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Foreword



When I started the Apache Spark project a decade ago, one of my main goals was to make it easier for a wide range of users to implement parallel algorithms. New algorithms acting on large-scale data are having a profound impact in all areas of computing, and I wanted to help developers implement such algorithms and reason about their performance without having to build a distributed system from scratch.


I am therefore very excited to see this new book by Dr. Mahmoud Parsian on data algorithms with Spark. Dr. Parsian has extensive research and practical experience with large-scale data-parallel algorithms, including developing new algorithms for bioinformatics as the lead of Illumina’s big data team. In this book, he introduces Spark through its Python API, PySpark, and shows how to implement a wide range of useful algorithms efficiently using Spark’s distributed computing primitives. He also explains the workings of the underlying Spark engine and how to optimize your algorithms through techniques such as controlling data partitioning. This book will be a great resource for both readers looking to implement existing algorithms in a scalable fashion and readers who are developing new, custom algorithms using Spark.


I am also thrilled that Dr. Parsian has included working code examples for all the algorithms he discusses, using real-world problems where possible. These will serve as a great starting point for readers who want to implement similar computations. Whether you intend to use these algorithms directly or build your own custom algorithms using Spark, I hope that you enjoy this book as an introduction to the open source engine, its inner workings, and the modern parallel algorithms that are having such a broad impact across computing.


Matei Zaharia


Assistant Professor of Computer Science, Stanford


Chief Technologist, Databricks


Original Creator of Apache Spark




Preface



Spark has become the de facto standard for large-scale data
analytics. I have been using and teaching Spark
since its inception nine years ago, and I
have seen tremendous improvements in Extract, Transform, Load (ETL) processes,
distributed algorithm development, and large-scale
data analytics. I started using Spark
with Java, but I found that while the code is pretty
stable, you have to write long lines of code,
which can become unreadable. For this book, I decided to use PySpark
(a Python API for Spark) because it is easier to express
the power of Spark in Python: the code is short,
readable, and maintainable. PySpark is powerful but
simple to use, and you can express any ETL or
distributed algorithm in it with a simple set of
transformations and actions.








Why I Wrote This Book


This is an introductory book about data analysis using
PySpark. The book consists of a set of guidelines and
examples intended to help software and data engineers solve
data problems in the simplest possible way.   As you
know, there are many ways to solve any data problem:
PySpark enables us to write simple code for complex problems. This is the motto I have tried to
express in this book: keep it simple and use parameters
so that your solution can be reused by other developers.
My aim is to teach readers how to think about data and understand its origins and final intended form, as well as showing how to use fundamental data transformation patterns to solve a variety of data problems.

















Who This Book Is For


To use this book effectively it will be helpful to know the basics of the Python programming
language, such as how to use conditionals (if-then-else), iterate through lists, and define and call functions. However, if your background is in another programming
language (such as Java or Scala) and you do not know
Python, you will still be able to use the book as I have provided
a reasonable introduction to Spark and PySpark.


This book is primarily intended for people who want to analyze large
amounts of data and develop distributed algorithms using the Spark engine and PySpark. I have provided
simple examples showing how to perform ETL operations and write distributed
algorithms in PySpark. The code
examples are written in such a way that you can cut and paste
them to get the job done easily.


The sample code provided on GitHub is a great resource
to get you started with your own data projects.

















How This Book Is Organized


The book consists of 12 chapters, organized into three parts:


	Part I, “Fundamentals”

	
The first four chapters cover the fundamentals of Spark and PySpark and introduce
data transformations such as mappers, filters, and
reducers. They contain many practical
examples to get you started  on your own PySpark projects.
Approximately 95% of all data
problems can be tackled by using simple PySpark data
transformations (such as map(), flatMap(), filter(),
and reduceByKey()) introduced in the first four chapters
of this book. Here’s a closer look at what you’ll find here:



	
Chapter 1, “Introduction to Spark and PySpark”, provides a high-level
overview of data algorithms and introduces the use of Spark
and PySpark for solving data analytics problems.



	
Chapter 2, “Transformations in Action”, shows how to use Spark
transformations (mappers, filters, and reducers)
to solve real data problems.



	
Chapter 3, “Mapper Transformations”, introduces the most frequently
used mapper transformations: map(),
filter(), flatMap(), and mapPartitions().



	
Chapter 4, “Reductions in Spark”, focuses on reduction transformations
(such as reduceByKey(), groupByKey(), and
combineByKey()), which play a very important role
in grouping data by keys. Many simple but useful
examples are given to make sure that you’ll be able to use these reductions 
effectively.










	Part II, “Working with Data”

	
The next four chapters cover partitioning data, graph algorithms, reading/writing
data from/to many different data sources, and ranking algorithms:



	
Chapter 5, “Partitioning Data”, presents functions to physically
partition data on specific data columns. This
partitioning will enable your SQL queries (e.g., in Amazon
Athena or Google BigQuery) to analyze a slice of the data
rather than the whole dataset, which will improve query performance.



	
Chapter 6, “Graph Algorithms”, introduces one of the most important
external Spark packages, GraphFrames, which can
be used to analyze large graphs in Spark’s distributed
environment.



	
Chapter 7, “Interacting with External Data Sources”, shows you how to read data from and write it to a variety of data sources.



	
Chapter 8, “Ranking Algorithms”, presents two important ranking
algorithms, PageRank (used in search engines)
and rank product (used in gene analysis).







	Part III, “Data Design Patterns”

	
The final four chapters cover practical
data design patterns, which are presented in an informal way
with solid examples:



	
Chapter 9, “Classic Data Design Patterns”, introduces a selection of fundamental data
design patterns, or reusable solutions, that are commonly used to solve a variety of data problems. Examples include Input-Map-Output and Input-Filter-Output.



	
Chapter 10, “Practical Data Design Patterns”, introduces
common and practical data design patterns, for tasks such as combining, summarizing, filtering, and organizing data.
These patterns are presented informally, with
practical examples.



	
Chapter 11, “Join Design Patterns”, presents simple patterns
for joining two or more datasets; some performance
criteria are discussed to improve the efficiency of
join 
algorithms.



	
Chapter 12, “Feature Engineering in PySpark”, presents the most common feature
engineering techniques used in developing machine
learning 
algorithms.







	Bonus Chapters

	
Since I did not want to make this book too bulky, I have
included additional material on topics such as TF-IDF, correlation, and k-mers as bonus chapters 
in the book’s GitHub repository.





















Conventions Used in This Book


The following typographical conventions are used in this book:


	Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.



	Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.



	Constant width bold

	
Shows commands or other text that should be typed literally by the user.



	Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.





Tip

This element signifies a tip or suggestion.



Note

This element signifies a general note.



Warning

This element indicates a warning or caution.



















Using Code Examples



Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mahmoudparsian/data-algorithms-with-spark.


If you have a technical question or a problem using the code examples, please send email to mahmoud.parsian@yahoo.com.


This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.


We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Data Algorithms with Spark by Mahmoud Parsian (O’Reilly). Copyright 2022 Mahmoud Parsian, 978-1-492-08238-5.”


If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

















O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.




Our unique network of experts and innovators share their knowledge and expertise through books, articles, conferences, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, please visit http://oreilly.com.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/data-algorithms-with-spark.



Email bookquestions@oreilly.com to comment or ask technical questions about this book.


For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.


Find us on LinkedIn: https://linkedin.com/company/oreilly-media


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://youtube.com/oreillymedia
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Part I. Fundamentals






Chapter 1. Introduction to Spark and PySpark



Spark is a powerful analytics engine
for large-scale data processing that aims
at speed, ease of use, and extensibility for big data applications. It’s a proven and widely adopted technology used by many companies that handle big data every day. Though Spark’s “native” language
is Scala (most of Spark is developed in Scala),
it also provides high-level APIs in
Java, Python, and R.


In this book we’ll be using Python via PySpark,
an API that exposes the Spark
programming model to Python.  With Python being
the most accessible programming language and Spark’s
powerful and expressive API, PySpark’s simplicity
makes it the best choice for us. PySpark is an interface for Spark in the Python
programming language that provides the
following two important features:



	
It allows us to write Spark applications
using Python APIs.



	
It provides the PySpark shell for
interactively analyzing data in a
distributed 
environment.






The purpose of this chapter is to introduce
PySpark as the main component of the Spark ecosystem and show you that it can be effectively
used for big data tasks such as ETL operations,
indexing billions of documents, ingesting
millions of genomes, machine learning, graph data analysis, DNA data
analysis, and much more. I’ll start by reviewing the Spark and PySpark
architectures, and provide examples to show
the expressive power of PySpark. I will  present an overview of Spark’s core functions (transformations
and actions) and concepts so that you are
empowered to start using Spark and PySpark
right away. Spark’s main data abstractions are resilient distributed datasets (RDDs),
DataFrames, and Datasets. As you’ll see, you
can represent your data (stored as Hadoop files,
Amazon S3 objects, Linux files, collection data
structures, relational database tables, and more)
in any combinations of RDDs and 
DataFrames.


Once your data is represented as a Spark data
abstraction, you can apply transformations on it and
create new data abstractions until the data is in the final form that you’re looking for. Spark’s transformations
(such as map() and reduceByKey()) can be used
to convert your data from one form to another until you get your desired  result.  I will
explain these data abstractions shortly, but first, let’s dig a little deeper into why Spark is the best choice for data analytics.


Source Code

Complete programs for this chapter are available in the book’s GitHub repository.










Why Spark for Data Analytics


Spark is a
powerful analytics engine that can be used for large-scale data processing. The most important
reasons for using Spark are:



	
Spark is simple, powerful, and fast.



	
Spark is free and open source.



	
Spark runs everywhere (Hadoop, Mesos,
Kubernetes, standalone, or in the cloud).



	
Spark can read/write data from/to any
data source (Amazon S3, Hadoop HDFS,
relational databases, etc.).



	
Spark can be integrated with almost any data application.



	
Spark can read/write data in row-based
(such as Avro)
and column-based (such as Parquet and
ORC) formats.



	
Spark has a rich but simple set of APIs for all kinds of ETL processes.






In the past five years
Spark has progressed in such a way that I believe it can be used to
solve any big data problem. This is
supported by the fact that
all big data companies, such as Facebook,
Illumina, IBM, and Google, use Spark
every day in production systems.


Spark  is  one
of  the  best choices for large-scale
data processing and for solving 
MapReduce
problems and beyond, as it unlocks the
power of data by handling big data with
powerful APIs and speed. Using
MapReduce/Hadoop to solve big data
problems is complex, and you have to
write a ton of low-level code to solve even
primitive problems—this is where
the  power and
simplicity of Spark comes in.
Apache Spark
is considerably faster than Apache
Hadoop
because it uses in-memory caching and
optimized 
execution for fast performance,
and it supports general batch processing,
streaming analytics, machine learning,
graph algorithms, and SQL 
queries.


For PySpark, Spark has two fundamental
data abstractions: the RDD and the DataFrame.
I will teach you how to read your data and
represent it as an RDD (a set of elements of
the same type) or a DataFrame (a table of rows
with named columns); this allows you to impose a structure
onto a distributed collection of data,
permitting higher-level abstraction. Once
your data  is  represented  as  an RDD
or a DataFrame, you may apply
transformation functions (such as mappers,
filters, and reducers) on it to transform
your data into the desired form.  I’ll present many Spark transformations that you can use for ETL
processes, analysis,
and data-intensive computations.


Some simple RDD transformations are
represented in Figure 1-1.



[image: daws 0101]
Figure 1-1. Simple RDD transformations




This figure shows the following transformations:


	
First we read our input data (represented
as a text file, sample.txt—here, I
only show the first two rows/records of
input data) with an instance of SparkSession,
which is the entry point to programming Spark.
The SparkSession instance is represented
as a spark object. Reading input creates a
new RDD as an RDD[String]: each input record
is converted to an RDD element of the type String (if your input path has N records,
then the number of RDD elements is N). This
is accomplished by the following code:


# Create an instance of SparkSession
spark = SparkSession.builder.getOrCreate()
# Create an RDD[String], which represents all input
# records; each record becomes an RDD element
records = spark.sparkContext.textFile("sample.txt")



	
Next, we convert all characters to lowercase letters. This is accomplished by the map() transformation, which is a 1-to-1 transformation:


# Convert each element of the RDD to lowercase
# x denotes a single element of the RDD
# records: source RDD[String]
# records_lowercase: target RDD[String]
records_lowercase = records.map(lambda x: x.lower())



	
Then, we use a flatMap() transformation, which
is a 1-to-many transformation, to convert each
element (representing a single record) into a
sequence of target elements (each representing a word).
The flatMap() transformation returns a new RDD by
first applying a function (here, split(",")) to
all elements of the source RDD and then flattening
the results:


# Split each record into a list of words
# records_lowercase: source RDD[String]
# words: target RDD[String]
words = records_lowercase.flatMap(lambda x: x.split(","))



	
Finally, we drop word elements with a length less than or
equal to 2. The following filter() transformation drops unwanted words, keeping only those with a length greater
than 2:


# Keep words with a length greater than 2
# x denotes a word
# words: source RDD[String]
# filtered: target RDD[String]
filtered = words.filter(lambda x: len(x) > 2)







As you can observe, Spark transformations
are high-level,
powerful, and simple.
Spark is by nature distributed and parallel: your
input data is partitioned and can be processed
by transformations (such as mappers, filters, and reducers)
in parallel in a cluster environment. In a nutshell, to solve a data analytics
problem in PySpark, you read data and represent
it as an RDD or DataFrame (depending on the nature of the
data format), then write a set of
transformations to convert your data into the desired output.
Spark automatically partitions your DataFrames and
RDDs and distributes the partitions across different
cluster nodes. Partitions are the basic units of parallelism in Spark. Parallelism is what allows developers to perform tasks on hundreds of computer servers in a cluster in parallel and independently. A partition in Spark is a chunk (a logical division) of data stored on a node in
the cluster. DataFrames and RDDs are collections
of partitions. Spark has a default data partitioner for RDDs and DataFrames, but you may override
that partitioning with your own custom 
programming.


Next, let’s dive a little deeper into Spark’s
ecosystem and architecture.










The Spark Ecosystem


Spark’s ecosystem is presented in
Figure 1-2. It has three main components:


	Environments

	
Spark can run anywhere and integrates well with other environments.



	Applications

	
Spark integrates well with a variety of big data platforms and applications.



	Data sources

	
Spark can read and write data from and to many data sources.







[image: daws 0102]
Figure 1-2. The Spark ecosystem (source: Databricks)




Spark’s expansive
ecosystem makes PySpark a
great tool for ETL, data analysis, and many other tasks.  With PySpark, you can read data from many different data sources (the Linux
filesystem, Amazon S3, the Hadoop Distributed
File System, relational tables, MongoDB,
Elasticsearch, Parquet files, etc.) and
represent it as a Spark data
abstraction, such as RDDs or DataFrames. Once your data is in that form, you can use
a series of simple and powerful Spark
transformations to transform the data into
the desired shape and format. For example,
you may use the filter() transformation to
drop unwanted records, use groupByKey() to
group  your  data  by  your  desired key, and
finally use the mapValues() transformation
to perform final aggregation (such as finding
average, median, and standard deviation of
numbers) on the grouped data. All of these
transformations are very possible by using
the simple but powerful PySpark API.

















Spark Architecture


When you have small data, it is possible to analyze it with a
single computer in a reasonable amount of time.
When you have large volumes of data, using a single computer to analyze
and process that data (and store it) might be prohibitively slow, or even impossible. This is why we want to use Spark.


Spark has a core library and a set of built-in
libraries (SQL, GraphX, Streaming, MLlib), as shown in Figure 1-3.
As you can see, through its DataSource API, Spark can interact with many data sources, such as
Hadoop, HBase, Amazon S3, Elasticsearch, and
MySQL, to mention a few.



[image: daws 0103]
Figure 1-3. Spark libraries




This figure shows the real power of Spark:
you can use several different languages to write your Spark applications, then use rich libraries to solve assorted big data problems. Meanwhile, you can read/write data from a variety of data sources.












Key Terms


To understand Spark’s architecture, you’ll
need to understand a few key terms:


	SparkSession

	
The SparkSession class, defined in the pyspark.sql package, is the entry point to programming Spark
with the Dataset and DataFrame APIs. In order to do anything useful with a Spark cluster, you first need to create an instance of this class, which gives you access to an instance of SparkContext.

Note

PySpark
has a comprehensive API (comprised of packages,
modules, classes, and methods) to access the Spark
API. It is important to note that
all Spark APIs, packages, modules, classes, and
methods discussed in this book are PySpark-specific. For example, when
I refer to the SparkContext class I am
referring to the pyspark.SparkContext Python
class, defined in the pyspark package, and when I
refer to the SparkSession class, I am referring
to the pyspark.sql.SparkSession Python class,
defined in the pyspark.sql module.





	SparkContext

	
The SparkContext class, defined in the pyspark package, is
the main entry point for Spark functionality. A SparkContext
holds a connection to the Spark cluster manager and can be used to create RDDs
and broadcast variables in the cluster.  When you create an instance of SparkSession, the SparkContext becomes available inside your session as an attribute, SparkSession.sparkContext.



	Driver

	
All  Spark applications (including the PySpark shell and standalone
Python programs) run as independent sets of processes.
These processes are coordinated by a SparkContext in a
driver program. To submit a standalone Python program to Spark, you
need to write a driver program with the PySpark API (or
Java or Scala). This program is in charge of
the process of running the main() function of the
application and creating the SparkContext.  It can also be used to create
RDDs and DataFrames.



	Worker

	
In a Spark cluster environment, there are two types of
nodes: one (or two, for high availability) master
and a set of workers. A worker is any node that can
run programs in the cluster. If a process is launched
for an application, then this application acquires
executors at worker nodes, which are responsible for executing Spark tasks.



	Cluster manager

	
The “master” node is known as the cluster manager.
The main function of this node is to manage
the cluster environment and the servers that Spark will leverage to execute tasks. The cluster manager allocates resources to each application.
Spark supports five types of cluster
managers, depending on where it’s running:


	
Standalone (Spark’s own built-in clustered environment)



	
Mesos (a distributed systems kernel)



	
Hadoop YARN



	
Kubernetes



	
Amazon EC2










Note

While use of master/worker terminology is outmoded and being retired in many software contexts, it is still part of the functionality of Apache Spark, which is why I use this terminology in this book.



















Spark architecture in a nutshell


A high-level view of the Spark architecture is presented in Figure 1-4. Informally, a Spark cluster is
comprised of a master node (the “cluster
manager”), which is responsible for managing Spark applications, and a set of “worker” (executor) nodes, which are
responsible for executing tasks submitted by the
Spark applications (your applications, which you want
to run on the Spark cluster).



[image: daws 0104]
Figure 1-4. Spark architecture




Depending on the environment Spark is running in, the cluster manager managing this cluster of servers will be either Spark’s standalone cluster manager, Kubernetes, Hadoop YARN, or Mesos. When the Spark cluster is running, you can submit Spark
applications to the cluster manager, which
will grant resources to your application so that you can complete your data analysis.


Your cluster may have one, tens, hundreds,
or even thousands of worker nodes, depending on the needs of your business
and your project requirements. You can run
Spark on a standalone server such as a MacBook, Linux, or Windows PC, but 
typically for production
environments Spark is run on cluster of Linux
servers.  To run a Spark program, you need to
have access to a Spark cluster and have a driver program,
which declares the transformations and actions on RDDs of data and submits such requests to the cluster manager. In
this book, all driver programs will be in
PySpark.


When you start a PySpark shell (by executing
<spark-installed-dir>/bin/pyspark), you
automatically get two variables/objects defined:


	spark

	
An instance of SparkSession, which
is ideal for creating DataFrames



	sc

	
An instance of SparkContext, which
is ideal for creating RDDs






If you write a self-contained PySpark application
(a Python driver, which uses the PySpark API), then you
have to explicitly create an instance of
SparkSession yourself. A SparkSession
 can be used to:



	
Create DataFrames



	
Register DataFrames as tables



	
Execute SQL over tables and cache tables



	
Read/write text, CSV, JSON, Parquet, and other file formats



	
Read/write relational database tables






PySpark defines SparkSession as:


pyspark.sql.SparkSession (Python class, in pyspark.sql module)
class pyspark.sql.SparkSession(sparkContext,jsparkSession=None)


SparkSession: the entry point to programming Spark with the RDD
and DataFrame API.


To create a SparkSession in Python, use the
builder pattern shown here:


# import required Spark class
from pyspark.sql import SparkSession [image: 1]

# create an instance of SparkSession as spark
spark = SparkSession.builder \ [image: 2]
  .master("local") \
  .appName("my-application-name") \
  .config("spark.some.config.option", "some-value") \ [image: 3]
  .getOrCreate() [image: 4]

# to debug the SparkSession
print(spark.version) [image: 5]

# create a reference to SparkContext as sc
# SparkContext is used to create new RDDs
sc = spark.sparkContext [image: 6]

# to debug the SparkContext
print(sc)


	[image: 1]

	Imports the SparkSession class from
the pyspark.sql module.


	[image: 2]

	Provides access to the Builder API used to
construct SparkSession instances.


	[image: 3]

	Sets a config option. Options set
using this method are automatically
propagated to both SparkConf and the
SparkSession’s own configuration.
When creating a SparkSession object,
you can define any number of
config(<key>, <value>) options.


	[image: 4]

	Gets an existing SparkSession or,
if there isn’t one, creates
a new one based on the options set here.


	[image: 5]

	For debugging purposes only.


	[image: 6]

	A SparkContext can be referenced from
an instance of SparkSession.





PySpark defines SparkContext as:


class pyspark.SparkContext(master=None, appName=None, ...)


SparkContext: the main entry point for Spark functionality.
A SparkContext represents the connection to a Spark cluster,
and can be used to create RDD (the main data abstraction for
Spark) and broadcast variables (such as collections and data
structures) on that cluster.


SparkContext is the main entry point for Spark
functionality.  A shell (such as the PySpark shell)
or PySpark driver program cannot create more
than one instance of SparkContext.  A SparkContext
represents the connection to a Spark cluster, and
can be used to create new RDDs and broadcast
variables (shared data structures and collections—kind of read-only global variables) on that
cluster. Figure 1-5 shows how a SparkContext can be used to create a new RDD
from an input text file (labeled records_rdd)
and then transform it into another RDD (labeled words_rdd) using
the flatMap() transformation. As you can observe,
RDD.flatMap(f) returns a new RDD by first
applying a function (f) to all elements of
the source RDD, and then flattening the results.



[image: daws 0105]
Figure 1-5. Creation of RDDs by SparkContext




To create SparkSession and  SparkContext
objects, use the following  pattern:


    # create an instance of SparkSession
    spark_session = SparkSession.builder.getOrCreate()

    # use the SparkSession to access the SparkContext
    spark_context = spark_session.sparkContext


If you will be working only with RDDs,
you can create an instance of
SparkContext as follows:


    from pyspark import SparkContext
    spark_context = SparkContext("local", "myapp");


Spark Usage

Here are some examples of how big companies
use Spark:



	
Facebook
processes 60 TB of data on a daily basis.
Spark and MapReduce are at the heart of the algorithms used to process production data.



	
Viacom, with its 170 cable, broadcast, and online
networks in around 160 countries, is transforming
itself into a data-driven enterprise, collecting
and analyzing petabytes of network data to increase
viewer loyalty and revenue.



	
Illumina ingests
thousands of genomes (this is big data, which cannot fit on or be processed by one server)
using Spark, PySpark, MapReduce, and distributed
algorithms.



	
IBM uses Spark, MapReduce, and distributed algorithms
on a daily basis to scale out its computations
and operations.








Now that you know the basics of Spark, let’s dive a little deeper into PySpark.





























The Power of PySpark


PySpark is a Python API for Apache Spark, designed to support collaboration between Spark and the Python programming language. Most data scientists already know
Python, and PySpark makes it easy for them to write short, concise code for
distributed computing using Spark. In a nutshell, it’s
an all-in-one ecosystem that can handle complex data requirements with its support for RDDs,
DataFrames, GraphFrames, MLlib, SQL, and more.


I’ll show you the amazing power of PySpark
with a simple example. Suppose we
have lots of records containing data on
URL visits by users (collected by a search
engine from many web servers) in the
following format:


<url_address><,><frequency>



Here are a few examples of what these records look like:

http://mapreduce4hackers.com,19779
http://mapreduce4hackers.com,31230
http://mapreduce4hackers.com,15708
...
https://www.illumina.com,87000
https://www.illumina.com,58086
...


Let’s assume we want to find the average,
median, and standard deviation of the
visit numbers per key (i.e., url_address). Another requirement is that we want to drop any records with a length less than 5 (as these may be malformed URLs). It is easy to express an
elegant solution for this in PySpark, as Figure 1-6 illustrates.



[image: daws 0106]
Figure 1-6. Simple workflow to compute mean, median, and standard deviation




First, let’s create some basic Python functions that will help us in solving our simple problem.
The first function, create_pair(), accepts a single
record of the form <url_address><,><frequency> and returns a
(key, value) pair (which will enable us to do a
GROUP BY on the key field later), where the key is
a url_address and the value is the associated frequency:


 # Create a pair of (url_address, frequency)
 # where url_address is a key and frequency is a value
 # record denotes a single element of RDD[String]
 # record: <url_address><,><frequency>
 def create_pair(record): [image: 1]
     tokens = record.split(',') [image: 2]
     url_address = tokens[0]
     frequency = tokens[1]
     return (url_address, frequency) [image: 3]
 #end-def


	[image: 1]

	Accept a record of the form <url_address><,><frequency>.


	[image: 2]

	Tokenize the input record, using the url_address as a key (tokens[0]) and the frequency as a value (tokens[1]).


	[image: 3]

	Return a pair of (url_address, frequency).





The next function, compute_stats(), accepts a list of frequencies
(as numbers) and computes three values, the average,
median, and standard deviation:


 # Compute average, median, and standard
 # deviation for a given set of numbers
 import statistics [image: 1]
 # frequencies = [number1, number2, ...]
 def compute_stats(frequencies): [image: 2]
 	average = statistics.mean(frequencies) [image: 3]
 	median = statistics.median(frequencies) [image: 4]
 	standard_deviation = statistics.stdev(frequencies) [image: 5]
 	return (average, median, standard_deviation) [image: 6]
 #end-def


	[image: 1]

	This module provides functions for calculating
mathematical statistics of numeric data.


	[image: 2]

	Accept a list of frequencies.


	[image: 3]

	Compute the average of the frequencies.


	[image: 4]

	Compute the median of the frequencies.


	[image: 5]

	Compute the standard deviation of the frequencies.


	[image: 6]

	Return the result as a triplet.





Next, I’ll show you the amazing power of PySpark
in just few lines of code, using Spark
transformations and our custom Python functions:


# input_path = "s3://<bucket>/key"
input_path = "/tmp/myinput.txt"
results = spark [image: 1]
        .sparkContext [image: 2]
        .textFile(input_path) [image: 3]
        .filter(lambda record: len(record) > 5) [image: 4]
        .map(create_pair) [image: 5]
        .groupByKey() [image: 6]
        .mapValues(compute_stats) [image: 7]


	[image: 1]

	spark denotes an instance of SparkSession,
the entry point to programming Spark.


	[image: 2]

	sparkContext (an attribute of SparkSession) is the
main entry point for Spark functionality.


	[image: 3]

	Read data as a distributed set of String
records (creates an RDD[String]).


	[image: 4]

	Drop records with a length less
than or equal to 5 (keep records with a length
greater than 5).


	[image: 5]

	Create (url_address, frequency) pairs
from the input records.


	[image: 6]

	Group the data by keys—each key (a url_address) will be associated with a
list of frequencies.


	[image: 7]

	Apply the compute_stats() function to the
list of frequencies.





The result will be a set of (key, value)
pairs of the form:

(url_address, (average, median, standard_deviation))


where url-address is a key and
(average, median, standard_deviation)
is a value.

Note

The most important thing about Spark is that
it maximizes concurrency of functions and
operations by means of partitioning data.
Consider an example:


If your input data has 600 billion
rows and you are using a cluster of 10 nodes,
your input data will be partitioned into N
( > 1) chunks, which are processed
independently and in parallel. If N=20,000 (the number of chunks or partitions),
then each chunk will have about 30 million
records/elements (600,000,000,000 / 20,000 = 30,000,000). If you have a big cluster, then
all 20,000 chunks might be processed in one shot. If you
have a smaller cluster, it may be that only every 100
chunks can be processed  independently and in
parallel. This process will continue until
all 20,000 chunks are processed.












PySpark Architecture


PySpark is built on top of Spark’s Java API.
Data is processed in Python and cached/shuffled
in the Java Virtual Machine, or JVM (I will cover the concept of shuffling in Chapter 2). A high-level view of PySpark’s architecture is presented in Figure 1-7.



[image: daws 0107]
Figure 1-7. PySpark architecture




And PySpark’s data flow is
illustrated in Figure 1-8.



[image: daws 0108]
Figure 1-8. PySpark data flow




In the Python driver program (your
Spark application in Python), the SparkContext
uses Py4J
to launch a JVM, creating a
JavaSparkContext.  Py4J is only used in
the driver for local communication between
the Python and Java SparkContext objects;
large data transfers are performed through
a different mechanism.  RDD transformations
in Python are mapped to transformations on
PythonRDD objects in Java.  On remote worker
machines, PythonRDD objects launch Python
subprocesses and communicate with them using
pipes, sending the user’s code and the data
to be processed.

Note

Py4J enables Python programs running
in a Python interpreter to dynamically access
Java objects in a JVM. Methods are called as
if the Java objects resided in the Python
interpreter, and Java collections can be accessed
through standard Python collection methods.
Py4J also enables Java programs to call back
Python objects.


























Spark Data Abstractions


To manipulate data in the Python programming language,
you use integers, strings, lists, and dictionaries.
To manipulate and analyze data in Spark, you have
to represent it as a Spark dataset. Spark supports
three types of dataset abstractions:



	
RDD (resilient distributed dataset):



	
Low-level API



	
Denoted by RDD[T] (each element has type T)







	
DataFrame (similar to relational tables):



	
High-level API



	
Denoted by Table(column_name_1, column_name_2, ...)







	
Dataset (similar to relational tables):



	
High-level API (not available in PySpark)










The Dataset data abstraction is used in strongly
typed languages such as Java and is not supported in
PySpark. RDDs and DataFrames will be discussed in
detail in the following chapters, but I’ll give a brief introduction here.










RDD Examples


Essentially, an RDD represents your data as
a collection of elements.
It’s an immutable set of distributed
elements of type T, denoted as RDD[T].


Table 1-1 shows examples of three simple types of RDDs:


	RDD[Integer]

	
Each element is an Integer.



	RDD[String]

	
Each element is a String.



	RDD[(String, Integer)]

	
Each element is a pair of (String, Integer).






Table 1-1. Simple RDDs


	RDD[Integer]
	RDD[String]
	RDD[(String, Integer)]





	2

	"abc"

	('A', 4)




	-730

	"fox is red"

	('B', 7)




	320

	"Python is cool"

	('ZZ', 9)




	…

	…

	…







Table 1-2 is an example of a complex RDD. Each element is a (key, value) pair, where the key is a String and the value is a triplet
of (Integer, Integer, Double).


Table 1-2. Complex RDD


	RDD[(String, (Integer, Integer, Double))]





	("cat", (20, 40, 1.8))




	("cat", (30, 10, 3.9))




	("lion king", (27, 32, 4.5))




	("python is fun", (2, 3, 0.6))




	…






















Spark RDD Operations


Spark RDDs are read-only, immutable, and distributed. Once created, they cannot be altered: you cannot add records, delete records, or update records in an RDD. However, they can be transformed. RDDs support two types of operations: transformations, which transform the source RDD(s) into one or more new RDDs, and actions, which transform the source RDD(s) into a non-RDD object such as a dictionary or array. The relationship between RDDs, transformations, and actions is illustrated in Figure 1-9.



[image: daws 0109]
Figure 1-9. RDDs, transformations, and actions




We’ll go into much more detail on Spark’s transformations in the following chapters, with working examples to help you understand them, but I’ll provide a brief introduction here.












Transformations


A transformation in Spark is a function that takes
an existing RDD (the source RDD), applies a
transformation to it, and creates a new RDD (the target
RDD). Examples include: map(),
flatMap(), groupByKey(), reduceByKey(), and
filter().


Informally, we can express a transformation as:


transformation: source_RDD[V] --> target_RDD[T] [image: 1]


	[image: 1]

	Transform source_RDD of type V into
target_RDD of type T.





RDDs are not evaluated until an action is performed
on them: this means that transformations are
lazily evaluated. If an RDD fails during a
transformation, the data lineage of
transformations rebuilds the RDD.


Most Spark transformations create a single RDD, but it is also possible for them to create multiple target RDDs. The target RDD(s) can be smaller, larger, or the same size as the source RDD.


The following example presents a sequence of transformations:


tuples = [('A', 7), ('A', 8), ('A', -4),
          ('B', 3), ('B', 9), ('B', -1),
          ('C', 1), ('C', 5)]
rdd = spark.sparkContext.parallelize(tuples)

# drop negative values
positives = rdd.filter(lambda x: x[1] > 0)
positives.collect()
[('A', 7), ('A', 8), ('B', 3), ('B', 9), ('C', 1), ('C', 5)]

# find sum and average per key using groupByKey()
sum_and_avg = positives.groupByKey()
    .mapValues(lambda v: (sum(v), float(sum(v))/len(v)))

# find sum and average per key using reduceByKey()
# 1. create (sum, count) per key
sum_count = positives.mapValues(lambda v: (v, 1))
# 2. aggregate (sum, count) per key
sum_count_agg = sum_count.reduceByKey(lambda x, y:
     (x[0]+y[0], x[1]+y[1]))
# 3. finalize sum and average per key
sum_and_avg = sum_count_agg.mapValues(
    lambda v: (v[0], float(v[0])/v[1]))

Tip

The groupByKey() transformation groups the values for
each key in the RDD into a single sequence, similar to a SQL GROUP BY statement.
This transformation can cause
out of memory (OOM) errors as data is sent over
the network of Spark servers and collected
on the reducer/workers when the number of values
per key is in the thousands or millions.


With the reduceByKey()
transformation, however, data is combined in each
partition, so there is only one output for each key in
each partition to send over the network of
Spark servers. This makes it more scalable than groupByKey(). reduceByKey() merges
the values for each key using an associative
and commutative reduce function. It combines all the values (per key) into another
value with the exact same data type (this is a
limitation, which can be overcome by using the
combineByKey() transformation). Overall,
the reduceByKey() is more scaleable than
the groupByKey(). We’ll talk more about these issues in Chapter 4.



















Actions


Spark actions are RDD operations or
functions that produce non-RDD values. Informally, we can
express an action as:


action: RDD => non-RDD value


Actions may trigger the evaluation of RDDs (which, you’ll recall, are evaluated lazily). However, the output of an action is a tangible value: a saved file, a value such as an
integer, a count of elements, a list of
values, a dictionary, and so on.


The following are examples of actions:


	reduce()

	
Applies a function to deliver a single value,
such as adding values for a given RDD[Integer]



	collect()

	
Converts an RDD[T] into a list of type T



	count()

	
Finds the number of elements in a given RDD



	saveAsTextFile()

	
Saves RDD elements to a disk



	saveAsMap()

	
Saves RDD[(K, V)] elements to a disk as a
dict[K, V]






Don’t collect() on Large RDDs

In this book,
I have often used the RDD.collect() action
for testing, debugging, educational, and
demonstration purposes. However, as a general rule you should avoid using
this on the production servers unless you really have a requirement for it.


When a  collect() operation is called on
an RDD, the entire RDD is copied
to the driver program. If the dataset
is too large to fit in memory, a memory exception will
be thrown. If this is a risk, you should use the take()
or takeSample() actions instead of
collect(). For example RDD.take(N)
returns the first N elements of the
RDD and DataFrame.take(N) returns the
first  N rows of the DataFrame as a list of Row
objects.


To summarize, RDD.collect() returns a
list that contains all of the elements
in this RDD.  According to the Spark
documentation, “this method
should only be used if the resulting
array is expected to be small, as all
the data is loaded into the driver’s
memory.” Using collect() on a large
RDD might cause an OOM exception.


If you need to manipulate all
of your RDD elements, rather than using collect(), consider whether you can use
transformations such as map(), filter(),
flatMap(), or foreach(func).
























DataFrame Examples


Similar to an RDD, a DataFrame in Spark is an
immutable distributed collection of data.
But unlike in an RDD, the data is organized into named
columns, like a table in a relational database.
This is meant to make processing of large datasets easier. DataFrames allow programmers
to impose a structure onto a distributed
collection of data, allowing higher-level
abstraction. They also make the processing of CSV and JSON files much easier than with
RDDs.


The following DataFrame example has three columns:

DataFrame[name, age, salary]
name: String, age: Integer, salary: Integer

+-----+----+---------+
| name| age|   salary|
+-----+----+---------+
|  bob|  33|    45000|
| jeff|  44|    78000|
| mary|  40|    67000|
|  ...| ...|      ...|
+-----+----+---------+


A DataFrame can be created from many different
sources, such as Hive tables, Structured Data
Files (SDF), external databases, or existing RDDs.
The DataFrames API was designed for modern big
data and data science applications, taking
inspiration from DataFrames in R
and pandas in Python. As we will see in later
chapters, we can execute SQL queries against DataFrames.


Spark SQL comes with an extensive set of powerful DataFrame
operations that includes:



	
Aggregate functions (min, max, sum, average, etc.)



	
Collection functions



	
Math functions



	
Sorting functions



	
String functions



	
User-defined functions (UDFs)






For example, you can easily read a CSV file
and create a DataFrame from it:


# define input path
virus_input_path = "s3://mybucket/projects/cases/case.csv"

# read CSV file and create a DataFrame
cases_dataframe = spark.read.load(virus_input_path,format="csv",
   sep=",", inferSchema="true", header="true")

# show the first 3 rows of created DataFrame
cases_dataframe.show(3)
+-------+-------+-----------+--------------+---------+
|case_id|country|       city|infection_case|confirmed|
+-------+-------+-----------+--------------+---------+
|  C0001|    USA|   New York|       contact|      175|
+-------+-------+-----------+--------------+---------+
|  C0008|    USA| New Jersey|       unknown|       25|
+-------+-------+-----------+--------------+---------+
|  C0009|    USA|  Cupertino|       contact|      100|
+-------+-------+-----------+--------------+---------+


To sort the results by number of cases in descending order, we can use the sort() function:


# We can do this using the F.desc function:
from pyspark.sql import functions as F
cases_dataframe.sort(F.desc("confirmed")).show()
+-------+-------+-----------+--------------+---------+
|case_id|country|       city|infection_case|confirmed|
+-------+-------+-----------+--------------+---------+
|  C0001|    USA|   New York|       contact|      175|
+-------+-------+-----------+--------------+---------+
|  C0009|    USA|  Cupertino|       contact|      100|
+-------+-------+-----------+--------------+---------+
|  C0008|    USA| New Jersey|       unknown|       25|
+-------+-------+-----------+--------------+---------+


We can also easily filter rows:


cases_dataframe.filter((cases_dataframe.confirmed > 100) &
                       (cases_dataframe.country == 'USA')).show()

+-------+-------+-----------+--------------+---------+
|case_id|country|       city|infection_case|confirmed|
+-------+-------+-----------+--------------+---------+
|  C0001|    USA|   New York|       contact|      175|
+-------+-------+-----------+--------------+---------+
...


To give you a better idea of the power of Spark’s DataFrames, let’s walk through an example. We will create a DataFrame and find the
average and sum of hours worked by employees per department:


# Import required libraries
from pyspark.sql import SparkSession
from pyspark.sql.functions import avg, sum

# Create a DataFrame using SparkSession
spark = SparkSession.builder.appName("demo").getOrCreate()
dept_emps = [("Sales", "Barb", 40), ("Sales", "Dan", 20),
             ("IT", "Alex", 22), ("IT", "Jane", 24),
             ("HR", "Alex", 20), ("HR", "Mary", 30)]
df = spark.createDataFrame(dept_emps, ["dept", "name", "hours"])

# Group the same depts together, aggregate their hours, and compute an average
averages = df.groupBy("dept")
   .agg(avg("hours").alias('average'),
        sum("hours").alias('total'))

# Show the results of the final execution
averages.show()
+-----+--------+------+
| dept| average| total|
+-----+--------+------+
|Sales|    30.0|  60.0|
|   IT|    23.0|  46.0|
|   HR|    25.0|  50.0|
+-----+--------+------+


As you can see, Spark’s DataFrames are
powerful enough to manipulate billions of rows with
simple but powerful functions.
























Using the PySpark Shell


There are two main ways you can use PySpark:



	
Use the PySpark shell (for testing and interactive
programming).



	
Use PySpark in a self-contained application. In this case, you
write a Python driver program (say,
my_pyspark_program.py) using the PySpark API
and then run it with the spark-submit
command:


export SUBMIT=$SPARK_HOME/bin/spark-submit
$SUBMIT [options] my_pyspark_program.py <parameters>


where <parameters> is a list of parameters consumed by your PySpark (my_pyspark_program.py) program.





Note

For details on using the spark-submit
command, refer to
“Submitting Applications” in the Spark documentation.




In this section we’ll focus on Spark’s interactive shell for Python
users, a powerful tool that you can use to analyze data interactively
and see the results immediately (Spark also provides a Scala shell). The PySpark shell can work on both single-machine installations and cluster installations of Spark. You use the following command to start the shell, where SPARK_HOME denotes the installation directory for Spark on your system:


export SPARK_HOME=<spark-installation-directory>
$SPARK_HOME/bin/pyspark


For example:


export SPARK_HOME="/home/spark" [image: 1]
$SPARK_HOME/bin/pyspark [image: 2]
Python 3.7.2

Welcome to Spark version 3.1.2
Using Python version 3.7.2
SparkSession available as spark.
SparkContext available as sc
>>>


	[image: 1]

	Define the Spark installation directory.


	[image: 2]

	Invoke the PySpark shell.





When you start the shell,
PySpark displays some useful information including details on the Python and Spark versions it is using (note that the output here has been shortened).
The >>> symbol is used as the PySpark shell prompt.
This prompt indicates that you can now
write Python or PySpark commands and view
the results.


To get you comfortable with the PySpark shell, the following sections will walk you through some basic usage examples.










Launching the PySpark Shell


To enter into a PySpark shell, we execute pyspark as follows:


$SPARK_HOME/bin/pyspark  [image: 1]


Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.1.2
      /_/

SparkSession available as 'spark'.
SparkContext available as 'sc'.


>>> sc.version [image: 2]
'3.1.2'
>>> spark.version [image: 3]
'3.1.2'


	[image: 1]

	Executing pyspark will create a new shell. The output here has been shortened.


	[image: 2]

	Verify that SparkContext is created as sc.


	[image: 3]

	Verify that SparkSession is created as spark.





Once you enter into the PySpark shell, an instance
of SparkSession is created as the spark variable
and an instance of SparkContext is created as the sc variable. As you learned earlier in this chapter, the SparkSession is the entry
point to programming Spark with the Dataset and
DataFrame APIs; a SparkSession can be used to
create DataFrames, register DataFrames as tables,
execute SQL over tables, cache tables, and
read CSV, JSON, and Parquet files.
If you want to use PySpark in a self-contained
application, then you have to explicitly create
a SparkSession using the builder pattern shown in “Spark architecture in a nutshell”.
A SparkContext is the main entry point for Spark functionality; it can be used to
create RDDs from text files and Python
collections. We’ll look at that next.

















Creating an RDD from a Collection


Spark enables us to create new RDDs from files
and collections (data structures such as arrays and lists).
Here, we use SparkContext.parallelize() to
create a new RDD from a collection (represented
as data):


>>> data = [ [image: 1]
    ("fox", 6), ("dog", 5), ("fox", 3), ("dog", 8),
    ("cat", 1), ("cat", 2), ("cat", 3), ("cat", 4)
]

>>># use SparkContext (sc) as given by the PySpark shell
>>># create an RDD as rdd
>>> rdd = sc.parallelize(data) [image: 2]
>>> rdd.collect() [image: 3]
[
 ('fox', 6), ('dog', 5), ('fox', 3), ('dog', 8),
 ('cat', 1), ('cat', 2), ('cat', 3), ('cat', 4)
]
>>> rdd.count() [image: 4]
8


	[image: 1]

	Define your Python collection.


	[image: 2]

	Create a new RDD from a Python collection.


	[image: 3]

	Display the contents of the new RDD.


	[image: 4]

	Count the number of elements in the RDD.




















Aggregating and Merging Values of Keys


The reduceByKey() transformation is
used to merge and aggregate values.
In this example, x and y
refer to the values of the same key:


>>> sum_per_key = rdd.reduceByKey(lambda x, y : x+y) [image: 1]
>>> sum_per_key.collect() [image: 2]
[
 ('fox', 9),
 ('dog', 13),
 ('cat', 10)
]


	[image: 1]

	Merge and aggregate values of the same key.


	[image: 2]

	Collect the elements of the RDD.





The source RDD for this transformation must consist of (key, value) pairs. reduceByKey()
merges the values for each key using an
associative and commutative reduce function.
This will also perform the merging locally
on each mapper before sending the results to a
reducer, similarly to a “combiner” in MapReduce.
The output will 
be partitioned with numPartitions
partitions, or the default parallelism level
if numPartitions is not specified. The default
partitioner is HashPartitioner.


If T is the type of the value for (key, value) pairs,
then reduceByKey()’s func() can be defined as:


# source_rdd : RDD[(K, T)]
# target_rdd : RDD[(K, T)]
target_rdd = source_rdd.reduceByKey(lambda x, y: func(x, y))
# OR you may write it by passing the function name
# target_rdd = source_rdd.reduceByKey(func)
# where
#      func(T, T) -> T
# Then you may define `func()` in Python as:
# x: type of T
# y: type of T
def func(x, y):
  result = <aggregation of x and y: return a result of type T>
  return result
#end-def


This means that:



	
There are two input arguments (of the same type, T)
for the reducer func().



	
The return type of func() must be the same as the
input type T (this limitation can be avoided if you
use the combineByKey() transformation).



	
The reducer func() has to be associative. Informally,
a binary operation f() on a set T is called associative
if it satisfies the associative law, which states that the order in which numbers are grouped does not change the result of the operation.

Associative Law

f(f(x, y), z) = f(x, f(y, z))


Note that the associative law holds for
addition (+) and multiplication (*), but not for subtraction (-)
or division (/).





	
The reducer func() has to be commutative: informally,
a function f() for which f(x, y) = f(y, x) for all
values of x and y. That is, a change in the order of the numbers should not affect the result of the operation.

Commutative Law

f(x, y) = f(y, x)


The commutative law also holds for
addition and multiplication, but not for subtraction
or division. For example:


5 + 3 = 3 + 5 but 5 – 3 ≠ 3 – 5








Therefore, you may not use subtraction or division
operations in a reduceByKey() transformation.

















Filtering an RDD’s Elements


Next, we’ll use the filter() transformation to
return a new RDD containing only the elements
that satisfy a predicate:


>>> sum_filtered = sum_per_key.filter(lambda x : x[1] > 9) [image: 1]
>>> sum_filtered.collect() [image: 2]
[
 ('cat', 10),
 ('dog', 13)
]


	[image: 1]

	Keep the (key, value) pairs if the value is greater than 9.


	[image: 2]

	Collect the elements of the RDD.




















Grouping Similar Keys


We can use the groupByKey() transformation to group the values for each key in the RDD
into a single sequence:


>>> grouped = rdd.groupByKey() [image: 1]
>>> grouped.collect() [image: 2]
[
 ('fox', <ResultIterable object at 0x10f45c790>), [image: 3]
 ('dog', <ResultIterable object at 0x10f45c810>),
 ('cat', <ResultIterable object at 0x10f45cd90>)
]
>>>
>>># list(v) converts v as a ResultIterable into a list
>>> grouped.map(lambda (k,v) : (k, list(v))).collect()  [image: 4]
[
 ('fox', [6, 3]),
 ('dog', [5, 8]),
 ('cat', [1, 2, 3, 4])
]


	[image: 1]

	Group elements of the same key into a sequence of elements.


	[image: 2]

	View the result.


	[image: 3]

	The full name of ResultIterable is pyspark.resultiterable.ResultIterable.


	[image: 4]

	First apply map() and then collect(), which returns a
list that contains all of the elements in the resulting RDD. The
list() function converts ResultIterable into a list of
objects.





The source RDD for this transformation must be composed of (key, value) pairs. groupByKey()
groups the values for each key in the  RDD
into a single sequence, and hash-partitions the
resulting RDD with numPartitions partitions, or with the default level of parallelism if numPartitions is not specified.
Note that if you are grouping (using the
groupByKey() transformation) in order to
perform an aggregation, such as a sum or
average, over each key, using reduceByKey()
or aggregateByKey() will provide much better
performance.

















Aggregating Values for Similar Keys


To aggregate and sum up the values for each
key, we can use the mapValues() transformation
and the sum() function:


>>> aggregated = grouped.mapValues(lambda values : sum(values)) [image: 1]
>>> aggregated.collect() [image: 2]
[
 ('fox', 9),
 ('dog', 13),
 ('cat', 10)
]


	[image: 1]

	values is a sequence of values
per key. We pass each value in the (key, value)
pair RDD through a mapper function (adding all values
with sum(values)) without changing the keys.


	[image: 2]

	For debugging, we return a list that contains all
of the elements in this RDD.





We have several choices for aggregating and summing
up values: reduceByKey()
and groupByKey(), to mention a few. In general, the
reduceByKey() transformation is more efficient than
the groupByKey() transformation. More details on this are provided in Chapter 4.


As you’ll see in the following chapters, Spark has many other powerful transformations that can convert an RDD into a new RDD.  As mentioned earlier, RDDs are read-only, immutable, and distributed. RDD
transformations return a pointer to a new RDD and
allow you to create dependencies between RDDs.
Each RDD in the dependency chain (or string of dependencies)
has a function for calculating its data and a
pointer (dependency) to its parent RDD.


Serverless Spark

If you do not  have the budget to set up your
own dedicated Spark cluster, then you can
use either Amazon’s AWS Glue or Databricks’s
Serverless Spark. Both these options reduce operational complexity and costs for big
data and interactive data science applications.


For example, you can use AWS Glue to create a PySpark job and then
submit it to a dynamic cluster. You don’t own the cluster; you just pay for the compute time of your
PySpark job.


Serverless Spark can help reduce
operational costs by using a predefined
pool of clusters  provided  by cloud
services such as Amazon and Databricks.


It is expected that most cloud
services will provide Serverless Spark
as a service.



Data Analysis Tools for PySpark

	Jupyter

	
Jupyter is a great tool to test and prototype
programs.  PySpark can also be used from Jupyter
notebooks; it’s very practical for
explorative data analysis.



	Apache Zeppelin

	
Zeppelin is a web-based notebook that enables
data-driven, interactive data analytics and
collaborative documents with SQL, Python, Scala,
and more.






























ETL Example with DataFrames


In data analysis and computing, ETL is the general procedure
of copying data from one or more sources into
a destination system that represents the data
differently from the source(s) or in a different
context than the source(s).  Here I will show how Spark makes ETL possible and easy.


For this ETL example, I’ll use 2010 census data in JSON format (census_2010.json):


$ wc -l census_2010.json
101 census_2010.json

$ head -5 census_2010.json
{"females": 1994141, "males": 2085528, "age": 0, "year": 2010}
{"females": 1997991, "males": 2087350, "age": 1, "year": 2010}
{"females": 2000746, "males": 2088549, "age": 2, "year": 2010}
{"females": 2002756, "males": 2089465, "age": 3, "year": 2010}
{"females": 2004366, "males": 2090436, "age": 4, "year": 2010}

Note

This data was pulled from U.S. Census Bureau data, which at the time of writing this book only provides the binary options of male and female. We strive to be as inclusive as possible, and hope that in the future national data sets such as these will provide more inclusive options.




Let’s define our ETL process:


	Extraction

	
First, we create a DataFrame
from a given JSON document.



	Transformation

	
Then we filter the data and keep the
records for seniors (age > 54). Next, we add a new
column, total, which is the total of males and
females.



	Loading

	
Finally, we write the revised
DataFrame into a MySQL database and verify the load
process.






Let’s dig into this process a little more deeply.










Extraction


To do a proper extraction, we first need to create an
instance of the SparkSession class:


from pyspark.sql import SparkSession
spark = SparkSession.builder \
    .master("local") \
    .appName("ETL") \
    .getOrCreate()


Next, we read the JSON and create a DataFrame:


>>> input_path = "census_2010.json"
>>> census_df = spark.read.json(input_path)
>>> census_df.count()
101
>>> census_df.show(200)
+---+-------+-------+----+
|age|females|  males|year|
+---+-------+-------+----+
|  0|1994141|2085528|2010|
|  1|1997991|2087350|2010|
|  2|2000746|2088549|2010|
...
| 54|2221350|2121536|2010|
| 55|2167706|2059204|2010|
| 56|2106460|1989505|2010|
...
| 98|  35778|   8321|2010|
| 99|  25673|   4612|2010|
+---+-------+-------+----+
only showing top 100 rows

















Transformation


Transformation can involve many processes
whose purpose is to clean, format, or perform computations on
the data to suit your requirements.
For example, you can remove missing or duplicate
data, join columns to create new columns, or filter
out certain rows or columns.  Once we’ve created the DataFrame through the extraction process, we can
perform many useful transformations, such
as selecting just the seniors:


>>> seniors = census_df[census_df['age'] > 54]
>>> seniors.count()
46
>>> seniors.show(200)
+---+-------+-------+----+
|age|females|  males|year|
+---+-------+-------+----+
| 55|2167706|2059204|2010|
| 56|2106460|1989505|2010|
| 57|2048896|1924113|2010|
...
| 98|  35778|   8321|2010|
| 99|  25673|   4612|2010|
|100|  51007|   9506|2010|
+---+-------+-------+----+


Next, we create a new aggregated column called total,
which adds up the numbers of males and females:


>>> from pyspark.sql.functions import lit
>>> seniors_final = seniors.withColumn('total',
  lit(seniors.males + seniors.females))
>>> seniors_final.show(200)
+---+-------+-------+----+-------+
|age|females|  males|year|  total|
+---+-------+-------+----+-------+
| 55|2167706|2059204|2010|4226910|
| 56|2106460|1989505|2010|4095965|
| 57|2048896|1924113|2010|3973009|
...
| 98|  35778|   8321|2010|  44099|
| 99|  25673|   4612|2010|  30285|
|100|  51007|   9506|2010|  60513|
+---+-------+-------+----+-------+

















Loading


The loading process involves saving or writing the
final output of the transformation step. Here, we
will write the seniors_final DataFrame into
a MySQL table:


seniors_final\
  .write\
  .format("jdbc")\
  .option("driver", "com.mysql.jdbc.Driver")\
  .mode("overwrite")\
  .option("url", "jdbc:mysql://localhost/testdb")\
  .option("dbtable", "seniors")\
  .option("user", "root")\
  .option("password", "root_password")\
  .save()


The final step of loading is to verify the load
process:


$ mysql -uroot -p
Enter password: <password>
Your MySQL connection id is 9
Server version: 5.7.30 MySQL Community Server (GPL)

mysql> use testdb;
Database changed
mysql> select * from seniors;
+------+---------+---------+------+---------+
| age  | females | males   | year | total   |
+------+---------+---------+------+---------+
|   55 | 2167706 | 2059204 | 2010 | 4226910 |
|   56 | 2106460 | 1989505 | 2010 | 4095965 |
|   57 | 2048896 | 1924113 | 2010 | 3973009 |
...
|   98 |   35778 |    8321 | 2010 |   44099 |
|   99 |   25673 |    4612 | 2010 |   30285 |
|  100 |   51007 |    9506 | 2010 |   60513 |
+------+---------+---------+------+---------+
46 rows in set (0.00 sec)
























Summary


Let’s recap some key points from the chapter:



	
Spark is a fast and powerful unified
analytics engine (up to one hundred times faster than
traditional Hadoop MapReduce) due to its
in-memory operation, and it offers robust,
distributed, fault-tolerant data abstractions
(called RDDs and DataFrames).
Spark integrates with the world of machine
learning and graph analytics through
the MLlib (machine learning library)
and GraphX (graph library) packages.



	
You can use Spark’s transformations and actions in
four programming languages: Java, Scala, R,
and Python. PySpark (the Python API for
Spark) can be used for solving big data problems, efficiently transforming your data into the
desired result and format.



	
Big data can be represented using Spark’s
data abstractions (RDDs, DataFrames, and Datasets—all of these are distributed datasets).



	
You can run PySpark from the PySpark shell
(using the pyspark command from a command line) for
interactive Spark programming. Using the PySpark
shell, you can create and manipulate RDDs
and DataFrames.



	
You can submit a standalone
PySpark application to a Spark cluster by
using the spark-submit command;
self-contained applications using PySpark
are deployed to production environments.



	
Spark offers many transformations and actions for solving big data problems, and their performance differs (for example,
reduceByKey() versus groupByKey()
 and combineByKey() versus groupByKey()).






The next chapter dives into some important Spark transformations.













Chapter 2. Transformations in Action



In this chapter, we will explore the most
important Spark transformations (mappers
and reducers) in the context of data
summarization design patterns, and examine how to select specific
transformations for targeted problems.


As you will see, for a given
problem (we’ll use the DNA base count problem here)
there are multiple possible PySpark solutions
using  different Spark transformations,
but the efficiency of these transformations
differs due to their implementation and
shuffle processes (when the grouping of values
by key happens). The DNA base count problem
is very similar to the classic word count problem
(finding the frequency of unique words in a
set of files/documents), with the difference
that in DNA base counting you find the
frequencies of DNA letters (A, T, C,
G).


I chose this problem because in solving it
we will learn about data summarization, condensing a large quantity of information (here, DNA
data strings/sequences) into a much smaller set of useful
information (the frequency of DNA letters).


This chapter provides three complete end-to-end solutions in PySpark, using different mappers and reductions to solve the DNA base count problem. We’ll discuss the performance differences between them, and explore data summarization design 
patterns.


Source Code

Complete programs for this chapter are available in the book’s GitHub repository.










The DNA Base Count Example


The purpose of our example in this chapter is to count
DNA bases in a given set of DNA strings/sequences. Don’t worry, you don’t need
to be an expert in DNA, biology, or
genomics to understand this example.
I’ll cover the basics, which
should be all you need to get the idea.


Human DNA consists of about 3 billion
bases, and more than 99% of those
bases are the same in all people. To understand DNA
base counting, we need to first understand
DNA strings. DNA strings are constructed
from the alphabet {A, C, G, T}, whose
symbols represent the bases adenine (A),
cytosine (C), guanine (G), and thymine
(T). Our DNA is composed of a set of DNA
strings. The question we want to answer is
how many times each base letter occurs in a set of DNA strings. For example,
if we have the DNA string "AAATGGCATTA" and
we  ask  how  many times the  base A
occurs in this string, the  answer  is
5; if we  ask  how  many  times
the  base T occurs in  this  string,
the answer  is  3. So, we
want to count the number of occurrences of each
base letter, ignoring case. Since
DNA machines might produce uppercase and
lowercase letters, we will convert
all of them to lowercase.


For  this  problem,  I will provide  three
distinct solutions using different combinations of
powerful and efficient Spark transformations.  Even though all the
solutions generate the same results,
their  performance will  be different
due to the transformations used.


Figure 2-1 illustrates the process of
solving the DNA base count problem using Spark. For each solution, we will write a driver program  in Python using the
PySpark API (a series of
Spark transformations and actions) and submit the program to a Spark
cluster. All the solutions will read input (FASTA
files format, to be defined shortly)
and produce a dictionary, where the
key is a DNA letter and the value is
the associated frequency.


These three solutions will show
that we have choices in selecting Spark
transformations for solving this problem (and any data problem you
are trying to solve) and that the performance of the different transformations varies. A summary of the three
PySpark solutions is provided in Table 2-1.



[image: daws 0201]
Figure 2-1. Solving the DNA base count problem




Table 2-1. Solutions for the DNA base count problem


	
	Solution 1
	Solution 2
	Solution 3





	Program

	dna_bc_ver_1.py

	dna_bc_ver_2.py

	dna_bc_ver_3.py




	Design pattern

	Basic MapReduce

	In-mapper combiner

	Mapping partitions




	Transformations

	textFile()

	textFile()

	textFile()




	
	flatMap()

	flatMap()

	mapPartitions()




	
	reduceByKey()

	reduceByKey()

	reduceByKey()







As Table 2-2 shows, the three programs performed very differently on my machine (a MacBook with 16 GB RAM, a 2.3 GHz Intel
processor, and a 500 GB hard disk). Note I used the default
parameters with the $SPARK_HOME/bin/spark-submit
command for all of them; no optimization was done for any solution.


Table 2-2. Performance of the three solutions


	Input data (in bytes)
	Version 1
	Version 2
	Version 3





	253,935,557

	72 seconds

	27 seconds

	18 seconds




	1,095,573,358

	258 seconds

	79 seconds

	57 seconds







What does this basic performance table
tell you? When you write your PySpark
applications, you have a lot of choices.  There are no hard and fast
rules   for   which transformations or actions to use; this will depend on the specifics of your data and your program. In general,  when you write a
PySpark application, you can choose from a variety of arrangements  of
transformations and actions that will
produce  the  same  results. However,
not   all   these   arrangements will result
in the same   performance:    avoiding
common pitfalls and picking the right
combination  can  make  a world  of
difference   in   an   application’s
performance.


For example, for a large set of (key, value)
pairs, using reduceByKey() or   combineByKey()
is  typically more efficient than using the combination of
groupByKey() and mapValues(),  because
they reduce the shuffling time. If your RDD (represented by the variable rdd) is an RDD[(String, Integer)] (an RDD where each element is a pair of (key-as-String, value-as-Integer)), then this:


# rdd: RDD[(String, Integer)]
rdd.groupByKey().mapValues(lambda values : sum(values))


will produce the same results as this:


# rdd: RDD[(String, Integer)]
rdd.reduceByKey(lambda x,y: x+y)


However, the groupByKey() operation will transfer
the  entire dataset  across  the  cluster
network (incurring a large performance penalty),
while  the  reduceByKey() operation will  compute
local  sums  for  each  key in each partition and combine
those local sums into larger sums after
shuffling. Therefore, reduceByKey() will
transfer  much  less  data across the cluster network than
groupByKey(), which means that in most 
situations reduceByKey()
will   outperform the combination   of
groupByKey() and mapValues().


Now, let’s dig into a little more detail on our DNA base count problem.










The DNA Base Count Problem


The goal of this example is to find the
frequencies (or percentages) of the letters A,
T, C, G, and N (the letter N
denotes any letter other than A, T,
C, or G—i.e., an error) in a given set of DNA
sequences. As I mentioned earlier, {'A',
'T', 'C', 'G'} stand for the four
nitrogenous bases associated with
DNA.


DNA sequences can be huge—for example, the human genome consists of
three billion DNA base pairs, while the
diploid genome (found in somatic cells)
has twice the DNA content—and can contain both uppercase and
lowercase letters. For consistency,
we will convert all letters to lowercase. The goal of
DNA base counting for our example
is to generate the frequencies for each DNA base. Table 2-3 shows the result for the example sequence "ACGGGTACGAAT". Note
that I am using the key z to find the
total number of DNA sequences processed.


Table 2-3. DNA base count example


	Base
	Count





	a

	4




	t

	2




	c

	2




	g

	4




	n

	0




	z

	1 (the total number of DNA sequences)






















FASTA Format


DNA sequences can be represented in
many different formats, including FASTA
and FASTQ. These are popular text-based
formats where the input is given as a text file.
Our solutions will only handle FASTA format,
since it is much easier to read FASTA
files. Both the FASTA and FASTQ formats
store  sequence  data  and  sequence
metadata. With some minor modifications
to the presented solutions, you can use them with inputs in
FASTQ  format; a FASTQ solution is provided on GitHub.


A sequence file in FASTA format
can contain many DNA sequences.
Each sequence begins with a single-line
description, followed by one or many lines
of sequence data. According to the FASTA
format specification, the description
line must begin with a greater-than symbol (>) in the first column. Note that
the description line may be used for
counting the number of sequences and
does not contain any DNA sequence data.

















Sample Data


We’ll use the sample.fasta file, available in the book’s GitHub repository, as a test case
for our PySpark programs. This small FASTA file contains four sample DNA sequences (remember, the case of the characters is irrelevant):


$ cat sample.fasta
>seq1
cGTAaccaataaaaaaacaagcttaacctaattc
>seq2
agcttagTTTGGatctggccgggg
>seq3
gcggatttactcCCCCCAAAAANNaggggagagcccagataaatggagtctgtgcgtccaca
gaattcgcacca
AATAAAACCTCACCCAT
agagcccagaatttactcCCC
>seq4
gcggatttactcaggggagagcccagGGataaatggagtctgtgcgtccaca
gaattcgcacca


To test the DNA base count programs provided in
this chapter with larger files, you can download FASTA data from the
University of California, Santa Cruz website.


Next, we’ll walk through three distinct
PySpark solutions for the DNA base count
problem, using different Spark transformations.
Remember that while the outcome of all the solutions is the same (they produce the same results), the performance of
each solution will differ due to the nature
of the data and the transformations used.
























DNA Base Count Solution 1


The first version I’ll present is a very basic
solution  for  the  DNA base count
problem. The high-level workflow is shown in
Figure 2-2.



[image: daws 0202]
Figure 2-2. DNA base count solution




It consists of three simple steps:


	
Read FASTA input data and create
an RDD[String], where each RDD
element is a FASTA record (it can
be either a  comment  line  or an
actual DNA sequence).



	
Define a mapper function: for every
DNA letter in a FASTA record, emit
a pair of (dna_letter, 1), where
dna_letter is in {A, T, C, G}
and 1 is a frequency (similar to
a word count solution).



	
Sum up the frequencies for all DNA
letters (this is a reduction step).
For each unique dna_letter, group
and add all frequencies.







To test this solution, I will
use the sample.fasta file presented earlier.










Step 1: Create an RDD[String] from the Input


The SparkContext.textFile() function is
used to create an RDD[String] for input
in FASTA text-based format. textFile()
can be used to read a text file from HDFS,
Amazon S3, a local filesystem (available
on all Spark nodes), or any Hadoop-supported
filesystem URI, and return it as an RDD[String]. If spark is an instance of the
SparkSession class,  then to create a FASTA
records RDD (as denoted by records_rdd), we
have at least two options. We can use the SparkSession:


>>># spark: instance of SparkSession
>>> input_path = "./code/chap02/sample.fasta" [image: 1]
>>> records_rdd = spark.read
                       .text(input_path)
                       .rdd.map(lambda r: r[0]) [image: 2]


	[image: 1]

	Define the input path.


	[image: 2]

	Use the DataFrameReader interface (accessed with spark.read) to
create a DataFrame and then convert it to
an RDD[String].




DataFrameReader and DataFrameWriter

Spark’s DataFrameReader class is an interface
to read data from external data sources—such as
text, CSV, and JSON files, Parquet and ORC files, Hive tables, or Java Database Connectivity (JDBC)-compliant database tables—into a DataFrame. Its DataFrameWriter class is an interface
to write a DataFrame into an external data source.




Or we can use the SparkContext:


>>> input_path = "./code/chap02/sample.fasta" [image: 1]
>>># Let 'spark' be an instance of SparkSession
>>> sc = spark.sparkContext [image: 2]
>>> records_rdd = sc.textFile(input_path) [image: 3]


	[image: 1]

	Define the input path.


	[image: 2]

	Create an instance of SparkContext (as sc).


	[image: 3]

	Use the SparkContext to read input
and create an RDD[String].





The second option is preferable, because it is
easy and efficient. The first one works too,
but it’s less efficient because it first creates a DataFrame, then
converts it to an RDD, and eventually performs
another mapper transformation.


Next we’ll examine the contents of the created
RDD. Each RDD element (as a String) is denoted
by u'<element>':


>>> records_rdd.collect()
[
 u'>seq1',
 u'cGTAaccaataaaaaaacaagcttaacctaattc',
 u'>seq2',
 u'agcttagTTTGGatctggccgggg',
 u'>seq3',
 u'gcggatttactcCCCCCAAAAANNaggggagagcccagataaatggagtctgtgcgtccaca',
 u'gaattcgcacca',
 u'AATAAAACCTCACCCAT',
 u'agagcccagaatttactcCCC',
 u'>seq4',
 u'gcggatttactcaggggagagcccagGGataaatggagtctgtgcgtccaca',
 u'gaattcgcacca'
]

Tip

The RDD.collect() method is used here
to get the content as a list of String objects
and display it. As mentioned in Chapter 1, for large RDDs you should not
use collect(), which might cause OOM errors as well as incurring a performance
penalty.  To just view the first N elements of
an RDD, you may use RDD.take(N).



















Step 2: Define a Mapper Function


To map RDD elements into a set of pairs
(dna_letter, 1), we’ll need to define a Python
function that will be passed to the flatMap()
transformation. flatMap() is a 1-to-many
transformation; it returns a new RDD by first
applying a function to all elements of the source RDD and then flattening the results. For
example, if the Python function we pass to the flatMap() transformation
returns a list as [V1, V2, V3],
then that will be flattened into three target
RDD elements, V1, V2, and V3.
Informally, we can write this as:

	Create an iterable list:


single_RDD_element() -> [V1, V2, V3]




	Flatten the list into many elements (here, three target elements):


[V1, V2, V3] -> V1, V2, V3





For this solution we’ll define
a function, process_FASTA_record(), that
accepts an RDD element (a single record
of the FASTA file as a String) and returns
a list of pairs as (dna_letter, 1). For
example, given the input record "AATTG", it will emit
the following (key, value) pairs (recall that we’re converting all the DNA letters to lowercase):


(a, 1)
(a, 1)
(t, 1)
(t, 1)
(g, 1)


If the input is a description record (which contains no
sequence data and begins with >seq),
then we emit (z, 1). This will enable
us to find the number of sequences as well.
If the input is a DNA sequence we first
tokenize it by characters and then, for each
DNA letter (denoted by dna_letter), we
emit (dna_letter, 1). Finally, we return a
list of these pairs. The function definition follows. Note that I have included some
print statements for debugging purposes, but in a production environment these should be removed as they will
cause performance penalties:


# Parameter: fasta_record: String (a single FASTA record)
#
# Output: a list of (key, value) pairs, where key
#         is a dna_letter and value is a frequency
#
def process_FASTA_record(fasta_record):
    key_value_list = [] [image: 1]

    if (fasta_record.startswith(">")):
        # z counts the number of FASTA sequences
        key_value_list.append((z, 1)) [image: 2]
    else:
        chars = fasta_record.lower()
        for c in chars:
            key_value_list.append((c, 1)) [image: 3]

    print(key_value_list) [image: 4]
    return key_value_list [image: 5]
#end-def


	[image: 1]

	Create an empty list, to which we will add (key, value) pairs (this is our
output from this function).


	[image: 2]

	Append (z, 1) to the list.


	[image: 3]

	Append (c, 1) to the list, where
c is a DNA letter.


	[image: 4]

	For debugging purposes only.


	[image: 5]

	Return a list of (key, value) pairs,
which will be flattened by the flatMap() 
transformation.





Now, we will use this function to apply
the flatMap() transformation to the
records_rdd (RDD[String]) we just created:


>>># rec refers to an element of records_rdd
>>># Lambda is a notation that defines input and output
>>>#   input: "rec" as a records_rdd element [image: 1]
>>>#   output: result of process_FASTA_record(rec)
>>> pairs_rdd = records_rdd.flatMap(lambda rec: process_FASTA_record(rec)) [image: 2]


	[image: 1]

	The source RDD (records_rdd) is an RDD[String].


	[image: 2]

	We use a lambda expression, where rec denotes
a single element of records_rdd. The target
RDD (pairs_rdd) is an RDD[(String, Integer)].





Alternatively, we can write it as follows (without
using a lambda expression):


>>> pairs_rdd = records_rdd.flatMap(process_FASTA_record)


For example, if an element of records_rdd
contains the DNA sequence as "gaattcg", then it
will be flattened into the following (key, value)
pairs:


(g, 1)
(a, 1)
(a, 1)
(t, 1)
(t, 1)
(c, 1)
(g, 1)


If an element of records_rdd contains
>seq, then it will be flattened into the
following (key, value) pair (recall that we use the key
z to find the total number of DNA sequences
for a given input):


(z, 1)

















Step 3: Find the Frequencies of DNA Letters


pairs_rdd now contains a set of
(key, value) pairs where the key is a
DNA letter and the value is its frequency (1). Next, we apply the
reduceByKey() transformation to
pairs_rdd to find the aggregated
frequencies for all DNA letters.


The reduceByKey() transformation merges
the values for each unique key using an
associative and commutative reduce function
(we’ll use addition as our reduction function).
Therefore, we can now see that we are simply
taking an accumulated value for the given
key and summing it with the next value of
that key.  In other words, if key K
has five pairs in the RDD, (K, 2), (K, 3),
(K, 6), (K, 7), and (K, 8), then the
reduceByKey() transformation will transform
these five pairs into a single pair, (K, 26)
(because 2 + 3 + 6 + 7 + 8 = 26). If these five pairs were stored on two partitions, each partition would be processed in parallel
and independently:


Partition-1: {
               (K, 2),
               (K, 3)
             }

   (K, 2), (K, 3) => (K, 2+3) = (K, 5)
   Result of Partition-1: (K, 5)


Partition-2: {
               (K, 6),
               (K, 7),
               (K, 8)
             }

   (K, 6), (K, 7)  => (K, 6+7) = (K, 13)
   (K, 8), (K, 13) => (K, 8+13) = (K, 21)
   Result of Partition-2: (K, 21)


And then the partitions would be merged:


Merge Partitions:
  => Partition-1, Partition-2
  => (K,5), (K, 21)
  => (K, 5+21) = (K, 26)

  Final result: (K, 26)


To produce the final result, we use the reduceByKey() transformation:


# x and y refer to the frequencies of the same key
# source: pairs_rdd: RDD[(String, Integer)]
# target: frequencies_rdd: RDD[(String, Integer)]
frequencies_rdd = pairs_rdd.reduceByKey(lambda x, y: x+y)


Note that the source and target data types
for reduceByKey() are the same. That is, if the
source RDD is an RDD[(K, V)] then the target
RDD will also be an RDD[(K, V)].
Spark’s combineByKey() transformation
does not have the data type restrictions
for values imposed by reduceByKey().


There are several ways that you can view the
final output.  For example, you can use the
RDD.collect() function to get the final
RDD’s elements as a list of pairs:


frequencies_rdd.collect()
[
  (u'a', 73),
  (u'c', 61),
  (u't', 45),
  (u'g', 53),
  (u'n', 2),
  (u'z', 4)
]


Or you can use the RDD.collectAsMap()
action to return the result as a hash map:


>>> frequencies_rdd.collectAsMap()
{
  u'a': 73,
  u'c': 61,
  u't': 45,
  u'g': 53,
  u'n': 2,
  u'z': 4
}


You can also use other Spark transformations
to aggregate frequencies of DNA letters.
For example, you could group the frequencies
(using  groupByKey()) by DNA  letter and  then  add  all the
frequencies  together.  This solution
is, however, less  efficient  than  using the reduceByKey()
transformation:


grouped_rdd = pairs_rdd.groupByKey() [image: 1]
frequencies_rdd = grouped_rdd.mapValues(lambda values : sum(values)) [image: 2]
frequencies_rdd.collect()


	[image: 1]

	grouped_rdd is an RDD[(String, [Integer])],
where the key is a String and the value is a
list/iterable of Integers (as frequencies).


	[image: 2]

	frequencies_rdd is an RDD[(String, Integer)].





For example, if pairs_rdd contains four pairs of ('z', 1),  then grouped_rdd will have a single pair
of ('z', [1, 1, 1, 1]). That is, it
groups values for the same key. While
both   of   these   transformations
(reduceByKey()  and groupByKey())
produce  the  correct  answer, reduceByKey() works much
better  on  a  large  FASTA  dataset.
That’s  because  Spark  knows it can
combine output with a common key (DNA
letter)  on  each  partition  before
shuffling the data.  Spark experts
recommend that we avoid
groupByKey() and   use   reduceByKey()
and combineByKey() whenever possible, as they scale out better than groupByKey().


If you want to save your created RDD to disk, you can use
RDD.saveAsTextFile(path), where path is your output directory name.

















Pros and Cons of Solution 1


Let’s take a look at some of the pros and cons of this solution:


	Pros

	


	
The provided solution works and
is simple. It uses minimal code to get the job done with Spark’s map()
and reduceByKey() transformations.



	
There is no scalability issue since
we use reduceByKey() to reduce all the (key, value) pairs. This transformation
will  automatically   perform  the
combine() optimization (local
aggregation) on all worker nodes.







	Cons

	


	
This solution emits a large number of
(key, value) pairs (one for each letter in the input), which might
cause memory problems. If you get
an error because too many (key, value)
pairs are produced, try adjusting the RDD’s
StorageLevel. By default, Spark uses
MEMORY_ONLY, but you can set the StorageLevel
to 
MEMORY_AND_DISK for this RDD.



	
Performance is not optimal because emitting a large number of (key, value) pairs
will place a high load on the network and prolong the
shuffle time. The network will be a bottleneck
when scaling this solution.










Next, I’ll present a second solution for the DNA base count problem.
























DNA Base Count Solution 2


Solution 2 is an improved version of
solution 1.  In solution 1, we emitted
pairs of (dna_letter, 1) for each DNA
letter in the input DNA sequences. FASTA sequences can be very long, with multiple (dna_letter, 1) pairs per DNA letter. So, in this version we will perform an in-mapper combining optimization (a design pattern discussed in much greater depth in Chapter 10) to reduce the number of intermediate (key, value) pairs that are emitted by the mapper. We will aggregate the (dna_letter, 1) pairs into a hash map (an unordered collection of (key, value) pairs stored in a hash table, where the keys are unique), then flatten the hash map into a
list and finally aggregate the frequencies. For example, given the
FASTA sequence record "aaatttcggggaa",
the values in column 2 of Table 2-4 will be emitted
instead of the values in column 1 (as in solution 1).


Table 2-4. Emitted (key, value) pairs for the sequence “aaatttcggggaa”


	Solution 1
	Solution 2





	(a, 1)

	(a, 5)




	(a, 1)

	(t, 3)




	(a, 1)

	(c, 1)




	(t, 1)

	(g, 4)




	(t, 1)

	



	(t, 1)

	



	(c, 1)

	



	(g, 1)

	



	(g, 1)

	



	(g, 1)

	



	(g, 1)

	



	(a, 1)

	



	(a, 1)

	






The advantage of this solution is that it will emit many fewer (key, value)
pairs, which will reduce the cluster
network traffic and hence improve
the overall performance of our program.


Solution 2 can be summarized as follows:


	
Read FASTA input data and create an
RDD[String], where each RDD element
is a FASTA record. This step is the
same as in solution 1.



	
For every FASTA record,
create a  HashMap[Key, Value] (a
dictionary or hash table) where the key is a DNA letter and the value is an
aggregated frequency for that
letter. Then, flatten the hash map (using Spark’s
flatMap()) into a list
of (key, value) pairs. This step is
different from solution 1 and enables us to emit fewer (key, value) pairs.



	
For each DNA letter, aggregate and sum all the frequencies. This is a reduction step, and it is the same as in solution 1.







The workflow is presented visually in Figure 2-3.



[image: daws 0203]
Figure 2-3. DNA base count solution 2




Let’s dig into the details of each step.










Step 1: Create an RDD[String] from the Input


The SparkContext.textFile() function is used
to create an RDD for input in FASTA text-based
format. Let spark be a SparkSession object:


>>># spark: an instance of SparkSession
>>> input_path = "./code/chap02/sample.fasta"
>>> records_rdd = spark.sparkContext.textFile(input_path) [image: 1]


	[image: 1]

	records_rdd is an RDD[String].




















Step 2: Define a Mapper Function


Next, we’ll map each RDD element (which represents
a single FASTA record as a String) into a
list of (key, value) pairs, where the key is a
unique DNA letter and the value is an aggregated
frequency for the entire record.


We define a Python function, which is passed to the
flatMap() transformation to return a new
RDD, by first applying a function to all
elements of this RDD and then flattening
the results.


To process the RDD elements, we’ll define a
Python function, p⁠r⁠o⁠c⁠e⁠s⁠s​_⁠F⁠A⁠S⁠T⁠A⁠_as_hashmap, which accepts an RDD element
as a String and returns a list of
(dna_letter, frequency). Note that I’ve included some
print statements here for debugging and teaching purposes, which should be removed
for production 
environments:


# Parameter: fasta_record: String, a single FASTA record
# output: a list of (dna_letter, frequency)
#
def process_FASTA_as_hashmap(fasta_record):
    if (fasta_record.startswith(">")): [image: 1]
        return [("z", 1)]

    hashmap = defaultdict(int) [image: 2]
    chars = fasta_record.lower()
    for c in chars: [image: 3]
        hashmap[c] += 1
    #end-for
    print("hashmap=", hashmap)

    key_value_list = [(k, v) for k, v in hashmap.iteritems()] [image: 4]
    print("key_value_list=", key_value_list)
    return key_value_list [image: 5]
#end-def


	[image: 1]

	> indicates a comment line in a DNA sequence.


	[image: 2]

	Create a dict[String, Integer].


	[image: 3]

	Aggregate the DNA letters.


	[image: 4]

	Flatten the dictionary into a list of (dna_letter, frequency) pairs.


	[image: 5]

	Return the flattened list of (dna_letter, frequency) pairs.





Now, we will use this Python function, to apply
the flatMap() transformation to the
records_rdd (an RDD[String]) created
earlier:


>>># source: records_rdd (RDD[String])
>>># target: pairs_rdd (RDD[(String, Integer)])
>>> pairs_rdd = records_rdd.flatMap(lambda rec: process_FASTA_as_hashmap(rec))


Alternatively, we can write this as follows without the lambda expression:


>>># source: records_rdd (as RDD[String])
>>># target: pairs_rdd (as RDD[(String, Integer)])
>>> pairs_rdd = records_rdd.flatMap(process_FASTA_as_hashmap)


For example, if the records_rdd element contains
'gggggaaattccccg', then it will be flattened
into the following (key, value) pairs:


    (g, 6)
    (a, 3)
    (t, 2)
    (c, 4)


To enable us to count the total number of DNA sequences, any records_rdd elements that begin with ">seq" will be flattened into the following (key, value) pair:


    (z, 1)

















Step 3: Find the Frequencies of DNA Letters


Now, pairs_rdd contains (key, value) pairs
where the key is a dna_letter and the value is the
frequency of that letter. Next, we apply
the reduceByKey() transformation to
pairs_rdd to find the aggregated frequencies
for all DNA letters. Recall that 'n' is the key used to denote any letter other than a, t, c, or g:


# x and y refer to the frequencies of the same key
frequencies_rdd = pairs_rdd.reduceByKey(lambda x, y: x+y) [image: 1]
frequencies_rdd.collect() [image: 2]
[
  (u'a', 73),
  (u'c', 61),
  (u't', 45),
  (u'g', 53),
  (u'n', 2),
  (u'z', 4)
]


	[image: 1]

	pairs_rdd is an RDD[(String, Integer)].


	[image: 2]

	frequencies_rdd is an RDD[(String, Integer)].





Alternatively, we can use the collectAsMap() action to
return the result as a hash map:


>>> frequencies_rdd.collectAsMap()
{
  u'a': 73,
  u'c': 61,
  u't': 45,
  u'g': 53,
  u'n': 2,
  u'z': 4
}

















Pros and Cons of Solution 2


Let’s examine the pros and cons of this solution:


	Pros

	


	
The provided solution works and is simple
and semi-efficient. It improves on the previous version by emitting many fewer (key, value) pairs—at most six per DNA sequence, since we create
a dictionary per input record and then
flatten it into a list of (key, value)
pairs, where the key is a DNA letter and the
value is the aggregated
frequency of that letter.



	
Network traffic demands are lower due to the reduction in the number of (key, value) pairs emitted.



	
There is no scalability issue since
we use reduceByKey() for reducing
all the (key, value) pairs.







	Cons

	


	
Performance is not optimal, since
we are still emitting up to six (key,
value) pairs per DNA string.



	
With large datasets or limited resources this solution might still use too
much memory due to the creation of a
dictionary per DNA sequence.
































DNA Base Count Solution 3


This final solution improves on versions 1
and 2 and is an optimal solution with
no scalability issues at all. Here, we’ll solve the DNA base count problem
using a powerful and efficient Spark
transformation called mapPartitions().
Before I present the solution itself, let’s take a closer look at this transformation.










The mapPartitions() Transformation


If the source RDD is RDD[T] and the target
RDD is RDD[U], the mapPartitions()
transformation is defined as:


pyspark.RDD.mapPartitions(f, preservesPartitioning=False)

mapPartitions() is a method in the pyspark.RDD class.

Description:

    Return a new RDD (called target RDD) by applying a
    function f() to each partition of the source RDD.

    Input to f() is an iterator (of type T), which
    represents a single partition of the source RDD.
    Function f() returns an object of type U.

    f: Iterator<T> --> U [image: 1]

    mapPartitions : RDD[T]--f()--> RDD[U] [image: 2]


	[image: 1]

	The function f() accepts a
pointer to a single partition (as
an iterator of type T) and returns
an object of type U; T and U can
be any data types and they do not have
to be the same.


	[image: 2]

	Transform an RDD[T] to RDD[U].





To understand the semantics of the
mapPartitions()  transformation,
first you must understand the concept
of a partition and partitioning in
Spark.  Informally, using Spark’s
terminology, input data (in this case,
DNA sequences in FASTA format) is
represented as an
RDD. Spark automatically partitions RDDs and distributes the partitions across nodes. As
an example, say that we have 6 billion records, and the Spark partitioner
partitions the input data into 3,000
chunks/partitions. Each
partition will have roughly 2 million
records and will be processed by a single mapPartitions()
transformation. Therefore, the function f() that
is used in the mapPartitions()
transformation will accept an iterator
(as an argument) to handle one partition.


In solution 3, we will create
one dictionary per  partition  rather
than a dictionary per FASTA  record  to aggregate DNA letters and their associated frequencies.
This  is a  huge  improvement  over
solutions 1 and 2, as the creation of 3,000 hash tables in a cluster uses
very little memory compared to creating
a dictionary per input record. This
solution is highly scalable and fast, due to the concurrent
and independent processing of all
partitions in the cluster.


map() Versus mapPartitions()

What are the main differences between Spark’s map() and mapPartitions()
transformations? In a nutshell, map()
is a 1-to-1 transformation: it maps
each element of the source RDD into a
single element of the target RDD. mapPartitions(), on the other hand, can be considered a many-to-1 transformation:
it maps each partition (comprising many
elements of the source RDD—each
partition may have thousands or millions
of elements) into a
single element of the target RDD.


The map() transformation converts
each element of the source RDD into
a single element of the target RDD
by applying a mapper function. mapPartitions(func), where func() is a user-provided function, converts
each partition of the source RDD  into multiple
elements of the target RDD (possibly none)
by applying func()
to each partition.  Note that the
mapPartitions()  transformation
is a map operation over partitions,
and not over the elements of the
partition (func() receives an
iterator, which you can iterate
over  elements  of  a partition).
This transformation
is called once for each input RDD
partition, unlike map() and foreach(), which are called for each element in the
RDD.  The main advantage of this is that it means
we   can   do   initialization  on a
per-partition  basis  instead  of
per-element basis (as is done by map()
and 
foreach()).




The mapPartitions() transformation
semantics for DNA base count solution 3 are
illustrated in Figure 2-4.



[image: The mapPartitions() Transformation]
Figure 2-4. The mapPartitions() transformation




Let’s walk through Figure 2-4:



	
The source RDD represents all of
our input as an RDD[String], since
each record of a FASTA file is
a String object.



	
The entire input is partitioned
into N chunks or partitions (where N can be 100, 200,
1000, …, based on the data size and
cluster resources), each of which may hold
thousands or millions of DNA sequences
(each DNA sequence is a record of type String). Partitioning of the source RDD is similar to the Linux
split command, which splits a file into
pieces.



	
Each partition is sent to a
mapPartitions() mapper/worker/executor
to be processed by your provided func().
Your  func() accepts a partition
(as an iterator of type String)
and  returns at most six (key, value)
pairs, where the key is a DNA-letter and the
value is the total frequency of that
letter for that partition. Note that
partitions are processed in parallel
and independently.



	
Once processing of all partitions is
complete, the results are merged
into   the  target RDD,  which   is    an
RDD[(String, Integer)], where
the key is a DNA letter and the value
is the frequency of that DNA letter.






The detailed mapPartitions()
transformation semantics for the DNA base count problem are presented in Figure 2-5.



[image: The mapPartitions() Transformation]
Figure 2-5. Using mapPartitions() to solve the DNA base count problem




As this figure shows, our input
(FASTA-format data) has been partitioned
into N chunks/partitions, each of which can be handled by a
mapper/worker/executor independently
and in parallel. For example, if our
input has a total of 5 billion records
and N = 50,000, then each partition
will have about 100,000 FASTA records
(5  billion = 50,000 × 100,000).
Therefore,  each func() will process
(by means of iteration) about 100,000
FASTA records.  Each partition will emit
at most six (key, value) pairs, where the
keys will be in {"a", "t", "c", "g",
"n", "z"} (the four letters, "n" as a key for non-DNA
letters, and "z" as a key for the number of processed DNA strings/sequences.


Because the mapPartitions(func) transformation runs
separately on each partition (block)
of the RDD, func() must be of type
iterator:


source: RDD[T] [image: 1]

# Parameter p: iterator<T> [image: 2]
def func(p): [image: 3]
   u = <create object of type U by iterating all
         elements of a single partition denoted by p>
   return u [image: 4]
#end-def

target = source.mapPartitions(func) [image: 5]

target:  RDD[U] [image: 6]


	[image: 1]

	Each element of the source RDD is of
type T.



	[image: 2]

	Parameter p is an iterator<T>,
which represents a single partition.



	[image: 3]

	Each iteration will return an
object of type T.



	[image: 4]

	Define a func(), which accepts a
single partition as an iterator<T>
(an iterator of type T that iterates over a single
partition of the source RDD[T]) and
returns an object of type of U.



	[image: 5]

	Apply the transformation.



	[image: 6]

	The result is an RDD[U], where
each partition has been converted (using
func()) into a single object type
of U.





Let’s assume that we have a source
RDD[T].   Therefore,  for  our
example, T represents a String
type (a DNA sequence record) and  U represents
a hash table (a.k.a. dictionary in
Python)  as HashMap[String, Integer],
where the key is a DNA letter (as a String
object) and the value is the associated
frequency (as an Integer).


We can define func() (as a generic template)
in Python as shown here:


# Parameter: iterator, which represents a single partition
#
# Note that iterator is a parameter from the mapPartitions()
# transformation, through which we can iterate through all
# the elements in a single partition.
#
# source is an RDD[T]
# target is an RDD[U]

def func(iterator): [image: 1]
   # 1. Make sure that iterator is not empty. If it is empty,
   #    then handle it properly; you cannot ignore empty partitions.

   # 2. Initialize your desired data structures
   #    (such as dictionaries and lists).

   # 3. Iterate through all records in a given partition.
    for record in iterator: [image: 2]
       # 3.1 Process the record
       # 3.2 Update your data structures
   #end-for

   # 4. If required, post-process your data structures (DS).
    result_for_single_partition = post_process(DS) [image: 3]

   # 5. Return result_for_single_partition.
#end-def


	[image: 1]

	iterator is a pointer to a single
partition, which you can use to iterate through elements
of a partition.


	[image: 2]

	record is of type T.


	[image: 3]

	result_for_single_partition
is of type U.




Summarization Design Pattern

Spark’s mapPartitions() transformation can be used to implement the summarization design pattern, which is useful when you’re working with big data and you want to get a summary view so you can glean insights that are not available from looking at a localized set of records alone. This design pattern involves grouping similar data together and then performing an operation such as calculating a statistic, building an index, or simply counting.




So when should you use the mapPartitions() transformation? It’s particularly useful  when  you want  to extract  some
condensed or minimal
amount of information from
each partition, where each partition is a
large set of data. For example, if you want
to find the minimum and maximum of all numbers
in your  input,  using map()  can  be
pretty   inefficient,  since  you  will  be
generating tons of intermediate (key, value)
pairs but the bottom line is that you want
to find just two numbers. It’s also useful if you want
to find the top 10 (or bottom 10) values in your input. mapPartitions() does this efficiently: you find
the top (or bottom) 10 per partition, then
the top (or bottom) 10 for all
partitions. This way, you avoid emitting
too many intermediate (key, value) pairs.


For counting DNA bases, the mapPartitions()
transformation is an ideal solution that scales out very
well even when the number of partitions is in the
high thousands.  Let’s say you partition your
input into 100,000 chunks (which is a very high number
of partitions—typically the number of
partitions will not be this high). Aggregating the resulting 100,000 dictionaries (hash maps) is a trivial task that can be accomplished in seconds, with no danger of OOM errors or scalability problems.


I will mention one more tip about using
mapPartitions() before presenting a
complete DNA base count solution using
this powerful transformation. Suppose that you will be accessing a database
for some of your data transformations, so you
need a connection to your database. As you know,
creating a connection object is expensive, and
it will take some time (maybe a second or two)
to create this object. If you create
a connection object per source RDD element, then
your solution will not scale at all: you will quickly
run out of connections and resources.  Whenever you have to perform heavyweight
initialization (such as creating a database
connection object), ideally this should be done once for many
RDD elements rather than once per RDD element. If this initialization cannot be
serialized (so that Spark can transmit it across
the cluster to the worker nodes), as in the case of creating objects from an external library, you should use mapPartitions()
instead  of  map().   The   mapPartitions()
transformation allows the initialization
to be done once per worker task/partition instead
of once per RDD data element.


This concept of initialization per partition/worker
is presented by the following example:


# source_rdd: RDD[T]
# target_rdd: RDD[U]
target_rdd = source_rdd.mapPartitions(func)

def func(partition): [image: 1]
   # create a heavyweight connection object
   connection = <create a db connection per partition> [image: 2]

   data_structures = <create and initialize your data structure> [image: 3]

   # iterate all partition elements
   for rdd_element in partition: [image: 4]
      # Use connection and rdd_element to
      # make a query to your database
      # Update your data_structures
   #end-for

   connection.close() # close db connection here [image: 5]

   u = <prepare object of type U from data_structures> [image: 6]
   return u [image: 7]
#end-def



	[image: 1]

	The partition parameter is
an iterator<T>, which represents
a single partition of source_rdd;
this func() returns an object
of type U.



	[image: 2]

	Create a single connection
object to be used by all elements in a given partition.



	[image: 3]

	data_structures can
be a list or dictionary or whatever you desire.



	[image: 4]

	rdd_element is a
single element of type T.



	[image: 5]

	Close the connection object
(to release allocated resources).



	[image: 6]

	Create an object of type U
from your created data_structures.



	[image: 7]

	Return a single object
of type U per partition.





Now that you understand the basics of
the summarization design pattern (to be
implemented by Spark’s mapPartitions()),
let’s get into the specifics of using it
to solve our DNA base count problem.


The high-level workflow for solution  3 is presented in Figure 2-6. We’ll again use the sample.fasta file to test this solution.



[image: daws 0206]
Figure 2-6. DNA base count solution 3




There are a few important points to keep in mind here:



	
I show only four records (two FASTA
sequences) per partition in this figure, but in
reality, each partition may contain
thousands or millions of records.
If your total input is N
records and you have P
partitions, then each partition
will have about (N/P) records.



	
If you have enough resources
in your Spark cluster, then
each partition can be processed
in parallel and independently.



	
As a general rule, if you have a lot of data but you only need to extract
small amount of information from
that data, mapPartitions()
is likely to be a good choice and will
outperform the map() and flatMap()
transformations.






With that said, let’s look at the main steps of solution 3.

















Step 1: Create an RDD[String] from the Input


The SparkContext.textFile() function is used
to create an RDD for input in FASTA text-based
format.  This step is identical to step 1 of the previous solutions:


input_path = ".../code/chap02/sample.fasta"
>>> records = spark.sparkContext.textFile(input_path) [image: 1]


	[image: 1]

	Create records as an RDD[String].




















Step 2: Define a Function to Handle a Partition


Let your RDD be an RDD[T] (in our example,
T is a String).  Spark splits our input
data into partitions (where each partition is
a set of elements of type T—in our example, T is String) and then executes
computations on the partitions independently
and in parallel. This is called the divide and
conquer model.  With the mapPartitions() transformation, the source RDD is partitioned
into N partitions (the number of partitions
is determined by the size and number of
resources available in the Spark cluster) and
each partition is passed to
a function (this can be a user-defined function).
You can control the number of partitions by
using coalesce():


RDD.coalesce(numOfPartitions, shuffle=False)


which partitions the source RDD into numOfPartitions partitions.
For example, here we create an RDD and
partition it into three partitions:


>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> numOfPartitions = 3
>>> rdd = sc.parallelize(numbers, numOfPartitions) [image: 1]

>>> rdd.collect()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> rdd.getNumPartitions() [image: 2]
3


	[image: 1]

	Create an RDD and set the number of partitions to 3.


	[image: 2]

	Check the number of partitions for the RDD.





Next, I’ll define a scan() function in Python
to iterate a given iterator—you can use this
function to debug small RDDs and check the
partitioning:


>>> def scan(iterator): [image: 1]
... print(list(iterator))
>>>#end-def
>>> rdd.foreachPartition(scan) [image: 2]
1 2 3
===
7 8 9 10
===
4 5 6
===


	[image: 1]

	Iterate the elements of a partition.


	[image: 2]

	Apply the scan() function to a given partition. From the output, we can see that there are three partitions here.




Warning

Do not use scan() for production environments; this is for teaching purposes only.




Now let’s take a look at the results if we define
an adder() function in Python that adds the values in each partition:


>>> def adder(iterator):
...     yield sum(iterator) [image: 1]
...
>>> rdd.mapPartitions(adder).collect()
[6, 34, 15]


	[image: 1]

	yield is a keyword that is used like
return, except the function will return
a generator that can be iterated.





For the DNA base counting problem, to handle (i.e., process
all elements in) an RDD partition we’ll define a function, process_FASTA_partition(), which accepts a single partition
(represented as an iterator).  We then iterate
on the iterator to process all the elements in the
given partition. This produces a dictionary, which we map into a list of (dna_letter,
frequency) pairs:


#-------------------------------------
# Parameter: iterator
# We get an iterator that represents a single
# partition of the source RDD, through which we can
# iterate to process all the elements in the partition.
#
# This function creates a hash map (dictionary) of DNA
# letters and then flattens it into (key, value) pairs.
#--------------------------------------
from collections import defaultdict

def process_FASTA_partition(iterator): [image: 1]
    hashmap = defaultdict(int) [image: 2]

    for fasta_record in iterator:
        if (fasta_record.startswith(">")): [image: 3]
            hashmap["z"] += 1
        else: [image: 4]
            chars = fasta_record.lower()
            for c in chars:
                hashmap[c] += 1 [image: 5]
    #end-for

    print("hashmap=", hashmap)
    key_value_list = [(k, v) for k, v in hashmap.iteritems()] [image: 6]
    print("key_value_list=", key_value_list)
    return  key_value_list [image: 7]


	[image: 1]

	The input parameter iterator is a
handle/pointer to a single partition.


	[image: 2]

	Create a hash table of [String, Integer].


	[image: 3]

	Handle comments for input data.


	[image: 4]

	Handle a DNA sequence.


	[image: 5]

	Populate the hash table.


	[image: 6]

	Flatten the hash table into a list of (dna_letter, frequency) pairs.


	[image: 7]

	Return list of (dna_letter, frequency) pairs.





In defining the process_FASTA_partition()
function, we used a defaultdict(int), which
works exactly like a normal dictionary (as an
associative array) but is initialized with
a function (the “default factory”) that takes no
arguments and provides the default value for
a nonexistent key.  In our case, the defaultdict
is used for counting DNA letters and the default
factory is int (as in the Integer data type),
which in turn has a default value of zero.
For each character in the list, the value of the corresponding key (a DNA letter) is incremented by one.  We do not need to make sure the
DNA letter is already a key; if it is not, it will use
the default value of zero.

















Step 3: Apply the Custom Function to Each Partition


In this step, we apply the
process_FASTA_partition()
function to each partition.
I have formatted the output and added some
comments to show the output
per partition (we have two
partitions):


>>> records_rdd.getNumPartitions()
2
>>> pairs_rdd = records_rdd.mapPartitions(process_FASTA_partition)

>>># output for partition 1
hashmap= defaultdict(<type 'int'>,
{
 'a': 38, 'c': 28, 'g': 28,
 'n': 2, 't': 24, 'z': 3
})
key_value_list= [
  ('a', 38), ('c', 28), ('g', 28),
  ('n', 2), ('t', 24), ('z', 3)]

>>># output for partition 2
hashmap= defaultdict(<type 'int'>,
{
 'a': 35, 'c': 33,
 't': 21, 'g': 25, 'z': 1,
})
key_value_list= [
 ('a', 35), ('c', 33),
 ('t', 21), ('g', 25), ('z', 1),
]


Note that for this solution, each partition returns
at most six (key, value) pairs:


('a', count-of-a)
('t', count-of-t)
('c', count-of-c)
('g', count-of-g)
('n', count-of-non-atcg)
('z', count-of-DNA-sequences)


For our sample data, the final collection from all partitions
will be:


>>> pairs_rdd.collect()
[
 ('a', 38), ('c', 28), ('t', 24), ('z', 3),
 ('g', 28), ('n', 2), ('a', 35), ('c', 33),
 ('t', 21), ('g', 25), ('z', 1)
]


Finally, we aggregate and sum up
the output (generated by
mapPartitions()) for all partitions:


>>> frequencies_rdd = pairs_rdd.reduceByKey(lambda a, b: a+b)
>>> frequencies_rdd.collect()
[
 ('a', 73),
 ('c', 61),
 ('g', 53),
 ('t', 45),
 ('n', 2),
 ('z', 4),
]

















Pros and Cons of Solution 3


Let’s examine the pros and cons of solution 3:


	Pros

	

	This is the optimal solution
  for the DNA base count problem.
  The provided solution works and is both simple
  and efficient. It improves
  on solutions 1 and 2 by emitting the least
  number of (key, value) pairs, since we
  create a dictionary per partition (rather
  than per record) and then flatten it
  into a list of (key, value) pairs.



	There are no scalability issues since
  we use mapPartitions() for handling
  each partition and reduceByKey() for
  reducing all the (key, value) pairs emitted
  by the partitions.



	At most we will create N dictionaries,
  where N is the total number of partitions for
  all the input data (this can be in the hundreds
  or thousands). This will not be a threat
  to scalability and will not use too much memory.







	Cons

	

	This solution requires custom code.































Summary


To recap:



	
There are usually multiple ways to solve big data problems, using a variety of actions and transformations. Although they all achieve the same result, their performance can differ. When selecting transformations to solve a specific data problem, make sure that you test it with “real” big data rather than toy data.



	
For large volumes of (key, value) pairs,
overall, the reduceByKey() transformation
performs better than groupByKey() due to
different shuffling algorithms.



	
When you have big data and you want
to extract and aggregate or derive a
small amount of information (e.g., finding the minimum and maximum or top 10 
values, or counting values like in the DNA base count problem), the mapPartitions() transformation is often a good choice.



	
Emitting fewer (key, value)
pairs  improves the performance of your
data solutions. This reduces the time required for
the sort and shuffle phase of your Spark
application.






Next, we’ll dig deeper into mapper transformations.













Chapter 3. Mapper Transformations



This chapter will introduce the  most common Spark
mapper transformations through simple
working examples. Without a clear understanding
of transformations, it is hard to
use them in a proper and meaningful way
to solve any data problem. We will examine
mapper transformations in the context of
RDD data abstractions. A mapper
is a function that is used to process
all the elements of a source RDD  and generate
a target RDD. For example, a mapper can
transform a String record into tuples,
(key, value) pairs, or whatever your desired output may be. Informally, we can say that a mapper transforms a source
RDD[V] into a target RDD[T], where
V and  T are the data types of the source
and target RDDs, respectively. You may apply
mapper transformations to DataFrames as well,
by either applying DataFrame functions
(using select() and UDFs) to
all rows or converting your DataFrame
(a table of rows and columns) to an RDD
and then using Spark’s mapper 
transformations.


Source Code

Complete programs for this chapter are available in the book’s GitHub repository.










Data Abstractions and Mappers


Spark has many transformations
and actions, but this chapter is dedicated
to explaining the ones that are most often used in building Spark
applications. Spark’s simple and powerful
mapper transformations enable us to perform
ETL operations in a simple way.


As I’ve mentioned, the RDD is an important data abstraction in Spark that is suitable for unstructured and semi-structured data: an immutable,  partitioned collection of elements that can be operated on
in parallel. The RDD is a lower-level API
than Spark’s other main data abstraction, the DataFrame (see Figure 3-1). In an RDD, each element may have a data type T,
denoted by RDD[T].



[image: daws 0301]
Figure 3-1. Spark’s data abstractions




In every data solution, we use mapper
transformations to convert one form of
data into another desired form of data
(for example, converting a record (as a String)
into a (key, value) form). Spark provides five
important mapper transformations that
are used heavily in RDD transformations, which are summarized in Table 3-1.


Table 3-1. Mapper transformations


	Transformation
	Relation type
	Description





	map(f)

	1-to-1

	Return a new RDD by applying
   a function (f()) to each element of
   this RDD. Source and target RDDs will
   have the same number of elements (transforms each element of the         source RDD[V] into one element of the resulting target RDD[T]).




	mapValues(f)

	1-to-1

	Pass each value in the (key, value)
   pair RDD through a map(f) function without
   changing the keys; this also retains the
   original RDD’s partitioning. Source and
   target RDDs will have the same number of elements (transforms each       element of the source RDD[K, V] into one element of the resulting      target RDD[K, T]).




	flatMap(f)

	1-to-many

	Return a new RDD by first
   applying a function (f()) to all elements
   of this RDD, and then flattening the results.
   Source and target RDDs might not
   have the same number of elements (transforms each element of the         source RDD[V] into zero or more elements of the target RDD[T]).




	flatMapValues(f)

	1-to-many

	Pass each value in the
  (key, value) pair RDD through a flatMap(f)
  function without changing the keys; this
  also retains the original RDD’s partitioning.
  Source and target RDDs might not
   have the same number of elements.




	mapPartitions(f)

	Many-to-1

	Return a new RDD by
   applying a function (f()) to each
   partition of the source RDD. Source and target
   RDDs might not have the same number of
   elements (transforms each partition of the source RDD[V], which may    be composed of hundreds, thousands, or millions of elements, into one    element of the resulting target RDD[T]).







We’ll dig into each of these later in this chapter with practical examples of their use, but first let’s talk some more about what transformations actually are.

















What Are Transformations?


A transformation is defined as
“a thorough or dramatic change in
form or appearance.” This exactly matches the semantics of Spark
transformations, which transform data
from one form to another.  For example, a
map() transformation can transform a
record of movie information (as a
String object of <user_id><,><username><,><movie_name><,><movie_id><,><rating><,><timestamp><,>​<director>​<,>…) into a
triplet of (user_id, movie_id, rating).
Another example of a transformation might be converting a chromosome “chr7:890766:T”
into a tuple of (chr7, 890766, T, 47),
where 47 (as a derived partition number)
is 890766 % 101 (the modulo of 101).


As we learned in Chapter 1, Spark supports two types of operations on RDDs: transformations and actions. As a reminder:



	
Most RDD transformations accept a single source RDD and create a single target RDD.



	
Some Spark transformations create multiple target RDDs.



	
Actions create non-RDD elements (values such as integers, strings, lists, tuples, dictionaries, and files).






There are at least three ways to create a brand new RDD:


	
RDDs can be created from datafiles.
You can use SparkContext.textFile() or SparkSession.spark.read.text() to read datafiles from Amazon S3, HDFS, the Linux filesystem, and many other data sources, as discussed in Chapter 1.



	
RDDs can be created from collections such as a list data structure (e.g., a list of numbers, or a list of strings, or a list of pairs) using SparkContext.parallelize().



	
Given a source RDD, you can apply a
transformation (such as filter() or map()) to create a new RDD.







Spark offers many useful transformations, which are the topic of this chapter. Figure 3-2 illustrates these options.



[image: daws 0302]
Figure 3-2. Different options for creating RDDs




Informally, the textFile() and parallelize()
operations can be stated as:


parallelize : collection --> RDD[T]
# where T is the type of collection elements

textFile : file(s) --> RDD[String]
# reading text files always creates an RDD[String]


A transformation (such as map() or filter()) on a source RDD (with an element type of U) creates a new RDD (target RDD [with an element type of V]):


transformation : RDD[U] --> RDD[V] where
U: data type of source RDD elements
V: data type of target RDD elements


An action  (such as collectAsMap() or count()) on a source RDD creates a tangible result (non-RDD) such as integer, string, list, file, or dictionary:


acton : RDD[U] --> non-RDD


Some basic Spark operations (transformations
and actions) are illustrated in Figure 3-3.



[image: daws 0303]
Figure 3-3. Spark transformations and actions




Let’s walk through what’s happening in Figure 3-3. Four RDDs are created—rdd0, rdd1, rdd2, and rdd3—through the following transformations:


	Transformation 1

	
SparkSession.sparkContext.textFile()
reads our input from a text file and creates the first RDD as rdd0:


input_path = "sample_5_records.txt"
rdd0 = spark.sparkContext.textFile(input_path)


rdd0 is denoted as RDD[String], meaning that each element of rdd0 is a String object.



	Transformation 2

	
rdd1 (an RDD[(String, Integer)])
is created by the rdd0.map() transformation, which maps each
element of rdd0 into (key, value) pairs:


def create_pair(record):
    tokens = record.split(",")
    return (tokens[0], int(tokens[1]))
#end-def

rdd1 = rdd0.map(create_pair)



	Transformation 3

	
rdd2 (an RDD[(String, Integer)])
is created by rdd1.map(), where the mapper doubles
the value part of the (key, value) pairs:


rdd2 = rdd1.map(lambda x: (x[0], x[1]+x[1]))

-- OR --

rdd2 = rdd1.mapValues(lambda v: v+v)



	Transformation 4

	
rdd3
(an RDD[(String, Integer)]) is
created by rdd1.reduceByKey(),
where the reducer sums up the values
of the same keys:


rdd3 = rdd1.reduceByKey(lambda x, y: x+y)






Then, the following actions are used to create three additional non-RDD outputs:


	Action 1

	
rdd2.count() is called to
count the number of elements of rdd2
(the result is an integer number):


rdd2_count = rdd2.count()



	Action 2

	
rdd3.count() is called to
count the number of elements of rdd3
(again, the result is an integer number):


rdd3_count = rdd3.count()



	Action 3

	
rdd3.saveAsText() is called
to persist the content of rdd3 into a
filesystem (the result is a text file):


rdd3.saveAsText("/tmp/rdd3_output")






Let’s take a look at another example, illustrated in Figure 3-4. You can view this sequence of transformations and actions as a directed acyclic graph (DAG), where nodes or vertices represent the RDDs and the edges
represent the operations to be applied on the RDDs. As you’ll see shortly, Spark uses the DAG to optimize the 
operations.



[image: daws 0304]
Figure 3-4. Spark operations




Let’s walk through what’s happening in Figure 3-4:



	
RDD1 and RDD3 are created from text files.



	
RDD2 is created by a map() transformation:


# source RDD: RDD1[U]
# target RDD: RDD2[V]
RDD2 = RDD1.map(func1)



	
RDD4 is created by a flatMap() transformation:


# source RDD: RDD3[C]
# target RDD: RDD4[D]
RDD4 = RDD3.flatMap(func2)



	
RDD5 is created by joining two RDDs (RDD2 and RDD4).
The result of this transformation is an RDD containing all pairs
of elements with matching keys in RDD2 and RDD4:


# source RDDs: RDD2, RDD4
# target RDD: RDD5
# join RDD2 and RDD4 on a common key
RDD5 = RDD2.join(RDD4)



	
Finally, the elements of RDD5 are saved as a
hash map:


# source RDD: RDD5
# action: saveAsMap()
# target: hashmap : dictionary
hashmap = RDD5.saveAsMap()







Until the saveAsMap() action is executed,
no transformation will be evaluated or executed:
this is called lazy evaluation.










Lazy Transformations


Let’s dig a little deeper into Spark’s lazy
transformations. When running a Spark application (in Python,
Java, or Scala), Spark
creates a DAG and that graph. Because Spark transformations are
lazily evaluated, the execution of the DAG will not start until an action (such as collect() or count()) is
triggered. This means that the Spark engine can make optimization
decisions after it has had a chance to look at
the DAG in its entirety, rather than looking only at
the individual transformations and actions.
For example, it is possible to write a Spark
program that creates 10 RDDs, 3 of which
are never used (these are called nonreachable RDDs). The Spark
engine does not need to compute those three RDDs, and by avoiding doing so it reduces the total execution time.


As mentioned previously, a DAG in Apache Spark is a set
of vertices and edges, where vertices represent the
RDDs and the edges represent the operations
(transformations or actions) to be applied on the RDDs.
In a Spark DAG, every edge is directed from earlier
to later in the sequence. On calling of an action
(such as saveAsMap(), count(), collect(),
or collectAsMap()), the created DAG is submitted
to Spark’s DAG Scheduler which further splits the
graph into the stages of the task, as illustrated in Figure 3-5.



[image: daws 0305]
Figure 3-5. Spark’s DAG



Tip

Every SparkContext launches a web UI (by default on port 4040, with multiple SparkContexts binding to successive ports) that displays useful information about the application, including a visualization of the DAG. You can view the DAG by going to http://<master>/4040.




Lazy evaluation in Spark has several benefits. It increases the
manageability of transactions, and enables the Spark engine to perform various optimizations. This reduces complexity, saves computation, and increases speed. Reducing the execution time of the RDD operations improves performance, and the lineage graph (DAG) helps Spark achieve fault tolerance by providing a record of the operations performed on the RDDs.


Now that you understand a bit more about transformations, we’ll dive into Spark’s most common mapper transformations in a little more detail. We’ll start with the map() transformation, which is the most widely used transformation in any Spark application.

















The map() Transformation


The map() transformation is the most common
transformation in the Spark and MapReduce paradigm.
This transformation can be applied to RDDs and
Dataframes.












RDD mapper


The goal of RDD.map() is to transform
every element of the source RDD[V] into a mapped
element of the target RDD[T] by applying a function
f() to it. This function can be a predefined one or a
custom user-defined function.
The map() transformation is defined as:


pyspark.RDD.map (Python method)
map(f, preservesPartitioning=False)

f: V --> T [image: 1]
map: RDD[V] --> RDD[T] [image: 2]


	[image: 1]

	Function f() accepts a V type
element and returns an element of type
T.


	[image: 2]

	Using function f(), the map()
transformation transforms RDD[V]
to RDD[T].





This is a 1-to-1 transformation: if your source
RDD has N elements, then the resulting/target RDD will have exactly N elements
as well. Bear in mind that the map()
transformation  is not a sequential
function. Your source RDD is partitioned
into P partitions, which are then processed
independently and concurrently. For
example, if your source RDD has 40
billion elements and P = 20,000, then
each partition will have roughly 2
million elements (40 billion = 20,000
x 2 million). If the number of available
mappers is 80 (this number depends
on the available resources in your cluster),
then 80 partitions can be mapped at the
same time independently and 
concurrently.


The function f() for the map() transformation
can be defined as:


# v : a data type of V
# return an object of type T
def convert_V_to_T(v):
   t = <convert v to an object of data type T>
   return t
#end-def

# source RDD: source_rdd : RDD[V]
# target RDD: target_rdd : RDD[T]
target_rdd = source_rdd.map(convert_V_to_T)


Or you may create your target RDD (rdd_v)
by using a lambda expression, as follows:


target_rdd = source_rdd.map(lambda v : convert_V_to_T(v))


Figure 3-6 illustrates the semantics of the map() transformation.



[image: daws 0306]
Figure 3-6. The map() transformation




The following
example shows how to use the map()
transformation using the PySpark shell. The example maps a
source RDD[Integer] to a target
RDD[Integer]: it transforms an RDD that contains
a list of numbers into a new RDD
in which the value of each positive element has been
increased by 5 while all other elements have been changed to 0.


First, let’s define our mapper function
as mapper_func():


>>># define a simple mapper function
>>> def mapper_func(x):
...     if (x > 0):
...             return x+5
...     else:
...             return 0
>>>#end-def


Next, we’ll apply the a map() transformation
and see how it works:


>>># spark : SparkSession
>>> data = [1, -1, -2, 3, 4]
>>> rdd = spark.sparkContext.parallelize(data) [image: 1]
>>> rdd.collect()
[1, -1, -2, 3, 4]
>>># use lambda expression
>>> rdd2 = rdd.map(lambda x : mapper_func(x)) [image: 2]
>>> rdd2.collect()
[6, 0, 0, 8, 9]
>>># use a function instead
>>> rdd3 = rdd.map(mapper_func) [image: 3]
>>> rdd3.collect()
[6, 0, 0, 8, 9]
>>>
>>> rdd4 = rdd.map(lambda x : (x, mapper_func(x))) [image: 4]
>>> rdd4.collect()
[(1, 6), (-1, 0), (-2, 0), (3, 8), (4, 9)]
>>> rdd4.count()
5


	[image: 1]

	rdd is an RDD[Integer].


	[image: 2]

	rdd2 is an RDD[Integer].


	[image: 3]

	rdd3 is an RDD[Integer].


	[image: 4]

	rdd4 is an RDD[(Integer, Integer)].





Here’s another example, which maps an RDD[(String, Integer)] to an
RDD[(String, Integer, String)]. This example transforms elements in
the form of (key, value) pairs into (key, value, value+100) triplets:


>>> pairs = [('a', 2), ('b', -1), ('d', -2), ('e', 3)]
>>> rdd = spark.sparkContext.parallelize(pairs) [image: 1]
>>> rdd.collect()
[('a', 2), ('b', -1), ('d', -2), ('e', 3)]
>>> rdd2 = rdd.map(lambda (k, v) : (k, v, v+100)) [image: 2]
>>> rdd2.collect()
[
 ('a', 2, 102),
 ('b', -1, 99),
 ('d', -2, 98),
 ('e', 3, 103)
]


	[image: 1]

	rdd is an RDD[(String, Integer)].


	[image: 2]

	rdd2 is an RDD[(String, Integer, Integer)].





It’s also straightforward to create (key, value)
pairs from String objects:


>>> def create_key_value(string):
>>>   tokens = string.split(",")
>>>   return (tokens[0], (tokens[1], tokens[2]))
>>>
>>> strings = ['a,10,11', 'b,8,19', 'c,20,21', 'c,2,8']
>>> rdd = spark.sparkContext.parallelize(strings) [image: 1]
>>> rdd.collect()
['a,10,11', 'b,8,9', 'c,20,21', 'c,2,8']
>>> pairs = rdd.map(create_key_value) [image: 2]
>>> rdd2.collect()
[
 ('a', (10, 11)),
 ('b', (8, 19)),
 ('c', (20, 21)),
 ('c', (2, 8))
]


	[image: 1]

	rdd is an RDD[String].


	[image: 2]

	rdd2 is an RDD[(String, (Integer, Integer))].





Next, I’ll discuss custom mapper functions.

















Custom mapper functions


When using Spark’s transformations, you may use
custom Python functions to parse records, perform
computations, and finally create your desired output.


Suppose we have a sample dataset, where each
record has the following format:


<id><,><name><,><age><,><number-of-friends>


Our data looks like this:


$ cat /tmp/users.txt
1,Alex,30,124
2,Bert,32,234
3,Curt,28,312
4,Don,32,180
5,Mary,30,100
6,Jane,28,212
7,Joe,28,128
8,Al,40,600


For each age category, we want to get the
average number of friends.  We can write
our own custom mapper function:


# record=<id><,><name><,><age><,><number-of-friends>
# parse record and return a pair as (age, number_of_friends)
def parse_record(record):
    # split record into a list at comma positions
    tokens = record.split(",")
    # extract and typecast relevant fields
    age = int(tokens[2])
    number_of_friends = int(tokens[3])
    return (age, number_of_friends)
#end-def


Then read our data and use the custom function:


users_path = '/tmp/users.txt'
users = spark.sparkContext.textFile(users_path) [image: 1]
pairs = users.map(parse_record) [image: 2]


	[image: 1]

	users is an RDD[String].


	[image: 2]

	pairs is an RDD[(Integer, Integer)], where
each record gets sent through parse_record().





For our sample data, pairs will be:


(30, 124), (32, 234), (28, 312), (32, 180),
(30, 100), (28, 212), (28, 128), (40, 600)


To get the average per age category, we first get
the sum and the number of entries per age:


totals_by_age = pairs \ [image: 1]
  .mapValues(lambda x: (x, 1)) \ [image: 2]
  .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1])) [image: 3] [image: 4]


	[image: 1]

	pairs is an RDD[(Integer, Integer)].


	[image: 2]

	Convert the number_of_friends field to a (number_of_friends, 1) pair.


	[image: 3]

	Perform reduction on age to find (sum_of_friends, frequecy_count)
per age.


	[image: 4]

	totals_by_age is
RDD[(Integer, (Integer, Integer))]





For our data, totals_by_age will be:


(30, (124+100, 1+1))       --> (30, (224, 2))
(32, (234+180, 1+1))       --> (32, (414, 2))
(28, (312+212+128, 1+1+1)) --> (28, (652, 3))
(40, (600, 1))             --> (40, (600, 1))


Now, to compute the average number
of friends for each age, we need to do one more transformation,
dividing the sum by the frequency count to get the average:


# x = (sum_of_friends, frequency_count)
# x[0] = sum_of_friends
# x[1] = frequency_count
averages_by_age = totals_by_age.mapValues(lambda x: float(x[0]) / float(x[1]))
averages_by_age.collect()


For our data, averages_by_age
(an RDD[(Integer, Integer)]) will be:


(30, (224 / 2)) = (30, 112)
(32, (414 / 2)) = (32, 207)
(28, (652 / 3)) = (28, 217)
(40, (600 / 1)) = (40, 600)






















DataFrame Mapper


Spark’s DataFrame does not have a map() function,
but we can achieve the map() equivalency in many
ways: we can add new columns by applying
DataFrame.withColumn() and drop existing columns
with DataFrame.drop(). The new column values can be
computed based on existing row values
or other requirements.












Mapper to single DataFrame column


Consider the following DataFrame:


tuples3 = [ ('alex', 440, 'PHD'), ('jane', 420, 'PHD'),
            ('bob', 280, 'MS'), ('betty', 200, 'MS'),
            ('ted', 180, 'BS'), ('mary', 100, 'BS') ]

df = spark.createDataFrame(tuples3, ["name", "amount", "education"])
>>> df.show()
+-----+------+---------+
| name|amount|education|
+-----+------+---------+
| alex|   440|      PHD|
| jane|   420|      PHD|
|  bob|   280|       MS|
|betty|   200|       MS|
|  ted|   180|       BS|
| mary|   100|       BS|
+-----+------+---------+


Suppose we want to calculate a 10% bonus to the
“amount” column and create a new “bonus” column. There are multiple
ways to accomplish this mapper task.


To keep all of the columns, do the following:


df2 = df.rdd\
    .map(lambda x: (x["name"], x["amount"],
                    x["education"], int(x["amount"])/10))
    .toDF(["name", "amount", "education", "bonus"])

>>> df2 = df.rdd.map(lambda x: (x["name"], x["amount"],
    x["education"], x["amount"]/10))
    .toDF(["name", "amount", "education", "bonus"])
>>> df2.show()
+-----+------+---------+-----+
| name|amount|education|bonus|
+-----+------+---------+-----+
| alex|   440|      PHD| 44.0|
| jane|   420|      PHD| 42.0|
|  bob|   280|       MS| 28.0|
|betty|   200|       MS| 20.0|
|  ted|   180|       BS| 18.0|
| mary|   100|       BS| 10.0|
+-----+------+---------+-----+


You have to map the row to a tuple
containing all of the existing columns, then add
in the new column(s).


If you have too many columns to enumerate,
you could also just add a tuple to the existing row.


>>> df3 = df.rdd.map(lambda x: x + \
   (str(x["amount"]/10),)).toDF(df.columns + ["bonus"])
>>> df3.show()
+-----+------+---------+-----+
| name|amount|education|bonus|
+-----+------+---------+-----+
| alex|   440|      PHD| 44.0|
| jane|   420|      PHD| 42.0|
|  bob|   280|       MS| 28.0|
|betty|   200|       MS| 20.0|
|  ted|   180|       BS| 18.0|
| mary|   100|       BS| 10.0|
+-----+------+---------+-----+


There is another way to add a bonus column
with using  DataFrame.withColumn():


>>> df4 = df.withColumn("bonus", F.lit(df.amount/10))
>>> df4.show()
+-----+------+---------+-----+
| name|amount|education|bonus|
+-----+------+---------+-----+
| alex|   440|      PHD| 44.0|
| jane|   420|      PHD| 42.0|
|  bob|   280|       MS| 28.0|
|betty|   200|       MS| 20.0|
|  ted|   180|       BS| 18.0|
| mary|   100|       BS| 10.0|
+-----+------+---------+-----+

















Mapper to multiple DataFrame columns


Now, assume that you want to add a bonus column,
which depends on two columns: “amount” and “education”:
The bonus column is calculated as:


	bonus = amount * 30% if education = PHD
	bonus = amount * 20% if education = MS
	bonus = amount * 10% all other cases


the simplest way to do this is with a user-defined function (UDF): define a
Python function and then register it
as a UDF:


def compute_bonus(amount, education):
    if education == "PHD": return int(amount * 0.30)
    if education == "MS": return int(amount * 0.20)
    return int(amount * 0.10)
#end-def


Now, register your Python function as a UDF:


>>> from org.apache.spark.sql.functions import udf
>>> compute_bonus_udf = udf(lambda amount, education:
   compute_bonus(amount, education), IntegerType())


Once your UDF is ready, then you can apply it:


>>> df5 = df.withColumn("bonus",
   compute_bonus_udf(df.amount, df.education))
>>> df5.show()
+-----+------+---------+-----+
| name|amount|education|bonus|
+-----+------+---------+-----+
| alex|   440|      PHD|  132|
| jane|   420|      PHD|  126|
|  bob|   280|       MS|   56|
|betty|   200|       MS|   40|
|  ted|   180|       BS|   18|
| mary|   100|       BS|   10|
+-----+------+---------+-----+


Next, we’ll take a look at the flatMap() transformation.





























The flatMap() Transformation


The flatMap() transformation returns a new RDD by applying a function to each element of the source RDD, then flattening the results. This is a 1-to-many transformation: every element of the source RDD can be mapped into 0, 1, 2, or many elements of the target RDD. In other words, The flatMap() transforms a source  RDD[U] of length N into a target RDD[V] of length M (where M and N can be different), When using flatMap(), you need to make sure that the source RDD’s elements are iterable (such as a list of items).


For example, if an element of the source RDD
is [10, 20, 30] (an iterable list of three numbers), then it will be
mapped  as three elements (10, 20, and 30) of the target RDD; if an element of the source RDD is [] (an empty list, which is iterable),
then it will be dropped and  will not be mapped to the target RDD at all. If any element of source RDD is not iterable, then an exception will be raised.


Note that whereas map() transforms an RDD
of length N into another RDD of length N
(the  same length), flatMap() transforms an  RDD of length N into a set of N iterable collections, then flattens these into a single RDD of results. Therefore, the source and target RDDs may have different sizes.


The flatMap() transformation is defined as:


pyspark.RDD.flatMap (Python method)
flatMap(f, preservesPartitioning=False)

U: iterable collection of V
source RDD: RDD[U]
target RDD: RDD[V]

f: U --> [V] [image: 1]
flatMap: RDD[U] --> RDD[V]


	[image: 1]

	The function f() accepts an element of type U and converts it into a list of elements of type V (this list may have 0, 1, 2, or more elements), which is then flattened. Note that empty lists are dropped. The function f() must create an iterable object.





Figure 3-7 shows an example of the flatMap()  transformation.



[image: daws 0307]
Figure 3-7. The flatMap() transformation




In Figure 3-7, each element (a String)
of the source RDD is tokenized into a list of
Strings and then flattened into a String
object. For example, the first element,
"[red fox jumped]", is converted into a
list of Strings as  ["red", "fox", "jumped"]
and then the list is flattened into three String
objects as "red", "fox", and "jumped".
The first source element is thus mapped into three target elements.


The following example shows how to
use the flatMap() transformation:


>>> numbers = [1, 2, 3, 4, 5]
>>> rdd = spark.sparkContext.parallelize(numbers)
>>> rdd.collect()
[1, 2, 3, 4, 5]
>>> rdd2 = rdd.flatMap(lambda x: range(1, x))
>>> rdd2.collect()
[1, 1, 2, 1, 2, 3, 1, 2, 3, 4]
>>> rdd3 = rdd.flatMap(lambda x: [(x, x+1), (x+1, x)])
>>> rdd3.collect()
[
 (1, 2), (2, 1),
 (2, 3), (3, 2),
 (3, 4), (4, 3),
 (4, 5), (5, 4),
 (5, 6), (6, 5)
]
>>> rdd3.count()
10


Let’s examine how rdd2 is created:

Element 1: --maps--> range(1, 1) --flattens--> []
           --> dropped since empty

Element 2: --maps--> range(1, 2) --flattens--> [1]
           --> maps into one element as 1

Element 3: --maps--> range(1, 3) --flattens--> [1, 2]
           --> maps into two elements as 1, 2

Element 4: --maps--> range(1, 4) --flattens--> [1, 2, 3]
           --> maps into three elements as 1, 2, 3

Element 5: --maps--> range(1, 5) --flattens--> [1, 2, 3, 4]
           --> maps into four elements as 1, 2, 3, 4


You can also use a function, instead of a lambda expression:


>>> numbers = [1, 2, 3, 4, 5]
>>> rdd = spark.sparkContext.parallelize(numbers) [image: 1]
>>> rdd.collect()
[1, 2, 3, 4, 5]
>>> def create_list(x):
...     return [(x, x+1), (x, x+2)]
>>>#end-def
...
>>> rdd4 = rdd.flatMap(create_list) [image: 2]
>>> rdd4.collect()
[
 (1, 2), (1, 3),
 (2, 3), (2, 4),
 (3, 4), (3, 5),
 (4, 5), (4, 6),
 (5, 6), (5, 7)
]
>>> rdd4.count()
10


	[image: 1]

	rdd is an RDD[Integer] with five elements.


	[image: 2]

	rdd4 is an RDD[(Integer, Integer)] with 10 elements.





The following example illustrates how flatMap() can return zero or more elements in the target RDD for each element in the source RDD:


>>> words = ["a", "red", "of", "fox", "jumped"]
>>> rdd = spark.sparkContext.parallelize(words)
>>> rdd.count() [image: 1]
5
>>> rdd.collect()
['a', 'red', 'of', 'fox', 'jumped']
>>> def my_flatmap_func(x):
...     if len(x) < 3:
...         return [] [image: 2]
...     else:
...         return [x, x, x] [image: 3]
...
>>> flattened = rdd.flatMap(my_flatmap_func)
>>> flattened.count() [image: 4]
9
>>> flattened.collect()
['red', 'red', 'red', 'fox', 'fox', 'fox', 'jumped', 'jumped', 'jumped']


	[image: 1]

	rdd is an RDD[String] with five elements.


	[image: 2]

	Empty lists are dropped.


	[image: 3]

	This will map to three target elements.


	[image: 4]

	flattened is an RDD[String] with nine elements.





The following example clearly shows the
difference between map() and flatMap(). As you can see from the outputs, flatMap() flattens its output, while
the map() transformation is a 1-to-1 mapping and does
not flatten its output:


def to_list(x): return [x, x+x, x*x]

# rdd1: RDD[Integer] (element type is Integer)
rdd1 = spark.sparkContext.parallelize([3,4,5]) [image: 1]
            .map(to_list) [image: 2]
rdd1.collect()
# output: notice non-flattened list
[[3, 6, 9], [4, 8, 16], [5, 10, 25]]
rdd1.count()
3

# rdd2 : RDD[[Integer]] (element type is [Integer])
rdd2 = spark.sparkContext.parallelize([3,4,5]) [image: 3]
                         .flatMap(to_list) [image: 4]
rdd2.collect()
# output: notice flattened list
[3, 6, 9, 4, 8, 16, 5, 10, 25]
rdd2.count()
9


	[image: 1]

	Create an RDD[Integer].


	[image: 2]

	Each element of rdd1 is a list of integer
numbers (as RDD[[Integer]]).


	[image: 3]

	Create an RDD[[Integer]].


	[image: 4]

	Each element of rdd2 is an integer
number  (as RDD[Integer]).





A visual representation of the flatMap() transformation is presented in
the Figure 3-8.



[image: daws 0308]
Figure 3-8. A flatMap() transformation




Let’s walk through what’s happening here. We’ll start by examining the content of the input file, 2recs.txt:


$ cat 2recs.txt
Fox, ran  2 fast!!!
Fox, jumped; of fence!!!


Here are the steps:


	
First, we create an RDD[String] with only two records/elements:


rdd = spark.sparkCintext.textFile("2recs.txt")
rdd.collect()
[
 "Fox, ran  2 fast!!!",
 "Fox, jumped; of fence!!!"
]



	
Next, we apply a map() transformation
to all elements of this RDD that removes all punctuation,
reduces multiple spaces into a single space, and converts
all letters to lowercase. This is accomplished by a
simple Python function:


import string, re
def no_punctuation(record_str):
    exclude = set(string.punctuation)
    t = ''.join(ch for ch in record_str if ch not in exclude)
    trimmed = re.sub('\s+',' ', t)
    return trimmed
#end-def

rdd_cleaned = rdd.map(no_punctuation)
rdd_cleaned.collect()
[
 "fox ran 2 fast",
 "fox jumped of fence"
]



	
We then apply a flatMap()
transformation to rdd_cleaned, first tokenizing the elements of this RDD and then flattening it:


flattened = rdd_cleaned.flatMap(lambda v: v.split(" "))
flattened.collect()
['fox', 'ran', '2', 'fast', 'fox', 'jumped', 'of', 'fence']



	
Finally, the filter() transformation
drops elements of the flattened RDD, keeping only elements with a length greater than 2.


final_rdd = flattened.filter(lambda w: len(w) > 2)
final_rdd.collect()
['fox', 'ran', 'fast', 'fox', 'jumped', 'fence']







The filtered-out elements are indicated with an X in Figure 3-8.










map() Versus flatMap()


You’ve now seen some examples of map() and
flatMap() transformations, but it’s important to understand the differences between them. To recap:


	map()

	
This is a 1-to-1 transformation.
It returns a new RDD by applying the given
function to each element of the RDD.
The function in map() returns only one item.



	flatMap()

	
This is a 1-to-many transformation.
It also returns a new RDD by
applying a function to each element of the
source RDD, but the function may return 0, 1, 2, or more elements per source element, and the output is flattened.






The difference between map() and flatMap()
is illustrated in Figure 3-9.



[image: daws 0309]
Figure 3-9. The difference between map() and flatMap()



















Apply flatMap() to a DataFrame


The RDD.flatMap() is a one-to-many
transformation: it takes one element
of source RDD and transforms it into many
(0, 1, 2, 3, or more) target elements. PySpark’s
DataFame does not have flatMap()
transformation,  however, DataFrame has the function
pyspark.sql.functions.explode(col), which is used to flatten the
column. The explode(column) returns a
new row for each element in the given
column (expressed as a list or dictionary)
and uses the default column name  col
for elements in the array and key and
value for elements in the dictionary
unless specified 
otherwise.


Below is a complete example, which shows
how to use the explode() function as an
equivalent to RDD.flatMap() transformation.


Let’s first create a DataFrame, in which one
column is a list (to be exploded by the
explode() function).


some_data = [
    ('alex', ['Java','Scala', 'Python']),
    ('jane', ['Cobol','Snobol']),
    ('bob', ['C++',]),
    ('ted', []),
    ('max', [])
]

>>> df = spark.createDataFrame(
    data=some_data, schema = ['name', 'known_languages'])

>>> df.show(truncate=False)
+----+----------------------+
|name| known_languages      |
+----+----------------------+
|alex| [Java, Scala, Python]|
|jane| [Cobol, Snobol]      |
|bob | [C++]                |
|ted | []                   |
|max | []                   |
+----+----------------------+


Next, we will flatten the known_languages column:


>>> exploded = df.select(df.name,
    explode(df.known_languages).alias('language'))
>>> exploded.show(truncate=False)
+----+--------+
|name|language|
+----+--------+
|alex|  Java  |
|alex|  Scala |
|alex|  Python|
|jane|  Cobol |
|jane|  Snobol|
|bob |  C++   |
+----+--------+


As you can see, when exploding a column,
if a column is an empty list, it’s dropped from the exploded result (tex and max
are dropped since they have associated empty
lists).


Next, we’ll look at exploding multiple columns
for a given DataFrame.  Note that only one
generator is allowed per select clause: this
means you can not explode two columns at
the same time (but you can explode them
iteratively one-by-one). The following example
shows how to explode two columns:


>>> some_data = [
...     ('alex', ['Java','Scala', 'Python'], ['MS', 'PHD']),
...     ('jane', ['Cobol','Snobol'], ['BS', 'MS']),
...     ('bob', ['C++'], ['BS', 'MS', 'PHD']),
...     ('ted', [], ['BS', 'MS']),
...     ('max', ['FORTRAN'], []),
...     ('dan', [], [])
... ]
>>>
>>> df = spark.createDataFrame(data=some_data,
   schema = ['name', 'languages', 'education'])
>>> df.show(truncate=False)
+----+---------------------+-------------+
|name|languages            |education    |
+----+---------------------+-------------+
|alex|[Java, Scala, Python]|[MS, PHD]    |
|jane|[Cobol, Snobol]      |[BS, MS]     |
|bob |[C++]                |[BS, MS, PHD]|
|ted |[]                   |[BS, MS]     |
|max |[FORTRAN]            |[]           |
|dan |[]                   |[]           |
+----+---------------------+-------------+


Next we explode the languages column, which
is an array:


>>> exploded_1 = df.select(df.name,
   explode(df.languages).alias('language'), df.education)
>>> exploded_1.show(truncate=False)
+----+--------+-------------+
|name|language|education    |
+----+--------+-------------+
|alex|Java    |[MS, PHD]    |
|alex|Scala   |[MS, PHD]    |
|alex|Python  |[MS, PHD]    |
|jane|Cobol   |[BS, MS]     |
|jane|Snobol  |[BS, MS]     |
|bob |C++     |[BS, MS, PHD]|
|max |FORTRAN |[]           |
+----+--------+-------------+


Note that the names ted and dan were dropped
since the exploded column value was an empty list.


Next, we explode the education column:


>>> exploded_2 = exploded_1.select(exploded_1.name, exploded_1.language,
   explode(exploded_1.education).alias('degree'))
>>> exploded_2.show(truncate=False)
+----+--------+------+
|name|language|degree|
+----+--------+------+
|alex|Java    |    MS|
|alex|Java    |   PHD|
|alex|Scala   |    MS|
|alex|Scala   |   PHD|
|alex|Python  |    MS|
|alex|Python  |   PHD|
|jane|Cobol   |    BS|
|jane|Cobol   |    MS|
|jane|Snobol  |    BS|
|jane|Snobol  |    MS|
|bob |C++     |    BS|
|bob |C++     |    MS|
|bob |C++     |   PHD|
+----+--------+------+


Note that the name max is dropped since
the exploded column value was an empty list.


Next we’ll look at a transformation that is specific to RDDs whose elements are (key, value) pairs.
























The mapValues() Transformation


The mapValues() transformation is only
applicable for  pair RDDs (RDD[(K, V)],
where K is the key and V is the value). It operates on
the value only (V), leaving the key unchanged, unlike the map() transformation, which operates on the entire RDD 
element.


Informally, given the source RDD RDD[(K, V)] and the function f: V -> T, we may say that rdd.mapValues(f) is equivalent to the following map():


# source rdd: RDD[(K, V)]
# target result: RDD[(K, T)]
result = rdd.map( lambda (k, v): (k, f(v)) )


The mapValues() transformation is defined as:


pyspark.RDD.mapValues (Python method)
mapValues(f)

f: V --> U [image: 1]
mapValues: RDD[(K, V)] --> RDD[(K, f(V))]


	[image: 1]

	The function f() can transform the data
type V to any desired data type T.
V and T can be the same or different.





The mapValues() transformation passes each
value in the pair RDD through a
map() function without changing the keys; this
also retains the original RDD’s partitioning
(the changes are done in place and the structure
and number of partitions are not changed).


The following is an example of a mapValues() transformation:


>>> pairs = [
    ("A", []), ("Z", [40]),
    ("C", [10, 20, 30]), ("D", [60, 70])
  ]
>>> rdd = spark.sparkContext.parallelize(pairs) [image: 1]
>>> rdd.collect()
[('A', []), ('Z', [40]), ('C', [10, 20, 30]), ('D', [60, 70])]
>>>
>>> def f(x):
>>>    if len(x) == 0: return 0
>>>    else: return len(x)+1
>>>
>>> rdd2 = rdd.mapValues(f) [image: 2]
>>> rdd2.collect()
[('A', 0), ('Z', 2), ('C', 4), ('D', 3)]


	[image: 1]

	rdd is an RDD[(String, [Integer])].


	[image: 2]

	rdd2 is an RDD[(String, Integer)].





mapValues() is a 1-to-1 transformation, as illustrated by Figure 3-10.



[image: daws 0310]
Figure 3-10. The mapValues() transformation



















The flatMapValues() Transformation


The flatMapValues() transformation is a combination of flatMap() and m⁠a⁠p​V⁠a⁠l⁠u⁠e⁠s⁠(⁠). It’s similar to mapValues(), but flatMapValues() runs the flatMap() function on the values of RDD[(K, V)] (an RDD of (key, value) pairs) instead of the map() function. It does this without changing the keys, retaining the original RDD’s partitioning. Here’s an example:


>>> rdd = spark.sparkContext.parallelize([
  ('S', []), [image: 1]
  ('Z', [7]),
  ('A', [1, 2, 3]),
  ('B',[4, 5])
]) [image: 2]

>>># function is applied to entire
>>># value, and then result is flattened
>>> rdd2 = rdd.flatMapValues(lambda v: [i*3 for i in v]) [image: 3]
>>> rdd2.collect()
[('Z', 21),
 ('A', 3), ('A', 6), ('A', 9),
 ('B', 12), ('B', 15)]


	[image: 1]

	This element will be dropped since the value is empty.


	[image: 2]

	rdd is an RDD[(String, [Integer])].


	[image: 3]

	rdd2 is an RDD[(String, Integer)];
note that the key S is dropped
since its value was an empty list





Here’s another example:


>>> rdd = spark.sparkContext.parallelize([
  ("A", ["x", "y", "z"]),
  ("B", ["p", "r"]),
  ("C", ["q"]),
  ("D", [])
]) [image: 1]

>>> def f(x): return x
>>> rdd2 = rdd.flatMapValues(f) [image: 2]
>>> rdd2.collect()
[
 ('A', 'x'), ('A', 'y'), ('A', 'z'),
 ('B', 'p'), ('B', 'r'),
 ('C', 'q')
]


	[image: 1]

	rdd is an RDD[(String, [String])].


	[image: 2]

	rdd2 is an RDD[(String, String)].





Again, if the value for a key is empty ([]), then no output value
is generated  (the key is dropped as well).
Therefore, no element is generated for the D key.


Next we’ll look at the  mapPartitions()
transformation, which, in my opinion, is the most important of Spark’s mapper transformations.

















The  mapPartitions() Transformation


mapPartitions() is a powerful distributed
mapper transformation that processes a single partition (instead of an element) at a time. It implements the summarization design pattern, summarizing each partition of a source RDD into a single element of the target RDD. The goal of this transformation is to process one partition at a time (although, many partitions can be processed independently and concurrently), iterate through all of the partition’s elements, and summarize the result in a compact data structure such as a dictionary, list of elements, tuples, or list of tuples.


The mapPartitions() transformation has the following signature:


mapPartitions(f, preservesPartitioning=False)
# Returns a new RDD by applying a function, f(), to each partition
# of this RDD. If source RDD has N partitions, then your function
# will be called N times, independently and concurrently.


Let’s say that your source RDD has N partitions.
The mapPartitions() transformation maps a
single partition of the source RDD into your desired
data type, T (for example, this could be a single value, a tuple, a list, or a dictionary).  Therefore, the target RDD will
be an RDD[T], of length N.  This is an ideal
transformation when you want to reduce (or aggregate) each partition comprised of a set of source RDD elements into a condensed data
structure of type T: it maps a single partition into a single
element of the target RDD.


A high-level overview is presented in Figure 3-11.



[image: daws 0311]
Figure 3-11. The mapPartition() transformation




To help you understand the logic of the mapPartitions()
transformation, I’ll present a simple, concrete
example. Suppose you have a source RDD[Integer]
with 100,000,000,000 elements and your RDD is partitioned into 10,000 chunks or partitions. So, each partition will have about 10,000,000
elements. If you have enough cluster resources to run 10,000 mappers in parallel, then each mapper will receive a partition. Since you will be processing one partition at time, you have the chance to filter elements and summarize each partition into a single desired data structure (such as a tuple, list, or dictionary).


Let’s say that you want to find the (minimum,
maximum, count) for the source RDD of numbers.
Each mapper will find a local (minimum,
maximum, count) per partition,  and then
eventually, you can find the final (minimum,
maximum, count) for all of the partitions.
Here, the target data type is a triplet:


T = (int, int, int) = (minimum, maximum, count)


mapPartitions() is an ideal transformation
when you want to map each partition into small
amount of condensed or reduced information. You can filter out
undesired elements of the source RDD and then summarize the remaining elements in your data structure of choice.


Let’s walk through the main flow of the mapPartitions()
transformation:


	
First, define a function that accepts a single
partition of the source RDD (an RDD[Integer]) and
returns a data type T, where:


T = (int, int, int) = (minimum, maximum, count)


Let N be the number of partitions for your
source RDD. Given a partition
p  (where p in {1, 2, …, N}), mapPartitions() will compute (minimump, maximump, countp) per partition p:


def find_min_max_count(single_partition):
  # find (minimum, maximum, count) by iterating single_partition
  return [(minimum, maximum, count)]
#end-def



	
Next, apply the mapPartitions() transformation:


# source RDD: source_rdd = RDD[Integer]
# target RDD: min_max_count_rdd = RDD(int, int, int)
min_max_count_rdd = source_rdd.mapPartitions(find_min_max_count)
min_max_count_list = min_max_count_rdd.collect()
print(min_max_count_list)
[
 (min1, max1, count1),
 (min2, max2, count2),
 ...
 (minN, maxN, countN)
]



	
Finally, we need to collect the content
of min_max_count_rdd and find the final
(minimum, maximum, count):


# minimum = min(min1, min2, ..., minN)
minimum = min(min_max_count_list)[0]
# maximum = max(max1, max2, ..., maxN)
maximum = max(min_max_count_list)[1]
# count = (count1+count2+...+countN)
count = sum(min_max_count_list)[2]







We can define our function as follows. Note that by using a Boolean flag, first_time, we avoid making any assumptions about range of numeric values:


def find_min_max_count(single_partition_iterator):
	first_time = True
	for n in single_partition_iterator:
		if (first_time):
			minimum = n;
			maximum = n;
			count = 1
			first_time = True
		else:
			maximum = max(n, maximum)
			minimum = min(n, minimum)
			count += 1
	#end-for
	return [(minimum, maximum, count)]
#end-def


Next, let’s create an RDD[Integer] and then
apply the mapPartitions() 
transformation:


integers = [1, 2, 3, 1, 2, 3, 70, 4, 3, 2, 1]
# spark : SparkSession
source_rdd = spark.sparkContext.parallelize(integers)
# source RDD: source_rdd = RDD[Integer]
# target RDD: min_max_count_rdd = RDD(int, int, int)
min_max_count_rdd = source_rdd.mapPartitions(find_min_max_count)

min_max_count_list = min_max_count_rdd.collect() [image: 1]
# compute the final values:
minimum = min(min_max_count_list)[0]
maximum = max(min_max_count_list)[1]
count = sum(min_max_count_list)[2]


	[image: 1]

	The collect() is scalable here, because
the number of partitions will be in the thousands
and not the millions.





In summary, if you have a large amount of data that you want to reduce to a smaller amount of information (a summarization task), the mapPartitions() transformation is a possible option. For example, it’s very useful for finding the minimum and maximum or top 10 values in your dataset. The mapPartitions() transformation:



	
Implements the summarization design pattern, combining all the source RDD elements in a single partition into a single, compact element of the target RDD (such as a dictionary, tuple, or list of objects or tuples).



	
Can be used as an alternative to map() and foreach(), but is called once per partition instead of for each element in an RD.



	
Enables the programmer to do initialization on a per-partition rather than per-element basis.






Next, I’ll discuss a very important topic: how to handle and process an empty partition when using the mapPartitions() transformation.










Handling Empty Partitions


In our previous solution, we used the
mapPartitions(func) transformation,
which separates input data into many
partitions and then applies the function
func() (provided by the programmer) to
each partition in parallel.  But what if one or more
of these partitions are empty? In this case, there will be
no data (no elements in that partition) to iterate. We need to write our custom function
func() (the partition handler) in such
a way that it will handle empty partitions
properly and gracefully. We cannot just
ignore them.


Empty partitions may occur
for various reasons. If there is an exception while the Spark partitioner is partitioning the data (for example, due to corrupted
records after a network failure mid-transfer), then some partitions might be empty.
Another reason might be that the
partitioner does not have enough data to
put any into a given partition. Regardless of why these partitions exist, we need to
handle them 
proactively.


To illustrate the concept of an empty partition, I’ll first define a function, debug_partition(), to show the contents of each
partition:


def debug_partition(iterator):
    #print("type(iterator)=", type(iterator))
    print("elements = ", list(elements))
#end-def

Warning

Remember that displaying or debugging the
content of a partition can be costly and should
be avoided by all means in production environments.
I have included print statements for teaching
and debugging purposes only.




Now let’s create an RDD and partition it in a way that will force the creation of empty partitions. We do this by setting the number of partitions higher than the number of RDD elements:


>>> sc
<SparkContext master=local[*] appName=PySparkShell>
>>> numbers = [1, 2, 3, 4, 5]
>>> rdd = sc.parallelize(numbers, 7) [image: 1]
>>> rdd.collect()
[1, 2, 3, 4, 5]
>>> rdd.getNumPartitions()
7


	[image: 1]

	Force the creation of empty partitions.





We can examine each partition using
the debug_partition() function:


>>> rdd.foreachPartition(debug_partition)
elements =  [4]
elements =  [3]
elements =  [2]
elements =  [] [image: 1]
elements =  [] [image: 1]
elements =  [5]
elements =  [1]


	[image: 1]

	An empty partition





From this test program we can observe the following:



	
A partition can be empty (with no RDD elements). Your custom function must handle empty
partitions proactively and gracefully—that is, it must return a proper value. Empty
partitions cannot be just ignored.



	
The iterator data type (which represents a
single partition and is passed as a parameter
to mapPartitions()) is itertools.chain.
itertools.chain is an iterator that returns
elements from the first iterable until it is
exhausted, then proceeds to the next iterable,
until all of the iterables are exhausted.
It’s used for treating consecutive sequences as a
single sequence.






Now the question is, how do we handle an empty
partition in PySpark? The following pattern can be used to handle an empty partition. The basic idea is to use Python’s
try-except combination, where the try block
lets you test a block of code for errors and the
except block lets you handle the error:


# This is the template function
# to handle a single partition.
#
# source RDD: RDD[T]
#
# parameter: iterator

def func(iterator): [image: 1]
    print("type(iterator)=", type(iterator))
    #   ('type(iterator)=', <type 'itertools.chain'>)

    try:
        first_element = next(iterator) [image: 2]
        # if you are here it means that
        # the partition is NOT empty;
        # iterate/process the partition
        # and return a proper result

    except StopIteration: [image: 3]
        # if you are here it means that this
        # partition is empty; now, you need
        # to handle it and return a proper result
#end-def


	[image: 1]

	iterator represents a single
partition of elements of type T.


	[image: 2]

	Try to get the first element
(as first_element, of type T)
for a given partition.  If this fails
(throws an exception), then control
will go to the except (exception
happened) block.


	[image: 3]

	You will be here when a given
partition is empty. You cannot just
ignore empty partitions, you must handle the error and return a proper value.




Handling Empty Partitions

Typically, for empty partitions you
should  return some special value that can be filtered out easily by
the filter() transformation. For
example, for the DNA base count problem,
you might return a null value (instead
of an actual dictionary) and then
filter the null values after the
completion of the mapPartitions()

transformation.




To handle an empty partition when looking for the (min, max, count), we will rewrite the partition handler function as follows:


def find_min_max_count_revised(single_partition_iterator):
    try:
        first_element = next(single_partition_iterator)
        # if you are here it means that
        # the partition is NOT empty;
        # process the partition and return a proper result
		minimum = first_element;
		maximum = first_element;
		count = 1

	    for n in single_partition_iterator:
			maximum = max(n, maximum)
			minimum = min(n, minimum)
			count += 1
	    #end-for
	    return [(minimum, maximum, count)]
    except StopIteration:
        # if you are here it means that this
        # partition is empty; now, you need
        # to handle it gracefully and return
        # a proper result
        # return a value that we can filter out later [image: 1]
	    return [None]
#end-def


	[image: 1]

	We return [None] so that we can filter it out.





The following code shows how to filter out empty partitions:


integers = [1, 2, 3, 1, 2, 3, 70, 4, 3, 2, 1]
# spark: SparkSession
source_rdd = spark.sparkContext.parallelize(integers, 4)
# source RDD: source_rdd = RDD[Integer]
# target RDD: min_max_count_rdd = RDD(int, int, int)
min_max_count_rdd = source_rdd.mapPartitions(find_min_max_count_revised)

# filter out fake values returned from empty partitions
min_max_count_rdd_filtered = min_max_count_rdd.filter(lambda x: x is not None) [image: 1]

# compute the final triplet (minimum, maximum, count)
final_triplet = min_max_count_rdd_filtered.reduce(
  lambda x, y: (min(x[0], y[0]), max(x[1], y[1]), x[2]+y[2]))
print(final_triplet)
(1, 70, 11)


	[image: 1]

	Drop the result of empty partitions.




















Benefits and Drawbacks


Spark’s mapPartitions() is an efficient
transformation with numerous benefits, summarized here:


	Low processing overhead

	
The mapper function is applied once
per RDD partition rather than per RDD element, which limits the number of function calls to the number of partitions rather
than the number of elements. Note that  for some
transformations, such as map() and flatMap(), the overhead of invoking a function for each element in all the partitions can be substantial.



	Efficient local aggregation

	
Since mapPartitions() works on the partition
level, it gives the user the opportunity to perform filtering and aggregation at that level. This local aggregation greatly reduces the amount of shuffled data. With mapPartitions(), we are reducing a partition into a small, contained data structure. Reducing the amount of sorting and shuffling results in greater efficiency and reliability of reduce 
operations.



	Avoidance of explicit filtering step

	
This transformation enables us to squeeze in the filter() step during iteration of a partition (which may be comprised of thousands or millions of elements), effectively combining a map()/flatMap() operation with a filter() operation. As you iterate partition elements, you can drop the ones you don’t need, then map and aggregate the remaining elements into your desired data type (such as a list, tuple, dictionary, or custom data type). You can even apply multiple filters at the same time. This results in greater efficiency, as you avoid the overhead of setting up and managing multiple data transformation steps.



	Avoidance of repetitive heavy initialization

	
With mapPartitions() you may use broadcast
variables (shared among all cluster nodes) to initialize the data structures required
for aggregation of partition elements. If you
need to do heavyweight initialization, then you will not
pay a heavy price, since the number of initializations is limited to the number of partitions. When using narrow transformations like map() and flatMap(), the creation of such data
structures can be very inefficient due to repetitive initialization
and de-initialization. With mapPartitions(), the initialization is performed only once (at the beginning of a function) for all the data records residing in a given partition. An example of heavy initialization could be the initialization of a database (relational
or HBase) connection to read/update/insert a record.






There are also a few potential drawbacks to using the mapPartitions() 
transformation:



	
Since we are applying a function to
the whole partition, debugging might be
harder than with other mapper transformations.



	
Proper partitioning of data for mapPartitions()
is critical. You want to maximize the cluster
utilization for this kind of transformation; the number of partitions should be greater than the number of available mappers/executors so that there will not be any idle mappers/executors.





















DataFrames and mapPartitions() Transformation


Given a DataFrame, you can easily summarize your
data with a SQL transformation:


# step-1: create your desired DataFrame
df = <a-dataframe-with-some-columns>

# step-2: register your Dataframe as a table
df.registerTempTable("my_table")

# step-3: apply summarization by a SQL transformation
df2 = spark.sql("select min(col1), max(col1), ... from my_table")


Spark’s DataFrame does not have a direct support for mapPartitions(), but it is very easy to apply equivalent of mapPartitions()
to a DataFrame. The following example finds the minimum
price for a group of items:


>>> tuples3 = [
  ('clothing', 'shirt', 20), ('clothing', 'tshirt', 10), ('clothing', 'pants', 30),
  ('fruit', 'banana', 3), ('fruit', 'apple', 4), ('fruit', 'orange', 5),
  ('veggie', 'carrot', 7),  ('veggie', 'tomato', 8), ('veggie', 'potato', 9)]
>>>
>>> df = spark.createDataFrame(tuples3, ["group_id", "item", "price"])
>>> df.show(truncate=False)
+--------+------+-----+
|group_id|item  |price|
+--------+------+-----+
|clothing|shirt |20   |
|clothing|tshirt|10   |
|clothing|pants |30   |
|fruit   |banana|3    |
|fruit   |apple |4    |
|fruit   |orange|5    |
|veggie  |carrot|7    |
|veggie  |tomato|8    |
|veggie  |potato|9    |
+--------+------+-----+

# Find minimum price for all items
>>> df.agg({'price': 'min'}).show()
+----------+
|min(price)|
+----------+
|         3|
+----------+

# Find minimum price for each group of items
>>> df.groupby('group_id').agg({'price': 'min'}).show()
+--------+----------+
|group_id|min(price)|
+--------+----------+
|clothing|        10|
|   fruit|         3|
|  veggie|         7|
+--------+----------+


You may apply multiple aggregation functions
to a DataFrame:


>>> import pyspark.sql.functions as F

>>> df.groupby('group_id')
      .agg(F.min("price").alias("minimum"), F.max("price").alias("maximum"))
      .show()
+--------+-------+-------+
|group_id|minimum|maximum|
+--------+-------+-------+
|clothing|     10|     30|
|   fruit|      3|      5|
|  veggie|      7|      9|
+--------+-------+-------+


PySpark’s DataFrame data abstraction does not
directly support mapPartitions() transformation,
but if you wish to use it, you may convert your DataFrame
into an RDD (by applying DataFrame.rdd) and then
apply mapPartitions()  transformation to an RDD:


# SparkSession available as 'spark'.
>>> tuples3 = [ ('alex', 440, 'PHD'), ('jane', 420, 'PHD'),
...             ('bob', 280, 'MS'), ('betty', 200, 'MS')]
>>>
>>> df = spark.createDataFrame(tuples3, ["name", "amount", "education"])
>>> df.show()
+-----+------+---------+
| name|amount|education|
+-----+------+---------+
| alex|   440|      PHD|
| jane|   420|      PHD|
|  bob|   280|       MS|
|betty|   200|       MS|
+-----+------+---------+

>>> df
DataFrame[name: string, amount: bigint, education: string]
>>>
>>> my_rdd = df.rdd
>>> my_rdd.collect()
[Row(name='alex', amount=440, education='PHD'),
Row(name='jane', amount=420, education='PHD'),
Row(name='bob', amount=280, education='MS'),
Row(name='betty', amount=200, education='MS')]


We may now apply mapPartitions() to my_rdd:


def my_custom_function(partition): [image: 1]
    ... initialize your data structures
    for single_row in partition:
       ...
    #end-for
    return <summary-of-single-partition>
#end-def

result = my_rdd.mapPartitions(my_custom_function)


	[image: 1]

	Note that when iterating partition, each
element (single_row) will be a Row object.



























Summary


To recap:



	
Spark offers many simple and powerful
transformations (such as map(), flatMap(),
filter(), and mapPartitions()) that you can use to convert one form of data into another. Spark transformations enable us to perform ETL
operations in a simple way.



	
If your data requires you to map
one element (such as a String) into another

element (such as a tuple, (key, value pair, or list), you can use the map() or flatMap() transformation.



	
When you want to summarize a lot of data
into a small amount of meaningful information (the summarization design pattern), mapPartitions() is a good choice.



	
The mapPartitions() transformation allows you to do
 heavy initialization (for example, setting up a database
 connection) once for each partition instead of
for every RDD element. This can help the performance of your data analysis when you are dealing with heavyweight initialization
 on large datasets.



	
Some Spark transformations have differences in performance, so you need to
select the transformations you use in a way that suits both your data and your performance needs. For example, for summarizing data, mapPartitions() will usually perform and scale better than map().






The next chapter will focus on reductions in Spark.













Chapter 4. Reductions in Spark



This chapter focuses on reduction transformations on
RDDs in Spark. In particular, we’ll work with
RDDs of (key, value) pairs, which are a
common data abstraction required for many
operations in Spark. Some initial ETL operations may be required to get your data into a (key, value)
form, but with pair RDDs you may perform any
desired aggregation over a set of values.


Spark supports several powerful reduction
transformations and actions. The most important reduction transformations are:



	
reduceByKey()



	
combineByKey()



	
groupByKey()



	
aggregateByKey()






All of the *ByKey() transformations accept a source
RDD[(K, V)] and create a target
RDD[(K, C)] (for some transformations,
such as reduceByKey(), V and C
are the same). The function of these transformations
is to reduce all the values of a given key
(for all unique keys), by finding, for example:



	
The average of all values



	
The sum and count of all values



	
The mode and median of all values



	
The standard deviation of all values





Reduction Transformation Selection

As with mapper transformations, it’s important to select the right tool for the job. For some reduction operations (such
as finding the median), the reducer needs access to all the values at
the same time. For others, such as finding the sum or count
of all values, it doesn’t. If you want to find
the median of values per key, then groupByKey()
will be a good choice, but this transformation
does not do well if a key has lots of values
(which might cause an OOM problem). On the
other hand, if you want to find the sum or count
of all values, then reduceByKey() might
be a good choice: it merges the values for
each key using an associative and commutative
reduce function.




This chapter will show you how to use the most important Spark
reduction transformations, through simple
working PySpark examples. We will focus on the transformations
most commonly used in Spark applications. I’ll also discuss the general concept of reduction, and monoids as a design principle for efficient reduction algorithms. We’ll start by looking at how to create pair RDDs, which are required by Spark’s reduction transformations.


Source Code

Complete programs for this chapter available in the book’s
GitHub repository.










Creating Pair RDDs


Given a set of keys and their associated
values, a reduction transformation reduces the values of each
key using an algorithm (sum of value,
median of values, etc.).  The reduction
transformations presented in this chapter
thus work on (key, value) pairs, which means that the RDD elements must conform to this format.  There are several
ways to create pair RDDs in Spark. For example, you can also use
parallelize() on collections (such as lists of tuples and dictionaries), as shown here:


>>> key_value = [('A', 2), ('A', 4), ('B', 5), ('B', 7)]
>>> pair_rdd = spark.sparkContext.parallelize(key_value)
>>> pair_rdd.collect() [image: 1]
[('A', 2), ('A', 4), ('B', 5), ('B', 7)]
>>> pair_rdd.count()
4
>>> hashmap = pair_rdd.collectAsMap()
>>> hashmap
{'A': 4, 'B': 7}


	[image: 1]

	pair_rdd has two keys, {'A',  'B'}.





Next, suppose you have weather-related data and you
want to create pairs of (city_id, temperature). You can do this using the map() transformation.
Assume that your input has the following format:


<city_id><,><latitude><,><longitude><,><temperature>


First, define a function to create the desired (key, value) pairs:


def create_key_value(rec):
  tokens = rec.split(",")
  city_id = tokens[0]
  temperature = tokens[3]
  return (city_id, temperature) [image: 1]


	[image: 1]

	The key is city_id and the value is temperature.





Then use map() to create your pair RDD:


input_path = <your-temperature-data-path>
rdd = spark.sparkContext.textFile(input_path)
pair_rdd = rdd.map(create_key_value)
# or you can write this using a lambda expression as:
# pair_rdd = rdd.map(lambda rec: create_key_value(rec))


The are many other ways to create (key, value)
pair RDDs: reduceByKey(), for example, accepts a source RDD[(K, V)]
and produces a target RDD[(K, V)], and combineByKey() accepts a source RDD[(K, V)] and produces a target RDD[(K, C)].

















Reduction Transformations


Typically, a reduction transformation
reduces the data size from a large
batch of values (such as list of
numbers) to a smaller one. Examples of reductions include:



	
Finding the sum and average of all values



	
Finding the mean, mode, and median of all values



	
Calculating the mean and standard deviation of
all values



	
Finding the (min, max, count) of all values



	
Finding the top 10 of all values






In a nutshell, a reduction transformation
roughly corresponds to the fold operation
(also called reduce, accumulate, or aggregate)
in    functional   programming.   The transformation is either applied to all
data elements (such as when finding the sum of all
elements) or to all elements per key (such
as when finding the sum of all elements per key).


A simple addition reduction over a set
of numbers {47, 11, 42, 13} for a single
partition is illustrated in Figure 4-1.



[image: daws 0401]
Figure 4-1. An addition reduction in a single partition




Figure 4-2 shows a reduction that sums the elements of two partitions.
The final reduced values for Partition-1
and Partition-2 are 21 and 18.  Each
partition performs local reductions and
finally, the results from the two partitions are
reduced.



[image: daws 0402]
Figure 4-2. An addition reduction over two partitions




The reducer is a core concept in functional
programming, used to transform a set of objects
(such as numbers, strings, or lists) into
a  single  value (such  as the sum of  numbers or
concatenation of string objects). Spark and the
MapReduce paradigm use this concept
to aggregate a set of values into a single
value per key. Consider the following
(key, value) pairs, where the key is a
String and the value is a list of Integers:


(key1, [1, 2, 3])
(key2, [40, 50, 60, 70, 80])
(key3, [8])


The simplest reducer will be an addition
function over a set of values per key. After we apply this function, the result
will be:


(key1, 6)
(key2, 300)
(key3, 8)


Or you may reduce each (key, value)
to (key, pair) where the pair is
(sum-of-values, count-of-values):


(key1, (6, 3))
(key2, (300, 5))
(key3, (8, 1))


Reducers are designed to operate
concurrently and independently,
meaning   that  there   is  no
synchronization between reducers.
The more resources a Spark cluster
has, the faster reductions can be done.
In the worst possible case, if we
have only one reducer, then reduction
will work as a queue operation. In
general, a cluster will offer many
reducers (depending on resource
availability) for the reduction
transformation.


In MapReduce and distributed algorithms, reduction is a required operation in solving a problem. In the MapReduce programming paradigm,
the programmer defines a mapper and
a reducer with the following map()
and reduce() signatures (note that [] denotes an iterable):


	map()

	
(K1, V1) → [(K2, V2)]



	reduce()

	
(K2, [V2]) → [(K3, V3)]






The map() function maps a
(key1, value1) pair into
a set of (key2, value2)
pairs.  After all the map operations are
completed, the sort and shuffle is done automatically (this functionality is provided
by the MapReduce paradigm, not implemented by the programmer). The
MapReduce sort and shuffle phase is very similar
to Spark’s groupByKey()
transformation.


The reduce() function reduces a
(key2, [value2]) pair into
a set of (key3, value3)
pairs. The convention is used
to denote a list of objects (or
an iterable list of objects).
Therefore, we can say that a reduction
transformation takes a list of values
and reduces it to a tangible result
(such as the sum of values, average of
values, or your desired data
structure).

















Spark’s Reductions


Spark provides a rich set of easy-to-use reduction transformations. As stated at the beginning of this chapter, our focus will be on reductions of pair RDDs. Therefore, we will assume that each RDD has a
set of keys and for each key (such as K) we
have a set of values:


{ (K, V1), (K, V2), ..., (K, Vn) }


Table 4-1 lists the reduction transformations available in Spark.


Table 4-1. Spark’s reduction transformations


	Transformation
	Description





	aggregateByKey()

	Aggregates the values of each key using the given combine functions and a neutral “zero value”




	combineByKey()

	Generic function to combine the elements for each key using a custom set of aggregation functions




	countByKey()

	Counts the number of elements for each key, and returns the result to the master as a dictionary




	foldByKey()

	Merges the values for each key using an associative function and a neutral “zero value”




	groupByKey()

	Groups the values for each key in the RDD into a single sequence




	reduceByKey()

	Merges the values for each key using an associative and commutative reduce function




	sampleByKey()

	Returns a subset of this RDD sampled by key, using variable sampling rates for different keys as specified by fractions




	sortByKey()

	Sorts the RDD by key, so that each partition contains a sorted range of the elements in ascending order







These transformation functions all act on (key, value) pairs represented by RDDs. In this chapter, we will look only at
reductions of data over a set of given
unique keys. For  example, given the
following (key, value) pairs for the key K:


{ (K, V1), (K, V2), ..., (K, Vn) }


we are assuming that K has a list
of n (> 0) values:


[ V1, V2, ..., Vn ]


To keep it simple, the goal of reduction
is to generate the following pair (or
set of pairs):


(K, R)


where:


f(V1, V2, ..., Vn) -> R


The function f() is called a
reducer or reduction function.
Spark’s reduction transformations apply this function over a list of values to find the reduced value, R. Note that Spark does
not impose any ordering among the values
([V1, V2, ..., Vn]) to be reduced.


This chapter will include practical examples of solutions demonstrating the use of the most common of Spark’s reduction transformations: reduceByKey(), groupByKey(), aggregateByKey(), and combineByKey().
To get you started, let’s look at a very simple example of the groupByKey() transformation. As the example in Figure 4-3 shows, it works similarly to the SQL GROUP BY statement. In this example, we have four keys, {A, B, C, P}, and their associated values are grouped as a list of integers. The source RDD is an RDD[(String, Integer)], where each element is a pair of (String, Integer). The target RDD is an RDD[(String, [Integer])], where each element is a pair of (String, [Integer]); the value is an iterable list of integers.



[image: daws 0403]
Figure 4-3. The groupByKey() transformation



Note

By default, Spark reductions do not sort the reduced values. For example, in Figure 4-3, the reduced value for key B could be [4, 8] or [8, 4]. If desired, you may sort the values before the final reduction. If your reduction algorithm requires sorting, you must sort the values explicitly.




Now that you have a general understanding of how reducers work, let’s move on to a practical example that demonstrates how different Spark reduction transformations can be used to solve a data problem.

















Simple Warmup Example


Suppose we  have a list of pairs (K, V),
where K (the key) is a String and V (the value) is an Integer:


[
 ('alex', 2), ('alex', 4), ('alex', 8),
 ('jane', 3), ('jane', 7),
 ('rafa', 1), ('rafa', 3), ('rafa', 5), ('rafa', 6),
 ('clint', 9)
]


In this example, we have four unique keys:


{ 'alex', 'jane', 'rafa', 'clint' }


Suppose we want to combine (sum)
the values per key. The result of this reduction
will be:


[
 ('alex', 14),
 ('jane', 10),
 ('rafa', 15),
 ('clint', 9)
]


where:


key: alex =>    14 = 2+4+8
key: jane =>    10 = 3+7
key: rafa =>    15 = 1+3+5+6
key: clint =>    9 (single value, no operation is done)


There are many ways to add these numbers
to get the desired result. How did we arrive
at these reduced (key, value) pairs? For
this example, we could use any of the common Spark
transformations.  Aggregating or combining the values per key is a type of reduction—in the classic MapReduce
paradigm, this is called a reduce by key
(or simply reduce) function. The MapReduce
framework  calls  the  application’s (user-defined) reduce function once for each
unique key. The function iterates through
the values that are associated with that
key and produces zero or more outputs as
(key, value) pairs, solving   the   problem  of  combining the
elements of each unique key into a single
value. (Note that in some applications, the
result might be more than a single value.)


Here I present four different solutions using
Spark’s transformations.  For all solutions,
we will use the following  Python data and
key_value_pairs RDD:


>>> data = [image: 1]
[
 ('alex', 2), ('alex', 4), ('alex', 8),
 ('jane', 3), ('jane', 7),
 ('rafa', 1), ('rafa', 3), ('rafa', 5), ('rafa', 6),
 ('clint', 9)
]
>>> key_value_pairs = spark.SparkContext.parallelize(data) [image: 2]
>>> key_value_pairs.collect()
[
 ('alex', 2), ('alex', 4), ('alex', 8),
 ('jane', 3), ('jane', 7),
 ('rafa', 1), ('rafa', 3), ('rafa', 5), ('rafa', 6),
 ('clint', 9)
]


	[image: 1]

	data is a Python collection—a list of (key, value) pairs.


	[image: 2]

	key_value_pairs is an RDD[(String, Integer)].













Solving with reduceByKey()


Summing the values for a given key is pretty
straightforward: add the first two values, then the next one, and
keep going. Spark’s reduceByKey() transformation merges the values for each key using an associative and commutative reduce function. Combiners (optimized mini-reducers) are used in all cluster nodes before merging the values per partition.


For the reduceByKey() transformation, the source RDD is an RDD[(K, V)] and the target RDD is an RDD[(K, V)]. Note that source and target data types of the
RDD values (V) are the same. This is a
limitation of reduceByKey(), which can be avoided by using
combineByKey() or aggregateByKey()).


We can apply the reduceByKey() transformation using a lambda expression (anonymous function):


# a is (an accumulated) value for key=K
# b is a value for key=K
sum_per_key = key_value_pairs.reduceByKey(lambda a, b: a+b)
sum_per_key.collect()
[('jane', 10), ('rafa', 15), ('alex', 14), ('clint', 9)]


Alternatively, we can use a defined function, such as add:


from operator import add
sum_per_key = key_value_pairs.reduceByKey(add)
sum_per_key.collect()
[('jane', 10), ('rafa', 15), ('alex', 14), ('clint', 9)]


Adding values per key by reduceByKey() is
an optimized solution, since aggregation happens at the partition level before the final aggregation
of all the partitions.

















Solving with groupByKey()


We can also solve this problem by using the groupByKey()
transformation, but this solution will not perform as well because it involves moving lots of data to
the reducer nodes (you’ll learn more about why this is the case when we discuss the shuffle step later in this chapter).


With the reduceByKey() transformation, the source RDD is an RDD[(K, V)] and the target RDD is an RDD[(K, [V])]. Note that the source and target data types are not
the same: the value data type for the source RDD
is V, while for the target RDD it is [V] (an iterable/list of Vs).


The following example demonstrates the use of groupByKey() with a lambda expression to sum the values per key:


sum_per_key = key_value_pairs
                 .grouByKey() [image: 1]
                 .mapValues(lambda values: sum(values)) [image: 2]
sum_per_key.collect()
[('jane', 10), ('rafa', 15), ('alex', 14), ('clint', 9)]


	[image: 1]

	Group values per key (similar to SQL’s GROUP BY). Now each key will have a set of Integer
values; for example, the three pairs
{('alex', 2), ('alex', 4), ('alex', 8)}
will be reduced to a single pair,  ('alex', [2, 4, 8]).


	[image: 2]

	Add values per key using Python’s sum() function.




















Solving with aggregateByKey()


In simplest form, the aggregateByKey()
transformation is defined as:


aggregateByKey(zero_value, seq_func, comb_func)

source RDD: RDD[(K, V)]
target RDD: RDD[(K, C))


It aggregates the values of each key from the source RDD into a target RDD, using the
given combine functions and a neutral
“zero value” (the initial value used for each partition). This function can return
a different result type (C)  than the
type of  the 
values  in the source RDD (V), though in this example both are Integer data types. Thus, we need one operation
for merging values within a single partition (merging values of type V into a value of type C) and one operation for merging values between partitions (merging values of type C from multiple partitions). To avoid unnecessary  memory
allocation, both  of  these functions
are allowed to modify and return their
first argument instead  of  creating a
new C.


The following example demonstrates the use of the aggregateByKey() 
transformation:


# zero_value -> C
# seq_func: (C, V) -> C
# comb_func: (C, C) -> C

>>> sum_per_key = key_value_pairs.aggregateByKey(
... 0, [image: 1]
... (lambda C, V: C+V), [image: 2]
... (lambda C1, C2: C1+C2) [image: 3]
... )
>>> sum_per_key.collect()
[('jane', 10), ('rafa', 15), ('alex', 14), ('clint', 9)]


	[image: 1]

	The zero_value applied on each partition is 0.


	[image: 2]

	seq_func is used on a single partition.


	[image: 3]

	comb_func is used to combine the values of partitions.




















Solving with combineByKey()


The combineByKey() transformation is the
most general and powerful of Spark’s reduction transformations. In its simplest form, it is defined
as:


combineByKey(create_combiner, merge_value, merge_combiners)

source RDD: RDD[(K, V)]
target RDD: RDD[(K, C))


Like aggregateByKey(), the combineByKey() transformation turns a source
RDD[(K, V)] into a target RDD[(K, C)]. Again, V and C
can be different data types (this is part of the power
of combineByKey()—for example, V can be a String or Integer, while C can be a list, tuple, or dictionary), but for this example
both are Integer data types.


The combineByKey() interface allows us
to  customize the reduction and combining behavior as well as the data type. Thus, to use this transformation we have
to provide three functions:


	create_combiner

	
This function turns a
single V into a C (e.g.,
creating a one-element list).
It is used within a single
partition to initialize a C.



	merge_value

	
This function merges a V
into a C (e.g., adding it
to the end of a list). This is
used within a single partition
to aggregate values into a C.



	merge_combiners

	
This function combines
two Cs into a single C
(e.g., merging the lists). This
is used in merging values from
two partitions.






Our solution with combineByKey() looks like this:


>>> sum_per_key = key_value_pairs.combineByKey(
...           (lambda v: v), [image: 1]
...           (lambda C,v: C+v), [image: 2]
...           (lambda C1,C2: C1+C2) [image: 3]
... )
>>> sum_per_key.collect()
[('jane', 10), ('rafa', 15), ('alex', 14), ('clint', 9)]


	[image: 1]

	create_combiner creates the initial values in each partition.


	[image: 2]

	merge_value merges the values in a partition.


	[image: 3]

	merge_combiners merges the values from the different partitions into the final result.





To give you a better idea of the power of the combineByKey()
transformation, let’s look at another example. Suppose we want to find the mean of values
per key. To solve this, we can create a combined
data type (C) as (sum, count), which will
hold the sums of values and their associated
counts:


# C = combined type as (sum, count)
>>> sum_count_per_key = key_value_pairs.combineByKey(
...           (lambda v: (v, 1)),
...           (lambda C,v: (C[0]+v, C[1]+1),
...           (lambda C1,C2: (C1[0]+C2[0], C1[1]+C2[1]))
... )
>>> mean_per_key = sum_count_per_key.mapValues(lambda C: C[0]/C[1])


Given three partitions named {P1, P2, P3},
Figure 4-4 shows how to create a
combiner (data type C), how to merge a
value into a combiner, and finally how to
merge two combiners.



[image: daws 0404]
Figure 4-4. combineByKey() transformation example




Next, I will discuss the concept of monoids,
which will help you to understand how combiners function in reduction transformations.
























What Is a Monoid?


Monoids are a useful design principle for writing efficient
MapReduce algorithms.1 If you don’t understand
monoids, you might write reducer algorithms that do not produce semantically correct
results. If your reducer
is a monoid, then you can be sure that it will produce
correct output in a distributed environment.


Since Spark’s reductions execute on a
partition-by-partition basis (i.e., your
reducer function is distributed rather
than being a sequential function), to get the proper output you
need to make sure that your reducer
function is semantically correct. We’ll look at some examples of using monoids shortly, but first let’s examine the underlying mathematical concept.


In algebra, a monoid is an algebraic
structure with a single associative
binary operation and an identity element
(also called a zero element).


For our purposes, we can informally define a monoid as M = (T, f, Zero), where:



	
T is a data type.



	
f() is a binary operation: f: (T, T) -> T.



	
Zero is an instance of T.





Note

Zero is an identity (neutral) element of
type T; this is not necessarily the number zero.




If a, b, c, and Zero are of type T, for the triple (T, f, Zero) to be a monoid the following properties must hold:



	
Binary operation


f: (T, T) -> T



	
Neutral element


for all a in T:

f(Zero, a) = a
f(a, Zero) = a



	
Associativity


for all a, b, c in T:

f(f(a, b), c) = f(a, f(b, c))






Not every binary operation
is a monoid. For example, the mean() function over a set of integers is not an associative function and therefore is not a monoid, as the following proof shows:


mean(10, mean(30, 50)) != mean(mean(10, 30), 50)

where

   mean(10, mean(30, 50))
      = mean (10, 40)
      = 25

   mean(mean(10, 30), 50)
      = mean (20, 50)
      = 35

   25 != 35


What does this mean? Given an
RDD[(String, Integer)], we might be tempted
to write the following transformation
to find an average per key:


# rdd: RDD[(String, Integer)]
# WRONG REDUCTION to find average by key
avg_by_key = rdd.reduceByKey(lambda x, y: (x+y)/2)


But this will not produce the correct results, because the average of averages is not an average—in other words, the mean/average
function used here is not a monoid. Suppose
that this  rdd has three elements:
{("A", 1), ("A", 2), ("A", 3)}; {("A", 1), ("A", 2)} are in
partition 1 and {("A", 3)}
is in partition 2. Using the preceding solution will result in aggregated values of ("A", 1.5) for partition 1 and ("A", 3.0) for partition 2. Combining the results for the two partitions will then give us a final average of (1.5 + 3.0) / 2 = 2.25, which is not the correct result (the average of the three values is 2.0). If your reducer is a monoid, it is guaranteed to behave properly and produce correct results.










Monoid and Non-Monoid Examples


To help you understand  and recognize monoids, let’s look at some monoid and non-monoid examples. The following are examples of monoids:



	
Integers with addition:


((a + b ) + c) = (a + (b + c))
0 + n = n
n + 0 = n
The zero element for addition is the number 0.



	
Integers with multiplication:


((a * b) * c) = (a * (b * c))
1 * n = n
n * 1 = n
The zero element for multiplication is the number 1.



	
Strings with concatenation:


(a + (b + c)) = ((a + b) + c)
"" + s = s
s + "" = s
The zero element for concatenation is an empty string of size 0.



	
Lists with concatenation:


List(a, b) + List(c, d) = List(a,b,c,d)



	
Sets with their union:


Set(1,2,3) + Set(2,4,5)
   = Set(1,2,3,2,4,5)
   = Set(1,2,3,4,5)

S + {} = S
{} + S = S
The zero element is an empty set {}.






And here are some non-monoid examples:



	
Integers with mean function:


mean(mean(a,b),c) != mean(a, mean(b,c))



	
Integers with subtraction:


((a - b) -c) != (a - (b - c))



	
Integers with division:


((a / b) / c) != (a / (b / c))



	
Integers with mode function:


mode(mode(a, b), c) != mode(a, mode(b, c))



	
Integers with median function:


median(median(a, b), c) != median(a, median(b, c))






In some cases, it is possible to
convert a  non-monoid  into  a monoid.
For example, with a  simple  change  to  our  data
structures we can find  the
correct mean of a set of numbers.  However, there is no
algorithm to convert a non-monoid
structure to a monoid automatically.


Writing distributed algorithms in Spark is much different from writing sequential algorithms on a single server, because the algorithms operate in parallel on partitioned data. Therefore, when writing a reducer, you need to make sure that your reduction function is a monoid. Now that you understand this important concept, let’s move on to some practical examples.
























The Movie Problem


The goal of this first example is to present a
basic problem and then provide solutions
using   different  Spark  reduction
transformations by means of PySpark. For
all reduction transformations, I have
carefully selected the data types such
that they form a monoid.


The movie problem can be stated as follows: given a
set of users, movies, and ratings,  (in the range 1 to 5), we want to find the average rating of all
movies by a user.  So, if the user with userID=100) has rated four movies:


(100, "Lion King", 4.0)
(100, "Crash", 3.0)
(100, "Dead Man Walking", 3.5)
(100, "The Godfather", 4.5)


we want to generate the following output:


(100, 3.75)


where:


3.75 = mean(4.0, 3.0, 3.5, 4.5)
     = (4.0 + 3.0 + 3.5 + 4.5) / 4
     = 15.0 / 4


For this example, note that the reduceByKey()
transformation over a set of ratings will not
always produce the correct output, since the average (or mean) is not an algebraic monoid over a set of float/integer numbers. In other words, as discussed in the previous section, the mean of means is not equal to the mean of all input numbers.
Here is a simple proof. Suppose we want to find the mean of six values (the numbers 1–6), stored in a single partition. We can do this with the mean() function as follows:


mean(1, 2, 3, 4, 5, 6)
   = (1 + 2 + 3 + 4 + 5 + 6) / 6
   = 21 / 6
   = 3.5 [correct result]


Now, let’s make mean() function as a distributed
function. Suppose the values are stored on three partitions:


Partition-1: (1, 2, 3)
Partition-2: (4, 5)
Partition-3: (6)


First, we compute the mean of each partition:


mean(1, 2, 3, 4, 5, 6)
  =  mean (
           mean(Partition-1),
           mean(Partition-2),
           mean(Partition-3)
          )

mean(Partition-1)
  = mean(1, 2, 3)
  = mean( mean(1,2), 3)
  = mean( (1+2)/2, 3)
  = mean(1.5, 3)
  = (1.5+3)/2
  = 2.25

mean(Partition-2)
  = mean(4,5)
  = (4+5)/2
  = 4.5

mean(Partition-3)
  = mean(6)
  = 6


Then we find the mean of these values. Once all partitions are processed, therefore, we get:


mean(1, 2, 3, 4, 5, 6)
  =  mean (
           mean(Partition-1),
           mean(Partition-2),
           mean(Partition-3)
          )
  = mean(2.25, 4.5, 6)
  = mean(mean(2.25, 4.5), 6)
  = mean((2.25 + 4.5)/2, 6)
  = mean(3.375, 6)
  = (3.375 + 6)/2
  = 9.375 / 2
  = 4.6875  [incorrect result]


To avoid this problem, we can
use a monoid data structure (which supports
associativity and commutativity) such as a
pair of (sum, count), where sum is the total
sum of all  numbers we have seen so far  (per partition) and count is the
number of ratings we have seen so far. If we define our mean() function as:

mean(pair(sum, count)) = sum / count


we get:

mean(1,2,3,4,5,6)
  = mean(mean(1,2,3), mean(4,5), mean(6))
  = mean(pair(1+2+3, 1+1+1), pair(4+5, 1+1), pair(6,1))
  = mean(pair(6, 3), pair(9, 2), pair(6,1))
  = mean(mean(pair(6, 3), pair(9, 2)), pair(6,1))
  = mean(pair(6+9, 3+2), pair(6,1))
  = mean(pair(15, 5), pair(6,1))
  = mean(pair(15+6, 5+1))
  = mean(pair(21, 6))
  = 21 / 6 = 3.5 [correct result]


As this example shows, by using a monoid we can achieve associativity.
Therefore, you may apply the reduceByKey() transformation when your function f() is commutative and associative:


# a = (sum1, count1)
# b = (sum2, count2)
# f(a, b) = a + b
#         = (sum1+sum2, count1+count2)
#
reduceByKey(lambda a, b: f(a, b))


For example, the addition
(+) operation is commutative and associative,
but the mean/average function does not satisfy
these properties.

Note

As we saw in Chapter 1, a commutative function ensures that the result
is independent of the order of
elements in the RDD being aggregated:


f(A, B) = f(B, A)


An associative function ensures that the order in which elements are grouped during the aggregation does not affect the final result:


f(f(A, B), C) = f(A, f(B, C))












Input Dataset to Analyze


The sample data we’ll use for this problem is a dataset from
MovieLens. For simplicity, I will assume that you have downloaded and unzipped the
files into a /tmp/movielens/ directory. Note that
there is no requirement to put the files at the suggested location; you may place your files
in your preferred directory and update your
input paths accordingly.

Tip

The full MovieLens dataset
(ml-latest.zip) is 265 MB.  If
you want to use a smaller dataset to run, test, and debug the
programs listed here, you can instead download the small MovieLens dataset, a 1 MB file consisting of 100,000 ratings and 3,600 tag applications applied to 9,000 movies by 600 users.




All ratings are contained in the file
ratings.csv. Each line of this file
after the header row represents one
rating of one movie by one user, and
has the following format:


<userId><,><movieId><,><rating><,><timestamp>


In this file:



	
The lines  are ordered first
by userId, then, for each user, by movieId.



	
Ratings are made on a 5-star scale, with
half-star increments (0.5 stars to 5.0 stars).



	
Timestamps represent seconds since midnight
Coordinated Universal Time (UTC) of January 1,
1970 (this field is ignored in our analysis).






After unzipping the downloaded file, you should
have the following files:


$ ls -l /tmp/movielens/
       8,305  README.txt
     725,770  links.csv
   1,729,811  movies.csv
 620,204,630  ratings.csv
  21,094,823  tags.csv


First, check the number of records (the number of records you see might be different based on when you downloaded the file):


$ wc -l /tmp/movielens/ratings.csv
22,884,378 /tmp/movielens/ratings.csv


Next, take a look at the first few records:


$ head -6 /tmp/movielens/ratings.csv
userId,movieId,rating,timestamp
1,169,2.5,1204927694
1,2471,3.0,1204927438
1,48516,5.0,1204927435
2,2571,3.5,1436165433
2,109487,4.0,1436165496


Since we are using RDDs, we do not
need the metadata associated with the
data. Therefore, we can remove the first line (the header line) from the
ratings.csv file:


$ tail -n +2 ratings.csv > ratings.csv.no.header
$ wc -l ratings.csv ratings.csv.no.header
22,884,378 ratings.csv
22,884,377 ratings.csv.no.header


Now that we’ve acquired our sample data, we can work through a few solutions to this problem. The first solution will use aggregateByKey(), but before we get to that I’ll present the logic behind this transformation.

















The aggregateByKey() Transformation


Spark’s aggregateByKey() transformation initializes each key on each partition with the zero value, which is an initial combined data type (C); this is a neutral value, typically (0, 0) if the combined data type is (sum, count). This zero value is
merged with the first value in the partition to create a new C, which is then merged with the second value. This process
continues until we’ve merged all the values for that key. Finally, if the same key exists in multiple partitions,
these values are combined together to produce the final C.


Figures 4-5 and 4-6 show how
aggregateByKey() works with different
zero values. The zero value is applied
per key, per partition. This means that
if a key X is in N partitions,
the zero value is applied N times
(each of these N partitions will be
initialized to the zero value for key X). Therefore, it’s important to select this value carefully.


Figure 4-5 demonstrates how aggregateByKey()
works with zero-value=(0, 0).



[image: daws 0405]
Figure 4-5. aggregateByKey() with zero-value=(0, 0)




Typically, you would use (0, 0) but Figure 4-6 demonstrates how the same transformation works with a zero value of (10, 20).



[image: daws 0406]
Figure 4-6. aggregateByKey() with zero-value=(10, 20)



















First Solution Using aggregateByKey()


To find the average rating for each user, the first step is to map each record into
(key, value) pairs of the form:


(userID-as-key, rating-as-value)


The simplest way to add up values
per key is to use  the reduceByKey()
 transformation, but we can’t use reduceByKey()
to find the average rating per user because, as we’ve seen,
the mean/average function is not a
monoid over a set of ratings (as
float numbers). To make this a monoid
operation, we use a pair data structure
(a tuple of two elements) to hold a pair
of values, (sum, count), where sum is
the aggregated sum of ratings and count
is the number of ratings we have added
(summed) so far, and we use the aggregateByKey() transformation.


Let’s prove that the pair structure
(sum, count) with an addition
operator over a set of numbers is
a monoid.


If we use (0.0, 0) as our zero element, it is neutral:


f(A, Zero) = A
f(Zero, A) = A

A = (sum, count)

f(A, Zero)
  = (sum+0.0, count+0)
  = (sum, count)
  = A

f(Zero, A)
  = (0.0+sum, 0+count)
  = (sum, count)
  = A


The operation is commutative (that is, the result is independent of the order of the elements in the RDD being aggregated):


f(A, B) = f(B, A)

A = (sum1, count1)
B = (sum2, count2)

f(A, B)
  = (sum1+sum2, count1+count2)
  = (sum2+sum1, count2+count1)
  = f(B, A)


It is also associative (the order in which elements are aggregated does not affect the final result):


f(f(A, B), C) = f(A, f(B, C))

A = (sum1, count1)
B = (sum2, count2)
C = (sum3, count3)

f(f(A, B), C)
  = f((sum1+sum2, count1+count2), (sum3, count3))
  = (sum1+sum2+sum3, count1+count2+count3)
  = (sum1+(sum2+sum3), count1+(count2+count3))
  = f(A, f(B, C))


To make things simple, we’ll define a very
basic Python function, create_pair(),
which accepts a record of movie rating
data and returns a pair of (userID, rating):


# Define a function that accepts a CSV record
# and returns a pair of (userID, rating)
# Parameters: rating_record (as CSV String)
# rating_record = "userID,movieID,rating,timestamp"
def create_pair(rating_record):
	tokens = rating_record.split(",")
	userID = tokens[0]
	rating = float(tokens[2])
	return (userID, rating)
#end-def


Next, we test the function:


key_value_1 = create_pair("3,2394,4.0,920586920")
print key_value_1
('3', 4.0)

key_value_2 = create_pair("1,169,2.5,1204927694")
print key_value_2
('1', 2.5)


Here is a PySpark solution using aggregateByKey() and our create_pair() function.
The combined type (C) to denote values for the
aggregateByKey() operation is a pair of (sum-of-ratings,
count-of-ratings).


# spark: an instance of SparkSession
ratings_path = "/tmp/movielens/ratings.csv.no.header"
rdd = spark.sparkContext.textFile(ratings_path)
# load user-defined Python function
ratings = rdd.map(lambda rec : create_pair(rec)) [image: 1]
ratings.count()
#
# C = (C[0], C[1]) = (sum-of-ratings, count-of-ratings)
# zero_value -> C = (0.0, 0)
# seq_func: (C, V) -> C
# comb_func: (C, C) -> C
sum_count = ratings.aggregateByKey( [image: 2]
    (0.0, 0), [image: 3]
    (lambda C, V: (C[0]+V, C[1]+1)), [image: 4]
    (lambda C1, C2: (C1[0]+C2[0], C1[1]+C2[1])) [image: 5]
)


	[image: 1]

	The source RDD, ratings, is an RDD[(String, Float)] where the key is a userID and the value is a rating.


	[image: 2]

	The target RDD, sum_count, is an RDD[(String, (Float, Integer))] where the key is a userID and the value is a pair (sum-of-ratings, count-of-ratings).


	[image: 3]

	C is initialized to this value in each partition.


	[image: 4]

	This is used to combine values within a single partition.


	[image: 5]

	This is used to combine the results from different partitions.





Let’s break down what’s happening here. First, we the aggregateByKey() function and create a result set “template” with the initial values. We’re starting the data out as (0.0, 0), so the initial sum of ratings is 0.0 and the initial count of records is 0. For each row of data, we’re going to do some adding. C is the new template, so C[0] is referring to our “sum” element (sum-of-ratings), while C[1] is the “count” element (count-of-ratings). Finally, we combine the values from the different partitions. To do this, we simply add the C1 values to the C2 values based on the template we made.


The data in the sum_count RDD will end up
looking like the following:


sum_count
  = [(userID, (sum-of-ratings, count-of-ratings)), ...]
  = RDD[(String, (Float, Integer))]

[
  (100, (40.0, 10)),
  (200, (51.0, 13)),
  (300, (340.0, 90)),
  ...
]


This tells us that user 100 has rated 10 movies and the sum of all their ratings was 40.0; user 200 has rated 13 movies and the sum of their ratings was 51.0


Now, to get the actual average rating per user, we need to
use the mapValues() transformation and divide
the first entry (sum-of-ratings) by the second entry (count-of-ratings):


# x =  (sum-of-ratings, count-of-ratings)
# x[0] = sum-of-ratings
# x[1] = count-of-ratings
# avg = sum-of-ratings / count-of-ratings
average_rating = sum_count.mapValues(lambda x: (x[0]/x[1])) [image: 1]


	[image: 1]

	average_rating is an RDD[(String, Float)] where the key is a userID and the value is an average-rating.





The contents of this RDD are as follows, giving us the result we’re looking for:


average_rating
[
  (100, 4.00),
  (200, 3.92),
  (300, 3.77),
  ...
]

















Second Solution Using aggregateByKey()


Here, I’ll present another solution using the aggregateByKey() transformation. Note that to save space,
I have trimmed the output generated by the PySpark shell.


The first step is to read the data and create (key, value) pairs,
where the key is a userID and the value is a rating:


# ./bin/pyspark
SparkSession available as 'spark'.
>>># create_pair() returns a pair (userID, rating)
>>># rating_record = "userID,movieID,rating,timestamp"
>>> def create_pair(rating_record):
...     tokens = rating_record.split(",")
...     return (tokens[0], float(tokens[2]))
...
>>> key_value_test = create_pair("3,2394,4.0,920586920")
>>> print key_value_test
('3', 4.0)
>>> ratings_path = "/tmp/movielens/ratings.csv.no.header"
>>> rdd = spark.sparkContext.textFile(ratings_path)
>>> rdd.count()
22884377
>>> ratings = rdd.map(lambda rec : create_pair(rec))
>>> ratings.count()
22884377
>>> ratings.take(3)
[(u'1', 2.5), (u'1', 3.0), (u'1', 5.0)]


Once we’ve created the (key, value) pairs, we can
apply the aggregateByKey() transformation to sum
up the ratings.  The initial value of (0.0, 0)
is used for each partition, where 0.0 is the sum of
the ratings and 0 is the number of ratings:


>>># C is a combined data structure, (sum, count)
>>> sum_count = ratings.aggregateByKey( [image: 1]
...     (0.0, 0), [image: 2]
...     (lambda C, V: (C[0]+V, C[1]+1)), [image: 3]
...     (lambda C1, C2: (C1[0]+C2[0], C1[1]+C2[1]))) [image: 4]

>>> sum_count.count()
247753

>>> sum_count.take(3)
[
 (u'145757', (148.0, 50)),
 (u'244330', (36.0, 17)),
 (u'180162', (1882.0, 489))
]


	[image: 1]

	The target RDD is an RDD[(String, (Float, Integer))].


	[image: 2]

	C is initialized
to (0.0, 0) in each partition.


	[image: 3]

	This lambda expression adds a single value of V
to C (used in a single partition).


	[image: 4]

	This lambda expression combines the values across partitions
(adds two Cs to create a single C).





We could use Python functions
instead of lambda expressions. To do this, we would need to write
the following functions:


# C = (sum, count)
# V is a single value of type Float
def seq_func(C, V):
    return (C[0]+V, C[1]+1)
#end-def

# C1 = (sum1, count1)
# C2 = (sum2, count2)
def comb_func(C1, C2):
    return (C1[0]+C2[0], C1[1]+C2[1])
#end-def


Now, we can compute sum_count
using the defined functions:


sum_count = ratings.aggregateByKey(
    (0.0, 0),
    seq_func,
    comb_func
)


The previous step created RDD elements of the following type:


(userID, (sum-of-ratings, number-of-ratings))


Next, we do the final calculation to find the average rating per user:


>>># x refers to a pair of (sum-of-ratings, number-of-ratings)
>>># where
>>>#      x[0] denotes sum-of-ratings
>>>#      x[1] denotes number-of-ratings
>>>
>>> average_rating = sum_count.mapValues(lambda x:(x[0]/x[1]))
>>> average_rating.count()
247753

>>> average_rating.take(3)
[
 (u'145757', 2.96),
 (u'244330', 2.1176470588235294),
 (u'180162', 3.8486707566462166)
]


Next, I’ll present a solution to the movies
problem using groupByKey().

















Complete PySpark Solution Using groupByKey()


For a given set of (K, V) pairs,
groupByKey() has the following signature:


groupByKey(numPartitions=None, partitionFunc=<function portable_hash>)
groupByKey : RDD[(K, V)] --> RDD[(K, [V])]


If the source RDD is an RDD[(K, V)], the groupByKey() transformation
groups the values for each key (K)
in the RDD into a single sequence as a list/iterable of Vs. It then hash-partitions
the resulting RDD with  the existing
partitioner/parallelism level.  The
ordering of elements within each group
is not guaranteed, and may even differ
each time the resulting RDD is evaluated.

Tip

You can customize both the
number of partitions (numPartitions)
and partitioning function (partitionFunc).




Be Careful with groupByKey()

The groupByKey() operation can be very expensive.
If you are grouping a large number of values in
order to perform an aggregation (such as a sum
or average, or a statistical function) over each
key, using combineByKey(), aggregateByKey(),
or reduceByKey() will provide much better
scalability and performance.  Also note that
the groupByKey() transformation assumes
that the data for a key will fit in memory. If
you have more data for a given key than will fit in memory, then you might
get an OOM error.


When possible, you should avoid using
groupByKey().  While both the groupByKey()
and reduceByKey() transformations
can produce the correct result, reduceByKey() works much better
(i.e., scales out better) on a
large dataset. That’s because Spark
knows it can combine output with a
common key on each partition
before shuffling the data.


Other alternatives that may be preferable to groupByKey() include:


	combineByKey()

	
This can be used when you are
combining elements but your return type may
differ from your input value type.



	foldByKey()

	
This merges the values for each key
using an associative function and a neutral
zero value.








Here, I present a complete solution using
the groupByKey() transformation.


The first step is to read the data and create (key, value) pairs,
where the key is a userID and the value is a rating:


>>># spark: SparkSession
>>> def create_pair(rating_record):
...     tokens = rating_record.split(",")
...     return (tokens[0], float(tokens[2]))
...
>>> key_value_test = create_pair("3,2394,4.0,920586920")
>>> print key_value_test
('3', 4.0)

>>> ratings_path = "/tmp/movielens/ratings.csv.no.header"
>>> rdd = spark.sparkContext.textFile(ratings_path)
>>> rdd.count()
22884377
>>> ratings = rdd.map(lambda rec : create_pair(rec)) [image: 1]
>>> ratings.count()
22884377
>>> ratings.take(3)
[
 (u'1', 2.5),
 (u'1', 3.0),
 (u'1', 5.0)
]


	[image: 1]

	ratings is an
RDD[(String, Float)]





Once we’ve created the (key, value) pairs, we
can apply the groupByKey() transformation
to group all ratings for a user. This step creates
 (userID, [R1, ..., Rn]) pairs,
where R1, …, Rn are all of the
ratings for a unique userID.


As you will notice, the groupByKey()
transformation works exactly like SQL’s GROUP BY. It groups values of the same key as an iterable of values:


>>> ratings_grouped = ratings.groupByKey() [image: 1]
>>> ratings_grouped.count()
247753
>>> ratings_grouped.take(3)
[
 (u'145757', <ResultIterable object at 0x111e42e50>), [image: 2]
 (u'244330', <ResultIterable object at 0x111e42dd0>),
 (u'180162', <ResultIterable object at 0x111e42e10>)
]
>>> ratings_grouped.mapValues(lambda x: list(x)).take(3) [image: 3]
[
 (u'145757', [2.0, 3.5, ..., 3.5, 1.0]),
 (u'244330', [3.5, 1.5, ..., 4.0, 2.0]),
 (u'180162', [5.0, 4.0, ..., 4.0, 5.0])
]


	[image: 1]

	ratings_grouped is an RDD[(String, [Float])] where the key is a userID and the value is a list of ratings.


	[image: 2]

	The full name of ResultIterable is pyspark.resultiterable.ResultIterable.


	[image: 3]

	For debugging, convert the ResultIterable
object to a list of Integers.





To find the average rating per user, we sum up
all the ratings for each userID and then calculate the averages:


>>># x refers to all ratings for a user as [R1, ..., Rn]
>>># x: ResultIterable object
>>> average_rating = ratings_grouped.mapValues(lambda x: sum(x)/len(x)) [image: 1]
>>> average_rating.count()
247753
>>> average_rating.take(3)
[
 (u'145757', 2.96),
 (u'244330', 2.12),
 (u'180162', 3.85)
]


	[image: 1]

	average_rating is an RDD[(String, Float)] where the key is userID and the value is average-rating.




















Complete PySpark Solution Using reduceByKey()


In its simplest form, reduceByKey() has the following signature
(the source and target data types, V, must
be the same):


reduceByKey(func, numPartitions=None, partitionFunc)
reduceByKey: RDD[(K, V)] --> RDD[(K, V)]


reduceByKey() transformation merges
the values for each key using an
associative and commutative reduce
function. This will also perform the
merging locally on 
each mapper before
sending the results to a reducer, similarly
to a combiner in 
MapReduce. The output
will be partitioned with numPartitions
partitions, or the default parallelism
level if numPartitions is not specified.
The default partitioner is HashPartitioner.


Since we want to find the average rating
for all movies rated by a user, and we
know that the mean of means is not a mean (the mean
function is not a monoid), we need to add up all the ratings for each user and
keep track of the number of movies they’ve rated. Then, (sum_of_ratings, number_of_ratings) is a monoid over an addition function, but
at the end we need to perform one more mapValues()
transformation to find the actual average
rating by dividing sum_of_ratings by number_of_ratings.  The complete  solution
using reduceByKey() is given here.
Note that reduceByKey() is more efficient
and  scalable   than   a  groupByKey()
transformation, since merging and combining
are done locally before sending data
for the final reduction.












Step 1: Read data and create pairs


The first step is to read the data and create (key, value)
pairs, where the key is a userID and the value is
a pair of (rating, 1).  To use reduceByKey()
for finding  averages, we need to find the
(sum_of_ratings, number_of_ratings).  We start by reading the input data and creating an RDD[String]:


>>># spark: SparkSession
>>> ratings_path = "/tmp/movielens/ratings.csv.no.header"
>>># rdd: RDD[String]
>>> rdd = spark.sparkContext.textFile(ratings_path)
>>> rdd.take(3)
[
 u'1,169,2.5,1204927694',
 u'1,2471,3.0,1204927438',
 u'1,48516,5.0,1204927435'
]


Then we transform the RDD[String] into an RDD[(String, (Float, Integer))]:


>>> def create_combined_pair(rating_record):
...     tokens = rating_record.split(",")
...     userID = tokens[0]
...     rating = float(tokens[2])
...     return (userID, (rating, 1))
...
>>># ratings: RDD[(String, (Float, Integer))]
>>> ratings = rdd.map(lambda rec : create_combined_pair(rec)) [image: 1]
>>> ratings.count()
22884377
>>> ratings.take(3)
[
 (u'1', (2.5, 1)),
 (u'1', (3.0, 1)),
 (u'1', (5.0, 1))
]


	[image: 1]

	Create the pair RDD.




















Step 2: Use reduceByKey() to sum up ratings


Once we’ve created the (userID, (rating, 1)) pairs we can apply the reduceByKey() transformation
to sum up all the ratings and the number of ratings for a given user. The
output of this step will be tuples of
(userID, (sum_of_ratings, 
number_of_ratings)):


>>># x refers to (rating1, frequency1)
>>># y refers to (rating2, frequency2)
>>># x = (x[0] = rating1, x[1] = frequency1)
>>># y = (y[0] = rating2, y[1] = frequency2)
>>># x + y = (rating1+rating2, frequency1+frequency2)
>>># ratings is the source RDD [image: 1]
>>> sum_and_count = ratings.reduceByKey(lambda x, y: (x[0]+y[0],x[1]+y[1])) [image: 2]
>>> sum_and_count.count()
247753
>>> sum_and_count.take(3)
[
 (u'145757', (148.0, 50)),
 (u'244330', (36.0, 17)),
 (u'180162', (1882.0, 489))
]


	[image: 1]

	The source RDD (ratings) is an
RDD[(String, (Float, Integer))].


	[image: 2]

	The target RDD (sum_and_count) is an
RDD[(String, (Float, Integer))]. Notice that the data types for
the source and target are the same.




















Step 3: Find average rating


Divide sum_of_ratings by number_of_ratings to find the average rating per user:


>>># x refers to (sum_of_ratings, number_of_ratings)
>>># x = (x[0] = sum_of_ratings, x[1] = number_of_ratings)
>>># avg = sum_of_ratings / number_of_ratings = x[0] / x[1]
>>> avgRating = sum_and_count.mapValues(lambda x : x[0] / x[1])
>>> avgRating.take(3)
[
 (u'145757', 2.96),
 (u'244330', 2.1176470588235294),
 (u'180162', 3.8486707566462166)
]






















Complete PySpark Solution Using combineByKey()


combineByKey() is a more general and extended
version of reduceByKey() where the result type
can be different than the type of the values being aggregated.
This is a limitation of reduceByKey(); it means that, given the
following:


# let rdd represent (key, value) pairs
# where value is of type T
rdd2 = rdd.reduceByKey(lambda x, y: func(x,y))


func(x,y) must create a value of type T.


The combineByKey() transformation
is an optimization that aggregates
values for a given key before sending aggregated partition values to
the designated reducer. This aggregation is performed in each partition, and then the values from all the partitions are merged into a single
value. Thus, like with reduceByKey(), each partition outputs at most one value for each key to send over the network, which speeds up the shuffle step. However, unlike with reduceByKey(), the type of the combined
(result) value does not have to match the
type of the original value.


For a given set of (K, V) pairs, combineByKey()
has the following signature (this transformation
has many different versions; this is the simplest
form):


combineByKey(create_combiner, merge_value, merge_combiners)
combineByKey : RDD[(K, V)] --> RDD[(K, C)]

V and C can be different data types.


This is a generic function to combine
the elements for each key using a custom
set of aggregation functions.  It converts
an  RDD[(K, V)] into a result of type
RDD[(K, C)], where C is a combined type.
It can be a simple data type such as Integer or String, or it can be a composite
data structure such as a (key, value) pair, a triplet (x, y, z), or whatever else you desire. This flexibility, makes combineByKey()
a very powerful reducer.


As discussed earlier in this chapter, given a source RDD RDD[(K, V)], we
have to provide three basic functions:


create_combiner: (V) -> C
merge_value: (C, V) -> C
merge_combiners: (C, C) -> C


To avoid memory allocation, both merge_value
and  merge_combiners are allowed to modify
and return their first argument instead of
creating a new C (this avoids creating
new objects, which can be costly if you have
a lot of data).


In addition, users can control (by providing
additional  parameters)  the  partitioning of
the output RDD, the  serializer  that  is used
for the shuffle, and whether to perform map-side
aggregation (i.e., if a mapper can produce multiple
items with the same key). The combineByKey()
transformation thus provides quite a bit of flexibility, but it is a little more complex to use than some of the other reduction transformations.


Let’s see how we can use combineByKey() to solve the movie problem.












Step 1: Read data and create pairs


As in the previous solutions, the first step is to read the data and create (key, value) pairs
where the key is a userID and the value is a rating:


>>># spark: SparkSession
>>># create and return a pair of (userID, rating)
>>> def create_pair(rating_record):
...     tokens = rating_record.split(",")
...     return (tokens[0], float(tokens[2]))
...
>>> key_value_test = create_pair("3,2394,4.0,920586920")
>>> print key_value_test
('3', 4.0)

>>> ratings_path = "/tmp/movielens/ratings.csv.no.header"
>>> rdd = spark.sparkContext.textFile(ratings_path) [image: 1]
>>> rdd.count()
22884377
>>> ratings = rdd.map(lambda rec : create_pair(rec)) [image: 2]
>>> ratings.count()
22884377
>>> ratings.take(3)
[
 (u'1', 2.5),
 (u'1', 3.0),
 (u'1', 5.0)
]


	[image: 1]

	rdd is an RDD[String].


	[image: 2]

	ratings is an RDD[(String, Float)].




















Step 2: Use combineByKey() to sum up ratings


Once  we’ve created the (userID, rating) pairs , we can apply the combineByKey()
transformation to sum up all the ratings and the number of ratings for each user. The
output of this step will be (userID, (sum_of_ratings, number_of_ratings)) pairs:


>>># v is a rating from (userID, rating)
>>># C represents (sum_of_ratings, number_of_ratings)
>>># C[0] denotes sum_of_ratings
>>># C[1] denotes number_of_ratings
>>># ratings: source RDD  [image: 1]
>>> sum_count = ratings.combineByKey( [image: 2]
          (lambda v: (v, 1)), [image: 3]
          (lambda C,v: (C[0]+v, C[1]+1)), [image: 4]
          (lambda C1,C2: (C1[0]+C2[0], C1[1]+C2[1])) [image: 5]
    )
>>> sum_count.count()
247753
>>> sum_count.take(3)
[
 (u'145757', (148.0, 50)),
 (u'244330', (36.0, 17)),
 (u'180162', (1882.0, 489))
]


	[image: 1]

	The source RDD is an  RDD[(String, Float)].


	[image: 2]

	The target RDD is an RDD[(String, (Float, Integer))].


	[image: 3]

	This turns a V (a single value)
into a C as (V, 1).


	[image: 4]

	This merges a V (rating) into a C
as (sum, count).


	[image: 5]

	This combines two Cs into a single C.




















Step 3: Find average rating


Divide sum_of_ratings by number_of_ratings to find the average rating per user:


>>># x = (sum_of_ratings, number_of_ratings)
>>># x[0] = sum_of_ratings
>>># x[1] = number_of_ratings
>>># avg = sum_of_ratings / number_of_ratings
>>> average_rating = sum_count.mapValues(lambda x:(x[0] / x[1]))
>>> average_rating.take(3)
[
 (u'145757', 2.96),
 (u'244330', 2.1176470588235294),
 (u'180162', 3.8486707566462166)
]


Next, we’ll examine the shuffle step in Spark’s
reduction transformations.





























The Shuffle Step in Reductions


Once all the mappers have finished emitting
(key, value) pairs, MapReduce’s
magic happens: the sort and shuffle step.
This step groups (sorts) the output of the map phase by keys and sends the results to the reducer(s). From an efficiency and scalability point
of view, it’s different for different transformations.


The idea of sorting by keys should be familiar by now, so here I’ll focus on the shuffle. In a nutshell, shuffling is the process of
redistributing data across partitions. It
may or may not cause  data to be moved across JVM
processes, or even over the wire (between
executors on separate servers).


I’ll explain the concept of shuffling with an
example.  Imagine that you have a 100-node
Spark cluster. Each node has records containing data on the frequency of URL visits, and
you want to calculate the total frequency
per URL. As you know by now, you can achieve this by reading the data and creating (key, value) pairs, where the key is a URL and the value is a frequency, then summing up the frequencies for each URL. But if the data is spread across the cluster, how can you sum
up the values for the same key stored on
different servers? The only way to do this is to get all the values for the same key onto the same server; then you can sum them  up easily. This  process  is
called shuffling.


There are many transformations (such as
reduceByKey() and join()) that require
shuffling of data  across the cluster, but it can be an expensive operation. Shuffling  data
for  groupByKey()  is  different  from
shuffling reduceByKey() data, and this difference affects the performance of each
transformation.
Therefore, it is very important to properly
select and use reduction transformations.


Consider the following PySpark solution to a simple word count problem:


# spark: SparkSession
# We use 5 partitions for textFile(), flatMap(), and map()
# We use 3 partitions for the reduceByKey() reduction
rdd = spark.sparkContext.textFile("input.txt", 5)\
   .flatMap(lambda line: line.split(" "))\
   .map(lambda word: (word, 1))\
   .reduceByKey(lambda a, b: a + b, 3)\ [image: 1]
   .collect()


	[image: 1]

	3 is the number of partitions.





Since we directed the reduceByKey()
transformation to create three partitions,
the resulting RDD will be partitioned
into three chunks, as depicted in Figure 4-7. The RDD operations are compiled into
a directed acyclic graph of
RDD objects, where each RDD maintains a pointer to
the parent(s) it depends on. As this figure shows, at shuffle boundaries
the  DAG is partitioned into
stages (Stage 1, Stage 2, etc.) that are executed in order.



[image: daws 0407]
Figure 4-7. Spark’s shuffle concept




Since
shuffling involves copying data across
executors and servers, this
is a complex and costly operation. Let’s take a closer look at how it works for two Spark reduction transformations, groupByKey() and reduceByKey(). This will help illustrate the importance of choosing the appropriate reduction.










Shuffle Step for groupByKey()


The groupByKey() shuffle step is
pretty straightforward. It does not
merge the values for each key; instead, the shuffle happens directly. This means a large volume of data gets sent
to each partition, because there’s no reduction in the initial data  values.  The
merging  of  values  for each  key
happens after the shuffle step. With
groupByKey(), a lot of data needs
to be stored on final worker nodes (reducers), which means you may run into OOM errors if there’s lots of data per key.
Figure 4-8 illustrates the process. Note that after groupByKey(),
you need to call mapValues()
to generate your final desired output.



[image: daws 0408]
Figure 4-8. Shuffle step for groupByKey()




Because groupByKey() does not merge or combine values, it’s an expensive operation that requires moving large amounts of data over the network.

















Shuffle Step for reduceByKey()


With reduceByKey(), the data in each partition is combined so
that there is at most
one value for each key in each partition. Then the shuffle happens, and this data is sent over the network
to the reducers, as illustrated in Figure 4-9. Note that with
reduceByKey(), you do not need need to
call mapValues() to generate your
final desired output. In general, it’s equivalent to using groupByKey() and mapValues(), but because of the reduction in the amount of data sent over the network it is a much more efficient and performant solution.



[image: daws 0409]
Figure 4-9. Shuffle step for reduceByKey()


























Summary


This chapter introduced Spark’s reduction transformations and presented multiple solutions to a real-world data problem with the most commonly used of these transformations: reduceByKey(),
aggregateByKey(), combineByKey(),
and groupByKey(). As you’ve seen,
there are many ways to solve the same
data problem, but they do not all have the same performance.


Table 4-2 summarizes the types of transformations performed by these four reduction transformations (note that V
and C can be different data types).


Table 4-2. Comparison of Spark reductions


	Reduction
	Source RDD
	Target RDD





	reduceByKey()

	RDD[(K, V)]

	RDD[(K, V)]




	groupByKey()

	RDD[(K, V)]

	RDD[(K, [V])]




	aggregateByKey()

	RDD[(K, V)]

	RDD[(K, C)]




	combineByKey()

	RDD[(K, V)]

	RDD[(K, C)]







We learned that some of the reduction transformations
(such as reduceByKey() and combineByKey()) are
preferable over groupByKey(), due to the
shuffle step for groupByKey() being more expensive.
When possible, you should reduceByKey() instead of groupByKey(), or use combineByKey() when you are combining elements but your return type differs from your input value type.
Overall, for large volumes of data, reduceByKey() and
combineByKey() will perform and scale out better than groupByKey().


The aggregateByKey()
transformation is more suitable for aggregations by key that involve computations, such as finding the sum,  average,  variance,  etc. The
important consideration  here  is  that  the  extra
computation spent for map-side combining can
reduce the amount of data sent out to other worker
nodes and the driver.


In the next chapter we’ll move on to cover partitioning data.










1 For further details, see “Monoidify! Monoids as a Design Principle for Efficient MapReduce Algorithms” by Jimmy Lin.




Part II. Working with Data






Chapter 5. Partitioning Data



Partitioning is defined as “the act of dividing; separation by the creation of a boundary that divides
or keeps apart.” Data partitioning is used in tools like Spark, Amazon Athena, and Google BigQuery to improve query execution performance. To scale out big data solutions, data is divided into
partitions that can be managed, accessed, and executed separately
and in parallel.


As discussed in previous chapters of this book,  Spark splits data into smaller chunks, called partitions, and then processes these partitions in a parallel fashion (many partitions can be processed
concurrently) using executors on the worker nodes. For example, if your input has 100 billion records, then Spark might split it into
10,000 partitions, where each partition will have about 10 million elements:



	
Total records: 100,000,000,000



	
Number of partitions: 10,000



	
Number of elements per partition: 10,000,000



	
Maximum possible parallelism: 10,000





Note

By default, Spark implements hash-based partitioning with a HashPartitioner, which uses Java’s Object.hashCode() function.




Partitioning data can improve manageability and scalability,
reduce contention, and optimize performance. Suppose you have hourly temperature data for cities in all the countries in the world (7 continents and 195 countries), and the goal is to query
and analyze data for a given continent, country, or or set of countries. If you do not 
partition your data accordingly, for each query you’ll have to load, read, and apply your mapper and reducer to the entire dataset to get the result you’re looking for. This is not very efficient, since for most queries you only actually need a subset of the data. A much faster approach is to just load the data that you need.


Data partitioning in Spark is primarily done for the purpose of parallelism to allow tasks to execute independently, but in query tools such as Amazon Athena and Google BigQuery, its purpose is to allow you to analyze a slice of the data rather than the whole dataset. PySpark make it very easy to physically partition DataFrames by column name so that these tools can perform queries efficiently.


Source Code

Complete programs for this chapter are available in the book’s GitHub repository.










Introduction to Partitions


By partitioning your data, you can restrict the amount of data scanned by each query, thus improving performance and reducing cost. For example, Amazon Athena, which leverages Spark and
Hive for partitioning, lets you partition your data by any key (BigQuery provides the same functionality). Therefore, for our earlier example of weather data, you can just select and use specific folders for your query rather than using the entire data
set for all countries.


If your data is represented in a table, such as a Spark DataFrame, partitioning is a way of dividing that table into related parts based on the values of particular columns. Partitioning can
be based on one or more columns (these columns are called partition
keys). The values in these partitioned columns are used to determine
which partition each row should be stored in. Using partitions makes
it easy to execute queries on slices of the data rather than loading
the entire dataset for analysis. For example, genomics data records include a total of 25 chromosomes, which
are labeled as {chr1, chr2, ..., chr22, chrX, chrY, chrMT}.  Since in most genomics analyses, you do not mix chromosomes, it makes sense to partition this data by chromosome ID. This can reduce the analysis time by enabling you to load just the data for the desired chromosome.










Partitions in Spark


Suppose you’re using a distributed storage system like HDFS or Amazon S3, where your data is distributed among many cluster nodes. How do your Spark partitions work? As your physical data is distributed in partitions across the physical cluster, Spark treats each partition as a high-level logical data abstraction (RDD or 
DataFrame) in memory (and on disk if there is not sufficient memory), as illustrated in Figure 5-1. The Spark cluster will optimize partition access and will read the partition closest to it in the network, observing data locality.



[image: partitioned data]
Figure 5-1. Logical model of partitioning in Spark




In Spark, the main purpose of partitioning data is to achieve maximum parallelism, by having executors on cluster nodes execute many tasks at the same time. Spark executors are launched at the start of a Spark application in coordination with the Spark cluster manager. They are worker node processes responsible for running individual tasks in a given Spark job/application.
Breaking up data into partitions allows executors to process those
partitions in parallel and independently, with each executor assigned its own data partition to work on (see Figure 5-2). No synchronization is required.



[image: partitioned data]
Figure 5-2. Spark partitioning in action




To understand how partitions enable us to achieve maximum performance and throughput in Spark, imagine that we have an RDD of 10 billion elements with 10,000 partitions (each partition will have about 1 million elements) and we want to execute a map() transformation on this RDD. Further imagine that we have a cluster of 51 nodes (1 master and 50 worker nodes), where the master acts as a cluster manager and has no executors, and each worker node can execute 5 mapper functions at the same time. This means that at any time 5 × 50 = 250 mappers are executing in parallel and independently, until we exhaust all 10,000 partitions. As each mapper finishes, a new one will be assigned by the cluster manager.
Therefore, on average, each worker node will handle 10,000 / 250 = 40 partitions. This scenario guaranties that all worker nodes are utilized, which should be your goal when partitioning to achieve maximum optimization. In this scenario, if there had been 100 partitions (instead of 10,000), then each partition would have had about 100 million elements and only 100 / 5 = 20 worker nodes would have been utilized. The remaining 30 worker nodes might be idle (underutilization indicates a waste of resources).


Figure 5-3 shows
how Spark executors process partitions.



[image: partitioned data]
Figure 5-3. Example of partitioning data in Spark




In this figure, the input data is partitioned into 16 chunks. Given two executors, Executor-1 and Executor-2, that can each process at most three partitions at a time, three iterations are required to process (such as through a mapper transformation) all of the partitions.


Another reason for partitioning in Spark is that the datasets are often so large that they cannot be stored in a single node. As the earlier example showed, how the partitioning is done is important, as it determines how the cluster’s hardware resources are utillized when executing any job. The optimal partitioning should maximize utilization of hardware resources by maximizing parallelism for data transformations.


The following factors affect data partitioning choices:


	Available resources

	
The number of cores on which a task can run



	External data sources

	
Size of local collections, input filesystem used (such
  as HDFS, S3, etc.)



	Transformations used to derive RDDs and DataFrames

	
Rules affecting the use of partitions when an RDD/DataFrame is derived from another RDD/DataFrame






Let’s see how partitioning works in a Spark computing environment. When Spark reads a datafile into an RDD (or DataFrame), it automatically partitions that RDD into multiple smaller chunks, regardless of the RDD’s size. Then, when we apply a transformation (such as map(), reduceByKey(), etc.) on an RDD, the transformation is applied to each of its partitions. Spark spawns a single task per partition, which will run inside the executor’s JVM (each worker can process one task at a time). Each stage contains as many tasks as there are partitions of the RDD and will perform the transformations requested in that stage on all of the partitions in parallel. This process is illustrated by Figure 5-4.



[image: partitioned data]
Figure 5-4. Operating on partitioned data in Spark



Note

Partitions in Spark do not span multiple  machines. This means that each partition is sent to a single worker machine, and tuples in the same partition are guaranteed to be on the same machine.




Just as proper partitioning can improve the performance of your data analysis, improper partitioning can harm performance of your data analysis. For example, suppose you have a Spark cluster with 501 nodes (1 master and 500 worker nodes). For an RDD with 10 billion elements the proper number of partitions would be over 500 (say, 1,000), to ensure that all cluster nodes are utilized at the same time. If you had 100 partitions and each worker could accept at most 2 tasks, then most of your worker nodes (about 400 of them) would be
idle and useless. The more fully you utilize the worker nodes, the faster your query will run.


Next, we’ll dig more deeply into how partitioning is done in Spark.
























Managing Partitions


Spark has both a default and a custom partitioner. That means when you create an RDD, you can let Spark set the number of partitions, or you can set it explicitly. The number of partitions in the default case depends on the data source, the cluster size, and the available resources. Most of the time, the default partitioning will work just fine, but if you are an experienced Spark programmer, you may prefer to set the number of partitions explicitly  using the RDD.repartition, RDD.coalesce(), or DataFrame.coalesce() function.


Spark offers several functions to manage
partitioning. You can use
RDD.repartition(numPartitions) to return
a new RDD that has exactly numPartitions
partitions. This function can increase or
decrease the level of parallelism in the RDD, as the following example shows:


>>> rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10], 3)
>>> rdd.getNumPartitions()
3
>>> sorted(rdd.glom().collect()) [image: 1]
[[1, 2, 3], [4, 5, 6], [7, 8, 9, 10]]
>>> len(rdd.repartition(2).glom().collect())
2
>>> len(rdd.repartition(5).glom().collect())
5


	[image: 1]

	RDD.glom() returns an RDD created by
coalescing all the elements in each
partition into a list.





Internally, the RDD.repartition() function uses a shuffle to redistribute the data. If you are decreasing the number of partitions in the RDD, consider using RDD.coalesce() instead, which can avoid performing a shuffle. RDD.coalesce(numPartitions,
shuffle=False) returns a new RDD that is
reduced into numPartitions partitions (you don’t need to provide the second parameter, as by default the shuffle is avoided). This concept is demonstrated by the  following example:


>>> nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> sc.parallelize(nums, 3).glom().collect()
[[1, 2, 3], [4, 5, 6], [7, 8, 9, 10]]
>>> sc.parallelize(nums, 3).coalesce(2).glom().collect()
[[1, 2, 3], [4, 5, 6, 7, 8, 9, 10]]










Default Partitioning


The default partitioning of an RDD
or DataFrame happens when the
programmer does not set the number
of partitions explicitly. In this case,
the number of partitions depends on the
data and resources available in the cluster.

Default Number of Partitions

For production environments, most of the time, the default partitioner will work well. It ensures that all cluster nodes are utilized and that no cluster nodes/executors are idle.




When you create an RDD or a DataFrame,
there is an option for setting the number
of partitions. For example, when creating
an RDD from a Python collection, you may set the number of partitions using the following API (where numSlices represents the number of partitions, or slices, to create):


SparkContext.parallelize(collection, numSlices=None)


Similarly, when you use textfile() to read a text file from a filesystem (such as HDFS or S3) and return it as an RDD[String], you can set the minPartitions 
parameter:


SparkContext.textFile(name, minPartitions=None, use_unicode=True)


In both cases, if you do not set the optional parameter, Spark will set it to the default number of partitions (based on data size and available resources in the cluster). Here, I’ll demonstrate creating an RDD from a collection
without setting the number of partitions. First, I’ll introduce a simple debugger function to display the elements of each partition:


>>> def debug(iterator):
...   print("elements=", list(elements))


I can then create an RDD and use this to display the contents of the partitions:


>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> rdd = sc.parallelize(numbers)
>>> num_partitions = rdd.getNumPartitions()
>>> num_partitions
8
>>> rdd.foreachPartition(debug)
elements= [1]
elements= [11, 12]
elements= [4]
elements= [2, 3]
elements= [10]
elements= [8, 9]
elements= [7]
elements= [5, 6]

Warning

Note that this function is intended for testing and teaching purposes only and should not be used in a production environment, where each partition may contain millions of elements.



















Explicit Partitioning


As mentioned in the previous section, the programmer can also explicitly set the number of
partitions when creating an RDD.

Setting the Number of Partitions

Before you set the number of partitions explicitly in a production environment,
you need to understand your data and
your cluster. Make sure that
no cluster nodes/executors are idle.




Here, I create an RDD from the same collection but specify the number of partitions at the time of creation:


>>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> rdd = sc.parallelize(numbers, 3) [image: 1]
>>> rdd.getNumPartitions()
3


	[image: 1]

	The number of partitions is 3.





Next, let’s debug the created RDD and view
the contents of the partitions:


>>> rdd.foreachPartition(debug)
elements= [5, 6, 7, 8]
elements= [1, 2, 3, 4]
elements= [9, 10, 11, 12]


We can then apply the mapPartitions()
transformation on this RDD:


>>> def adder(iterator):
...   yield sum(iterator)
...
>>> rdd.mapPartitions(adder).collect()
[10, 26, 42]
























Physical Partitioning for SQL Queries


In this section, our focus is on the physical partitioning of data rather than RDD and DataFrame partitioning. Physical partitioning is a technique to improve the performance of queries on data utilized by query tools like Hive, Amazon
Athena, and Google BigQuery. Athena and BigQuery are serverless services for querying data using SQL. Given a SQL query, proper physical data partitioning at the field level enablles us to read, scan, and query one or more slices of a dataset rather than reading and analyzing the whole dataset, greatly improving query performance. Spark also allows us to implement physical data partitioning on disk, as you’ll see in the next section.

Note

Partitioning data by specific fields (which are used in SQL’s WHERE clause) plays a crucial role when querying data with Athena or BigQuery. By limiting the volume of data scanned, it dramatically speeds up query execution and
reducing costs, since cost is based on the amount of data scanned.




Consider our earlier example of temperature data for cities around the world.
By looking at the data, you can see
that each continent has a list of countries,
and each country has a set of cities.
If you are going to query this data
by continent, country, and city, then
it makes a lot of sense to partition
your data by these three fields:
(continent, country, city). The
simple partitioning solution will be
to create one folder per continent, then partition each continent by
country, and finally
partition each country by city. Then, instead of scanning the entire directory structure under <root-dir>/, the following query:


SELECT <some-fields-from-my_table>
    FROM my_table
       WHERE continent = 'north_america'
         AND country = 'usa'
         AND city = 'Cupertino'


will only scale this:


<root-dir>/continent=north_america/country=usa/city=Cupertino


As this example shows, partitioning can enable us to scan a very limited
portion of our data, rather than the whole dataset. For example,
if you have a query that involves the United States, you’ll only need to scan one folder rather than
scanning all 195 folders. In big data analysis,
partitioning data by directories is very effective
since we do not have an indexing mechanism like with relational tables. In fact, you can think of partitioning as a very simple indexing mechanism. Partitioning allows you to limit the amount of data scanned by each query, thus improving performance and reducing costs.


Let’s look at another example. Given a world temperature dataset, you could create this partitioned table as follows in Amazon Athena:


   CREATE EXTERNAL TABLE world_temperature(
    day_month_year DATE,
    temperature DOUBLE
   )
   PARTITIONED BY (
     continent STRING, [image: 1]
     country STRING, [image: 2]
     city STRING   [image: 3]
   )
   STORED AS PARQUET
   LOCATION s3://<bucket-name>/dev/world_temperature/
   tblproperties ("parquet.compress"="SNAPPY");


	[image: 1]

	First partition by continent.


	[image: 2]

	Then partition by country.


	[image: 3]

	Finally, partition by city.





If you then query this table
and specify a partition in the WHERE
clause, Amazon Athena will scan the data
only from that partition.



[image: partitioned data]
Figure 5-5. Querying partitioned data




Note that if you were qoing to query this data by
year, month, and day, you could partition
the same data into another form, where the partition
fields are year, month, and day. In this case
your schema will change to the following:


CREATE EXTERNAL TABLE world_temperature_by_date(
  day_month_year DATE,
  continent STRING,
  country STRING,
  city STRING,
  temperature DOUBLE
)
PARTITIONED BY (
  year INTEGER,  [image: 1]
  month INTEGER, [image: 2]
  day, INTEGER   [image: 3]
)
STORED AS PARQUET
LOCATION s3://<bucket-name>/dev/world_temperature_by_date/
tblproperties ("parquet.compress"="SNAPPY");


	[image: 1]

	First partition by year.


	[image: 2]

	Then partition by month.


	[image: 3]

	Finally, partition by day.





With this new schema, you can issue SQL
queries like this one:


SELECT <some-fields>
    FROM world_temperature_by_date
       WHERE year = 2020
         AND month = 8
         AND day = 16


As this example illustrates, to partition your data effectively
you need to understand the queries that you
will execute against your table (i.e., your data expressed
as a table).


As another example, suppose you have customer data,
where each record has the following format:


<customer_id><,><date><,><transaction_id><,><item><,><transaction_value>
<date>=DAY/MONTH/YEAR>


Further, assume that your goal is to analyze data by a given year, or by a combination of year and month. Partitioning the data is a good idea, as it will allow you to limit the amount of data scanned by selecting specific folders (by year or by year and month). Figure 5-6 shows what this might look like.



[image: partitioned data]
Figure 5-6. Querying data partitioned by year/month/day




Now, lets dig into how to partition data in Spark.

















Physical Partitioning of Data in Spark


Spark offers a simple DataFrame
API for physical partitioning of
your data. Let df denote
a DataFrame for our example data,
with records of the form:


<customer_id><,><date><,><transaction_id><,><amount>
<date> = <day></><month></><year>


We can physically partition our data using the
DataFrameWriter.partitionBy() method, either
into a text format (row-based) or a
binary format such as Parquet (column-based).
The following subsections show how.










Partition as Text Format


The following code snippet shows how to
partition data (represented as a DataFrame)
by year and month into a text format.
First, we create a DataFrame with four 
columns:


# df: a DataFrame with four columns:
#   <customer_id>
#   <date> (as DAY/MONTH/YEAR)
#   <transaction_id>
#   <amount>
df = spark.read.option("inferSchema", "true")\
          .csv(input_path)\
          .toDF('customer_id', 'date', 'transaction_id', 'amount')


Next, we add two new columns (year and month):


df2 = df.withColumn("year", get_year(df.date))\ [image: 1]
        .withColumn("month", get_month(df.date)) [image: 2]


	[image: 1]

	Add a year column.


	[image: 2]

	Add a month column.





Finally, we partition by year and month
and then write and save our DataFrame:


df2.write [image: 1]
  .partitionBy("year", "month")\ [image: 2]
  .text(output_path) [image: 3]


	[image: 1]

	Get a DataFrameWriter object.


	[image: 2]

	Partition the data by the desired columns.


	[image: 3]

	Save each partition in a text file.





A complete solution for partitioning data is available in the book’s GitHub repository, in the file partition_data_as_text_by_year_month.py. A sample run with detailed output is also provided, in the file partition_data_as_text_by_year_month.log.

















Partition as Parquet Format


Partitioning data into Parquet format
has a few advantages: data aggregation can be done
faster than with text data since Parquet stores
data in columnar format, and Parquet stores
metadata as well. The process is the same, except instead
of using the text() function of the DataFrameWriter class,
you use the parquet() function:


# partition data
df2.write.partitionBy('year', 'month')\
  .parquet(output_path)


If desired, you may partition your data by other columnar formats too, such as ORC or
CarbonData. If you want to just create a single partitioned file per partition, you can repartition the data before partitioning. Spark’s repartition(numPartitions, *cols) function returns a new DataFrame partitioned by the given partitioning expressions. The resulting DataFrame is hash-partitioned. For example, this creates a single output file per partition ('year', 'month'):


# partition data
df2.repartition('year', 'month')\
  .write.partitionBy('year', 'month')\
  .parquet(output_path)


We can view the physical partitioning of data by
examining the output path:


$ ls -lR /tmp/output
-rw-r--r--  ...    0 Feb 11 21:04 _SUCCESS
drwxr-xr-x  ...  192 Feb 11 21:04 year=2018
drwxr-xr-x  ...  160 Feb 11 21:04 year=2019
/tmp/output/year=2018:
drwxr-xr-x  ...  128 Feb 11 21:04 month=10
drwxr-xr-x  ...  128 Feb 11 21:04 month=12
drwxr-xr-x  ...  128 Feb 11 21:04 month=3
drwxr-xr-x  ...  128 Feb 11 21:04 month=9
/tmp/output/year=2018/month=10:
-rw-r--r--  ...  1239 Feb 11 21:04 part-00000...snappy.parquet
/tmp/output/year=2018/month=12:
total 8
-rw-r--r--  ...  1372 Feb 11 21:04 part-00000...snappy.parquet
...
























How to Query Partitioned Data


To optimize query performance, you
should include the physically partitioned column(s) in
your SQL WHERE clauses. For example,
if you have partitioned your data by
("year", "month", "day"),
then the following will be optimized queries:


-- Query data for year = 2012
   SELECT <some-columns>
      FROM <table-name>
         WHERE year = 2012

-- Query data for year = 2012 and month = 7
   SELECT <some-columns>
      FROM <table-name>
         WHERE year = 2012
           AND month = 7


The WHERE clause will guide the query
engine to analyze slices of the data rather
than the whole dataset, which is what it will do if you query
non-partitioned columns. Let’s take a look at an example using Amazon Athena.










Amazon Athena Example


To access and query your data in Athena using SQL,
you need to implement the following simple steps:


	
Consider the types of queries you will issue, then partition your data accordingly. For example, if you’re working with genome data and your SQL queries will look like this:


SELECT *
   FROM genome_table
      WHERE chromosome = 'chr7' AND ....


Then you should partition your data by the chromosome column. Load your data into a DataFrame (which
includes a chromosome column), then partition it by chromosome and save it in S3 in Parquet format:


# create a DataFrame
df = <dataframe-includes-chromosome-column>

# define your output location
s3_output_path = 's3://genomics_bucket01:/samples/'

# partition data by chromosome column
# and save it as Parquet format
df.repartition("chromosome")\
  .write.mode("append")\
  .partitionBy("chromosome")\
  .parquet(s3_output_path)



	
Next, define your schema, specifying the same S3 location you defined
in the previous step:


CREATE EXTERNAL TABLE `genome_table`(
  `sample_barcode` string,
  `allelecount` int,
  ...
)
PARTITIONED BY (
  `chromosome`
)
STORED AS PARQUET
LOCATION 's3://genomics_bucket01:/samples/'
tblproperties ("parquet.compress"="SNAPPY");


Note that the chromosome column is a data field
defined in the PARTITIONED BY section.



	
Now that your schema is ready, you can
execute/run it (this will create
metadata used by Amazon Athena).



	
Load your partitions:


MSCK REPAIR TABLE genome_table;



	
Once your partitions are ready, you can
start executing SQL queries like this one:


SELECT sum(allelecount)
   FROM genome_table
       WHERE chromosome = 'chr7';







Since you’ve partitioned your data by the chromosome
column, only one directory, chromosome=chr7, will
be read/scanned for this SQL query.
























Summary


Partitioning in Spark is the process of splitting data (expressed as an RDD or DataFrame) into multiple partitions on which you can execute transformations in parallel, allowing for faster completion of data analysis tasks. You can also write partitioned data into multiple subdirectories in a filesystem for faster reads by downstream systems. To recap:



	
Physical data partitioning involves partitioning data (expressed as an RDD or DataFrame) by data fields/columns into smaller pieces (chunks)
in order to manage and access the data at a more fine-grained
level.



	
Data partitioning enables us to reduce the cost
of storing a large amount of data as well as
speeding up the processing of big datasets.



	
When using serverless services such as
Amazon Athena and Google BigQuery you
need to partition your data by fields/columns,
mainly used in the WHERE clause of SQL
queries. It’s important to understand the kinds of queries you’ll be making and partition the
data accordingly.



	
In a nutshell, data partitioning gives us the
following advantages:



	
It improves query performance and manageability. For a given query, you just analyze the relevant slice(s)
of data based on the query clause.



	
It reduces the cost of querying the data, which is based on the amount of data scanned.



	
It simplifies common ETL tasks, as you can browse
and view data based on the partitions.



	
It makes ad hoc querying easier and faster, since
you can analyze slices of the data instead of the whole dataset.



	
It enables us to simulate partial
indexing of relational database tables.










Next, we’ll look at graph algorithms.













Chapter 6. Graph Algorithms



So far we’ve mainly been focusing on record data, which is typically stored in flat files or relational databases and can be represented as a matrix (a set of rows with named columns). Now we’ll turn our attention to graph-based data, which depicts the relationships
between two or more data points. A common example is social network data: for example, if “Alex” is a
“friend” of “Jane” and “Jane” is a “friend”
of “Bob,” these relationships form a
graph. Airline/flight data is another common example of graph data; we’ll explore both of these (and others) in this chapter.


Data structures are specific ways of organizing and storing data in computers so that it can be used effectively. In addition to linear data structures like the ones we’ve primarily been working with in the previous chapters (arrays, lists, tuples, etc.), these include nonlinear structures such as trees, hash maps, and graphs.


This chapter introduces GraphFrames, a powerful external package for Spark that provides APIs for representing directed and undirected graphs, querying and analyzing graphs, and running algorithms on graphs. We’ll start by exploring graphs and what they are used for, then look at how to use the GraphFrames API in PySpark to build and query graphs. We’ll dig into a few of the algorithms GraphFrames supports, such as finding triangles and motif finding, then walk through some practical, real-world applications.


Source Code

Complete programs for this chapter are available in the book’s
GitHub repository.










Introduction to Graphs


Graphs are nonlinear data structures used to visually illustrate relationships in data. Informally, a graph is a pair (V, E), where:



	
V is a set of nodes, called vertices.



	
E is a collection of pairs of vertices,
called edges.



	
V (vertices) and E (edges) are
positions and store elements.






In general, each node is identified by a
unique identifier and a set of associated
attributes. An edge  is identified by two
node identifiers (the source and target nodes)
and a set of associated attributes.
A path represents a sequence of edges
between two vertices. For example, in the case of an airline network:



	
A vertex represents an airport and stores
the three-letter airport code and other
vital information (city, state, etc.).



	
An edge represents a flight route between
two airports and stores the mileage of
the route.






An edge can be directed or undirected, as shown in Figure 6-1. A directed edge consists of an ordered pair of vertices (u, v), where the first vertex (u) is the source and the second vertex (v) is the destination. An undirected edge consists of an unordered pair of vertices (u, v).



[image: daws 0601]
Figure 6-1. Directed and undirected edges




Similarly, a graph can be either directed (composed of directed edges) or undirected (composed of undirected edges). Figure 6-2 shows an example of a directed graph. it represents a small set of airports as vertices (identified by the airport codes, such as SJC, LAX, etc.) and shows the relationships between originating airports and flight destinations with edges.



[image: daws 0602]
Figure 6-2. Directed graph example




Figure 6-3 shows an undirected
graph with six nodes,
labeled as {A, B, C, D, E, F}, connected with
edges. In this example, the nodes might
represent   cities   and   edges might
represent the distances  between  the
cities.       As you can see, in an undirected graph all the edges are
bidirectional.



[image: daws 0603]
Figure 6-3. Undirected graph example



Tip

To convert  a  directed  graph  to  an
undirected graph, you add an additional
edge for every directed edge. That is,
if there is a directed edge as (u, v),
then you add an edge as (v, u).




Certain types of data are particularly well suited to being expressed using graphs. For instance, in network analysis, data is usually modeled as a graph or set of graphs. Graphs and matrices are commonly used to represent and analyze information about patterns of ties among social actors (users, friends, followers) and objects (such as products, stories, genes, etc.). We’ll look at some real-world examples of how graphs can be used to solve data problems later in this chapter, but first, let’s dive into the GraphFrames API.

















The GraphFrames API


Spark offers two distinct and powerful APIs for
implementing graph algorithms such as PageRank,
shortest paths, connected components, and
triangle counting: GraphX
and GraphFrames. GraphX is a core component of Spark based on RDDs, while GraphFrames (an open source
external library) is based on DataFrames.


We’ll be concentrating on GraphFrames, as at the time of writing GraphX (a general-purpose graph processing library optimized for fast distributed computing) only has APIs for Scala and Java, not Python. GraphFrames provides high-level APIs in all three languages, so we can use it in PySpark and optionally interface with selected GraphX functions under the covers.


In addition to the functionality of GraphX, GraphFrames offers extended functionality taking advantage of Spark’s DataFrames. It provides the scalability and high performance of DataFrames and a unified API for graph processing. GraphFrames gives us powerful tools for running graph queries and algorithms; among other benefits, it simplifies interactive graph queries and supports motif finding, also known as graph pattern matching.


Table 6-1 summarizes the key differences between the two libraries.


Table 6-1. GraphFrames versus GraphX


	Feature
	GraphFrames
	GraphX





	Based on

	DataFrames

	RDDs




	Supported languages

	Scala, Java, Python

	Scala, Java




	Use cases

	Algorithms and queries

	Algorithms




	Vertex/edge attributes

	Any number of  DataFrame columns

	Any vertex (VD) or edge (ED) type




	Return types

	GraphFrame or DataFrame

	Graph<VD,ED> or RDD




	Supports motif finding

	Yes

	No direct support







The main class in the GraphFrames library
is graphframes.GraphFrame, which builds a graph using the
GraphFrames API.  The GraphFrame class
is defined as:


class GraphFrame {
  def vertices: DataFrame [image: 1]
  def edges: DataFrame [image: 2]
  def find(pattern: String): DataFrame [image: 3]
  def degrees(): DataFrame [image: 4]
  def pageRank(): GraphFrame [image: 5]
  def connectedComponents(): GraphFrame [image: 6]
  ...
}


	[image: 1]

	vertices is a DataFrame.


	[image: 2]

	edges is a DataFrame.


	[image: 3]

	Searches for structural patterns in a graph (motif finding).


	[image: 4]

	Returns the degree of each vertex in the graph as a DataFrame.


	[image: 5]

	Runs the PageRank algorithm on the graph.


	[image: 6]

	Computes the connected components of the graph.













How to Use GraphFrames


Let’s dive in and use the GraphFrames API to build some
graphs.  Since GraphFrames is an external
package (not a main component of the
Spark API), to use it in the PySpark shell we
have to explicitly make it available. The first step is to download and install it. GraphFrames is a collaborative effort by
UC Berkeley, MIT, and Databricks. You can find
the latest distribution of the GraphFrames package on
Spark Packages, and the documentation is available on GitHub.


You can use the --packages argument in the PySpark shell to download
the GraphFrames package and any dependencies
automatically. Here, I’ve specified a particular version of the package (0.8.2-spark3.2-s_2.12). To use a different
version, just change the last part of the
--packages argument. From the OS command
prompt, you can import the library with the following commands (note that the output here has been trimmed):


export SPARK_HOME=/Users/mparsian/spark-3.2.0
export GF="graphframes:graphframes:0.8.2-spark3.2-s_2.12"
$SPARK_HOME/bin/pyspark --packages $GF
...
graphframes#graphframes added as a dependency
found graphframes#graphframes;0.8.2-spark3.2-s_2.12 in spark-packages
...
Spark context available as 'sc'
SparkSession available as 'spark'.

>>> from graphframes import GraphFrame



If the import succeeds, you’re ready to start  using the  GraphFrames API.
The following example shows how to create
a GraphFrame, query it, and run the PageRank
algorithm on the graph. We’ll go into more detail on PageRank in Chapter 8; for now, you just need to know that it’s an algorithm used to rank pages in web search results.


In the GraphFrames API, a graph is
represented as an instance of GraphFrame(v, e),
where v represents the vertices (as a DataFrame)
and e represents the edges (as a DataFrame). Consider the simple graph
in Figure 6-4.



[image: Three Nodes Graph]
Figure 6-4. A simple graph




In the following steps, we will build this
graph using the GraphFrames API and apply
some simple graph queries and algorithms to it.


	
Create a vertex DataFrame with unique ID
column, id. The id column is required
by the GraphFrames API; it uniquely
identifies all the vertices for the graph to
be built.  You can include additional columns too, depending on the node attributes. Here, we create vertices as a
DataFrame with three columns
(DataFrame["id", "name", "age"]):


>>># spark is an instance of SparkSession
>>> vertices = [("a", "Alice", 34), \
                ("b", "Bob", 36), \
                ("c", "Charlie", 30)] [image: 1]
>>> column_names = ["id", "name", "age"]
>>> v = spark.createDataFrame(vertices, column_names) [image: 2]
>>> v.show()
+---+-------+---+
| id|   name|age|
+---+-------+---+
|  a|  Alice| 34|
|  b|    Bob| 36|
|  c|Charlie| 30|
+---+-------+---+


	[image: 1]

	A Python collection representing vertices.


	[image: 2]

	v represents vertices as a DataFrame.






	
Create an edge DataFrame with src and dst
columns. In addition to these required columns,
which represent the source and destination vertex IDs, you can include additional attributes as required. We want to store information on the types of relationships between nodes in our graph, so we’ll include a 
relationship column. Here, we create edges as a DataFrame with three columns (DataFrame["src", "dst", "relationship"]:


>>> edges = [("a", "b", "friend"), \
             ("b", "c", "follow"), \
             ("c", "b", "follow")] [image: 1]
>>> column_names = ["src", "dst", "relationship"]
>>> e = sqlContext.createDataFrame(edges, column_names) [image: 2]
>>> e.show()
+---+---+------------+
|src|dst|relationship|
+---+---+------------+
|  a|  b|      friend|
|  b|  c|      follow|
|  c|  b|      follow|
+---+---+------------+


	[image: 1]

	A Python collection representing edges.


	[image: 2]

	e represents edges as a DataFrame.






	
The next step is to create our graph. With the GraphFrames API, a graph
is built as an instance of GraphFrame, which is
a pair of vertices (as v) and edges (as e):


>>> from graphframes import GraphFrame [image: 1]
>>> graph = GraphFrame(v, e) [image: 2]
>>> graph [image: 3]
GraphFrame(v:[id: string, name: string ... 1 more field],
           e:[src: string, dst: string ... 1 more field])


	[image: 1]

	Import the required class GraphFrame.


	[image: 2]

	Build a graph as an instance of GraphFrame
using v (vertices) and e (edges).


	[image: 3]

	Inspect the built graph.






	
Once the graph is built, we can start issuing queries and
applying algorithms. For example, we can issue the following query to get the “in-degree” of each vertex in the graph (that is, the number of edges that terminate in that vertex):


>>> graph.inDegrees.show()
+---+--------+
| id|inDegree|
+---+--------+
|  c|       1|
|  b|       2|
+---+--------+


The result is a DataFrame with two columns: id (the ID of the vertex) and 
inDegree, which stores the in-degree of the vertex as an integer. Note that vertices with no incoming edges are not returned in the result.



	
Next, let’s count the number of “follow”
connections in the graph:


>>> graph.edges.filter("relationship = 'follow'").count()
2



	
Finally, we can run the PageRank algorithm on the graph and show the results:


>>> pageranks = graph.pageRank(resetProbability=0.01, maxIter=20) [image: 1]
>>> pageranks.vertices.select("id", "pagerank").show() [image: 2]
+---+------------------+
| id|          pagerank|
+---+------------------+
|  b|1.0905890109440908|
|  a|              0.01|
|  c|1.8994109890559092|
+---+------------------+


	[image: 1]

	Run the PageRank algorithm on the
given graph for 20 iterations.


	[image: 2]

	Show the PageRank values for each
node of the given graph.

























GraphFrames Functions and Attributes


As the previous example suggests, GraphFrames functions (also known as graph operations, or GraphOps) give you access to a lot of details about your graphs. 
As well as various graph algorithm implementations (which we’ll examine in more detail in the next section), the API exposes attributes that enable you to easily get information about the graph’s vertices, edges, and degrees (degrees, inDegrees, and outDegrees).


For example, if graph is an instance of GraphFrame you can get the vertices and
edges as DataFrames as follows:


vertices_as_dataframes = graph.vertices [image: 1]
edges_as_dataframes = graph.edges [image: 2]


	[image: 1]

	The Graphframe.vertices attribute
returns the graph’s vertices as a DataFrame.


	[image: 2]

	The Graphframe.edges attribute
returns the graph’s edges as a DataFrame.





A complete list of the available attributes and functions can be found in the API documentation, but note that not all of those functions can be used with DataFrames. If you know how to work with DataFrames, you can also apply sort(), groupBy(), and filter() operations on the output of these functions to get more information, as we did to count the number of “follow” connections in our example graph (you’ll learn more about working with DataFrames in the following chapters).
























GraphFrames Algorithms


The GraphFrames API provides a set of algorithms for tasks
such as finding a particular pattern or subgraph (also known as a “motif”) in the graph, which is usually an
expensive operation. Since Spark uses MapReduce and distributed algorithms it can run these operations relatively quickly, but they are still time-consuming processes. In addition to motif finding (with find()), the supported algorithms include:



	
Motif finding



	
Breadth-first search (BFS)



	
Connected components



	
Strongly connected components



	
Label propagation



	
PageRank



	
Shortest path



	
Triangle count






Let’s dig in to a few of these algorithms in more detail.










Finding Triangles


This section provides efficient solutions to
find, count, and list all triangles for a
given graph or set of graphs using the GraphFrames API. Before we look at an example, we need to define a triad and a
triangle.     Let T = (a, b, c) be a set of
three distinct nodes in a graph identified by G. Then T is a triad if two of those nodes are
connected ({(a, b), (a, c)}) and it is a
triangle if all three nodes are connected
({(a, b), (a, c), (b, c)}).


In graph analysis, there are three important
metrics:


	
Global clustering coefficient



	
Transitivity ratio, defined as  T = 3 × m / n, where m is the number of triangles in the graph and n is the number of connected triads of vertices



	
Local clustering coefficient







Triangle counting (counting the number of triangles for each node in a graph) is a common task in social network analysis, where it’s used to detect and measure the cohesiveness of communities. It’s also often used in the computation of network 
indices like clustering coefficients. An efficient algorithm is needed for this task, as in some cases the graphs can have hundreds of millions of nodes (e.g., users in a social network) and edges (the relationships between these users).

Triangle Counting with MapReduce

Chapter 16 of my book Data Algorithms (O’Reilly) provides two MapReduce solutions that find, count, and list all triangles for a given graph or set of graphs. Solutions are provided in Java, MapReduce, and Spark.




The GraphFrames package provides a convenient
method, GraphFrame.triangleCount(), that computes the number of triangles passing through
each vertex. Let’s walk through an example that shows how to build a
graph from nodes and edges and then find the number of
triangles passing through each node.












Step 1: Build a graph


First, we’ll define the vertices:


>>># SparkSession available as 'spark'.
>>># Display the vertex and edge DataFrames
>>> vertices = [('a', 'Alice',34), \
                ('b', 'Bob', 36), \
                ('c', 'Charlie',30), \
                ('d', 'David',29), \
                ('e', 'Esther',32), \
                ('f', 'Fanny',36), \
                ('g', 'Gabby',60)]


Next, we define the edges between nodes:


>>> edges = [('a', 'b', 'friend'),
             ('b', 'c', 'follow'), \
             ('c', 'b', 'follow'), \
             ('f', 'c', 'follow'), \
             ('e', 'f', 'follow'), \
             ('e', 'd', 'friend'), \
             ('d', 'a', 'friend'), \
             ('a', 'e', 'friend')]


Once we have vertices and edges, we can
build a graph:


>>> v = spark.createDataFrame(vertices, ["id", "name", "age"]) [image: 1]
>>> e = spark.createDataFrame(edges, ["src", "dst", "relationship"]) [image: 2]
>>> from graphframes import GraphFrame
>>> graph = GraphFrame(v, e) [image: 3]


	[image: 1]

	The id column is required for a vertex DataFrame.


	[image: 2]

	The src and dst columns are required for an edge DataFrame.


	[image: 3]

	The graph is built as a GraphFrame object.





Now let’s examine the graph and its vertices and edges:


>>> graph
GraphFrame(v:[id: string, name: string ... 1 more field],
           e:[src: string, dst: string ... 1 more field])

>>> graph.vertices.show()
+---+-------+---+
| id|   name|age|
+---+-------+---+
|  a|  Alice| 34|
|  b|    Bob| 36|
|  c|Charlie| 30|
|  d|  David| 29|
|  e| Esther| 32|
|  f|  Fanny| 36|
|  g|  Gabby| 60|
+---+-------+---+

>>> graph.edges.show()
+---+---+------------+
|src|dst|relationship|
+---+---+------------+
|  a|  b|      friend|
|  b|  c|      follow|
|  c|  b|      follow|
|  f|  c|      follow|
|  e|  f|      follow|
|  e|  d|      friend|
|  d|  a|      friend|
|  a|  e|      friend|
+---+---+------------+

















Step 2: Count triangles


Next, we’ll use the
GraphFrame.triangleCount()
method to count the number
of triangles passing through
each vertex in this graph:


>>> results = g.triangleCount()
>>> results.show()
+-----+---+-------+---+
|count| id|   name|age|
+-----+---+-------+---+
|    0|  g|  Gabby| 60|
|    0|  f|  Fanny| 36|
|    1|  e| Esther| 32|
|    1|  d|  David| 29|
|    0|  c|Charlie| 30|
|    0|  b|    Bob| 36|
|    1|  a|  Alice| 34|
+-----+---+-------+---+


To show only the vertex IDs and the
number of triangles passing
through each vertex, we can write:


>>> results.select("id", "count").show()
+---+-----+
| id|count|
+---+-----+
|  g|    0|
|  f|    0|
|  e|    1|
|  d|    1|
|  c|    0|
|  b|    0|
|  a|    1|
+---+-----+


The results suggest that there are three triangles in our graph. However, these are all really the same triangle, with different roots:


Triangle rooted by e:  e -> d -> a -> e
Triangle rooted by d:  d -> a -> e -> d
Triangle rooted by a:  a -> e -> d -> a


In the next section, I will show you how to use the GraphFrames API’s motif finding algorithm to drop duplicate triangles.






















Motif Finding


Motifs in graphs are patterns of interactions between vertices, such as triangles and other subgraphs. For example, since Twitter data is not bidirectional (if Alex follows Bob, there’s no guarantee that Bob will follow Alex), we can use motif finding to find all
bidirectional user relationships. Motif finding enables us to execute queries to discover a variety of structural
patterns in graphs, and the GraphFrames API provides
strong support for this.


GraphFrames uses a simple domain-specific language
(DSL) for expressing structural queries. For example,
the following query:


graph.find("(a)-[e1]->(b); (b)-[e2]->(a)")


will search for pairs of vertices {a, b} connected
by edges in both directions (bi-directional relationships).
It will return a DataFrame of all such structures in
the graph, with columns for each of the named elements
(vertices or edges) in the motif. In this case, the
returned columns will be "a, b, e1, e2" (where e1
represents an edge from a to b and e2 represents
an edge from b to a).


In the GraphFrames framework, the DSL for expressing
structural patterns is defined as follows:



	
The basic unit of a pattern is an edge.
An edge connects one node to another one; for example, "(a)-[e]->(b)" expresses
an edge e from vertex a to vertex b.
Note that vertices are denoted by parentheses
((a) and (b)), while edges are denoted
by square brackets ([e]).



	
A pattern is expressed as a union of edges.
Edge patterns can be joined with 
semicolons
(;). For example, the motif "(a)-[e1]->(b);
(b)-[e2]->(c)" specifies two edges (e1 and
e2), from a to b and b to c.



	
Within a pattern, names can be assigned to
vertices and edges. For example, "(a)-[e]->(b)"
has three named elements: vertices {a, b} and
an edge e. These names serve two purposes:



	
The names can identify common elements
among edges. For example,
"(a)-[e1]->(b); (b)-[e2]->(c)"
specifies that the same vertex b is
the destination of edge e1 and the source
of edge e2.



	
The names are used as column names
in the resulting DataFrame. For example, if a motif
contains named  vertex   a,  then
the  resulting DataFrame will contain a
column a which is a StructType
with subfields equivalent to the
schema (columns) of GraphFrame.vertices.
Similarly, an edge e in a motif will
produce a column e in the resulting
DataFrame with subfields equivalent
to the schema (columns) of GraphFrame.edges.







	
It is acceptable to omit names for vertices
or edges in motifs when they are not needed. For example, the
motif "(a)-[]->(b)" expresses an edge between
vertices a and b but does not assign a name to
the edge. There  will be  no  column for  the
anonymous edge in the resulting DataFrame.  Similarly,
the motif "(a)-[e]->()" indicates an out-edge
of vertex a but does not name the destination
vertex, and "()-[e]->(b)" indicates an in-edge
of vertex b but does not name the source vertex.



	
An edge can be negated by using an exclamation
point (!) to indicate that the edge should not
be present in the graph. For example, the motif (a)-[]->(b); !(b)-[]->(a) finds edges from a to b for which there is no edge from  b to a (“a” follows “b”, but “b” does not follow “a”).
















Triangle counting with motifs


The motif finding algorithm in the GraphFrames API enables us to find structural patterns
(such as triangles) in a graph easily by
defining a motif. For example, if "{a, b, c}" denotes three nodes in a graph, then
we can define a motif for a triangle as:


a -> b -> c -> a


This definition includes three vertices
(a, b, and c) such that:


a is connected to b (as an edge a -> b)
b is connected to c (as an edge b -> c)
c is connected to a (as an edge c -> a)


You can also build more complex relationships
involving edges and vertices using motifs.


(a)-[e]->(b)


Creating Undirected Graphs

It is important to note that the GraphFrames API represents all graphs as directed (see Figure 6-5).



[image: daws 0606]
Figure 6-5. Directed graph example




By definition, a directed graph is a graph with a set of vertices that are connected together, where all the edges are directed from one vertex to another. But for some applications, it is desirable to work with undirected graphs—for example, Facebook users form an undirected graph since relationships between nodes are bidirectional. How do we convert a directed graph into an undirected graph? The solution is straightforward: given a directed graph, for every edge [a -> b] create another edge [b -> a] and then make the edges distinct so that there will not be duplicates. You’ll see how to do this soon.




To help you understand the concept of motif finding, let’s look at another example. Given a GraphFrame object g, we will
walk through a few trials to find the optimal way
of identifying triangles. Assume that our graph is undirected: if we
have an edge [a -> b], then we will have
another edge as [b -> a].














Trial 1


Our first approach will be to find a triangle as "a -> b -> c -> a":


>>> triangles = g.find("(a)-[e1]->(b);
                    (b)-[e2]->(c);
                    (c)-[e3]->(a)")
>>> triangles.show()
+-----+------+-----+------+-----+------+
|    a|    e1|    b|    e2|    c|    e3|
+-----+------+-----+------+-----+------+
|[1,1]|[1,2,]|[2,2]|[2,4,]|[4,4]|[4,1,]|
|[2,2]|[2,1,]|[1,1]|[1,4,]|[4,4]|[4,2,]|
|[1,1]|[1,4,]|[4,4]|[4,2,]|[2,2]|[2,1,]|
|[4,4]|[4,1,]|[1,1]|[1,2,]|[2,2]|[2,4,]|
|[2,2]|[2,4,]|[4,4]|[4,3,]|[3,3]|[3,2,]|
|[2,2]|[2,4,]|[4,4]|[4,1,]|[1,1]|[1,2,]|
|[4,4]|[4,2,]|[2,2]|[2,3,]|[3,3]|[3,4,]|
|[4,4]|[4,2,]|[2,2]|[2,1,]|[1,1]|[1,4,]|
|[2,2]|[2,3,]|[3,3]|[3,4,]|[4,4]|[4,2,]|
|[3,3]|[3,2,]|[2,2]|[2,4,]|[4,4]|[4,3,]|
|[3,3]|[3,4,]|[4,4]|[4,2,]|[2,2]|[2,3,]|
|[4,4]|[4,3,]|[3,3]|[3,2,]|[2,2]|[2,4,]|
|[5,5]|[5,6,]|[6,6]|[6,7,]|[7,7]|[7,5,]|
|[6,6]|[6,5,]|[5,5]|[5,7,]|[7,7]|[7,6,]|
|[5,5]|[5,7,]|[7,7]|[7,6,]|[6,6]|[6,5,]|
|[7,7]|[7,5,]|[5,5]|[5,6,]|[6,6]|[6,7,]|
|[6,6]|[6,7,]|[7,7]|[7,5,]|[5,5]|[5,6,]|
|[7,7]|[7,6,]|[6,6]|[6,5,]|[5,5]|[5,7,]|
+-----+------+-----+------+-----+------+


This trial finds triangles, but there is
problem with duplicated output (since
our graph is undirected).

















Trial 2


Let’s try again, this time adding a filter to remove duplicate triangles. This filter ensures that e1.src and e1.dst are not the same:


>>> triangles = g.find("(a)-[e1]->(b);
                    (b)-[e2]->(c);
                    (c)-[e3]->(a)")
             .filter("e1.src < e1.dst")
>>> triangles.show()
+-----+------+-----+------+-----+------+
|    a|    e1|    b|    e2|    c|    e3|
+-----+------+-----+------+-----+------+
|[1,1]|[1,2,]|[2,2]|[2,4,]|[4,4]|[4,1,]|
|[1,1]|[1,4,]|[4,4]|[4,2,]|[2,2]|[2,1,]|
|[2,2]|[2,4,]|[4,4]|[4,3,]|[3,3]|[3,2,]|
|[2,2]|[2,4,]|[4,4]|[4,1,]|[1,1]|[1,2,]|
|[2,2]|[2,3,]|[3,3]|[3,4,]|[4,4]|[4,2,]|
|[3,3]|[3,4,]|[4,4]|[4,2,]|[2,2]|[2,3,]|
|[5,5]|[5,6,]|[6,6]|[6,7,]|[7,7]|[7,5,]|
|[5,5]|[5,7,]|[7,7]|[7,6,]|[6,6]|[6,5,]|
|[6,6]|[6,7,]|[7,7]|[7,5,]|[5,5]|[5,6,]|
+-----+------+-----+------+-----+------+


This is better, but we still have some duplicates in our results.

















Trial 3


In our final trial, we’ll add another filter that will
enable us to uniquely identify all triangles
without duplicates:


>>> triangles = g.find("(a)-[e1]->(b);
                    (b)-[e2]->(c);
                    (c)-[e3]->(a)") [image: 1]
             .filter("e1.src < e1.dst") [image: 2]
             .filter("e2.src < e2.dst") [image: 3]
>>> triangles.show()
+-----+------+-----+------+-----+------+
|    a|    e1|    b|    e2|    c|    e3|
+-----+------+-----+------+-----+------+
|[1,1]|[1,2,]|[2,2]|[2,4,]|[4,4]|[4,1,]|
|[2,2]|[2,3,]|[3,3]|[3,4,]|[4,4]|[4,2,]|
|[5,5]|[5,6,]|[6,6]|[6,7,]|[7,7]|[7,5,]|
+-----+------+-----+------+-----+------+


	[image: 1]

	Find triangles {a -> b -> c -> a}.


	[image: 2]

	Make sure that e1.src and e1.dst
are not the same.


	[image: 3]

	Make sure that e2.src and e2.dst
are not the same.























Finding unique triangles with motifs


In this section I’ll show you how to build a
GraphFrame from a set of vertices and edges,
and then find the unique triangles in the graph.














Input


The required components for building a
graph (using GraphFrames) are vertices
and edges. Assume that our vertices and edges
are defined in two files:



	
sample_graph_vertices.txt



	
sample_graph_edges.txt






Let’s examine these input files:


$ head -4 sample_graph_vertices.txt
vertex_id
0
1
2

$ head -4 sample_graph_edges.txt
edge_weight,from_id,to_id
0,5,15
1,18,8
2,6,1


To comply with the GraphFrames API, we’ll perform the following
cleanup and filtering tasks:


	
Rename vertex_id to id.



	
Drop the column edge_weight.



	
Rename from_id to src.



	
Rename to_id to dst.






















Output


The expected output will be unique triangles
from the built graph. Note that given three vertices
{a, b, c} of a triangle, it can be represented
in any of the following six ways:


a -> b -> c -> a
a -> c -> b -> a
b -> a -> c -> b
b -> c -> a -> b
c -> a -> b -> c
c -> b -> a -> c


The goal is to output only one of these representations.

















Algorithm


The complete PySpark solution is
presented as unique_triangles_finder.py.
Using the GraphFrames motif finding algorithm and DataFrames,
the solution is pretty simple:


	
Create a DataFrame for vertices: vertices_df.



	
Create a DataFrame for edges: edges_df.



	
Build a graph as a GraphFrame.



	
Apply a motif which is a triangle pattern.



	
Filter out duplicate triangles.







Building vertices_df is straightforward.
In building edges_df, to make sure that
our graph is undirected, if there is a
connection from a src vertex to a dst vertex,
then we add an extra edge from dst to src.
This way we will be able to find all the triangles.


We’ll start by finding all the triangles, including potential duplicates:


>>> graph = GraphFrame(vertices_df, edges_df)
>>># find all triangles, which might have duplicates
>>> motifs = graph.find("(a)-[]->(b);
                         (b)-[]->(c);
                         (c)-[]->(a)")
>>> print("motifs.count()=", motifs.count())
42


Next, we’ll use the DataFrame’s powerful filtering mechanism to remove duplicate triangles, keeping only one
representation of a triangle {a, b, c} where a > b > c:


>>> unique_triangles = motifs[(motifs.a > motifs.b) &
                              (motifs.b > motifs.c)] [image: 1]
>>> unique_triangles.count()
7
>>> unique_triangles.show(truncate=False)
+----+----+----+
|a   |b   |c   |
+----+----+----+
|[42]|[32]|[30]|
|[5] |[31]|[15]|
|[8] |[22]|[18]|
|[8] |[22]|[17]|
|[7] |[39]|[28]|
|[52]|[51]|[50]|
|[73]|[72]|[71]|
+----+----+----+


	[image: 1]

	Remove duplicate triangles.





Note that motifs.count() returned 42
(since a triangle can be represented
in six different ways, as shown
earlier) and unique_triangles.count()
returns 7 (6 × 7 = 42)




















Other motif finding examples


The combination of GraphFrames and DataFrames
is a very powerful tool for solving graph-related
problems and beyond. I’ve demonstrated how to use motifs to find triangles, but there are many other applications. We’ll look at a few of them here.














Finding bidirectional vertices


Using motifs, you can build more complex
relationships involving a graph’s edges and
vertices. The following example finds the
pairs of vertices with edges in both directions
between them. The result is a DataFrame in
which the column names are motif keys. Let
graph be an instance of a GraphFrame. Then,
finding bidirectional vertices can be expressed
as:


# search for pairs of vertices with edges
# in both directions between them
bidirectional = graph.find("(a)-[e1]->(b);
                            (b)-[e2]->(a)") [image: 1]


	[image: 1]

	bidirectional will have columns
a, e1, b, and e2.





Since the result is a DataFrame, more complex
queries can build on top of the motif. For instance, we can
find all the reciprocal relationships in which
one person is older than 30 as follows:


older_than_30 = bidirectional.filter("b.age > 30 or a.age > 30")

















Finding subgraphs


A subgraph is a graph whose vertices and
edges are subsets of another graph.  You
can build subgraphs by filtering on a subset
of edges and vertices. For example, we can construct a subgraph containing only relationships where the follower is younger than the user being followed:


# graph is an instance of GraphFrame
paths = graph.find("(a)-[e]->(b)")\
  .filter("e.relationship = 'follow'")\
  .filter("a.age < b.age")

# The `paths` variable contains the vertex
# information, which we can extract:
selected_edges = paths.select("e.src", "e.dst", "e.relationship")

# Construct the subgraph
sample_subgraph = GraphFrame(g.vertices, selected_edges)

















Friend recommendation


Another common task in social networks that is made easy by the GraphFrames motif finding algorithm is making friend recommendations. For example,
to recommend whom users might like to follow, we might
search for triplets of users (A, B, C)
where "A follows B" and "B follows C,”
but "A does not follow C.” This can be
expressed as:


# g is an instance of GraphFrame
# Motif: "A -> B", "B -> C", but not "A -> C"
results = g.find("(A)-[]->(B);
                  (B)-[]->(C);
                  !(A)-[]->(C)")

# Filter out loops (with DataFrame operation)
results_filtered = results.filter("A.id != C.id")

# Select recommendations for A to follow C
recommendations = results_filtered.select("A", "C")

















Product recommendations


As a final example, we’ll look at product recommendations. Consider a case
where a customer who bought product p also
purchased two other products, a and b. This relationship is depicted in Figure 6-6.



[image: Product Relationships]
Figure 6-6. Relationship between purchased products




There are two separate edges, from product
p to a and b.
Therefore, this motif can be expressed as:


graph = GraphFrame(vertices, edges)
motifs = graph.find("(p)-[e1]->(a);
                     (p)-[e2]->(b)")
              .filter("(a != b)")


We can also apply filters to the result of
motif finding. For example, here we specify
the value of the vertex p as 1200 (denoting
the product with that id):


motifs.filter("p.id == 1200").show()


The following example shows how to
find strong relationships between
two products (i.e., products that are often purchased together).  In this example, we
specify edges from p to a and a to b,
and another one from b to a. This
pattern typically represents the case
in which when a customer buys a product
p, they may also buy a and then go
on to buy b. This can be indicative
of some prioritization of the items
being purchased (see Figure 6-7).



[image: Product Relationships]
Figure 6-7. Product relationships




The motif for finding products with this type of relationship can be expressed as:


graph = GraphFrame(vertices, edges)
strong_motifs = graph.find("(p)-[]->(a);
                            (a)-[]->(b);
                            (b)-[]->(a)")
strong_motifs.show()


Recall that in motif definition the notation
[e] denotes an edge labeled as e, while
[] denotes an edge without a name.


Next, we’ll dive into some real-world examples of how GraphFrames can be used.


Other Graph Algorithms


Once you’ve created a GraphFrame,
there are many interesting out-of-the-box
analytics that you can perform on it. The options range from simple degree algorithms, for tasks such as:



	Finding the in-degree of each vertex with graph.inDegrees().show()


	Finding the out-degree of each vertex with graph.outDegrees().show()


	Finding the degree of each vertex (the total number of connections, in and out) with graph.degrees().show()






to more complex algorithms for tasks like:



	Counting the number of triangles with graph.triangle⁠C⁠o⁠u⁠n⁠t⁠(⁠)​.⁠r⁠u⁠n⁠(⁠)⁠.select("id", "count").show()


	Running static label propagation to detect communities with graph.labelPropagation().maxIter(10).run().show()


	Running the PageRank algorithm on the graph:


graph.pageRank()
 .maxIter(0).resetProbability(0.15)
 .run()
 .vertices()
 .show()




	Running the shortest paths algorithm with a set of landmarks with:


graph.shortestPaths()
 .landmarks(getLandmarks())
 .run()
 .show()





































Real-World Applications


The purpose of this section is to present some
real-world applications using the motif
finding feature of the GraphFrames API.










Gene Analysis


Let’s start by walking through an example of how to use GraphFrames along with motifs for gene analysis. A gene is a unit of heredity that is
transferred from a parent to its offspring
and  is   held   to   determine   some
characteristic of the offspring.  Gene
relationships have been analyzed for
Down syndrome with labeled transition graphs based on gene interaction data (directed graphs where vertices
represent genes and an edge represents
a relationship between genes).
For example, three  vertices (XAB2, ERCC8, and
POLR2A, denoting three genes) and two edges (denoting the interactions between them) can be represented
by  the  following  raw  data:


XAB2,ERCC8,Reconstituted Complex
XAB2,POLR2A,Affinity Capture-Western


One important analysis is to find motifs
between specific  vertices, which
can  help  detect conditions like Down syndrome or Alzheimer’s disease. Examples include the Hedgehog signaling pathway (HSP),
illustrated in Figure 6-8, and the gene regulatory network shown in Figure 6-9.



[image: daws 0609]
Figure 6-8. The Hedgehog signaling pathway relationship





[image: daws 0610]
Figure 6-9. Gene regulatory network linked to Alzheimer’s disease




These patterns and relationships can be easily
detected by the GraphFrames API’s motif finding
feature. We can also find the most important
genes using the PageRank algorithm, or find
gene communities by running label propagation algorithm  for  many  iterations.


Let’s walk through building the graph. The input has the following format:


<source-gene><,><destination-gene><,><type-of-relationship>


Here are a few examples of what the input records look like:


BRCA1,BRCA1,Biochemical Activity
SET,TREX1,Co-purification
SET,TREX1,Reconstituted Complex
PLAGL1,EP300,Reconstituted Complex


Since we have input only for edges, we
will derive the vertices from the edges.












Motif finding for genes


Earlier, I showed two
structural patterns.
To express the HSP as a motif, we would write:


hsp = graph.find(
            "(shh)-[e1]->(ptch); " +
            "(ptch)-[e2]->(gli); " +
            "(gli)-[e3]->(wnt1)")
           .filter("shh.id = 'SHH'")
           .filter("ptch.id = 'PTCH'")
           .filter("gli.id = 'GLI'")
           .filter("wnt1.id = 'WNT1'")


This is very powerful and straightforward:
search for three nodes connected to each other,
and further restrict them to specific nodes.






















Social Recommendations


Recommendation systems are popular
these days in applications like social networks (such as Twitter and
Facebook) and shopping sites (such as Amazon). In this section, based on the blog post “Using Graphframes for Social Recommendation” by Hamed Firooz, I’ll show you how to build a simple social recommendation system using Spark’s GraphFrames package.


Let’s assume that we
have two types of objects: users and tables, which contain messages sent between users. These objects
will be represented as vertices in a graph), and the relationships between them will be represented as edges. Users can
follow each other, and this is a one-way connection
(unlike the “friend” relationship on Facebook, which is bidirectional). Tables
contain two types of data: public and private. A
user can choose to either “follow” a table, which gives them
access to  public  messages, or be a
“member” of  table,  which  gives them  access  to all
messages and also the ability to send messages to
other members and followers of the table.


We’ll base our analysis on the sample graph in Figure 6-10, which shows data for six users and three tables.



[image: daws 0611]
Figure 6-10. Sample social graph (Source: “Using Graphframes for Social Recommendation”)




Given this graph, suppose we want to recommend that person B follow person A if the following four
conditions are satisfied:


	
A and B are not connected. A does not follow B, and B does not follow A.



	
A and B have at least four nodes in common. This means they each are connected to at least four nodes.



	
At least two of those four nodes are tables.



	
A is a member of those two tables.







We can express this using the GraphFrames motif finding algorithm as follows (recall from “Motif Finding” that the ! character indicates negation; i.e., that the edge should not be present in the graph):


Remember that GraphFrame motif finding uses a domain-specific language (DSL) for expressing
structural pattern and queries. For example, the following motif finds the triangles by using the find() function:


graph.find("(a)-[e1]->(b);
            (b)-[e2]->(c);
            (c)-[e3]->(a)")


will search for triangles as pairs of vertices
“a, b, and c” such that:


{ (a, b), (b, c), (c, a) }


It will return a DataFrame of all such
structures in the graph, with columns
for each of the named elements (vertices
or edges) in the motif. In this case, the
returned columns will be "a, b, c, e1, e2, e3".
To express negation in motif finding, the
exclamation (“!”) character is used; an edge
can be negated to indicate that the edge
should not be present in the graph. For
example, the following motif:


"(a)-[]->(b); !(b)-[]->(a)"


finds edges from “a to b” for which there
is no edge from “b to a”.


Our social recommendation can be achieved
by GraphFrames “motif finding”:


one_hub_connection = graph.find(
    "(a)-[ac1]->(c1); (b)-[bc1]->(c1); " +
    "(a)-[ac2]->(c2); (b)-[bc2]->(c2); " +
    "(a)-[ac3]->(c3); (b)-[bc3]->(c3); " +
    "(a)-[ac4]->(c4); (b)-[bc4]->(c4); " +
    "!(a)-[]->(b); !(b)-[]->(a)") [image: 1]
            .filter("c1.type = 'table'") [image: 2]
            .filter("c2.type = 'table'")
            .filter("a.id != b.id") [image: 3]
            .filter("c1.id != c2.id") [image: 4]
            .filter("c2.id != c3.id")
            .filter("c3.id != c4.id")

recommendations = one_hub_connection
                    .select("a", "b")
                    .distinct()
recommendations.show()
recommendations.printSchema()


	[image: 1]

	Make sure a and b are not connected.


	[image: 2]

	Make sure that at least two of those
four nodes to which both a and b are connected are of type 'table'.


	[image: 3]

	Make sure a is not the same as b.


	[image: 4]

	Make sure the four nodes are not the same.





The output will be:

+--------------+--------------+
|             a|             b|
+--------------+--------------+
|[3,Med,person]|[1,Bob,person]|
|[1,Bob,person]|[3,Med,person]|
+--------------+--------------+

root
|-- a: struct (nullable = false)
|    |-- id: string (nullable = false)
|    |-- name: string (nullable = false)
|    |-- type: string (nullable = false)
|-- b: struct (nullable = false)
|    |-- id: string (nullable = false)
|    |-- name: string (nullable = false)
|    |-- type: string (nullable = false)


This is a good example of the power of motif finding in GraphFrames. We are interested in finding two nodes {a, b},
which are both connected to four other nodes {c1, c2, c3, c4}. This is expressed as:


(a)-[ac1]->(c1);
(b)-[bc1]->(c1);
(a)-[ac2]->(c2);
(b)-[bc2]->(c2);
(a)-[ac3]->(c3);
(b)-[bc3]->(c3);
(a)-[ac4]->(c4);
(b)-[bc4]->(c4);


The motif expresses the following rules:



	
a and b are not connected to each other. This is expressed as:


!(a)-[]->(b);
!(b)-[]->(a)



	
At least two of those four nodes are tables. This is expressed using two filters:


filter("c1.type = 'table'")
filter("c2.type = 'table'")



	
a and b are not the same user. This is expressed as:


filter("a.id != b.id")



	
a and b are connected to four unique nodes. This is expressed as:


.filter("c1.id != c2.id")
.filter("c2.id != c3.id")
.filter("c3.id != c4.id")






Finally, since there are many ways to traverse
the graph for a given motif, we want
to make sure that we eliminate the
duplicate entries. We can do this as follows:


recommendation = one_hub_connection
    .select("a", "b")
    .distinct()

















Facebook Circles


In this section we will use motif finding
to analyze Facebook relationships.












Input


For input, we’ll use data from the
Stanford Network Analysis Project (SNAP) consisting
of “circles” (or “friends lists”) from Facebook.
The data  was  collected  from   survey
participants using a Facebook app and has been anonymized. The dataset
includes node features (profiles), circles, and
ego networks.


Let’s take at a look at the downloaded data:


$ wc -l  stanford_fb_edges.csv  stanford_fb_vertices.csv
   88,235  stanford_fb_edges.csv
    4,039  stanford_fb_vertices.csv


This tells us that we have 4,039 vertices and 88,235
edges. Next, we’ll examine the first few lines of each file. As you can see,
these files have headers that we can use as column names when we create our DataFrames (I’ve renamed
the columns to follow the GraphFrames guidelines):


$ head -5 stanford_fb_edges.csv
src,dst
0,1
0,2
0,3
0,4

$ head -5 stanford_fb_vertices.csv
id,birthday,hometown_id,work_employer_id,education_school_id,education_year_id
1098,None,None,None,None,None
1142,None,None,None,None,None
1304,None,None,None,None,None
1593,None,None,None,None,None

















Building the graph


Since we have vertices and edges as CSV
files with headers, our first step is to build DataFrames for these. We’ll start with the vertices DataFrame:


>>> vertices_path = 'file:///tmp/stanford_fb_vertices.csv'
>>> vertices = spark [image: 1]
          .read [image: 2]
          .format("csv") [image: 3]
          .option("header", "true") [image: 4]
          .option("inferSchema", "true") [image: 5]
          .load(vertices_path) [image: 6]

>>> vertices.count()
4039

>>> vertices.printSchema()
root
 |-- id: integer (nullable = true)
 |-- birthday: string (nullable = true)
 |-- hometown_id: string (nullable = true)
 |-- work_employer_id: string (nullable = true)
 |-- education_school_id: string (nullable = true)
 |-- education_year_id: string (nullable = true)

>>> vertices.show(3, truncate=False)
+----+--------+--------+-----------+----------+---------+
|id  |birthday|hometown|work_      |education_|education|
|    |        |_id     |employer_id|school_id |_year_id |
+----+--------+--------+-----------+----------+---------+
|1098|None    |None    |None       |None      |None     |
|1142|None    |None    |None       |None      |None     |
|1917|None    |None    |None       |None      |72       |
+----+--------+--------+-----------+----------+---------+


	[image: 1]

	spark is an instance of SparkSession.


	[image: 2]

	Return a DataFrameReader to read the input file.


	[image: 3]

	Specify the type of file to be read.


	[image: 4]

	Indicate that the input CSV file has a header.


	[image: 5]

	Infer the DataFrame schema from the input file; this option requires one extra pass over the data and is false by default.


	[image: 6]

	Provide the path for the CSV file.





Then build and inspect our edges DataFrame:


>>> edges_path = 'file:///tmp/stanford_fb_edges.csv'
>>> edges = spark [image: 1]
          .read [image: 2]
          .format("csv") [image: 3]
          .option("header","true") [image: 4]
          .option("inferSchema", "true") [image: 5]
          .load(edges_path) [image: 6]

>>> edges.count()
88234

>>> edges.printSchema()
root
 |-- src: integer (nullable = true)
 |-- dst: integer (nullable = true)

>>> edges.show(4, truncate=False)
+---+---+
|src|dst|
+---+-- +
|0  |1  |
|0  |2  |
|0  |3  |
|0  |4  |
+---+---+


	[image: 1]

	spark is an instance of SparkSession.


	[image: 2]

	Return a DataFrameReader to read the input file.


	[image: 3]

	Specify the type of file to be read.


	[image: 4]

	Indicate that the input CSV file has a header.


	[image: 5]

	Infer the DataFrame schema from the input file.


	[image: 6]

	Provide the path for the CSV file.





Once we have our two DataFrames, we can create the GraphFrame object:


>>> from graphframes import GraphFrame
>>> graph = GraphFrame(vertices, edges)
>>> graph
GraphFrame(v:[id: int, birthday: string ... 4 more fields],
e:[src: int, dst: int])
>>> graph.triplets.show(3, truncate=False)
+---------------------------------+-------+----------------------------------+
|src                              |edge   |dst                               |
+---------------------------------+-------+----------------------------------+
|[0, None, None, None, None, None]|[0, 1] |[1, None, None, None, None, None] |
|[0, None, None, None, None, None]|[0, 2] |[2, None, None, None, None, None] |
|[0, None, None, None, None, None]|[0, 3] |[3, 7, None, None, None, None]    |
+---------------------------------+-------+----------------------------------+

















Motif finding


Now that we’ve built our graph, we can
do some analysis. First, we’ll find all connected vertices with
the same birthday:


same_birthday = graph.find("(a)-[]->(b)")
                     .filter("a.birthday = b.birthday")
print "count: %d" % same_birthday.count()
selected = same_birthday.select("a.id", "b.id", "b.birthday")


Next, we’ll count the number of triangles passing through
each vertex in this graph:


>>> triangle_counts = graph.triangleCount()
>>> triangle_counts.show(5, truncate=False)
+-----+---+--------+-----------+----------------+----------+---------+
|count|id |birthday|hometown_id|work_employer_id|education |education|
|     |   |        |           |                |_school_id|_year_id |
+-----+---+--------+-----------+----------------+----------+---------+
|80   |148|None    |None       |None            |None      |None     |
|361  |463|None    |None       |None            |None      |None     |
|312  |471|None    |None       |None            |52        |None     |
|399  |496|None    |None       |None            |52        |None     |
|38   |833|None    |None       |None            |None      |None     |
+-----+---+--------+-----------+----------------+----------+---------+


The following graph query finds “friends of friends”
who are not connected to each other, but who graduated
the same year from the same school:


>>> from pyspark.sql.functions import col

>>> friends_of_friends = graph.find("(a)-[]->(b);
                                     (b)-[]->(c);
                                     !(a)-[]->(c)") \
       .filter("a.education_school_id = c.education_school_id")
       .filter("a.education_year_id = c.education_year_id")

>>> filtered = friends_of_friends
       .filter("a.id != c.id") \
       .select(col("a.id").alias("source"), "a.education_school_id", \
           "a.education_year_id", col("c.id").alias("target"), \
           "c.education_school_id", "c.education_year_id")

>>> filtered.show(5)
+------+----------+---------+------+----------+---------+
|source|education |education|target|education |education|
|source|_school_id|_year_id |      |_school_id|_year_id |
+------+----------+---------+------+----------+---------+
|     3|      None|     None|   246|      None|     None|
|     3|      None|     None|    79|      None|     None|
|     3|      None|     None|   290|      None|     None|
|     5|      None|     None|   302|      None|     None|
|     9|      None|     None|   265|      None|     None|
+------+----------+---------+------+----------+---------+


Finally, we run the PageRank algorithm on our graph:


>>> page_rank =
     graph.pageRank(resetProbability=0.15, tol=0.01)
          .vertices
          .sort('pagerank', ascending=False)

>>> page_rank.select("id", "pagerank")
             .show(5, truncate=False)
+----+------------------+
|id  |pagerank          |
+----+------------------+
|1911|37.59716511250488 |
|3434|37.555460465662755|
|2655|36.34549422981058 |
|1902|35.816887526732344|
|1888|27.459048061380063|
+----+------------------+






















Connected Components


Given millions of DNA samples and data on the genomic relationships between each pair of samples,
how do you find connected families? Given social
networks (such as Facebook or Twitter), how do
you identify  connected  communities? To  solve
these kinds of problems, you can use the connected components algorithm.


The goal of this algorithm is  to  identify independent, disconnected
subgraphs.  Before I present the algorithm itself, let’s define
the concept of connected components.  Let
G be a graph defined as a set of vertices
V and a set of edges E, where each
edge is a pair of vertices:


G = (V, E)


A path from x in V to y in V can then
be described by a sequence of vertices:


x = u0, u1, u2, ..., un = y


where we have an edge from ui to u{i+1}
for each 0 <= i <= n-1. Note that vertices
can repeat, allowing the path to cross or fold onto itself. Now, we can define a connected component. We say that a graph G is
connected if there is a path between every
pair of vertices. So, we can say
that a connected component of a graph is a
sub-graph in which any two vertices are
connected to each other by paths, and which
is  connected to no  additional vertices in
the supergraph.   The smallest connected
component can be a single vertex, which does
not connect to any other vertex. For example, the graph in Figure 6-11 has three connected components.



[image: Connected Components Example]
Figure 6-11. Connected components example




Finding and identifying connected
components is at the heart of many graph applications.
For example, consider the problem of identifying family
clusters in a set of DNA samples.  We can represent each
DNA sample by a vertex and add an edge between each pair
of samples that are deemed “connected” (parent–offspring,
sibling, second-degree relative, third-degree relative, etc.). The connected components of this graph
correspond to different family groups.


Given a graph, how do we identify its connected
components? The algorithm involves a breadth-first
or depth-first search that begins at some vertex
v and traverses outward node by node until it finds the entire connected component
containing v. To find all the connected components of a graph,
we loop  through  its vertices,  starting  a  new search whenever
the loop reaches a vertex not already included in a previously found connected
component.












Connected components in Spark


The connected components algorithm labels each
connected component of the graph with the ID of
its lowest-numbered vertex. To use this algorithm, we first build a graph as an instance
of GraphFrame as usual, then call the connectedComponents() method to compute the connected components of the graph. This method has
the following signature:


connectedComponents(
    algorithm='graphframes',
    checkpointInterval=2,
    broadcastThreshold=1000000
)

Parameters:
   algorithm – connected components algorithm
      to use  (default: "graphframes"); supported
      algorithms are "graphframes" and "graphx".

   checkpointInterval – checkpoint interval in
      terms of number of iterations (default: 2)

   broadcastThreshold – broadcast threshold
      in propagating component assignments
      (default: 1000000)

Returns:
   DataFrame with new vertices column "component"


Its use looks something like the following:


vertices = <DataFrame-representing-vertices>
edges = <DataFrame-representing-edges>

graph = GraphFrame(vertices, edges)
connected_components = graph.connectedComponents()
connected_components.explain(extended=True)

connected_components
        .groupBy('component')
        .count()
        .orderBy('count', ascending=False)
        .show()

connected_components.select("id", "component")
                    .orderBy("component")
                    .show()






















Analyzing Flight Data


The purpose of this section is to show how to build and execute graph queries. The example provided here is inspired by the blog post “Analyzing Flight Delays with Apache Spark GraphFrames and MapR Database” by Carol McDonald, which provides a solution for flight data analysis in Scala using GraphFrames. The presented solution is an equivalent solution in PySpark.












Input


The data for vertices (airports) and edges (flights)
is provided in JSON format. We will read these
datafiles and create two DataFrames for vertices and edges.
Then we’ll use these to create
a graph represented as an instance of GraphFrame.














Vertices


The data for vertices is provided in the file
airports.json. Let’s review the first two records of this file:


{"id":"ORD","City":"Chicago","State":"IL","Country":"USA"}
{"id":"LGA","City":"New York","State":"NY","Country":"USA"}

















Edges


The data for edges (flight data) is provided as a JSON file
flightdata2018.json. The first record looks like this:


{
"id":"ATL_BOS_2018-01-01_DL_104",
"fldate":"2018-01-01",
"month":1,
"dofW":1,
"carrier":"DL",
"src":"ATL",
"dst":"BOS",
"crsdephour":9,
"crsdeptime":850,
"depdelay":0.0,
"crsarrtime":1116,
"arrdelay":0.0,
"crselapsedtime":146.0,
"dist":946.0
}




















Building the graph


To build a graph as an instance of GraphFrame,
we have to create two DataFrames. We’ll start by building the vertex DataFrame, from the file airports.json:


>>> airports_path = '/book/code/chap06/airports.json'
>>> vertices = spark.read.json(airports_path)
>>> vertices.show(3)
+-------------+-------+-----+---+
|         City|Country|State| id|
+-------------+-------+-----+---+
|      Chicago|    USA|   IL|ORD|
|     New York|    USA|   NY|LGA|
|       Boston|    USA|   MA|BOS|
+-------------+-------+-----+---+

>>> vertices.count()
13


Then we’ll build the edge DataFrame from flightdata2018.json:


>>> flights_path = '/book/code/chap06/flightdata2018.json'
>>> edges = spark.read.json(flights_path)
>>> edges.select("src", "dst", "dist", "depdelay")
     .show(3)
+---+---+-----+--------+
|src|dst| dist|depdelay|
+---+---+-----+--------+
|ATL|BOS|946.0|     0.0|
|ATL|BOS|946.0|     8.0|
|ATL|BOS|946.0|     9.0|
+---+---+-----+--------+

>>> edges.count()
282628


We can now build our graph using these two DataFrames:


>>> from graphframes import GraphFrame
>>> graph = GraphFrame(vertices, edges)
>>> graph
GraphFrame(
v:[id: string, City: string ... 2 more fields],
e:[src: string, dst: string ... 12 more fields]
)
>>> graph.vertices.count()
13
>>> graph.edges.count()
282628

















Flight analysis


Now that we have created a graph, we can
execute queries on it. For example, now we can query the GraphFrame to answer
the following questions:



	
How many airports are there?


>>> num_of_airports = graph.vertices.count()
>>> num_of_airports
13



	
How many flights are there?


>>> num_of_flights = graph.edges.count()
>>> num_of_flights
282628



	
Which flight routes have the longest distance?


>>> from pyspark.sql.functions import col
>>> graph.edges
     .groupBy("src", "dst")
     .max("dist")
     .sort(col("max(dist)").desc())
     .show(4)
+---+---+---------+
|src|dst|max(dist)|
+---+---+---------+
|MIA|SEA|   2724.0|
|SEA|MIA|   2724.0|
|BOS|SFO|   2704.0|
|SFO|BOS|   2704.0|
+---+---+---------+







	
Which flight routes have the highest average delays?


>>> graph.edges
     .groupBy("src", "dst")
     .avg("depdelay")
     .sort(col("avg(depdelay)").desc())
     .show(5)
+---+---+------------------+
|src|dst|     avg(depdelay)|
+---+---+------------------+
|ATL|EWR|25.520159946684437|
|DEN|EWR|25.232164449818622|
|MIA|SFO|24.785953177257525|
|MIA|EWR|22.464104423495286|
|IAH|EWR| 22.38344914718888|
+---+---+------------------+



	
Which flight departure hours have the highest average delays?


>>> graph.edges
      .groupBy("crsdephour")
      .avg("depdelay")
      .sort(col("avg(depdelay)").desc())
      .show(5)
+----------+------------------+
|crsdephour|     avg(depdelay)|
+----------+------------------+
|        19|22.915831356645498|
|        20|22.187089292616932|
|        18|22.183962000558815|
|        17|20.553385253108907|
|        21| 19.89884280327656|
+----------+------------------+



	
What are the longest delays for flights that are
greater than 1,500 miles in distance?  Note that the output here has been trimmed to fit the page.


>>> graph.edges
      .filter("dist > 1500")
      .orderBy(col("depdelay").desc())
      .show(3)
+-------+--------+------+----+---+----------+----------+-----+---+
|carrier|depdelay|  dist|dofW|dst|    fldate|        id|month|src|
+-------+--------+------+----+---+----------+----------+-----+---+
|     AA|  1345.0|1562.0|   4|DFW|2018-06-28|BOS_DFW...|    6|BOS|
|     AA|  1283.0|2342.0|   1|MIA|2018-07-09|LAX_MIA...|    7|LAX|
|     AA|  1242.0|2611.0|   3|LAX|2018-03-28|BOS_LAX...|    3|BOS|
+-------+--------+------+----+---+----------+----------+-----+---+







	
What is the average delay for delayed flights
departing from Atlanta (ATL)?


>>> graph.edges
     .filter("src = 'ATL' and depdelay > 1")
     .groupBy("src", "dst")
     .avg("depdelay")
     .sort(col("avg(depdelay)").desc())
     .show(3)
+---+---+------------------+
|src|dst|     avg(depdelay)|
+---+---+------------------+
|ATL|EWR|  58.1085801063022|
|ATL|ORD| 46.42393736017897|
|ATL|DFW|39.454460966542754|
+---+---+------------------+

Viewing the Execution Plan

To view Spark’s logical and physical plans
for DataFrame execution, you can use
DataFrame.explain():


explain(extended=False)

Description:
     Prints the (logical and physical) plans
     to the console for debugging purpose.

     For extended plan view, set extended=True


For example, for the previous query, you could view the execution plan as follows:


graph.edges
     .filter("src = 'ATL' and depdelay > 1")
     .groupBy("src", "dst")
     .avg("depdelay")
     .sort(col("avg(depdelay)").desc())
     .explain()




Note that you should always filter your RDD/DataFrame before
applying an expensive transformation. This will  drop nonrequired elements/rows
from the RDD/DataFrame and hence improve the
performance for future transformations, by reducing
the amount of data passed between transformations.



	
What are the worst departure hours for delayed flights
departing from Atlanta?


>>> graph.edges
     .filter("src = 'ATL' and depdelay > 1")
     .groupBy("crsdephour")
     .avg("depdelay")
     .sort(col("avg(depdelay)").desc())
     .show(4)
+----------+------------------+
|crsdephour|     avg(depdelay)|
+----------+------------------+
|        23|52.833333333333336|
|        18| 51.57142857142857|
|        19| 48.93338815789474|
|        17|48.383354350567465|
+----------+------------------+



	
What are the four most frequent flight routes
in the dataset?


>>> flight_route_count = graph.edges
     .groupBy("src", "dst")
     .count()
     .orderBy(col("count").desc())
     .show(4)
+---+---+-----+
|src|dst|count|
+---+---+-----+
|LGA|ORD| 4442|
|ORD|LGA| 4426|
|LAX|SFO| 4406|
|SFO|LAX| 4354|
+---+---+-----+

Tip

To find this information, we get the count of flights for all possible flight routes and sort them in descending order. We’ll use the resulting DataFrame later, to find flight routes with no direct connection.





	
Which airports have the most incoming and
outgoing flights?


>>> graph.degrees
     .orderBy(col("degree").desc())
     .show(3)
+---+------+
| id|degree|
+---+------+
|ORD| 64386|
|ATL| 60382|
|LAX| 53733|
+---+------+


To answer this question we use the GraphFrames degrees operation, which returns the count of all edges (incoming and outgoing) of each vertex in the graph.







	
What are the most important airports, according
to the PageRank algorithm?


# Run PageRank until convergence to tolerance "tol"
>>> ranks = graph.pageRank(resetProbability=0.15, tol=0.01)
>>> ranks
GraphFrame(
v:[id: string, City: string ... 3 more fields],
e:[src: string, dst: string ... 13 more fields]
)
>>> ranks.vertices.orderBy(col("pagerank").desc()).show(3)
+-------------+-------+-----+---+------------------+
|         City|Country|State| id|          pagerank|
+-------------+-------+-----+---+------------------+
|      Chicago|    USA|   IL|ORD|1.4151923966632058|
|      Atlanta|    USA|   GA|ATL|1.3342533126163776|
|  Los Angeles|    USA|   CA|LAX| 1.197905124144182|
+-------------+-------+-----+---+------------------+


The PageRank algorithm provided by the GraphFrames API is based on Google’s PageRank. It’s an iterative algorithm that measures the importance of each vertex in a graph by determining which vertices have the most connections to other vertices (i.e., the most edges). This output indicates that the city of Chicago’s airport is the most important (since it has the highest PageRank score) of all the airports examined.


You can also run the PageRank algorithm for a fixed
number of iterations, rather than using the tolerance
level for convergence, as shown here:


# Run PageRank for a fixed number of iterations
results = graph.pageRank(resetProbability=0.15, maxIter=10)


For more details on using the PageRank
algorithm, refer to Chapter 8.






Next we’ll consider a slightly more complicated query: what are the flight routes with no direct connection? To answer this question, we will use
the GraphFrames API’s motif finding algorithm. First we’ll create a subgraph
from the flight_route_count DataFrame
that we created earlier, which gives us
a subgraph with all the possible flight
routes. Then we’ll do a find() to search for flights
from a to b and b to c where there is no flight from a to c. Finally we’ll
use   a  DataFrame   filter to remove
duplicates. This  example shows how graph
queries  can  be  easily  combined with
DataFrame operations like filter().


Using our flight_route_count DataFrame, we can use the following pattern to search for flights from a to b
and b to c where there is no direct flight from a to c:


>>> sub_graph = GraphFrame(graph.vertices, flight_route_count)
>>> sub_graph
GraphFrame(
v:[id: string, City: string ... 2 more fields],
e:[src: string, dst: string ... 1 more field]
)
>>> results = sub_graph.find(
                             "(a)-[]->(b);
                             (b)-[]->(c);
                             !(a)-[]->(c)"
                           )
                      .filter("c.id != a.id")


This produces the following results:


>>> results.show(5)
+--------------------+--------------------+--------------------+
|                   a|                   b|                   c|
+--------------------+--------------------+--------------------+
|[New York, USA, N...|[Denver, USA, CO,...|[San Francisco, U...|
|[Los Angeles, USA...|[Miami, USA, FL, ...|[New York, USA, N...|
|[New York, USA, N...|[Denver, USA, CO,...|[Newark, USA, NJ,...|
|[New York, USA, N...|[Miami, USA, FL, ...|[Newark, USA, NJ,...|
|[Newark, USA, NJ,...|[Atlanta, USA, GA...|[New York, USA, N...|
+--------------------+--------------------+--------------------+


Suppose we want to find which cities do not offer direct flights to one particular airport. To answer this question, we can use the shortest path algorithm to compute
the shortest paths from each vertex
(airport) to one or more “landmark” vertices (airports). Here we
search for the shortest path from each
airport to LGA. The results (distances greater than 1) show that
there are no direct flights from IAH, CLT, LAX, DEN, or DFW to LGA:


>>> results = graph.shortestPaths(landmarks=["LGA"])
>>> results.show(5)
+-------------+-------+-----+---+----------+
|         City|Country|State| id| distances|
+-------------+-------+-----+---+----------+
|      Houston|    USA|   TX|IAH|[LGA -> 1]|
|    Charlotte|    USA|   NC|CLT|[LGA -> 1]|
|  Los Angeles|    USA|   CA|LAX|[LGA -> 2]|
|       Denver|    USA|   CO|DEN|[LGA -> 1]|
|       Dallas|    USA|   TX|DFW|[LGA -> 1]|
+-------------+-------+-----+---+----------+


Now suppose we want to find out if there are any direct flights between two specific airports. The breadth-first search (BFS) algorithm finds the shortest path from a beginning vertex to an end vertex. The beginning and end vertices
are   specified   as  DataFrame  expressions, and
maxPathLength sets a limit on the
length of the paths between them. Here, we see that there are
no direct flights between LAX and LGA, although there are connecting flights (note that the output has been truncated to fit the page):


# bfs() signature:
# bfs(fromExpr, toExpr, edgeFilter=None, maxPathLength=10)
# Returns a DataFrame with one row for each shortest
# path between matching vertices.
>>> paths = graph.bfs("id = 'LAX'", "id = 'LGA'", maxPathLength=1)
>>> paths.show()
+----+-------+-----+---+
|City|Country|State| id|
+----+-------+-----+---+
+----+-------+-----+---+

>>> paths = graph.bfs("id = 'LAX'", "id = 'LGA'", maxPathLength=2)
>>> paths.show(4)
+--------+-----------------+--------+-----------------+---------+
|    from|               e0|      v1|               e1|       to|
+--------+-----------------+--------+-----------------+---------+
|[Los Ang|[0.0, UA, 1333, 8|[Houston|[0.0, UA, 1655, 1|[New York|
|[Los Ang|[0.0, UA, 1333, 8|[Houston|[22.0, UA, 2233, |[New York|
|[Los Ang|[0.0, UA, 1333, 8|[Houston|[6.0, UA, 1912, 1|[New York|
|[Los Ang|[0.0, UA, 1333, 8|[Houston|[0.0, UA, 2321, 1|[New York|
+--------+-----------------+--------+-----------------+---------+


We can also use motif finding to identify connecting flights between two airports. Here, we’ll use a motif query to search for the pattern of a to c through b, then apply a DataFrame filter on the results for a = LAX and c = LGA. The results show some flights from LAX to LGA connecting through IAH:


>>> graph.find("(a)-[ab]->(b);
                (b)-[bc]->(c)"
              ).filter("a.id = 'LAX'")
               .filter("c.id = 'LGA'")
               .limit(4)
               .select("a", "b", "c")
               .show()
+--------------------+--------------------+--------------------+
|                   a|                   b|                   c|
+--------------------+--------------------+--------------------+
|[Los Angeles, USA...|[Houston, USA, TX...|[New York, USA, N...|
|[Los Angeles, USA...|[Houston, USA, TX...|[New York, USA, N...|
|[Los Angeles, USA...|[Houston, USA, TX...|[New York, USA, N...|
|[Los Angeles, USA...|[Houston, USA, TX...|[New York, USA, N...|
+--------------------+--------------------+--------------------+


By combining motif finding with DataFrame
operations we could narrow these results down even
further, for example to exclude flights with an arrival time before the initial departure flight time,
and/or to identify flights with a specific carrier.





























Summary


To recap:



	
Spark provides two graph libraries, GraphX (based on RDDs) and GraphFrames (based on DataFrames). GraphX is Spark’s internal API for graphs and graph-parallel computation and is available only for Java and Scala. GraphFrames is an external package for Spark that provides high-level APIs in Python, Scala, and Java. It is available in PySpark, whereas GraphX is not.



	
GraphFrames provide:



	
Python, Java, and Scala APIs



	
Expressive graph queries by using “motif finding”



	
Query plan optimizers from Spark SQL



	
Graph algorithms










Next, we’ll cover how Spark interacts with outside data sources.













Chapter 7. Interacting with External Data Sources



In Spark, in order to run any
algorithm you need to read input data
from a data source, then apply your
algorithm in the form of a set of
PySpark transformations and actions (expressed as a DAG), and finally write
your  desired  output  to a  target
data source.  So, to write algorithms that perform well, it’s important to understand
reading and writing from and to external
data sources.


In the previous chapters, we have explored
interacting with the built-in data sources
(RDDs and DataFrames) in Spark. In this
chapter, we will focus on how Spark
interfaces with external data sources.


Source Code

Complete programs for this chapter are available in the book’s
GitHub repository.




As Figure 7-1 shows, Spark can read data from a huge range of external
storage systems like the Linux filesystem,
Amazon S3, HDFS, Hive tables, and
relational databases  (such  as
Oracle, MySQL, or PostgreSQL) through
its data source interface. This chapter will show you how to read data in and then convert it into RDDs or DataFrames for
further processing. I’ll also show you
how Spark’s  data can be written
back  to  external  storage systems
like files, Amazon S3, and JDBC-compliant
databases.



[image: daws 0701]
Figure 7-1. Spark external data sources










Relational Databases


Let’s start with relational databases. A relational database is a collection
of data items  organized as a  set of
formally   described   tables  (created using the SQL
CREATE TABLE statement) from  which
data can be accessed or reassembled
in many different ways without the tables themselves needing to be reorganized.
Open source  relational databases (such
as MySQL and PostgreSQL) are  currently
the predominant choice for storing data
like  social  media  network  records,
financial records, medical records,
personal information, and manufacturing
data. There are also many well-known and widely used
licensed proprietary relational databases,
such as MS SQL Server and Oracle.


Informally, a relational database table
has a set of rows and named columns, as shown in Figure 7-2.
Each row in a table can have its own
unique key (called a primary key). Rows
in a table can be linked to rows in other
tables by adding a column for the unique
key of the linked row (such columns are
known as foreign keys).



[image: daws 0702]
Figure 7-2. A relational database table example




PySpark  provides two classes for reading
data from and writing
data  to  relational
databases, as well as to other external
data sources.  These two classes are defined
as:


	class pyspark.sql.DataFrameReader(spark)

	
This is the interface used to read data into a DataFrame from an external
storage system (filesystem, key/value store, etc.). Use spark.read() to  access this.



	class pyspark.sql.DataFrameWriter(df)

	
This is the interface used to write a DataFrame to an external
storage system. Use DataFrame.write() to access
this.














Reading from a Database


PySpark enables us to read in data
from a relational database table
and  create a   new   DataFrame from it.
You can read a table from any
JDBC-compliant database, using the
pyspark.sql.DataFrameReader.load()
Python method. The load() method
is defined as:


load(path=None, format=None, schema=None, **options)
t :class`DataFrame`.

Parameters:
     path – optional string or a list of string
            for file-system backed data sources.
   format – optional string for format of the data
            source. Default to 'parquet'.
   schema – optional pyspark.sql.types.StructType for
            the input schema or a DDL-formatted string
            (for example `col-1 INT, col-2 DOUBLE`).
  options – all other string options


In order to read in data from a JDBC-compliant database table, you need to specify format("jdbc"). You can then pass in table attributes and connection parameters (such as the JDBC URL and your database credentials) as options(<key>, <value>) pairs.


To read data from and write it to a JDBC-compliant
relational database, you will need access to the
database  server  and
sufficient privileges.












Step 1. Create a database table


In this step, we’ll connect to a MySQL
database server and create a table
called dept with seven rows. We execute the
mysql client program to enter into the
MySQL client shell (if you have installed a MySQL database on your MacBook, for example, the MySQL client will be available at /usr/local/bin/mysql):


$ mysql -uroot -p [image: 1]
Enter password: <your-root-password> [image: 2]
Welcome to the MySQL monitor.  Commands end with ; or \g.
Server version: 5.7.18 MySQL Community Server (GPL)


mysql> show databases; [image: 3]
+--------------------+
| Database           | [image: 4]
+--------------------+
| information_schema |
| mysql              | [image: 5]
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)


	[image: 1]

	Invoke the MySQL shell client.


	[image: 2]

	Enter a valid password for the
root user.


	[image: 3]

	List the databases available in the MySQL
database server.


	[image: 4]

	These three databases are created by the
MySQL database server.


	[image: 5]

	The mysql database manages users,
groups, and privileges.





Next, we’ll create and select a database:


mysql> create database metadb; [image: 1]
mysql> use metadb; [image: 2]
Database changed
mysql>
mysql> show tables; [image: 3]
Empty set (0.00 sec)


	[image: 1]

	Create a new database called metadb.


	[image: 2]

	Make metadb your current
default database.


	[image: 3]

	Show the tables in the metadb database
(since it is a new database, there will
be no tables in it).





Then we’ll create a new table called
dept inside the metadb database:


mysql> create table dept ( [image: 1]
    ->   dept_number int,
    ->   dept_name  varchar(128),
    ->   dept_location varchar(128),
    ->   manager varchar(128)
    -> );

mysql> show tables; [image: 2]
+------------------+
| Tables_in_metadb |
+------------------+
| dept             |
+------------------+

mysql> desc dept; [image: 3]
+---------------+--------------+------+-----+---------+-------+
| Field         | Type         | Null | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
| dept_number   | int(11)      | YES  |     | NULL    |       |
| dept_name     | varchar(128) | YES  |     | NULL    |       |
| dept_location | varchar(128) | YES  |     | NULL    |       |
| manager       | varchar(128) | YES  |     | NULL    |       |
+---------------+--------------+------+-----+---------+-------+


	[image: 1]

	This is the table definition for dept, which
has four columns.


	[image: 2]

	List the tables in the metadb database.


	[image: 3]

	Describe the schema for dept table.





Finally, we insert the following seven rows into the dept
table, using the INSERT 
statement:


mysql> INSERT INTO dept
  -> (dept_number,  dept_name,  dept_location, manager)
  -> VALUES
  ->  (10, 'ACCOUNTING', 'NEW YORK, NY', 'alex'),
  ->  (20, 'RESEARCH',   'DALLAS, TX', 'alex'),
  ->  (30, 'SALES',      'CHICAGO, IL', 'jane'),
  ->  (40, 'OPERATIONS', 'BOSTON, MA', 'jane'),
  ->  (50, 'MARKETING', 'Sunnyvale, CA', 'jane'),
  ->  (60, 'SOFTWARE', 'Stanford, CA', 'jane'),
  ->  (70, 'HARDWARE', 'BOSTON, MA', 'sophia');


We can examine the contents of the dept
table to make sure that it has these seven rows:


mysql> select * from dept;
+-------------+------------+---------------+---------+
| dept_number | dept_name  | dept_location | manager |
+-------------+------------+---------------+---------+
|          10 | ACCOUNTING | NEW YORK, NY  | alex    |
|          20 | RESEARCH   | DALLAS, TX    | alex    |
|          30 | SALES      | CHICAGO, IL   | jane    |
|          40 | OPERATIONS | BOSTON, MA    | jane    |
|          50 | MARKETING  | Sunnyvale, CA | jane    |
|          60 | SOFTWARE   | Stanford, CA  | jane    |
|          70 | HARDWARE   | BOSTON, MA    | sophia  |
+-------------+------------+---------------+---------+
7 rows in set (0.00 sec)


At this point, we are sure that
there is a metadb database on the database server, which
has a dept table with seven records.

















Step 2: Read the database table into a DataFrame


Once you have a JDBC-compliant table (such
as   dept),  then  you can  use the
pyspark.sql.DataFrameReader class’s methods
(a combination of option() and load())
to read the contents of the table and create a
new DataFrame.   To perform this read, you
need a JAR file, which is a MySQL JDBC driver
(you may download this JAR file from the MySQL website). You can put the JAR file containing the MySQL driver
class wherever you like; I’ll place it in:


 .../code/jars/mysql-connector-java-5.1.42.jar

Note

MySQL offers standard database driver
connectivity (see Connector/J for details) for using MySQL with applications
and tools that are compatible with industry
standards ODBC and JDBC. Any system that works
with ODBC or JDBC can use MySQL.




Next, we enter the PySpark shell
by passing the JAR file to the
$SPARK_HOME/bin/pyspark program:


export JAR=/book/code/jars/mysql-connector-java-5.1.42.jar [image: 1]
$SPARK_HOME/bin/pyspark --jars $JAR [image: 2]


SparkSession available as `'spark'`.
>>> spark  [image: 3]
<pyspark.sql.session.SparkSession object at 0x10a5f2a50>
>>>


	[image: 1]

	This is the driver class JAR for MySQL.


	[image: 2]

	Start the PySpark shell, loading the MySQL driver class JAR.


	[image: 3]

	Make sure the SparkSession is available.





Now we can use the SparkSession to read a
relational table and create a new

DataFrame:


dataframe_mysql = spark \ [image: 1]
   .read \ [image: 2]
   .format("jdbc") \ [image: 3]
   .option("url", "jdbc:mysql://localhost/metadb") \ [image: 4]
   .option("driver", "com.mysql.jdbc.Driver") \ [image: 5]
   .option("dbtable", "dept") \ [image: 6]
   .option("user", "root") \ [image: 7]
   .option("password", "mp22_pass") \ [image: 8]
   .load() [image: 9]


	[image: 1]

	spark is an instance of SparkSession


	[image: 2]

	Returns a DataFrameReader that can be
used to read data in as a DataFrame


	[image: 3]

	Indicates that you are reading JDBC-compliant data


	[image: 4]

	The database URL


	[image: 5]

	The JDBC driver (loaded from the JAR file)


	[image: 6]

	The database table name


	[image: 7]

	The database username


	[image: 8]

	The database password


	[image: 9]

	Loads data from a JDBC data source
and returns it as a DataFrame





Let’s take a look at the newly created DataFrame:


>>> dataframe_mysql.count() [image: 1]
7
>>> dataframe_mysql.show() [image: 2]
+-----------+----------+-------------+-------+
|dept_number| dept_name|dept_location|manager|
+-----------+----------+-------------+-------+
|         10|ACCOUNTING| NEW YORK, NY|   alex|
|         20|  RESEARCH|   DALLAS, TX|   alex|
|         30|     SALES|  CHICAGO, IL|   jane|
|         40|OPERATIONS|   BOSTON, MA|   jane|
|         50| MARKETING|Sunnyvale, CA|   jane|
|         60|  SOFTWARE| Stanford, CA|   jane|
|         70|  HARDWARE|   BOSTON, MA| sophia|
+-----------+----------+-------------+-------+


	[image: 1]

	Count the number of rows in the DataFrame.


	[image: 2]

	Print the first 20 rows to the console.





We can also examine its schema:


>>> dataframe_mysql.printSchema [image: 1]
<bound method DataFrame.printSchema of
DataFrame[
           dept_number: int,
           dept_name: string,
           dept_location: string,
           manager: string
          ]


	[image: 1]

	Print out the schema in tree format.




















Step 3: Query the DataFrame


PySpark offers many ways to access a
DataFrame. In addition to various SQL-like methods
(such as select(<columns>), groupBy(<columns>),
min(), max(), etc.), it allows you to execute fully fledged SQL queries on your DataFrame by first registering it as a “table”
and  then issuing  queries  against  that
registered table. We will discuss DataFrame
table registration  shortly. First, we will execute some SQL-like queries
using DataFrame methods.


Here, we select all rows for
two columns, dept_number and manager:


>>> dataframe_mysql.select("dept_number", "manager") [image: 1]
               .show() [image: 2]
+-----------+-------+
|dept_number|manager|
+-----------+-------+
|         10|   alex|
|         20|   alex|
|         30|   jane|
|         40|   jane|
|         50|   jane|
|         60|   jane|
|         70| sophia|
+-----------+-------+


	[image: 1]

	Select the dept_number and manager
columns from the DataFrame.


	[image: 2]

	Display the selection result.





Next, we group all rows by manager
and then find the minimum dept_number:


>>> dataframe_mysql.select("dept_number", "manager")
                   .groupBy("manager")
                   .min("dept_number")
                   .collect()
[
 Row(manager=u'jane', min(dept_number)=30),
 Row(manager=u'sophia', min(dept_number)=70),
 Row(manager=u'alex', min(dept_number)=10)
]


Here we group all rows by manager
and then find the frequencies of the grouped data:


>>> dataframe_mysql.select("dept_number", "manager")
                   .groupBy("manager")
                   .count()
                   .show()
+--------+-------+
|manager | count |
+--------+-------+
| jane   |  4    |
| sophia |  1    |
| alex   |  2    |
+--------+-------+


And here we do the same but additionally order the output by the manager column:


>>> dataframe_mysql.select("dept_number", "manager")
                   .groupBy("manager")
                   .count()
                   .orderBy("manager")
                   .show()
+--------+-------+
|manager | count |
+--------+-------+
| alex   |  2    |
| jane   |  4    |
| sophia |  1    |
+--------+-------+


To execute fully fledged SQL queries
against a DataFrame, first you have to
register your DataFrame as a table:


DataFrame.registerTempTable(<your-desired-table-name>)



You can then execute regular SQL
queries on it, as if it were a relational database table:


>>> dataframe_mysql.registerTempTable("mydept") [image: 1]
>>> spark.sql("select * from mydept where dept_number > 30") [image: 2]
         .show() [image: 3]
+-----------+----------+-------------+-------+
|dept_number| dept_name|dept_location|manager|
+-----------+----------+-------------+-------+
|         40|OPERATIONS|   BOSTON, MA|   jane|
|         50| MARKETING|Sunnyvale, CA|   jane|
|         60|  SOFTWARE| Stanford, CA|   jane|
|         70|  HARDWARE|   BOSTON, MA| sophia|
+-----------+----------+-------------+-------+


	[image: 1]

	Register this DataFrame as a
temporary table using the given name.


	[image: 2]

	You can now issue a SQL query against your
registered table.


	[image: 3]

	This prints the first 20 rows to the console.





This query uses the “like” pattern
matching for the dept_location column:


>>> spark.sql("select * from mydept where dept_location like '%CA'")
         .show()
+-----------+----------+-------------+-------+
|dept_number| dept_name|dept_location|manager|
+-----------+----------+-------------+-------+
|         50| MARKETING|Sunnyvale, CA|   jane|
|         60|  SOFTWARE| Stanford, CA|   jane|
+-----------+----------+-------------+-------+
>>>


And here we use GROUP BY:


>>> spark.sql("select manager, count(*) as count from mydept group by manager")
  .show()
+-------+-----+
|manager|count|
+-------+-----+
|   jane|    4|
| sophia|    1|
|   alex|    2|
+-------+-----+






















Writing a DataFrame to a Database


We can write or save a Spark DataFrame to an external data source, such as a relational database table, using the DataFrameWriter.save() method. Let’s walk through an example.


First, we’ll create a list of triplets (<name>, <age>, <salary>) as a local Python 
collection:


>>> triplets = [ ("alex", 60, 18000),
...              ("adel", 40, 45000),
...              ("adel", 50, 77000),
...              ("jane", 40, 52000),
...              ("jane", 60, 81000),
...              ("alex", 50, 62000),
...              ("mary", 50, 92000),
...              ("mary", 60, 63000),
...              ("mary", 40, 55000),
...              ("mary", 40, 55000)
...            ]


Then we’ll convert this into a Spark DataFrame with the
SparkSession.createDataFrame() method:


>>> tripletsDF = spark.createDataFrame( [image: 1]
...                     triplets, [image: 2]
...                     ['name', 'age', 'salary'] [image: 3]
...              )
>>> tripletsDF.show() [image: 4]
+----+---+------+
|name|age|salary|
+----+---+------+
|alex| 60| 18000|
|adel| 40| 45000|
|adel| 50| 77000|
|jane| 40| 52000|
|jane| 60| 81000|
|alex| 50| 62000|
|mary| 50| 92000|
|mary| 60| 63000|
|mary| 40| 55000|
|mary| 40| 55000|
+----+---+------+


	[image: 1]

	Create a new DataFrame.


	[image: 2]

	Convert triplets into a DataFrame.


	[image: 3]

	Impose a schema on the created DataFrame.


	[image: 4]

	Display the contents of the newly created DataFrame.





Now, we can convert the DataFrame into a relational table
called triplets:


tripletsDF
  .write [image: 1]
  .format("jdbc") [image: 2]
  .option("driver", "com.mysql.jdbc.Driver") [image: 3]
  .mode("overwrite") [image: 4]
  .option("url", "jdbc:mysql://localhost/metadb") [image: 5]
  .option("dbtable", "triplets") [image: 6]
  .option("user", "root") [image: 7]
  .option("password", "mp22_pass") [image: 8]
  .save() [image: 9]


	[image: 1]

	Returns a DataFrameWriter that can
be used to write to an external device


	[image: 2]

	Indicates that you are writing to a
JDBC-compliant database


	[image: 3]

	The JDBC driver (loaded from the JAR file)


	[image: 4]

	Overwrites the table if it already exists


	[image: 5]

	The database URL


	[image: 6]

	The target database table name


	[image: 7]

	The database username


	[image: 8]

	The database password


	[image: 9]

	Saves the DataFrame data as a database table





When writing the contents of a DataFrame
to an external device, you can choose
desired mode. The Spark JDBC writer
supports the following modes:


	append

	
Append the contents of this DataFrame to any existing data.



	overwrite

	
Overwrite any existing data.



	ignore

	
Silently ignore this operation if data already exists.



	error (default case)

	
Throw an exception if data already exists.






Here, we verify that the triplets
table was created in the metadb database on the MySQL database server
under the 'metadb' database:


$ mysql -uroot -p [image: 1]
Enter password:  <password> [image: 2]
Welcome to the MySQL Server version: 5.7.18




mysql> use metadb; [image: 3]
Database changed

mysql> desc triplets; [image: 4]
+--------+------------+------+-----+---------+-------+
| Field  | Type       | Null | Key | Default | Extra |
+--------+------------+------+-----+---------+-------+
| name   | text       | YES  |     | NULL    |       |
| age    | bigint(20) | YES  |     | NULL    |       |
| salary | bigint(20) | YES  |     | NULL    |       |
+--------+------------+------+-----+---------+-------+

mysql> select * from triplets; [image: 5]
+------+------+--------+
| name | age  | salary |
+------+------+--------+
| jane |   40 |  52000 |
| adel |   50 |  77000 |
| jane |   60 |  81000 |
| alex |   50 |  62000 |
| mary |   40 |  55000 |
| mary |   40 |  55000 |
| adel |   40 |  45000 |
| mary |   60 |  63000 |
| alex |   60 |  18000 |
| mary |   50 |  92000 |
+------+------+--------+
10 rows in set (0.00 sec)


 	[image: 1]

  	Start the MySQL client shell.


 	[image: 2]

  	Enter the password for the root user.


 	[image: 3]

  	Select the desired database.


 	[image: 4]

  	Make sure that the triplets table was created.


 	[image: 5]

  	Display the content of the triplets tables.


  


Next, we read the triplets table
back from the MySQL relational database
to make sure that the table is readable:


>>> tripletsDF_mysql =
      spark [image: 1]
       .read [image: 2]
       .format("jdbc") [image: 3]
       .option("url", "jdbc:mysql://localhost/metadb") [image: 4]
       .option("driver", "com.mysql.jdbc.Driver") [image: 5]
       .option("dbtable", "triplets") [image: 6]
       .option("user", "root") [image: 7]
       .option("password", "mp22_pass") [image: 8]
       .load() [image: 9]

>>> tripletsDF_mysql.show() [image: 10]
+----+---+------+
|name|age|salary|
+----+---+------+
|jane| 40| 52000|
|adel| 50| 77000|
|jane| 60| 81000|
|alex| 50| 62000|
|mary| 40| 55000|
|mary| 40| 55000|
|adel| 40| 45000|
|mary| 60| 63000|
|alex| 60| 18000|
|mary| 50| 92000|
+----+---+------+


	[image: 1]

	An instance of SparkSession


	[image: 2]

	Returns a DataFrameReader that can be
used to read data in as a DataFrame


	[image: 3]

	Indicates that you are reading
JDBC-compliant data


	[image: 4]

	The database URL


	[image: 5]

	The JDBC driver (loaded from the JAR file)


	[image: 6]

	The database table to be read


	[image: 7]

	The database username


	[image: 8]

	The database password


	[image: 9]

	Loads data from a JDBC data source
and returns it as a DataFrame


	[image: 10]

	Shows the contents of the newly created DataFrame





Finally, we’ll execute some SQL queries
on the newly created DataFrame.


The following query finds the minimum and
maximum of the salary column:


>>> tripletsDF_mysql.registerTempTable("mytriplets") [image: 1]
>>> spark.sql("select min(salary), max(salary) from mytriplets") [image: 2]
         .show() [image: 3]
+-----------+-----------+
|min(salary)|max(salary)|
+-----------+-----------+
|      18000|      92000|
+-----------+-----------+


	[image: 1]

	Register this DataFrame as a temporary
table using the name mytriplets.


	[image: 2]

	Execute the SQL statement and create a
new DataFrame.


	[image: 3]

	Display the result of the SQL statement.





Here, we aggregate the age column by
using SQL’s GROUP BY:


>>> spark.sql("select age, count(*) from mytriplets group by age").show()
+---+--------+
|age|count(1)|
+---+--------+
| 50|       3|
| 60|       3|
| 40|       4|
+---+--------+


Next, we sort the result of the
previous SQL query:


>>> spark.sql("select age, count(*) from mytriplets group by age order by age")
  .show()
+---+--------+
|age|count(1)|
+---+--------+
| 40|       4|
| 50|       3|
| 60|       3|
+---+--------+
























Reading Text Files


Spark allows us to read text files and create
DataFrames from them. Consider the following text file:


$ cat people.txt
Alex,30,Tennis
Betty,40,Swimming
Dave,20,Walking
Jeff,77,Baseball


Let’s first create an RDD[Row]
(where each element is a Row object):


>>> from pyspark.sql import Row

>>> def create_row(rec):
        p = rec.split(",")
        return Row(name=p[0], age=int(p[1]), hobby=p[2])
>>> #end-def
>>> input_path = "people.txt"
>>> # Load a text file and convert each line to a Row
>>> records = spark.sparkContext.textFile(input_path) [image: 1]
>>> records.collect()
[
 u'Alex,30,Tennis',
 u'Betty,40,Swimming',
 u'Dave,20,Walking',
 u'Jeff,77,Baseball'
]
>>> people = records.map(create_row) [image: 2]
>>> people.collect()
[
 Row(age=30, hobby=u'Tennis', name=u'Alex'),
 Row(age=40, hobby=u'Swimming', name=u'Betty'),
 Row(age=20, hobby=u'Walking', name=u'Dave'),
 Row(age=77, hobby=u'Baseball', name=u'Jeff')
]


	[image: 1]

	records is an RDD[String].


	[image: 2]

	people is an RDD[Row].





Now that we have people as an RDD[Row], it
is straightforward to create a DataFrame:


>>> people_df = spark.createDataFrame(people) [image: 1]
>>> people_df.show()
+---+--------+-----+
|age|   hobby| name|
+---+--------+-----+
| 30|  Tennis| Alex|
| 40|Swimming|Betty|
| 20| Walking| Dave|
| 77|Baseball| Jeff|
+---+--------+-----+
>>> people_df.printSchema() [image: 2]
root
 |-- age: long (nullable = true)
 |-- hobby: string (nullable = true)
 |-- name: string (nullable = true)


	[image: 1]

	people_df is a DataFrame[Row].


	[image: 2]

	Display the schema of the created DataFrame.





Next, we’ll use a SQL query to
manipulate the created DataFrame:


>>> people_df.registerTempTable("people_table") [image: 1]
>>> spark.sql("select * from people_table").show() [image: 2]
+---+--------+-----+
|age|   hobby| name|
+---+--------+-----+
| 30|  Tennis| Alex|
| 40|Swimming|Betty|
| 20| Walking| Dave|
| 77|Baseball| Jeff|
+---+--------+-----+

>>> spark.sql("select * from people_table where age > 35").show() [image: 3]
+---+--------+-----+
|age|   hobby| name|
+---+--------+-----+
| 40|Swimming|Betty|
| 77|Baseball| Jeff|
+---+--------+-----+


	[image: 1]

	Register the people_df DataFrame as a temporary
table using the name 
people_table.


	[image: 2]

	spark.sql(sql-query) creates a new DataFrame.


	[image: 3]

	spark.sql(sql-query) creates a new DataFrame.





We can save our DataFrame as a text file with DataFrame.write().

















Reading and Writing CSV Files


A comma-separated values file is a text file that allows data
to be saved in a table-structured format.
The following is a simple example of a
CSV file with a header row (metadata containing the names of the columns, separated by commas), called
cats.with.header.csv:


$ cat cats.with.header.csv
#name,age,gender,weight [image: 1]
cuttie,2,female,6 [image: 2]
mono,3,male,9 [image: 3]
fuzzy,1,female,4 [image: 4]


	[image: 1]

	Header record starts with #,
describes columns


	[image: 2]

	First record


	[image: 3]

	Second record


	[image: 4]

	Third and final record





The following is a simple example of a
CSV file without a header, called
cats.no.header.csv:


$ cat cats.no.header.csv
cuttie,2,female,6
mono,3,male,9
fuzzy,1,female,4


In the next section, we’ll use these two files to demonstrate how Spark reads CSV files.










Reading CSV Files


Spark offers
many methods to load CSV files into a
DataFrame. I’ll show you a few of them here.


In this example, using the PySpark
shell, we read a CSV file with a
header and load it as
a DataFrame:


# spark : pyspark.sql.session.SparkSession object
input_path = '/pyspark_book/code/chap08/cats.with.header.csv'
cats = spark [image: 1]
        .read [image: 2]
        .format("csv") [image: 3]
        .option("header", "true") [image: 4]
        .option("inferSchema", "true") [image: 5]
        .load(input_path) [image: 6]


	[image: 1]

	Create a new DataFrame as
cats using a SparkSession.


	[image: 2]

	Return a DataFrameReader that can
be used to read data in as a DataFrame.


	[image: 3]

	Specify that the input data source format is CSV.


	[image: 4]

	Indicate that the input CSV file has a
header (note that the header is not part
of the actual data).


	[image: 5]

	Infer the DataFrame schema from the input file.


	[image: 6]

	Provide the path for the CSV file.





We can now display the contents of the newly
created DataFrame and its inferred schema:


>>> cats.show() [image: 1]
+------+---+------+------+
|  name|age|gender|weight|
+------+---+------+------+
|cuttie|  2|female|     6|
|  mono|  3|  male|     9|
| fuzzy|  1|female|     4|
+------+---+------+------+

>>> cats.printSchema [image: 2]
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 age: int,
 gender: string,
 weight: int
]>
>>> cats.count() [image: 3]
3


	[image: 1]

	Display the contents of the DataFrame.


	[image: 2]

	Display the schema of the DataFrame.


	[image: 3]

	Display the size of the DataFrame.





Now I’ll show you how to read
a CSV file without a header and create
a new 
DataFrame from it:


input_path = '/pyspark_book/code/chap08/cats.no.header.csv'
cats2 = spark [image: 1]
            .read [image: 2]
            .format("csv") [image: 3]
            .option("header","false") [image: 4]
            .option("inferSchema", "true") [image: 5]
            .load(input_path) [image: 6]


	[image: 1]

	Create a new DataFrame as cats
using a SparkSession.


	[image: 2]

	Return a DataFrameReader that can be
used to read data in as a DataFrame.


	[image: 3]

	Specify that the input data source format is CSV.


	[image: 4]

	Indicate that the input CSV file has no header.


	[image: 5]

	Infer the DataFrame schema from the input file.


	[image: 6]

	Provide the path for the CSV file.





Let’s inspect the contents of the newly created
DataFrame and its inferred schema:


>>> cats2.show()
+------+---+------+---+
|   _c0|_c1|   _c2|_c3| [image: 1]
+------+---+------+---+
|cuttie|  2|female|  6|
|  mono|  3|  male|  9|
| fuzzy|  1|female|  4|
+------+---+------+---+


	[image: 1]

	Default column names





Next, we’ll define a schema with four columns:


>>> from pyspark.sql.types import StructType
>>> from pyspark.sql.types import StructField
>>> from pyspark.sql.types import StringType
>>> from pyspark.sql.types import IntegerType
>>>
>>> catsSchema = StructType([
... StructField("name", StringType(), True),
... StructField("age", IntegerType(), True),
... StructField("gender", StringType(), True),
... StructField("weight", IntegerType(), True)
... ])


Here’s what happens if we use the defined schema to
read in the same CSV file and create a DataFrame from it:


>>> input_path = '/book/code/chap07/cats.no.header.csv'
>>> cats3 = spark
   .read
   .format("csv")
   .option("header","false")
   .option("inferSchema", "true")
   .load(input_path, schema = catsSchema)
>>> cats3.show()
+------+---+------+------+
|  name|age|gender|weight| [image: 1]
+------+---+------+------+
|cuttie|  2|female|     6|
|  mono|  3|  male|     9|
| fuzzy|  1|female|     4|
+------+---+------+------+

>>> cats.count()
3


	[image: 1]

	Explicit column names





We can apply this predefined schema to any headerless CSV file:


>>> cats4 = spark
   .read [image: 1]
    .csv("file:///tmp/cats.no.header.csv", [image: 2]
         schema = catsSchema, [image: 3]
         header = "false") [image: 4]
>>> cats4.show()
+------+---+------+------+
|  name|age|gender|weight| [image: 5]
+------+---+------+------+
|cuttie|  2|female|     6|
|  mono|  3|  male|     9|
| fuzzy|  1|female|     4|
+------+---+------+------+

>>> cats4.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 age: int,
 gender: string,
 weight: int
]>
>>> cats4.count()
3


	[image: 1]

	Return a DataFrameReader that can be used to read data in as a DataFrame.


	[image: 2]

	Read a CSV file.


	[image: 3]

	Use the given schema for the CSV file.


	[image: 4]

	Indicate that the CSV file has no header.


	[image: 5]

	Explicit column names are used.




















Writing CSV Files


There are several ways that you can
create   CSV   files from DataFrames in Spark.
The easiest option
is   to  use the .csv() method of the DataFrameWriter class, accessed through DataFrame.write(). This method is defined as follows (note that this is just a small subset of the available parameters):


csv(path, mode=None, compression=None, sep=None, ...)
Saves the content of the DataFrame in CSV format
at the specified path.


Parameters:
  path – the path in any Hadoop supported file system.
  mode – specifies the behavior of the save operation when data already exists.
         "append":  Append contents of this DataFrame to existing data.
         "overwrite": Overwrite existing data.
         "ignore": Silently ignore this operation if data already exists.
         "error": Throw an exception if data already exists.
  compression – compression codec to use when saving to file.
  sep – sets a single character as a separator for each field and value.
         If None is set, it uses the default value.


Let’s use this method to save our cats4 DataFrame as a CSV file:


>>> cats4.show()
+------+---+------+------+
|  name|age|gender|weight|
+------+---+------+------+
|cuttie|  2|female|     6|
|  mono|  3|  male|     9|
| fuzzy|  1|female|     4|
+------+---+------+------+

>>> cats4.write.csv("file:///tmp/cats4", sep = ';')


Then examine the saved file(s):


$ ls -l /tmp/cats4
total 8
-rw-r--r--  ...   0 Apr 12 16:46 _SUCCESS
-rw-r--r--  ...  49 Apr 12 16:46 part-00000-...-c000.csv

$ cat /tmp/cats4/part*
cuttie;2;female;6
mono;3;male;9
fuzzy;1;female;4


Note that in the output of the ls (list) command, we see two types of files:



	
A zero-sized SUCCESS file, which indicates that
the write operation was 
successful.



	
One or more files whose names begin with part-, which
represent the output from a single partition.






Note also that there’s no header data in the saved file.


Let’s try that again, this time specifying that we want a header row:


>>> cats4.write.csv("file:///tmp/cats48",
                    sep = ';',
                    header = 'true')


$ ls -l /tmp/cats48
total 8
-rw-r--r--  ...   0 Apr 12 16:49 _SUCCESS
-rw-r--r--  ...  72 Apr 12 16:49 part-00000-...-c000.csv

$ cat /tmp/cats48/part*
name;age;gender;weight [image: 1]
cuttie;2;female;6
mono;3;male;9
fuzzy;1;female;4


	[image: 1]

	The header from our DataFrame



























Reading and Writing JSON Files


JavaScript Object Notation
is a lightweight, text-based data interchange
format that is easy for humans to
read and write. A JSON object is composed of a set of (key, value) pairs enclosed in curly braces, like this:


{
  "first_name" : "John", [image: 1]
  "last_name" : "Smith",
  "age" : 23,
  "gender" : "Male",
  "cars": [ "Ford", "BMW", "Fiat" ] [image: 2]
}


	[image: 1]

	A simple (key, value) pair


	[image: 2]

	An array value













Reading JSON Files


JSON data can read with the DataFrameReader.json()
method, which can take a set of parameters such
as the path and schema. Consider the following JSON file:


$ cat $SPARK_HOME/examples/src/main/resources/employees.json
{"name":"Michael", "salary":3000}
{"name":"Andy", "salary":4500}
{"name":"Justin", "salary":3500}
{"name":"Berta", "salary":4000}


We can read this file and convert
it to a DataFrame as follows:


>>> data_path = 'examples/src/main/resources/employees.json'
>>> df = spark.read.json(data_path)
>>> df.show()
+-------+------+
|   name|salary|
+-------+------+
|Michael|  3000|
|   Andy|  4500|
| Justin|  3500|
|  Berta|  4000|
+-------+------+

>>> df.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 salary: bigint
]>
>>> df.count()
4


You can also use the load()
method and pass it one or more JSON files:


>>> data_path = 'examples/src/main/resources/employees.json'
>>> df2 = spark.read.format('json')
               .load([data_path,  data_path]) [image: 1]
>>> df2.show()
+-------+------+
|   name|salary|
+-------+------+
|Michael|  3000|
|   Andy|  4500|
| Justin|  3500|
|  Berta|  4000|
|Michael|  3000| [image: 2]
|   Andy|  4500|
| Justin|  3500|
|  Berta|  4000|
+-------+------+

>>> df2.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 salary: bigint
]>
>>> df2.count()
8


	[image: 1]

	Note that data_path is loaded twice.


	[image: 2]

	The file’s contents are therefore included twice in the resulting DataFrame. You can also use this method to create a DataFrame from several input files.




















Writing JSON Files


To write a DataFrame
as a json object, we can use
DataFrameWriter.json() method. The method accepts a set
of parameters and saves the contents
of the DataFrame in JSON format:


json(
     path,
     mode=None,
     compression=None,
     dateFormat=None,
     timestampFormat=None
)

Parameters:
  path – the path in any Hadoop supported file system
  mode – specifies the behavior of the save operation when data already exists.
         Possible values are: "append", "overwrite", "ignore", "error"
  compression – compression codec to use when saving to file.
  dateFormat – sets the string that indicates a date format.
  timestampFormat – sets the string that indicates a timestamp format.


Let’s first create a DataFrame:


>>> data = [("name", "alex"), ("gender", "male"), ("state", "CA")]
>>> df = spark.createDataFrame(data, ['key', 'value'])
>>> df.show()
+------+-----+
|   key|value|
+------+-----+
|  name| alex|
|gender| male|
| state|   CA|
+------+-----+


Next, write it to an output path as JSON:


>>> df.write.json('/tmp/data')


$ ls -l /tmp/data
total 24
-rw-r--r-- ...   0 Apr  2 01:15 _SUCCESS
-rw-r--r-- ...   0 Apr  2 01:15 part-00000-...-c000.json
-rw-r--r-- ...   0 Apr  2 01:15 part-00001-...-c000.json
...
-rw-r--r-- ...  29 Apr  2 01:15 part-00007-...-c000.json


Note that we have eight filenames that begin with part-: this
means that our DataFrame was
represented by eight partitions.


Let’s take a look at these files:


$ cat /tmp/data/part*
{"key":"name","value":"alex"}
{"key":"gender","value":"male"}
{"key":"state","value":"CA"}


If you want to create a single
file output, then you may put
your DataFrame into a single
partition before writing it out:


>>> df.repartition(1).write.json('/tmp/data') [image: 1]


	[image: 1]

	repartition(numPartitions) returns
a new DataFrame partitioned by the given partitioning expressions; see Chapter 5 for details.



























Reading from and Writing to Amazon S3


Amazon Simple Storage Service (S3) is a
service offered by Amazon Web
Services (AWS) that provides object storage
through a web services interface. S3 objects
are treated as web objects—that is, they
are accessed via internet protocols
using a URL identifier. Every S3 object has a unique URL, in
this format:


http://s3.<region>.amazonaws.com/<bucket>/<key>


For example:


http://s3.us-east-1.amazonaws.com/project-dev/dna/sample123.vcf


where: project-dev is the bucket name and dna/sample123.vcf is a key.


S3 objects can also be accessed through the following URI schemas:


	s3n

	
Uses the S3 Native FileSystem, a native filesystem for reading and
  writing regular files on S3.



	s3a

	
Uses the S3A Filesystem, a successor to the native filesystem.
  Designed to be a switch-in replacement
  for s3n, this filesystem binding supports
  larger files and promises higher performance.



	s3

	
Uses the S3 Block FileSystem, a block-based filesystem backed by S3.
  Files are stored as blocks, just like
  they are in HDFS.






The difference between
s3 and s3n/s3a is that s3 is a
block-based overlay on top of Amazon S3,
while s3n/s3a are not (they are
object-based).  The difference between
s3n and s3a is that s3n supports
objects up to 5 GB in size, while s3a
supports objects up to 5 TB in size and has better
performance (both features are because it uses
multi-part upload).


For example, using the s3 URI schema,
we can access the  sample72.vcf file as:


s3://project-dev/dna/sample72.vcf


In general, to access any services from
AWS, you have to be authenticated. There are many ways to do this. One method is to export your access key and secret
key from the command line:


export AWS_ACCESS_KEY_ID="AKIAI74O5KPLUQGVOJWQ"
export AWS_SECRET_ACCESS_KEY="LmuKE7afdasdfxK2vj1nfA0Bp"


Another option is  to set your credentials
using the SparkContext object:


# spark: SparkSession
sc = spark.sparkContext
# set access key
sc._jsc.hadoopConfiguration()
   .set("fs.s3.awsAccessKeyId", "AKIAI74O5KPLUQGVOJWQ")
# set secret key
sc._jsc.hadoopConfiguration()
  .set("fs.s3.awsSecretAccessKey", "LmuKE7afdasdfxK2vj1nfA0Bp")










Reading from Amazon S3


You’ll need to use the s3, s3n,
or s3a (for bigger S3 objects)
URI schema for reading objects
from S3.


If spark is an instance of
SparkSession, then you may use
the following to load a text file
(an Amazon S3 object) and return a
DataFrame (denoted as the variable
df) with a single string column
named  value:


s3_object_path = "s3n://bucket-name/object-path"
df = spark.read.text(s3_object_path)


The following example shows how to
read an S3 object.  First  we  use the
boto3 library (boto3 is the
AWS SDK  for
Python,  which  allows  Python
developers to write software
that makes use of Amazon services
like S3 and EC2) to verify that the object exists, and then we read
it using PySpark.


In the following code, we check for the existence of the s3://caselog-dev/tmp/csv_file_10_rows.csv:


>>> import boto3
>>> s3 = boto3.resource('s3')
>>> bucket = 'caselog-dev'
>>> key = 'tmp/csv_file_10_rows.csv'
>>> obj = s3.Object(bucket, key)
>>> obj
s3.Object(bucket_name='caselog-dev', key='tmp/csv_file_10_rows.csv')
>>> obj.get()['Body'].read().decode('utf-8')
u'0,a,0.0\n1,b,1.1\n2,c,2.2\n3,d,\n4,,4.4\n,f,5.5\n,,\n7,h,7.7\n8,i,8.8\n9,j,9.9'


Then, we load the object and create a new
DataFrame[String]:


>>> s3_object_path = "s3n://caselog-dev/tmp/csv_file_10_rows.csv" [image: 1]
>>> df = spark.read.text(s3_object_path) [image: 2]
>>> df.show() [image: 3]
+-------+
|  value|
+-------+
|0,a,0.0|
|1,b,1.1|
|2,c,2.2|
|   3,d,|
| 4,,4.4|
| ,f,5.5|
|     ,,|
|7,h,7.7|
|8,i,8.8|
|9,j,9.9|
+-------+

>>> df.printSchema  [image: 4]
<bound method DataFrame.printSchema of DataFrame[value: string]>


	[image: 1]

	Define your S3 object path.


	[image: 2]

	Use SparkSession (as spark) to load the S3 object and create a DataFrame.


	[image: 3]

	Show the contents of the newly created DataFrame.


	[image: 4]

	Display the schema for the newly created DataFrame.




















Writing to Amazon S3


Once you’ve created your DataFrame:


>>># spark: SparkSession
>>> pairs_data = [("alex", 4), ("alex", 8),
                  ("rafa", 3), ("rafa", 6)]
>>> df = spark.createDataFrame(pairs_data, ['name', 'number'])


you may examine the contents and
its associated schema:


>>> df.show()
+----+------+
|name|number|
+----+------+
|alex|     4|
|alex|     8|
|rafa|     3|
|rafa|     6|
+----+------+

>>> df.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 number: bigint
]>


Next, save the data to the Amazon S3 filesystem:


>>> df
     .write
     .format("csv")
     .mode("overwrite")
     .save("s3n://caselog-dev/output/pairs")


You will see that
the following files are created:


https://s3.amazonaws.com/caselog-dev/output/pairs/_SUCCESS
https://s3.amazonaws.com/caselog-dev/output/pairs/part-00000-...-c000.csv
https://s3.amazonaws.com/caselog-dev/output/pairs/part-00001-...-c000.csv


Now let’s read it back:


>>># Read S3 object as text
>>> s3_object_path = "s3n://caselog-dev/output/pairs"
>>> df = spark.read.text(s3_object_path)
>>> df.show()
+------+
| value|
+------+
|alex,4|
|alex,8|
|rafa,3|
|rafa,6|
+------+

>>> df.printSchema
<bound method DataFrame.printSchema of DataFrame[value: string]>


We can also read the S3 object as CSV:


>>> df2 = spark.read.format("csv").load(s3_object_path)
>>> df2.show()
+----+---+
| _c0|_c1| [image: 1]
+----+---+
|alex|  4|
|alex|  8|
|rafa|  3|
|rafa|  6|
+----+---+


	[image: 1]

	Default column names



























Reading and Writing Hadoop Files


Hadoop is an open source MapReduce
programming framework that supports
the processing and storage of extremely
large datasets in a distributed computing
environment. It’s designed to scale up from single servers to thousands of machines. The Hadoop project, sponsored by the
Apache Software Foundation (ASF), includes
these modules:


	Hadoop Common

	
The common utilities that support
the other Hadoop modules.



	Hadoop Distributed File System (HDFS)

	
A distributed filesystem that provides
high-throughput access to application data. HDFS allows for the distributed processing of large datasets across clusters of computers using MapReduce programming models.



	Hadoop YARN

	
A framework for job scheduling and
cluster resource management.



	Hadoop MapReduce

	
A YARN-based system for parallel
processing of large datasets.






In this section, I’ll show you how to read files from HDFS and create
  RDDs and DataFrames and how to write RDDs and DataFrames
  into HDFS. To follow along, you’ll need access to a Hadoop cluster.










Reading Hadoop Text Files


To illustrate the complete process of reading a
file from HDFS, first we’ll create a
text  file  in  HDFS, then we’ll use
PySpark to read it in as a DataFrame as
well as an RDD.


Let name_age_salary.csv be a text file
in a Linux filesystem (this file can be
created with any text editor—note that
$ is the Linux operating system prompt):


$ export input_path = "/book/code/chap07/name_age_salary.csv"
$ cat $input_path
alex,60,18000
adel,40,45000
adel,50,77000
jane,40,52000
jane,60,81000
alex,50,62000
mary,50,92000
mary,60,63000
mary,40,55000
mary,40,55000


Create a /test directory in HDFS  using the $HADOOP_HOME/bin/hdfs command:


$ hdfs dfs -mkdir /test


Then I copy name_age_salary.csv to the
hdfs:///test/ directory:


$ hdfs dfs -put $input_path /test/
$ hdfs dfs -ls /test/
-rw-r--r--   1 ...  140 ... /test/name_age_salary.csv


And I examine the contents of the file:


$ hdfs dfs -cat /test/name_age_salary.csv
alex,60,18000
adel,40,45000
adel,50,77000
jane,40,52000
jane,60,81000
alex,50,62000
mary,50,92000
mary,60,63000
mary,40,55000
mary,40,55000


Now that we have created a file in HDFS,
we will read it and create a DataFrame
and an RDD from its contents.


First, we read the HDFS file and create a
DataFrame with default  column names
(_c0, _c1, _c2). The general format
for an HDFS URI is:


  hdfs://<server>:<port>/<directories>/<filename>



where <server> is the hostname of the NameNode and <port> is the NameNode’s port number.


In this example I use a Hadoop instance installed on my MacBook; the NameNode is localhost and the port number is 9000:


>>> uri = 'hdfs://localhost:9000/test/name_age_salary.csv'
>>> df = spark.read.csv(uri)
>>> df.show()
+----+---+-----+
| _c0|_c1|  _c2| [image: 1]
+----+---+-----+
|alex| 60|18000|
|adel| 40|45000|
|adel| 50|77000|
|jane| 40|52000|
|jane| 60|81000|
|alex| 50|62000|
|mary| 50|92000|
|mary| 60|63000|
|mary| 40|55000|
|mary| 40|55000|
+----+---+-----+


	[image: 1]

	Default column names





Let’s examine the schema for the newly created DataFrame:


>>> df.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 _c0: string,
 _c1: string,
 _c2: string
]>


If you want to impose your own explicit
schema (column names and data types)
on a DataFrame, then you may do
so as follows:


>>> from pyspark.sql.types import StructType
>>> from pyspark.sql.types import StructField
>>> from pyspark.sql.types import StringType
>>> from pyspark.sql.types import IntegerType
>>>
>>> empSchema = StructType([ [image: 1]
    StructField("name", StringType(), True),
    StructField("age", IntegerType(), True),
    StructField("salary", StringType(), True)
    ])
>>>
>>> uri = 'hdfs://localhost:9000/test/name_age_salary.csv'
>>> df2 = spark.read.csv(uri, schema = empSchema) [image: 2]

>>> df2.show()
+----+---+------+
|name|age|salary| [image: 3]
+----+---+------+
|alex| 60| 18000|
|adel| 40| 45000|
|adel| 50| 77000|
|jane| 40| 52000|
|jane| 60| 81000|
|alex| 50| 62000|
|mary| 50| 92000|
|mary| 60| 63000|
|mary| 40| 55000|
|mary| 40| 55000|
+----+---+------+

>>> df2.printSchema
<bound method DataFrame.printSchema of DataFrame
[
 name: string,
 age: int,
 salary: string
]>


	[image: 1]

	Explicit schema definition


	[image: 2]

	Enforce an explicit schema


	[image: 3]

	Explicit column names





You can also read in an HDFS file and create
an RDD[String] from it:


>>> rdd = spark.sparkContext.textFile(uri)

>>> rdd.collect()
[
 u'alex,60,18000',
 u'adel,40,45000',
 u'adel,50,77000',
 u'jane,40,52000',
 u'jane,60,81000',
 u'alex,50,62000',
 u'mary,50,92000',
 u'mary,60,63000',
 u'mary,40,55000',
 u'mary,40,55000'
]

















Writing Hadoop Text Files


PySpark’s API enables us to save our
RDDs and DataFrames into HDFS as files. First let’s look at how to save an RDD
into an HDFS file:


>>> pairs = [('alex', 2), ('alex', 3),
             ('jane', 5), ('jane', 6)]
>>> rdd = spark.sparkContext.parallelize(pairs)
>>> rdd.collect()
[('alex', 2), ('alex', 3), ('jane', 5), ('jane', 6)]
>>> rdd.count()
4
>>> rdd.saveAsTextFile("hdfs://localhost:9000/test/pairs")


The RDD.saveAsTextFile(path) method writes the elements of
the dataset as a text file (or set of text files) into
a given directory in the local filesystem, HDFS, or any
other Hadoop-supported filesystem. Spark will call the
toString() method on each element to convert it to a
line of text in the file.


Next, let’s examine what is created in HDFS (the output here is
formatted to fit the page):


$ hdfs dfs -ls hdfs://localhost:9000/test/pairs
Found 9 items
-rw-r--r-- ...  0 ... hdfs://localhost:9000/test/pairs/_SUCCESS
-rw-r--r-- ...  0 ... hdfs://localhost:9000/test/pairs/part-00000
-rw-r--r-- ... 12 ... hdfs://localhost:9000/test/pairs/part-00001
...
-rw-r--r-- ... 12 ... hdfs://localhost:9000/test/pairs/part-00007

$ hdfs dfs -cat hdfs://localhost:9000/test/pairs/part*
(alex, 2)
(alex, 3)
(jane, 5)
(jane, 6)


The reason we got eight part-* files is because the
source RDD had eight partitions:


>>> rdd.getNumPartitions()
8


If you want to create a single part-*
file, then you should create a single
RDD 
partition:


>>> rdd_single = spark.sparkContext.parallelize(pairs, 1)
>>> rdd_single.collect()
[('alex', 2), ('alex', 3), ('jane', 5), ('jane', 6)]
>>> rdd_single.getNumPartitions()
1
>>> rdd_single.saveAsTextFile("hdfs://localhost:9000/test/pairs_single")


Let’s examine what is created in the HDFS row:


$ hdfs dfs -ls hdfs://localhost:9000/test/pairs_single
Found 2 items
-rw-r--r--  0  hdfs://localhost:9000/test/pairs_single/_SUCCESS
-rw-r--r-- 48  hdfs://localhost:9000/test/pairs_single/part-00000

$ hdfs dfs -cat hdfs://localhost:9000/test/pairs_single/part-00000
(alex, 2)
(alex, 3)
(jane, 5)
(jane, 6)


We can save a DataFrame into HDFS by
using a DataFrameWriter:


>>> pairs = [('alex', 2), ('alex', 3),
             ('jane', 5), ('jane', 6)]
>>>
>>> pairsDF = spark.createDataFrame(pairs)
>>> pairsDF.show()
+----+---+
|  _1| _2|
+----+---+
|alex|  2|
|alex|  3|
|jane|  5|
|jane|  6|
+----+---+

>>> pairsDF.write.csv("hdfs://localhost:9000/test/pairs_df")


Here’s what’s created in the HDFS:


$ hdfs dfs -ls hdfs://localhost:9000/test/pairs_df
Found 9 items
-rw-... 0 hdfs://localhost:9000/test/pairs_df/_SUCCESS
-rw-... 0 hdfs://localhost:9000/test/pairs_df/part-00000-...-c000.csv
...
-rw-... 7 hdfs://localhost:9000/test/pairs_df/part-00007-...-c000.csv

$ hdfs dfs -cat hdfs://localhost:9000/test/pairs_df/part*
alex,2
alex,3
jane,5
jane,6


You may save your DataFrames into HDFS in different
data formats.  For example, to
save a DataFrame in Parquet format, you can use the following template:


# df is an existing DataFrame object.
# format options are 'csv', 'parquet', 'json'
df.write.save(
   '/target/path/',
   format='parquet',
   mode='append'
)

















Reading and Writing HDFS SequenceFiles


Hadoop offers to persist any file types,
including SequenceFiles in HDFS.
SequenceFiles are flat files consisting
of binary (key, value) pairs. Hadoop
defines a SequenceFile class as
org.apache.hadoop.io.SequenceFile.
SequenceFile provides SequenceFile.Writer,
SequenceFile.Reader, and SequenceFile.Sorter
classes for writing, reading, and sorting,
respectively. SequenceFile is the standard
binary serialization format for Hadoop. It
stores records of Writable (key, value)
pairs, and supports splitting and compression.
SequenceFiles are commonly used for intermediate
data storage in MapReduce  pipelines,
since they are more efficient than text
files.












Reading HDFS SequenceFiles


Spark supports reading SequenceFiles using
the SparkContext.sequenceFile() method.
For example, to read a SequenceFile with
Text keys and DoubleWritable values in
Python, we would do the following:


# spark: an instance of SparkSession
rdd = spark.sparkContext.sequenceFile(path)


Note that
unlike with Java or Scala, we do not pass the data
types of (key, value) pairs to the Spark API;
Spark automatically converts Hadoop’s
Text to String and DoubleWritable
to Double.

















Writing HDFS SequenceFiles


PySpark’s RDD.saveAsSequenceFile()
method allows users to save an RDD of
(key, value) pairs as a SequenceFile.
For example, we can create an RDD from a
Python collection and save it as a SequenceFile as follows:


# spark: an instance of SparkSession
pairs = [('key1', 10.0), ('key2', 20.0),
         ('key3', 30.0), ('key4', 40.0)]
rdd = spark.sparkContext.parallelize(pairs)
rdd.saveAsSequenceFile('/tmp/sequencefile/')


We can then read the newly created SequenceFile
and convert it to an RDD of (key, value) pairs:


# spark: an instance of SparkSession
rdd2 = spark.sparkContext.sequenceFile('/tmp/sequencefile/')
rdd2.collect()
[(u'key1', 10.0),
 (u'key2', 20.0),
 (u'key3', 30.0),
 (u'key4', 40.0)
]





























Reading and Writing Parquet Files


Parquet
is a columnar data format
supported by many data processing
systems. It’s self-describing (metadata is included), language-independent, and ideal for fast 
analytics.


Spark SQL provides support for both
reading and writing Parquet files
while automatically preserving the
schema of the original data. When
writing Parquet files, all columns
are automatically converted to be
nullable for compatibility reasons.


Figure 7-3 illustrates a logical table
and its associated row and column layouts.



[image: daws 0703]
Figure 7-3. Logical table with row layout and column












Writing Parquet Files


In this section, I’ll show you how to use the PySpark API to read a JSON file into a DataFrame and then save it as a Parquet file. Suppose we have the following JSON file:


$ cat examples/src/main/resources/employees.json
{"name":"Michael", "salary":3000}
{"name":"Andy", "salary":4500}
{"name":"Justin", "salary":3500}
{"name":"Berta", "salary":4000}


Using DataFrameReader, we read the JSON file
into a DataFrame object as peopleDF:


>>> input_path = "examples/src/main/resources/employees.json"
>>> peopleDF = spark.read.json(input_path)
>>> peopleDF.show()
+-------+------+
|   name|salary|
+-------+------+
|Michael|  3000|
|   Andy|  4500|
| Justin|  3500|
|  Berta|  4000|
+-------+------+

>>> peopleDF.printSchema()
root
 |-- name: string (nullable = true)
 |-- salary: long (nullable = true)


We can then save this as a Parquet file,
maintaining the schema information:


>>> peopleDF.write.parquet("file:///tmp/people.parquet")


You can inspect the contents of the directory to view the generated Parquet file:


$ ls -l /tmp/people.parquet/
-rw-r--r-- ...   0 Apr 30 15:06 _SUCCESS
-rw-r--r-- ... 634 Apr 30 15:06 part-00000-...-c000.snappy.parquet


For testing and debugging purposes, you may
create Parquet files from Python 
collections:


>>> tuples =  [("alex", "Math", 97),
               ("jane", "Econ", 82),
               ("jane", "Math", 99)]
>>> column_names = ["name", "subject", "grade"]
>>> df = spark.createDataFrame(tuples, column_names) [image: 1]
>>> df.show()
+----+-------+-----+
|name|subject|grade|
+----+-------+-----+
|alex|   Math|   97|
|jane|   Econ|   82|
|jane|   Math|   99|
+----+-------+-----+

>>> df.write.parquet("file:///tmp/parquet") [image: 2]


	[image: 1]

	Convert your Python collection into a DataFrame.


	[image: 2]

	Save your DataFrame as a set of Parquet files.





Again, you can inspect the directory to view the created Parquet files:


$ ls -1 /tmp/parquet
_SUCCESS
part-00000-...-c000.snappy.parquet
part-00002-...-c000.snappy.parquet
part-00005-...-c000.snappy.parquet
part-00007-...-c000.snappy.parquet

















Reading Parquet Files


In this section, using PySpark, we’ll read in
the Parquet file we just created.  Note that Parquet files are self-describing, so the
schema is preserved.  The result of loading
a Parquet file is a DataFrame:


>>> input_path = "file:///tmp/people.parquet"
>>> parquetFile = spark.read.parquet(input_path)
>>> parquetFile.show()
+-------+------+
|   name|salary|
+-------+------+
|Michael|  3000|
|   Andy|  4500|
| Justin|  3500|
|  Berta|  4000|
+-------+------+

>>> parquetFile.printSchema()
root
 |-- name: string (nullable = true)
 |-- salary: long (nullable = true)


Parquet files can also be used to
create a temporary view and then used
in SQL 
statements:


>>> parquetFile.createOrReplaceTempView("parquet_table") [image: 1]
>>> query = "SELECT name, salary FROM parquet_table WHERE salary > 3800"
>>> filtered = spark.sql(query)
>>> filtered.show()
+-----+------+
| name|salary|
+-----+------+
| Andy|  4500|
|Berta|  4000|
+-----+------+


	[image: 1]

	parquet_table acts as a relational table.





Parquet supports collection data types, including an array type. The
following example reads a Parquet file that uses arrays:


>>> parquet_file = "examples/src/main/resources/users.parquet"
>>> usersDF = spark.read.parquet(parquet_file)
>>> users.show()
+------+--------------+----------------+
|  name|favorite_color|favorite_numbers|
+------+--------------+----------------+
|Alyssa|          null|  [3, 9, 15, 20]|
|   Ben|           red|              []|
+------+--------------+----------------+

>>> usersDF.printSchema()
root
 |-- name: string (nullable = true)
 |-- favorite_color: string (nullable = true)
 |-- favorite_numbers: array (nullable = true)
 |    |-- element: integer (containsNull = true)
























Reading and Writing Avro Files


Apache Avro
is a language-neutral data serialization system.
It stores the data definition
in JSON format, making it easy to
read  and  interpret, while  the  data
itself is stored in a compact, efficient binary format.
Avro files include markers that
can be used to split large
datasets into subsets suitable
for MapReduce processing.  Avro
is a very fast serialization
format.










Reading Avro Files


Using PySpark, we can read an Avro file and
create an associated DataFrame as 
follows:


$ pyspark --packages org.apache.spark:spark-avro_2.11:2.4.0 [image: 1]
SparkSession available as spark.


>>> path = "/book/code/chap08/twitter.avro"
>>> df = spark.read.format("avro").load(path) [image: 2]
>>> df.show(truncate=False)
+----------+-----------------------------------+----------+
|username  |tweet                              |timestamp |
+----------+-----------------------------------+----------+
|miguno    |Rock: Nerf paper, scissors is fine.|1366150681|
|BlizzardCS|Works as intended.  Terran is IMBA.|1366154481|
+----------+-----------------------------------+----------+


	[image: 1]

	To read/write Avro files,
you have to import the required Avro
libraries; the spark-avro module is
external and not included in spark-submit
or pyspark by default.


	[image: 2]

	Read an Avro file and create a DataFrame.




















Writing Avro Files


It’s just as easy to
create  an Avro file  from a
DataFrame. Here, we’ll use the DataFrame
created in the previous section), saving it as an Avro file and then reading it back in as a DataFrame:


$ pyspark --packages org.apache.spark:spark-avro_2.11:2.4.0 [image: 1]
SparkSession available as spark.


>>># df : DataFrame (created in previous section)
>>> output_path = "/tmp/avro/mytweets.avro"
>>> df.select("username", "tweet")
      .write.format("avro")
      .save(output_path) [image: 2]
>>> df2 = spark.read.format("avro").load(outputPath) [image: 3]
>>> df2.show(truncate=False)
+----------+-----------------------------------+
|username  |tweet                              |
+----------+-----------------------------------+
|miguno    |Rock: Nerf paper, scissors is fine.|
|BlizzardCS|Works as intended.  Terran is IMBA.|
+----------+-----------------------------------+


	[image: 1]

	Import the required Avro libraries.


	[image: 2]

	Create an Avro file.


	[image: 3]

	Create a DataFrame from the new Avro file.



























Reading from and Writing to MS SQL Server


MS SQL Server is a relational database management
system from Microsoft, designed and
built to manage and store information as
records in relational tables.










Writing to MS SQL Server


The following example shows how to write a DataFrame (df)
into a new SQL Server table:


# define database URL
server_name = "jdbc:sqlserver://{SERVER_ADDRESS}"
database_name = "my_database_name"
url = server_name + ";" + "databaseName=" + database_name + ";"
# define table name and username/password
table_name = "my_table_name"
username = "my_username"
password = "my_password"

try:
  df.write \
    .format("com.microsoft.sqlserver.jdbc.spark") \ [image: 1]
    .mode("overwrite") \ [image: 2]
    .option("url", url) \
    .option("dbtable", table_name) \
    .option("user", username) \
    .option("password", password) \
    .save()
except ValueError as error :
    print("Connector write failed", error)


	[image: 1]

	The JAR file containing this class must be in
your CLASSPATH.


	[image: 2]

	The overwrite mode first drops the
table if it already exists in the
database by default.





To append your DataFrame rows to an existing
table,  you just need to replace mode("overwrite")
with mode("append").


Note that Spark’s MS SQL connector by default
uses the READ_COMMITTED isolation level when
performing a bulk insert into the database.
If you wish to override the isolation level,
use this mssqlIsolationLevel option as shown
here:


    .option("mssqlIsolationLevel", "READ_UNCOMMITTED")

















Reading from MS SQL Server


To read from an existing SQL Server table, you can use the following code snippet as a template:


jdbc_df = spark.read \
        .format("com.microsoft.sqlserver.jdbc.spark") \
        .option("url", url) \
        .option("dbtable", table_name) \
        .option("user", username) \
        .option("password", password)\
        .load()
























Reading Image Files


Spark 2.4.0.+ enables us to read binary
data which can be useful in many machine
learning applications (such as face
recognition and logistic regression).
Spark can load image files from a directory into a DataFrame, transforming compressed images (.jpg, .png, etc.) into raw
image representations via ImageIO in the Java library.  The loaded DataFrame has one StructType
column, "image", containing image data
stored as an image schema.










Creating a DataFrame from Images


Suppose we have the following images
in a directory:


$ ls -l chap07/images
-rw-r--r--@ ...  27295 Feb  3 10:55 cat1.jpg
-rw-r--r--@ ...  35914 Feb  3 10:55 cat2.jpg
-rw-r--r--@ ...  26354 Feb  3 10:55 cat3.jpg
-rw-r--r--@ ...  30432 Feb  3 10:55 cat4.jpg
-rw-r--r--@ ...   6641 Feb  3 10:53 duck1.jpg
-rw-r--r--@ ...  11621 Feb  3 10:54 duck2.jpg
-rw-r--r--@ ...     13 Feb  3 10:55 not-image.txt [image: 1]


	[image: 1]

	Not an image





We can load all the images into a DataFrame
and ignore any files that are not images as follows:


>>> images_path = '/book/code/chap07/images'
>>> df = spark.read
               .format("image") [image: 1]
               .option("dropInvalid", "true") [image: 2]
               .load(images_path) [image: 3]
>>> df.count()
6


	[image: 1]

	The format has to be "image".


	[image: 2]

	Drop/ignore non-image files.


	[image: 3]

	Load images and create a DataFrame.





Let’s examine the DataFrame’s schema:


>>> df.printSchema()
root
 |-- image: struct (nullable = true)
 |    |-- origin: string (nullable = true) [image: 1]
 |    |-- height: integer (nullable = true) [image: 2]
 |    |-- width: integer (nullable = true) [image: 3]
 |    |-- nChannels: integer (nullable = true) [image: 4]
 |    |-- mode: integer (nullable = true) [image: 5]
 |    |-- data: binary (nullable = true) [image: 6]


	[image: 1]

	File path of the image


	[image: 2]

	Height of the image


	[image: 3]

	Width of the image


	[image: 4]

	Number of image channels


	[image: 5]

	OpenCV-compatible type


	[image: 6]

	Image bytes





Now, let’s examine some of the columns
in the created image DataFrame:


>>> df.select("image.origin", "image.width", "image.height")
      .show(truncate=False)
+--------------------------+-----+------+
|origin                    |width|height|
+--------------------------+-----+------+
|file:///book/.../cat2.jpg |300  |311   |
|file:///book/.../cat4.jpg |199  |313   |
|file:///book/.../cat1.jpg |300  |200   |
|file:///book/.../cat3.jpg |300  |296   |
|file:///book/.../duck2.jpg|275  |183   |
|file:///book/.../duck1.jpg|227  |222   |
+--------------------------+-----+------+
























Summary


To recap:



	
Reading and writing data is an integral
part of data algorithms. Data sources should
be carefully selected based on project and
data requirements.



	
The Spark DataSource API provides a
pluggable  mechanism  for  accessing
structured data though Spark SQL. Data
sources can be more than just simple
pipes that convert data and pull it
into Spark.



	
Spark SQL supports reading data
from existing relational database tables,
Apache Hive tables, columnar storage formats like Parquet and ORC, and row-based storage formats like Avro. Spark provides a simple API to integrate
with all JDBC-compliant relational databases, Amazon S3, HDFS, and more. You can also easily read data from and save it to external data sources such as text, CSV, and JSON files.

















Chapter 8. Ranking Algorithms



This chapter introduces the following two
ranking algorithms and presents their
associated implementations in PySpark:


	Rank product

	
This algorithm finds the ranks of items (such as genes)
among all items. It was originally developed for the
detection of differentially expressed
genes in replicated microarray
experiments, but has since achieved widespread acceptance and is now used more broadly, including in machine learning. Spark does not provide
an API for the rank product, so I will
present a custom solution.



	PageRank

	
PageRank is an iterative algorithm for
measuring the importance of nodes in
a given graph. This algorithm is used heavily
by search engines (such as Google) to
find the importance of each web page (document) relative to all web pages (a set of documents). In a nutshell, given a set of web pages, the PageRank algorithm calculates a quality ranking for each page. The
Spark API offers multiple solutions for
the PageRank algorithm. I’ll present one of those, using the GraphFrames API, as well as two custom solutions.






Source Code

Complete programs for this chapter are available in the book’s GitHub repository.










Rank Product


The rank product is an algorithm commonly used in the field of bioinformatics, also known as computational biology. It was originally developed as a biologically
motivated test for the detection of
differentially expressed genes in
replicated micro-array experiments.
As well as expression
profiling, it can be used to combine
ranked lists in other application
domains, such as for statistical meta-analysis
and general feature selection.  In
bioinformatics and machine learning,
the rank product has emerged as a simple and intuitive yet powerful ranking method.


The algorithm does not
use any statistics (such as mean or
variance), but rather scores items (such as genes) on
the basis of their ranks in multiple
comparisons. It’s particularly
useful if you have very few replicates (in the context of gene analysis),
or if you want to analyze how well
the results from two studies agree.


The rank product algorithm is based
on the assumption that under the null
hypothesis, given that the order of all items is random, the probability
(p) of finding a specific item among the top r of n
items in a list is:



  
    p
    =
    r n
  




Multiplying these probabilities leads to the
definition of the rank product:



  
    R
    P
    =
    (
    ∏ i 
    r i  n i 
    )
  




where ri is the rank of the item in
the ith list and ni is the total
number of items in the ith list. The
smaller the RP value is, the smaller the
probability is that the observed placement
of the item at the top of the lists is
due to chance. The rank product is
equivalent to calculating the geometric
mean rank; replacing the product by the
sum leads to a statistic (average rank)
that is slightly more sensitive to outlier
data and puts a higher premium on
consistency between the ranks in various
lists.

Note

Is this a big data problem? Consider 100
studies, each with 1,000,000
assays and each assay with 60,000 records.
This translates to
100 × 1,000,000 × 60,000 = 6,000,000,000,000
records, which is definitely big data.












Calculation of the Rank Product


Given n genes and k replicates, let
eg,i be the fold change and rg,i
the rank of gene g in the ith replicate.


Compute the rank product (RP) via the
geometric mean:
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or
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Formalizing Rank Product


To help you understand the rank product algorithm,
I will provide a concrete example. Let
{A1, …, Ak} be datasets of (key, value)
pairs, where the keys are unique per dataset.
For example, a key might be an item, a user,
or a gene, and a value might be the number of
items sold, the number of friends of that user,
or a gene value such as fold change or test
expression. Ranks are assigned (typically based on the sorted values of the datasets), and the rank product of {A1, …, Ak} is computed based on the ranks ri for key i across all datasets.


Let’s work through a very
simple example using three datasets,
A1, A2, A3. Suppose dataset A1 is composed of the following (key, value) pairs:


A1 = { (K1, 30), (K2, 60), (K3, 10), (K4, 80) }


If we assign the ranks based on the descending sorted
values of the keys, we get:


Rank(A1) = { (K1, 3), (K2, 2), (K3, 4), (K4, 1) }


since 80 > 60 > 30 > 10. Note that 1 is the highest rank (assigned to the largest value).  We then do the same for dataset A2, which has the following contents:


A2 = { (K1, 90), (K2, 70), (K3, 40), (K4, 50) }


This gives us:


Rank(A2) = { (K1, 1), (K2, 2), (K3, 4), (K4, 3) }


since 90 > 70 > 50 > 40. Finally, dataset A3 looks like this:


A3 = { (K1, 4), (K2, 8) }


In this case assigning the ranks gives us:


Rank(A3) = { (K1, 2), (K2, 1) }


since 8 > 4. The rank product of
{A1,  A2, A3} is then expressed as:
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Rank Product Example


Now let’s walk through a real-world example of using rank product:



	
Let  S = {S1, S2, …, Sk} be a
set of k studies, where k > 0 and each
study represents a micro-array experiment.



	
Let Si (i=1, 2, …, k) be a study,
which has an arbitrary number of assays
identified by {Ai1,  Ai2, …}.



	
Let each assay (which can be represented as
a text file) be a set of an arbitrary number
of records in the following format:


<gene_id><,><gene_value_as_double_data_type>



	
Let  gene_id be in {g1, g2, …, gn} (we have n genes).






To find the rank product of all studies, first we
find the mean of values per gene per
study, then for each study we sort the genes by value and assign each one a rank.  For example, suppose our first study has three assays with  the
values shown in Table 8-1.


Table 8-1. Gene values for study 1


	Assay 1
	Assay 2
	Assay 3





	g1,1.0

	g1,2.0

	g1,12.0




	g2,3.0

	g2,5.0

	null




	g3,4.0

	null

	g3,2.0




	g4,1.0

	g4,3.0

	g4,15.0







The first step is to find the mean of
values for each gene (per study). This gives us:


g1, 5.0
g2, 4.0
g3, 2.0
g4, 8.0


Sorting by value will generate the following results:


g4, 8.0
g1, 5.0
g2, 4.0
g3, 2.0


Next, we assign each gene a rank for that study, based on the sorted values. In this case, the result will be as follows (where the last column is the rank):


g4, 8.0, 1
g1, 5.0, 2
g2, 4.0, 3
g3, 2.0, 4


We repeat this process for all the studies to find the rank product (RP)
for each gene per study. If:
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Then, the rank product of gene gj can be expressed as:
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Now, let’s dig into a solution using PySpark.

















PySpark Solution


As mentioned previously, Spark does not provide an API for the rank product algorithm, so I’ve developed my own solution.

Note

A webcast presenting my solution for rank product using the Java API for Spark is available on the O’Reilly website, and the associated Java Spark code is available on GitHub.




The PySpark solution presented here will accept K input paths (continuing with the previous example, we’ll say that each path represents a study, which may have any number of assay files). At a high level, these are the steps we’ll use to find the rank product of each gene that appears in these studies:


	
Find the mean value per gene per study (in some situations you may prefer to apply other functions to find the median). We’ll use COPA scores as our values.1



	
Sort the genes by value per study and
then assign rank values (rank values
will be {1, 2, …, N} where 1 is
assigned to the highest value and N
is assigned to the lowest).



	
Finally, compute the rank product per
gene for all studies. This can be
accomplished by grouping all ranks
by key.







To implement the final step,
we may use RDD.groupByKey() or
RDD.combineByKey(). Both solutions are available on GitHub, labeled as rank_product_using_groupbykey.py and rank_product_using_combinebykey.py.


Note that the PySpark solution using
combineByKey() is more efficient
than the groupByKey() solution.  As discussed in Chapter 4, this is because combineByKey() intermediate
values are reduced (or combined) by local workers before being sent
for the final reduction, whereas with groupByKey() there is
no local reduction; all values
are sent to one location for further
processing. I will only present the solution with combineByKey() in detail here.












Input data format


Each assay (which can be represented as a text
file) is a set of an arbitrary number of
records in the following format:


<gene_id><,><gene_value_as_double_data_type>


where gene_id is a key which has an
associated value of type Double.


For demonstration purposes, where K=3 (number of studies),
I will use the following sample input:


$ cat /tmp/rankproduct/input/rp1.txt
K_1,30.0
K_2,60.0
K_3,10.0
K_4,80.0

$ cat /tmp/rankproduct/input/rp2.txt
K_1,90.0
K_2,70.0
K_3,40.0
K_4,50.0

$ cat /tmp/rankproduct/input/rp3.txt
K_1,4.0
K_2,8.0

















Output data format


We will generate output in the following format:


<gene_id><,><R><,><N>


where <R> is the rank product among all the input datasets and <N> is the number of values participating in computing the rank product.

















Rank product solution using combineByKey()


The complete solution is presented in the program rank_product_using_combinebykey.py. It requires the following input/output
parameters:


# define input/output parameters:
#    sys.argv[1] = output path
#    sys.argv[2] = number of studies (K)
#    sys.argv[3] =   input path for study 1
#    sys.argv[4] =   input path for study 2
#    ...
#    sys.argv[K+2] = input path for study K


To implement a PySpark solution to the rank product problem using the combineByKey() transformation I used the following driver program, which calls several Python functions:


# Create an instance of SparkSession
spark = SparkSession.builder.getOrCreate()

# Handle input parameters
output_path = sys.argv[1]

# K = number of studies to process
K = int(sys.argv[2])

# Define studies_input_path
studies_input_path = [sys.argv[i+3] for i in range(K)]

# Step 1: Compute the mean per gene per study
means = [compute_mean(studies_input_path[i]) for i in range(K)]

# Step 2: Compute the rank of each gene per study
ranks = [assign_rank(means[i]) for i in range(K)]

# Step 3: Calculate the rank product for each gene
# rank_products: RDD[(gene_id, (ranked_product, N))]
rank_products = compute_rank_products(ranks)

# Step 4: Save the result
rank_products.saveAsTextFile(output_path)


Let’s take a closer look at the three main steps.














Step 1: Compute the mean per gene per study


To find the rank product of our dataset, we first need to
find the mean value of each gene per study. This is accomplished with the compute_mean()
function. To calculate the mean of values per key (gene_id) using the combineByKey() transformation, we can create a combined
data type as (Double, Integer) which
denotes (sum-of-values, count-of-values). Finally, to find the means, we
divide sum-of-values by count-of-values:


# Compute mean per gene for a single study = set of assays
# @param input_Path set of assay paths separated by ","
# @RETURN RDD[(String, Double)]
def compute_mean(input_path):
   # genes as string records: RDD[String]
   raw_genes = spark.sparkContext.textFile(input_path)

   # create RDD[(String, Double)]=RDD[(gene_id, test_expression)]
   genes = raw_genes.map(create_pair)

   # create RDD[(gene_id, (sum, count))]
   genes_combined = genes.combineByKey(
       lambda v: (v, 1), # createCombiner
       lambda C, v: (C[0]+v, C[1]+1), # addAndCount
       lambda C, D: (C[0]+D[0], C[1]+D[1]) # mergeCombiners
   )

   # now compute the mean per gene
   genes_mean = genes_combined.mapValues(lambda p: float(p[0])/float(p[1]))
   return genes_mean
#end-def

















Step 2: Compute the rank of each gene per study


To compute the rank of each gene_id, we perform the
following three substeps:
. Sort values based on absolute value of
   COPA scores. To sort by COPA score, we
   will swap the keys with the values and then sort
   by key.
. Assign a rank from 1 (for the gene with the highest COPA score)
   to n (for the gene with the lowest COPA score).
. Calculate the rank for each gene_id using
   Math.power(R1 * R2 * … * Rn, 1/n).


This entire step is accomplished by the
assign_rank() function. Ranks
are assigned by using RDD.zipWithIndex(),
which zips this RDD with its element indices (these indices will be the ranks). Spark indices start from 0, so we add 1 when computing the rank product:


# @param rdd : RDD[(String, Double)]: (gene_id, mean)
# @returns: RDD[(String, Long)]: (gene_id, rank)
def assign_rank(rdd):
    # Swap key and value (will be used for sorting by key)
    # Convert value to abs(value)
    swapped_rdd = rdd.map(lambda v: (abs(v[1]), v[0]))

    # Sort COPA scores in descending order. We need 1 partition so
    # that we can zip numbers into this RDD with zipWithIndex().
    # If we do not use 1 partition, then indexes will be meaningless.
    # sorted_rdd : RDD[(Double,String)]
    sorted_rdd = swapped_rdd.sortByKey(False, 1)

    # Use zipWithIndex(). Zip values will be 0, 1, 2, ...
    # but for ranking we need 1, 2, 3, .... Therefore,
    # we will add 1 when calculating the rank product.
    # indexed:  RDD[((Double,String), Long)]
    indexed = sorted_rdd.zipWithIndex()

    # add 1 to index to start with 1 rather than 0
    # ranked:  RDD[(String, Long)]
    ranked = indexed.map(lambda v: (v[0][1], v[1]+1))
    return ranked
#end-def

















Step 3: Calculate the rank product for each gene


Finally, we call compute_rank_products() to calculate the rank product for each gene,
which combines all the ranks into one RDD and then
calculates the rank product for each gene using the combineByKey()
transformation:


# return RDD[(String, (Double, Integer))] = (gene_id, (ranked_product, N))
# where N is the number of elements for computing the rank product
# @param ranks: array of RDD[(String, Long)]
def compute_rank_products(ranks):
        # combine all ranks into one
        union_rdd = spark.sparkContext.union(ranks)

        # next, find unique keys with their associated COPA scores
        # we need 3 basic function to be able to use combinebyKey()
        # combined_by_gene: RDD[(String, (Double, Integer))]
        combined_by_gene = union_rdd.combineByKey(
             lambda v: (v, 1), # createCombiner as C
             lambda C, v: (C[0]*v, C[1]+1), # multiplyAndCount
             lambda C, D: (C[0]*D[0], C[1]+D[1]) # mergeCombiners
		)

        # next calculate rank products and the number of elements
        rank_products = combined_by_gene.mapValues(
           lambda v : (pow(float(v[0]), float(v[1])), v[1])
        )

        return rank_products
#end-def


Let’s go through a sample run using combineByKey():


INPUT1=/tmp/rankproduct/input/rp1.txt
INPUT2=/tmp/rankproduct/input/rp2.txt
INPUT3=/tmp/rankproduct/input/rp3.txt
OUTPUT=/tmp/rankproduct/output
PROG=rank_product_using_combinebykey.py
./bin/spark-submit $PROG $OUTPUT 3 $INPUT1 $INPUT2 $INPUT3

output_path=/tmp/rankproduct/output
K=3
studies_input_path ['/tmp/rankproduct/input/rp1.txt',
'/tmp/rankproduct/input/rp2.txt',
'/tmp/rankproduct/input/rp3.txt']
input_path /tmp/rankproduct/input/rp1.txt
raw_genes ['K_1,30.0', 'K_2,60.0', 'K_3,10.0', 'K_4,80.0']
genes [('K_1', 30.0), ('K_2', 60.0), ('K_3', 10.0), ('K_4', 80.0)]
genes_combined [('K_2', (60.0, 1)), ('K_3', (10.0, 1)),
                ('K_1', (30.0, 1)), ('K_4', (80.0, 1))]
input_path /tmp/rankproduct/input/rp2.txt
raw_genes ['K_1,90.0', 'K_2,70.0', 'K_3,40.0', 'K_4,50.0']
genes [('K_1', 90.0), ('K_2', 70.0), ('K_3', 40.0), ('K_4', 50.0)]
genes_combined [('K_2', (70.0, 1)), ('K_3', (40.0, 1)),
                ('K_1', (90.0, 1)), ('K_4', (50.0, 1))]
input_path /tmp/rankproduct/input/rp3.txt
raw_genes ['K_1,4.0', 'K_2,8.0']
genes [('K_1', 4.0), ('K_2', 8.0)]
genes_combined [('K_2', (8.0, 1)), ('K_1', (4.0, 1))]
sorted_rdd [(80.0, 'K_4'), (60.0, 'K_2'), (30.0, 'K_1'), (10.0, 'K_3')]
indexed [((80.0, 'K_4'), 0), ((60.0, 'K_2'), 1),
         ((30.0, 'K_1'), 2), ((10.0, 'K_3'), 3)]
ranked [('K_4', 1), ('K_2', 2), ('K_1', 3), ('K_3', 4)]
sorted_rdd [(90.0, 'K_1'), (70.0, 'K_2'), (50.0, 'K_4'), (40.0, 'K_3')]
indexed [((90.0, 'K_1'), 0), ((70.0, 'K_2'), 1),
         ((50.0, 'K_4'), 2), ((40.0, 'K_3'), 3)]
ranked [('K_1', 1), ('K_2', 2), ('K_4', 3), ('K_3', 4)]
sorted_rdd [(8.0, 'K_2'), (4.0, 'K_1')]
indexed [((8.0, 'K_2'), 0), ((4.0, 'K_1'), 1)]
ranked [('K_2', 1), ('K_1', 2)]


Here is the final output per key:


$ cat /rankproduct/output/part*
(K_2,(1.5874010519681994, 3))
(K_1,(1.8171205928321397, 3))
(K_4,(1.7320508075688772, 2))
(K_3,(4.0, 2))




















Rank product solution using groupByKey()


A rank product solution using the groupByKey()
transformation instead of combineByKey() is available on GitHub, as
rank_product_using_groupbykey.py. Overall,
the combineByKey() solution is more scalable because of how the shuffle step is implemented by these two transformations:
combineByKey() uses combiners as much
as possible, but groupByKey() takes all the
values to a single place and then applies
the required algorithms.





























PageRank


In this section we’ll turn our attention to another ranking algorithm: PageRank.
This algorithm made Google stand out from other
search engines, and it is still an essential
part of how search engines know what pages a
user is likely to want to see, as it allows them to determine a page’s relevance or importance with respect to others. Extensions of the
PageRank algorithm have also been used to fight against spam.

Note

For details on how PageRank works under the hood (or at least, how it used to), see the article “Understanding Google Page Rank” by Ian Rogers.




The  PageRank algorithm measures
the importance of each node in a graph (such as the web pages on the internet),
assuming an edge from node u to node
v represents an endorsement of v’s
importance by  u. The main premise is that a node is important if other important nodes point to it. For example, if a
Twitter user is followed by many other users—particularly users who themselves have large numbers of followers—then that user will be ranked highly.
Any web designer  who wants  to  improve
their site’s search engine ranking should take the time
to fully understand how PageRank really
works. (Note  that PageRank is purely a link analysis algorithm and says
nothing about the language, content,
or size of a page.)


Figure 8-1 illustrates the concept of PageRank using a simple graph representing a set of linked documents.



[image: PageRanks Example]
Figure 8-1. PageRank example




Notice that page C has a higher PageRank than page E,
even though there are fewer links
to C; this is because the one link to C comes from a very
important page (page B) and hence is of
high value. Without damping, all web surfers
would eventually end up on pages B or C
(since they have the highest PageRank scores), and all
other pages would have PageRank scores close to
zero.


The PageRank algorithm is an iterative
and converging algorithm.  It begins at step one with some initial
PageRank (as a Double data  type)  assigned
to  all  pages, and the algorithm is then applied iteratively
until it arrives at a steady state called the
convergence point. This is the point at which a PageRank
has been distributed to all pages, and a
subsequent  iteration  of  the  algorithm
will produce little or no further change in the distribution (you can specify the threshold for this).


Let’s take a look at how the algorithm is defined. Here, we’ll assume page A is pointed to (cited) by pages {T1, …, Tn}.
The PageRank (PR) of page A is then given as
follows:



  
    P
    R
    
      (
      A
      )
    
    =
    
      (
      1
      -
      d
      )
    
    +
    d
    ×
    PR(T 1 ) L(T 1 ) + . . . + PR(T n ) L(T n )
  




where d is a damping factor that can be set between 0 and 1 (the usual value is 0.85), PR(Ti) is the PageRank of page Ti that links to page A, and L(Ti) is the number of outbound links on page Ti. Note that the PageRanks form a probability
distribution over web pages, so the sum of
all web pages’ PageRanks will be 1.

Note

Why is a damping factor added? PageRank is
based   on   the  random  surfer  model.
Essentially, the damping factor is a decay
factor. It represents the chance
that a user will stop clicking links and
request  another random  page  (e.g., by
directly typing in a new URL rather than
following  a  link on the current  page).
A damping factor of 0.85 indicates that we assume there is about a 15% chance that a typical user won’t follow any links on the page and instead will navigate to a new random URL.




Given a graph of web pages with incoming
and outgoing links, the PageRank algorithm
can tell us the importance or relevance of
each node.  The PageRank of each page depends on
the PageRanks of the pages pointing to it. In short,
PageRank is a “vote,” by all the other pages
on the web, about how important a page is.










PageRank’s Iterative Computation


Given a set of N web pages, PageRank
can be computed either iteratively or
algebraically.  The iterative method
can be defined as follows:


	
At (t = 0), an initial probability
distribution is assumed, usually:
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      )
    
    =
    
      1 N
    
  





	
At each time step, the computation, as
detailed above, yields:
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    +
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It is believed that Google (and other
search engines) recalculates PageRank
scores each time it crawls the web and
rebuilds its search index. As the number
of documents in the collection increases, the accuracy of the initial approximation of 
PageRank
decreases for all documents. Therefore,
the PageRank algorithm ranks websites
by the number and quality of incoming
links. The quality of an incoming link
is defined as a function of the PageRank
of  the  site  that provides the link.

Note

Please note that this is an extremely
simplified description of the original PageRank
algorithm. Google (and others who use
similar PageRank algorithms) take many
other factors, such as keyword density, traffic,
domain age, etc., into consideration for
calculating the PageRank of a web page.




Next, I’ll show you how the PageRank is calculated.
Suppose we have the following simple graph:


$ cat simple_graph.txt
A B
B A
A D
D A


Setting d = 0.85, we can write:


PR(A) = (1-d) + d (PR(B)/L(B) + PR(D)/L(D))
PR(B) = (1-d) + d (PR(A)/L(A))
PR(D) = (1-d) + d (PR(A)/L(A))


where:


L(A) = 2
L(B) = 1
L(D) = 1


To calculate these PR() iteratively, we
need to initialize PR(A), PR(B), PR(D). We’ll initialize all of them to 1.0, then iteratively
calculate PR(A), PR(B), PR(D) until
these values do not change (i.e., converge). The results are shown in Table 8-2.


Table 8-2. PageRank iterations with initial value of 1.00


	Iteration
	PR(A)
	PR(B)
	PR(D)





	0

	1.0000

	1.0000

	1.0000




	1

	1.8500

	0.9362

	0.9362




	…

	…

	…

	…




	99

	1.4595

	0.7703

	0.7703




	100

	1.4595

	0.7703

	0.7703







Note that no matter what you use as the initial value, the PageRank algorithm
converges and you get the desired results. Table 8-3 shows the results with an initialization value of 40.00.


Table 8-3. PageRank iterations with initial value of 40.00


	Iteration
	PR(A)
	PR(B)
	PR(D)





	0

	40.0000

	40.0000

	40.0000




	1

	68.1500

	29.1138

	29.1137




	…

	…

	…

	…




	99

	1.4595

	0.7703

	0.7703




	100

	1.4595

	0.7703

	0.7703







In both cases, the results are the same after 100 iterations:


PR(A) = 1.4595
PR(B) = 0.7703
PR(D) = 0.7703


As you saw in Chapter 6, Spark provides APIs for implementing the PageRank algorithm through the GraphX and GraphFrames libraries. To help you understand how the algorithm works, here I’ll present a couple of custom PageRank solutions in PySpark.

















Custom PageRank in PySpark Using RDDs


I’ll start by providing a simple custom solution
using PySpark. The complete program
and sample  input data are available in the book’s GitHub repository, in the files pagerank.py and pagerank_data.txt.


This solution uses Spark RDDs to implement
the PageRank algorithm.  It does
not use GraphX or GraphFrames, but I’ll present a GraphFrames example later.












Input data format


Let’s assume that our input has the following
syntax:


<source-URL-ID><,><neighbor-URL-ID>

















Output data format


The goal of the PageRank algorithm is to
generate output of the form:


<URL-ID> <page-rank-value>


The result will look something like this, if the algorithm is run for 15 iterations:


$ spark-submit pagerank.py pagerank_data.txt 15
1 has rank: 0.86013842528.
3 has rank: 0.33174213968.
2 has rank: 0.33174213968.
5 has rank: 0.473769824736.
4 has rank: 0.33174213968.

















PySpark Solution


Our custom solution involves the following steps:


	
Read the input path and
the number of iterations:


input_path = sys.argv[1]
num_of_iterations = int(sys.argv[2])



	
Create an instance of SparkSession:


spark = SparkSession.builder.getOrCreate()



	
Create an RDD[String] from the input path:


records = spark.sparkContext.textFile(input_path)



	
Load all the URLs from the input file
and initialize their neighbors:


def create_pair(record_of_urls):
    # record_of_urls = "<source-URL><,><neighbor-URL>"
    tokens = record_of_urls.split(",")
    source_URL = tokens[0]
    neighbor_URL = tokens[1]
    return (source_URL, neighbor_URL)
#end-def

links = records.map(lambda rec: create_pair(rec)) [image: 1]
               .distinct() [image: 2]
               .groupByKey() [image: 3]
               .cache() [image: 4]


	[image: 1]

	Create a pair of (source_URL, neighbor_URL).


	[image: 2]

	Make sure there are no duplicate pairs.


	[image: 3]

	Find all neighbor URLs.


	[image: 4]

	Cache the result, because it will be used many times in the iteration.






	
Transform URL neighbors into ranks of 1.0:


ranks = links.map(lambda url_neighbors: (url_neighbors[0], 1.0)) [image: 1]


	[image: 1]

	ranks is an  RDD[(String, Float)].






	
Calculate and update the URL ranks iteratively. To perform this step, we need
two basic functions:


def recalculate_rank(rank):
    new_rank = (rank * 0.85) + 0.15
    return new_rank
#end-def

def compute_contributions(urls_rank):
    # calculates URL contributions
    # to the ranks of other URLs
    urls = urls_rank[1][0]
    rank = urls_rank[1][1]

    num_urls = len(urls)
    for url in urls:
        yield (url, rank / num_urls)
#end-def


Now, let’s perform the iterations:


for iteration in range(num_of_iterations):
    # calculates URL contributions
    # to the ranks of other URLs
    contributions = links
       .join(ranks) [image: 1]
       .flatMap(compute_contributions)

    # recalculates URL ranks based
    # on neighbor contributions
    ranks = contributions.reduceByKey(lambda x,y : x+y)
                         .mapValues(recalculate_rank)
#end-for


	[image: 1]

	Note that links.join(ranks) will
create elements of the form
[(URL_ID, (ResultIterable, <rank-as-float>)), ...].






	
Collect the PageRank values for all the URLs and dump them to the console:


for (link, rank) in ranks.collect():
    print("%s has rank: %s." % (link, rank))






















Sample output


Sample output is provided for 20 iterations.
You can observe the convergence of the PageRank
algorithm in the higher iterations (iteration
numbers 16 to 20):

iteration/node   1      2      3      4      5
0             1.00   1.00   1.00   1.00   null
1             2.27   0.36   0.36   0.36   0.79
2             0.92   0.63   0.63   0.63   0.79
...
19            0.86   0.33   0.33   0.33   0.47
20            0.85   0.33   0.33   0.33   0.47






















Custom PageRank in PySpark Using an Adjacency Matrix


This section presents another custom solution for the PageRank
algorithm, using an adjacency matrix as input.  An adjacency matrix is a  matrix
used to represent a finite graph. The elements
of the matrix indicate whether or not pairs of nodes
are adjacent in the graph. For example,
if node A links to three other nodes (say, B,
C, and D), that is presented as
an adjacency matrix row like this:


A B C D


Suppose we have the graph shown in Figure 8-2.



[image: Directed Graph with 5 Nodes]
Figure 8-2. A simple directed graph with five nodes




The adjacency matrix for this graph looks like this (where the first item in each row
is the source node and the other items are target nodes):


A B C D
B C E
C A D E
D E
E B


A visual inspection of the graph or the matrix suggests that E is an important node, since it’s referenced by many other nodes.
Therefore, we expect that the PageRank value of node E will be
higher than that of the other nodes.


This solution again uses Spark RDDs to implement
the PageRank algorithm and 
does
not use GraphX or GraphFrames. The complete program and sample input data are available in the book’s GitHub repository, in the files pagerank_2.py and 
pagerank_data_2.txt.












Input data format


Let’s assume that our input has the following
syntax, where S is a single space:


<source-node><S><target-node-1><S><target-node-2><S>...

where S is a single space

















Output data format


The goal of the PageRank algorithm is to
generate output of the form:


<node> <page-rank-value>

















PySpark solution


Our second PySpark solution consists of three main steps:


	
Mapping: For each node i, calculate the value to assign to each outlink (rank / number of neighbors) and propagate it to the adjacent nodes.



	
Reducing: For each node i, sum the upcoming votes/values and update the rank (Ri).



	
Iteration: Repeat until the values converge (stable or within a defined margin).







The complete PySpark solution is presented here. First, we import the required libraries and read the input
parameters:


from __future__ import print_function
import sys
from pyspark.sql import SparkSession

# Define your input path
input_path = sys.argv[1]
print("input_path: ", input_path)
# input_path:  pagerank_data_2.txt

# Define number of iterations
ITERATIONS = int(sys.argv[2])
print("ITERATIONS: ", ITERATIONS)
# ITERATIONS:  40


Next, we read the matrix and create pairs of (K, V),
where K is the source node and V is a list
of target nodes:


# Create an instance of SparkSession
spark = SparkSession.builder.getOrCreate()

# Read adjacency list and create RDD[String]
matrix = spark.sparkContext.textFile(input_path)
print("matrix=", matrix.collect())
# matrix= ['A B C D', 'B C E', 'C A D E', 'D E', 'E B']
# x = "A B C"
# returns (A, [B, C])
def create_pair(x):
  tokens = x.split(" ")
  # tokens[0]: source node
  # tokens[1:]: target nodes (links from the source node)
  return (tokens[0], tokens[1:])
#end-def

# create links from source node to target nodes
links = matrix.map(create_pair)
print("links=", links.collect())
# links= [('A', ['B', 'C', 'D']),
#         ('B', ['C', 'E']),
#         ('C', ['A', 'D', 'E']),
#         ('D', ['E']),
#         ('E', ['B'])]


We count the nodes and initialize the rank of each to 1.0:


# Find node count
N = links.count()
print("node count N=", N)
# node count N=5

# Create and initialize the ranks
ranks = links.map(lambda node: (node[0], 1.0/N))
print("ranks=", ranks.collect())
# ranks= [('A', 0.2), ('B', 0.2), ('C', 0.2), ('D', 0.2), ('E', 0.2)]


Then we implement the three steps of the PageRank algorithm:


for i in range(ITERATIONS):
  # Join graph info with rank info, propagate rank scores
  # to all neighbors (rank/(number of neighbors),
  # and add up ranks from all incoming edges
  ranks = links.join(ranks)\
    .flatMap(lambda x : [(i, float(x[1][1])/len(x[1][0])) for i in x[1][0]])\
    .reduceByKey(lambda x,y: x+y)
  print(ranks.sortByKey().collect())


Partial output is given here:


[('A', 0.0667), ('B', 0.2667), ('C', 0.1667), ('D', 0.1334), ('E', 0.3667)]
[('A', 0.0556), ('B', 0.3889), ('C', 0.1556), ('D', 0.0778), ('E', 0.3223)]
...
[('A', 0.0638), ('B', 0.3404), ('C', 0.1915), ('D', 0.0851), ('E', 0.3191)]
[('A', 0.0638), ('B', 0.3404), ('C', 0.1915), ('D', 0.0851), ('E', 0.3191)]


The PageRank algorithm indicates that node
E is the most important node,
since its page rank (0.3191) is the highest.
We also observe that, since the PageRanks form a
probability distribution, the sum of the values for all the nodes will be 1:


PR(A) + PR(B) + PR(C) + PR(D) + PR(E) =
0.0638 + 0.3404 + 0.1915 + 0.0851 + 0.3191 =
0.9999


To wrap up this section, I’ll quickly run through an example using GraphFrames.






















PageRank with GraphFrames


The following example in PySpark shows
how to find the PageRank of a graph using the
GraphFrames package introduced in Chapter 6. There are at least
two ways to calculate the page rank of
a given graph:












Tolerance


Specify the tolerance allowed at convergence (note that a smaller tolerance results in greater
accuracy of the PageRank results):


# build graph as a GraphFrame instance
graph = GraphFrame(vertices, edges)
#
# NOTE: You cannot specify maxIter()
# and tol() at the same time.
# damping factor = 1 - 0.15 = 0.85
# tol = the tolerance allowed at convergence
# (smaller => more accurate)
# pagerank is computed as a GraphFrame:
pagerank = graph
             .pageRank()
             .resetProbability(0.15)
             .tol(0.0001)
             .run()

















Maximum iterations


Specify the maximum number of iterations for which the algorithm can run (more iterations results in greater accuracy):


# build graph as a GraphFrame instance
graph = GraphFrame(vertices, edges)
# NOTE: You cannot specify maxIter()
# and tol() at the same time.
# damping factor = 1 - 0.15 = 0.85
# maxIter = the max. number of iterations
# (higher => more accurate)
# pagerank is computed as a GraphFrame:
pagerank = graph
            .pageRank()
            .resetProbability(0.15)
            .maxIter(30)
            .run()





























Summary


To recap:



	
We covered two ranking algorithms, rank product (mostly
used in gene analysis) and PageRank (primarily used
in search engine algorithms).



	
Spark does not provide an API for the rank product, but I presented a custom PySpark solution.



	
Spark is capable of handling record-level algorithms as well as graph algorithms—two custom PySpark implementations of PageRank were presented, in addition to the use of the GraphFrames API.






In the following chapters, we’ll turn our attention to some practical fundamental
data design patterns.










1 Cancer Outlier Profile Analysis (COPA) is an outlier detection method used in gene analysis. Genes are grouped into mutually exclusive gene pairs, and ranked according to the number of tumor samples in which either of them is an outlier.




Part III. Data Design Patterns






Chapter 9. Classic Data Design Patterns



This chapter discusses some of the most
fundamental and classic data design patterns used in
the vast majority of big data solutions. Even though
these are simple design patterns, they
are useful in solving many common
data problems, and I’ve used many of them in examples in this book. In this chapter, I will
present PySpark implementations of the following design patterns:


	
Input-Map-Output



	
Input-Filter-Output



	
Input-Map-Reduce-Output



	
Input-Multiple-Maps-Reduce-Output



	
Input-Map-Combiner-Reduce-Output



	
Input-MapPartitions-Reduce-Output



	
Input-Inverted-Index-Pattern-Output







Source Code

Complete programs for this chapter are available in the book’s GitHub repository.




Before we get started, however, I’d like to address the question of what I mean by “design patterns.” In computer science and software engineering, given a commonly occurring problem, a design pattern is a reusable solution to that problem. It’s a template or best practice for how to solve a problem, not a finished design that can be transformed directly into code. The patterns presented in this chapter will equip you to handle a wide range of data analysis tasks.

Note

The data design patterns discussed in this
chapter are basic patterns. You can create your own, depending on your requirements.
For additional examples, see
“MapReduce: Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay Ghemawat.




MapReduce Versus Spark

MapReduce is a programming paradigm that enables massive parallel and distributed scalability across hundreds or thousands of servers in a Hadoop cluster. A typical MapReduce job consists of a driver and three functions: map(), reduce(), and combine() as an optional local reducer. The map() function provides functionality equivalent to Spark’s map(), flatMap(), and filter(), while the reduce() function provides functionality equivalent to Spark’s reduceByKey() and groupByKey(). However, as we’ve seen, Spark’s implementation is not limited to these functions. It can be thought of as a superset of MapReduce, offering higher-level data abstractions (RDDs and DataFrames) and a very rich API for solving data problems. The implementations of data design patterns presented here use PySpark rather than the MapReduce paradigm.










Input-Map-Output


Input-Map-Output is the simplest design pattern for data analysis: as illustrated in Figure 9-1, you
read the input from a set of files, then
apply a series of functions to each record,
and finally produce the desired output.
There is no restriction on what a mapper
can create from its input: it can create
a set of new records or (key, value)
pairs.



[image: daws 0901]
Figure 9-1. The Input-Map-Output design pattern




No reduction is involved, but sometimes the map phase is used to clean and reformat data. This a very common design
pattern used to
change the format of input data and generate
output data, which can be used by other
mappers and reducers.










RDD Solution


Sometimes the map
phase is used to clean and reformat data
before generating (key, value)
pairs to be consumed by reducers.


Consider a scenario where the input records have a
gender field that can contain values such as:



	
Female representation: "0", "f", "F", "Female", "female"



	
Male representation: "1", "m", "M", "Male", "male"






and you want to  normalize the gender field
as {"female", "male", "unknown"}. Let’s
assume that each  record has the following
format:


  <user_id><,><gender><,><address>


The following function can facilitate
the map() transformation and will create a
triplet of (user_id, normalized_gender, address)
per input record:


# rec: an input record
def normalize_gender(rec):
  tokens = rec.split(",")
  user_id = tokens[0]
  gender = tokens[1].lower()
  if gender in ('0', 'f', 'female'):
    normalized_gender = "female"
  elif gender in ('1', 'm', 'male'):
    normalized_gender = "male"
  else:
    normalized_gender = "unknown"

  return (user_id, normalized_gender, tokens[2])
#end-def


Given a source rdd as an RDD[String], then
your mapper transformation will be as follows:


# source rdd : RDD[String]
# target rdd_mapped : RDD[(String, String, String)]
# RDD.map() is a 1-to-1 transformation
rdd_mapped = rdd.map(normalize_gender)


Another scenario might be analyzing movie rating
records of the form <user_id><,><movie_id><,><rating>, where your goal is to create a (key, value) pair
of (<movie_id>, (<user_id>, <rating>) per record.
Further assume that all ratings will be converted
to integer numbers. You can use the following
mapper function for this:


# rec: <user_id><,><movie_id><,><rating>
def create_pair(rec):
  tokens = rec.split(",")
  user_id = tokens[0]
  movie_id = tokens[1]
  rating = int(tokens[2])

  return (movie_id, (user_id, rating))
#end-def


What if you want to map a single input
record/element into multiple target
elements, dropping (filtering out) records/elements where appropriate? To
map a single record into multiple target
elements, Spark offers the flatMap()
transformation for this; it works on a single
element (like map())  and produces
multiple target elements.
So, if your input is RDD[V] and you want to map each V into a set of
elements of type T, you can do this with flatMap() as follows:


# source_rdd: RDD[V]
# target_rdd: RDD[T]
target_rdd = source_rdd.flatMap(custom_map_function)

# v an element of source_rdd
def custom_map_function(v):
  # t iterable<T>
  t = <use-v-to-create-an-iterable-of-T-data-type-elements>
  return t
#end-def



For example, if for input record v you
create t = [t1, t2, t3], then v will
be mapped to three elements of the target_rdd
as t1, t2, and t3. If t=[]—an
empty list—then no element will be created
in the target_rdd: v is filtered out.


As this example suggests, if you want to map and filter at the same time, mapping some records and filtering others, you can implement this with flatMap() as well. For example, suppose you have records
in the following format:


<word1><,><word2><;><word1><,><word2><;>...<word1><,><word2>


Your goal is to keep only the records consisting of two words, separated by a comma (that is, bigrams); you want to drop (filter out) all the other records.


Consider this source RDD:


records = ['w1,w2;w3,w4', 'w9', 'w5,w6;w7,w8;w10,w11']
rdd = spark.sparkContext.parallelize(records)


Now, rdd has three elements. You would like to keep 'w1,w2',
'w3,w4',  'w5,w6', 'w7,w8', and
'w10,w11' but drop 'w9'
(since this is not a bigram). The following
PySpark snippet shows how to achieve this:


# map and filter
def map_and_filter(rec):
  if ";" in rec:
    bigrams = rec.split(";")
    result = []
    for bigram in bigrams:
      words = bigram.split(",")
      if len(words) == 2: result.append(bigram)
    return result
  else:
    # no semicolon in rec
    words = rec.split(",")
    if len(words) == 2: return [rec]
    else: return []
#end-def

# map and filter with flatMap()
mapped_and_filtered = rdd.flatMap(map_and_filter)
mapped_and_filtered.collect()
['w1,w2', 'w3,w4', 'w5,w6', 'w7,w8', 'w10,w11']


As this example shows, you can map the records you want to keep into multiple target elements
and filter out the ones you don’t want to keep
at the same time using a  single flatMap()
transformation.

















DataFrame Solution


Spark has an RDD.map() function, but it does not
have this map() function for 
DataFrames.
Spark’s DataFrame does not have an explicit
 map() function, but we can achieve the map()
equivalency in many ways: we can add new columns
by applying  DataFrame.withColumn() and drop
existing columns  by DataFrame.drop(). 


Consider a DataFrame as:


tuples3 = [ ('alex', 800, 8), ('jane', 420, 4),
            ('bob', 380, 5), ('betty', 700, 10),
            ('ted', 480, 10), ('mary', 500, 0) ]
>>> column_names = ["name", "weekly_pay", "overtime_hours"]
>>> df = spark.createDataFrame(tuples3, column_names)
>>> df.show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|jane |420       |4             |
|bob  |380       |5             |
|betty|700       |10            |
|ted  |480       |10            |
|mary |500       |0             |
+-----+----------+--------------+


Suppose we want to calculate total weekly
pay by adding overtime_hours to weekly_pay.
Therefore, we want to create a new column
total weekly pay based on the values
of two columns: overtime_hours and weekly_pay.
Assume that over time rate is $20 per hour.


def compute_total_pay(weekly_pay, overtime_hours):
    return (weekly_pay + (overtime_hours * 20))
#end-def


To keep all the columns, do the following:


>>> df2 = df.rdd.map(lambda x: (x["name"], x["weekly_pay"], x["overtime_hours"],
    compute_total_pay(x["weekly_pay"], x["overtime_hours"])))
    .toDF(["name", "weekly_pay", "overtime_hours", "total_pay"])
>>> df2.show(truncate=False)
+-----+----------+--------------+---------+
|name |weekly_pay|overtime_hours|total_pay|
+-----+----------+--------------+---------+
|alex |800       |8             |960      |
|jane |420       |4             |500      |
|bob  |380       |5             |480      |
|betty|700       |10            |900      |
|ted  |480       |10            |680      |
|mary |500       |0             |500      |
+-----+----------+--------------+---------+


Essentially you have to map the row to a tuple containing
all of the existing columns and add in the new column(s).


If your columns are too many to enumerate,
you could also just add a tuple to the existing row.


>>> df3 = df.rdd.map(lambda x: x + (str(compute_total_pay(x["weekly_pay"],
   x["overtime_hours"])),)).toDF(df.columns + ["total_pay"])
>>> df3.show(truncate=False)
+-----+----------+--------------+---------+
|name |weekly_pay|overtime_hours|total_pay|
+-----+----------+--------------+---------+
|alex |800       |8             |960      |
|jane |420       |4             |500      |
|bob  |380       |5             |480      |
|betty|700       |10            |900      |
|ted  |480       |10            |680      |
|mary |500       |0             |500      |
+-----+----------+--------------+---------+


You can also add a total_pay column using  DataFrame.withColumn():


>>> import pyspark.sql.functions as F
>>> df4 = df.withColumn("total_pay",
   F.lit(compute_total_pay(df.weekly_pay, df.overtime_hours)))
>>> df4.show(truncate=False)
+-----+----------+--------------+---------+
|name |weekly_pay|overtime_hours|total_pay|
+-----+----------+--------------+---------+
|alex |800       |8             |960      |
|jane |420       |4             |500      |
|bob  |380       |5             |480      |
|betty|700       |10            |900      |
|ted  |480       |10            |680      |
|mary |500       |0             |500      |
+-----+----------+--------------+---------+

















Flat Mapper functionality


Spark’s DataFrame does not have a flatMap()
transformation (to flatten one element into
many target elements), but instead it offers
the explode() function, which returns a
new row for each element in the given
column (expressed as a list or dictionary)
and uses the default column name  col for
elements in the array and  key and value for
elements in the dictionary unless specified
otherwise.


Below is a complete example, which shows how
to use explode() function as an equivalent
to RDD.flatMap() transformation.


Let’s first create a DataFrame, where two
column are lists.


Next, we look at exploding multiple columns
for a given DataFrame.  Note that only one
generator is allowed per select clause: this
means that you can not explode two columns at
the same time (but you can explode them
iteratively one-by-one). The following example
shows how to explode two columns:


>>> some_data = [
...     ('alex', ['Java','Scala', 'Python'], ['MS', 'PHD']),
...     ('jane', ['Cobol','Snobol'], ['BS', 'MS']),
...     ('bob', ['C++'], ['BS', 'MS', 'PHD']),
...     ('ted', [], ['BS', 'MS']),
...     ('max', ['FORTRAN'], []),
...     ('dan', [], [])
... ]
>>>
>>> df = spark.createDataFrame(data=some_data,
   schema = ['name', 'languages', 'education'])
>>> df.show(truncate=False)
+----+---------------------+-------------+
|name|languages            |education    |
+----+---------------------+-------------+
|alex|[Java, Scala, Python]|[MS, PHD]    |
|jane|[Cobol, Snobol]      |[BS, MS]     |
|bob |[C++]                |[BS, MS, PHD]|
|ted |[]                   |[BS, MS]     |
|max |[FORTRAN]            |[]           |
|dan |[]                   |[]           |
+----+---------------------+-------------+


Next we explode on the languages column,
which is an array:


>>> exploded_1 = df.select(df.name,
   explode(df.languages).alias('language'), df.education)
>>> exploded_1.show(truncate=False)
+----+--------+-------------+
|name|language|education    |
+----+--------+-------------+
|alex|Java    |[MS, PHD]    |
|alex|Scala   |[MS, PHD]    |
|alex|Python  |[MS, PHD]    |
|jane|Cobol   |[BS, MS]     |
|jane|Snobol  |[BS, MS]     |
|bob |C++     |[BS, MS, PHD]|
|max |FORTRAN |[]           |
+----+--------+-------------+


As you can see, when exploding a column,
if a column is a empty list, then that is
dropped from exploding result (tex and max
are dropped since they have an associated empty
lists). Note that ted and dan were dropped
since the exploded column value was an empty list.


Next, we explode on the education column:


>>> exploded_2 = exploded_1.select(exploded_1.name, exploded_1.language,
   explode(exploded_1.education).alias('degree'))
>>> exploded_2.show(truncate=False)
+----+--------+------+
|name|language|degree|
+----+--------+------+
|alex|Java    |    MS|
|alex|Java    |   PHD|
|alex|Scala   |    MS|
|alex|Scala   |   PHD|
|alex|Python  |    MS|
|alex|Python  |   PHD|
|jane|Cobol   |    BS|
|jane|Cobol   |    MS|
|jane|Snobol  |    BS|
|jane|Snobol  |    MS|
|bob |C++     |    BS|
|bob |C++     |    MS|
|bob |C++     |   PHD|
+----+--------+------+


Note that name max is dropped since
the exploded column value was an empty list.

























Input-Filter-Output


The Input-Filter-Output data design pattern, illustrated in Figure 9-2, is a simple pattern that lets you keep records that satisfy
your data requirements while removing the
unwanted records. You read the input from
a set of files, then apply one or more filter functions to each record, keeping the records that satisfy the Boolean
predicate and dropping the others.



[image: daws 0902]
Figure 9-2. The Input-Filter-Output design pattern




This is a useful design pattern for situations in which your
dataset is large and  you want to
take a subset of this data to focus
in on and maybe perform a
follow-on 
analysis.


A simple scenario is reading
input records consisting of URLs, keeping the valid ones while discarding the nonvalid URLs.  This design pattern can be
implemented with RDDs and DataFrames.


Here are a few sample records:


http://cnn.com [image: 1]
htp://mysite.com [image: 2]
http://www.oreilly.com [image: 3]
https:/www.oreilly.com [image: 4]


	[image: 1]

	Valid URL


	[image: 2]

	Invalid URL


	[image: 3]

	Valid URL


	[image: 4]

	Invalid URL













RDD Solution


This design pattern can be easily implemented
using the RDD.filter() function:


data = ['http://cnn.com', 'htp://mysite.com',
  'http://www.oreilly.com', 'https:/www.oreilly.com' ]

urls = spark.sparkContext.parallelize(data)

# return True if a given URL is valid, otherwise return False
def is_valid_URL(url_as_str):
  if url_as_str is None: return False
  lowercased = url_as_str.lower()
  if (lowercased.startswith('http://') or
      lowercased.startswith('https://')):
    return True
  else:
    return False
#end-def

# return a new RDD containing only the
# elements that satisfy a predicate
valid_urls = urls.filter(is_valid_URL)
valid_urls.collect()
[ 'http://cnn.com', 'http://www.oreilly.com' ]

















DataFrame Solution


Alternatively, you can use the DataFrame.filter()
function to keep the desired records and drop the
undesired records:


>>> data = [('http://cnn.com',), ('htp://mysite.com',),
    ('http://www.oreilly.com',), ('https:/www.oreilly.com',)]

# create a single-column DataFrame
>>> df = spark.createDataFrame(data, ['url'])

>>> df.show(truncate=False)
+----------------------+
|url                   |
+----------------------+
|http://cnn.com        |
|htp://mysite.com      |
|http://www.oreilly.com|
|https:/www.oreilly.com|
+----------------------+

# filter out undesired records
>>> df.filter(df.url.startswith('http://') |
              df.url.startswith('https://'))
      .show(truncate=False)
+----------------------+
|url                   |
+----------------------+
|http://cnn.com        |
|http://www.oreilly.com|
+----------------------+

















DataFrame Filter


Spark’s filter() function is used to filter
the elements/rows from RDD/DataFrame based on
the given condition. For DataFrames, you may
also use a where() clause instead of the filter() function
if you are coming from a SQL background.
Both of these functions (filter() and where())
operate exactly the same. The goal of

filter() and where() are to keep the desired
elements/rows.


Consider a DataFrame as:


tuples3 = [ ('alex', 800, 8), ('jane', 420, 4),
            ('bob', 380, 5), ('betty', 700, 10),
            ('ted', 480, 10), ('mary', 500, 0) ]
>>> column_names = ["name", "weekly_pay", "overtime_hours"]
>>> df = spark.createDataFrame(tuples3, column_names)
>>> df.show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|jane |420       |4             |
|bob  |380       |5             |
|betty|700       |10            |
|ted  |480       |10            |
|mary |500       |0             |
+-----+----------+--------------+


Suppose we want to keep rows where weekly_pay
is greater than 490.


Let’s first use filter():


>>> df.filter(df.weekly_pay > 490).show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|betty|700       |10            |
|mary |500       |0             |
+-----+----------+--------------+


We can achieve the same functionality by
the where clause:


>>> df.where(df.weekly_pay > 490).show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|betty|700       |10            |
|mary |500       |0             |
+-----+----------+--------------+


The filter() can be used on single and multiple conditions:


>>> df.filter(df.weekly_pay > 400).show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|jane |420       |4             |
|betty|700       |10            |
|ted  |480       |10            |
|mary |500       |0             |
+-----+----------+--------------+

>>> df.filter((df.weekly_pay > 400) &
   (df.overtime_hours > 5)).show(truncate=False)
+-----+----------+--------------+
|name |weekly_pay|overtime_hours|
+-----+----------+--------------+
|alex |800       |8             |
|betty|700       |10            |
|ted  |480       |10            |
+-----+----------+--------------+
























Input-Map-Reduce-Output


The Input-Map-Reduce-Output
design pattern, illustrated in Figure 9-3, is the most
common design pattern for aggregation operations, such as finding the sum or average of values by key.










RDD Solution


Spark offers the following
powerful solutions for implementing this
design pattern, many different combinations of which can be used to solve data problems:



	
Map phase: map(), flatMap(),
mapPartitions(), filter()



	
Reduce phase: reduceByKey(), groupByKey(),
aggregateByKey(), combineByKey()







[image: daws 0903]
Figure 9-3. The Input-Map-Reduce-Output design pattern




This is the simplest MapReduce design pattern:
read data, perform a map transformation—usually creating (key, value) pairs—aggregate (sum, average, etc.) all
of the values for the same key, then save
the output.


Suppose you have records
with the format <name><,><age><,><salary>
and you want to compute the average salary
per age group, where the age groups are defined
as 0-15, 16-20, 21-25, …, 96-100. First, you need to read the input and create an RDD/DataFrame. The mapper will then process one record
at a time and create (key, value) pairs, where the key is an age group and the value is a
salary. For example, if our record is
alex,22,45000, then the mapper will create the pair
('21-25', 45000) since the age 22 falls into the
age group '21-25'. The mapper function
can be expressed as:


# rec: <name><,><age><,><salary>
def create_key_value_pair(rec):
  tokens = rec.split(",")
  age = int(tokens[1])
  salary = tokens[2]
  if age < 16: return ('0-15', salary)
  if age < 21: return ('16-20', salary)
  ...
  if age < 91: return ('85-90', salary)
  if age < 96: return ('91-95', salary)
  return ('96-100', salary)
#end-def


Then, the reducer will group the keys by age groups (0-15, 16-20, etc.), aggregate the values in each group, and find the average salary per group.


Say you have the following input:


alex,22,45000
bob,43,50000,
john,23,65000
jane,41,48000
joe,44,66000


The mapper will generate the following
(key, value) pairs:


('21-25', 45000)
('41-45', 54000)
('21-25', 67000)
('41-45', 68000)
('41-45', 70000)


Then the reducer will group the values for each key:


('21-25', [45000, 67000])
('41-45', [54000, 68000, 70000])


Grouping by key can be easily implemented
with Spark’s groupByKey() transformation. Using groupByKey(), we cay
write the reducer as:


# rdd: RDD[(age-group, salary)]
grouped_by_age_group = rdd.groupByKey()


Finally, we can calculate the average per age group:


('21-25', 56000)
('41-45', 64000)


This can be accomplished by another simple mapper:


# grouped_by_age_group: RDD[(age-group, [salary-1, salary-2, ...])]
age_group_average = grouped_by_age_group.mapValues(lambda v: sum(v)/len(v))


If you want to use combiners (Spark uses combiners
automatically in reduceByKey()), the mapper will instead generate the following
(key, value) pairs, where the value is (sum, count):


('21-25', (45000, 1))
('41-45', (54000, 1))
('21-25', (67000, 1))
('41-45', (68000, 1))
('41-45', (70000, 1))


The reason for creating (sum, count) as a value
is to guarantee that the reducer function is
associative and commutative. If your reducer
function does not follow these two algebraic rules,
then Spark’s reduceByKey() will not produce the
correct semantics when the input data is spread across multiple partitions.


Given an RDD[(key, (sum, count))], using Spark’s reduceByKey()—note that
this reducer works on a partition-by-partition
basis and uses combiners as well—we may
write the reducer as:


# rdd: RDD[(key, (sum, count))]
reduced_by_age_group = rdd.reduceByKey(
  lambda x, y: (x[0]+y[0], x[1]+y[1]))


The reducer will group the values by their associated keys:


('21-25', (112000, 2))
('41-45', (192000, 3))


Then, the average per age group can be caluculated
by another simple mapper:


('21-25', 56000)
('41-45', 64000)


It’s also possible to implement this design pattern using
a combination of Spark’s map() and
combineByKey() transformations.
The map phase is exactly as presented previously. Using the create_key_value_pair() function, it will create the following (key, value)
pairs:


('21-25', 45000)
('41-45', 54000)
('21-25', 67000)
('41-45', 68000)
('41-45', 70000)


Let’s assume that these (key, value)
pairs are denoted by age_group_rdd.
Then we can perform the reduction using a
pair of combineByKey() and mapValues()

transformations:


# C denotes (sum-of-salaries, count-of-salaries)
combined = age_group_rdd.combineByKey(
  lambda v : (v, 1), [image: 1]
  lambda C, v: (C[0]+v, C[1]+1), [image: 2]
  lambda C1,C2: (C1[0]+C2[0], C1[1]+C2[1]) [image: 3]
)

# C denotes (sum-of-salaries, count-of-salaries)
avg_per_age_group = combined.mapValues(
  lambda C : C[0]/C[1]
)


	[image: 1]

	Create C as (sum-of-salaries, count-of-salaries).


	[image: 2]

	Merge a salary into C.


	[image: 3]

	Combine two Cs (from different partitions)
into a single C.




Tip

Notice that reduceByKey() is a
special case of combineByKey().
For reduceByKey(), the source and
target RDDs must be of the form RDD[(K, V]), while for combineByKey() the source
RDD can be RDD[(K, V)] and the target
RDD can be RDD[(K, C)], where V
and C may be different data types.
For example, V can be Integer,
while C can be (Integer, Integer).
In Spark, the combineByKey()
transformation is the most general
and powerful reducer for (key, value) datasets.



















DataFrame Solution


PySpark’s Dataframe offers comprehensive
functionality for reduction transformations.
You may use Dataframe.groupby(*cols), which
groups the DataFrame using the specified columns
so we can run aggregation on them. The
other option is to register your Dataframe
as a table (of rows and named columns) and
then use the power of SQL to GROUP BY
and aggregate the dsired columns.


The following example shows how to use the groupBy()
function.


First, let’s create a DataFrame:


>>> tuples4 = [("Illumina", "Alex", "San Diego", 100000),
...            ("Illumina", "Bob", "San Diego", 220000),
...            ("Illumina", "Jane", "Foster City", 190000),
...            ("Illumina", "Ted", "Foster City", 230000),
...            ("Google", "Rafa", "Menlo Park", 250000),
...            ("Google", "Roger", "Menlo Park", 160000),
...            ("Google", "Mona", "Menlo Park", 120000),
...            ("IBM", "Joe", "San Jose", 160000),
...            ("IBM", "Alex", "San Jose", 170000),
...            ("IBM", "George", "San Jose", 180000),
...            ("IBM", "Barb", "San Jose", 190000)]
>>> df = spark.createDataFrame(tuples4,
   ["company", "employee", "city", "salary"])
>>> df.show(truncate=False)
+--------+--------+-----------+------+
|company |employee|city       |salary|
+--------+--------+-----------+------+
|Illumina|Alex    |San Diego  |100000|
|Illumina|Bob     |San Diego  |220000|
|Illumina|Jane    |Foster City|190000|
|Illumina|Ted     |Foster City|230000|
|Google  |Rafa    |Menlo Park |250000|
|Google  |Roger   |Menlo Park |160000|
|Google  |Mona    |Menlo Park |120000|
|IBM     |Joe     |San Jose   |160000|
|IBM     |Alex    |San Jose   |170000|
|IBM     |George  |San Jose   |180000|
|IBM     |Barb    |San Jose   |190000|
+--------+--------+-----------+------+


Next, we apply grouping and aggregation functions:



	
Describe your DataFrame:






>>> df.describe().show()
+-------+--------+--------+-----------+-----------------+
|summary| company|employee|       city|           salary|
+-------+--------+--------+-----------+-----------------+
|  count|      11|      11|         11|               11|
|   mean|    null|    null|       null|179090.9090909091|
| stddev|    null|    null|       null|44822.88376589473|
|    min|  Google|    Alex|Foster City|           100000|
|    max|Illumina|     Ted|   San Jose|           250000|
+-------+--------+--------+-----------+-----------------+



	
Use groupBy() on a  DataFrame:






>>> df.groupBy('company').max().show()
+--------+-----------+
| company|max(salary)|
+--------+-----------+
|Illumina|     230000|
|  Google|     250000|
|     IBM|     190000|
+--------+-----------+

>>> df.groupBy('Company').sum().show()
+--------+-----------+
| Company|sum(salary)|
+--------+-----------+
|Illumina|     740000|
|  Google|     530000|
|     IBM|     700000|
+--------+-----------+

>>> df.groupBy("company").agg({'salary':'sum'}).show()
+--------+-----------+
| company|sum(salary)|
+--------+-----------+
|Illumina|     740000|
|  Google|     530000|
|     IBM|     700000|
+--------+-----------+

>>> import pyspark.sql.functions as F
>>> df.groupby('company')
.agg(F.min("salary").alias("minimum_salary"),
F.max("salary").alias("maximum_salary")).show()
+--------+--------------+--------------+
| company|minimum_salary|maximum_salary|
+--------+--------------+--------------+
|Illumina|        100000|        230000|
|  Google|        120000|        250000|
|     IBM|        160000|        190000|
+--------+--------------+--------------+
























Input-Multiple-Maps-Reduce-Output


The Input-Multiple-Maps-Reduce-Output design
pattern involves multiple maps,
joins, and reductions. This design pattern
is also known as the reduce-side join, because the reducer is responsible for performing
the join operation. To help you understand this design
pattern, let me provide an example. Suppose we have
the following two inputs, a Movies table and a Ratings table:





	Movie-ID
	Movie-Name





	100

	Lion King




	200

	Star Wars




	300

	Fiddler on the Roof




	…

	…










	Movie-ID
	Rating
	User-ID





	100

	4

	USER-1234




	100

	5

	USER-3467




	200

	4

	USER-1234




	200

	2

	USER-1234




	…

	…

	…







The final goal is to produce the following
output, the AVG Rating table. This is a join of the
Movies and Ratings tables, but after the join operation
is completed, we still need to perform another reduction
to find the average rating per Movie-ID:





	Movie-ID
	Movie-Name
	AVG Rating





	100

	Lion King

	4.5




	200

	Star Wars

	3.0




	…

	…

	…







This data design pattern is illustrated
by Figure 9-4.



[image: daws 0904]
Figure 9-4. The Input-Map-Reduce-Output (reduce-side join) design pattern




Let’s walk through it step by step:


	
The mapper reads the input data that is to be combined based on a common column or join key.
We read Input-1, then apply map1() as a mapper
and create (<Common-Key>, <Rest-of-Attributes>) pairs. Applying this to the Movies table will create (Movie-ID, Movie-Name)
pairs, where Movie-ID is a key and Movie-Name is a value.



	
Next, we read Input-2, then apply map2() as a mapper
and create (<Common-Key>, <Rest-of-Attributes>) pairs. Applying this to the Ratings table will create
(Movie-ID, (Movie-Name, Rating))
pairs, where Movie-ID is a key and
(Movie-Name, Rating) is a value.



	
We now perform a join() operation between the outputs of
map1() and map2(). Therefore, the goal is
to join  (Movie-ID, Movie-Name) pairs with
(Movie-ID, (Movie-Name, Rating)) pairs on the
common key, Movie-ID. The result of this
join is (Movie-ID, (Rating, Movie-Name))
pairs.



	
The next step is to reduce and aggregate the output
of the join() operation by using Movie-ID as a key: we
need all ratings per Movie-ID to find the average
of the ratings.



	
Finally, we have a simple mapper (map3()) calculate the average of the ratings and produce the
final output.







For this design pattern, I will provide two PySpark
solutions: one using RDDs and another using DataFrames.










RDD Solution


First, I’ll present a simple PySpark solution
using RDDs. The first step is to prepare the inputs. We’ll create two RDDs to represent
our two inputs. For this, I’ll define two simple tokenization functions:


def create_movie_pair(rec):
  tokens = rec.split(",")
  return (tokens[0], tokens[1])
#end-def

def create_rating_pair(rec):
  tokens = rec.split(",")
  # we drop User_ID here (not needed)
  return (tokens[0], int(tokens[1]))
#end-def


Next, we use these functions in the
mapper transformations:


# spark: SparkSession
movies_by_name = ["100,Lion King", "200,Star Wars",
                  "300,Fiddler on the Roof", "400,X-Files"]
movies = spark.sparkContext.parallelize(movies_by_name)
movies.collect()
['100,Lion King', '200,Star Wars',
 '300,Fiddler on the Roof', '400,X-Files']

movies_rdd = movies.map(create_movie_pair)
movies_rdd.collect()
[('100', 'Lion King'), ('200', 'Star Wars'),
 ('300', 'Fiddler on the Roof'), ('400', 'X-Files')]

ratings_by_users = ["100,4,USER-1234", "100,5,USER-3467",
                    "200,4,USER-1234", "200,2,USER-1234"]

ratings = spark.sparkContext.parallelize(ratings_by_users)
ratings.collect()
['100,4,USER-1234', '100,5,USER-3467',
 '200,4,USER-1234', '200,2,USER-1234']

ratings_rdd = ratings.map(create_rating_pair)
ratings_rdd.collect()
[('100', 4), ('100', 5), ('200', 4), ('200', 2)]


So far we have created two RDDs:



	
movies_rdd: RDD[(Movie-ID, Movie-Name)]



	
ratings_rdd: RDD[(Movie-ID, Rating)]






Now, we’ll use these two RDDs to perform the join
operation on the common key, Movie-ID:


joined = ratings_kv.join(movies_kv)
joined.collect()
[ ('200', (4, 'Star Wars')),
  ('200', (2, 'Star Wars')),
  ('100', (4, 'Lion King')),
  ('100', (5, 'Lion King'))]

grouped_by_movieid = joined.groupByKey()
                           .mapValues(lambda v: list(v))
grouped_by_movieid.collect()
[ ('200', [(4, 'Star Wars'), (2, 'Star Wars')]),
  ('100', [(4, 'Lion King'), (5, 'Lion King')])]


The last step is to use a simple mapper
to prepare the final output, which includes
the average rating per Movie-ID:


def find_avg_rating(values):
  total = 0
  for v in values:
    total += v[0]
    movie_name = v[1]
  return (movie_name, float(total)/len(values))
#end-def

grouped_by_movieid.mapValues(
   lambda values: find_avg_rating(values)).collect()
[
 ('200', ('Star Wars', 3.0)),
 ('100', ('Lion King', 4.5))
]

















DataFrame Solution


The solution using DataFrames is quite straightforward:
we create a DataFrame per input and then
join them on the common key, Movie-ID.


First let’s create the DataFrames:


movies_by_name = [('100', 'Lion King'), ('200', 'Star Wars'),
                  ('300', 'Fiddler on the Roof'), ('400', 'X-Files')]
movies_df = spark.createDataFrame(movies_by_name,
                  ["movie_id", "movie_name"])
movies_df.show()
+--------+-------------------+
|movie_id|         movie_name|
+--------+-------------------+
|     100|          Lion King|
|     200|          Star Wars|
|     300|Fiddler on the Roof|
|     400|            X-Files|
+--------+-------------------+

ratings_by_user = [('100', 4, 'USER-1234'),
                   ('100', 5, 'USER-3467'),
                   ('200', 4, 'USER-1234'),
                   ('200', 2, 'USER-1234')]

ratings_df = spark.createDataFrame(ratings_by_user,
                   ["movie_id", "rating", "user_id"]).drop("user_id")
ratings_df.show()
+--------+------+
|movie_id|rating|
+--------+------+
|     100|     4|
|     100|     5|
|     200|     4|
|     200|     2|
+--------+------+


Then all we have to do is perform the join operation. This is easy with DataFrames:


joined = ratings_df.join(movies_df, "movie_id")
joined.show()
+--------+------+----------+
|movie_id|rating|movie_name|
+--------+------+----------+
|     200|     4| Star Wars|
|     200|     2| Star Wars|
|     100|     4| Lion King|
|     100|     5| Lion King|
+--------+------+----------+

output = joined.groupBy("movie_id", "movie_name").avg()
output.show()
+--------+----------+-----------+
|movie_id|movie_name|avg(rating)|
+--------+----------+-----------+
|     200| Star Wars|        3.0|
|     100| Lion King|        4.5|
+--------+----------+-----------+
























Input-Map-Combiner-Reduce-Output


The Input-Map-Combiner-Reduce-Output
design pattern is very similar to Input-Map-Reduce-Output. The
main  difference is that combiners are used  as
well, to speed up the transformation.
In the MapReduce paradigm (implemented in
Apache Hadoop), a combiner—also known
as a semi-reducer—is an optional
function that works by accepting the
outputs from the mapper function for each partition on a worker node, aggregating the results per key, and finally
passing the output (key, value)  pairs
to the reducer function. In Spark,
combiners are automatically executed
on each worker node and partition, and
you do not have to write any special
combiner functions. An example
of such a transformation is the
reduceByKey() transformation,
which merges the values for each key
using an associative and commutative
reduce function. 


The main function of a combiner is to
summarize and aggregate the mapper’s
output records as (key, value)
pairs, with the same key per partition.
The purpose of this design pattern  is
to make sure that combiners can be used and that your data algorithm
will not deliver incorrect results. For example, the goal is to sum up values per key and
we have the following (key, value) pairs:


 (K1, 30), (K1, 40),
 (K2, 5), (K2, 6), (K2, 7)


in the same partition, then, the job of a
combiner is to summarize these as (K1, 70), (K2, 18).


This data design pattern is illustrated
by Figure 9-5.
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Figure 9-5. The Input-Map-Combine-Reduce-Output design pattern




Suppose we have input representing cities
and their associated temperatures, and our goal
is to find the average temperature for each city. source_rdd has the format
RDD[(String, Double)] for our data, where the
key is the city name and the value is the associated
temperature. To find the average temperature per city, you might attempt to write:


# WARNING: THIS WILL NOT WORK
# let t1, t2 denote temperatures for the same city
avg_per_city = source_rdd.reduceByKey(
  lambda t1, t2: (t1+t2)/2
)


But this is not the right transformation, so
it will not compute the average per city. The problem is that, as we know, the average function is not associative:


AVG(1, 2, 3, 4, 5) != AVG(AVG(1, 2), AVG(3, 4, 5))


That is, the average of averages is not an
average. Why not? The following example illustrates. Suppose we have this data, on two partitions:


Partition-1:
  (Paris, 20)
  (Paris, 30)

Partition-2:
  (Paris, 40)
  (Paris, 50)
  (Paris, 60)


Our transformation will create:


Partition-1:
  (Paris, (20+30)/2) = (Paris, 25)

Partition-2:
  (Paris, (40+50)/2) = (Paris, 45)
  (Paris, (45+60)/2) = (Paris, 52.5)


Finally, combining the results of the two partitions will produce:


(Paris, (25+52.5)/2)) = (Paris, 38.75)


Is 38.75 the average of (20, 30, 40, 50, 60)?
Of course not! The correct average is
(20 + 30 + 40 + 50 + 60) / 5 = 200 / 5 = 40.


Because the average function is not associative, our reducer function is not correct—but with a minor modification, we can make the output of the mappers commutative and associative. This will give us the correct averages per unique city.


Say we have the following data in an RDD:


sample_cities = [('Paris', 20), ('Paris', 30),
  ('Paris', 40), ('Paris', 50), ('Paris', 60),
  ('Cupertino', 40), ('Cupertino', 60)]

cities_rdd = spark.sparkContext.parallelize(sample_cities)


Now, we’ll create a new RDD from cities_rdd to
make sure that its values comply with the laws of commutativity and associativity:


cities_sum_count = cities_rdd.mapValues(lambda v: (v, 1))


cities_sum_count is an RDD[(city, (sum-of-temp, count-of-temp)). Since we know
that addition is a commutative and associative operation over a (sum, count) tuple, we can
write our reduction as:


cities_reduced = cities_sum_count.reduceByKey(
  lambda x, y: (x[0]+y[0], x[1]+y[1])
)


We then need one final mapper to find the temperature average
per city:


avg_per_city = cities_reduced.mapValues(
  lambda v: v[0]/v[1]
)


Another solution for this design
pattern is to use Spark’s combineByKey()
transformation. If cities_rdd
is our source RDD, then we can find the
average temperature per city as follows:


avg_per_city = cities_rdd.combineByKey(
  lambda v: (v, 1), [image: 1]
  lambda C, v: (C[0]+v, C[1]+1) [image: 2]
  lambda C1, C2: (C1[0]+C2[0], C1[1]+C2[1]) [image: 3]
).mapValues(lambda v: v[0]/v[1])


	[image: 1]

	Create C as (sum, count).


	[image: 2]

	Merge values per partition.


	[image: 3]

	Combine two partitions (combine two Cs
into one).




Tip

For your combiners to work properly and be semantically correct, the intermediate values output by your mappers must be monoids and follow the algebraic laws of commutativity and associativity. To learn more about this design pattern, see Chapter 4 and the paper “Monoidify! Monoids as a Design Principle for Efficient MapReduce Algorithms” by Jimmy Lin.



















Input-MapPartitions-Reduce-Output


Input-MapPartitions-Reduce-Output is a very
important data design pattern in which you apply a function to each partition—each of which may have thousands or millions
of elements—as opposed to each element.
We discussed this design pattern in Chapters 2 and 3, but because of its importance I wanted to cover it here in more detail. Imagine that you have
billions of records and you want to summarize
all of these records into a compact data structure such as a list, array, tuple, or dictionary. You can do that with the Input-MapPartitions-Reduce-Output design pattern, illustrated in
Figure 9-6.
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Figure 9-6. The Input-MapPartitions-Reduce-Output design pattern




The general scenario can be summarized as follows:


	Input

	
Billions of records.



	Processing

	
Use mapPartitions() as a summarization design pattern.


Split the input into N partitions, then analyze/process each partition using a custom function, independently and concurrently, and produce a compact data structure (CDS) such as an array, list, or dictionary. We can label these outputs as CDS-1, CDS-2, …, CDS-N.



	Reducer

	
The final reducer works on the generated values CDS-1, CDS-2, …, CDS-N. The output of this step is a single compact data structure, such as an array, list, or 
dictionary.






Spark’s  mapPartitions() is a specialized map()
that is called only once for each partition. The
entire content of the partition is
available as a sequential stream of values via
the input argument (Iterator[V], where V
is the data type of the source RDD elements). The custom
function must return an Iterator[T], where T is the data type of the target RDD elements.


To understand this design pattern, you must
understand  the difference between map() and
mapPartitions().
The method map() converts each element of the
source RDD into a single element of the target RDD
by applying a function. On the other hand,
mapPartitions() converts each partition—comprised of thousands or millions of elements—of the source RDD into multiple elements of the
result (possibly none).


Suppose we have billions of records of the form:


<name><,><gender><,><salary>


and our goal is to sum up the salaries
of employees based on their gender. We want to find the following three (key, value) tuples from all the input records:


("male", (total-number-of-males, sum-of-salaries-for-males))
("female", (total-number-of-females, sum-of-salaries-for-females))
("unknown", (total-number-of-unknowns, sum-of-salaries-for-unknowns))


As we can observe from the expected output, there are
only three keys: "male", "female", and "unknown".


Here are a few examples of the input records, which I’ll use to illustrate how this design pattern behaves:


alex,male,22000
david,male,45000
jane,female,38000
mary,female,39000
max,male,55000
nancy,female,67000
ted,x,45000
sam,x,32000
rafa,male,100000


A naive solution would be to generate (key, value) pairs, where the key is a gender and the value is a salary and then aggregate the results using the
groupByKey() 
transformation. However, this solution
is not efficient and has the following potential problems, which we can avoid by
using Spark’s mapPartitions() transformation:



	
It will create billions of (key, value)
pairs, which will clutter the cluster network.



	
Since there are only three keys, if you use
the  groupByKey() transformation
each key will have billions of values, which
might cause OOM errors.



	
Since there are only three keys, the cluster
might not be utilized efficiently.






The Input-MapPartitions-Reduce-Output design
pattern comes to our rescue and offers an
efficient solution. First, we partition the input into N partitions, each containing thousands or millions of records. The value N can be determined based on the input
size (N=200, 400, 1000, 20000, …). The next step is to apply the mapPartitions()
transformation: we map each partition and create a very
small dictionary per partition with three keys: "male",
"female", and "unknown". The final reduction will be
to aggregate these N dictionaries.


Let’s partition our sample input into two partitions:


Partition-1:
   alex,male,22000
   david,male,45000
   jane,female,38000
   mary,female,39000
   max,male,55000

Partition-2:
   nancy,female,67000
   ted,x,45000
   sam,x,32000
   rafa,male,100000


The main idea behind this design pattern is
to partition the input and then process the partitions
independently and concurrently. For example,
if N=1000 and you have N mappers, then
all of them can be executed concurrently.
Applying the basic mapping using mapPartitions(), we will generate the following
dictionaries per partition:


Partition-1:
{
  "male": (122000, 3),
  "female": (77000, 2)
}

Partition-2:
{
  "male": (100000, 1),
  "female": (67000, 1),
  "unknown": (77000, 2)
}


Next, we will apply the final reduction to
aggregate the output of all the partitions into a
single dictionary:


final output:
{
  "male": (222000, 4),
  "female": (144000, 3),
  "unknown": (77000, 2)
}


When the Input-MapPartitions-Reduce-Output
design pattern is used to summarize data,
there is no scalability issue since we are
creating one simple, small data structure
(such as a dictionary) per partition. If
even we set N=100,000, the
solution is efficient, since processing 100,000 small dictionaries will not cause
any OOM problems.

Tip

The most important reason
to use the mapPartitions() transformation
is performance. By having all the data
(as a single partition) that we need to perform calculations on a single server node, we
reduce the overhead of the shuffle (the
need for serialization and network traffic).




An additional advantage of using Spark’s mapPartitions() transformation to implement the Input-MapPartitions-Reduce-Output design pattern is that it allows you to perform heavyweight initialization per partition (rather than per element). The following example illustrates this. mapPartitions() provides for the
initialization to be done once per worker
task/thread/partition instead of once per
RDD data element:


# source_rdd: RDD[V]
# source_rdd.count() in billions

# target_rdd: RDD[T]
# target_rdd.count() in thousands

# apply transformation
target_rdd = source_rdd.mapPartitions(custom_func)

def custom_func(partition):
  database_connection = <heavyweight-operation-initialization>
  target_data_structure = <initialize>
  for element in partition
    target_data_structure = update(element,
                                   target_data_structure,
                                   database_connection)
  #end-for
  close(database_connection)

  return target_data_structure
#def

















Inverted Index


In computer science, an inverted index
is a database index that stores a mapping
from content—such as words or numbers—to its location(s) in a table, a
document, or a set of documents. For
example, consider the following input:


doc1: ant, dog
doc2: ant, frog
doc3: dog
doc4: ant


The goal of an inverted index is to create
this index:


frog: [doc2]
ant: [doc1, doc2, doc4]
dog: [doc1, doc3]


Now, if you want to search for “dog,” you know that it is
in [doc1, doc3]. The Inverted Index
design pattern generates an index from
a dataset to allow for faster searches.
This type of index is the most popular data
structure used in document retrieval
systems, and is used on a large scale in search
engines.


The inverted index design pattern has advantages and disadvantages. Advantages include that it enables us to perform fast
  full-text searches (at the cost of increased
  processing when a document is added to the
  database), and that it is easy to develop. Using PySpark,
  we can implement this design pattern
  with a series of map(), flatMap(),
  and reduction transformations.


However, there is also a large storage overhead and high maintenance
  costs associated with update, delete, and insert operations.










Problem Statement


Suppose we have a dataset that consists of the works of Shakespeare, split
among many files. We want to produce an index that contains a list of all the words, the file(s) in which each one occurs, and the number
of times it occurs.

















Input


Sample input documents for creating the inverted index can be downloaded from GitHub. The documents consist of a series of 35 text files:


0ws0110.txt
0ws0210.txt
...
0ws4210.txt

















Output


The output will be an inverted index created from all the documents read in the input phase. This output will have the following format:


(word, [(filename1, frequency1), (filename2, frequency2), ...])


which indicates that word is in filename1 (with a frequency of frequency1), in

filename2 (with a frequency of frequency2), and so on.

















PySpark Solution


Our PySpark implementation of this design pattern consists of the following steps:


	
Read the input files, filtering all
stopwords (a, of, the, etc.) and apply stemming algorithms
if desired (for example, converting reading to read and so on). This step creates pairs
of (path, text).



	
Create tuples with count 1.
That is, the expected output would be
((word, document), 1).



	
Group all (word, document) pairs
and sum the counts (reduction is required).



	
Transform each tuple
of ((word, document), frequency)
into (word, (document, count))
so that we can count word(s)
per document.



	
Output the sequence of (document, count) pairs
into a comma-separated string.



	
Save the inverted index.







Suppose we have the following three documents as input:


$ ls -l /tmp/documents/
file1.txt
file2.txt
file3.txt

$ cat /tmp/documents/file1.txt
fox jumped
fox jumped high
fox jumped and jumped

$ cat /tmp/documents/file2.txt
fox jumped
fox jumped high
bear ate fox
bear ate honey

$ cat /tmp/documents/file3.txt
fox jumped
bear ate honey


Step 1 is to read the input files and create pairs of (path, text),
where  path is the full name of the input
file and text is the content of the file. For example, if
path denotes the file
/tmp/documents/file1.txt,
then text is the content of the file file1.txt. Spark’s wholeTextFiles(path) function
reads a directory of text files from a filesystem URI. Each file is read as a single
record and returned in a (key, value) pair,
where the key is the path to the file and
the value is the content of the file:


docs_path = '/tmp/documents/'
rdd = spark.sparkContext.wholeTextFiles(docs_path)
rdd.collect()
[('file:/tmp/documents/file2.txt',
  'fox jumped\nfox jumped high\nbear ate fox \nbear ate honey\n'),
 ('file:/tmp/documents/file3.txt',
  'fox jumped\nbear ate honey\n'),
 ('file:/tmp/documents/file1.txt',
  'fox jumped\nfox jumped high\nfox jumped and jumped\n')]


Step 2 is to map each text
into a set of ((word, document), 1) pairs. We start by splitting the texts on newlines:


def get_document_name(path):
  tokens = path.split("/")
  return tokens[-1]
#end-def

rdd2 = rdd.map(lambda x : (get_filename(x[0]), x[1]))
rdd2.collect()
[('file2.txt',
  'fox jumped\nfox jumped high\nbear ate fox \nbear ate honey\n'),
 ('file3.txt',
  'fox jumped\nbear ate honey\n'),
 ('file1.txt',
  'fox jumped\nfox jumped high\nfox jumped and jumped\n')]

rdd3 = rdd2.map(lambda x: (x[0], x[1].splitlines()))
rdd3.collect()
[('file2.txt',
 ['fox jumped', 'fox jumped high', 'bear ate fox ', 'bear ate honey']),
 ('file3.txt',
  ['fox jumped', 'bear ate honey']),
 ('file1.txt',
  ['fox jumped', 'fox jumped high', 'fox jumped and jumped'])]


Next, we create (word, 
document) pairs and map them into tuples of ((word, document), 1), which indicates that the word belongs to the document with a frequency of 1:


def create_pairs(tuple2):
  document = tuple2[0]
  records = tuple2[1]
  pairs = []
  for rec in records:
    for word in rec.split(" "):
      pairs.append((word, document))
  return pairs
#end-def

rdd4 = rdd3.flatMap(create_pairs)
rdd4.collect()
[('fox', 'file2.txt'), ('jumped', 'file2.txt'),
 ('fox', 'file2.txt'), ('jumped', 'file2.txt'), ... ]

rdd5 = rdd4.map(lambda x: (x, 1))
rdd5.collect()
[(('fox', 'file2.txt'), 1), (('jumped', 'file2.txt'), 1),
 (('fox', 'file2.txt'), 1), (('jumped', 'file2.txt'), 1), ...]


Step 3 is to perform a simple reduction
to group all the ((word, document), 1) pairs and
sum the counts:


frequencies = rdd5.reduceByKey(lambda x, y: x+y)
frequencies.collect()
[(('fox', 'file2.txt'), 3), (('jumped', 'file2.txt'), 2),
 (('ate', 'file2.txt'), 2), (('bear', 'file3.txt'), 1), ...]


In step 4, we perform a very simple map() transformation
that moves the path into the value part of the tuple:


((word, path), frequency) => (word, (path, frequency))


We do this as follows:


mapped = frequencies.map(lambda v: (v[0][0], (v[0][1], v[1])))
>>> mapped.collect()
[('fox', ('file2.txt', 3)), ('jumped', ('file2.txt', 2)),
 ('ate', ('file2.txt', 2)), ('bear', ('file3.txt', 1)), ...]


Next, in step 5 we output the sequence of (document, count) pairs
  into a comma-separated string:


inverted_index = mapped.groupByKey()
inverted_index.mapValues(lambda values: list(values)).collect()
[('fox', [('file2.txt', 3), ('file1.txt', 3), ('file3.txt', 1)]),
 ('bear', [('file3.txt', 1), ('file2.txt', 2)]),
 ('honey', [('file3.txt', 1), ('file2.txt', 1)]), ...]


To implement this step, I used the
groupByKey() transformation. You may
use other reduction transformations, such as reduceByKey() or combineByKey(), to accomplish the same task. For example, you could implement this step with the combineByKey() transformation as follows:


# convert a tuple into a list
def to_list(a):
  return [a]

# append a tuple to a list
def append(a, b):
  a.append(b)
  return a

# merge two lists from partitions
def extend(a, b):
  a.extend(b)
  return a

inverted_index = rdd6.combineByKey(to_list, append, extend)


Finally, step 6 is to save your created inverted index:


inverted_index.saveAsTextFile("/tmp/output/")
























Summary


This chapter presented some of the most
common and fundamental data analysis design patterns
with simple examples, demonstrating implementations using PySpark. Before you invent a
new custom data transformation, you should
study the available PySpark APIs and use them if possible
(since these APIs are tested rigorously,
you can use them with confidence). Using combinations of Spark
transformations will enable you to solve just about any data problem.


The next chapter introduces some practical data design patterns for  production 
environments.













Chapter 10. Practical Data Design Patterns



The goal of this chapter is to introduce
some practical data design
patterns that are useful in solving common
data problems. We will focus on actual design patterns that are used in big data
solutions and deployed in
production environments.


As in the previous chapter, I’ll provide simple examples to illustrate the use of each one and show you how to use Spark’s transformations to implement them. I’ll also talk more about the concept of monoids, to help you better understand reduction transformations.


The  best  design  patterns  book available is
the iconic  computer  science  book
Design Patterns: Elements of Reusable
 Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (known as The “Gang of
Four”). Rather than present data design
patterns similar to those in the  “Gang of Four”
book, I will focus on practical, informal
data design patterns that have been used
in production environments.


The data design
patterns that we’ll cover in this chapter can help us
to write scalable solutions to be deployed
on Spark clusters.  However, be aware that when it comes to adopting and using design
patterns, there is no silver bullet. Every pattern should be tested for performance and scalability using real data, in an environment similar to your production environment.

Note

For a general introduction to design patterns in software
engineering, see the aforementioned Design Patterns: Elements
of Reusable Object-Oriented Software by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley).  To learn more about design
patterns in MapReduce, see MapReduce Design Patterns by
Donald Miner and Adam Shook and my book Data Algorithms (both published by O’Reilly).




The design
patterns that I will cover in this chapter include:



	
In-mapper combining



	
Top-10



	
MinMax



	
The composite pattern/monoids



	
Binning



	
Sorting






We’ll start with a useful summarization design pattern, using an in-mapper combiner.


Source Code

Complete programs for this chapter are available in the book’s
GitHub repository.










In-Mapper Combining


In the MapReduce paradigm, a combiner (also known as a semi-reducer) is a process that runs locally on each worker to aggregate data before it’s sent across the network to the reducer(s). In frameworks like Hadoop, this is typically viewed as an optional local optimization. An in-mapper combiner performs a further optimization by performing the aggregation in memory as it receives each (key, value) pair from the mapper, rather than writing them all to to the local disk and then aggregating the values by key. (Spark performs all its processing in memory, so this is how it operates by default.)
The aim of the in-mapper combining design pattern is for the mapper to efficiently combine and summarize its output as much as possible, so it emits fewer intermediate (key, value) pairs for the
sort and shuffle and reducers (such as
reduceByKey() or  groupByKey()) to handle. For
example, for a classic word count problem,
given an input record such as:


"fox jumped and fox jumped again fox"


without using the in-mapper combining design pattern we would generate
the following (key, value) pairs to send to the reducers:

(fox, 1)
(jumped, 1)
(and, 1)
(fox, 1)
(jumped, 1)
(again, 1)
(fox, 1)


The problem is that for a very large dataset this approach would generate a huge number of (word, 1) pairs, which would be inefficient and keep the cluster network too busy. Using the in-mapper combining design pattern, we aggregate the data by key before sending it across the network, summarizing and reducing the mapper’s output before the shuffle is performed. For example, as in this case there are three instances of (fox, 1) and two instances of (jumped, 1), these (key, value) pairs will be combined into the following output:

(fox, 3)
(jumped, 2)
(and, 1)
(again, 1)


While the reduction is not significant in this toy example, if we have a large dataset with a
lot of repeated words this design pattern can help us to achieve
significantly better performance by generating far fewer
intermediate (key, value) pairs.


To further demonstrate the concept behind this design pattern, the following sections will present three solutions to the problem of counting
the frequency of characters in a set of
documents. In simple terms, we want to find
how many times each unique character
appears in a given corpus.  We will discuss the
following solutions:



	
Basic MapReduce algorithm



	
In-mapper combining per record



	
In-mapper combining per partition














Basic MapReduce Algorithm


To count the characters in a set of documents, we split each input record into a set of words, split each word into a character
array, then (key, value)
pairs where the key is a single character
from the character array and the value is 1
(the frequency count of one character). This is the basic MapReduce design pattern that does not use any custom data types, and the reducer simply sums up the frequencies of each single unique
character. The problem with this solution
is that for large datasets it will emit a large number of
(key, value) pairs, which can overload the network and harm the
performance of the overall solution. The large number of (key, value) pairs emitted can also slow down the sort and shuffle phase (grouping
values for the same key). The different stages of this approach are illustrated in Figure 10-1.



[image: daws 1002]
Figure 10-1. Character count: basic MapReduce algorithm




Given an RDD[String], a PySpark implementation of this algorithm is provided next.


First we define a simple function that accepts
a single String record and returns a list
of (key, value) pairs, where the key is a character
and the value is 1 (the frequency of that character):


def mapper(rec):
    words = rec.lower().split() [image: 1]
    pairs = [] [image: 2]
    for word in words: [image: 3]
        for c in word: [image: 4]
           pairs.append((c, 1)) [image: 5]
        #end-for
    #end-for
    return pairs [image: 6]
#end-def


	[image: 1]

	Tokenize a record into an array of words.


	[image: 2]

	Create an empty list as pairs.


	[image: 3]

	Iterate over words.


	[image: 4]

	Iterate over a single word.


	[image: 5]

	Add each character (c) as (c, 1) to pairs.


	[image: 6]

	Return a list of (c, 1) for all characters in a given record.





This mapper() function can be simplified as:


def mapper(rec):
    words = rec.lower().split()
    pairs = [(c, 1) for word in words for c in word]
    return pairs
#end-def


Next, we use the mapper() function to count the frequencies
of unique characters:


# spark: an instance of SparkSession
rdd = spark.sparkContext.textFile("/dir/input") [image: 1]
pairs = rdd.flatMap(mapper) [image: 2]
frequencies = pairs.reduceByKey(lambda a, b: a+b) [image: 3]


	[image: 1]

	Create an RDD[String] from the input data.


	[image: 2]

	Map each record into a collection of characters
and flatten it as a new RDD[Character, 1].


	[image: 3]

	Find the frequency of each unique character.





Next, we’ll look at a more efficient implementation that uses the in-mapper combining design pattern.

















In-Mapper Combining per Record


This section introduces the in-mapper combining per
record design pattern, also known as
local aggregation per record solution. It’s similar to the basic Spark MapReduce
algorithm, with the exception that for a given
input record we aggregate frequencies for each character before emitting (key, value)
pairs. In other words, in this
solution we emit (key, value) pairs where the key
is a unique character within a given
input record and the value is the aggregated frequency
of that character within that
record.  Then  we  use  reduceByKey()  to
aggregate all the frequencies for each unique
character. This   solution  uses  local
aggregation by leveraging the associativity
and commutativity of the reduce() function
to combine values before sending them
across the network. For example, for the following
input record:


foxy fox jumped over fence


we will emit the following (key, value) pairs:


(o, 3)  (m, 1)  (v, 1)
(x, 2)  (p, 1)  (r, 1)
(y, 1)  (e, 4)  (n, 1)
(j, 1)  (d, 1)  (c, 1)


Given an RDD[String], a PySpark
solution is provided next.


First we define a simple function that accepts
a single  String  record (an element  of the input
RDD[String])  and returns a  list  of
(key, value) pairs, where the key is a unique
character and the value is the aggregated frequency
of that character:


import collections [image: 1]
def local_aggregator(record):
    hashmap = collections.defaultdict(int) [image: 2]
    words = record.lower().split() [image: 3]
    for word in words: [image: 4]
        for c in word: [image: 5]
            hashmap[c] += 1 [image: 6]
        #end-for
    #end-for
    print("hashmap=", hashmap)

    pairs = [(k, v) for k, v in hashmap.iteritems()] [image: 7]
    print("pairs=", pairs)
    return  pairs [image: 8]
#end-def


	[image: 1]

	The collections module provides high-performance
container data types.


	[image: 2]

	Create an empty dict[String, Integer]. defaultdict is a dict subclass that calls a
factory function to supply missing values.


	[image: 3]

	Tokenize the input record into an array of words.


	[image: 4]

	Iterate over words.


	[image: 5]

	Iterate over each word.


	[image: 6]

	Aggregate characters.


	[image: 7]

	Flatten the dictionary into a list of (character, frequency).


	[image: 8]

	Return the flattened list of (character, frequency).





Next, we use the local_aggregator() function to count
the frequencies of unique 
characters:


input_path = '/tmp/your_input_data.txt'
rdd = spark.sparkContext.textFile(input_path)
pairs = rdd.flatMap(local_aggregator)
frequencies = pairs.reduceByKey(lambda a, b: a+b)


This solution will emit many fewer
(key, value) pairs, which is an improvement
over the previous solution. This means there will be less load on the network and the sort and shuffle will execute faster than with the basic algorithm. However, there’s still a potential problem with this implementation: although it will scale out if we don’t have too many mappers, because we instantiate and use
a dictionary per mapper, if we have a lot of mappers we might run into OOM errors.


Next, I’ll present another version of this design pattern that avoids this problem and is even more efficient.

















In-Mapper Combining per Partition


This final solution aggregates the frequencies of each character per partition (rather than per record) of input data, where each partition may be comprised of thousands or millions of input records. To do this, we will again build a hash table of dict[Character, Integer], but this time for the characters of a given input partition instead of an input record. The mapper will then emit (key, value) pairs comprised of entries from the hash table, where the key is dict.Entry.getKey() and the value is dict.Entry.getValue(). This is a very compact data representation, since every entry of dict[Character, Integer] is equivalent to N basic (key, value) pairs, where N is equal to dict.Entry.getValue().


So, in this solution we use a single
hash table per input partition to keep track of the frequencies
of all characters in all records in that partition.  After
the mapper finishes processing the partition (using PySpark’s mapPartitions()
transformation), we emit all the (key, value)  pairs  from  the
frequencies table (the hash table we built).  Then
the reducers will sum up the frequencies from all the partitions and
find the final count of characters.  This solution is more efficient than the previous two because it emits even fewer (key, value) pairs, resulting in even less load on the network and less work for the sort and shuffle phase. It will also scale out better
than the  previous two solutions, because using a single hash table per input partition eliminates the risk of OOM problems. Even if we
partition our input into thousands of partitions,
this solution scales out very well.


As an example, for the following input partition
(as opposed to a single record):


foxy fox jumped over fence
foxy fox jumped
foxy fox


we will emit the following (key, value) pairs:


(f, 7)  (u, 2)  (v, 1)  (j, 2)  (y, 3)
(o, 7)  (m, 1)  (r, 1)  (d, 2)  (e, 5)
(x, 6)  (p, 2)  (n, 1)  (c, 1)

Note

One consideration when using this design pattern is that you need to be careful about the size of the hash table, to be sure it will not cause bottlenecks. For the character count problem, the size of the hash table for each mapper (per input partition) will be very small (since we have a limited number of unique characters), so there’s no danger of a performance bottleneck.




Given an RDD[String], the PySpark solution is provided next.


First we define a simple function that
accepts a single input partition (comprised
of many input records) and returns a
list of (key, value) pairs, where the key is a
character and the value is the aggregated frequency
of that character:


def inmapper_combiner(partition_iterator): [image: 1]
    hashmap = defaultdict(int) [image: 2]
    for record in partition_iterator: [image: 3]
        words = record.lower().split() [image: 4]
        for word in words: [image: 5]
            for c in word: [image: 6]
                hashmap[c] += 1 [image: 7]
            #end-for
        #end-for
    #end-for
    print("hashmap=", hashmap)
    #
    pairs = [(k, v) for k, v in hashmap.iteritems()] [image: 8]
    print("pairs=", pairs)
    return  pairs [image: 9]
#end-def


	[image: 1]

	partition_iterator represents a single
input partition comprised of a set of records.


	[image: 2]

	Create an empty dict[String, Integer].


	[image: 3]

	Get a single record from a partition.


	[image: 4]

	Tokenize the record into an array of words.


	[image: 5]

	Iterate over words.


	[image: 6]

	Iterate over each word.


	[image: 7]

	Aggregate characters.


	[image: 8]

	Flatten the dictionary into a list of (character, frequency).


	[image: 9]

	Return the flattened list of (character, frequency).





Next, we use the inmapper_combiner() function
to count frequencies of unique 
characters:


rdd = spark.sparkContext.textFile("/.../input") [image: 1]
pairs = rdd.mapPartitions(inmapper_combiner) [image: 2]
frequencies = pairs.reduceByKey(lambda a, b: a+b)


	[image: 1]

	Create an RDD[String] from input file(s).


	[image: 2]

	The mapPartitions() transformation returns a
new RDD by applying a function to each input partition
(as opposed to a single input record) of this RDD.





This solution will emit far fewer
(key, value) pairs than the previous ones. It’s quite efficient, since we instantiate and
use a single dictionary per input partition
(rather than per input record). This greatly reduces the amount of data that needs
to be transferred between the mappers and reducers, easing the load on the network and speeding up the sort and shuffle phase. The in-mapper combining algorithm makes good use of combiners as optimizers, and this solution scales out extremely well. Even if we have a large number of mappers, this will not cause OOM errors.
However, it should be noted that this algorithm may
run into a problem if the number of unique keys
grows too large for the associative array to
fit in memory, as memory paging will significantly affect performance. If this is the case, you will
have to revert to the basic MapReduce approach.


In implementing the in-mapper combining per partition design
pattern, we use Spark’s powerful mapPartitions()
transformation to transform each input partition
into a single dict[Character, Integer], and then
we aggregate these into a single final
dict[Character, Integer]. For character counting and other applications where you want to extract a small amount of information from a large dataset, this algorithm is efficient and faster than other
 approaches. In the case of the character counting problem, the size of the associative array (per
mapper partition) is bounded by the number of
unique characters, so there are no scalability bottlenecks
when using this design pattern.


To recap, the in-mapper combining per partition design pattern offers several important advantages in terms of efficiency and scalability:



	
Greatly reduces the number of (key, value) pairs emitted



	
Requires far less sorting and shuffling of (key, value) pairs



	
Makes good use of combiners as optimizers



	
Scales out very well






But there are also a few disadvantages to be aware of:



	
More difficult to implement (requires custom functions for handling
each 
partition)



	
Underlying object (per mapper partition)
is more heavyweight



	
Fundamental limitation in terms of size
of the underlying object (for the character
count problem, an associative array per
mapper partition)






Next, we’ll look at a few other common use cases where you want to extract a small amount of information from a large dataset, and see what the best approaches are.
























Top-10


Creating a top-10 list is a common task in
many data-intensive operations. For example,
we might ask the following questions:



	
What were the top 10 URLs visited during the
last day/week/month?



	
What were the top 10 items purchased
from Amazon during the last day/week/month?



	
What were the top 10 search queries
on Google in the last day/week/month?



	
What were the top 10 most liked items on
Facebook yesterday?



	
What are the top 10 cartoons of all time?






A simple design pattern for answering these kinds of questions is illustrated in Figure 10-2.



[image: daws 1003]
Figure 10-2. The top-10 design pattern




For example, say we have a table with
two columns, url and frequency. Finding the top 10 most visited URLs with a SQL query is straightforward:


  SELECT url, frequency
     FROM url_table
        ORDER BY frequency DESC
           LIMIT 10;


Finding the top N (where N > 0) records in Spark
is also easy. Given an RDD[(String, Integer)] where the key is a string representing a URL and the value is the frequency of visits to that URL, we can use RDD.takeOrdered(N) to find the top-N
list.  The general format of RDD.takeOrdered() is:


takeOrdered(N, key=None)
Description:
   Get the N elements from an RDD ordered in ascending
   order or as specified by the optional key function.


Assuming that N is an integer greater
than 0, we have various options for finding a top-N list efficiently with RDD.takeOrdered():


# Sort by keys (ascending):
RDD.takeOrdered(N, key = lambda x: x[0])

# Sort by keys (descending):
RDD.takeOrdered(N, key = lambda x: -x[0])

# Sort by values (ascending):
RDD.takeOrdered(N, key = lambda x: x[1])

# Sort by values (descending):
RDD.takeOrdered(N, key = lambda x: -x[1])


For the sake of argument, let’s assume that takeOrdered()
does not perform optimally with large datasets. What other options do we
have?


Given a large set of (key, value) pairs where the key is a String and the value is an Integer, we want an independent, reusable solution to the problem of finding the top N keys (where N > 0)—that is, a design pattern that enables us to produce reusable code to answer questions like the ones mentioned earlier when working with big data. This kind of question
is common for data consisting of (key, value) pairs. This is essentially a filtering task: you filter out unwanted data and keep just the top N items. The top 10
function is also a function that is commutative and
associative, and therefore using partitioners,
combiners, and reducers will always produce correct
results.


That is, given a top-10 function T and a set of values (such as frequencies) {a, b, c} for
the same key, then we  can write:



	
Commutative


T(a, b) = T(b, a)



	
Associative


T(a, T(b, c)) = T(T(a, b), c)





Tip

For additional details on the top-10 list design pattern,
refer to MapReduce Design Patterns by Donald Miner and Adam Shook.




This section provides a complete PySpark solution
for the top-10 design pattern. Given an RDD[(String, Integer)], the goal is to find the top-10 list
for that RDD. In our solution,  we assume that
all keys are unique. If the keys are not unique,
then you may use the reduceByKey() transformation (before finding
the top-10) to make them unique.


Our solution will generalize the problem
and will be able to find a top-N list (for N > 0). For
example, we will be able to find the top 10 cats, top
50 most visited websites, or top 100 search queries.










Top-N Formalized


Let’s start by formalizing the problem. Let N be an integer number greater than 0.  Let L be a
list of pairs of (T, Integer), where T can be any type
(such as String, 
Integer, etc.), L.size() = s, and s > N. The elements of  L are:
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where Ki has a data type of T and Vi is an
Integer type (this is the frequency of Ki).  Let
{sort(L)} be a sorted list where the sorting is done by
using frequency as a key. This gives us:
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where (Aj, Bj) are in L. Then, the top-N of
list L is defined as:



  
    top-N(L)
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For our top-N solution, we will use Python’s SortedDict, a sorted mutable mapping. The design of this type is simple: SortedDict inherits from dict to
store items and maintains a sorted list of keys.
Sorted dict keys must be hashable and comparable.
The hash and total ordering of keys must not change
while they are stored in the sorted dict.


To implement top-N, we need a hash table data structure whose keys can have a total order, such as SortedDict (in our case, keys represent frequencies). The dictionary is ordered according to the natural ordering of its keys. We can build this structure with sortedcontainer.SortedDict().  We will
keep adding  (frequency, url) pairs to the SortedDict,
but keep its size at N.
When the size is N+1, we will pop out the smallest
frequency using SortedDict.popitem(0).


An example of how this works is shown here:


>>> from sortedcontainers import SortedDict
>>> sd = SortedDict({10: 'a', 2: 'm', 3: 'z', 5: 'b', 6: 't', 100: 'd', 20: 's'})
>>> sd
SortedDict({2: 'm', 3: 'z', 5: 'b', 6: 't', 10: 'a', 20: 's', 100: 'd'})
>>> sd.popitem(0)
(2, 'm')
>>> sd
SortedDict({3: 'z', 5: 'b', 6: 't', 10: 'a', 20: 's', 100: 'd'})
>>> sd[50] = 'g'
>>> sd
SortedDict({3: 'z', 5: 'b', 6: 't', 10: 'a', 20: 's', 50: 'g', 100: 'd'})
>>> sd.popitem(0)
(3, 'z')
>>> sd
SortedDict({5: 'b', 6: 't', 10: 'a', 20: 's', 50: 'g', 100: 'd'})
>>> sd[9] = 'h'
>>> sd
SortedDict({5: 'b', 6: 't', 9: 'h', 10: 'a', 20: 's', 50: 'g', 100: 'd'})
>>> sd.popitem(0)
(5, 'b')
>>> sd
SortedDict({6: 't', 9: 'h', 10: 'a', 20: 's', 50: 'g', 100: 'd'})
>>>
>>> len(sd)
6


Next, I’ll present a top-10 solution using PySpark.

















PySpark Solution


The PySpark solution is pretty straightforward.
We use the mapPartitions() transformation to find the local top N (where N > 0) for each partition, and pass these to a single reducer. The reducer then finds the final top-N list from all the local top-N lists passed from the mappers.  In general,
in most MapReduce algorithms having a
single reducer is problematic and will cause a
performance bottleneck if one reducer on one server
receives all the data—potentially a very large volume—and all the other nodes are doing nothing, all the pressure and load
will be on that one node, causing a bottleneck). However, in this case, our single
reducer will not cause a performance problem.
Why not? Let’s assume that we have
5,000 partitions. Each mapper will only
generate 10 (key, value) pairs, which means
our single reducer will only get 50,000
records—a volume of data that’s not likely to cause performance bottleneck in a Spark cluster.


A high-level overview of the PySpark solution for the top-10 design pattern is presented in Figure 10-3.
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Figure 10-3. PySpark implementation of the Top-10 design pattern




Input is partitioned into smaller chunks,
and each chunk is sent to a mapper. Each
mapper emits a local top-10 list to be sent to
the reducer(s). Here, we
use a single reducer key so that the output from all mappers will be consumed by a single reducer.


Let spark be an instance of SparkSession.
This is how the top-10 problem is solved by using the
mapPartitions() transformation and a custom
Python function named top10_design_pattern():


pairs = [('url-1', 10), ('url-2', 8), ('url-3', 4), ...]
rdd = spark.sparkContext.parallelize(pairs)
# mapPartitions(f, preservesPartitioning=False)
# Return a new RDD by applying a function
# to each partition of this RDD.
top10 = rdd.mapPartitions(top10_design_pattern)


To complete the implementation, here I’ll present the
top10_design_pattern() function, which finds
the top-10 for each partition (containing a set of (key, value) pairs):


from sortedcontainers import SortedDict

def top10_design_pattern(partition_iterator): [image: 1]
    sd = SortedDict() [image: 2]
    for url, frequency in partition_iterator: [image: 3]
        sd[frequency] = url [image: 4]
        if (len(sd) > 10):
            sd.popitem(0) [image: 5]
    #end-for
    print("local sd=", sd)

    pairs = [(k, v) for k, v in sd.items()] [image: 6]
    print("top 10 pairs=", pairs)
    return  pairs [image: 7]
#end-def


	[image: 1]

	partition_iterator is an iterator for
a single partition; it iterates over a set
of (URL, frequency) pairs.


	[image: 2]

	Create an empty SortedDict of (Integer, String) pairs.


	[image: 3]

	Iterate over a set of (URL, frequency) pairs.


	[image: 4]

	Put the (frequency, URL) pairs into a SortedDict.


	[image: 5]

	Limit the size of the sorted dictionary to 10
(remove the lowest frequencies).


	[image: 6]

	Convert the SortedDict (which is a local top-10 list)
into a list of (k, v) pairs.


	[image: 7]

	Return a local top-10 list for a single partition.





Each mapper
accepts a partition of elements, where each element
is a pair of (URL, frequency).  The number of partitions is typically determined by the data size and the available resources in the cluster (nodes, cores, memory, etc.), or it can be set explicitly by the programmer. After the mapper finishes
creating its local top-10 list as a SortedDict[Integer, String], the function returns that list. Note
that we use a single dictionary (such as a SortedDict)
per partition, and not per element of the source RDD. As described in “In-Mapper Combining per Partition”, this greatly improves the efficiency of the operation by reducing the network load and the work to be done in the sort and shuffle phase.


A complete solution using mapPartitions() is provided in the book’s GitHub 
repository.

















Finding the Bottom 10


In the previous section, I showed you how to find
the top-10 list. To find the bottom-10 list, we
just need to replace this line of code:


      # find top 10
      if (len(sd) > 10): [image: 1]
          sd.popitem(0) [image: 2]


	[image: 1]

	If the size of the SortedDict is larger than 10…


	[image: 2]

	…then remove the URL with the lowest frequency from the dictionary.





with this:


      # find bottom 10
      if (len(sd) > 10): [image: 1]
          sd.popitem(-1) [image: 2]


	[image: 1]

	If the size of the SortedDict is larger than 10…


	[image: 2]

	…then remove the URL with the highest frequency from the dictionary.





Next let’s discuss how to partition your input.  Partitioning RDDs is a combination
of art and science. What is the right number
of partitions for your cluster? There is no
magic formula  for calculating
this; it depends on the number of cluster nodes, the
number of cores per server, and the amount of
RAM available. There’s some trial and error involved, but a good rule of thumb is to start with the following:


2 * num_executors * cores_per_executor


When you create an RDD, if you do not set the number of partitions explicitly, the Spark cluster manager will set it to a default number (based on the available resources). You can also set the number yourself, as shown here:


input_path = "/data/my_input_path"
desired_num_of_partitions = 16
rdd = spark.sparkContext.textFile(input_path, desired_num_of_partitions)


This creates an RDD[String] with 16 partitions.


For an existing RDD, you can reset the new number of partitions by
using the 
coalesce() function:


# rdd: RDD[T]
desired_number_of_partitions = 40
rdd2 = rdd.coalesce(desired_number_of_partitions)


The newly created rdd2 (another RDD[T]) will have 40
partitions. The coalesce() function is defined as follows:


pyspark.RDD.coalesce:
coalesce(numPartitions, shuffle=False)

Description:
  Return a new RDD that is reduced into numPartitions partitions.


Unlike repartition(), which can be used to increase or decrease the number of partitions but involves shuffling across the cluster, coalesce() can only be used to decrease the number of partitions and in most cases does not require a shuffle.


Next, I’ll introduce the MinMax design pattern,
which is used to distill a small amount of information from a large dataset of numbers.
























MinMax


MinMax is a numerical summarization design pattern. Given a set of billions of numbers, the goal
is to find the minimum, maximum, and count of
all of the numbers. This pattern
can be used in scenarios where the data
you are dealing with or you want to aggregate
is of a numerical type and the data can be grouped
by specific fields. To help you understand the concept of
the MinMax design pattern,  I am going to present
three different  solutions with quite different
performance.










Solution 1: Classic MapReduce


The naive approach is to emit the following
(key, value) pairs:


("min", number)
("max", number)
("count", 1)


The sort and shuffle will then group all values by three
keys, min, max, and count, and finally we can
use a reducer to iterate through all the numbers and find the global min, max, and count. The problem with
this approach is that we have to move potentially millions of (key, value) pairs across the network and then create
three huge Iterable<T> data structures (where T is a numeric type, such as Long or Double). This solution might run into serious
performance problems and will not scale. Furthermore, in the reduction phase it will not effectively utilize all of the cluster resources due to having only three unique keys.

















Solution 2: Sorting


The next solution is to sort all the numbers and then find the top (max), bottom (min), and count of the dataset. If the performance is
acceptable, this is a valid solution; however, for a large dataset the sorting time might be unacceptably long. In other words, this solution will not scale out either.

















Solution 3: Spark’s mapPartitions()


The final solution, which is the most efficient from
a performance and scalability point of view,
splits the data into N chunks (partitions)
and then uses Spark’s 
mapPartitions()
transformation to emit three (key, value)
pairs from each partition:


("min", minimum-number-in-partition)
("max", maximum-number-in-partition)
("count", count-of-numbers-in-partition)


Finally, we find the global min, max, and count from
all partitions. This solution scales  out  very
well. No matter how many partitions you have, this will
work and will not create OOM errors. For example,
suppose you have 500 billion numbers in your dataset (assume one or more
numbers per record), and you partition it into 100,000 chunks. In the worst case (one number per record), each partition will have 5 million
records. Each of these partitions will  emit the three pairs shown above. Then, you just need to find the min, max, and
count  of  100,000 x 3 pairs = 300,000  numbers.
This is a trivial task that will not cause any scalability problems.


A high-level view of this solution is illustrated in Figure 10-4.
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Figure 10-4. A PySpark implementation of the MinMax design pattern




Let’s assume that our input records have the following format:


<number><,><number><,><number>...


Here are a few sample records:


10,345,24567,2,100,345,9000,765
2,34567,23,13,45678,900
...


Here’s the PySpark solution for
solving the MinMax problem (the complete program with sample input is available on GitHub, in the file 
minmax_use_mappartitions.py):


input_path = <your-input-path>
rdd = spark.sparkContext.textFile(input_path) [image: 1]
min_max_count = rdd.mapPartitions(minmax) [image: 2]
min_max_count_list = min_max_count.collect() [image: 3]
final_min_max_count = find_min_max_count(min_max_count_list) [image: 4]



 	[image: 1]

  	Return a new RDD from the given input.


 	[image: 2]

  	Return an RDD of (min, max, count) from
    each partition by applying the minmax() function.


	[image: 3]

  	Collect (min, max, count) from all partitions as a list.


	[image: 4]

  	Find the (final_min, final_max, final_count)
    by calling the function find_min_max_count().





I’ve defined the minmax() function as follows:


def minmax(iterator): [image: 1]

    first_time = True

    for record in iterator: [image: 2]
        numbers = [int(n) for n in record.split(",")] [image: 3]
        if (first_time): [image: 4]
            # initialize count, min, max to the 1st record values
            local_min = min(numbers)
            local_max = max(numbers)
            local_count = len(numbers)
            first_time = False
        else: [image: 5]
            # update count, min, and max
            local_count += len(numbers)
            local_max = max(max(numbers), local_max)
            local_min = min(min(numbers), local_min)
    #end-for
    return [(local_min, local_max, local_count)] [image: 6]
#end-def


	[image: 1]

	The iterator is of type itertools.chain.


	[image: 2]

	Iterate the iterator (record holds a single record).


	[image: 3]

	Tokenize the input and build an array of numbers.


	[image: 4]

	If this is the first record, find the min, max,
and count.


	[image: 5]

	If this is not the first record, update local_min,
local_max, and local_count.


	[image: 6]

	Finally, return a triplet from each partition.





What if some of the partitions are empty (i.e., contain no data)? There are many reasons that this can occur, and it’s important to
handle empty partitions gracefully (for more on this, see Chapter 3).


I’ll show you how to do this next.
Error handling in Python is done through the use
of exceptions that are caught in try blocks and
handled in except blocks. In Python, if an error is encountered in a try
block, code execution is stopped and control is transferred down
to the except block. Let’s see how we can implement this in our MinMax solution:


def minmax(iterator): [image: 1]

    print("type(iterator)=", type(iterator)) [image: 2]
#   ('type(iterator)=', <type 'itertools.chain'>)

    try:
        first_record = next(iterator) [image: 3]
    except StopIteration: [image: 4]
        return [ None ] # We will filter out None values by filter()

    # initialize count, min, max to the 1st record values
    numbers = [int(n) for n in first_record.split(",")] [image: 5]
    local_min = min(numbers)
    local_max = max(numbers)
    local_count = len(numbers)

    for record in iterator: [image: 6]
        numbers = [int(n) for n in record.split(",")]
        # update min, max, count
        local_count += len(numbers)
        local_max = max(max(numbers), local_max)
        local_min = min(min(numbers), local_min)
#   end-for
    return [(local_min, local_max, local_count)] [image: 7]


	[image: 1]

	The iterator is of type itertools.chain.


	[image: 2]

	Print the type of the iterator (for debugging only).


	[image: 3]

	Try to get the first record from the iterator. If successful, then first_record is initialized
to the first record of a partition.


	[image: 4]

	If you are here, it means that the
partition is empty; return a null value.


	[image: 5]

	Set min, max, and count from the first record.


	[image: 6]

	Iterate the iterator for records 2, 3, etc. (record holds a single record).


	[image: 7]

	Finally, return a triplet from each partition.





How should we test the handling of empty partitions?
The program minmax_force_empty_partitions.py
(available in the book’s GitHub repository) forces the creation of empty partitions and handles them gracefully. You can force the creation of empty partitions by setting the number of partitions higher than the number of
input records. For example, if your input has N
records, setting the number of partitions to N+3 will cause the partitioner to create up to three empty
partitions.
























The Composite Pattern and Monoids


This section explores the concept of the
composite pattern and monoids, introduced in Chapter 4, and delves into how to use them in the context of Spark and PySpark.


The composite pattern is a structural design
pattern (also called a partitioning design
pattern) that can be used when a group of
objects can be treated the same as a single
object in that group. You can use it to create hierarchies and
groups of objects, resulting in a tree-like structure with leaves (objects) and composites
(subgroups). This is illustrated in
UML notation in Figure 10-5.



[image: daws 1007]
Figure 10-5. UML diagram of the Composite design pattern




With this design pattern, once you’ve composed objects
into this tree-like structure, you can work with that structure as if it were a singular
object. A key feature is the ability to run methods
recursively over the whole tree structure
and sum up the results. This pattern can be implemented with PySpark reducers.


A simple example of the use of the composite pattern
is adding a set of numbers (over a set
of keys), as illustrated in Figure 10-6.
Here, the numbers are the leaves and the composites
are the addition operator.



[image: daws 1008]
Figure 10-6. Composite pattern example: addition




Next, I’ll discuss the concept of monoids in
the context of the composite pattern.










Monoids


In Chapter 4, we discussed the use of monoids in
reduction transformations. Here, we will look at monoids in the
context of the composite pattern, which is commonly used in big data for composing (such as through addition and concatenation operators) and aggregating sets of data points.  From the pattern’s definition, it should be
obvious that there is a commonality
between monoids and the composite pattern.


As a refresher, let’s take a look
at the definition of monoids from Wikipedia:


In abstract algebra, a  branch of  mathematics, a monoid
is  a set equipped with an associative
binary operation and an  identity  element. Monoids  are semigroups
with  identity.  Such algebraic structures occur  in several  branches  of
mathematics. For example, the functions  from a set  into itself  form  a monoid with respect  to function  composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid.



The MapReduce programming model is an application of monoids in computer science. As we’ve seen, it consists of
three functions: map(), combine(), and
reduce().  These functions are very
similar to the map() and flatMap() functions
(combine() is an optional operation) and
reduction transformations in Spark. Given a
dataset, map() maps arbitrary
data to elements of a specific monoid, combine()
aggregates/folds data at a local level (worker
nodes in cluster), and reduce()
aggregates/folds those elements,
so that in the end we produce just one element.


So, in terms of programming language semantics,
a monoid is just an interface with one abstract
value and one abstract method. The abstract
method for a monoid is the append operation (it
can be an addition operator on integers or a concatenation operator on string objects).
The abstract value for a monoid is the identity
value, defined as the value you
can append to any value that will always result
in the original value, unmodified.  For example,
the identity value for collection data structures
is the empty collection, because appending a
collection to an empty collection will typically
produce the same collection unmodified. For adding a set of integers, the identity value is  zero, and for
concatenating strings it’s an
empty string (a string of length zero).


Next, we will briefly review MapReduce’s combines and abstract algebra’s monoids and see how they are related to each other. As you’ll see, when your MapReduce
operations (e.g., map() and reduceByKey()
transformations in Spark) are not monoids, it
is very hard (if not impossible) to  use
combiners efficiently.


In the MapReduce
paradigm, the mapper is not constrained,
but the reducer is required to be (the iterated
application of) an associative operation. The combiner (as an optional
plug-in component) is a “local reducer” process that
operates only on data generated by one server. Successful
use of combiners reduces the amount of intermediate data
generated by the mappers on a given single server (that
is why it is called local).  Combiners can
be used as a MapReduce optimization to reduce network
traffic by decreasing the amount of
(key, value) pairs sent from mappers to reducers.
Typically, combiners have the same interface as reducers.
A combiner must have the following characteristics:



	
Receives as input all the data emitted
by the mapper instances on a given server (this
is called a local aggregation)



	
Sends its output to the reducers



	
Side-effect free (combiners
may run an indeterminate number of times)



	
Has the same input and output
key and value types



	
Runs in memory after the map phase






We can define a combiner skeleton as follows:


# key: as KeyType
# values: as Iterable<ValueType>
def combine(key, values):
   ...
   # use key and values to create new_key and new_value
   new_key = <a-value-of-KeyType>
   new_value = <a-value-of-ValueType>
   ...
   return (new_key, new_value);
   ...
#end-def


This template illustrates that the (key, value)
pairs generated by a combiner must be of the same type as
the (key, value) pairs emitted by the mapper. For example, if a mapper outputs
(T1, T2) pairs (where the key is of type T1
and the value is of type T2), then a combiner has
to emit (T1, T2) pairs as well.


The Hadoop MapReduce framework does not have an explicit
combine() function, but a Combiner class can be added between the Map and Reduce classes to reduce the amount of data transferred to the reducer. The combiner is specified with the Job.setCombinerClass() method.


The goal of the combiner should be to “monoidify” the intermediate value emitted by the mapper—as we saw in Chapter 4, this is the guiding principle for designing efficient MapReduce algorithms.


Some programming languages, like Haskell, have direct support for monoids.
In Haskell, a monoid is “a type with a
rule for how two elements of that type can be combined to
make another element of the same type.” We’ll look at some examples in the following sections, but first let’s have a quick refresher on monoids.


A monoid is a triplet (S, f, e), where:



	
S is a set (called the underlying set of the monoid).







	
f is a mapping called the binary operation of the monoid (f : S x S → S).







	
e is the identity operation of the monoid (e ∈ S).






A monoid with binary operation + (note that here + denotes the binary operation, not a mathematical addition operator)
satisfies the following three axioms (note that
f(a,b) = a + b):


	Closure

	
For all a, b in S, the result of the operation
(a + b) is also in S.



	Associativity

	
For all a, b, and c in S, the following equation holds:


((a + b) + c) = (a + (b + c))






	Identity element

	
There exists an element e in S such that for all
elements a in S, the following two equations hold:


e + a = a
a + e = a






In mathematical notation, we can write these as follows:


	Closure

	

∀ a,b ∈ S: a + b ∈ S






	Associativity

	

for all a,b,c in S: ((a + b) + c) = (a + (b + c))






	Identity element

	

{
  exists e in S:
    for all a in S:
       e + a = a
       a + e = a
}






A monoid operation might (but isn’t required to) have other properties, such as:


	Idempotency

	

for all a in S: a + a = a






	Commutativity

	

for all a, b in S: a + b = b + a






To form a monoid, first we need a type S,
which can define a set of values such as
integers: {0, -1, +1, -2, +2, ...}.
The second component is a binary function:


  	+ : S x S → S

  


Then we need to make sure that for any two
 values x and y in S:


  	x + y : S



For example, if type S is a set of integers,
then the binary operation may be addition (+),
multiplication (*),  or division (/). Finally,
as the third and most important ingredient, we need
the binary operation to follow the specified set of laws. If it
does, then we say (S, +, e) is a monoid,
where e in S is the identity element (such as 0
for addition and 1 for multiplication).

Tip

Note that the binary division operation (/) over a set
of real numbers is not a monoid:


((12 / 4) / 2) != (12 / (4 / 2))
((12 / 4) / 2) =  (3 / 2) = 1.5
(12 / (4 / 2)) =  (12 / 2) = 6.0




In a nutshell, monoids capture the notion of
combining arbitrarily many things into a single
thing, together with a notion of an empty thing
called the identity element or value.  One simple example is addition
of natural numbers {1, 2, 3, ...}. The addition
function + allows us to combine arbitrarily
many natural numbers into a single natural number,
the sum. The identity value is the number 0.  Another
example is string concatenation, where the concatenation
operator allows us to combine arbitrarily many strings
into a single string; in this case the identity value is the empty string.

















Monoidal and Non-Monoidal Examples


Spark uses combiners in the reduceByKey() transformation, so to use this transformation effectively you must be sure that the reduction function is a monoid—that is, a monoid is a set (denoted by S)
that is closed under an associative binary
operation (f) and has an identity element I
in S such that for all x in S, f(I, x) = x
and f(x, I) = x. To help you understand the concept of monoids, here I provide some monoidal and non-monoidal examples.












Maximum over a set of integers


The set S = {0, 1, 2, ...} is a commutative monoid
for the MAX (maximum) operation, whose identity element
is 0:


MAX(a, MAX(b, c)) = MAX(MAX(a, b), c)}
MAX(a, 0) = a
MAX(0, a) = a
MAX(a, b) in S

















Subtraction over a set of integers


Subtraction (-) over a set of integers does
not define a monoid; this operation is not associative:


(1 - 2) -3 = -4
1 - (2 - 3) = 2

















Addition over a set of integers


Addition (+) over a set of integers
defines a monoid;  this operation is commutative
and associative and the identity element is 0:


(1 + 2) + 3 = 6
1 + (2 + 3) = 6
n + 0 = n
0 + n = n


We can formalize this as follows, where e(+)
defines an identity element:


S = {0, -1, +1, -2, +2, -3, +3, ...}
e(+) = 0
f(a, b) = f(b, a) = a + b

















Union and intersection over integers


Union or intersection over a set
of integers forms a monoid. The binary function
is union/intersection and the identity element
is an empty set, {}.

















Multiplication over a set of integers


The set of natural numbers N = {0, 1, 2, 3, ...} forms a commutative monoid under multiplication
(the identity element is 1).

















Mean over a set of integers


On the other hand, the set of natural numbers, N = {0, 1, 2, 3, ...}
does not form a monoid under the MEAN (average) function. The
following example shows that the mean of means of an arbitrary
subset of a set of values is not the same as the mean of the
complete set of values:


MEAN(1, 2, 3, 4, 5)
-- NOT EQUAL --
MEAN( MEAN(1,2,3), MEAN(4,5) )

MEAN(1, 2, 3, 4, 5) = (1+2+3+4+5)/5
                    = 15/5
                    = 3

MEAN( MEAN(1,2,3), MEAN(4,5) ) = MEAN(2, 4.5)
                               = (2 + 4.5)/2
                               = 3.25


Therefore, if you want to find the average of
values for an RDD[(key, integer)], you may not use the following transformation
(which might yield the incorrect value due to partitioning):


# rdd: RDD[(key, integer)]
average_per_key = rdd.reduceByKey(lambda x, y: (x+y)/2)


The correct way to find the average per key is to make that function a monoid:


# rdd: RDD[(key, integer)]
# create value as (sum, count) pair: this makes a monoid
rdd2 = rdd.mapValues(lambda n: (n, 1))
# find (sum, count) per key
sum_count = rdd2.reduceByKey(lambda x, y: (x[0]+y[0], x[1]+y[1]))
# now, given (sum, count) per key, find the average per key
average_per_key = sum_count.mapValues(lambda x: x[0]/x[1])

















Median over a set of integers


The set of natural numbers likewise does not form a monoid under the
MEDIAN 
function:


MEDIAN(1, 2, 3, 5, 6, 7, 8, 9)
-- NOT EQUAL --
MEDIAN( MEDIAN(1,2,3), MEDIAN(5,6,7,8,9) )

MEDIAN(1, 2, 3, 5, 6, 7, 8, 9)
  = (5 + 6) / 2
  = 11 / 2
  = 5.5

MEDIAN( MEDIAN(1,2,3), MEDIAN(5,6,7,8,9) )
  = MEDIAN(2, 7) =
  = (2 + 7) / 2
  = 9 / 2
  = 4.5

















Concatenation over lists


List concatenation (+)  with an empty
list ([]) is a monoid. For any list L, we
can write:


L + [] = L
[] + L = L


Also, note that the concatenation function is
associative. Given two lists, say [1,2,3] and
[7,8], we can join them together using + to
get [1,2,3,7,8]. However, except in the case of concatenation with the empty list (or string, set, etc.), it is not commutative: [1,2,3]+[7,8] = [1,2,3,7,8] while [7,8]+[1,2,3] = [7,8,1,2,3].

















Matrix example


Let N = {1, 2, 3, ...}, and let m, n ∈ N.
Then the set of m × n matrices
with integer entries, written as Zm×n,
satisfies properties  that make it a monoid
under 
addition:



	
Closure is guaranteed by the definition.



	
The associative property is guaranteed by the
associative property of its elements.



	
The additive identity is 0, the zero matrix.






These examples should help you understand what it means for a reduction function to be a monoid. Spark’s reduceByKey() is an efficient
transformation that merges the values for each key
using an associative and commutative reduce function.
We have to make sure that its reduce function is a monoid, or we might not
get correct reduction results.






















Non-Monoid MapReduce Example


Given a large number of (key, value) pairs
where the keys are strings and the values are
integers, the goal for this non-monoid example
is to  find the average of all
the values by key. Suppose we have the following data in a table called mytable, with key and value columns:


SELECT key, value FROM mytable

key    value
---    -----
key1   10
key1   20
key1   30
key2   40
key2   60
key3   20
key3   30


In SQL, this is accomplished as follows:


SELECT key, AVG(value) as avg FROM mytable GROUP BY key

key    avg
---    ---
key1   20
key2   50
key3   25


Here’s an initial version of a MapReduce algorithm,
where the mapper is not generating monoid outputs
for the mean/average function:


	Mapper function

	

# key: a string object
# value: a long associated with key
map(key, value) {
   emit(key, value);
}



	Reducer function

	

# key: a string object
# values: a list of long data type numbers
reduce(key, values) {
   sum = 0
   count = 0
   for (i : list) {
      sum += i
      count += 1
   }
   average = sum / count
   emit(key, average)
}






There are a few problems with this first attempt at a MapReduce algorithm:



	
The algorithm is not very efficient; it will require a lot of work to be done in the sort and shuffle phase.



	
We cannot use the reducer as a combiner, because we know
that the mean of means of arbitrary subsets of a set of
values is not the same as the mean of the complete set of values.






What changes can we make to enable us to use our reducer as a combiner, so that we can lessen the load on the network and speed up the sort and shuffle phase? We need to change the output of the mapper, so that it’s a monoid. This will ensure that our combiners and reducers
will behave correctly.


Let’s take a look at how we can do that.

















Monoid MapReduce Example


In this section, I’ll revise the mapper to generate
(key, value) pairs where the key is a string and
the value is a pair (sum, count). The (sum, count) data structure is a monoid,
and the identity element is (0, 0). The proof is
given here:


Monoid type is (N, N) where N = {set of integers}

Identity element is (0, 0):
(sum, count) + (0, 0) =  (sum, count)
(0, 0) + (sum, count) =  (sum, count)

Let a = (sum1, count1), b = (sum2, count2), c = (sum3, count3)
Then associativity holds:
(a + (b + c)) = ((a + b) + c)

+ is the binary function:
a + b = (sum1+sum2, count1+count2) in (N, N)


Now, let’s write a mapper for our monoid data type:


# key: a string object
# value: a long data type associated with key
# emits (key, (sum, count))
map(key, value) {
   emit (key, (value, 1))
}


As you can see, the key is the same as before,
but the value is a pair of (sum, count). Now,
the output of the mapper is a monoid where the
identity element is (0, 0).  The element-wise
sum operation can be performed as:


 element1 = (key, (sum1, count1))
 element2 = (key, (sum2, count2))

 ==> values for the same key are reduced as:

  element1 + element2
    = (sum1, count1) + (sum2, count2)
    = (sum1+sum2, count1+count2)


Because the mappers output monoids, the mean function will now be calculated correctly. Suppose the values for a
single key are {1, 2, 3, 4, 5}, and {1, 2, 3} go to partition 1 and {4, 5} go to partition 2:


MEAN(1, 2, 3, 4, 5)
  = MEAN( MEAN(1,2,3), MEAN(4,5) )}
  = (1+2+3+4+5) / 5
  = 15 / 5
  = 3

Partition 1:
  MEAN(1,2,3) = MEAN(6, 3)

Partition 2:
  MEAN(4,5) = MEAN(9, 2)

Merging partitions:
MEAN( MEAN(1,2,3), MEAN(4,5) )
  = MEAN( MEAN(6, 3), MEAN(9, 2))
  = MEAN(15, 5)
  = 15 / 5
  = 3


The revised algorithm is as follows, where for a given pair
(sum, count), pair.1 refers to sum and pair.2 refers
to count. Here is our combiner:


# key: a string object
# values: a list of pairs as [(s1, c1), (s2, c2), ...]
combine(key, values) {
   sum = 0
   count = 0
   for (pair : values) {
      sum += pair.1
      count += pair.2
   }
   emit (key, (sum, count))
}


And here is our reducer:


# key: a string object
# values: a list of pairs as [(s1, c1), (s2, c2), ...]
reduce(key, values) {
   sum = 0
   count = 0
   for (pair : values) {
      sum += pair.1
      count += pair.2
   }
   average = sum / count
   emit (key, average)
}


Since our mapper is generating a monoidal data type, we know that our combiner will execute properly and our reducer will produce the correct results.

















PySpark Implementation of Monoidal Mean


The goal of this section is to provide a solution that will enable us to use combiners to aggregate values when the goal is to find the mean across partitions. To compute the mean of all values for
the same key, we can group the values using Spark’s
groupByKey() transformation, then find the
sum and divide by the count of number (per key). However, this is not an
optimal solution because, as we’ve seen in earlier chapters, for a large dataset using groupByKey() can lead to OOM errors.


For the solution presented here, for a given (key, number) pair
we will emit a tuple of (key, (number, 1)), where the associated value
for a key denotes a pair of (sum, count):


(key, value1) = (key, (sum1, count1))
(key, value2) = (key, (sum2, count2))


Earlier, I demonstrated that using (sum, count) as the value will enable us to use combiners and reducers to properly calculate the mean. Instead of groupByKey() we will use the very efficient reduceByKey() transformation. This is how the reduction function will work:


value1 + value2 =
(sum1, count1) + (sum2, count2) =
(sum1+sum2, count1+count2)


Once the reduction is done,
we’ll use an additional mapper to find the
average by dividing the sum by the count.


The input record format will be:


<key-as-string><,><value-as-integer>


For example:


key1,100
key2,46
key1,300


At a high level, the PySpark solution is comprised of the following four steps:


	
Read the input and create the first RDD as an RDD[String].



	
Apply map() to create an RDD[key, (number, 1)].



	
Perform the reduction with reduceByKey(), which will
create an RDD[key, (sum, count)].



	
Apply mapValue() to create the final RDD as an RDD[key, (sum / count)].







The complete PySpark program (average_monoid_driver.py)
is available on GitHub.


First, we need two simple Python functions to help
us in using Spark transformations. The first function, create_pair(), accepts a String object as "key,number" and returns a
(key, (number, 1)) pair:


# record as String of "key,number"
def create_pair(record):
  tokens = record.split(",")
  key = tokens[0]
  number = int(tokens[1])
  return (key, (number, 1))
# end-def


The second function, add_pairs(), accepts two pairs,(sum1, count1) and (sum2, count2),
and returns their sum as (sum1+sum2, count1+count2):


# a = (sum1, count1)
# b = (sum2, count2)
def add_pairs(a, b):
    # sum = sum1+sum2
    sum = a[0] + b[0]
    # count = count1+count2
    count = a[1] + b[1]
    return (sum, count)
# end-def


Here is the complete PySpark solution:


from __future__ import print_function [image: 1]
import sys [image: 2]
from pyspark.sql import SparkSession [image: 3]

if len(sys.argv) != 2: [image: 4]
    print("Usage: average_monoid_driver.py <file>", file=sys.stderr)
    exit(-1)

spark = SparkSession.builder.getOrCreate() [image: 5]

#  sys.argv[0] is the name of the script
#  sys.argv[1] is the first parameter
input_path = sys.argv[1] [image: 6]
print("input_path: {}".format(input_path))

# read input and create an RDD[String]
records = spark.sparkContext.textFile(input_path) [image: 7]

# create a pair of (key, (number, 1)) for "key,number"
key_number_one = records.map(create_pair) [image: 8]

# aggregate the (sum, count) of each unique key
sum_count = key_number_one.reduceByKey(add_pairs) [image: 9]

# create the final RDD as an RDD[key, average]
averages =  sum_count.mapValues(lambda (sum, count): sum / count) [image: 10]
print("averages.take(5): ", averages.take(5))

# done!
spark.stop()


	[image: 1]

	Import the print() function.


	[image: 2]

	Import system-specific parameters and functions.


	[image: 3]

	Import SparkSession from the pyspark.sql module.


	[image: 4]

	Make sure that we have two parameters in the command line.


	[image: 5]

	Create an instance of SparkSession using
the builder pattern.


	[image: 6]

	Define the input path (this can be a file or a directory
containing any number of files).


	[image: 7]

	Read the input and create the first RDD as an RDD[String],
where each object has the format "key,number".


	[image: 8]

	Create the key_number_one RDD as an RDD[key, (number, 1)].


	[image: 9]

	Aggregate (sum1, count1) with (sum2, count2)
and create (sum1+sum2, count1+count2) as values.


	[image: 10]

	Apply the mapValues() transformation to find
the final average per key.




















Functors and Monoids


You’ve now seen several examples of monoids and their use in the MapReduce framework—but we can even apply
higher-order functions (like functors) to monoids.
A functor is an object that is a function (it’s a function and an object at the same time).


First, I’ll present the use of a functor on a monoid through a
simple example. Let MONOID = (t, e, f) be a
monoid, where T is a type (set of values),
e is the identity element, and f is the +
binary plus function:


MONOID = {
   type T
   val e : T
   val plus : T x T -> T
}


Then we can define a functor Prod as follows:


functor Prod (M : MONOID) (N : MONOID) = {
   type t = M.T * N.T
   val e = (M.e, N.e)
   fun plus((x1,y1), (x2,y2)) = (M.plus(x1,x2), N.plus(y1,y2))
}


And we can define other functors, such as Square, as follows:

functor Square (M : MONOID) : MONOID = Prod M M


We can also define a functor between two monoids. Let (M1, f1, e1) and (M2, f2, e2) be monoids.
A functor:


  	F : (M1, f1, e1) → (M2, f2, e2)




is specified by an object map (monoids are
categories with a single object) and an arrow map
F : M1 → M2. and the following
conditions will hold:


  	∀a,b ∈ M1,  F(f1(a,b)) = f2(F(a), F(b))

  	F(e1) = e2




A functor between two monoids is just a monoid
homomorphism (a map between monoids that preserves the monoid operation and maps the identity element of the first monoid to that of the second monoid).  For example, for the String data type,
a function Length() that counts the number of letters
in a word is a monoid 
homomorphism:



	
Length("") = 0 (the length of an empty string is 0).



	
If Length(x) = m and Length(y) = n, then concatenation
x + y of strings has m + n letters. For example:


Length("String" + "ology")
    = Length("Stringology")
    = 11
    = 6 + 5
    = Length("String") + Length("ology")






Again, having mappers create monoids guarantees that the reducers can take advantage of using combiners
effectively and correctly.

















Conclusion on Using Monoids


As we’ve observed, in the MapReduce paradigm (which
is the foundation of Hadoop, Spark, Tez, and other frameworks),
if your mapper generates monoids you can
utilize combiners for optimization and efficiency
purposes. Using combiners reduces network traffic
and speeds up MapReduce’s sort and shuffle phase, because there’s less data to process. You also saw some examples of how to monoidify MapReduce algorithms. In general, combiners can be used
when the function you want to apply is both
commutative and associative (properties of a
monoid). For example, the classic word count function is
a monoid over a set of integers with the +
operation (here you can use a combiner).
However, the mean function (which is not associative) over
a set of integers does not form a monoid. To use combiners effectively in a case like this, we need to ensure that the output from the mappers is monoidal. Next, we’ll turn our attention to a few important data organization patterns: binning and sorting.
























Binning


Binning is a way to group
a number of more or less continuous values
into a smaller number of “bins,” or buckets. For example, if you have
census data about a group of people, you
might want to map their individual ages into a smaller
number of age intervals, such as 0-5, 6-10, 11-15,
…, 96-100+. An important advantage of binning is that it narrows the range of the data you need to search for a specific value. For example, if you know that someone is 14 years old, to find them you only need to search in the bin labeled 11-15.
In other words, binning can help us to do faster
queries by examining a slice of the data rather
than the whole dataset.  The binning design
pattern moves the records into categories
(bins) irrespective of the initial order of the records.


Figure 10-7 illustrates another example. In genomics data, chromosomes are labeled as
{chr1, chr2, ..., chr22, chrX, chrY, chrMT}.  A human being has 3 billion pairs of chromosomes, where
chr1 has about 250 million positions,
chr7 has 160 million positions, and so on.
If you want to find a variant key of 10:100221486:100221486:G, you’ll have to
search billions of records, which is very
inefficient. Binning can help speed up the process: if we group the data by chromosomes, to find this variant key we can just look in the bin labeled chr10
rather than searching all of the data.



[image: daws 1009]
Figure 10-7. Binning by chromosome




To implement the binning algorithm in PySpark, first
we read our input and create a DataFrame with
the proper columns. Then, we create an additional
column, called chr_id, which will denote
a bin for a chromosome. The chr_id
column will have values in the set {chr1, chr2, ...,
chr22, chrX, chrY, chrMT}.


It is possible to implement binning
in several layers—for example, first by chromosome and then
by the modulo of the start position—as illustrated
in Figure 10-8.



[image: daws 1010]
Figure 10-8. Binning by chromosome




This will be
quite helpful because we might have millions
of variants per chromosome; an additional layer of binning can help
us to further reduce the query time by allowing us to examine an even thinner slice of the data.
Before I show you how to implement binning by start position, let’s take a look at the variant structure:


<chromosome><:><start_position><:><stop_position><:><allele>


A simple binning algorithm will be to partition
the start_position into 101 bins (depending on the volume of data you may select a different number, but it should be a prime number). Therefore, our bin values will be {0, 1, 2, ..., 100}. We’ll then create another new column called modulo, and its value will be defined as:


modulo = start_position % 101


For example, for a variant of
10:100221486:100221486:G, the module value
will be 95 (100221486 % 101 = 95).


Continuing with the example of genomics data, suppose we have the following data (note that I’ve included only a few columns here, to keep the example simple). First, we create a DataFrame from this data:


variants = [('S-100', 'Prostate-1', '5:163697197:163697197:T', 2),
            ('S-200', 'Prostate-1', '5:3420488:3420488:C', 1),
            ('S-100', 'Genome-1000', '3:107988242:107988242:T', 1),
            ('S-200', 'Genome-1000', '3:54969706:54969706:T', 3)]

columns = ['SAMPLE_ID',	'STUDY_ID', 'VARIANT_KEY', 'ZYGOSITY' ]

df = spark.createDataFrame(variants, columns)
df.show(truncate=False)
+---------+-----------+-----------------------+--------+
|SAMPLE_ID|STUDY_ID   |VARIANT_KEY            |ZYGOSITY|
+---------+-----------+-----------------------+--------+
|S-100    |Prostate-1 |5:163697197:163697197:T|2       |
|S-200    |Prostate-1 |5:3420488:3420488:C    |1       |
|S-100    |Genome-1000|3:107988242:107988242:T|1       |
|S-200    |Genome-1000|3:54969706:54969706:T  |3       |
+---------+-----------+-----------------------+--------+


Next, we create a binning function for a chr_id, to be extracted from a given variant_key:


def extract_chr(variant_key):
  tokens = variant_key.split(":")
  return "chr" + tokens[0]
#end-def


To use the extract_chr() function, first
we have to create a UDF:


from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
extract_chr_udf = udf(extract_chr, StringType())

binned_by_chr = df.select("SAMPLE_ID", "STUDY_ID", "VARIANT_KEY",
    "ZYGOSITY", extract_chr_udf("VARIANT_KEY").alias("CHR_ID"))

binned_by_chr.show(truncate=False)
+---------+-----------+-----------------------+--------+------+
|SAMPLE_ID|STUDY_ID   |VARIANT_KEY            |ZYGOSITY|CHR_ID|
+---------+-----------+-----------------------+--------+------+
|S-100    |Prostate-1 |5:163697197:163697197:T|2       |chr5  |
|S-200    |Prostate-1 |5:3420488:3420488:C    |1       |chr5  |
|S-100    |Genome-1000|3:107988242:107988242:T|1       |chr3  |
|S-200    |Genome-1000|3:54969706:54969706:T  |3       |chr3  |
+---------+-----------+-----------------------+--------+------+



To create a second level of binning, we need another
Python function to find start_position % 101:


# 101 is the number of bins per chromosome
def create_modulo(variant_key):
  tokens = variant_key.split(":")
  start_position = int(tokens[1])
  return start_position % 101
#end-def


We then define another UDF to use this function to create the modulo column:


from pyspark.sql.functions import udf
from pyspark.sql.types import IntegerType
create_modulo_udf = udf(create_modulo, IntegerType())

binned_by_chr_and_position = df.select("SAMPLE_ID", "STUDY_ID", "VARIANT_KEY",
   "ZYGOSITY", extract_chr_udf("VARIANT_KEY").alias("CHR_ID"),
   create_modulo_udf("VARIANT_KEY").alias("modulo"))

binned_by_chr_and_position.show(truncate=False)
+---------+-----------+-----------------------+--------+------+------+
|SAMPLE_ID|STUDY_ID   |VARIANT_KEY            |ZYGOSITY|CHR_ID|modulo|
+---------+-----------+-----------------------+--------+------+------+
|S-100    |Prostate-1 |5:163697197:163697197:T|2       |chr5  |33    |
|S-200    |Prostate-1 |5:3420488:3420488:C    |1       |chr5  |22    |
|S-100    |Genome-1000|3:107988242:107988242:T|1       |chr3  |52    |
|S-200    |Genome-1000|3:54969706:54969706:T  |3       |chr3  |52    |
+---------+-----------+-----------------------+--------+------+------+


We can save our DataFrame in Parquet format without
binning as follows:


binned_by_chr_and_position.write.mode("append")\
                          .parquet(/tmp/genome1/)

$ ls -l /tmp/genome1/
-rw-r--r-- ...     0 Jan 18 14:34 _SUCCESS
...
-rw-r--r-- ...  1382 Jan 18 14:34 part-00007-....snappy.parquet


Or, to save the data with binning information, we can use the
partitionBy() 
function:


binned_by_chr_and_position.write.mode("append")\
                          .partitionBy("CHR_ID", "modulo")\
                          .parquet(/tmp/genome2/)

$ ls -R /tmp/genome2/
CHR_ID=chr3 CHR_ID=chr5 _SUCCESS

/tmp/genome2//CHR_ID=chr3:
modulo=52

/tmp/genome2//CHR_ID=chr3/modulo=52:
part-00005-....snappy.parquet
part-00007-....snappy.parquet

/tmp/genome2//CHR_ID=chr5:
modulo=22 modulo=33

/tmp/genome2//CHR_ID=chr5/modulo=22:
part-00003-....snappy.parquet

/tmp/genome2//CHR_ID=chr5/modulo=33:
part-00001-....snappy.parquet

















Sorting


Sorting of data records is a
common task in many programming
languages, such as Python and Java. Sorting refers to any process
of arranging records systematically,
and can involve ordering (arranging records
in a sequence ordered by some criterion) or categorizing (grouping items with similar properties).  With ordering, the sorting can be done either in the normal order of low to high (ascending) or the normal order of high to low (descending). There are many
well-known sorting algorithms—such as quick sort, bubble sort, and heap
sort—with different time complexities.


PySpark offers several functions for sorting RDDs and DataFrames, here are a few of them:


pyspark.RDD.repartitionAndSortWithinPartitions()
pyspark.RDD.sortBy()
pyspark.RDD.sortByKey()
pyspark.sql.DataFrame.sort()
pyspark.sql.DataFrame.sortWithinPartitions()
pyspark.sql.DataFrameWriter.sortBy()


Use of these sorting functions
is straightforward.

















Summary


MapReduce design patterns are common patterns
in data analytics. These design
patterns enable us to solve similar data
problems in an efficient manner.


Data design patterns can be classified into several different categories, such as:


	Summarization patterns

	
Get a top-level
view by summarizing and grouping data. Examples include in-mapper combining (which we used to solve the word count problem) and MinMax.



	Filtering patterns

	
View data subsets
by using predicates. An example is the top-10 pattern.



	Data organization patterns

	
Reorganize data
to work with other systems, or to make MapReduce
analysis easier. Examples include binning and sorting algorithms.



	Join patterns

	
Analyze different datasets together
to discover interesting relationships.



	Meta patterns

	
Piece together several patterns
to solve multistage problems, or to perform
several analytics in the same job.



	Input and output patterns

	
Customize the way
 you use a persistent store (such as HDFS or S3)
to load or store data.






In the next chapter we’ll look at design patterns for performing joins, which is an important transformation between two large datasets.













Chapter 11. Join Design Patterns



In this chapter we will examine practical design patterns for joining datasets. As in the previous chapters, I will focus on patterns that
are useful in real-world
environments. PySpark supports
a basic join operation for RDDs (pyspark.RDD.join())
and DataFrames (pyspark.sql.DataFrame.join()) that will be sufficient for most use cases. However, there are circumstances where this join
can be costly, so I’ll also show you some special join algorithms that may prove useful.


This chapter introduces the basic concept of joining two datasets, and provides examples of some useful and practical join design patterns. I’ll show you how the join operation is implemented in the MapReduce paradigm and how to use Spark’s transformations to perform a join. You’ll see how to perform map-side joins with RDDs and DataFrames, and how to perform an efficient join using a Bloom filter.


Source Code

Complete programs for this chapter are available in the book’s
GitHub repository.










Introduction to the Join Operation


In the relational database world, joining two tables (aka “relations”) with a common key—that is, an attribute or set of attributes in one or more columns that allow the unique identification of each record (tuple or row) in the table—is a frequent 
operation.


Consider the following two tables, T1 and T2:


T1 = {(k1, v1)}
T2 = {(k2, v2)}


where:



	
k1 is the key for T1 and v1 are the associated attributes.



	
k2 is the key for T2 and v2 are the associated attributes.






A simple inner join, which creates a new table by
combining rows that have matching keys in
two or more tables, can be defined as:


T1.join(T2) = {(k, (v1, v2))}
T2.join(T1) = {(k, (v2, v1))}


where:



	
k = k1 = k2.



	
(k, v1) is in T1.



	
(k, v2) is in T2.






To illustrate how this works,
let’s create two tables, populating them with some sample data,
and then join them. First we’ll create our tables, T1 and T2:


>>> d1 = [('a', 10), ('a', 11), ('a', 12), ('b', 100), ('b', 200), ('c', 80)]
>>> T1 = spark.createDataFrame(d1, ['id', 'v1'])
>>> T1.show()
+---+---+
| id| v1|
+---+---+
|  a| 10|
|  a| 11|
|  a| 12|
|  b|100|
|  b|200|
|  c| 80|
+---+---+

>>> d2 = [('a', 40), ('a', 50), ('b', 300), ('b', 400), ('d', 90)]
>>> T2 = spark.createDataFrame(d2, ['id', 'v2'])
>>> T2.show()
+---+---+
| id| v2|
+---+---+
|  a| 40|
|  a| 50|
|  b|300|
|  b|400|
|  d| 90|
+---+---+


Then we’ll join them with an
inner join (the default join type in Spark). Notice that the rows with an id of c (from T1) and d
(from T2) are dropped, since there are no matching rows for these in the other table:


>>> joined = T1.join(T2, (T1.id == T2.id))
>>> joined.show(100, truncate=False)
+---+---+---+---+
|id |v1 |id |v2 |
+---+---+---+---+
|a  |10 |a  |50 |
|a  |10 |a  |40 |
|a  |11 |a  |50 |
|a  |11 |a  |40 |
|a  |12 |a  |50 |
|a  |12 |a  |40 |
|b  |100|b  |400|
|b  |100|b  |300|
|b  |200|b  |400|
|b  |200|b  |300|
+---+---+---+---+


There are many types of joins that can be performed on two tables with a common
key, but in practice,
three types of join are the most common:


	INNER JOIN(T1, T2)

	
Combines records from two tables, T1 and T2, whenever
there are matching values in a key common to both tables.



	LEFT JOIN(T1, T2)

	
Returns all records from the left table
(T1) and the matched records from the right table (T2) table. If there is no match for a specific record, you’ll
get NULLs in the corresponding columns of the right table.



	RIGHT JOIN(T1, T2)

	
Returns all the rows of the table on
the right side of the join (T2) and matching rows for the
table on the left side (T1) of the join. The rows for which
there is no matching row on left side, the result-set will
contain null.






All of these join types are supported in PySpark, as well as some other types that are less frequently used. For an introduction to the different types of joins PySpark supports, see the tutorial “PySpark Join Types” on the Spark by {Examples} website.


Joining two tables is potentially an expensive operation, as it can require finding the Cartesian product (for two sets A and B, the set of all ordered pairs (x, y) where x is in A and y is in B). In the example just shown this would not be problematic, but 
consider a big data example: if table T1
has three billion rows and table T2 has
one million rows, then the Cartesian
product of these two tables will have
three quadrillion (3 followed by 15
zeros) data points.  In this chapter,
I cover some basic design
patterns that can help to simplify
the join operation, to reduce this cost. As usual, when it comes to selecting and using join design
patterns, there is no silver bullet: be sure to test your proposed solution for performance
and scalability using real data.

















Join in MapReduce


This section is presented for pedagogical
purposes, to show you how a join() function
can be implemented in a distributed computing environment. Suppose we have two relations, R(k, b) and
S(k, c), where k is a common key and b
and c represent attributes of R and S,
respectively. How do we find the join of
R and S?  The goal of the join operation is to
find tuples that agree on their key k.
A MapReduce implementation of the natural join
for R and S can implemented as follows. First, in the map phase:



	
For a tuple (k, b) in R, emit a (key, value)
pair as (k, ("R", b)).



	
For a tuple (k, c) in S, emit a (key, value)
pair as (k, ("S", c)).






Then, in the reduce phase:



	
If a reducer key k has the value list
[("R", v),("S", w)],
then emit a single (key, value) pair as
(k, (v, w)).  Note that join(R, S) will
produce (k, (v, w)), while join(S, R) will
produce (k, (w, v)).






So, if a reducer key k has the value list
[("R", v1), ("R", v2), ("S", w1), ("S", w2)],
then we will emit four (key, value) pairs:


(k, (v1, w1))
(k, (v1, w2))
(k, (v2, w1))
(k, (v2, w2))


Therefore, to perform a natural join
between two relations R and S,
we need two map functions
and one reducer function.










Map Phase


The map phase has two steps:


	
Map relation R:


# key: relation R
# value: (k, b) tuple in R
map(key, value) {
  emit(k, ("R", b))
}



	
Map relation S:







# key: relation S
# value: (k, c) tuple in S
map(key, value) {
  emit(k, ("S", c))
}


The output of the mappers (provided as input
to the sort and shuffle phase) will
be:


(k1, "R", r1)
(k1, "R", r2)
...
(k1, "S", s1)
(k1, "S", s2)
...
(k2, "R", r3)
(k2, "R", r4)
...
(k2, "S", s3)
(k2, "S", s4)
...

















Reducer Phase


Before, we write a reducer function,
we need to understand the magic of
MapReduce, which occurs in the sort and
shuffle phase. This is similar to SQL’s
GROUP BY function; once all the mappers
are done, their output is sorted and shuffled and sent to the reducer(s) as input.


In our example, the output of the sort and shuffle phase
will be:


(k1, [("R", r1), ("R", r2), ..., ("S", s1), ("S", s2), ...]
(k2, [("R", r3), ("R", r4), ..., ("S", s3), ("S", s4), ...]
...


The reducer function is presented next. For each key k, we build two lists: list_R
(which will hold the values/attributes from relation R)
and list_S (which will hold the
values/attributes from relation S). Then we identify the Cartesian product of list_R and list_S
to find the join tuples (pseudocode):


# key: a unique key
# values: [(relation, attrs)] where relation in {"R", "S"}
# and  attrs are the relation attributes
reduce(key, values) {
  list_R = []
  list_S = []
  for (tuple in values) {
    relation = tuple[0]
    attributes = tuple[1]
    if (relation == "R") {
       list_R.append(attributes)
    }
    else {
       list_S.append(attributes)
    }
  }

  if (len(list_R) == 0) OR (len(list_S) == 0) {
     # no common key
     return
  }

  # len(list_R) > 0 AND len(list_S) > 0
  # perform Cartesian product of list_R and list_S
  for (r in list_R) {
    for (s in list_S) {
       emit(key, (r, s))
    }
  }

}

















Implementation in PySpark


This section shows how to implement the natural
join of two datasets (with some common keys)
in PySpark without using the join() function. I present this solution to
show the power of Spark, and how it can be used to perform custom joins if required.


Suppose we have the following
datasets, T1 and T2:


d1 = [('a', 10), ('a', 11), ('a', 12), ('b', 100), ('b', 200), ('c', 80)]
d2 = [('a', 40), ('a', 50), ('b', 300), ('b', 400), ('d', 90)]
T1 = spark.sparkContext.parallelize(d1)
T2 = spark.sparkContext.parallelize(d2)


First, we map these RDDs to include the name of the
relation:


t1_mapped = T1.map(lambda x: (x[0], ("T1", x[1])))
t2_mapped = T2.map(lambda x: (x[0], ("T2", x[1])))


Next, in order to perform a reduction on the generated (key, value) pairs by mappers, we combine these two datasets into a single dataset:


combined  = t1_mapped.union(t2_mapped)


Then we perform the groupByKey() transformation
on a single combined dataset:


grouped  = combined.groupByKey()


And finally, we find the Cartesian product of the values of each grouped entry:


# entry[0]: key
# entry[1]: values as:
# [("T1", t11), ("T1", t12), ..., ("T2", t21), ("T2", t22), ...]
import itertools
def cartesian_product(entry):
  T1 = []
  T2 = []
  key = entry[0]
  values = entry[1]
  for tuple in values:
    relation = tuple[0]
    attributes = tuple[1]
    if (relation == "T1"): T1.append(attributes)
    else: T2.append(attributes)
  #end-for

  if (len(T1) == 0) or (len(T2) == 0):
     # no common key
     return []

  # len(T1) > 0 AND len(T2) > 0
  joined_elements = []
  # perform Cartesian product of T1 and T2
  for element in itertools.product(T1, T2):
    joined_elements.append((key, element))
  #end-for
  return joined_elements
#end-def

joined = grouped.flatMap(cartesian_product)
























Map-Side Join Using RDDs


As we’ve seen, a join is a potentially expensive operation used to combine records from two (or more) datasets based on a common key between them. In a relational database, indexing can help to reduce the cost of a join operation; however, big data engines like Hadoop and Spark do not support indexing of data. So what can we do to minimize the cost of a join between two distributed datasets? Here, I’ll introduce a design pattern that can completely eliminate the need for the shuffle and sort phase in the MapReduce paradigm: the map-side join.


A map-side join is a process where two datasets
are joined by the mapper rather than using the
actual join function (which is performed by a
combination of a mapper and a reducer).  In addition to decreasing the cost incurred for sorting and merging in the shuffle and reduce stages, this can speed up the execution of the task, improving 
performance.


To help you understand how this works, let’s start with a SQL example. Suppose we have two tables in a MySQL database, EMP and DEPT, and we want to perform a join between them. The two tables are defined as follows:


mysql> use testdb;
Database changed

mysql> select * from emp;
+--------+----------+---------+
| emp_id | emp_name | dept_id |
+--------+----------+---------+
|   1000 | alex     | 10      |
|   2000 | ted      | 10      |
|   3000 | mat      | 20      |
|   4000 | max      | 20      |
|   5000 | joe      | 10      |
+--------+----------+---------+
5 rows in set (0.00 sec)

mysql> select * from dept;
+---------+------------+---------------+
| dept_id | dept_name  | dept_location |
+---------+------------+---------------+
|      10 | ACCOUNTING | NEW YORK, NY  |
|      20 | RESEARCH   | DALLAS, TX    |
|      30 | SALES      | CHICAGO, IL   |
|      40 | OPERATIONS | BOSTON, MA    |
|      50 | MARKETING  | Sunnyvale, CA |
|      60 | SOFTWARE   | Stanford, CA  |
+---------+------------+---------------+
6 rows in set (0.00 sec)


Next, we join two tables (using an INNER JOIN) on the dept_id key:


mysql> select e.emp_id, e.emp_name, e.dept_id, d.dept_name, d.dept_location
         from emp e, dept d
             where e.dept_id = d.dept_id;
+--------+----------+---------+------------+---------------+
| emp_id | emp_name | dept_id | dept_name  | dept_location |
+--------+----------+---------+------------+---------------+
|   1000 | alex     | 10      | ACCOUNTING | NEW YORK, NY  |
|   2000 | ted      | 10      | ACCOUNTING | NEW YORK, NY  |
|   5000 | joe      | 10      | ACCOUNTING | NEW YORK, NY  |
|   3000 | mat      | 20      | RESEARCH   | DALLAS, TX    |
|   4000 | max      | 20      | RESEARCH   | DALLAS, TX    |
+--------+----------+---------+------------+---------------+
5 rows in set (0.00 sec)


A map-side join is similar to an inner join in SQL, but the task is performed by the mapper alone (note
that the result of an inner join and a map-side join
must be 
identical).


In general, joins on large datasets are expensive, but rarely do you want to join the entire contents of one large table A with the entire contents of another large table B. Given two tables A and B, a map-side join will
be most suitable when table A (called the fact table) is large and table
B (the dimension table) is small to medium. To perform this type of join, we first create a hash table from B and broadcast it to all nodes. Next, we iterate all elements of table A with a mapper and then access the relevant information from table B through the broadcasted hash table.


Two demonstrate, we’ll create two RDDs from our EMP and DEPT tables. First, we create EMP as an
RDD[(dept_id, (emp_id, emp_name))]:


EMP = spark.sparkContext.parallelize(
[
  (10, (1000, 'alex')),
  (10, (2000, 'ted')),
  (20, (3000, 'mat')),
  (20, (4000, 'max')),
  (10, (5000, 'joe'))
])


Next, we create DEPT as an
RDD[(dept_id, (dept_name, dept_location))]:


DEPT= spark.sparkContext.parallelize(
[ (10, ('ACCOUNTING', 'NEW YORK, NY')),
  (20, ('RESEARCH', 'DALLAS, TX')),
  (30, ('SALES', 'CHICAGO, IL')),
  (40, ('OPERATIONS', 'BOSTON, MA')),
  (50, ('MARKETING', 'Sunnyvale, CA')),
  (60, ('SOFTWARE', 'Stanford, CA'))
])


EMP and DEPT have a common key, dept_id, so we can join the two RDDs as follows:


>>> sorted(EMP.join(DEPT).collect())
[
 (10, ((1000, 'alex'), ('ACCOUNTING', 'NEW YORK, NY'))),
 (10, ((2000, 'ted'), ('ACCOUNTING', 'NEW YORK, NY'))),
 (10, ((5000, 'joe'), ('ACCOUNTING', 'NEW YORK, NY'))),
 (20, ((3000, 'mat'), ('RESEARCH', 'DALLAS, TX'))),
 (20, ((4000, 'max'), ('RESEARCH', 'DALLAS, TX')))
]


How does a map-side join optimize this task?
Suppose EMP is a large dataset and
DEPT is a relatively small dataset. Using a map-side join to join EMP with DEPT on dept_id,
we will create a broadcast variable from the small
table (using the custom function to_hash_table()):


# build a dictionary of (key, value),
# where key = dept_id
#       value = (dept_name , dept_location)

def to_hash_table(dept_as_list):
  hast_table = {}
  for d in dept_as_list:
    dept_id = d[0]
    dept_name_location = d[1]
    hash_table[dept_id] = dept_name_location
  return hash_table
#end-def

dept_hash_table = to_hash_table(DEPT.collect())


Alternatively, you may build the hash
table using the Spark action collectAsMap(),
which returns the (key, value) pairs in this RDD
(DEPT) to the master as a dictionary:


dept_hash_table = DEPT.collectAsMap()


Now, using pyspark.SparkContext.broadcast(),
we can broadcast the read-only variable
dept_hash_table to the Spark cluster,
making it available for all kinds of
transformations (including mappers and
reducers):


sc = spark.sparkContext
hash_table_broadcasted = sc.broadcast(dept_hash_table)


To perform the map-side join, in the mapper we can access this variable via:


dept_hash_table = hash_table_broadcasted.value


Using the function map_side_join(), defined as follows:


# e as an element of EMP RDD
def map_side_join(e):
  dept_id = e[0]
  # get hash_table from broadcasted object
  hash_table = hash_table_broadcasted.value
  dept_name_location = hash_table[dept_id]
  return (e, dept_name_location)
#end-def


we can then perform the join using a map() transformation:


joined = EMP.map(map_side_join)


This allows us to not shuffle the dimension table (i.e., DEPT)
and to get quite good join performance.


With a map-side join, we just use the map()
function to iterate through each row of the EMP table,
and retrieve the dimension values (such as
dept_name and dept_location) from
the broadcasted hash table.  The map() function
will be executed concurrently for each
partition, which will have its own copy of the hash table.


To recap, the map-side join approach has the following important advantages:



	
It reduces the cost of the join operation by minimizing the amount of data that needs to be sorted and merged in the shuffle and reduce stages. We do this by making the smaller RDD/table a broadcast variable and thus avoiding a shuffle.



	
It improves the performance of the join operation by avoiding significant network I/O.
The main disadvantage is that the map-side join design pattern is appropriate only when one of the RDDs/tables on which you wish to perform the join operation is small enough to fit into memory. If both tables are large, it’s not a suitable choice.





















Map-Side Join Using DataFrames


As I discussed in the preceding section,
a map-side join makes sense when one of the
tables (the fact table) is large and the other (the dimension table) is small enough to be broadcast.


In the following example (inspired by Dmitry Tolpeko’s article “Map-Side Join in Spark”), I will show how
to use DataFrames along with broadcast
variables to implement a map-side join. Suppose we have the fact table shown in Table 11-1, and the two dimension tables shown in Tables 11-2 and 11-3.


Table 11-1. Flights (fact table)


	from
	to
	airline
	flight_number
	departure





	DTW

	ORD

	SW

	225

	17:10




	DTW

	JFK

	SW

	355

	8:20




	SEA

	JFK

	DL

	418

	7:00




	SFO

	LAX

	AA

	1250

	7:05




	SFO

	JFK

	VX

	12

	7:05




	JFK

	LAX

	DL

	424

	7:10




	LAX

	SEA

	DL

	5737

	7:10







Table 11-2. Airports (dimension table)


	code
	name
	city
	state





	DTW

	Detroit Airport

	Detroit

	MI




	ORD

	Chicago O’Hare

	Chicago

	IL




	JFK

	John F. Kennedy Airport

	New York

	NY




	LAX

	Los Angeles Airport

	Los Angeles

	CA




	SEA

	Seattle-Tacoma Airport

	Seattle

	WA




	SFO

	San Francisco Airport

	San Francisco

	CA







Table 11-3. Airlines (dimension table)


	code
	airline_name





	SW

	Southwest Airlines




	AA

	American Airlines




	DL

	Delta Airlines




	VX

	Virgin America







Our goal is to expand the  Flights
table, replacing the airline codes with the
actual airline names and the airport
codes with the actual airport names. This
operation requires a join of Flights—the facts
table—with two dimension tables
(Airports and Airlines). Since the
dimension tables are small enough to fit in memory,
we can broadcast these to all the mappers in
all the worker nodes. Table 11-4 shows the desired joined output.


Table 11-4. Joined table


	from city
	to city
	airline
	flight number
	departure





	Detroit

	Chicago

	Southwest Airlines

	225

	17:10




	Detroit

	New York

	Southwest Airlines

	355

	8:20




	Seattle

	New York

	Delta Airlines

	418

	7:00




	San Francisco

	Los Angeles

	American Airlines

	1250

	7:05




	San Francisco

	New York

	Virgin America

	12

	7:05




	New York

	Los Angeles

	Delta Airlines

	424

	7:10




	Los Angeles

	Seattle

	Delta Airlines

	5737

	7:10







To achieve this result,
we need to do the following:


	
Create a broadcast variable for Airports. First, we create an RDD from the Airports table and save it as
a dict[(key, value)], where the key
is an airport code and the value is the name of the airport.



	
Create a broadcast variable for Airlines. Next, we create an RDD from the Airlines table and save it as
a dict[(key, value)], where the key
is an airline code and the value is
the name of the airline.



	
Create a DataFrame from the Flights table, to be joined with the cached broadcast variables created in steps 1 and 2.



	
Map each record of the Flights DataFrame and perform a simple join by looking up values in the cached dictionaries created in steps 1 and 2.







Next, I’ll discuss another design pattern, joining using Bloom filters, that can be used for efficient joining of two tables.










Step 1: Create Cache for Airports


This step creates a broadcast variable from the Airports table (as a dictionary) to be cached on all worker nodes:


>>> airports_data = [
...   ("DTW", "Detroit Airport", "Detroit", "MI"),
...   ("ORD", "Chicago O'Hare", "Chicago",  "IL"),
...   ("JFK", "John F. Kennedy Int. Airport", "New York", "NY"),
...   ("LAX", "Los Angeles Int. Airport", "Los Angeles", "CA"),
...   ("SEA", "Seattle-Tacoma Int. Airport", "Seattle", "WA"),
...   ("SFO", "San Francisco Int. Airport", "San Francisco", "CA")
... ]
>>>
>>> airports_rdd = spark.sparkContext.parallelize(airports_data)\
...   .map(lambda tuple4: (tuple4[0], (tuple4[1],tuple4[2],tuple4[3])))

>>> airports_dict = airports_rdd.collectAsMap()
>>>
>>> airports_cache = spark.sparkContext.broadcast(airports_dict)
>>> airports_cache.value
{'DTW': ('Detroit Airport', 'Detroit', 'MI'),
 'ORD': ("Chicago O'Hare", 'Chicago', 'IL'),
 'JFK': ('John F. Kennedy Int. Airport', 'New York', 'NY'),
 'LAX': ('Los Angeles Int. Airport', 'Los Angeles', 'CA'),
 'SEA': ('Seattle-Tacoma Int. Airport', 'Seattle', 'WA'),
 'SFO': ('San Francisco Int. Airport', 'San Francisco', 'CA')}

















Step 2: Create Cache for Airlines


This step creates a broadcast variable from the Airlines table to be cached on all worker nodes:


>>> airlines_data = [
...   ("SW", "Southwest Airlines"),
...   ("AA", "American Airlines"),
...   ("DL", "Delta Airlines"),
...   ("VX", "Virgin America")
... ]

>>> airlines_rdd = spark.sparkContext.parallelize(airlines_data)\
...   .map(lambda tuple2: (tuple2[0], tuple2[1]))

>>> airlines_dict = airlines_rdd.collectAsMap()
>>> airlines_cache = spark.sparkContext.broadcast(airlines_dict)
>>> airlines_cache
>>> airlines_cache.value
{'SW': 'Southwest Airlines',
 'AA': 'American Airlines',
 'DL': 'Delta Airlines',
 'VX': 'Virgin America'}

















Step 3: Create Facts Table


This step creates a DataFrame from the Flights table to be used as a fact table and joined with the cached dictionaries created in steps 1 and 2:


>>> flights_data = [
...   ("DTW", "ORD", "SW", "225",  "17:10"),
...   ("DTW", "JFK", "SW", "355",  "8:20"),
...   ("SEA", "JFK", "DL", "418",  "7:00"),
...   ("SFO", "LAX", "AA", "1250", "7:05"),
...   ("SFO", "JFK", "VX", "12",   "7:05"),
...   ("JFK", "LAX", "DL", "424",  "7:10"),
...   ("LAX", "SEA", "DL", "5737", "7:10")
... ]
>>> flight_columns = ["from", "to", "airline", "flight_number", "departure"]
>>> flights = spark.createDataFrame(flights_data, flight_columns)
>>> flights.show(truncate=False)

+----+---+-------+-------------+---------+
|from|to |airline|flight_number|departure|
+----+---+-------+-------------+---------+
|DTW |ORD|SW     |225          |17:10    |
|DTW |JFK|SW     |355          |8:20     |
|SEA |JFK|DL     |418          |7:00     |
|SFO |LAX|AA     |1250         |7:05     |
|SFO |JFK|VX     |12           |7:05     |
|JFK |LAX|DL     |424          |7:10     |
|LAX |SEA|DL     |5737         |7:10     |
+----+---+-------+-------------+---------+

















Step 4: Apply Map-Side Join


Finally, we iterate the fact table and perform the map-side join:


>>> from pyspark.sql.functions import udf
>>> from pyspark.sql.types import StringType
>>>
>>> def get_airport(code):
...   return airports_cache.value[code][1]
...
>>> def get_airline(code):
...   return airlines_cache.value[code]

>>> airport_udf = udf(get_airport, StringType())
...
>>> airport_udf = udf(get_airport, StringType())
>>>
>>> flights.select(
        airport_udf("from").alias("from_city"), [image: 1]
        airport_udf("to").alias("to_city"), [image: 2]
        airline_udf("airline").alias("airline_name"), [image: 3]
        "flight_number", "departure").show(truncate=False)
+-------------+-----------+------------------+-------------+---------+
|from_city    |to_city    |airline_name      |flight_number|departure|
+-------------+-----------+------------------+-------------+---------+
|Detroit      |Chicago    |Southwest Airlines|225          |17:10    |
|Detroit      |New York   |Southwest Airlines|355          |8:20     |
|Seattle      |New York   |Delta Airlines    |418          |7:00     |
|San Francisco|Los Angeles|American Airlines |1250         |7:05     |
|San Francisco|New York   |Virgin America    |12           |7:05     |
|New York     |Los Angeles|Delta Airlines    |424          |7:10     |
|Los Angeles  |Seattle    |Delta Airlines    |5737         |7:10     |
+-------------+-----------+------------------+-------------+---------+


	[image: 1]

	Map-side join for airport


	[image: 2]

	Map-side join for airport


	[image: 3]

	Map-side join for airline



























Efficient Joins Using Bloom Filters


Given two RDDs, a larger RDD[(K, V)] and a smaller RDD[(K, W)],
Spark enables us to perform a join operation
on the key  K.  Joining two RDDs is a common
operation when working with Spark. In some
cases, a join is used as a form of
filtering: for example, if you want to perform
an operation on a subset of the records in
the RDD[(K, V)], represented by entities
in another RDD[(K, W)] you can
use an inner join to achieve that effect.
However, you may prefer to avoid the shuffle that
the join operation introduces, especially
if the RDD[(K, W)] you want to use for
filtering is significantly smaller than
the main RDD[(K, V)] on which you will
perform your further computation.


You could do a broadcast join using a set
(as a Bloom filter) constructed by collecting
the smaller RDD you wish to filter by, but this requires collecting the entire
RDD[(K, W)] in driver memory, and even
if it is relatively small (several thousand
or million records) that can still lead
to some undesirable memory pressure. If you
want to avoid the shuffle introduced by the join
operation, then you may use the Bloom filter.
This reduces the problem of joining the RDD[(K, V)]
with the RDD[(K, W)] into a simple
map() transformation, where we check
the key K against the Bloom filter
constructed from the smaller RDD[(K, W)].










Introduction to Bloom Filters


A Bloom filter is a space-efficient probabilistic
data structure that can be used to test whether an element is a member
of a set.
It may return true for
elements that are not actually members of the set
(i.e., false positives are possible), but it will
never return false for elements that are in the set;
queries return either “possibly in set” or 
“definitely not in set.” Elements can be added to the set, but not removed.   The more elements that are added to the
set, the larger the probability of false positives.


In a nutshell, we can summarize the Bloom filter’s properties as follows:



	
Given a large set S = {x1, x2, …, xn}, a Bloom filter is a probabilistic, fast, and space-efficient cache builder. It does not store the items in the set itself, and uses less space than is theoretically required to store the data correctly; this is the source of its potential inaccuracy.



	
It basically approximates the set membership operation and tries to answer questions of the form “Does item x exist in set S?



	
It allows false positive errors.
This means that for some x that is
not in the set, a Bloom filter might indicate
that x is in the set.



	
It does not allow false negative errors. This
means that if x is in the set, the Bloom filter will never indicate that x is not
in the set.






To make this clearer, let’s look at a simple join example between
two relations, or tables. Suppose we want
to join R=RDD(K, V) and S=RDD(K, W) on a common
key K.  Further assume that the following is true:


count(R) = 1000,000,000  (larger dataset)
count(S) =   10,000,000  (smaller dataset)


To do a basic join, we would need to check 10 trillion
(1012) records, which is a huge and time-consuming process. One way to reduce the required time and the complexity of the join operation between R and S
is to use a Bloom filter on relation S (the smaller
dataset) and then use the built Bloom filter
data structure on relation R. This can eliminate
the unneeded records from R (perhaps reducing its size to 20,000,000 records), making the join faster and more efficient.


Now, let’s semi-formalize the Bloom filter data
structure. How do we
construct one?  What is the probability
of false positive errors, and how we
can decrease their probability? This is how
a Bloom filter works. Given a set S = {x1, x2, …, xn}:



	
Let B be an m-bit array (m > 1),
initialized with 0s. B’s elements are B[0],
B[1], B[2], …, B[m-1].
The amount of memory required for storing array B is only a
fraction of that needed for storing the
whole set S. The probability of false positives is inversely proportional to the size of the bit vector (the array B).



	
Let {H1, H2, …, Hk} be a set of k
hash functions. If  Hi(xj) = a, then
set B[a] = 1. You may use SHA1, MD5, and
Murmer as hash functions.  For example:



	
Hi(x) = MD5(x+i)



	
Hi(x) = MD5(x || i)







	
To check if x 
  ∈
 S, check B
at Hi(x). All k values must be 1.



	
It is possible to have a false positive, where
all k values are 1, but x is not in S. The probability of false positives is:



  
    1 - 1 - 1 m kn  k 
    ≈
    1 - e -kn/m  k 
  





	
What is
the optimal number of hash functions? For a
given m (number of bits selected for the Bloom
filter) and n (size of the dataset),
the value of k (the number of hash functions)
that minimizes the probability of false
positives is (ln stands for “natural
logarithm”):



  
    k
    =
    m n
    l
    n
    
      (
      2
      )
    
  





  
    m
    =
    -
    nln(p) (ln(2)) 2 
  





	
Therefore, the probability that a specific bit
has been flipped to 1 is:



  
    1
    -
    1 - 1 m kn 
    ≈
    1
    -
    e -kn m 
  








Next, let’s take a look at a Bloom filter example.

















A Simple Bloom Filter Example


This example shows how to insert elements into and perform queries
on a Bloom filter of size 10 (m = 10) with
three hash functions H = {H1, H2, H3}, where H(x) denotes the result of these
three hash functions. We start with a 10-bit-long array B initialized to 0:


Array B:
   initialized:
         index  0  1  2  3  4  5  6  7  8  9
         value  0  0  0  0  0  0  0  0  0  0

   insert element a,  H(a) = (2, 5, 6)
         index  0  1  2  3  4  5  6  7  8  9
         value  0  0  1  0  0  1  1  0  0  0

   insert element b,  H(b) = (1, 5, 8)
         index  0  1  2  3  4  5  6  7  8  9
         value  0  1  1  0  0  1  1  0  1  0

   query element c
   H(c) = (5, 8, 9) => c is not a member (since B[9]=0)

   query element d
   H(d) = (2, 5, 8) => d is a member (False Positive)

   query element e
   H(e) = (1, 2, 6) => e is a member (False Positive)

   query element f
   H(f) = (2, 5, 6) => f is a member (Positive)

















Bloom Filters in Python


The following code segment shows how to
create and use a Bloom filter in Python
(you may roll your own Bloom filter
library, but as a general rule if a library already exists, you should use it):


# instantiate BloomFilter with custom settings
>>> from bloom_filter import BloomFilter
>>> bloom = BloomFilter(max_elements=100000, error_rate=0.01)

# Test whether the Bloom-filter has seen a key
>>> "test-key" in bloom
False

# Mark the key as seen
>>> bloom.add("test-key")

# Now check again
>>> "test-key" in bloom
True

















Using Bloom Filters in PySpark


A Bloom filter is a small, compact, and fast
data structure for set membership testing.  It can
be used to facilitate the join of two RDDs/relations/tables
such as  R(K, V) and S(K, W) where one
of the relations has huge number of records
and the other relation has a smaller number of
records (for example, R might have 1,000,000,000 records and S might have 10,000,000
records).


Performing a traditional join on the key field K between R and S would take a long time and be inefficient. We can speed things up by building a Bloom filter
out of relation S(K, W), and then testing the values in R(K, V) for membership using the
built data structure (with Spark’s broadcast
mechanism).  Note that for reduce-side
join optimization we use a Bloom filter
in the map tasks, which will force an I/O
cost reduction for the PySpark job. How do
we do this?
The following steps show how to use a Bloom
filter (representation of S) in mappers, which will be a substitute for the join
operation between R and S:


	
Build the Bloom filter, using
the smaller of the two relations/tables. Initialize the Bloom
filter (create an instance of BloomFilter),
then build the data structure with BloomFilter.add(). We’ll call the
built Bloom filter the_bloom_filter.



	
Broadcast the built Bloom filter. Use SparkContext.broadcast() to broadcast the_bloom_filter
to all worker nodes, so that it’s
available to all Spark transformations
(including mappers):


# to broadcast it to all worker nodes for read-only purposes
sc = spark.sparkContext
broadcasted_bloom_filter = sc.broadcast(the_bloom_filter)



	
Use the broadcasted object in mappers. Now, we can use the Bloom filter to get
rid of the unneeded elements in R:


# e is an element of R(k, b)
def bloom_filter_function(e):
  # get a copy of the Bloom filter
  the_bloom_filter = broadcasted_bloom_filter.value()
  # use the_bloom_filter for element e
  key = e[0]
  if key in the_bloom_filter:
    return True
  else:
    return False
#end-def







We use the bloom_filter_function() for R=RDD[(K, V)]
to keep the elements if and only if the key is in
S=RDD[(K, W)]:


# R=RDD[(K, V)]
# joined = RDD[(K, V)] where K is in S=RDD[(K, W)]
joined = R.filter(bloom_filter_function)
























Summary


This chapter introduced some design
patterns that can be used in situations where
optimizing the cost of a join operation is essential. I showed you how joins are implemented in the MapReduce paradigm and presented the
map-side join, which reduces the join operation
to a simple mapper with a lookup operation to
a built dictionary (avoiding the actual join()
function). This design pattern
completely eliminates the need to shuffle any
data to the reduce phase. Then I showed you a more efficient alternative to using a join as a filter operation. As you saw, by using a Bloom filter you can avoid the shuffle that the join operation results in. Next, we’ll wrap up the book with a look at design patterns for feature engineering.













Chapter 12. Feature Engineering in PySpark



This chapter covers design patterns for working
with features of data—any measurable attributes, from car prices to gene values, hemoglobin counts, or education levels—when building machine
learning models (also known as feature engineering).  These processes
(extracting, transforming, and selecting
features) are essential in building effective
machine learning models.  Feature engineering
is one of the most important topics in machine
learning, because the success or failure
of a model at predicting the
future depends mainly on the features you choose.


Spark provides a comprehensive machine
learning API for many well-known algorithms
including linear regression, logistic regression, and decision trees. The goal of this
chapter is to present fundamental tools and
techniques in PySpark that you can use to build all sorts of machine learning pipelines. The chapter introduces Spark’s powerful
machine learning tools and utilities and
provides examples using the PySpark
API. The skills you learn here will be useful to an aspiring data scientist or
data engineer. My goal is not to familiarize you with famous
machine learning algorithms such as linear
regression, principal component analysis, or support vector machines,
since these are already covered in many books, but to equip you with tools (normalization, standardization, string indexing, etc.) that you can use in cleaning data and building
models for a wide range of machine learning
algorithms.


No matter which algorithm
you use, feature engineering is
important.  Machine learning enables us to
find patterns in data—we find the patterns by building
models, then we use the built models to make
predictions about new data points (i.e.,
query data). To get those predictions right,
we must construct the dataset and transform
the data correctly. This chapter covers these
two key steps.


Source Code

Complete programs for this chapter are available in the book’s
GitHub repository.




Topics we will discuss include:



	
Adding a new derived feature



	
Creating and applying UDFs



	
Creating pipelines



	
Binarizing data



	
Data imputation



	
Tokenization



	
Standardization



	
Normalization



	
String indexing



	
Vector assembly



	
Bucketing



	
Logarithm transformation



	
One-hot encoding



	
TF-IDF



	
Feature hashing



	
Applying SQL transformations






First, though, let’s take a more in-depth look at feature engineering.








Introduction to Feature Engineering


In his excellent blog post on mastering feature engineering, Jason Brownlee defines it as “the
process of transforming raw data into
features that better represent the underlying
problem to the predictive models, resulting
in improved model accuracy on unseen data.”
In this chapter, my goal is to present generic
feature engineering techniques available in PySpark
that you can use to build better predictive models.


Let’s say that your data is represented
in a matrix of rows and columns. In
machine learning, columns are called
features (such as age, gender, education, heart rate, or blood pressure),
and each row represents an instance of
the dataset (i.e., a record).   The features in your data
will directly influence the predictive
models you build and use and the results
you can achieve. Data scientists spend around half their time on data preparation, and feature engineering is an important part of this.


Where does feature engineering fit in with
building machine learning models?  When
do you apply these techniques to
your data? Let’s take a look at the key
steps in building and using a machine
learning model:


	
Gather requirements for machine learning data and define the problem.



	
Select data (collect and integrate the data, then denormalize it
into a dataset).



	
Preprocess data (format, clean, and sample the data so you can work with it).



	
Transform data (perform feature engineering).



	
Model data (split the data into training and test sets, use the training data to create models, then use the test data to evaluate the models and tune them).



	
Use the built model to make predictions on query data.







Feature engineering happens right before
you build a model from your data. After
selecting and cleansing the data (for example,
making sure that null values are replaced with
proper values), you transform the data by performing feature engineering: this might involve converting string into numeric data, bucketizing the data, normalizing or standardizing the
data, etc.


The part of the overall process that this chapter covers is illustrated in
Figure 12-1.



[image: daws 1201]
Figure 12-1. Feature engineering




The Spark API provides various algorithms for working with
features, which are roughly divided into these
groups:



	
Extraction (algorithms for extracting features from “raw” data)



	
Transformation (algorithms for scaling, converting, or modifying
features)



	
Selection (algorithms for selecting a subset from a larger set
of features)



	
Locality-sensitive hashing (LSH); algorithms for grouping similar items)






There can be many reasons for data transformation
and feature engineering, either mandatory or optional:


	Mandatory transformations

	
These transformations are necessary to solve
a problem (such as building a machine learning
model) for data compatibility reasons. Examples include:



	
Converting non-numeric features into
numeric features. For example, if a feature has
non-numeric values, then average, sum,
and median calculations will be
impossible; likewise, we cannot perform
matrix multiplication on a string but must convert it
to some numeric representation first.



	
Resizing inputs to a fixed size. Some
linear models and feed-forward neural
networks have a fixed number of input
nodes, so your input data must always
have the same size. For example, image
models need to reshape the images in
their dataset to a fixed size.







	Optional transformations

	
Optional data transformations may help
the machine learning model to perform
better. These transformations might include:



	
Changing text to lowercase before applying
other data transformations



	
Tokenizing and removing nonessential
words, such as “of,” “a,” “and,” “the,” and “so”



	
Normalizing numeric features










We’ll examine both types in the following sections. Let’s dive into our first topic, adding a new feature.

















Adding New Features


Sometimes you want to add a new derived
feature (because you need that derived
feature in your machine learning algorithm)
to your dataset, to add a new column or
feature to your dataset, you may use the
function DataFrame.withColumn().
This concept is demonstrated below:


# SparkSession available as 'spark'
>>> column_names = ["emp_id", "salary"]
>>> records = [(100, 120000), (200, 170000), (300, 150000)]
>>> df = spark.createDataFrame(records, column_names)
>>> df.show()
+------+------+
|emp_id|salary|
+------+------+
|   100|120000|
|   200|170000|
|   300|150000|
+------+------+


You may use Spark’s DataFrame.withColumn()
to add a new column/feature:


>>> df2 = df.withColumn("bonus", df.salary * 0.05)
>>> df2.show()
+------+------+------+
|emp_id|salary| bonus|
+------+------+------+
|   100|120000|6000.0|
|   200|170000|8500.0|
|   300|150000|7500.0|
+------+------+------+

















Applying UDFs


If PySpark does not provide the function you need, you can define your own Python
functions and register them as user-defined functions (UDFs) with Spark SQL’s DSL using spark.udf.register(). You can then apply these functions in your data

transformations.


To make your Python functions compatible with Spark’s DataFrames, you need to convert them to PySpark UDFs by passing them to the pyspark.sql.functions.udf() function. Alternatively, you can create your UDF in a single step using annotations, as shown here. Add udf@ as a “decorator” of your Python function, and specify its return type as the argument:


from pyspark.sql.functions import udf

>>> @udf("integer") [image: 1]
... def tripled(num):
...   return 3*int(num)
...
>>> df2 = df.withColumn('tripled_col', tripled(df.salary))
>>> df2.show()
+------+------+-----------+
|emp_id|salary|tripled_col| [image: 2]
+------+------+-----------+
|   100|120000|     360000|
|   200|170000|     510000|
|   300|150000|     450000|
+------+------+-----------+


	[image: 1]

	The function tripled() is a UDF
and its return type is integer.


	[image: 2]

	tripled_col is a derived feature.





Note that if your features are represented
as an RDD (where each RDD element represents
an instance of your features), you may
use the RDD.map()  function to add a  new feature
to your feature set.

















Creating Pipelines


In machine learning algorithms, you can glue several
stages together and run them in order. Consider three stages, called {Stage-1, Stage-2, Stage-3}, where the
output of Stage-1 is used as an input to Stage-2
and the output of Stage-2 is used as an input to
Stage-3. These three stages form a simple pipeline.
Suppose we have to transform the data in the
order shown in Table 12-1.


Table 12-1. Pipeline stages


	Stage
	Description





	Stage-1

	Label encode or string index the column dept  * (create dept_index column).




	Stage-2

	Label encode or string index the column education  (create education_index column).




	Stage-3

	One-hot encode the indexed column education_index (create education_OHE column).







Spark provides a pipeline API, defined as
pyspark.ml.Pipeline(*, stages=None), which
acts as an estimator (an abstraction of a learning algorithm that fits a model on a dataset). According to the Spark
documentation:


A Pipeline consists of a
sequence of stages, each of which is either
an Estimator or a Transformer. When
Pipeline.fit() is called, the stages are
executed in order. If a stage is an Estimator,
its Estimator.fit() method will be called on
the input dataset to fit a model. Then the
model, which is a transformer, will be used
to transform the dataset as the input to the
next stage. If a stage is a Transformer, its
Transformer.transform() method will be called
to produce the dataset for the next stage. The
fitted model from a Pipeline is a PipelineModel,
which consists of fitted models and transformers,
corresponding to the pipeline stages. If stages
is an empty list, the pipeline acts as an identity
transformer.



To illustrate the concept of pipelines, first we’ll create a sample DataFrame with three columns to use as input data, as shown here, then we’ll create a simple pipeline using pyspark.ml.Pipeline():


# spark: an instance of SparkSession
# create a DataFrame
df = spark.createDataFrame([
    (1, 'CS', 'MS'),
    (2, 'MATH', 'PHD'),
    (3, 'MATH', 'MS'),
    (4, 'CS', 'MS'),
    (5, 'CS', 'PHD'),
    (6, 'ECON', 'BS'),
    (7, 'ECON', 'BS'),
], ['id', 'dept', 'education'])


We can view our sample data with df.show():


>>> df.show()
+---+----+---------+
| id|dept|education|
+---+----+---------+
|  1|  CS|       MS|
|  2|MATH|      PHD|
|  3|MATH|       MS|
|  4|  CS|       MS|
|  5|  CS|      PHD|
|  6|ECON|       BS|
|  7|ECON|       BS|
+---+----+---------+


Now that we have created the DataFrame,
suppose we want to transform the data
through three defined
stages, {stage_1, stage_2, stage_3}. In each stage, we will pass the input
and output column names, and we’ll set up the
pipeline by passing the defined stages to the Pipeline object as a list.


Spark’s pipeline model then performs
specific steps one by one in a sequence
and gives us the final desired result. Figure 12-2 shows the pipeline we will define.



[image: daws 1202]
Figure 12-2. A sample pipeline with three stages




The three stages are implemented as follows:


from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import OneHotEncoder

# Stage 1: transform the `dept` column to numeric
stage_1 = StringIndexer(inputCol= 'dept', outputCol= 'dept_index')
#
# Stage 2: transform the `education` column to numeric
stage_2 = StringIndexer(inputCol= 'education', outputCol= 'education_index')
#
# Stage 3: one-hot encode the numeric column `education_index`
stage_3 = OneHotEncoder(inputCols=['education_index'],
                        outputCols=['education_OHE'])


Next, we’ll define our pipeline with these three stages:


# set up the pipeline: glue the stages together
pipeline = Pipeline(stages=[stage_1, stage_2, stage_3])

# fit the pipeline model and transform the data as defined
pipeline_model = pipeline.fit(df)

# view the transformed data
final_df = pipeline_model.transform(df)
final_df.show(truncate=False)
+---+----+---------+----------+---------------+-------------+
|id |dept|education|dept_index|education_index|education_OHE|
+---+----+---------+----------+---------------+-------------+
|1  |CS  |MS       |0.0       |0.0            |(2,[0],[1.0])|
|2  |MATH|PHD      |2.0       |2.0            |(2,[],[])    |
|3  |MATH|MS       |2.0       |0.0            |(2,[0],[1.0])|
|4  |CS  |MS       |0.0       |0.0            |(2,[0],[1.0])|
|5  |CS  |PHD      |0.0       |2.0            |(2,[],[])    |
|6  |ECON|BS       |1.0       |1.0            |(2,[1],[1.0])|
|7  |ECON|BS       |1.0       |1.0            |(2,[1],[1.0])|
+---+----+---------+----------+---------------+-------------+

















Binarizing Data


Binarizing data means setting the feature values
to 0 or 1 according to some threshold. Values
greater than the threshold map to 1, while
values less than or equal to the threshold
map to 0. With the default threshold of 0,
only positive values map to 1. Binarization
is thus the process of thresholding numerical
features to binary {0, 1} features.


Spark’s Binarizer takes the parameters
inputCol and outputCol, as well as
the 
threshold for binarization. Feature
values greater than the threshold are
binarized to 1.0; values equal to or less
than the threshold are binarized to 0.0.


First, let’s create a DataFrame with a single feature:


from pyspark.ml.feature import Binarizer

raw_df = spark.createDataFrame([
    (1, 0.1),
    (2, 0.2),
    (3, 0.5),
    (4, 0.8),
    (5, 0.9),
    (6, 1.1)
], ["id", "feature"])


Next, we’ll create a Binarizer with threshold=0.5,
so any value less than or equal to 0.5
will map into 0.0 and any value greater than
0.5 will map into 1.0:


>>> from pyspark.ml.feature import Binarizer
>>> binarizer = Binarizer(threshold=0.5, inputCol="feature",
                          outputCol="binarized_feature")


Finally, we apply the defined Binarizer to a feature column:


binarized_df = binarizer.transform(raw_df)

>>> print("Binarizer output with Threshold = %f" % binarizer.getThreshold())
Binarizer output with Threshold = 0.500000

>>> binarized_df = binarizer.transform(raw_df)
>>> binarized_df.show(truncate=False)
+---+-------+-----------------+
|id |feature|binarized_feature|
+---+-------+-----------------+
|1  |0.1    |0.0              |
|2  |0.2    |0.0              |
|3  |0.5    |0.0              |
|4  |0.8    |1.0              |
|5  |0.9    |1.0              |
|6  |1.1    |1.0              |
+---+-------+-----------------+

















Imputation


Spark’s Imputer is an imputation transformer
for filling in missing values. Real-world datasets
commonly contain missing values, often encoded as nulls,
blanks, NaNs, or other placeholders.  There
are many methods to handle these values, including the following:



	
Delete instances if there is any missing feature
(this might not be such a good idea since important
information from other features will be lost).



	
For a missing feature, find the average value of that
feature and fill in that value.



	
Impute the missing values,  (i.e., to infer them from the known part of the data). This is often the best strategy.






Spark’s Imputer has the following signature:


class pyspark.ml.feature.Imputer(*, strategy='mean', missingValue=nan,
                                 inputCols=None, outputCols=None,
                                 inputCol=None, outputCol=None,
                                 relativeError=0.001)


It uses either the mean or the median
of the columns in which the missing values are
located. The input columns should be of numeric
type; currently Imputer does not support categorical
features and may create incorrect values for a
categorical feature.


Note that the mean/median/mode value is
computed after filtering out missing values.
All null values in the input columns are
treated as missing, and so are also imputed.
For computing the median, pyspark.sql.DataFrame.approxQuantile()
is used with a relative error of 0.001.


You can instruct the imputer to impute custom values other than
NaN by using .setMissingValue(custom_value).
For example, .setMissingValue(0) tells it to
impute all occurrences of 0 (again,
null values in the input columns will be
treated as missing and also imputed).


The following example shows how an imputer
can be used. Suppose that we have a DataFrame
with  three columns, id, col1, and col2:


>>> df = spark.createDataFrame([
...      (1, 12.0, 5.0),
...      (2, 7.0, 10.0),
...      (3, 10.0, 12.0),
...      (4, 5.0, float("nan")),
...      (5, 6.0, None),
...      (6, float("nan"), float("nan")),
...      (7, None, None)
... ], ["id", "col1", "col2"])
>>> df.show(truncate=False)
+---+----+----+
|id |col1|col2|
+---+----+----+
|1  |12.0|5.0 |
|2  |7.0 |10.0|
|3  |10.0|12.0|
|4  |5.0 |NaN |
|5  |6.0 |null|
|6  |NaN |NaN |
|7  |null|null|
+---+----+----+


Next, let’s create an imputer and apply it
to our created data:


>>> from pyspark.ml.feature import Imputer
>>> imputer = Imputer(inputCols=["col1", "col2"],
                      outputCols=["col1_out", "col2_out"])
>>> model = imputer.fit(df)
>>> transformed = model.transform(df)
>>> transformed.show(truncate=False)
+---+----+----+--------+--------+
|id |col1|col2|col1_out|col2_out|
+---+----+----+--------+--------+
|1  |12.0|5.0 |12.0    |5.0     |
|2  |7.0 |10.0|7.0     |10.0    |
|3  |10.0|12.0|10.0    |12.0    |
|4  |5.0 |NaN |5.0     |9.0     |
|5  |6.0 |null|6.0     |9.0     |
|6  |NaN |NaN |8.0     |9.0     |
|7  |null|null|8.0     |9.0     |
+---+----+----+--------+--------+


How did we get the numbers to use for the missing values (8.0 for col1 and 9.0 for col2)? It’s easy; since the default strategy is “mean,” we simply compute the averages for each column and use those for the missing values:


col1: (12.0+7.0+10.0+5.0+6.0) / 5 = 40 / 5 = 8.0
col2: (5.0+10.0+12.0) / 3 = 27.0 / 3 = 9.0


Based on your data requirements, you may
want to use a different strategy to fill in the missing values. You can instruct the imputer to use the median
of available feature values instead as follows:


>>> imputer.setStrategy("median")
>>> model = imputer.fit(df)
>>> transformed = model.transform(df)
>>> transformed.show(truncate=False)
+---+----+----+--------+--------+
|id |col1|col2|col1_out|col2_out|
+---+----+----+--------+--------+
|1  |12.0|5.0 |12.0    |5.0     |
|2  |7.0 |10.0|7.0     |10.0    |
|3  |10.0|12.0|10.0    |12.0    |
|4  |5.0 |NaN |5.0     |10.0    |
|5  |6.0 |null|6.0     |10.0    |
|6  |NaN |NaN |7.0     |10.0    |
|7  |null|null|7.0     |10.0    |
+---+----+----+--------+--------+


To get these values (7.0 for col1 and 10.0 for col2), we just compute the median value for each column:


median(col1) =
median(12.0, 7.0, 10.0, 5.0, 6.0) =
median(5.0, 6.0, 7.0, 10.0, 12.0) =
7.0

median(col2) =
median(5.0, 10.0, 12.0) =
10.0

















Tokenization


Tokenization algorithms are used to split a phrase, sentence, paragraph, or
entire text document into smaller units, such as
individual words, bigrams, or terms. These
smaller units are called tokens. For example,
the lexical analyzer (an algorithm used in compiler
writing) breaks programming code into a series
of tokens by removing any whitespace or comments. Therefore, you can think of tokenization more generally as the
process of splitting a string into any kind of meaningful tokens.


In Spark, you can use the Tokenizer and RegexTokenizer
(which allows you to define custom tokenization strategies through
regular expressions) to tokenize strings.










Tokenizer


Spark’s Tokenizer is a tokenizer that converts
the input string to lowercase and then splits it
by whitespace. To show how this works, let’s create some sample data:


>>> docs = [(1, "a Fox jumped over FOX"),
            (2, "RED of fox jumped")]
>>> df = spark.createDataFrame(docs, ["id", "text"])
>>> df.show(truncate=False)
+---+---------------------+
|id |text                 |
+---+---------------------+
|1  |a Fox jumped over FOX|
|2  |RED of fox jumped   |
+---+---------------------+


Then apply the Tokenizer:


>>> tokenizer = Tokenizer(inputCol="text", outputCol="tokens")
>>> tokenized = tokenizer.transform(df)
>>> tokenized.select("text", "tokens")
        .withColumn("tokens_length", countTokens(col("tokens")))
        .show(truncate=False)
+---------------------+---------------------------+-------------+
|text                 |tokens                     |tokens_length|
+---------------------+---------------------------+-------------+
|a Fox jumped over FOX|[a, fox, jumped, over, fox]|5            |
|RED of fox jumped    |[red, of, fox, jumped]     |4            |
+---------------------+---------------------------+-------------+

















RegexTokenizer


Spark’s RegexTokenizer is a regular expression–based tokenizer that extracts tokens either by
using the provided regex pattern
to split the text (the default) or repeatedly matching
the regex (if the optional gaps parameter, which is True by default, is False). Here’s an example:


>>> regexTokenizer = RegexTokenizer(inputCol="text", outputCol="tokens",
                                    pattern="\\W", minTokenLength=3)
>>> regex_tokenized = regexTokenizer.transform(df)
>>> regex_tokenized.select("text", "tokens")
        .withColumn("tokens_length", countTokens(col("tokens")))
        .show(truncate=False)
+---------------------+------------------------+-------------+
|text                 |tokens                  |tokens_length|
+---------------------+------------------------+-------------+
|a Fox jumped over FOX|[fox, jumped, over, fox]|4            |
|RED of fox jumped    |[red, fox, jumped]      |3            |
+---------------------+------------------------+-------------+

















Tokenization with a Pipeline


We can also perform tokenization as part of a pipeline. Here, we create a DataFrame with two columns:


>>> docs = [(1, "a Fox jumped, over, the fence?"),
            (2, "a RED, of fox?")]
>>> df = spark.createDataFrame(docs, ["id", "text"])
>>> df.show(truncate=False)
+---+------------------------------+
|id |text                          |
+---+------------------------------+
|1  |a Fox jumped, over, the fence?|
|2  |a RED, of fox?                |
+---+------------------------------+


Next, we apply the RegexTokenizer() function to this DataFrame:


>>> tk = RegexTokenizer(pattern=r'(?:\p{Punct}|\s)+', inputCol="text",
                        outputCol='text2')
>>> sw = StopWordsRemover(inputCol='text2', outputCol='text3')
>>> pipeline = Pipeline(stages=[tk, sw])
>>> df4 = pipeline.fit(df).transform(df)
>>> df4.show(truncate=False)
+---+----------------+-----------------+--------------+
|id | text           |text2            |text3         |
+---+----------------+-----------------+--------------+
|1  |a Fox jumped,   |[a, fox, jumped, |[fox, jumped, |
|   |over, the fence?|over, the, fence]| fence]       |
|2  |a RED, of fox?  |[a, red, of, fox]|[red, fox]    |
+---+----------------+-----------------+--------------+
























Standardization


One of the most popular techniques for
scaling numerical data prior to building a model
is standardization.  Standardizing a dataset
involves rescaling the distribution of
values so that the mean of observed values
(as a feature) is 0.00 and the standard
deviation is 1.00.


Many machine learning algorithms
perform better when numerical input
variables (features) are
scaled to a standard range. For example,
algorithms such as linear regression that use a weighted sum of the input and algorithms like k-nearest 
neighbors that use distance measures require standardized values, as otherwise the built models might underfit or overfit the training data and underperform.


A value is standardized as follows:


y = (x – mean) / standard_deviation


Where the mean is calculated as:


mean = sum(x) / count(x)



  
    x ¯
    =
    1 N
    ∑ i=1 N 
    x i 
  




And the standard deviation is calculated as:


standard_deviation = sqrt(sum( (x – mean)^2 ) / count(x))



  
    s
    d
    =
    
      
        1 N
        ∑ i=1 N 
        (x i -x ¯) 2 
      
    
  




For example, if X = (1, 3, 6, 10), the mean/average is calculated as:


mean = (1+2+6+10)/4 = 20/4 = 5.0


and the standard deviation is calculated as:


standard_deviation
= sqrt ( ((1-5)^2 + (3-5)^2 + (6-5)^2 + (10-5)^2)) / 4)
= sqrt ((16+4+1+25)/4)
= sqrt(46/4)
= sqrt(11.5) = 3.39116


So, the new standardized values will be :


y = (y1, y2, y3, y4) = (-1.1795, -0.5897, 0.2948, 1.4744)


where:


y1 = (1 – 5.0) / 3.39116
y2 = (3 - 5.0) / 3.39116
y3 = (6 - 5.0) / 3.39116
y4 = (10 - 5.0) / 3.39116


As you can see, the mean of the standardized values
(y) is 0.00 and the standard deviation is 1.00.


Let’s go over how to perform standardization
in PySpark.
Let’s say that we are trying to standardize
(mean = 0.00, stddev = 1.00) one column in a DataFrame. First we’ll create a sample DataFrame, then I’ll show you two ways to standardize the age 
column:


features = [('alex', 1), ('bob', 3), ('ali', 6), ('dave', 10)]
columns = ("name", "age")
samples = spark.createDataFrame(features, columns)
>>> samples.show()
+----+---+
|name|age|
+----+---+
|alex|  1|
| bob|  3|
| ali|  6|
|dave| 10|
+----+---+


Method 1 is to use DataFrame functions:


>>> from pyspark.sql.functions import stddev, mean, col
>>> (samples.select(mean("age").alias("mean_age"),
...                 stddev("age").alias("stddev_age"))
...   .crossJoin(samples)
...   .withColumn("age_scaled",
         (col("age") - col("mean_age")) / col("stddev_age")))
...   .show(truncate=False)
+--------+------------------+----+---+-------------------+
|mean_age|stddev_age        |name|age|age_scaled         |
+--------+------------------+----+---+-------------------+
|5.0     |3.9157800414902435|alex|1  |-1.0215078369104984|
|5.0     |3.9157800414902435|bob |3  |-0.5107539184552492|
|5.0     |3.9157800414902435|ali |6  |0.2553769592276246 |
|5.0     |3.9157800414902435|dave|10 |1.276884796138123  |
+--------+------------------+----+---+-------------------+


or alternatively, we may write this as:


>>> mean_age, sttdev_age = samples.select(mean("age"), stddev("age"))
    .first()
>>> samples.withColumn("age_scaled",
    (col("age") - mean_age) / sttdev_age).show(truncate=False)
+----+---+-------------------+
|name|age|age_scaled         |
+----+---+-------------------+
|alex|1  |-1.0215078369104984|
|bob |3  |-0.5107539184552492|
|ali |6  |0.2553769592276246 |
|dave|10 |1.276884796138123  |
+----+---+-------------------+


Method 2 is to use functions from PySpark’s ml package. Here, we use pyspark.ml.feature.VectorAssembler() to transform the age column into a vector, then standardize the values with Spark’s StandardScaler:


>>> from pyspark.ml.feature import VectorAssembler
>>> from pyspark.ml.feature import StandardScaler
>>> vecAssembler = VectorAssembler(inputCols=['age'], outputCol="age_vector")
>>> samples2 = vecAssembler.transform(samples)
>>> samples2.show()
+----+---+----------+
|name|age|age_vector|
+----+---+----------+
|alex|  1|     [1.0]|
| bob|  3|     [3.0]|
| ali|  6|     [6.0]|
|dave| 10|    [10.0]|
+----+---+----------+


>>> scaler = StandardScaler(inputCol="age_vector", outputCol="age_scaled",
...   withStd=True, withMean=True)
>>> scalerModel = scaler.fit(samples2)
>>> scaledData = scalerModel.transform(samples2)
>>> scaledData.show(truncate=False)
+----+---+----------+---------------------+
|name|age|age_vector|age_scaled           |
+----+---+----------+---------------------+
|alex|1  |[1.0]     |[-1.0215078369104984]|
|bob |3  |[3.0]     |[-0.5107539184552492]|
|ali |6  |[6.0]     |[0.2553769592276246] |
|dave|10 |[10.0]    |[1.276884796138123]  |
+----+---+----------+---------------------+


Unlike normalization, which we’ll look at next, standardization can be helpful in cases
where the data follows a Gaussian distribution.
It also
does not have a bounding range, so if you
have outliers in your data they will not be
impacted by 
standardization.

















Normalization


Normalization is a scaling technique often
applied as part of data preparation for machine
learning. The goal of normalization is to
change the values of numeric columns in
the dataset to use a common scale, without
distorting differences in the ranges of
values or losing information. Normalization
scales each numeric input variable separately
to the range [0,1], which is the
range for floating-point values, where we
have the most precision. In other words, the feature values are shifted
and rescaled so that they end up
ranging between 0.00 and 1.00. This
technique is also known as min-max scaling, and Spark provides a transformer for this purpose called 
MinMaxScaler.


Here’s the formula for normalization:



  
    X ˜ i 
    =
    X i -X min  X max -X min 
  




Note that Xmax and Xmin are the
maximum and minimum values of the
given feature, Xi, respectively.


To illustrate the normalization process,
let’s create a DataFrame with three features:


>>> df = spark.createDataFrame([ (100, 77560, 45),
                                 (200, 41560, 23),
                                 (300, 30285, 20),
                                 (400, 10345, 6),
                                 (500, 88000, 50)
                               ], ["user_id", "revenue","num_of_days"])

>>> print("Before Scaling :")
>>> df.show(5)
+-------+-------+-----------+
|user_id|revenue|num_of_days|
+-------+-------+-----------+
|    100|  77560|         45|
|    200|  41560|         23|
|    300|  30285|         20|
|    400|  10345|          6|
|    500|  88000|         50|
+-------+-------+-----------+


Next, we’ll apply the MinMaxScaler to
our features:


from pyspark.ml.feature import MinMaxScaler
from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline
from pyspark.sql.functions import udf
from pyspark.sql.types import DoubleType

# UDF for converting column type from vector to double type
unlist = udf(lambda x: round(float(list(x)[0]),3), DoubleType())

# Iterating over columns to be scaled
for i in ["revenue","num_of_days"]:
    # VectorAssembler transformation - Converting column to vector type
    assembler = VectorAssembler(inputCols=[i],outputCol=i+"_Vect")

    # MinMaxScaler transformation
    scaler = MinMaxScaler(inputCol=i+"_Vect", outputCol=i+"_Scaled")

    # Pipeline of VectorAssembler and MinMaxScaler
    pipeline = Pipeline(stages=[assembler, scaler])

    # Fitting pipeline on DataFrame
    df = pipeline.fit(df).transform(df)
      .withColumn(i+"_Scaled", unlist(i+"_Scaled")).drop(i+"_Vect")

After scaling, we can create and execute the following pipelines:

for i in ["revenue","num_of_days"]:
   assembler = VectorAssembler(inputCols=[i], outputCol=i+"_Vect")
   scaler = MinMaxScaler(inputCol=i+"_Vect", outputCol=i+"_Scaled")
   pipeline = Pipeline(stages=[assembler, scaler])
   df = pipeline.fit(df)
            .transform(df)
            .withColumn(i+"_Scaled", unlist(i+"_Scaled"))
            .drop(i+"_Vect")


And examine the scaled values:


>>> df.show(5)
+-------+-------+-----------+--------------+------------------+
|user_id|revenue|num_of_days|revenue_Scaled|num_of_days_Scaled|
+-------+-------+-----------+--------------+------------------+
|    100|  77560|         45|         0.866|             0.886|
|    200|  41560|         23|         0.402|             0.386|
|    300|  30285|         20|         0.257|             0.318|
|    400|  10345|          6|           0.0|               0.0|
|    500|  88000|         50|           1.0|               1.0|
+-------+-------+-----------+--------------+------------------+


Normalization is a good technique to use when you know that
your data does not follow a
Gaussian distribution. This can be useful in
algorithms that do not assume any distribution
of the data, like linear regression, k-nearest
neighbors, and neural networks. In the following sections, we’ll walk through a few more examples.










Scaling a Column Using a Pipeline


As with tokenization, we can apply normalization in a pipeline. First, let’s define a set of
features:


>>> from pyspark.ml.feature import MinMaxScaler
>>> from pyspark.ml import Pipeline
>>> from pyspark.ml.feature import VectorAssembler
>>> triplets = [(0, 1, 100), (1, 2, 200), (2, 5, 1000)]
>>> df = spark.createDataFrame(triplets, ['x', 'y', 'z'])
>>> df.show()
+---+---+----+
|  x|  y|   z|
+---+---+----+
|  0|  1| 100|
|  1|  2| 200|
|  2|  5|1000|
+---+---+----+


We can now apply MinMaxScaler in a pipeline as follows to normalize the values of feature (column) x:


>>> assembler = VectorAssembler(inputCols=["x"], outputCol="x_vector")
>>> scaler = MinMaxScaler(inputCol="x_vector", outputCol="x_scaled")
>>> pipeline = Pipeline(stages=[assembler, scaler])
>>> scalerModel = pipeline.fit(df)
>>> scaledData = scalerModel.transform(df)
>>> scaledData.show(truncate=False)
+---+---+----+--------+--------+
|x  |y  |z   |x_vector|x_scaled|
+---+---+----+--------+--------+
|0  |1  |100 |[0.0]   |[0.0]   |
|1  |2  |200 |[1.0]   |[0.5]   |
|2  |5  |1000|[2.0]   |[1.0]   |
+---+---+----+--------+--------+

















Using MinMaxScaler on Multiple Columns


We can also apply a scaler (such as MinMaxScaler)
on multiple columns:


>>> triplets = [(0, 1, 100), (1, 2, 200), (2, 5, 1000)]
>>> df = spark.createDataFrame(triplets, ['x', 'y', 'z'])
>>> df.show()
+---+---+----+
|  x|  y|   z|
+---+---+----+
|  0|  1| 100|
|  1|  2| 200|
|  2|  5|1000|
+---+---+----+
>>> from pyspark.ml import Pipeline
>>> from pyspark.ml.feature import MinMaxScaler
>>> columns_to_scale = ["x", "y", "z"]
>>> assemblers = [VectorAssembler(inputCols=[col],
    outputCol=col + "_vector") for col in columns_to_scale]
>>> scalers = [MinMaxScaler(inputCol=col + "_vector",
    outputCol=col + "_scaled") for col in columns_to_scale]
>>> pipeline = Pipeline(stages=assemblers + scalers)
>>> scalerModel = pipeline.fit(df)
>>> scaledData = scalerModel.transform(df)
>>> scaledData.show(truncate=False)
+---+---+----+--------+--------+--------+--------+--------+--------------------+
|x  |y  |z   |x_vector|y_vector|z_vector|x_scaled|y_scaled|z_scaled            |
+---+---+----+--------+--------+--------+--------+--------+--------------------+
|0  |1  |100 |[0.0]   |[1.0]   |[100.0] |[0.0]   |[0.0]   |[0.0]               |
|1  |2  |200 |[1.0]   |[2.0]   |[200.0] |[0.5]   |[0.25]  |[0.1111111111111111]|
|2  |5  |1000|[2.0]   |[5.0]   |[1000.0]|[1.0]   |[1.0]   |[1.0]               |
+---+---+----+--------+--------+--------+--------+--------+--------------------+


You can do some postprocessing to recover the original column names:


from pyspark.sql import functions as f

names = {x + "_scaled": x for x in columns_to_scale}
scaledData = scaledData.select([f.col(c).alias(names[c]) for c in names.keys()])


The output will be:


>>> scaledData.show()
+------+-----+--------------------+
|     y|    x|                   z|
+------+-----+--------------------+
| [0.0]|[0.0]|               [0.0]|
|[0.25]|[0.5]|[0.1111111111111111]|
| [1.0]|[1.0]|               [1.0]|
+------+-----+--------------------+

















Normalization Using Normalizer


Spark’s Normalizer transforms a dataset of Vector rows, normalizing each Vector to have unit norm (i.e., a length of 1). It takes a parameter p from the user, which represents the p-norm. For example, you can set p=1 to use the Manhattan norm (or Manhattan distance) or p=2 to use the Euclidean norm:


L1: z = || x ||1 = sum(|xi|) for i=1, ..., n
L2: z = || x ||2 = sqrt(sum(xi^2)) for i=1,..., n


from pyspark.ml.feature import Normalizer
# Create an object of the class Normalizer
ManhattanDistance=Normalizer().setP(1)
  .setInputCol("features").setOutputCol("Manhattan Distance")
EuclideanDistance=Normalizer().setP(2)
  .setInputCol("features").setOutputCol("Euclidean Distance")
# Transform
ManhattanDistance.transform(scaleDF).show()
+---+--------------+--------------------+
| id|      features|  Manhattan Distance|
+---+--------------+--------------------+
|  0|[1.0,0.1,-1.0]|[0.47619047619047...|
|  1| [2.0,1.1,1.0]|[0.48780487804878...|
|  0|[1.0,0.1,-1.0]|[0.47619047619047...|
|  1| [2.0,1.1,1.0]|[0.48780487804878...|
|  1|[3.0,10.1,3.0]|[0.18633540372670...|
+---+--------------+--------------------+

EuclideanDistance.transform(scaleDF).show()
+---+--------------+--------------------+
| id|      features|  Euclidean Distance|
+---+--------------+--------------------+
|  0|[1.0,0.1,-1.0]|[0.70534561585859...|
|  1| [2.0,1.1,1.0]|[0.80257235390512...|
|  0|[1.0,0.1,-1.0]|[0.70534561585859...|
|  1| [2.0,1.1,1.0]|[0.80257235390512...|
|  1|[3.0,10.1,3.0]|[0.27384986857909...|
+---+--------------+--------------------+
























String Indexing


Most machine learning algorithms
require the conversion of categorical features
(such as strings) into numerical ones. String indexing is the process of converting strings
to numerical values.


Spark’s StringIndexer
is a label indexer that maps a string
column of labels to a column of label indices.
If the input column is numeric, we cast it to string
and index the string values. The indices are in the range [0, numLabels).
By default, they are ordered by label frequency in descending order, so
the most frequent label gets the index 0. The ordering
behavior is controlled by setting the stringOrderType option.










Applying StringIndexer to a Single Column


Suppose we have the following PySpark DataFrame:


+-------+--------------+----+----+
|address|          date|name|food|
+-------+--------------+----+----+
|1111111|20151122045510| Yin|gre |
|1111111|20151122045501| Yin|gre |
|1111111|20151122045500| Yln|gra |
|1111112|20151122065832| Yun|ddd |
|1111113|20160101003221| Yan|fdf |
|1111111|20160703045231| Yin|gre |
|1111114|20150419134543| Yin|fdf |
|1111115|20151123174302| Yen|ddd |
|2111115|      20123192| Yen|gre |
+-------+--------------+----+----+


If we want to transform it to use with
pyspark.ml, we can use Spark’s StringIndexer
to convert the name column to a numeric
column, as shown here:


>>> indexer = StringIndexer(inputCol="name", outputCol="name_index").fit(df)
>>> df_ind = indexer.transform(df)
>>> df_ind.show()
+-------+--------------+----+----------+----+
|address|          date|name|name_index|food|
+-------+--------------+----+----------+----+
|1111111|20151122045510| Yin|       0.0|gre |
|1111111|20151122045501| Yin|       0.0|gre |
|1111111|20151122045500| Yln|       2.0|gra |
|1111112|20151122065832| Yun|       4.0|ddd |
|1111113|20160101003221| Yan|       3.0|fdf |
|1111111|20160703045231| Yin|       0.0|gre |
|1111114|20150419134543| Yin|       0.0|fdf |
|1111115|20151123174302| Yen|       1.0|ddd |
|2111115|      20123192| Yen|       1.0|gre |
+-------+--------------+----+----------+----+

















Applying StringIndexer to Several Columns


What if we want to apply StringIndexer to several
columns at once? The simple way to do this is to combine
several StringIndexes in a list() function and use a
Pipeline to execute them all:


from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer

indexers = [ StringIndexer(inputCol=column, outputCol=column+"_index").fit(df)
  for column in list(set(df.columns)-set(['date'])) ]

pipeline = Pipeline(stages=indexers)
df_indexed = pipeline.fit(df).transform(df)

df_indexed.show()
+-------+--------------+----+----+----------+----------+-------------+
|address|          date|food|name|food_index|name_index|address_index|
+-------+--------------+----+----+----------+----------+-------------+
|1111111|20151122045510| gre| Yin|       0.0|       0.0|          0.0|
|1111111|20151122045501| gra| Yin|       2.0|       0.0|          0.0|
|1111111|20151122045500| gre| Yln|       0.0|       2.0|          0.0|
|1111112|20151122065832| gre| Yun|       0.0|       4.0|          3.0|
|1111113|20160101003221| gre| Yan|       0.0|       3.0|          1.0|
|1111111|20160703045231| gre| Yin|       0.0|       0.0|          0.0|
|1111114|20150419134543| gre| Yin|       0.0|       0.0|          5.0|
|1111115|20151123174302| ddd| Yen|       1.0|       1.0|          2.0|
|2111115|      20123192| ddd| Yen|       1.0|       1.0|          4.0|
+-------+--------------+----+----+----------+----------+-------------+


Next, I’ll dig a little deeper into the VectorAssembler, introduced in “Standardization”.
























Vector Assembly


The main function of the VectorAssembler is to
concatenate a set of features into a single
vector which can be passed to the
estimator or machine learning  algorithm.
In other words, it’s a feature transformer
that merges multiple columns into a single vector column. Suppose we have the following DataFrame:


>>> df.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 7.0| 8.0| 9.0|
| 1.1| 1.2| 1.3|
| 4.0| 5.0| 6.0|
|   2|   3|   4|
| 5.0| NaN|null|
+----+----+----+


We can apply the VectorAssembler to these three features
(col1, col2, and col3) and merge them into
a vector column named features, as shown here:


from pyspark.ml.feature import VectorAssembler
input_columns = ["col1", "col2", "col3"]
assembler = VectorAssembler(inputCols=input_columns, outputCol="features")
# use the transform() method to transform the dataset into a vector
transformed = assembler.transform(df)
transformed.show()
+----+----+----+-------------+
|col1|col2|col3|     features|
+----+----+----+-------------+
| 7.0| 8.0| 9.0|[7.0,8.0,9.0]|
| 1.1| 1.2| 1.3|[1.1,1.2,1.3]|
| 4.0| 5.0| 6.0|[4.0,5.0,6.0]|
|   2|   3|   4|[2.0,3.0,4.0]|
| 5.0| NaN|null|[5.0,NaN,NaN]|
+----+----+----+-------------+


If you want to skip rows that have NaN
or null values, you can do this by using

VectorAssembler.setParams(handleInvalid="skip"):


>>> assembler2 = VectorAssembler(inputCols=input_columns, outputCol="features")
                .setParams(handleInvalid="skip")

>>> assembler2.transform(df).show()
+----+----+----+-------------+
|col1|col2|col3|     features|
+----+----+----+-------------+
| 7.0| 8.0| 9.0|[7.0,8.0,9.0]|
| 1.1| 1.2| 1.3|[1.1,1.2,1.3]|
| 4.0| 5.0| 6.0|[4.0,5.0,6.0]|
|   2|   3|   4|[2.0,3.0,4.0]|
+----+----+----+-------------+

















Bucketing


Data binning—also called discrete
binning or bucketing—is a data
preprocessing technique used to reduce
the effects of minor observation errors.
With this technique, the original data values that fall into
a given small interval (a bin) are replaced
by a value representative of that interval,
often the central value. For example, if you have data on car prices where the values are widely scattered, you may prefer to use bucketing instead of the actual individual car
prices.


Spark’s Bucketizer  transforms a column
of continuous features to a column of feature
buckets, where the buckets are specified by the user.


Consider this example: there’s no
linear relationship between latitude and
housing values, but you may suspect
that individual latitudes and housing
values are related. To explore this, you might bucketize
the latitudes, creating buckets like:


Bin-1:  32 < latitude <= 33
Bin-2:  33 < latitude <= 34
...


The binning technique can be applied on
both categorical and numerical data. Table 12-2 shows a numerical binning example, and Table 12-3 shows a categorical binning example.


Table 12-2. Numerical binning example


	Value
	Bin





	0-10

	Very low




	11-30

	Low




	31-70

	Mid




	71-90

	High




	91-100

	Very high







Table 12-3. Categorical binning example


	Value
	Bin





	India

	Asia




	China

	Asia




	Japan

	Asia




	Spain

	Europe




	Italy

	Europe




	Chile

	South America




	Brazil

	South America







Binning is used with genomics data as well: we
bucketize human genome chromosomes (1, 2, 3,
…, 22, X, Y, MT).  For instance, chromosome
1 has 250 million positions, which we may
bucketize into 101 buckets as follows:


for id in (1, 2, 3, ..., 22, X, Y, MT):
  chr_position = (chromosome-<id> position)
  # chr_position range is from 1 to 250,000,000
  bucket = chr_position % 101
  # where
  #      0 =< bucket <= 100










Bucketizer


Bucketing is the most straightforward approach
for converting continuous variables into
categorical variables. To illustrate,
let’s look at an example.  In PySpark,
the task of bucketing can be easily accomplished
using the Bucketizer class. The first step is to define the bucket
borders; then we create an object of the Bucketizer
class and apply the transform() method
to our DataFrame.


First, let’s create a sample DataFrame for
demo purposes:


>>> data = [('A', -99.99), ('B', -0.5), ('C', -0.3),
...   ('D', 0.0), ('E', 0.7), ('F', 99.99)]
>>>
>>> dataframe = spark.createDataFrame(data, ["id", "features"])
>>> dataframe.show()
+---+--------+
| id|features|
+---+--------+
|  A|  -99.99|
|  B|    -0.5|
|  C|    -0.3|
|  D|     0.0|
|  E|     0.7|
|  F|   99.99|
+---+--------+


Next, we define our bucket borders and apply the Bucketizer to create buckets:


>>> bucket_borders=[-float("inf"), -0.5, 0.0, 0.5, float("inf")]
>>> from pyspark.ml.feature import Bucketizer
>>> bucketer = Bucketizer().setSplits(bucket_borders)
   .setInputCol("features").setOutputCol("bucket")
>>> bucketer.transform(dataframe).show()
+---+--------+------+
| id|features|bucket|
+---+--------+------+
|  A|  -99.99|   0.0|
|  B|    -0.5|   1.0|
|  C|    -0.3|   1.0|
|  D|     0.0|   2.0|
|  E|     0.7|   3.0|
|  F|   99.99|   3.0|
+---+--------+------+

















QuantileDiscretizer


Spark’s QuantileDiscretizer takes a column with
continuous features and outputs a column with
binned categorical features. The number of bins
is set by the 
numBuckets parameter, and the bucket splits are determined based on the data. It is
possible that the number of buckets used will
be smaller than the specified value, for example if
there are too few distinct values in the
input to create enough distinct quantiles (i.e., segments of the dataset).


You can use the Bucketizer and QuantileDiscretizer together, like this:


>>> from pyspark.ml.feature import Bucketizer
>>> from pyspark.ml.feature import QuantileDiscretizer
>>> data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2)]
>>> df = spark.createDataFrame(data, ["id", "hour"])
>>> print(df.show())
+---+----+
| id|hour|
+---+----+
|  0|18.0|
|  1|19.0|
|  2| 8.0|
|  3| 5.0|
|  4| 2.2|
+---+----+


>>> qds = QuantileDiscretizer(numBuckets=5, inputCol="hour",
   outputCol="buckets", relativeError=0.01, handleInvalid="error")
>>> bucketizer = qds.fit(df)
>>> bucketizer.setHandleInvalid("skip").transform(df).show()
+---+----+-------+
| id|hour|buckets|
+---+----+-------+
|  0|18.0|    3.0|
|  1|19.0|    3.0|
|  2| 8.0|    2.0|
|  3| 5.0|    2.0|
|  4| 2.2|    1.0|
+---+----+-------+
























Logarithm Transformation


In a nutshell, logarithm (commonly denoted
by log) transformation compresses the range
of large numbers and expands the range of
small numbers. In mathematics, the logarithm
is the inverse function to exponentiation
and is defined as (where b is called the base number):
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In feature engineering, log transformation is one of
the most commonly used mathematical transformations.
It helps us to handle skewed data by forcing outlier values closer to the mean, making the data distribution more approximate to normal (for example, the natural/base e logarithm of the number 4,000 is 8.2940496401). This normalization reduces the effect of the outliers, helping make machine learning models more robust.


The logarithm is only defined for positive values other than 1 (0, 1, and negative values cannot reliably be the base of a power function). A common technique for handling negative and zero values is to add a constant to the data before applying the log transformation (e.g., log(x+1)).


Spark provides the logarithm function in
any base, defined as follows:


pyspark.sql.functions.log(arg1, arg2=None)

Description: Returns the first argument-based logarithm
of the second argument. If there is only one argument,
then this takes the natural logarithm of the argument.


Its use is illustrated in the following example. First, we create a DataFrame:


>>> data = [('gene1', 1.2), ('gene2', 3.4), ('gene1', 3.5), ('gene2', 12.6)]
>>> df = spark.createDataFrame(data, ["gene", "value"])
>>> df.show()
+-----+-----+
| gene|value|
+-----+-----+
|gene1|  1.2|
|gene2|  3.4|
|gene1|  3.5|
|gene2| 12.6|
+-----+-----+


Then we apply the logarithm transformation
on a feature labeled value:


>>> from pyspark.sql.functions import log
>>> df.withColumn("base-10", log(10.0, df.value))
      .withColumn("base-e", log(df.value)).show()
+-----+-----+------------------+------------------+
| gene|value|           base-10|            base-e|
+-----+-----+------------------+------------------+
|gene1|  1.2|0.0791812460476248|0.1823215567939546|
|gene2|  3.4| 0.531478917042255|1.2237754316221157|
|gene1|  3.5|0.5440680443502756| 1.252762968495368|
|gene2| 12.6|1.1003705451175627| 2.533696813957432|
+-----+-----+------------------+------------------+

















One-Hot Encoding


Machine learning models require
that all input features and output predictions
be numeric.  This implies that if your
data contains categorical features—such as education
degree {BS, MBA, MS, MD, PHD}—you must encode
it numerically before you can build and evaluate a
model.


Figure 12-3 illustrates the concept of
one-hot encoding, an encoding scheme in which each categorical value is
converted to a binary vector.



[image: daws 1203]
Figure 12-3. One-hot encoding example




A one-hot encoder maps the label indices to a
binary vector representation with at most
a single 1 value indicating the presence of a specific feature value from the set of all possible feature values. This method is  useful when
you need to use categorical features but the
algorithm expects continuous features. To
understand this encoding method, consider
a feature called safety_level that has five categorical values (represented in Table 12-4). The first column shows the feature values and
the rest of the columns show one-hot encoded binary vector representations of those values.


Table 12-4. Representing categorical values as binary vectors


	safety_level (text)
	Very-Low
	Low
	Medium
	High
	Very-High





	Very-Low

	1

	0

	0

	0

	0




	Low

	0

	1

	0

	0

	0




	Medium

	0

	0

	1

	0

	0




	High

	0

	0

	0

	1

	0




	Very-High

	0

	0

	0

	0

	1







For string type input data, it is common to encode categorical features using StringIndexer first. Spark’s OneHotEncoder then takes the string-indexed label and encodes it into
a sparse vector. Let’s walk through an example to see how this works. First we’ll create a DataFrame with two categorical features:


>>> from pyspark.sql.types import *
>>>
>>> schema = StructType().add("id","integer")\
...                      .add("safety_level","string")\
...                      .add("engine_type","string")
>>> schema
StructType(List(StructField(id,IntegerType,true),
                StructField(safety_level,StringType,true),
                StructField(engine_type,StringType,true)))
>>> data = [
...      (1,'Very-Low','v4'),
...      (2,'Very-Low','v6'),
...      (3,'Low','v6'),
...      (4,'Low','v6'),
...      (5,'Medium','v4'),
...      (6,'High','v6'),
...      (7,'High','v6'),
...      (8,'Very-High','v4'),
...      (9,'Very-High','v6')
... ]
>>>
>>> df = spark.createDataFrame(data, schema=schema)
>>> df.show(truncate=False)
+---+------------+-----------+
|id |safety_level|engine_type|
+---+------------+-----------+
|1  |Very-Low    |v4         |
|2  |Very-Low    |v6         |
|3  |Low         |v6         |
|4  |Low         |v6         |
|5  |Medium      |v4         |
|6  |High        |v6         |
|7  |High        |v6         |
|8  |Very-High   |v4         |
|9  |Very-High   |v6         |
+---+------------+-----------+


Next, we’ll apply the OneHotEncoder transformation
to the safety_level and engine_type
features.  In Spark, we cannot apply
OneHotEncoder to string columns directly; we need to first convert them to
numeric values, which we can do with Spark’s
StringIndexer.


First, we apply StringIndexer to
the safety_level feature:


>>> from pyspark.ml.feature import StringIndexer
>>> safety_level_indexer = StringIndexer(inputCol="safety_level",
    outputCol="safety_level_index")
>>> df1 = safety_level_indexer.fit(df).transform(df)
>>> df1.show()
+---+------------+-----------+------------------+
| id|safety_level|engine_type|safety_level_index|
+---+------------+-----------+------------------+
|  1|    Very-Low|         v4|               3.0|
|  2|    Very-Low|         v6|               3.0|
|  3|         Low|         v6|               1.0|
|  4|         Low|         v6|               1.0|
|  5|      Medium|         v4|               4.0|
|  6|        High|         v6|               0.0|
|  7|        High|         v6|               0.0|
|  8|   Very-High|         v4|               2.0|
|  9|   Very-High|         v6|               2.0|
+---+------------+-----------+------------------+


Next, we apply StringIndexer to the engine_type
feature:


>>> engine_type_indexer = StringIndexer(inputCol="engine_type",
    outputCol="engine_type_index")
>>> df2 = engine_type_indexer.fit(df).transform(df)
>>> df2.show()
+---+------------+-----------+-----------------+
| id|safety_level|engine_type|engine_type_index|
+---+------------+-----------+-----------------+
|  1|    Very-Low|         v4|              1.0|
|  2|    Very-Low|         v6|              0.0|
|  3|         Low|         v6|              0.0|
|  4|         Low|         v6|              0.0|
|  5|      Medium|         v4|              1.0|
|  6|        High|         v6|              0.0|
|  7|        High|         v6|              0.0|
|  8|   Very-High|         v4|              1.0|
|  9|   Very-High|         v6|              0.0|
+---+------------+-----------+-----------------+


We can now apply OneHotEncoder to the safety_level_index and
engine_type_index columns:


>>> from pyspark.ml.feature import OneHotEncoder
>>> onehotencoder_safety_level = OneHotEncoder(inputCol="safety_level_index",
    outputCol="safety_level_vector")
>>> df11 = onehotencoder_safety_level.fit(df1).transform(df1)
>>> df11.show(truncate=False)
+---+------------+-----------+------------------+-------------------+
|id |safety_level|engine_type|safety_level_index|safety_level_vector|
+---+------------+-----------+------------------+-------------------+
|1  |Very-Low    |v4         |3.0               |(4,[3],[1.0])      |
|2  |Very-Low    |v6         |3.0               |(4,[3],[1.0])      |
|3  |Low         |v6         |1.0               |(4,[1],[1.0])      |
|4  |Low         |v6         |1.0               |(4,[1],[1.0])      |
|5  |Medium      |v4         |4.0               |(4,[],[])          |
|6  |High        |v6         |0.0               |(4,[0],[1.0])      |
|7  |High        |v6         |0.0               |(4,[0],[1.0])      |
|8  |Very-High   |v4         |2.0               |(4,[2],[1.0])      |
|9  |Very-High   |v6         |2.0               |(4,[2],[1.0])      |
+---+------------+-----------+------------------+-------------------+


>>> onehotencoder_engine_type = OneHotEncoder(inputCol="engine_type_index",
    outputCol="engine_type_vector")
>>> df12 = onehotencoder_engine_type.fit(df2).transform(df2)
>>> df12.show(truncate=False)
+---+------------+-----------+-----------------+------------------+
|id |safety_level|engine_type|engine_type_index|engine_type_vector|
+---+------------+-----------+-----------------+------------------+
|1  |Very-Low    |v4         |1.0              |(1,[],[])         |
|2  |Very-Low    |v6         |0.0              |(1,[0],[1.0])     |
|3  |Low         |v6         |0.0              |(1,[0],[1.0])     |
|4  |Low         |v6         |0.0              |(1,[0],[1.0])     |
|5  |Medium      |v4         |1.0              |(1,[],[])         |
|6  |High        |v6         |0.0              |(1,[0],[1.0])     |
|7  |High        |v6         |0.0              |(1,[0],[1.0])     |
|8  |Very-High   |v4         |1.0              |(1,[],[])         |
|9  |Very-High   |v6         |0.0              |(1,[0],[1.0])     |
+---+------------+-----------+-----------------+------------------+


We can also apply this encoding to multiple columns at the same time:


>>> indexers = [StringIndexer(inputCol=column, outputCol=column+"_index")
    .fit(df) for column in list(set(df.columns)-set(['id'])) ]

>>> from pyspark.ml import Pipeline
>>> pipeline = Pipeline(stages=indexers)
>>> df_indexed = pipeline.fit(df).transform(df)
>>> df_indexed.show()
+---+------------+-----------+------------------+-----------------+
| id|safety_level|engine_type|safety_level_index|engine_type_index|
+---+------------+-----------+------------------+-----------------+
|  1|    Very-Low|         v4|               3.0|              1.0|
|  2|    Very-Low|         v6|               3.0|              0.0|
|  3|         Low|         v6|               1.0|              0.0|
|  4|         Low|         v6|               1.0|              0.0|
|  5|      Medium|         v4|               4.0|              1.0|
|  6|        High|         v6|               0.0|              0.0|
|  7|        High|         v6|               0.0|              0.0|
|  8|   Very-High|         v4|               2.0|              1.0|
|  9|   Very-High|         v6|               2.0|              0.0|
+---+------------+-----------+------------------+-----------------+


>>> encoder = OneHotEncoder(
...     inputCols=[indexer.getOutputCol() for indexer in indexers],
...     outputCols=[
...         "{0}_encoded".format(indexer.getOutputCol()) for indexer in indexers]
... )
>>>
>>> from pyspark.ml.feature import VectorAssembler
>>> assembler = VectorAssembler(
...     inputCols=encoder.getOutputCols(),
...     outputCol="features"
... )
>>>
>>> pipeline = Pipeline(stages=indexers + [encoder, assembler])
>>>
>>> pipeline.fit(df).transform(df).show()
+---+------------+-----------+------------------+-----------------+
| id|safety_level|engine_type|safety_level_index|engine_type_index|
+---+------------+-----------+------------------+-----------------+
|  1|    Very-Low|         v4|               3.0|              1.0|
|  2|    Very-Low|         v6|               3.0|              0.0|
|  3|         Low|         v6|               1.0|              0.0|
|  4|         Low|         v6|               1.0|              0.0|
|  5|      Medium|         v4|               4.0|              1.0|
|  6|        High|         v6|               0.0|              0.0|
|  7|        High|         v6|               0.0|              0.0|
|  8|   Very-High|         v4|               2.0|              1.0|
|  9|   Very-High|         v6|               2.0|              0.0|
+---+------------+-----------+------------------+-----------------+

+---+--------------+-------------------------+-------------------+
| id| safety_level_|engine_type_index_encoded|           features|
|   | index_encoded|                         |                   |
+---+--------------+-------------------------+-------------------+
|  1| (4,[3],[1.0])|                (1,[],[])|      (5,[3],[1.0])|
|  2| (4,[3],[1.0])|            (1,[0],[1.0])|(5,[3,4],[1.0,1.0])|
|  3| (4,[1],[1.0])|            (1,[0],[1.0])|(5,[1,4],[1.0,1.0])|
|  4| (4,[1],[1.0])|            (1,[0],[1.0])|(5,[1,4],[1.0,1.0])|
|  5|     (4,[],[])|                (1,[],[])|          (5,[],[])|
|  6| (4,[0],[1.0])|            (1,[0],[1.0])|(5,[0,4],[1.0,1.0])|
|  7| (4,[0],[1.0])|            (1,[0],[1.0])|(5,[0,4],[1.0,1.0])|
|  8| (4,[2],[1.0])|                (1,[],[])|      (5,[2],[1.0])|
|  9| (4,[2],[1.0])|            (1,[0],[1.0])|(5,[2,4],[1.0,1.0])|
+---+--------------+-------------------------+-------------------+


There is another way to do all
of the data transformations: we
can use a pipeline to simplify
the process. First, we create the required stages:


>>> safety_level_indexer = StringIndexer(inputCol="safety_level",
    outputCol="safety_level_index")
>>> engine_type_indexer = StringIndexer(inputCol="engine_type",
    outputCol="engine_type_index")
>>> onehotencoder_safety_level = OneHotEncoder(
    inputCol="safety_level_index",
    outputCol="safety_level_vector")
>>> onehotencoder_engine_type = OneHotEncoder(
    inputCol="engine_type_index",
    outputCol="engine_type_vector")


Then we create a pipeline and pass all the defined stages to it:


>>> pipeline = Pipeline(stages=[safety_level_indexer,
...                             engine_type_indexer,
...                             onehotencoder_safety_level,
...                             onehotencoder_engine_type
...                     ])
>>>
>>> df_transformed = pipeline.fit(df).transform(df)
>>> df_transformed.show(truncate=False)
+---+---------+------+------+------+-------------+------------------+
|id |   safety|engine|safety|engine| safety_level|      engine_type |
|   |   _level| _type|_level| _type|      _vector|          _vector |
|   |         |      |_index|_index|             |                  |
+---+---------+------+------+------+-------------+------------------+
|1  |Very-Low |v4    |3.0   |1.0   |(4,[3],[1.0])|  (1,[],[])       |
|2  |Very-Low |v6    |3.0   |0.0   |(4,[3],[1.0])|  (1,[0],[1.0])   |
|3  |Low      |v6    |1.0   |0.0   |(4,[1],[1.0])|  (1,[0],[1.0])   |
|4  |Low      |v6    |1.0   |0.0   |(4,[1],[1.0])|  (1,[0],[1.0])   |
|5  |Medium   |v4    |4.0   |1.0   |(4,[],[])    |  (1,[],[])       |
|6  |High     |v6    |0.0   |0.0   |(4,[0],[1.0])|  (1,[0],[1.0])   |
|7  |High     |v6    |0.0   |0.0   |(4,[0],[1.0])|  (1,[0],[1.0])   |
|8  |Very-High|v4    |2.0   |1.0   |(4,[2],[1.0])|  (1,[],[])       |
|9  |Very-High|v6    |2.0   |0.0   |(4,[2],[1.0])|  (1,[0],[1.0])   |
+---+---------+------+------+------+-------------+------------------+

















TF-IDF


Term frequency–inverse document frequency (TF-IDF) is a measure
of the originality of a word (a.k.a. term) based on the number of times it appears
in a document and the number of documents in a collection that it appears in. In other words, it’s a feature vectorization
method used in text mining to reflect the
importance of a term to a document in a corpus
(set of documents). The TF-IDF technique is commonly used in document analysis, search engines, recommender systems, and other natural language processing (NLP) applications.


Term frequency TF(t,d) is the number of times
that term t appears in document d, while
document frequency DF(t, D) is the number
of documents that contain term t. If a term appears very
often across the corpus, it means it does
not carry special information about a particular
document—usually these kinds of words
(such as “of,” “the,” and “as”) may be
dropped from the text analysis. Before we go
deeper into the TF-IDF transformation, let’s define
the terms used in the following equations (Table 12-5).


Table 12-5. TF-IDF notation


	Notation
	Description





	t

	Term




	d

	Document




	D

	Corpus (set of finite documents)




	|D|

	The number of documents in the corpus




	TF(t, d)

	Term Frequency: the number of times that term t appears in document d




	DF(t, D)

	Document Frequency: the number of documents that contain term t




	IDF(t, D)

	Inverse Document Frequency: a numerical measure of how much information a term provides







Inverse document frequency (IDF) is defined as:
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Let’s say N is the number of documents in a corpus. Since the logarithm is used, if a term appears in
all documents, its IDF value becomes 0:
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Note that a smoothing term (+1) is applied to avoid
dividing by zero for terms that do not appear in the corpus.
The TF-IDF measure is simply the product
of TF and IDF:
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where:



	
t denotes the term(s)



	
d denotes a document



	
D denotes the corpus



	
TF(t,d) denotes the number of times that term t appears in document d






We can express TF as:
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Before,  I show you how Spark implements TF-IDF, let’s walk through a simple example with two documents (corpus
size is 2 and D = {doc1, doc2}). We start by calculating the term frequency and document frequency:


documents = spark.createDataFrame([
    ("doc1", "Ada Ada Spark Spark Spark"),
    ("doc2", "Ada SQL")],["id", "document"])

TF(Ada, doc1) = 2
TF(Spark, doc1) = 3
TF(Ada, doc2) = 1
TF(SQL, doc2) = 1

DF(Ada, D) = 2
DF(Spark, D) = 1
DF(SQL, D) = 1


Then we calculate the IDF and TF-IDF (note that the logarithm base is e for all 
calculations):


IDF(Ada, D) = log ( (|D|+1) / (DF(t,D)+1) )
            = log ( (2+1) / (DF(Ada, D)+1) )
            = log ( 3 / (2+1)) = log(1)
            = 0.00

IDF(Spark, D) = log ( (|D|+1) / (DF(t,D)+1) )
            = log ( (2+1) / (DF(Spark, D)+1) )
            = log ( 3 / (1+1) )
            = log (1.5)
            = 0.40546510811

TF-IDF(Ada, doc1, D) = TF(Ada, doc1) x IDF(Ada, D)
                     = 2 x 0.0
                     = 0.0

TF-IDF(Spark, doc1, D) = TF(Spark, doc1) x IDF(Spark, D)
                       = 3 x 0.40546510811
                       = 1.21639532433


In Spark, HashingTF and CountVectorizer
are the two algorithms used to generate
term frequency vectors. The following example
shows how to perform the required transformations. First, we create our sample DataFrame:


>>> from pyspark.ml.feature import HashingTF, IDF, Tokenizer
>>>
>>> sentences = spark.createDataFrame([
...     (0.0, "we heard about Spark and Java"),
...     (0.0, "Does Java use case classes"),
...     (1.0, "fox jumped over fence"),
...     (1.0, "red fox jumped over")
... ], ["label", "text"])
>>>
>>> sentences.show(truncate=False)
+-----+-----------------------------+
|label|text                         |
+-----+-----------------------------+
|0.0  |we heard about Spark and Java|
|0.0  |Does Java use case classes   |
|1.0  |fox jumped over fence        |
|1.0  |red fox jumped over          |
+-----+-----------------------------+

>>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
>>> words_data = tokenizer.transform(sentences)
>>> words_data.show(truncate=False)
+-----+-----------------------------+------------------------------------+
|label|text                         |words                               |
+-----+-----------------------------+------------------------------------+
|0.0  |we heard about Spark and Java|[we, heard, about, spark, and, java]|
|0.0  |Does Java use case classes   |[does, java, use, case, classes]    |
|1.0  |fox jumped over fence        |[fox, jumped, over, fence]          |
|1.0  |red fox jumped over          |[red, fox, jumped, over]            |
+-----+-----------------------------+------------------------------------+


Next we, create raw features:


>>> hashingTF = HashingTF(inputCol="words", outputCol="raw_features",
  numFeatures=16)
>>> featurized_data = hashingTF.transform(words_data)
>>> featurized_data.select("label", "raw_features").show(truncate=False)
+-----+-----------------------------------------------+
|label|raw_features                                   |
+-----+-----------------------------------------------+
|0.0  |(16,[1,4,6,11,12,15],[1.0,1.0,1.0,1.0,1.0,1.0])|
|0.0  |(16,[2,6,11,13,15],[1.0,1.0,1.0,1.0,1.0])      |
|1.0  |(16,[0,1,6,8],[1.0,1.0,1.0,1.0])               |
|1.0  |(16,[1,4,6,8],[1.0,1.0,1.0,1.0])               |
+-----+-----------------------------------------------+


Then we apply the IDF() transformation:


>>> idf = IDF(inputCol="raw_features", outputCol="features")
>>> idf_model = idf.fit(featurized_data)
>>> rescaled_data = idf_model.transform(featurized_data)
>>> rescaled_data.select("label", "features").show(truncate=False)
+-----+--------------------------------------------------------------+
|label|features                                                      |
+-----+--------------------------------------------------------------+
|0.0  |(16,[1,4,6,11,12,15],[0.22314355131420976,0.5108256237659907, |
|     |0.0,0.5108256237659907,0.9162907318741551,0.5108256237659907])|
|0.0  |(16,[2,6,11,13,15],[0.9162907318741551,0.0,0.5108256237659907,|
|     | 0.9162907318741551,0.5108256237659907])                      |
|1.0  |(16,[0,1,6,8],[0.9162907318741551,0.22314355131420976,        |
|     |0.0,0.5108256237659907])                                      |
|1.0  |(16,[1,4,6,8],[0.22314355131420976,0.5108256237659907,        |
|     |0.0,0.5108256237659907])                                      |
+-----+--------------------------------------------------------------+


The next example shows how to do TF-IDF
using CountVectorizer, which extracts
a vocabulary from a document collection and
generates a CountVectorizerModel. In this example, each row of the DataFrame
represents a document:


>>> df = spark.createDataFrame(
...    [(0, ["a", "b", "c"]), (1, ["a", "b", "b", "c", "a"])],
...    ["label", "raw"]
... )
>>> df.show()
+-----+---------------+
|label|            raw|
+-----+---------------+
|    0|      [a, b, c]|
|    1|[a, b, b, c, a]|
+-----+---------------+


>>> from  pyspark.ml.feature import CountVectorizer
>>> cv = CountVectorizer().setInputCol("raw").setOutputCol("features")
>>> model = cv.fit(df)
>>> transformed = model.transform(df)
>>> transformed.show(truncate=False)
+-----+---------------+--------------------------+
|label|raw            |features                  |
+-----+---------------+--------------------------+
|0    |[a, b, c]      | (3,[0,1,2],[1.0,1.0,1.0])|
|1    |[a, b, b, c, a]| (3,[0,1,2],[2.0,2.0,1.0])|
+-----+---------------+--------------------------+


In the features column, taking the example of the second row:



	
3 is the vector length.



	
[0, 1, 2] are the vector indices  (index(a)=0, index(b)=1, index(c)=2).



	
[2.0,2.0,1.0] are the vector values.






HashingTF() converts documents to vectors of fixed size:


>>> hashing_TF = HashingTF(inputCol="raw", outputCol="features", numFeatures=128)
>>> result = hashing_TF.transform(df)
>>> result.show(truncate=False)
+-----+---------------+-------------------------------+
|label|raw            |features                       |
+-----+---------------+-------------------------------+
|0    |[a, b, c]      |(128,[40,99,117],[1.0,1.0,1.0])|
|1    |[a, b, b, c, a]|(128,[40,99,117],[1.0,2.0,2.0])|
+-----+---------------+-------------------------------+


Note that the size of the vector generated
through CountVectorizer depends on the training
corpus and the document, whereas the one generated
through HashingTF has a fixed size (we set it to
128).    This means that when using CountVectorizer, each raw
feature is mapped to an index, but HashingTF
might suffer from hash collisions, where two  or more terms are mapped to the same index. To avoid this, we can
increase the target feature dimension.

















FeatureHasher


Feature hashing projects a set of categorical
or numerical features into a feature vector
of specified dimension (typically substantially
smaller than that of the original feature space).
A
hashing trick is used
to map features to indices in the feature vector.


Spark’s FeatureHasher operates on multiple columns, which may contain either numeric or categorical features. For numeric features, the hash of the column name is used to map the feature value to its index in the feature vector. For categorical and Boolean features, the hash of the string "column_name=value" is used, with an indicator value of 1.0. Here’s an example:


>>> from pyspark.ml.feature import FeatureHasher
>>> df = spark.createDataFrame([
...   (2.1, True, "1", "fox"),
...   (2.1, False, "2", "gray"),
...   (3.3, False, "2", "red"),
...   (4.4, True, "4", "fox")
... ], ["number", "boolean", "string_number", "string"])

>>> input_columns = ["number", "boolean", "string_number", "string"]

>>> featurized = hasher.transform(df)
>>> featurized.show(truncate=False)
+------+-------+-------------+------+---------------------------------------+
|number|boolean|string_number|string|features                               |
+------+-------+-------------+------+---------------------------------------+
|2.1   |true   |1            |fox   |(256,[22,40,71,156],[1.0,1.0,2.1,1.0]) |
|2.1   |false  |2            |gray  |(256,[71,91,109,130],[2.1,1.0,1.0,1.0])|
|3.3   |false  |2            |red   |(256,[71,91,130,205],[3.3,1.0,1.0,1.0])|
|4.4   |true   |4            |fox   |(256,[40,71,84,156],[1.0,4.4,1.0,1.0]) |
+------+-------+-------------+------+---------------------------------------+

















SQLTransformer


Spark’s SQLTransformer implements the
transformations that are defined by a SQL
statement. Rather than registering your
DataFrame as a table and then querying
the table, you can directly apply the SQL
transformations to your data represented
as a DataFrame. Currently, SQLTransformer
has limited functionality and can be
applied to a single DataFrame as __THIS__,
which represents the underlying table of
the input dataset.


SQLTransformer supports statements like:


SELECT salary, salary * 0.06 AS bonus
   FROM __THIS__
      WHERE salary > 10000

SELECT dept, location, SUM(salary) AS sum_of_salary
   FROM __THIS__
      GROUP BY dept, location


The following example shows how to use SQLTransformer:


>>> from pyspark.ml.feature import SQLTransformer
>>> df = spark.createDataFrame([
...     (10, "d1", 27000),
...     (20, "d1", 29000),
...     (40, "d2", 31000),
...     (50, "d2", 39000)], ["id", "dept", "salary"])
>>>
>>> df.show()
+---+----+------+
| id|dept|salary|
+---+----+------+
| 10|  d1| 27000|
| 20|  d1| 29000|
| 40|  d2| 31000|
| 50|  d2| 39000|
+---+----+------+


query = "SELECT dept, SUM(salary) AS sum_of_salary FROM __THIS__ GROUP BY dept"
sqlTrans = SQLTransformer(statement=query)
sqlTrans.transform(df).show()
+----+-------------+
|dept|sum_of_salary|
+----+-------------+
|  d2|        70000|
|  d1|        56000|
+----+-------------+

















Summary


The goal of machine learning algorithms
is to use input data to create usable models that can help us to answer questions. The input data comprises
features (such as education level, car price, glucose level, etc.) which
are in the form of structured columns.
In most cases the algorithms
require features with some specific
characteristics to work properly, which raises the need for feature engineering. Spark’s machine learning library, MLlib (included in PySpark),
has  a set of high-level APIs that make
feature engineering possible.
Proper feature engineering helps to
build semantically proper and correct
machine learning models.


The following is a list of accessible resources that provide additional information on feature engineering and other topics covered in this book:



	
“Getting Started with Feature Engineering”, a blog post by Pravar Jain



	
“Data Manipulation: Features”, by Wenqiang Feng



	
“Representation: Feature Engineering” from Google’s Machine Learning Crash Course with TensorFlow APIs



	
“Want to Build Machine Learning Pipelines? A Quick Introduction Using PySpark”, a blog post by Lakshay Arora



	
TF-IDF, Term Frequency-Inverse Document Frequency—documentation by Ethen Liu






This concludes our journey through data algorithms with Spark! I hope you feel prepared to tackle any data problem, big or small. Remember my motto: keep it simple and use parameters so that your solution can be reused by other developers.












Index
Symbols
	> (FASTA description line), FASTA Format
	>>> PySpark shell prompt, Using the PySpark Shell


A
	actions, Actions	collect() action, Actions, Actions, Step 1: Create an RDD[String] from the Input
	collectAsMap(), Map-Side Join Using RDDs
	count() action, Actions
	in lazy transformations, Lazy Transformations
	in RDD creation, What Are Transformations?-What Are Transformations?
	reduce() action, Actions
	saveAsMap() action, Actions, Lazy Transformations
	saveAsTextFile() action, Actions


	addition over a set of integers, monoids, Addition over a set of integers
	adjacency matrix, in PageRank algorithm, Custom PageRank in PySpark Using an Adjacency Matrix
	aggregateByKey() transformation, Spark’s Reductions, Solving with aggregateByKey(), The aggregateByKey() Transformation-Second Solution Using aggregateByKey()
	aggregation	in-mapper combining per record, In-Mapper Combining per Record-In-Mapper Combining per Record
	with mapPartitions(), Benefits and Drawbacks
	merging key values, Aggregating and Merging Values of Keys-Aggregating and Merging Values of Keys, Aggregating Values for Similar Keys


	Amazon Athena, Amazon Athena Example-Amazon Athena Example
	Amazon EC2, Key Terms
	Amazon S3, Reading from and Writing to Amazon S3-Writing to Amazon S3
	Apache Avro, Reading and Writing Avro Files
	Apache Hadoop, Why Spark for Data Analytics, Key Terms, Reading and Writing Hadoop Files
	Apache Spark (see Spark)
	Apache Zeppelin, Aggregating Values for Similar Keys
	append mode, writing DataFrame to external device, Writing a DataFrame to a Database
	associative law, Aggregating and Merging Values of Keys, The Movie Problem
	Avro file processing, Reading and Writing Avro Files
	AWS Glue, Aggregating Values for Similar Keys


B
	BFS (breadth-first search) algorithm, Flight analysis
	bidirectional vertices, finding in graphs, Finding bidirectional vertices
	Binarizer, Binarizing Data
	binning, Binning-Binning, Bucketing-Bucketizer
	Bloom filters, Efficient Joins Using Bloom Filters-Using Bloom Filters in PySpark
	bottom-10 list of data questions, Finding the Bottom 10-Finding the Bottom 10
	breadth-first search (see BFS)
	broadcast() function, Map-Side Join Using RDDs, Using Bloom Filters in PySpark
	Bucketizer, Bucketing, Bucketizer, QuantileDiscretizer
	built-in data sources (see DataFrames; RDDs)


C
	cluster environment, Key Terms
	cluster managers, Key Terms
	collect() action, Actions, Actions, Step 1: Create an RDD[String] from the Input
	collectAsMap() action, Map-Side Join Using RDDs
	combineByKey() transformation, Transformations, Spark’s Reductions, Solving with reduceByKey(), Solving with combineByKey()-Solving with combineByKey(), Complete PySpark Solution Using combineByKey()-Step 3: Find average rating	create_combiner function, Solving with combineByKey()
	efficiency over groupByKey(), Aggregating Values for Similar Keys, The DNA Base Count Example
	Input-Map-Combiner-Reduce-Output, Input-Map-Combiner-Reduce-Output
	versus mapValues(), The DNA Base Count Example
	merge_combiners function, Solving with combineByKey()
	merge_value function, Solving with combineByKey()
	rank product algorithm, Rank product solution using combineByKey()-Step 3: Calculate the rank product for each gene


	combiners	functions, Solving with combineByKey()
	groupByKey() transformation, PySpark Implementation of Monoidal Mean
	in-mapper, DNA Base Count Solution 2-Pros and Cons of Solution 2, In-Mapper Combining-In-Mapper Combining per Partition
	Input-Map-Combiner-Reduce-Output pattern, Input-Map-Combiner-Reduce-Output-Input-Map-Combiner-Reduce-Output
	and monoids, Monoids, PySpark Implementation of Monoidal Mean-PySpark Implementation of Monoidal Mean, Conclusion on Using Monoids


	commutative law, Aggregating and Merging Values of Keys, The Movie Problem
	composite pattern, The Composite Pattern and Monoids-Conclusion on Using Monoids	functors and monoids, Functors and Monoids
	MapReduce examples, Non-Monoid MapReduce Example-Monoid MapReduce Example
	monoids, Monoids-Conclusion on Using Monoids
	non-monoidal and monoidal examples, Monoidal and Non-Monoidal Examples-Monoid MapReduce Example
	PySpark implementation of monoidal mean, PySpark Implementation of Monoidal Mean-PySpark Implementation of Monoidal Mean


	concatenation over lists, monoids, Concatenation over lists
	count() action, Actions
	countByKey() transformation, Spark’s Reductions
	CountVectorizer, TF-IDF, TF-IDF
	createDataFrame() method, Writing a DataFrame to a Database
	CSV file processing, DataFrame Examples, Reading and Writing CSV Files-Writing CSV Files


D
	DAG (directed acyclic graph), What Are Transformations?-What Are Transformations?
	damping factor, PageRank algorithm, PageRank
	data abstractions, Introduction to Spark and PySpark, Spark Data Abstractions-DataFrame Examples, Data Abstractions and Mappers-Data Abstractions and Mappers	(see also DataFrames; RDDs)


	Data Algorithms (Parsian), Finding Triangles, Practical Data Design Patterns
	data analysis design patterns, Classic Data Design Patterns-Summary	binning, Binning-Binning
	composite pattern, The Composite Pattern and Monoids-Conclusion on Using Monoids
	in-mapper combining, DNA Base Count Solution 2-Pros and Cons of Solution 2, In-Mapper Combining-In-Mapper Combining per Partition
	Input-Filter-Output, Input-Filter-Output-DataFrame Filter
	Input-Map-Combiner-Reduce-Output, Input-Map-Combiner-Reduce-Output-Input-Map-Combiner-Reduce-Output
	Input-Map-Output, Input-Map-Output-Flat Mapper functionality
	Input-Map-Reduce-Output, Input-Map-Reduce-Output-DataFrame Solution
	Input-MapPartitions-Reduce-Output, Input-MapPartitions-Reduce-Output-Input-MapPartitions-Reduce-Output
	Input-Multiple-Maps-Reduce-Output, Input-Multiple-Maps-Reduce-Output-DataFrame Solution
	inverted index, Inverted Index-PySpark Solution
	joins (see join design patterns)
	MinMax, MinMax-Solution 3: Spark’s mapPartitions()
	sorting, Solution 2: Sorting, Sorting
	summarization design pattern, The mapPartitions() Transformation
	top-10 list of data questions, Top-10-Finding the Bottom 10


	data binning (see binning)
	data sources, Spark, The Spark Ecosystem	(see also DataFrames; external data sources; RDDs)


	Databricks, Aggregating Values for Similar Keys
	DataFrame.coalesce() function, Managing Partitions
	DataFrame.drop(), DataFrame Mapper, DataFrame Solution
	DataFrame.explain(), Flight analysis
	DataFrame.explode(), Flat Mapper functionality-Flat Mapper functionality
	DataFrame.filter(), DataFrame Solution-DataFrame Filter
	DataFrame.groupBy(), DataFrame Solution
	DataFrame.join(), Introduction to the Join Operation-Introduction to the Join Operation
	DataFrame.withColumn(), DataFrame Mapper-Mapper to multiple DataFrame columns, DataFrame Solution-DataFrame Solution, Adding New Features
	DataFrame.write(), Relational Databases
	DataFrameReader, Step 1: Create an RDD[String] from the Input, Reading from a Database, Step 2: Read the database table into a DataFrame-Step 3: Query the DataFrame
	DataFrames, Spark Data Abstractions, DataFrame Examples-DataFrame Examples	(see also graph algorithms)
	Avro files, Reading and Writing Avro Files
	CSV file processing, DataFrame Examples, Reading and Writing CSV Files-Writing CSV Files
	ETL example, ETL Example with DataFrames-Loading
	flatMap() applied to, Apply flatMap() to a DataFrame-Apply flatMap() to a DataFrame
	from images, Reading Image Files-Creating a DataFrame from Images
	Input-Filter-Output solution, DataFrame Solution
	Input-Map-Output solution, DataFrame Solution-DataFrame Solution
	Input-Map-Reduce-Output solution, DataFrame Solution-DataFrame Solution
	Input-Multiple-Maps-Reduce-Output, DataFrame Solution
	JSON file processing, Reading JSON Files-Writing JSON Files
	map-side join, Map-Side Join Using DataFrames-Step 4: Apply Map-Side Join
	mapPartitions(), DataFrames and mapPartitions() Transformation-DataFrames and mapPartitions() Transformation
	mapper transformations, DataFrame Mapper-Mapper to multiple DataFrame columns
	MS SQL Server, Writing to MS SQL Server
	Parquet files, Reading Parquet Files
	partitioning of, Introduction to Partitions, Physical Partitioning of Data in Spark-Partition as Parquet Format
	pipeline creation with, Creating Pipelines-Creating Pipelines
	querying external database, Step 3: Query the DataFrame-Step 3: Query the DataFrame
	reading external database into, Step 2: Read the database table into a DataFrame-Step 2: Read the database table into a DataFrame
	standardization with, Standardization
	text file processing, Reading Text Files-Reading Text Files
	writing to external database, Writing a DataFrame to a Database-Writing a DataFrame to a Database


	DataFrameWriter, Step 1: Create an RDD[String] from the Input, Relational Databases, Writing a DataFrame to a Database-Writing a DataFrame to a Database
	DataFrameWriter.save(), Writing a DataFrame to a Database
	Datasets, Spark Data Abstractions
	debugging partitions, avoiding, Handling Empty Partitions
	default partitioning, Default Partitioning-Default Partitioning
	Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson and Vlissides), Practical Data Design Patterns
	directed acyclic graph (see DAG)
	directed versus undirected graphs, Introduction to Graphs, Triangle counting with motifs
	discrete binning (see Bucketizer)
	displaying partitions, avoiding, Handling Empty Partitions
	DNA base count problem, Transformations in Action-Summary	FASTA format, FASTA Format
	sample data, Sample Data
	Solution 1, DNA Base Count Solution 1-Pros and Cons of Solution 1
	Solution 2, DNA Base Count Solution 2-Pros and Cons of Solution 2
	Solution 3, DNA Base Count Solution 3-Pros and Cons of Solution 3


	driver program for Spark applications, Key Terms, Spark architecture in a nutshell
	drop() function, DataFrame Mapper, DataFrame Solution
	DSL (domain-specific language), Motif Finding-Motif Finding


E
	edges (E), graphs, Introduction to Graphs
	edges attribute, GraphFrame, GraphFrames Functions and Attributes
	empty partitions, Handling Empty Partitions-Handling Empty Partitions, Solution 3: Spark’s mapPartitions()
	environments, Spark, The Spark Ecosystem
	error handling, MinMax design pattern, Solution 3: Spark’s mapPartitions()
	error mode, writing DataFrame to external device, Writing a DataFrame to a Database
	ETL (extract, transform, load) process, ETL Example with DataFrames-Loading
	explain() function, Flight analysis
	explicit partitioning, Explicit Partitioning
	explode() function, Flat Mapper functionality-Flat Mapper functionality
	external data sources, reading from and writing to, Interacting with External Data Sources-Summary	Amazon S3, Reading from and Writing to Amazon S3-Writing to Amazon S3
	Avro files, Reading and Writing Avro Files
	CSV files, DataFrame Examples, Reading and Writing CSV Files-Writing CSV Files
	Hadoop files, Reading and Writing Hadoop Files-Writing HDFS SequenceFiles
	HDFS SequenceFiles, Reading and Writing HDFS SequenceFiles
	image files, Reading Image Files-Creating a DataFrame from Images
	JSON files, Reading and Writing JSON Files-Writing JSON Files
	MS SQL Server, Reading from and Writing to MS SQL Server
	Parquet files, Writing Parquet Files-Reading Parquet Files
	relational databases, Relational Databases-Writing a DataFrame to a Database
	text files, Reading Text Files-Reading Text Files


	Extract, Transform, Load (ETL) procedure (see ETL)
	extraction algorithms, feature engineering, Introduction to Feature Engineering


F
	Facebook	FB circles example, graph algorithms, Facebook Circles-Motif finding
	Spark usage, Spark architecture in a nutshell


	FASTA format, DNA sequence, FASTA Format
	FASTQ format, DNA sequences, FASTA Format
	feature engineering, Feature Engineering in PySpark-Summary	adding new features, Adding New Features
	binarizing data, Binarizing Data
	bucketing, Bucketing-Bucketizer
	FeatureHasher, FeatureHasher
	imputation, Imputation-Imputation
	logarithm (log) transformation, Logarithm Transformation
	normalization, Normalization-Normalization Using Normalizer
	one-hot encoding, One-Hot Encoding-One-Hot Encoding
	pipelines, Creating Pipelines-Creating Pipelines
	SQLTransformer, SQLTransformer
	standardization, Standardization-Standardization
	string indexing, String Indexing
	TF-IDF, TF-IDF-TF-IDF
	tokenization, Tokenization-Tokenization with a Pipeline
	UDFs, applying, Applying UDFs
	vector assembly, Standardization, Vector Assembly


	filter() transformation, Why Spark for Data Analytics	graph algorithms, Flight analysis
	mapPartitions(), Benefits and Drawbacks
	RDDs, Filtering an RDD’s Elements


	filtering	Bloom filters, Efficient Joins Using Bloom Filters-Using Bloom Filters in PySpark
	Input-Filter-Output, Input-Filter-Output-DataFrame Filter
	RDD elements, Filtering an RDD’s Elements


	flatMap() transformation, Why Spark for Data Analytics, Data Abstractions and Mappers, The flatMap() Transformation-Apply flatMap() to a DataFrame	DataFrame, applying to, Apply flatMap() to a DataFrame-Apply flatMap() to a DataFrame
	DNA base count solution, Step 2: Define a Mapper Function-Step 2: Define a Mapper Function, Step 2: Define a Mapper Function-Pros and Cons of Solution 2
	Input-Map-Output, RDD Solution-RDD Solution, Flat Mapper functionality-Flat Mapper functionality
	versus map(), The flatMap() Transformation-map() Versus flatMap()


	flatMapValues() transformation, Data Abstractions and Mappers, The flatMapValues() Transformation-The flatMapValues() Transformation
	flight data analysis, Analyzing Flight Data-Flight analysis, Map-Side Join Using DataFrames-Step 4: Apply Map-Side Join
	fold operation, Reduction Transformations
	foldByKey() transformation, Spark’s Reductions
	foreign keys, relational databases, Relational Databases
	friend recommendations, finding, Friend recommendation
	(func) (partition handler), Handling Empty Partitions
	functions, Step 2: Define a Mapper Function	(see also specific functions)
	graph algorithms, GraphFrames Functions and Attributes
	mapper, Step 2: Define a Mapper Function, Step 2: Define a Mapper Function-Step 2: Define a Mapper Function, Custom mapper functions-Custom mapper functions
	partition, Step 2: Define a Function to Handle a Partition-Step 3: Apply the Custom Function to Each Partition
	reducer, RDD Solution-RDD Solution
	user-defined, Applying UDFs




G
	gene analysis problem	graph algorithm, Gene Analysis-Motif finding for genes
	rank product algorithm, Rank Product Example-Rank product solution using groupByKey()


	graph algorithms (GraphFrames), Graph Algorithms-Summary	connected components, Connected Components-Connected components in Spark
	Facebook circles example, Facebook Circles-Motif finding
	flight data analysis, Analyzing Flight Data-Flight analysis
	functions and attributes, GraphFrames Functions and Attributes
	gene analysis example, Gene Analysis-Motif finding for genes
	how to use, How to Use GraphFrames-How to Use GraphFrames
	motif finding feature, Motif Finding-Motif finding


	graph pattern matching (see motif finding feature)
	GraphOps, GraphFrames Functions and Attributes
	GraphX, The GraphFrames API
	groupBy() function, DataFrame, DataFrame Solution
	groupByKey() transformation, Transformations, Grouping Similar Keys, Spark’s Reductions, Spark’s Reductions, Solving with groupByKey(), Complete PySpark Solution Using groupByKey()-Complete PySpark Solution Using groupByKey()	combiners, PySpark Implementation of Monoidal Mean
	rank product algorithm, Rank product solution using groupByKey()
	versus reduceByKey() or combineByKey(), Aggregating Values for Similar Keys, The DNA Base Count Example, Reductions in Spark
	shuffle step, Shuffle Step for groupByKey()




H
	Hadoop Common, Reading and Writing Hadoop Files
	Hadoop file processing, Reading and Writing Hadoop Files-Writing HDFS SequenceFiles
	Hadoop MapReduce, Reading and Writing Hadoop Files
	Hadoop YARN, Key Terms, Reading and Writing Hadoop Files
	hash table bottlenecks, In-Mapper Combining per Partition
	hashCode() function, Partitioning Data
	HashingTF, TF-IDF, TF-IDF
	HashPartitioner, Partitioning Data
	HDFS (Hadoop Distributed File System), Reading and Writing Hadoop Files
	HDFS SequenceFiles, Reading and Writing HDFS SequenceFiles


I
	IBM, Spark usage, Spark architecture in a nutshell
	IDF (inverse document frequency), TF-IDF-TF-IDF
	ignore mode, writing DataFrame to external device, Writing a DataFrame to a Database
	Illumina, Spark usage, Spark architecture in a nutshell
	image files, reading, Reading Image Files-Creating a DataFrame from Images
	Imputer, Imputation-Imputation
	in-mapper combiner, DNA Base Count Solution 2-Pros and Cons of Solution 2, In-Mapper Combining-In-Mapper Combining per Partition
	inner join, Introduction to the Join Operation
	Input-Filter-Output design pattern, Input-Filter-Output-DataFrame Filter
	Input-Map-Combiner-Reduce-Output design pattern, Input-Map-Combiner-Reduce-Output-Input-Map-Combiner-Reduce-Output
	Input-Map-Output design pattern, Input-Map-Output-Flat Mapper functionality
	Input-Map-Reduce-Output design pattern, Input-Map-Reduce-Output-DataFrame Solution
	Input-MapPartitions-Reduce-Output design pattern, Input-MapPartitions-Reduce-Output-Input-MapPartitions-Reduce-Output
	Input-Multiple-Maps-Reduce-Output design pattern, Input-Multiple-Maps-Reduce-Output-DataFrame Solution
	intialization, saving repetition with mapPartitions(), Benefits and Drawbacks
	inverse document frequency (see IDF)
	inverted index, Inverted Index-PySpark Solution
	iterator data type, Handling Empty Partitions
	itertools.chain, Handling Empty Partitions


J
	JDBC-compliant database, reading and writing, Reading from a Database-Writing a DataFrame to a Database
	join design patterns, Join Design Patterns-Summary	Bloom filters, efficient joins with, Efficient Joins Using Bloom Filters-Using Bloom Filters in PySpark
	join operation, Introduction to the Join Operation-Introduction to the Join Operation
	map-side join using RDDs, Map-Side Join Using RDDs-Map-Side Join Using RDDs
	in MapReduce, Join in MapReduce-Implementation in PySpark


	join() operation, Input-Multiple-Maps-Reduce-Output-RDD Solution, Introduction to the Join Operation-Introduction to the Join Operation
	JSON file processing, DataFrame Examples, Reading and Writing JSON Files-Writing JSON Files, Writing Parquet Files-Reading Parquet Files
	json() method, Reading JSON Files
	Jupyter, Aggregating Values for Similar Keys


K
	Kubernetes, Key Terms


L
	left join, Introduction to the Join Operation
	Linux servers, Spark architecture in a nutshell
	load() method, Reading from a Database
	loading in ETL process, Loading
	logarithm (log) transformation, Logarithm Transformation
	LSH (locality-sensitive hashing), feature engineering, Introduction to Feature Engineering


M
	machine learning models (see feature engineering)
	mandatory transformations, Introduction to Feature Engineering
	map phase, MapReduce, Map Phase
	map() function, Reduction Transformations, Map-Side Join Using RDDs, Applying UDFs
	map() transformation, Why Spark for Data Analytics, Data Abstractions and Mappers, The map() Transformation-Custom mapper functions	custom mapper functions, Custom mapper functions-Custom mapper functions
	DataFrame mapper, DataFrame Mapper-Mapper to multiple DataFrame columns
	versus flatMap(), The flatMap() Transformation-map() Versus flatMap()
	Input-Map-Output, RDD Solution
	versus mapPartitions(), The mapPartitions() Transformation, The mapPartitions() Transformation
	RDD mapper, RDD mapper-RDD mapper


	map-side joins, Map-Side Join Using RDDs-Step 4: Apply Map-Side Join
	mapPartitions() transformation, Data Abstractions and Mappers, The  mapPartitions() Transformation-The  mapPartitions() Transformation	benefits and drawbacks, Benefits and Drawbacks-Benefits and Drawbacks
	DataFrames, DataFrames and mapPartitions() Transformation-DataFrames and mapPartitions() Transformation
	DNA base count solution, DNA Base Count Solution 3-Pros and Cons of Solution 3
	empty partitions, handling, Handling Empty Partitions-Handling Empty Partitions
	in-mapper combining per partition, In-Mapper Combining per Partition-In-Mapper Combining per Partition
	Input-MapPartitions-Reduce-Output, Input-MapPartitions-Reduce-Output-Input-MapPartitions-Reduce-Output
	MinMax, Solution 3: Spark’s mapPartitions()-Solution 3: Spark’s mapPartitions()
	top-10 list, PySpark Solution-Finding the Bottom 10


	mapper function, defining, Step 2: Define a Mapper Function, Step 2: Define a Mapper Function-Step 2: Define a Mapper Function
	mapper transformations, Mapper Transformations-Summary	data abstractions and mappers, Data Abstractions and Mappers-Data Abstractions and Mappers
	DataFrame mapping with columns, DataFrame Mapper-Mapper to multiple DataFrame columns
	flatMap() (see flatMap() transformation)
	flatMapValues(), Data Abstractions and Mappers, The flatMapValues() Transformation-The flatMapValues() Transformation
	Input-Map-Reduce-Output, Input-Map-Reduce-Output-RDD Solution
	Input-Multiple-Maps-Reduce-Output, Input-Multiple-Maps-Reduce-Output-RDD Solution
	map() (see map() transformation)
	mapPartitions() (see mapPartitions() transformation)
	mapValues(), Aggregating Values for Similar Keys, The DNA Base Count Example, Data Abstractions and Mappers, The mapValues() Transformation-The mapValues() Transformation
	RDD mapper, RDD mapper-RDD mapper


	MapReduce Design Patterns (Miner, Shook), Practical Data Design Patterns, Top-10
	MapReduce paradigm, Reduction Transformations-Reduction Transformations, Simple Warmup Example	combiners, Monoids-Monoids
	composite pattern (non-monoid), Non-Monoid MapReduce Example-Non-Monoid MapReduce Example
	DNA base count solution, DNA Base Count Solution 1-Pros and Cons of Solution 1
	Hadoop file processing, Reading and Writing Hadoop Files-Writing HDFS SequenceFiles
	in-mapper combining, Basic MapReduce Algorithm-Basic MapReduce Algorithm
	join design patterns, Join in MapReduce-Implementation in PySpark
	MinMax, Solution 1: Classic MapReduce
	monoids (see monoids)
	shuffle step in reductions, The Shuffle Step in Reductions-The Shuffle Step in Reductions
	versus Spark, Classic Data Design Patterns
	triangle count with, Finding Triangles


	mapValues() transformation, Aggregating Values for Similar Keys, The DNA Base Count Example, Data Abstractions and Mappers, The mapValues() Transformation-The mapValues() Transformation
	map_side_join() function, Map-Side Join Using RDDs
	matrix example, monoids, Matrix example
	maximum iterations method, graph page rank, Maximum iterations
	maximum over a set of integers, monoids, Maximum over a set of integers
	mean over a set of integers, monoids, Mean over a set of integers
	mean() function, The Movie Problem-The Movie Problem
	median over a set of integers, monoids, Median over a set of integers
	Mesos, Key Terms
	MinMax design pattern, MinMax-Solution 3: Spark’s mapPartitions()
	MinMaxScaler, Normalization-Using MinMaxScaler on Multiple Columns
	MLlib, Summary
	monoids, What Is a Monoid?-Step 3: Find average rating	compared to non-monoids, Monoid and Non-Monoid Examples-Monoid and Non-Monoid Examples
	composite pattern, Monoids-Conclusion on Using Monoids
	and functors, Functors and Monoids
	MapReduce example, Conclusion on Using Monoids
	MapReduce examples, Monoid MapReduce Example-Monoid MapReduce Example
	movie problem example, The Movie Problem-Step 3: Find average rating
	and non-monoidal examples, Monoidal and Non-Monoidal Examples-Monoid MapReduce Example
	PySpark implementation of monoidal mean, PySpark Implementation of Monoidal Mean-PySpark Implementation of Monoidal Mean


	motif finding feature, GraphFrames, Motif Finding-Motif finding	bidirectional vertices, Finding bidirectional vertices
	flight data analysis, Flight analysis
	friend recommendations, Friend recommendation
	product recommendations, Product recommendations-Product recommendations
	social recommendations, Social Recommendations-Social Recommendations, Motif finding-Motif finding
	subgraphs, Finding subgraphs
	triangle count, GraphFrames Algorithms-Step 2: Count triangles, Triangle counting with motifs-Trial 3


	movie problem, The Movie Problem-Step 3: Find average rating
	MovieLens dataset, Input Dataset to Analyze
	MS SQL Server, Reading from and Writing to MS SQL Server
	multiplication over a set of integers, monoids, Multiplication over a set of integers
	MySQL database server, Step 1. Create a database table-Writing a DataFrame to a Database


N
	non-monoid and monoid examples, Monoid and Non-Monoid Examples-Monoid and Non-Monoid Examples, Monoidal and Non-Monoidal Examples-Monoid MapReduce Example
	non-RDD elements, What Are Transformations?
	nonreachable RDDs, Lazy Transformations
	normalization, feature engineering, Normalization-Normalization Using Normalizer
	Normalizer, Normalization Using Normalizer
	number of partitions, setting, Explicit Partitioning


O
	one-hot encoding (OneHotEncoder), One-Hot Encoding-One-Hot Encoding
	optional transformations, Introduction to Feature Engineering
	overwrite mode, writing DataFrame to external device, Writing a DataFrame to a Database


P
	PageRank algorithm, Flight analysis, Ranking Algorithms, PageRank-Maximum iterations	custom PySpark solutions, Custom PageRank in PySpark Using RDDs-PySpark solution
	with GraphFrames, PageRank with GraphFrames
	iterative computation, PageRank’s Iterative Computation-PageRank’s Iterative Computation


	pair RDDs, The mapValues() Transformation-The mapValues() Transformation, Creating Pair RDDs-Creating Pair RDDs, Spark’s Reductions-Solving with combineByKey()
	parallelize() function, Creating an RDD from a Collection
	Parquet format, Writing Parquet Files-Reading Parquet Files, Binning
	parquet() function, Partition as Parquet Format
	partitioning data, The mapPartitions() Transformation, Partitioning Data-Summary	bottom-10 list, Finding the Bottom 10-Finding the Bottom 10
	DataFrames, Introduction to Partitions, Physical Partitioning of Data in Spark-Partition as Parquet Format
	debugging issue, Handling Empty Partitions
	empty partitions, Handling Empty Partitions-Handling Empty Partitions, Solution 3: Spark’s mapPartitions()
	functions for, Step 2: Define a Function to Handle a Partition-Step 3: Apply the Custom Function to Each Partition
	in-mapper combining per partition, In-Mapper Combining per Partition-In-Mapper Combining per Partition
	managing partitions, Managing Partitions-Explicit Partitioning
	mapPartitions() (see mapPartitions() transformation)
	as parquet format, Partition as Parquet Format
	physical partitioning, Physical Partitioning for SQL Queries-Partition as Parquet Format
	querying partitioned data, Physical Partitioning for SQL Queries-Physical Partitioning for SQL Queries, Amazon Athena Example-Amazon Athena Example
	Spark’s maximizing of concurrency, The Power of PySpark
	for SQL queries, Physical Partitioning for SQL Queries-Physical Partitioning for SQL Queries
	as text format, Partition as Text Format


	partitions, Partitioning Data
	per partition in-mapper combining, In-Mapper Combining per Partition-In-Mapper Combining per Partition
	per record in-mapper combining, In-Mapper Combining per Record-In-Mapper Combining per Record
	pipelines	DataFrames, Creating Pipelines-Creating Pipelines
	OneHotEncoder, One-Hot Encoding
	scaling a column using, Scaling a Column Using a Pipeline
	tokenization, Tokenization with a Pipeline


	practical data design patterns, Practical Data Design Patterns-Summary	binning, Binning-Binning
	composite pattern, The Composite Pattern and Monoids-Conclusion on Using Monoids
	in-mapper combining, In-Mapper Combining-In-Mapper Combining per Partition
	MinMax, MinMax-Solution 3: Spark’s mapPartitions()
	sorting, Solution 2: Sorting, Sorting
	top-10 list of data questions, Top-10-Finding the Bottom 10


	product recommendations, finding, Product recommendations-Product recommendations
	Py4J, PySpark Architecture
	PySpark API, Introduction to Spark and PySpark	architecture of, PySpark Architecture-PySpark Architecture
	DataFrames (see DataFrames)
	feature engineering (see feature engineering)
	lack of support for datasets, Spark Data Abstractions
	power of, The Power of PySpark-PySpark Architecture
	RDDs (see RDDs)
	Spark APIs for, Key Terms
	Spark's relationship to, Why Spark for Data Analytics-Spark architecture in a nutshell
	using PySpark shell, Using the PySpark Shell-Aggregating Values for Similar Keys


	Python, Introduction to Spark and PySpark, The Power of PySpark
	PythonRDD, PySpark Architecture


Q
	QuantileDiscretizer, QuantileDiscretizer
	querying	DataFrame (MySQL), Step 3: Query the DataFrame-Step 3: Query the DataFrame
	partitioned data, Physical Partitioning for SQL Queries-Physical Partitioning for SQL Queries, Amazon Athena Example-Amazon Athena Example




R
	ranking algorithms, Ranking Algorithms-Summary	PageRank algorithm, Ranking Algorithms, PageRank-Maximum iterations
	rank product algorithm, Ranking Algorithms, Rank Product-Rank product solution using groupByKey()


	RDD [(String, Integer)], RDD Examples
	RDD [Integer], RDD Examples
	RDD [String], RDD Examples
	RDD.coalesce() function, Managing Partitions
	RDD.filter() function, RDD Solution
	RDDs (resilient distributed datasets), RDD Examples-Actions	actions, What Are Transformations?-What Are Transformations?
	collect() restriction, Actions
	creating, Creating an RDD from a Collection, What Are Transformations?-What Are Transformations?
	filtering RDD elements, Filtering an RDD’s Elements
	flatMap() transformation, The flatMap() Transformation-Apply flatMap() to a DataFrame
	HDFS SequenceFiles, Writing HDFS SequenceFiles
	Input-Filter-Output solution, RDD Solution
	Input-Map-Output solution, RDD Solution-RDD Solution
	Input-Map-Reduce-Output, RDD Solution-RDD Solution
	Input-Multiple-Maps-Reduce-Output, RDD Solution-RDD Solution
	map() versus mapPartitions(), The mapPartitions() Transformation
	map-side join, Map-Side Join Using RDDs
	mapper transformations, RDD mapper-RDD mapper
	nonreachable, Lazy Transformations
	operations, Spark RDD Operations-Actions
	PageRank algorithm, Custom PageRank in PySpark Using RDDs-PySpark solution
	pair RDDs, The mapValues() Transformation-The mapValues() Transformation, Creating Pair RDDs-Creating Pair RDDs, Spark’s Reductions-Solving with combineByKey()
	reductions (see reduction transformations)
	simple transformations, Why Spark for Data Analytics
	textFile() transformation, What Are Transformations?
	types, RDD Examples


	RDD[String], Step 1: Create an RDD[String] from the Input-Step 1: Create an RDD[String] from the Input, Step 1: Create an RDD[String] from the Input, Step 1: Create an RDD[String] from the Input
	reduce() action, Actions
	reduce() function, Reduction Transformations
	reduce-side join (see Input-Multiple-Maps-Reduce-Output)
	reduceByKey() transformation, Transformations, Spark’s Reductions, Solving with reduceByKey(), Complete PySpark Solution Using reduceByKey()-Step 3: Find average rating	aggregating and merging values of keys, Aggregating and Merging Values of Keys-Aggregating and Merging Values of Keys
	combiners, Monoidal and Non-Monoidal Examples, PySpark Implementation of Monoidal Mean-PySpark Implementation of Monoidal Mean
	compared to groupByKey(), Aggregating Values for Similar Keys, The DNA Base Count Example, Reductions in Spark
	DNA base count solution, Step 3: Find the Frequencies of DNA Letters-Pros and Cons of Solution 1, Step 3: Find the Frequencies of DNA Letters, Step 3: Apply the Custom Function to Each Partition-Pros and Cons of Solution 3
	in-mapper combining per record, In-Mapper Combining per Record-In-Mapper Combining per Record
	movie problem limitation, The Movie Problem
	shuffle step, Shuffle Step for reduceByKey()


	reduction transformations, Reductions in Spark-Summary	Input-Map-Combiner-Reduce-Output, Input-Map-Combiner-Reduce-Output-Input-Map-Combiner-Reduce-Output
	Input-Map-Reduce-Output, Input-Map-Reduce-Output-DataFrame Solution
	Input-MapPartitions-Reduce-Output, Input-MapPartitions-Reduce-Output-Input-MapPartitions-Reduce-Output
	Input-Multiple-Maps-Reduce-Output, Input-Multiple-Maps-Reduce-Output-DataFrame Solution
	joins, Implementation in PySpark
	MapReduce (see MapReduce paradigm)
	monoids (see monoids)
	pair RDDs, creating, Creating Pair RDDs-Creating Pair RDDs
	shuffle step, The Shuffle Step in Reductions-Shuffle Step for reduceByKey()


	RegexTokenizer, RegexTokenizer
	RegexTokenizer() function, RegexTokenizer
	relational databases, Relational Databases-Writing a DataFrame to a Database
	repartition() function, Managing Partitions
	resilient distributed datasets (see RDDs)
	right join, Introduction to the Join Operation


S
	S3 objects, accessing, Reading from and Writing to Amazon S3-Writing to Amazon S3
	sampleByKey() transformation, Spark’s Reductions
	save() method, Writing a DataFrame to a Database
	saveAsMap() action, Actions, Lazy Transformations
	saveAsTextFile() action, Actions
	scaling techniques, Standardization-Normalization Using Normalizer
	search engine algorithms (see PageRank algorithm)
	selection algorithms, feature engineering, Introduction to Feature Engineering
	SequenceFile, Reading and Writing HDFS SequenceFiles
	serverless services, partitioning by fields/columns for, Physical Partitioning for SQL Queries
	Serverless Spark, Aggregating Values for Similar Keys
	shuffling, Step 3: Find the Frequencies of DNA Letters, The Shuffle Step in Reductions-Shuffle Step for reduceByKey()
	SNAP (Stanford Network Analysis Project), Input
	social recommendations, finding, Social Recommendations-Social Recommendations
	sortByKey() transformation, Spark’s Reductions
	SortedDict mapping, Top-N Formalized
	sorting, Spark’s Reductions, Solution 2: Sorting, Sorting
	Spark, Introduction to Spark and PySpark	applications, The Spark Ecosystem
	architecture of, Spark Architecture-Spark architecture in a nutshell
	basic operations, What Are Transformations?-What Are Transformations?
	benefits in big data analytics, Why Spark for Data Analytics-Spark architecture in a nutshell
	connected components in, Connected components in Spark
	corporate usage, Spark architecture in a nutshell
	data abstractions, Spark Data Abstractions-DataFrame Examples
	ecosystem of, The Spark Ecosystem
	interfacing with external data sources (see external data sources)
	libraries, Spark Architecture
	versus MapReduce, Classic Data Design Patterns
	maximizing concurrency through partitioning data, The Power of PySpark
	partitions in, Partitioning Data, Partitions in Spark-Partitions in Spark
	relationship to PySpark, Why Spark for Data Analytics-Spark architecture in a nutshell


	Spark DataSource API (see external data sources)
	spark object, Spark architecture in a nutshell
	Spark SQL, DataFrame Examples, DataFrames and mapPartitions() Transformation, Applying UDFs	(see also external data sources)


	spark-submit command, Using the PySpark Shell
	spark.read(), Relational Databases
	SparkContext, Key Terms, Spark architecture in a nutshell-Spark architecture in a nutshell, Launching the PySpark Shell, Lazy Transformations
	SparkContext.textFile() function, Step 1: Create an RDD[String] from the Input
	SparkSession, Why Spark for Data Analytics, Key Terms, Spark architecture in a nutshell-Spark architecture in a nutshell, Launching the PySpark Shell
	SQL queries, partitioning data for, Physical Partitioning for SQL Queries-Physical Partitioning for SQL Queries
	SQLTransformer, SQLTransformer
	standardization, feature engineering, Standardization-Standardization
	StandardScaler, Standardization
	Stanford Network Analysis Project	SNAP, Introduction to Spark and PySpark


	StringIndexer, String Indexing, One-Hot Encoding, One-Hot Encoding-One-Hot Encoding
	stringOrderType option, String Indexing
	subgraphs, finding, Finding subgraphs, Connected Components-Connected components in Spark
	subtractByKey()other transformation, Spark’s Reductions
	subtraction over a set of integers, monoids, Subtraction over a set of integers
	sum() function, Aggregating Values for Similar Keys
	summarization design pattern, The mapPartitions() Transformation


T
	text file processing, Step 1: Create an RDD[String] from the Input-Step 1: Create an RDD[String] from the Input, Step 1: Create an RDD[String] from the Input, Reading Text Files-Reading Text Files, Reading Hadoop Text Files-Writing Hadoop Text Files
	text() function, Partition as Text Format
	textFile() transformation	DNA base count solution, Step 1: Create an RDD[String] from the Input-Step 1: Create an RDD[String] from the Input, Step 1: Create an RDD[String] from the Input
	RDD creation, What Are Transformations?


	TF-IDF (term frequency–inverse document frequency), TF-IDF-TF-IDF
	tokenization, Tokenization-Tokenization with a Pipeline
	Tokenizer, Tokenizer
	tokens, Tokenization
	tolerance method, graph page rank, Tolerance
	transform() method, Bucketizer, Bucketizer
	transformation algorithms, feature engineering, Introduction to Feature Engineering
	transformations, Transformations, What Are Transformations?-What Are Transformations?	(see also specific transformations)
	in ETL process, Transformation
	lazy, Lazy Transformations-Lazy Transformations
	mandatory transformations, Introduction to Feature Engineering
	mappers (see mapper transformations)
	optional, Introduction to Feature Engineering
	RDD creation, What Are Transformations?-What Are Transformations?
	reduction (see reduction transformations)


	triangle count, motif finding feature, GraphFrames Algorithms-Step 2: Count triangles, Triangle counting with motifs-Trial 3
	triangleCount() method, Finding Triangles-Step 2: Count triangles


U
	UDFs (user-defined functions), Mapper to multiple DataFrame columns, Applying UDFs
	undirected graphs, Introduction to Graphs, Triangle counting with motifs
	union and intersection over integers, monoids, Union and intersection over integers


V
	VectorAssembler, Standardization, Vector Assembly
	vertices (V), graphs, Introduction to Graphs
	vertices attribute, GraphFrame, GraphFrames Functions and Attributes
	Viacom, Spark usage, Spark architecture in a nutshell


W
	WHERE clause, querying partitioned data, How to Query Partitioned Data-Amazon Athena Example
	withColumn() function, DataFrame Mapper-Mapper to multiple DataFrame columns, DataFrame Solution-DataFrame Solution, Adding New Features
	worker nodes, Key Terms, Spark architecture in a nutshell
	write() function, Relational Databases


Z
	Zeppelin, Aggregating Values for Similar Keys
	Zero in monoid, What Is a Monoid?






About the Author


Dr. Mahmoud Parsian is a software architect and author. He leads Illumina’s Big Data team, focused on large-scale genome analytics, where he develops scalable distributed algorithms for genomics data using Python, Java, MapReduce, Spark, and open source tools. Dr. Parsian is a practicing software professional with 30+ years of experience as a developer, designer, architect, and author. For the past 15 years, he has been involved in Python, Java server-side, databases, MapReduce, Spark, machine learning, and distributed computing.


Dr. Parsian has published four books: Data Algorithms (O’Reilly), JDBC Metadata, MySQL, and Oracle Recipes (Apress), JDBC Recipes (Apress), and PySpark Algorithms (Amazon).


He earned his MS and PhD in computer science from Iowa State University and is an adjunct faculty member at Santa Clara University, where he teaches courses on big data and machine learning.




  Colophon
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  These birds are only 13–14 centimeters long and weigh 10–13 grams—less than half an ounce! They are very active, inquisitive, and vocal, foraging for food in foliage, moss, lichen, tree branches and trunks, and occasionally on the ground. They breed during the austral spring and summer (Oct.–Jan.), nesting in tree trunks, crevices, and even under roofs. The female lays three to four eggs in a nest made of vines, roots, grasses, and feathers, and both parents incubate them for about two weeks. Unlike most birds, thorn-tailed rayaditos do not migrate, but they are monogamous and are often found in pairs or small groups of up to 15 birds. Their population is stable, and they are considered a species of least concern by the IUCN. Many of the animals on O’Reilly covers are endangered; all of them are important to the world.
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OEBPS/Images/daws_1006.png
[

Dataset

)

[ Partition-] 1 Partition-2 1 I Partition-N ]
mapPartitions()
v \ p A\ 4
(min, min-1) (min, min-2) (min, min-N)
(max, max-1) (max, max-2) (max, max-N)
(count, count-l)) (count, count-2) ‘(count, count-N)

L

Aggregate all partitions

]‘7

v






OEBPS/Images/daws_0311.png
mapPartitions(func): SourceRDD— TargetRDD

SourceRDD
[ Partition-1 I Partition-2 I I Partition-N ]
func() func() func()

A\ 4

[ Re;l'JIH I Result 2 I I Res‘ljlt N ]
v v v
TargetRDD ]






OEBPS/Images/daws_1004.png
Input dataset with M partitions

[ Partition-] I Partition-2 I IPartition-M ]

mapPartitions()

v v

Top-10-list Top-10-list Top-10-list
(Partition-1) (Partition-2) o (Partition-M)

Aggregate all local top-10
lists and find the final top 10
v
[ Top-10-final ]






OEBPS/Images/daws_1003.png
Input split

Top-10
mapper

Input split

Top-10
mapper

Input split

Top-10
mapper

Top-10
local records

Input split

Top-10
mapper

P

Top-10
reducer

Final top-10
records






OEBPS/Images/daws_0310.png
element-1
element-2

f:v->T
mapValues(f)

f(element-1)

[ key-N element-N ]
Source: RDD[(K, V)]

( key-N | f(element-N) ]
Target: RDD[(K, T)]






OEBPS/Images/daws_1002.png
Input Splitting ~ Mapping Shuffling  Reducing Final

- N N \ output
Al Al
ACG C1 > Al
G1 > AT
(A1) 5]
: Al
T > —
C1 T1
;é Sort > T
AT and H A5
T,1 » shuffle — T4
[ C1 Cl &3
o {6 @
ATT T1 > C1
T1 ——
— G, 1
BiEatinss






OEBPS/Images/daws_1009.png
Genomics

data

' ! ! I I

[ | [ ] o | [ Canx | [ ey |






OEBPS/Images/daws_1008.png





OEBPS/Images/daws_1007.png
Component

*

: 0.
+operation() [chig

Leaf

[ Composite )

+operation()
) —

+operation()
+add()
+remove()

S

a

+getChild()
| R

rent





OEBPS/Images/daws_0203.png
reduceByKey()

RDD[String]

RDD[ (String, RDD[ (String,
Integer)] Integer)]





OEBPS/Images/daws_0202.png
reduceByKey()

RDD[String]

RDD[ (String, RDD[ (String,
Integer)] Integer)]





OEBPS/Images/daws_0201.png
=== Adenine
=== Thymine
=== (ytosine

= = Guanine

[ =Phosphate
backbone [ Sparkcluster ]

DNA

l Spark driver
program

Input: FASTA format

>seql

cGTAaccaataaaaaaacaagcttaacctaattc

>seq2

agcttagTTTGGatctggccggg

>seq3

gcggatttactcCCCCCAAAataaatggagtctggaattcgcacca






OEBPS/Images/daws_1010.png
4
h

v ]

. ' ' I
() () - (o) ()
NP0 PG





OEBPS/Images/daws_0607.png





OEBPS/Images/daws_0606.png





OEBPS/Images/daws_0605.png
d
("Alice”, 34)

Friend Follow| |Follow

b
("Bob", 36)






OEBPS/Images/daws_0603.png





OEBPS/Images/daws_0206.png
FASTA
input data

textFile()

">seql’
‘ataatccc’

mapPartitions()

Partition-1 : :
>seq2

‘atctttcgeac’

Partition-2

L J

RDD[String]

reduceByKey()

(z,2) | (z.4) |
[ @n ] ([ @» ]
[ o0 )] [ @& ]
[ ¢ | ([ @B ]
[ @ ] [ @3 ]
. ) [ . )

RDD RDD
[(String, [(String,
Integer)] Integer)]





OEBPS/Images/daws_0602.png





OEBPS/Images/daws_0205.png
mapPartitions(func): SourceRDD— TargetRDD

(a, 275000) | (a, 295090) (a, 285000)
(t, 271890) | (t, 471890) (t, 231890)
(c, 324900) | (c, 300900) (c, 324900)
(g, 323789) | (g, 323789) (g, 327789)
(n, 12067) | (n 99067) (n, 32067)
(z, 529) (z, 589) (z, 730)
R ! ! S
TargetRDD

(a, 275000), (a, 295090), (a, 285000)
(t, 271890), (t, 471890), (t, 231890)
(z, 529), (z, 589), (z, 730),

Final reducer

y

(a, 855090), (t, 975670), (z, 1848), ...






OEBPS/Images/daws_0601.png
Directed edges Undirected edges

D

@






OEBPS/Images/daws_0204.png
mapPartitions(func): SourceRDD— TargetRDD

SourceRDD
[ Partition-1 I Partition-2 I I Partition-N ]
func() func() func()

A\ 4

[ Re;l'JIH I Result 2 I I Res‘ljlt N ]
v v v
TargetRDD ]






OEBPS/Images/daws_0609.png





OEBPS/Images/daws_0608.png
e

el

e3





OEBPS/Images/6.png





OEBPS/Images/7.png





OEBPS/Images/4.png





OEBPS/Images/5.png





OEBPS/Images/10.png





OEBPS/Images/8.png





OEBPS/Images/9.png





OEBPS/Images/2.png





OEBPS/Images/3.png





OEBPS/Images/1.png





OEBPS/Images/daws_0302.png
SparkSession or SparkContext

Datafiles

[ Transformation ‘ [ RDD ‘]

[ Tangible result J






OEBPS/Images/daws_0301.png
Spark datasets

RDDs:

« Low-level API
« Functional
« Type safe

DataFrames:
« High-level API
* Relational
« Query optimization
- Sorting/shuffling without deserialization






OEBPS/Images/cover.png
OREILLY"

Data Algorithms
with Spark

Recipes and Design Patterns for Scaling Up
Using PySpark

Mahmoud Parsian
Foreword by Matei Zaharia






OEBPS/Images/daws_0309.png
rdd1: RDD[String] rdd2: RDD[[String]]
“red fox jumped” ["red”, "fox", “jumped"]

map(lambda x: x.split())

rdd3: RDD[String]

)

flatMap(lambda x: x.split())






OEBPS/Images/daws_0308.png
Spark'Sparkcon:?g:ézzfgit}i "Fox, ran 2 fast!!!" ] "Fox, jumped; of fence!!!”)
.map(remove._| punctuatton)( "fox ran 2 fast" ] [ "fox jumped of fence" ]

fence

.flatMap(lambda v: v.split(" ")) ' l ' Imfast] [ fox [Jumped]






OEBPS/Images/daws_0703.png
Logical table representation:

Columnar layout:

al a2 a3 o4

Row layout:
al a2 a3 a4






OEBPS/Images/daws_0307.png
[red, fox, jumped]
[gray, wolf]

flatMap()

[

SourceRDD

TargetRDD





OEBPS/Images/daws_0306.png
element-1
element-2

[ element-N

SourceRDD

f(element-1)

f(element-2)

f(element-N)

Target RDD





OEBPS/Images/daws_0702.png
row-1 [990601600 alex 28 54500.50
row-2 |99000200 jane 42 68500.80
row-3 |99000300 joe 48 44900.20
row-4 99000400 | rafael 31 126000.00






OEBPS/Images/daws_0701.png
External data sources

RDBMS data
T

DataFrame

row-1

row-2

row-3

row-4






OEBPS/Images/daws_0305.png
Stage 336
(skipped)

Stage 337 Stage 338 Stage 339
( reduceByKey‘ ( pa rallelize‘ ( join‘
/..
i %
map filter
b4
\ \
map,
}
—






OEBPS/Images/daws_0304.png
Data Data
map() flatMap()
[ RDD2 ] RDD4 ] —y
ashMa
R >
join() k1 | valuel

RDDS ) saveAsMap() N k2

_

value2






OEBPS/Images/daws_0303.png
Text
file

rddo rdd2—<2"t0__,Count

rdd1 reduceByKey():rdd3 count() ,Count

saveAsText()

Text file

(A, 12)
(B.30)






OEBPS/Images/daws_1203.png
Label encoding

One-hot encoding

e Y

-

~

Cancer type| Biomarker Benign |Premalignant| Malignant | Biomarker
Benign 3 1 0 0 3
Premalignant 6 0 1 0 6
Malignant 12 0 0 1 12

\ AL






OEBPS/Images/daws_1202.png
Input data

Pipeline

Stage 1:

StringIndex
dept

column

Stage 2:
StringIndex
education
column

Stage 3:

StringIndex

education
column






OEBPS/Images/daws_1201.png
)

Gather your
data
requirements

———

v

This chapter covers

Define ML
problemand
solution

Build your Transform
dataset your data

ML model

Predictions






OEBPS/Images/daws_0401.png
a7

11

100

(2]

)

113






OEBPS/Images/daws_0409.png
((a,1) @1 @1 RN
@nN-@a2la@n @a2|a@an)-@a2|cn
b1 b)lb)=>0b2|b1) ©?2

(b, 1) b,1) (2 |b)
(o))
(o))
' v ' '
Shuffle()

! ' !
(a2 (b,2) (c.2)
(a2 (b2 (c.2)

EIRERE]

' ' '

(25) (©0) (©9)






OEBPS/Images/daws_0408.png
(@1 @nm (@1 (o)}
(@1 @nm (@1 (c,1
(b,1) (b1 (b1
(b,1) (b1 (b1
(c.1)
()
Shuffle()
@nm (b,1) ()]
@nm (b, 1) ()]
@@n1 (b, 1 ()}
@nm (b, 1) ()]
@nm (b, 1)
@nm (b,1)

[ (a [113111) ]

[ (b, [111310) ]

((cnum






OEBPS/Images/daws_0407.png
Stage1

e N

textFile()

flatMap()

~

Map()

J

Stage 2

C——
reduceByKey()

\WARNIAVD.¢

P1

Z\\ 7 \\\

|

\

\

-

afelo






OEBPS/Images/daws_0406.png
Partitions (key, Create Merge Merge Merge two
value) combiner value value combiners
zero=(10,20)  (+value, +1) (+value, +1) (+sum, +count)

A (13,21)

A (17,22)

A (38,24)

27 22)

'(27 2)






OEBPS/Images/daws_0802.png





OEBPS/Images/daws_0801.png





OEBPS/Images/daws_0405.png
Partitions (key, Create Merge Merge Merge two
value) combiner value value combiners
zero=(0,0)  (+value, +1) (+value, +1) (+sum, +count)

27 22)






OEBPS/Images/daws_0404.png
Partitions  (key, Create Merge i Merge two
value) combiner value 1 combiners
(value, 1) (+value, +1) | (+sum, +count)
_ i
|
|
._[08-0rm |
:
— :
— |
|
|
o [EE-0ED) |
(] '
|
— :
[— 1
o (8]8)—{8] 8] (B]m2}—»{8]@2
h— |
=






OEBPS/Images/daws_0403.png
Source: RDD[(String, Integer)]
Target: RDD[(String, [Integer])]

(C.[44,77,55, 66))

groupByKey() o  (8[48) :

(P.100)





OEBPS/Images/daws_0402.png
Partition-1 Partition-2






OEBPS/Images/daws_0610.png





OEBPS/Images/daws_0612.png





OEBPS/Images/daws_0611.png
Jerald
N 4






OEBPS/Images/daws_0104.png
Spark application
Spark driver

SparkSession

—

\ 4

r

Worker
Executor

.

Spark cluster
manager

A 4

Worker
Executor

e

A 4

r

Worker
Executor

A 4

Worker

Executor






OEBPS/Images/daws_0103.png
Spark

Streaming
A DataFrame API A
{ Spark core )
[ DataSource API ]

y N -~

v \ 4 \4 \4 \4 \4

l Hadoop ][ JSON ]l Amazon ]l l?_lpgggee ][ MySQL ][Elasticsearch]






OEBPS/Images/daws_0102.png
Open Source
Ecosysterm ! Sparkling P

\ H,0 /N roschu o

l.\\‘“\—_’ il

.%‘par‘l’(\Z

4

/// N - MHSQRL
kubernetes 0 MESOS~ / \ ¥ s et .
e ' \ cassandra I+ Sequoia
&> docker ) u - TACHYON 83 kafka
€ spring = OmongoDB L

elosticsearch.





OEBPS/Images/daws_0101.png
k. kContext. textFil .. X " " ou
spark.spar °?”§§mp1?tx§”§ Red,Fox,is,fast ] ( red,Fox,by,Here )
.map(lambda x: x.lower())( "red,fox,is,fast" ] [ "red,fox,by,here" ]

I I
v v v
.flatMap(lambda x: x.split(",")) |"red"] ["fox"|| "is" E‘fast'] ("red") "f"ox") "by" | |"here"
.filter(lambda x: len(x) > 2) "'fast"' '"red"' l"fox"'






OEBPS/Images/daws_0904.png





OEBPS/Images/daws_0903.png
- ouput |






OEBPS/Images/daws_0506.png
[ Root folder (all data) ]

S }
[ year=2002 ] [ year=2003 ] [ ]
¢ l
[ month=1 ] [ month=2 ] [ month=3 ] [ ]
| ! 7 !
day=1 day=2 day=3 .






OEBPS/Images/daws_0902.png
Input H
H Output






OEBPS/Images/daws_0901.png
Input H
H Output






OEBPS/Images/daws_0109.png
‘\
Transformati
[ ransformations JjL[ RDDs ]

[ Value ]






OEBPS/Images/daws_0505.png
[ Root folder (all data) ]

|
v v v
continent= continent= continent=
asia africa north_america
v

v

country= country= country=
usa canada panama
city= city= city=
Sunnyvale Cupertino Campbell






OEBPS/Images/daws_0504.png
RDD:

Partition-1

Partition-2

Partition-3

Partition-4

Partition-5

- —____J





OEBPS/Images/daws_0108.png
SparkContext

Local

Data flow

r

J Socket

~

~

-~

Py4)
Sparkcontext| [ | Spark worker
Local FS > Spark worker

Cluster

J
i
(5]

Python
Python
Python

P

Python
Python

Python

i

DPyti;on LOJVM






OEBPS/Images/daws_0503.png
Input data

Partitions:
T E R EEEDE
| © 7 Executor1 l

SRR SRR iy RN DUSIUIY SRR uostoupagtjugippupn
I I ' \ |
' lteration1 | | Pl l | P4 | . |
S ‘T T J, __|
T JI'_'_"J"_;""v"'*'T""Jr'
i lteration2 | | Pl6 l @ . :
et atte St T atotel k-
|’ o (e v v h |
i lteration3 | . . |
] I § J |






OEBPS/Images/daws_0107.png
Worker (JVM)
Data-block-1

PySpark
Python
code

Master
(JVM)

P
process
[ X ]

(big datalogic)

y

g® Worker (JVM)
Data-block-N

4
\
-
\_

Py
process

N\
J
~
J






OEBPS/Images/daws_0502.png
( Y ) . )
Spark Spark Spark

| executor | executor | executor
Data | Data [ | Data

| partition | partition | partition |

! ! !
HDFS, Amazon S3, cloud storage

! ! !

Files Files Files
S— SN— N S—






OEBPS/Images/daws_0106.png
!

Filter records by length

I

GROUP BY “url_address”

!

f Compute (mean, median, standard deviation) )

.

per “url-address”

J






OEBPS/Images/daws_0105.png
[ SparkContext

red fox jumped

red fox jumped

Input

words_rdd:
RDD[String]

records_rdd = spark.sparkContext.textFile(input)
words_rdd = records_rdd.flatMap(lambda x: x.split(" "))





OEBPS/Images/daws_0501.png
Data Data Data
partition partition partition

HDFS, Amazon S3, cloud storage
$ $ $






OEBPS/Images/daws_0906.png





OEBPS/Images/daws_0905.png
reduce()





