automation and self-serve tooling make all the difference when it comes to delivering an accessible, scalable data product.

 All other data stakeholders, from analysts to social media managers, are dependent on him for building a platform that ingests, unifies, and makes accessible data from a myriad of sources to consumers all over the business. Oh, and did we mention that this data must be compliant with GDPR, CCPA, and other industry regulations? It’s a challenging role and it’s difficult to keep everyone happy--it seems like his platform is always one transformation away from what BI actually wanted.

 Who Is Responsible for Data Reliability?

 So, who in your data organization owns the reliability piece of your data ecosystem?

 As you can imagine, the answer isn’t simple. From your company’s CDO to your data engineers, it’s ultimately everyone’s responsibility to ensure data reliability. And although nearly every arm of every organization at every company relies on data, not every data team has the same structure, and various industries have different requirements. For instance, it’s the norm for financial institutions to hire entire teams of data governance experts, but at a small startup, not so much. And for those startups that do--we commend you!

 Below, we outline our approach to mapping data responsibilities, from accessibility to reliability, across your data organization using the RACI (Responsible, Accountable, Consulted, and Informed) matrix guidelines, as depicted in Table 5-1.

 Table 5-1. The RACI matrix for data personas offers a better way of understanding who owns what in the modern data organization.

 	
 	CDO
 	Business Intelligence
 	Analytics Engineer
 	Data Science
 	Data Engineering
 	Data Governance
 	Product Manager

 	
 Facilitate Data Accessibility

 	A
 	R
 	A
 	C
 	R
 	C
 	R

 	
 Make it Easy to Interpret Data

 	A
 	R
 	C
 	R
 	C
 	I
 	C

 	
 Drive Insights & Recommendations Based on Data

 	A
 	R
 	R
 	R
 	C
 	C
 	C

 	
 Ensure Data Compliance

 	A
 	I
 	I
 	I
 	I
 	R
 	C

 	
 Maintain High Data Quality

 	A
 	C/I
 	A
 	R
 	R
 	C
 	R

 	
 Deliver on Data Reliability

 	A
 	C/I
 	R
 	C
 	R
 	I
 	R

 At companies that ingest and transform terabytes of data (like Netflix or Uber), we’ve found that it’s common for data engineers and data product managers to tackle the responsibility of monitoring and alerting for data reliability issues.

 Barring these behemoths, the responsibility often falls on data engineers and product managers. They must balance the organization’s demand for data with what can be provided reliably.

 Notably, the brunt of any bad choices made here is often borne by the BI analysts, who’s dashboards may wind up containing bad information or break from uncommunicated changes. In very early data organizations, these roles are often combined into a jack-of-all-trades data person or a product manager.

 Creating Accountability for Data Quality

 Say it with me: data engineers are not data catalogs.

 You would be hard pressed to find “answering multiple Slack messages every week about which tables are good to use for this report,” in their job description, but it happens nonetheless.

 Data analysts aren’t psychic. Yet, they are often placed in the position of having to intuit if the data being piped is trustworthy.

 This misalignment has arisen as data teams are pushed to move faster, weave themselves across the data mesh, and enable increasingly self-service data platforms.

 It’s the data team’s equivalent of the classic document version control issues that have plagued knowledge workers for decades. What starts as a tight pitch deck evolves into:

 	
 A million people making and sharing ad-hoc slides;

 	
 Massaging content on those slides until it becomes an echo of its original intent; and

 	
 Creating copies labeled V6_Final_RealFinal.

 The same thing happens across the data team. Everyone is trying to do the right thing (i.e., support your stakeholders, generate insights, pipe more data, etc.), but everyone is also moving fast.

 One day you look up and notice you have 6 different models with slight variations essentially doing the same thing…and no one knows which one is most up-to-date or even which field to use.

 This creates real operational problems downstream including:

 	
 Inefficient cycles of redundant “traffic control;”

 	
 Lower data quality;

 	
 Time spent resolving problems created from analysts using improper/problematic data;

 	
 Lower data trust across the organization; and

 	
 Increased data downtime

 When you don’t trust your data or you have lower data reliability, organizations often pad the margins of error in their forecasts.

 As highlighted by Peleton’s recent production halt, poor forecasting can be especially problematic during a pandemic when uncertainty across demand, supply chains and the overall business environment is at an all-time high.

 Balancing Data Accessibility with Trust

 As previously discussed in Chapter 2, data discover is a new and important approach to understanding the health of your distributed data assets in real-time, and it’s an essential part of the modern data stack.

 [image: Data discovery can replace the modern data catalog by providing distributed real time insights about data across different domains all while abiding by a central set of governance standards.]
 Figure 5-5. Data discovery can replace the modern data catalog by providing distributed, real-time insights about data across different domains, all while abiding by a central set of governance standards.

 As previously discussed in Chapter 2, data discovery (Figure 5-5) provides a domain-specific, dynamic understanding of your data based on how it’s being ingested, stored, aggregated, and used by a set of specific consumers.

 As with a data catalog, governance standards and tooling are federated across these domains (allowing for greater accessibility and interoperability), but unlike a data catalog, data discovery surfaces a real-time understanding of the data’s current state as opposed to its ideal or “cataloged” state.

 It is especially useful when teams take a distributed approach to governance that holds different data owners accountable for their data as products, which allows data-savvy users throughout the business to self-serve from those products.

 But as data becomes more accessible, how can downstream stakeholders determine what data sets have been served, transformed, and approved by a given domain’s data team? How can one domain be sure a common set of data quality standards, ownership, and communication processes are being upheld across the organization?

 For many teams, the answer lies in data certification.

 Certifying Your Data

 Data certification is the process by which data assets are approved for use across the organization after having met mutually agreed upon SLAs, or service-level agreements, for data quality, observability, ownership/accountability, issue resolution, and communication.

 Similar to the concepts of data quality, data validation, or data verification, data certification layers on critical processes that align people, frameworks, and technology to central business policies. Data certification requirements vary based on the needs of the business, the capacity of the data engineering team, and the availability of data, but typically incorporate the set of features depicted in Figure 5-6.

 [image: What is data certification Here is one set of criteria that a media company is using to certify data sets.]
 Figure 5-6. What is data certification? Here is one set of criteria that a media company is using to certify data sets.

 Data certification programs increase scalability by leveraging a consistent approach applied across multiple domains. They also increase efficiency by facilitating more trustworthy exchanges of information between domains with clear lines of communication.

 Here’s how it works.

 Six Steps to Implementing a Data Certification Program

 Step 1: Build Out Your Data Observability Capabilities

 Implementing data observability–an organization’s ability to fully understand the health of the data in their system–is an important first step in the data certification process.

 Not only do you need insight into your current performance to set a baseline, but you also need a systemic end-to-end approach for proactive incident discovery, alerting and triaging as shown in Figure 5-7.

 [image: Powered by observability a data incident dashboard automatically surfaces anomalies schema changes deleted tables and rule breaches.]
 Figure 5-7. Powered by observability, a data incident dashboard automatically surfaces anomalies, schema changes, deleted tables, and rule breaches.

 If anything within the pipeline breaks–and it will break–you will be the first to know. This head start, along with a detailed understanding of the data ecosystem, will reduce time to detection and resolution by pinpointing where errors occur.

 Knowing what systems and data sets have a tendency to create the largest or most frequent problems downstream also helps inform the process of writing effective data SLAs (Step 4). Additionally, understanding the upstream dependencies of your most important tables or reports helps data teams understand what data to give the most attention.

 The bottom line is that a table or data set should be closely monitored for anomalies (ideally continuously learning and evolving via machine learning) to be considered certified.

 Step 2: Determine Your Data Owners

 Each certified data asset should have a responsible party across its lifecycle from the ingestion to analytics layer as shown in Figure 5-8.

 [image: Modern metadata management tools allow data owners to be assigned to tables along with other tags helping them keep tabs on the reliability of critical data sets.]
 Figure 5-8. Modern metadata management tools allow data owners to be assigned to tables along with other tags, helping them keep tabs on the reliability of critical data sets.

 Some data teams may choose to implement a RACI matrix, others may build it directly into the specific SLA along with the expected communication procedures and resolution times.

 Step 3: Understand What “Good” Data Looks Like

 By asking your business stakeholders the “who, what, when, where and why,” you can understand what data quality means to them and which data is actually the most important.

 This will enable you to develop key performance indicators such as:

 	
 Freshness:

 	
 Data will be refreshed by 7:00 am daily (great for cases where the CEO or other key executives are checking their dashboards at 7:30 am).

 	
 Data will never be older than X hours.

 	
 Distribution:

 	
 Column X will never be null.

 	
 Column Y will always be unique.

 	
 Field X will always be equal to or greater than field Y.

 	
 Volume:

 	
 Table X will never decrease in size.

 	
 Schema:

 	
 No fields will be deleted on this table.

 	
 Lineage:

 	
 100% of the data populating table X will have upstream sources and downstream ingestors mapped and include relevant metadata.

 	
 Data downtime (or availability):

 	
 The number of incidents multiplied by (the time to detection + time to resolution). An example of a data downtime SLA could be, table X will have less than Y hours of downtime a year.

 	
 SLAs that measure each of the components of data downtime can be more actionable. Examples include: we will reduce our incidents X%, time to detection X%, and time to resolution X%.

 	
 Query Speed:

 	
 Our friends at Locally Optimistic suggest: “Average query run time is a good place to start, but you may need to create a more nuanced metric (e.g., X% of queries finish in <Y seconds).

 	
 Ingestion (great for keeping external partners accountable):

 	
 Data will be received by 5am each morning from partner Y.

 This process also enables you to configure granular alerting rules tailored to what matters most to the business.

 Step 4: Set Clear SLAs for Your Most Important Data Sets

 Setting SLAs (service level agreements) for your data pipeline is a major step towards increasing your data reliability and essential to a data certification program. SLAs need to be specific, measurable, and achievable.

 Not only do SLAs describe an agreed-upon standard of service, they define the relationship between parties. In other words, they outline who is responsible for what during normal operations as well as when issues occur.

 Brandon Beidel, a Senior Data Scientist with Red Ventures, suggests that an effective SLA is realistic. Simply saying “having reliable data at all times” is too vague to be useful; instead, Brandon suggests, teams should set SLAs that are focused.

 “Good SLAs are specific and detailed. They will describe why it’s important to the business, what the expectations are, when those expectations need to be met, how they will be met, where the data lives, and who is impacted by it.”

 Beidel includes within his SLAs how the team should respond if the SLA isn’t met.

 For example, the “data in table X will be refreshed everyday by 7:00 am” will transform into, “Team Z will ensure the data in table X will be refreshed everyday by 7:00 am. Within 2 hours of an anomaly alert, the team will verify, communicate to affected parties, and begin a root cause analysis of the issue. Within one business day a ticket will be created and the wider team will be updated on the progress made toward resolution.”

 To achieve this level of specificity and organization, teams should align early - and often - with stakeholders to understand what good data looks like.

 That includes within the data team as well as the business. A good SLA needs to be informed by the realities of how the business operates and how your users consume the data.

 Beidel takes a slightly different approach and differentiate between what he considers the SLA of “table x will be updated by 7am” and the SLO (Service Level Objective) of “we will aim to meet this SLA 99% of the time.”

 However you decide to approach it, he recommends against boiling the ocean. Most of his customers are implementing their data certification programs as “go forward” first and cleaning up older assets in a second wave.

 In fact, many of the best data teams will start certifying the most critical tables and data sets: the ones that add the most value to the business, have the most query activity, number of users, or dependencies.

 Some are also implementing tiers of certification–bronze, silver, gold–that convey different levels of service and support.

 Step 5: Develop Your Communication and Incident Management Processes

 Where and how will alerts be sent to the team? How will next steps and progress be communicated internally and externally?

 While this may seem like table stakes, clear and transparent communication is essential to creating a culture of accountability.

 Many teams opt to have alerts and incident triage discussions take place in Slack, PagerDuty or Microsoft Teams. This enables rapid coordination while giving full transparency to the wider team as part of a healthy incident management workflow (to be discussed in greater detail in Chapter 6).

 It’s also important to consider how to communicate major outages to the rest of the organization. For example, if an alert turns out to be a huge production outage, how does the on-call engineer inform the rest of the company? Where do they make that announcement and how frequently do they provide updates?

 Step 6: Determine a Mechanism to Tag the Data as Certified

 At this point, you have created SLAs with measurable objectives, transparent ownership, clear communication processes, and strong issue resolution expectations. You have the tools and proactive measures in place to empower your teams to be successful.

 The final step is to certify and surface the approved data assets for your stakeholders.

 I recommend decentralizing the certification process. After all, the certification process is designed to help make teams faster and more scalable. Having centralized regulations, enacted at the domain level will achieve these goals and avoid creating too much red tape.

 For the certification process, data teams will tag, search and leverage their tables appropriately either using data discovery solutions, a home-grown tool, or some other form of data catalog.

 Step 7: Train Your Data Team and Downstream Consumers

 Of course, just because tables are tagged as certified doesn’t guarantee analysts will stay inbounds. The team will need to be trained in the proper procedures, which will need to be enforced as necessary.

 Fine-tuning the level of alerts and communication is important as well.

 Occasionally receiving alerts that don’t require action is healthy. For example, you may have a table that grows significantly in size, but it was expected because the team added a new data source.

 Nothing is broken and in need of fixing, but it’s still helpful for the team to know. After all, “expected” behavior to one person might still be newsworthy and critical to another member of the team – or even another domain.

 However, alert fatigue is real. If the team is starting to ignore alerts, it can be a sign to optimize your approach by either adjusting your monitors or bi-furcating communication channels to better surface the most important information.

 When it comes to your data consumers, don’t be shy! You have put in an incredibly robust system for data quality aligned to their needs. Help them move from a subjective to objective understanding of how your team is performing and start giving them the vocabulary to be part of the solution.

 Data certification can be a beautiful process to see in action. The data engineer tags the table as certified along with the owner of the data set, and surfaces it within the data warehouse for an analyst to grab it and use in their dashboard. And viola! No more (or at least, a whole lot less) data downtime.

 At its core, this process underscores that without the proper processes and culture in place, certifying reliability and building organizational trust in your data is extremely difficult. Technology will never be a replacement for good data hygiene, but it certainly helps.

 Second perhaps only to implementing a data certification program with clear SLAs, modern data teams can best navigate the cultural and organizational hurdles of data quality by prioritizing a team structure that plays to the strengths and needs of their business.

 Case Study: Toast’s Journey to Finding the Right Structure for Their Data Team

 About mortality, Shakespeare’s Hamlet once said: “To be or not to be, that is the question.”

 About her data team, a wise Head of Data at a startup once said: “To centralize or decentralize, that is the question.” And it’s an important one.

 Here’s how some of the best data leaders apply an agile methodology to build data organizations that scale with the growth of their companies.

 As startups increasingly invest in data to drive decision making and power their digital products, data leaders are tasked with scaling their teams – and fast. From knowing which roles to hire for (and when) to setting SLAs for data, today’s data leaders are responsible for – quite literally – keeping their companies insight-informed at each stage of the journey.

 Regardless of where you are in this marathon, one of the biggest challenges is determining the proper reporting structure for your data team.

 As data needs increase, so too do the bottlenecks imposed by centralized data teams – and the duplication and complexity introduced by decentralized ones. And just when you think you’ve figured out the *perfect* paradigm (i.e., a central data engineering team, distributed data analysts, a few analytics engineers to bridge the gaps! OR a handful of data analysts reporting into the COO with data engineers working under the CTO!), your entire strategy gets turned on its head when priorities shift.

 So, what’s a data leader to do?

 To better understand how some of the best teams are tackling this problem, I sat down with Greg Waldman, Senior Director of Business Intelligence at Toast, a newly public provider of point of sale software for restaurants, to discuss the evolution of his company’s data team and share his experiences navigating the never-ending tug of way between these centralized and decentralized structures.

 Over the last five years, Greg led the Toast data team as it grew from one analyst (Greg himself) to a 20+ person organization, and has evolved from a centralized to a hybrid-decentralized model—and back again.

 Read on to learn how Greg’s team lets business needs drive the data team structure, how he knew when it was necessary to make those changes, and the crucial role he wishes he had hired much sooner.

 In the Beginning: When a Small Team Struggles to Meet Data Demands

 When Greg joined Toast in 2016, the company already had 200 employees—but no dedicated analytics staff. Despite this shortage of specialized talent, the company had always prioritized using data to make decisions.

 “Our founding team was just really sharp,” Greg said. “They ran the company on Excel documents, but eventually when they got to 200 people, they knew that approach wasn’t going to scale. When I came on, the ask was basically, ‘We have too many meetings where one person thinks the number’s five and the other person thinks the number’s four, and then they just bicker about that the whole time. So, make that stop happening.’”

 Immediately, Greg dug in and began building out tools, processes, and a basic data program. Over the first year, the Toast data team tripled—they now had three people. And the company continued to use data to drive its culture and decision-making.

 “Everybody says they have a data-driven culture, but I’ve worked at enough places to know the difference, and I see the juxtaposition compared to Toast,” said Greg. “Our people throughout the company—especially our leadership—really look for data before they make big decisions.”

 But while the small data team tripled, Toast itself had doubled. By 2017, the company had 400 employees. The centralized data team couldn’t keep up with the demands of the entire fast-growing, data-obsessed organization.

 “We had lines out the door,” said Greg. “There was just an appetite for more data than we were able to provide. And I think that was a bit of an inflection point for us. Because if you don’t figure out a way to serve that need, then the business might start operating in a different way—and be less data-driven if you can’t get them the necessary data.”

 Supporting Hypergrowth as a Decentralized Data Operation

 The shift to a decentralized structure began to take shape organically as departments began finding ways to meet their own data needs.

 “Eventually small pockets of analytics opened up in other parts of the company, like sales and customer success,” Greg said. “Mostly because our small team just couldn’t meet the needs of the growing business. And so they started their own teams, and that kind of worked!”

 In 2018, this decentralized team of 10 data professionals worked within business units, meeting data needs and supporting Toast’s head-spinning trajectory as the company nearly doubled again, growing to 750 employees. Greg and his team also rebuilt their data tech stack, migrating from an end-to-end data platform to a modern distributed stack including s3, Airflow, Snowflake, Stitch, and Looker.

 Dedicated analysts working in their business units still maintained a close connection with Greg’s core analytics team, giving Toast a hybrid between a fully centralized and fully decentralized data team structure. But as the organization continued to scale—reaching a headcount of 1,250 employees in 2019, with 15 data analysts, data scientists, and data engineers—problems began to arise from this hybrid model.

 Data consistency was one concern. “There were various degrees of rigor across the organization when it comes to what constitutes good data. When you’re small, you’re scrappy, you’re growing, and any data is better than no data. But eventually, we reached a scale where we knew that inaccurate data could be harmful.”

 And even with technically accurate data, Greg knew that strong communication between analysts, technical leaders, and downstream stakeholders was critical when it came to establishing a standard of data observability and trust across the entire company.

 “As the business got bigger and more complicated, you need analysts to start seeing the whole business,” said Greg. “Even in a decentralized model you need to ensure analysts work in close collaboration with other analysts and technical leaders when it comes to setting the standards around performance and operability.”

 Regrouping, Recentralizing, and Refocusing on Data Trust

 So Toast brought analysts that had been working under their respective Customer Success and Go-To-Market teams back under an analytics umbrella, as depicted in Figure 5-9.

 [image: When evaluating how to structure his data team Greg always weighs three options centralized decentralized and hybrid each of which they tried on for size over time. In the end he found the hybrid model to be most effective for the size and scope of his analytics heavy team. Courtesy of Greg Waldman and Toast.]
 Figure 5-9. When evaluating how to structure his data team, Greg always weighs three options: centralized, decentralized, and hybrid, each of which they tried on for size over time. In the end, he found the hybrid model to be most effective for the size and scope of his analytics-heavy team. Courtesy of Greg Waldman and Toast.

 “We ended up centralizing and a discussed but underrated benefit has been just how much folks on the team have learned from one another,” said Greg. The team is now part of the Finance & Strategy department. But he knows the centralized structure may not be the long-term solution for Toast.

 “The way I think about data teams, in a nutshell, is that you want everyone to add as much business value as possible,” said Greg. “We’ve been very open to change and trying different things and understanding that what works with 200 people versus 500 people versus a thousand versus two thousand is not the same answer, and that’s okay. It can be somewhat obvious when you’ve reached those inflection points and need to try something new.”

 At the end of the day, it’s all about meeting the needs of the business – no matter what it means for your team’s reporting structure – while ensuring that technical leads are enablers and not bottlenecks for analysts.

 Considerations When Scaling Your Data Team

 Ultimately, Greg’s team settled on a centralized data team structure with a few distributed elements, affording them greater ownership and governance over their data products and the ability to build a scalable, modular data stack.

 Greg has some hard-won advice for data leaders facing similar challenges at hypergrowth companies—but every tactic goes back to his principle of focusing on what approach best meets the business needs of your company, which will likely change over time.

 In short, he suggests, leaders should stay nimble and teams should be willing to adapt to the needs of the business. Here’s how.

 Hire data generalists, not specialists—with one exception

 According to Greg, the first specialist you should hire is a data engineer.

 “Early on, we basically just hired data athletes who could do a little bit of everything,” said Greg. “We had those athletes playing analyst/data engineer. And I had a senior manager role open, and a data engineer applied, but she didn’t have any interest in managing. When I talked to her, it became obvious how badly we needed the dedicated data engineering skillset on the team. And in retrospect, I should have been looking for someone like that a year earlier given our growth trajectory.”

 All too often, data teams are hamstrung by the lack of technical support needed to build and maintain ETL pipelines, as well as ensure that the data infrastructure underlying them can scale with the analytics needs of the company.

 “So while I still believe in hiring data athletes who can do a bit of everything, data engineers are the one exception. After you hire a few analysts, your first data engineer should follow close behind.”

 Prioritize building a diverse data team from day one

 This goes without saying, but when it comes to setting up your team for long-term success, you need to invest (early) in candidates with diverse experiences and backgrounds. Homogeneity is a nonstarter for innovation and prevents data analysts and engineers from understanding the perspectives and needs of all data consumers.

 When you’re moving quickly at scale, however, it can be hard to remember this – unless you put in place a set of clear hiring and growth KPIs that reflect this goal.

 “Think about diversity early on,” said Greg. “Because especially in these small data teams, if you’re not careful, you’ll just end up with a bunch of like-minded people from similar backgrounds. And you don’t want a bunch of the same people—you need different perspectives.”

 It’s one thing to say, ‘we need to build a diverse team,’ but something else entirely to do it. So, how should data leaders get started?

 Here are a few tips:

 	
 Partner with executives and your Human Resources team to write job descriptions that are inclusive of different experiences and backgrounds (i.e., avoiding excessively masculine language in favor of gender-neutral ones)

 	
 Put together diverse hiring panels (even if they’re not pulled from the data team) to embody the team you’re striving to build

 	
 Cast a wide net to recruit for candidates who may not have traditional data titles or roles; it’s a constantly evolving space!

 	
 Implement a gender or race-blind application process that screens based on qualifications and experiences

 	
 “It’s much harder to build a diverse team later in the startup journey because people from different backgrounds want to join a team that has people from different backgrounds. And if you don’t think about that right out of the gate, it can be much more challenging.”

 Overcommunication is key to change management

 This point is even more relevant in our remote-first world, in which many teams work from home and overcommunication over email, Slack, and carrier pigeon (just kidding!) is a necessary part of any job.

 According to Tomasz Tunguz, Managing Director at Redpoint Ventures, companies should repeat themselves (i.e., their core value propositions) with customers consistently, even if it seems unnecessary. The same goes for data leaders when it comes to communicating their work and any team changes with data stakeholders.

 For instance, if your decentralized customer success analyst is migrating to report up into the Head of Analytics after 3 months working under the Head of Customer Success, not only should you communicate that this change is happening, but also reiterate that this adjustment doesn’t change the nature of your team’s output. Stakeholders can still expect accurate, timely analysis that maps to core business objectives, even if the team is no longer distributed.

 While structural changes inevitably impact the nature of the relationship between stakeholder (the functional team) and service provider (the data team), codifying, communicating, and repeating how this shift will not impact your team’s KPIs will restore goodwill and help cross-functional groups overcome change.

 “If you have analysts reporting into business leaders, make sure that they’re empowered to push back based on the data they are seeing,” said Greg. “Otherwise it can be a tricky dynamic where they are encouraged to show data that backs anecdotal hypotheses. When you bring those teams back under an analytics umbrella, your analysts are going to learn from one another, but influencing other departments can be challenging.”

 Most recently, Toast has been running a largely centralized analytics model, which has performed well and met the needs of the business for the last year and a half.

 Don’t overvalue a “single source of truth”

 The concept of a “single source of truth” or golden data is a powerful one – for good reason. Striving for metrics alignment and consistently clean data can help companies trust that their data is pointing them in the right direction. Still, as a data leader at a hypergrowth startup, you’ll be pulled in to work on lots of experiments and projects at any given time – as long as you have directional observability into data trust (i.e., is this table up to date? Do I know who owns this data set? Why did 50 rows turn into 500?), the need for a “single source of truth” isn’t as pressing.

 “I always tell people not to overvalue the whole ‘single source of truth’ concept,” said Greg. “As a perfectionist, it took a long time for me to learn this. There are times when you need to be 100% correct, and then there are a lot of times where you don’t. Often, directional accuracy is fine, and you’ll just waste resources trying to be perfect. The 80/20 rule is key.”

 Data is always messy and rarely perfect. You’ll get more done if you prioritize having an end-to-end view of data health and accuracy over more granular control.

 Greg’s final piece of advice for data leaders?

 “Hire good people with strong communication skills and everything else becomes a lot easier. Good people will lead you to other great people, and you can hire the smartest people in the world, but if they can’t communicate their analyses to less technical folks they simply won’t be successful.”

 Increasing Data Literacy

 We’ve discussed the “what” and “who” of democratizing data quality, but “how” do you actually build a culture of data quality?

 For many organizations, it all starts with data literacy, in other words, the ability to read, write, and communicate about data in a way that drives value and impact for the organization. After all, how can you understand the value of data quality if you don’t even understand the value of data? Or, for that matter, know how to use it?

 A good data literacy strategy will gain top-down buy-in and bottoms-up adoption by making data more accessible and easy to work with, leveraging self-service tooling and education for less technical team members. The way to make these data initiatives successful beyond the boundaries of the data function and impactful for the broader organization, then, is to meet data stakeholders where they are.

 One CDO Barr spoke with at the MIT CDO Symposium a few years ago shared with the group that he created a new role called “Head of Data Literacy,” serving the entire business. This person was responsible for ensuring that each business unit in this ~10K employee organization is “fluent in data.”

 For example, they are creating a scorecard for each business unit to measure the performance of the function in terms of data skills such as Excel, SQL, R, Python, etc. They are then helping each function define goals for their data literacy aspirations (i.e., what skills should each person know and to what level of depth and breadth); training / educating the teams to help members improve their skills; and overall getting more “data-fluent” as an organization.

 It is quite powerful to have a single point of accountability in the organization on the hook for getting the entire company to be data-literate in a very concrete, measurable way.

 To achieve “data-fluency,” however, it’s important for data managers to prioritize both data literacy and educating stakeholders about the value of data quality. After all, what good is knowing how to work with and interpret data if the data itself can’t be trusted to deliver accurate insights?

 According to Wendy Turner-Williams, Chief Data Officer at Tableau, “Simplifying and putting data in the hands of those who need it, when they need it is hugely important. In addition, literacy is equally important and goes into multiple things such as how you educate people inside your own company to use data and understanding how data is used across teams to give you insight into what you can do with data and drive value from it when it’s trustworthy.”

 Several data leaders we’ve spoken to over the years say that their number one hurdle in terms of long-term sustainability of their data quality initiatives (and the success of their data teams) is lack of documentation. Too often, teams rely on tribal knowledge and outdated wiki pages to keep tabs on their data, and that’s just not scalable or sustainable.

 According to Amy Smith, Staff Business Analyst at Intuit, the best way to ensure that your data team is all on the same page is through knowledge sharing, early and often.

 “A lot of a data scientist’s early success is through joining a team that is willing to take the time necessary to write down their knowledge,” she said. “Putting the collective knowledge of a team into a form that someone new can read and get up to speed on is hugely important.”

 More specifically, lack of robust information about data and metadata is a major pain point for teams, but it’s something that can be addressed.

 Some solutions that make these insights easier to access are:

 	
 Data catalogs: Smaller teams (2–5 people) may get by with an Excel spreadsheet, but as your data stack matures, consider investing in an in-house, third-party, or even open source solution (more to come in the next section, Prioritizing Data Governance and Compliance).

 	
 Database management system (DBMS): A DBMS is a software application or package designed to manage data in a database, including the data’s format, field names, record structure, and file structure. While this won’t replace a data catalog in terms of providing context, it will help you keep your data organized for easy access.

 	
 Data modeling tools: Data modeling tools give teams the ability to discover and visualize data assets. These products can also help teams understand the relationship between various elements of your data stack.

 	
 Operational analytics dashboards: Your data knowledge only matters if your data can be trusted. Operational analytics dashboards about your data platform solve many of the same issues as data catalogs, DBMSs, and data modeling tools, but provides insights into how the data is being used and which data matters most to the business based on consumption, number of data quality rules set, and other key indicators of dataset importance.

 In addition, teams who want to take knowledge transfer and accessibility a step further can make a point to build out their data operations with missing information and other context. To this end, data leaders should encourage their analysts to add missing dimensions to data when noticed, not only when required. Just because you’re not using it now doesn’t mean you or a colleague won’t use it later.

 Prioritizing Data Governance and Compliance

 Perhaps there’s no topic in all of the larger data quality discussion that draws as much confusion and ire as data governance, in other words, the management of data across and beyond an organization.

 Data governance is top of mind for many data leaders, particularly in light of GDPR, CCPA, IPOs, COVID-19, and any number of other acronyms that speak to the increasing importance of compliance and privacy when it comes to managing your company’s data.

 Traditionally, data governance refers to the process of maintaining the availability, usability, provenance, and security of data, and, as a data leader once told us, is the “keep your CFO out of jail card.”

 Still, Gartner suggests that more than 80 percent of data governance initiatives will fail in 2022.

 In our opinion, data governance gets a bad reputation, primarily because traditional approaches fail to scale with the needs of cloud-based data stacks.

 Over the past several years, data catalogs have emerged as a powerful tool for data governance. As companies digitize and their data operations democratize, it’s important for all elements of the data stack, from warehouses to business intelligence platforms, and now, catalogs, to participate in compliance best practices.

 Prioritizing a Data Catalog

 When you think of data governance, data catalogs often come to mind.

 Analogous to a physical library catalog, data catalogs serve as an inventory of metadata and give investors the information necessary to evaluate data accessibility, health, and location. Companies like Alation, Collibra, and Informatica tout solutions that not only keep tabs on your data, but also integrate with machine learning and automation to make data more discoverable, collaborative, and now, in compliance with organizational, industry-wide, or even government regulations.

 Since data catalogs provide a single source of truth about a company’s data sources, it’s very easy to leverage data catalogs to manage the data in your pipelines. Data catalogs can be used to store metadata that gives stakeholders a better understanding of a specific source’s lineage, thereby instilling greater trust in the data itself. Additionally, data catalogs make it easy to keep track of where personally identifiable information (PII) can both be housed and sprawl downstream, as well as who in the organization has the permission to access it across the pipeline.

 Traditionally, manual data catalogs and metadata management platforms have been the de facto approach to tackling data governance, but as systems evolve, we’re finding this approach insufficient to keep up with the pace of data growth and the distribution of data across distinct domains. Fortunately many vendors are getting smart to this new need and are embracing machine learning and knowledge graph-based technologies to make governance more accessible and scalable.

 There are three major types of automated data catalogs on the market today, available as either in-house solutions, third-party tools, or open source technologies.

 In-house

 Some B2C companies — I’m talking the Airbnbs, Netflixs, and Ubers of the world — build their own data catalogs to ensure data compliance with state, country, and even economic union (I’m looking at you GDPR) level regulations. The biggest perk of in-house solutions is the ability to quickly spin up customizable dashboards, pulling out fields your team needs the most.

 While in-house tools (like Uber’s Databook, as depicted in Figure 5-10) make for quick customization, over time, such hacks can lead to a lack of visibility and collaboration, particularly when it comes to understanding data lineage. In fact, one data leader I spoke with at a food delivery startup noted that what was clearly missing from her in-house data catalog was a “single pane of glass.” If she had a single source of truth that could provide insight into how her team’s tables were being leveraged by other parts of the business, ensuring compliance would be easy.

 [image: Uber s Databook lets data scientists easily search for tables and other critical assets across business domains.]
 Figure 5-10. Uber’s Databook lets data scientists easily search for tables and other critical assets across business domains.

 On top of these tactical considerations, spending engineering time and resources building a multi-million dollar data catalog just doesn’t make sense for the vast majority of companies.

 Third-party

 Traditionally, data catalogs were managed manually and governed in silos, often requiring duplicated work between different analysts and data science teams. Now, there are a whole host of ML-powered data catalogs on the market that lend themselves to distributed governance, many with pay-for-play workflow and repository-oriented compliance management integrations. Some cloud providers, like Google, AWS, and Azure, also offer data governance tooling integration at an additional cost.

 In our conversations with data leaders, one downside of legacy solutions came up time and again: usability. While nearly all of these tools have strong collaboration features, one Data Engineering VP I spoke with specifically called out his third-party catalog’s unintuitive UI.

 If data tools aren’t easy to use, how can we expect users to understand or even care whether they’re compliant?

 Open source

 In 2017, Lyft became an industry leader by open sourcing their data discovery and metadata engine, Amundsen, named after the famed Antarctic explorer. Other open source tools, such as Apache Atlas, Magda and CKAN, provide similar functionalities, and all three make it easy for development-savvy teams to fork an instance of the software and get started.

 While tools like Amundsen (Figure 5-11) allow teams to tag metadata within to control user access, this is an intensive and often manual process that most teams just don’t have the time to tackle. In fact, a product manager at a leading transportation company shared that his team specifically chose not to use an open source data catalog because they didn’t have off-the-shelf support for all the data sources and data management tooling in their stack, making data governance extra challenging.

 [image: Amundsen an open source data catalog gives users insight into data set ownership.]
 Figure 5-11. Amundsen, an open source data catalog, gives users insight into data set ownership.

 Beyond Catalogs: Enforcing Data Governance

 As data organizations mature, however, data catalogs alone are unable to keep up with the requirements of modern data governance programs.

 To start, mitigating governance gaps is a monumental undertaking, and it’s impossible to prioritize these without a full understanding of which data assets are actually being accessed by your company. Data lineage and observability help fill these gaps, as discussed in Chapter 2.

 Data accessibility and security are also an important feature of data governance, particularly for organizations with distributed analytics teams or working with sensitive third-party information. As a result, data governance programs should also incorporate automated and distributed policy enforcement (whether built in-house or purchased via a third-party vendor) to manage PII identification and access controls.

 Still, even with data catalogs, observability platforms, lineage, and data access controls, it’s impossible to gain buy-in on governance (and all of data quality for that matter) without a data culture that prioritizes the right processes and workflows to make data reliable and secure at scale.

 Zosia Kossowski, Group Product Manager, Business Intelligence at HubSpot, is the first to acknowledge that it is not an easy task to build a culture that prioritizes governance, particularly at scale.

 “From a cultural aspect, it’s tough when a community, especially as a company grows quickly and is used to having a certain level of autonomy in general, not just with data,” added Kossowski. “As your company gets larger, you really have to implement more processes and regulations to make sure that you are bringing everyone along and having them understand the pain that a lack of governance and alignment can cause.”

 Zosia acknowledges that data governance is also a cultural shift for most organizations.

 “If you are a data-driven company and it is a priority for your data to be clean and usable when a product is released that is part of the acceptance criteria, then it is a lot easier than if data is a byproduct or an afterthought that is troublesome when you have to come to an engineering team and you’re like this is wrong,” she added. “My recommendation is getting engineering leaders and anyone who’s involved in producing data as part of your data governance conversations early on so they understand the pain that is caused as well.”

 Building a Data Quality Strategy

 Over the past several sections, we’ve discussed the technical, process-driven, and organizational requirements necessary to scale a culture of data quality. Now, let’s put it all together and lay the groundwork for building a data quality strategy from scratch.

 The following sections detail the critical steps data engineering and analytics leaders must take when launching a data quality initiative at their company.

 Make leadership accountable for data quality

 Before you start trying to secure leadership and stakeholder buy-in, it’s important to be transparent about the current state of your data quality strategy. Consider how you might answer the following questions:

 	
 How do you measure the data quality of the assets your company collects and stores?

 	
 What are the key KPIs or goals you’re going to hold your data quality strategy accountable for meeting?

 	
 Do you have cross-functional involvement from leadership and data users in other parts of the company?

 	
 Who at the company will be held accountable for meeting your strategy’s KPIs and goals?

 	
 What checks and balances do you have to ensure KPIs are measured correctly and goals can be met?

 In the same way that having visibility into your data pipelines makes it easy to ensure high data quality, transparency into both your strategy and its incremental progress will be critical when it comes to keeping everyone informed and accountable.

 Set data quality KPIs

 Before you tackle your data SLAs (as discussed in Chapter 3), it’s critical to understand and align on each part of the data lifecycle and how data brings value to your company. The outcome of each phase in this process will determine your corresponding data quality SLAs and measurements. For instance, raw data ingested by your data lake or warehouse need to fulfill different requirements than transformed data rendered in a data warehouse.

 Avoid focusing on data quality measurements. Instead, keep it simple. Measure for tangible metrics like completeness, freshness, accuracy, consistency, and validity as opposed to obscure “accuracy” scores or other homegrown measurements. These types of frameworks will only lead to confusion down the road as SLAs shift to meet company priorities.

 Spearhead a data governance program

 If a data quality program launches but no one else at the company hears about it (including leadership), will it have an impact? Probably not.

 With the exception of a few noteworthy companies, data governance isn’t often a formalized role, particularly in the context of data engineering.

 To make sure that data users across the company are aware of why data quality matters, we suggest developing a program for data quality champions to carry the torch and shepherd others through data access, use, and storage best practices.

 Make participation and evangelism easy and accessible. Be sure to communicate how data quality affects their functional areas, from marketing to sales, and make it easy for them to share and enforce with their team. Focus on short-term or quick wins to get traction while promoting and executing on the long-term strategy.

 Automate your lineage and data governance tooling

 With increasingly stringent compliance measures around data access and applications, a manual approach to data quality monitoring as a vehicle for data governance is not cutting it.

 Not only is manual data quality monitoring tedious and time-consuming, but these tools can’t keep pace with the speed of innovation across the rest of the data stack (think: ML-enabled data modeling, speedy analytics dashboards, and the data mesh).

 Instead, we suggest investing in automated tools that can quickly validate, monitor and alert for data quality issues as they arise. Add the ability to set custom rules, and these technologies have the potential to truly unlock the potential of data for your organization.

 Create a communications plan

 Now that all of the pieces are in place, the final step is to put together a robust and comprehensive, program-level communications plan that will keep leadership in the loop, stakeholders aligned with your project’s progress, and data stewards abreast of their marching orders.

 A good communication plan will be bi-directional and keep all involved in the loop on the status of relevant deliverables. A great communication plan will instill confidence in even skeptical parties that your team is in command of the situation, regardless of how far you are from your goals.

 At the end of the day, the goal of your data quality strategy will be to ensure that teams across the entire company feel empowered to use data that is trustworthy. In fact, a robust and comprehensive data quality strategy makes all the difference when it comes to doing just about anything in data, from scaling an effective data team to building a great data platform.

 Summary

 Achieving data democratization is just as much of a technical process as it is a cultural one. Regardless of where you fall on the RACI matrix of data personas, chances are data quality plays an important role in your ability to succeed as a data practitioner.

 Democratizing data quality requires these critical steps:

 	
 Treating data with the diligence of a production software product

 	
 Assembling a data team that can prioritize data quality at the source

 	
 Making data literacy a first-class citizen

 	
 Adopting process and technologies that can scale data governance

 In our opinion, the most meaningful conversations we’ve had on this topic stem from experience: broken data pipelines, accidental compliance oversights, and stale dashboards. After all, without suffering the pain firsthand, it can be hard to muster the engineering energy and technical resources to prioritize it.

 Fortunately, the tide is turning. Increasingly, companies are hiring data reliability engineers, data observability experts, data literacy officers, to spearhead these initiatives and make it easier for data engineers and analysts to apply data quality best practices to their day-to-day work.

Chapter 6. Prospective Table of Contents (Subject to Change)

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at jleonard@oreilly.com.

 	Why Data Quality Deserves Attention—Now

 	Architecting for Data Reliability

 	Fixing Data Quality Issues at Scale

 	Preventing Broken Data Systems

 	Monitoring and Anomaly Detection

 	Democratizing Data Quality

 	Building a Data Reliability Workflow

 	Tools of the Trade: Building Trustworthy Data Pipelines

 About the Authors

 Barr Moses is the CEO and co-founder of Monte Carlo, a data reliability company. In her decade-long career in data, Barr has served as commander of a data intelligence unit in the Israeli Air Force, a consultant at Bain & Company, and VP of Operations at Gainsight, where she built and led their data and analytics team. The instructor of O’Reilly’s first course on Data Observability, an emerging discipline in data engineering, Barr has worked with hundreds of data teams struggling with these problems. Inspired by her time in the analytics trenches, she is building a product literally dedicated to identifying, resolving, and preventing what she calls “data downtime,” periods of time when data is missing, erroneous, or otherwise inaccurate. In other words: bad data. In this book, she shares her experiences and learnings on how today’s data organizations can achieve high data quality at scale through technological, organization, and cultural best practices.

 Lior Gavish is CTO and co-founder of Monte Carlo, a data reliability company backed by Accel, Redpoint, GGV, and other top Silicon Valley investors. Prior to Monte Carlo, Lior co-founded cybersecurity startup Sookasa, which was acquired by Barracuda in 2016. At Barracuda, Lior was SVP of Engineering, launching award-winning ML products for fraud prevention. Lior holds an MBA from Stanford and an MSC in Computer Science from Tel-Aviv University.

 Molly Vorwerck is the Head of Content at Monte Carlo, a data reliability company. Prior to joining Monte Carlo, Molly served as editor-in-chief of the Uber Engineering Blog and lead program manager for Uber’s Technical Brand team, where she spent countless hours helping engineers, data scientists, and analysts write and edit content about their technical work and experiences. She also led internal communications for Uber’s Chief Technology Officer and strategy for Uber AI’s Research Review Program. In her spare time, she freelances for USA Today, reads up on all the latest trends in data, and volunteers for the California Historical Society.

OEBPS/Images/democratizing_data_quality_447032_09.png
Analytics Org Models

© wybria

[P ey

[osmetinenesiinin

© Decentralized

OEBPS/Images/democratizing_data_quality_447032_08.png
Tags

Ounershin, governance, documentation and athe metadata

Ky

Value

comment

Ouner.

project

This s the best table!

Glen Willis

vy

OEBPS/Images/democratizing_data_quality_447032_07.png
%2 cidensintast7deys

28 3] 63

OEBPS/Images/democratizing_data_quality_447032_02.png
Lace

OEBPS/Images/democratizing_data_quality_447032_01.png

OEBPS/Images/architecting_for_data_reliability_348967_01.png
@ DATA OBSERVABILITY PILLARS

Freshness | Distribution | Volume | Schema | Lineage

OEBPS/Images/democratizing_data_quality_447032_06.png
Data Certification Requirem:

V Automated quality checks for freshness, volume, schema, and distribution

V Delivery SLAs with defined uptime

V Data owners who are accountable for investigating alerts

V Alerts routed to Slack (or email)

V Set communication process for outages

OEBPS/Images/democratizing_data_quality_447032_05.png

OEBPS/Images/democratizing_data_quality_447032_04.png
Who:

Impact:

Data Engineering
patom
Vi, ik,
ene

s
51 Moads

4

st Expaenco Mo ol St

OEBPS/Images/democratizing_data_quality_447032_03.png
Cumulative functionaity

Cowintornal quaty

OEBPS/Images/architecting_for_data_reliability_348967_02.png
Monte Carlo environment (AWS)

Datamonitoring system

Data reliability dashboard

Customer environment

Data collector

OEBPS/Images/architecting_for_data_reliability_348967_03.png
CRM Data Reliabiity Dashboard

PrTee—— o aappanes S0

4 =
s, pr— r— 87.25% 90.99%
o [e L
=] b e gt e s s 10 -
5] e —— o = =
@ [———

OEBPS/Images/architecting_for_data_reliability_348967_04.png
The 6 Must-Have Layers
of Your Data Platform

Data Ingestion

Data Storage & Processing I

Business Intelligence & Analytics I

Data Observability I

I Data Transformation & Modeling I

Data Discovery & Governance

OEBPS/Images/architecting_for_data_reliability_348967_05.png
(TTD hours + TTR
hours)
*

downtime hourly cost

cost of data downtime

OEBPS/Images/preventing_broken_data_systems_719092_03.png
PRt o b o -
P —

oo R o e S Ze
T P

OEBPS/Images/preventing_broken_data_systems_719092_02.png
) et xpectations e o e . s s 0 08G4T 46510000

e

OEBPS/Images/democratizing_data_quality_447032_11.png
test_schema.test_table1
ft—.

Columns
ot i
ol descrpton

<ot i
o2 decrpton

ol i

colt
ot decrpton

OEBPS/Images/democratizing_data_quality_447032_10.png
rch Results for a table

OEBPS/Images/preventing_broken_data_systems_719092_01.png
. P |
2@ & o

()) ()

—
o

A VA4

= () o Elwm

OEBPS/Images/why_data_quality_deserves_attention_now_549919_01.png
—_

| S

Domain 1

Data-as-a-Product

[ES——

OEBPS/Images/ad.png
MONTE CARLO

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_01.png
Plan Release
Code Deploy

\ l Dev I Ops I g

Test Monitor

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_08.png
Qunry dotss

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_09.png
Q e

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_06.png
Apr30th 2020 0920 pm Scherna changes detectod Tels ©

user latest event user latest_event_at et were added

were deloted

omment =1

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_07.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_04.png
Prevent

Adapt Assess | Review

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_05.png
o

© oo’

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_02.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_03.png
May 12th 2020 1206 pm Table might be out of date.

Add Conr =8

OEBPS/Images/cover.png
OREILLY"

Data Quality
Fundamentals

A Practitioner's Guide to Building
Trustworthy Data Pipelines

Early

Release
Raw & Unedited

Compliments of

/4 MONTE CARLO

Barr Moses,
Lior Gavish &
Molly Vorwerck

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_11.png
dbt

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_12.png
AG: databricks_3h

rven

[—

[t G0

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_10.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_17.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_18.png
Detections

% of Detections with Status Update

Avg Hours to Status Update:

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_15.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_16.png

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_13.png
You created a test ahead

20% 80%

OEBPS/Images/fixing_data_quality_issues_at_scale_447115_14.png
Data processing

stages
Data reliability [GDa ViR l
‘workflow

