

			Azure Data Engineer Associate Certification Guide

			A hands-on reference guide to developing your data engineering skills and preparing for the DP-203 exam

			Newton Alex

			[image: ]

			BIRMINGHAM—MUMBAI

			Azure Data Engineer Associate Certification Guide

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Publishing Product Manager: Reshma Raman

			Senior Editor: David Sugarman

			Content Development Editor: Priyanka Soam

			Technical Editor: Devanshi Ayare

			Copy Editor: Safis Editing

			Project Coordinator: Aparna Ravikumar Nair

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Nilesh Mohite

			Marketing Coordinator: Priyanka Mhatre

			First published: March 2022

			Production reference: 1280122

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80181-606-9

			www.packt.com

			To my wife, Eshwari, and my children, Sarah and Ryan.

			Without their constant support and motivation, this book would not have been possible.

			Contributors

			About the author

			Newton Alex leads several Azure Data Analytics teams in Microsoft, India. His team contributes to technologies including Azure Synapse, Azure Databricks, Azure HDInsight, and many open source technologies, including Apache YARN, Apache Spark, and Apache Hive.

			He started using Hadoop while at Yahoo, USA, where he helped build the first batch processing pipelines for Yahoo's ad serving team. After Yahoo, he became the leader of the big data team at Pivotal Inc., USA, where he was responsible for the entire open source stack of Pivotal Inc. He later moved to Microsoft and started the Azure Data team in India. He has worked with several Fortune 500 companies to help build their data systems on Azure.

			About the reviewers

			Hitesh Hinduja is an ardent AI enthusiast working as a Senior Manager in AI at Ola Electric, where he leads a team of 20+ people in the areas of ML, statistics, CV, NLP, and reinforcement learning. He has filed 14+ patents in India and the US and has numerous research publications to his name. Hitesh has been involved in research roles at India's top business schools: the Indian School of Business, Hyderabad, and the Indian Institute of Management, Ahmedabad. He is also actively involved in training and mentoring and has been invited to be a guest speaker by various corporations and associations across the globe.

			Ajay Agarwal was born and brought up in India. He completed his master's of technology at BITS. He has significant experience in product management in the analytics domain. For years, he has managed and evolved multiple cloud capabilities and analytics products in the data science and machine learning domains. He is known for his passion for technology and leadership.

			Anindita Basak is a cloud architect who has been working on Microsoft Azure from its inception. Over the last 12 years, she has worked on Azure in cloud migration, app modernization, and cloud advisory assignments. She has been working in IT for the last 14 years and has worked on 12 books on Azure/AWS as a technical reviewer and author. She has also published multiple video courses on Azure Data Analytics from Packt Publishing.

			I would like to thank my family and the entire Packt team.

			Joseph Gnanaprakasam is a data architect, husband, and father living in Virginia. He has over a decade of experience in building data engineering and business intelligence solutions. Recently, he has started sharing his musings on data at joegnan.com. He is an avid photographer and enjoys traveling.

		

	

			Table of Contents

			Preface

			Part 1: Azure Basics

			Chapter 1: Introducing Azure Basics

			Technical requirements

			Introducing the Azure portal

			Exploring Azure accounts, subscriptions, and resource groups

			Azure account

			Azure subscription

			Resource groups

			Establishing a use case

			Introducing Azure Services

			Infrastructure as a Service (IaaS)

			Platform as a Service (PaaS)

			Software as a Service (SaaS), also known as Function as a Service (FaaS)

			Exploring Azure VMs

			Creating a VM using the Azure portal

			Creating a VM using the Azure CLI

			Exploring Azure Storage

			Azure Blob storage

			Azure Data Lake Gen 2 

			Azure Files

			Azure Queues

			Azure tables

			Azure Managed disks

			Exploring Azure Networking (VNet)

			Exploring Azure Compute

			VM Scale Sets

			Azure App Service

			Azure Kubernetes Service

			Azure Functions

			Azure Service Fabric

			Azure Batch

			Summary

			Part 2: Data Storage

			Chapter 2: Designing a Data Storage Structure

			Technical requirements

			Designing an Azure data lake

			How is a data lake different from a data warehouse?

			When should you use a data lake?

			Data lake zones

			Data lake architecture

			Exploring Azure technologies that can be used to build a data lake

			Selecting the right file types for storage

			Avro

			Parquet

			ORC 

			Comparing Avro, Parquet, and ORC

			Choosing the right file types for analytical queries 

			Designing storage for efficient querying

			Storage layer

			Application Layer

			Query layer

			Designing storage for data pruning

			Dedicated SQL pool example with pruning

			Spark example with pruning

			Designing folder structures for data transformation

			Streaming and IoT Scenarios

			Batch scenarios

			Designing a distribution strategy

			Round-robin tables

			Hash tables

			Replicated tables

			Designing a data archiving solution

			Hot Access Tier

			Cold Access Tier

			Archive Access Tier

			Data life cycle management

			Summary

			Chapter 3: Designing a Partition Strategy

			Understanding the basics of partitioning

			Benefits of partitioning

			Designing a partition strategy for files

			Azure Blob storage

			ADLS Gen2

			Designing a partition strategy for analytical workloads

			Horizontal partitioning

			Vertical partitioning

			Functional partitioning

			Designing a partition strategy for efficiency/performance

			Iterative query performance improvement process

			Designing a partition strategy for Azure Synapse Analytics

			Performance improvement while loading data

			Performance improvement for filtering queries

			Identifying when partitioning is needed in ADLS Gen2

			Summary

			Chapter 4: Designing the Serving Layer

			Technical requirements

			Learning the basics of data modeling and schemas

			Dimensional models

			Designing Star and Snowflake schemas

			Star schemas

			Snowflake schemas

			Designing SCDs

			Designing SCD1

			Designing SCD2

			Designing SCD3

			Designing SCD4

			Designing SCD5, SCD6, and SCD7

			Designing a solution for temporal data

			Designing a dimensional hierarchy

			Designing for incremental loading

			Watermarks

			File timestamps

			File partitions and folder structures

			Designing analytical stores

			Security considerations

			Scalability considerations

			Designing metastores in Azure Synapse Analytics and Azure Databricks

			Azure Synapse Analytics

			Azure Databricks (and Azure Synapse Spark)

			Summary

			Chapter 5: Implementing Physical Data Storage Structures

			Technical requirements

			Getting started with Azure Synapse Analytics

			Implementing compression

			Compressing files using Synapse Pipelines or ADF

			Compressing files using Spark

			Implementing partitioning

			Using ADF/Synapse pipelines to create data partitions

			Partitioning for analytical workloads

			Implementing horizontal partitioning or sharding

			Sharding in Synapse dedicated pools

			Sharding using Spark

			Implementing distributions

			Hash distribution

			Round-robin distribution

			Replicated distribution

			Implementing different table geometries with Azure Synapse Analytics pools

			Clustered columnstore indexing

			Heap indexing

			Clustered indexing

			Implementing data redundancy

			Azure storage redundancy in the primary region

			Azure storage redundancy in secondary regions

			Azure SQL Geo Replication

			Azure Synapse SQL Data Replication

			CosmosDB Data Replication

			Example of setting up redundancy in Azure Storage

			Implementing data archiving

			Summary

			Chapter 6: Implementing Logical Data Structures

			Technical requirements

			Building a temporal data solution

			Building a slowly changing dimension

			Updating new rows

			Updating the modified rows

			Building a logical folder structure

			Implementing file and folder structures for efficient querying and data pruning

			Deleting an old partition

			Adding a new partition

			Building external tables

			Summary

			Chapter 7: Implementing the Serving Layer

			Technical requirements

			Delivering data in a relational star schema

			Implementing a dimensional hierarchy

			Synapse SQL serverless

			Synapse Spark

			Azure Databricks

			Maintaining metadata

			Metadata using Synapse SQL and Spark pools

			Metadata using Azure Databricks

			Summary

			Part 3: Design and Develop Data Processing (25-30%)

			Chapter 8: Ingesting and Transforming Data

			Technical requirements

			Transforming data by using Apache Spark 

			What are RDDs?

			What are DataFrames?

			Transforming data by using T-SQL

			Transforming data by using ADF 

			Schema transformations

			Row transformations

			Multi-I/O transformations

			ADF templates

			Transforming data by using Azure Synapse pipelines

			Transforming data by using Stream Analytics

			Cleansing data

			Handling missing/null values

			Trimming inputs

			Standardizing values

			Handling outliers

			Removing duplicates/deduping

			Splitting data

			File splits

			Shredding JSON

			Extracting values from JSON using Spark

			Extracting values from JSON using SQL

			Extracting values from JSON using ADF

			Encoding and decoding data

			Encoding and decoding using SQL

			Encoding and decoding using Spark

			Encoding and decoding using ADF 

			Configuring error handling for the transformation

			Normalizing and denormalizing values

			Denormalizing values using Pivot

			Normalizing values using Unpivot

			Transforming data by using Scala

			Performing Exploratory Data Analysis (EDA)

			Data exploration using Spark

			Data exploration using SQL

			Data exploration using ADF 

			Summary

			Chapter 9: Designing and Developing a Batch Processing Solution

			Technical requirements

			Designing a batch processing solution

			Developing batch processing solutions by using Data Factory, Data Lake, Spark, Azure Synapse Pipelines, PolyBase, and Azure Databricks

			Storage

			Data ingestion

			Data preparation/data cleansing

			Transformation

			Using PolyBase to ingest the data into the Analytics data store

			Using Power BI to display the insights

			Creating data pipelines 

			Integrating Jupyter/Python notebooks into a data pipeline

			Designing and implementing incremental data loads

			Designing and developing slowly changing dimensions

			Handling duplicate data

			Handling missing data

			Handling late-arriving data 

			Handling late-arriving data in the ingestion/transformation stage

			Handling late-arriving data in the serving stage

			Upserting data

			Regressing to a previous state 

			Introducing Azure Batch

			Running a sample Azure Batch job

			Configuring the batch size

			Scaling resources

			Azure Batch

			Azure Databricks 

			Synapse Spark

			Synapse SQL

			Configuring batch retention

			Designing and configuring exception handling 

			Types of errors

			Remedial actions

			Handling security and compliance requirements 

			The Azure Security Benchmark

			Best practices for Azure Batch

			Summary

			Chapter 10: Designing and Developing a Stream Processing Solution

			Technical requirements

			Designing a stream processing solution

			Introducing Azure Event Hubs

			Introducing ASA

			Introducing Spark Streaming

			Developing a stream processing solution using ASA, Azure Databricks, and Azure Event Hubs

			A streaming solution using Event Hubs and ASA 

			A streaming solution using Event Hubs and Spark Streaming

			Processing data using Spark Structured Streaming

			Monitoring for performance and functional regressions

			Monitoring in Event Hubs

			Monitoring in ASA 

			Monitoring in Spark Streaming

			Processing time series data

			Types of timestamps

			Windowed aggregates

			Checkpointing or watermarking

			Replaying data from a previous timestamp

			Designing and creating windowed aggregates

			Tumbling windows

			Hopping windows

			Sliding windows 

			Session windows 

			Snapshot windows

			Configuring checkpoints/watermarking during processing

			Checkpointing in ASA

			Checkpointing in Event Hubs

			Checkpointing in Spark

			Replaying archived stream data

			Transformations using streaming analytics

			The COUNT and DISTINCT transformations

			CAST transformations

			LIKE transformations

			Handling schema drifts

			Handling schema drifts using Event Hubs

			Handling schema drifts in Spark

			Processing across partitions

			What are partitions?

			Processing data across partitions

			Processing within one partition

			Scaling resources

			Scaling in Event Hubs

			Scaling in ASA

			Scaling in Azure Databricks Spark Streaming

			Handling interruptions

			Handling interruptions in Event Hubs 

			Handling interruptions in ASA

			Designing and configuring exception handling

			Upserting data

			Designing and creating tests for data pipelines

			Optimizing pipelines for analytical or transactional purposes

			Summary

			Chapter 11: Managing Batches and Pipelines

			Technical requirements

			Triggering batches

			Handling failed Batch loads

			Pool errors

			Node errors

			Job errors

			Task errors

			Validating Batch loads

			Scheduling data pipelines in Data Factory/Synapse pipelines

			Managing data pipelines in Data Factory/Synapse pipelines

			Integration runtimes

			ADF monitoring

			Managing Spark jobs in a pipeline

			Implementing version control for pipeline artifacts

			Configuring source control in ADF

			Integrating with Azure DevOps

			Integrating with GitHub

			Summary

			Part 4: Design and Implement Data Security (10-15%)

			Chapter 12: Designing Security for Data Policies and Standards

			Technical requirements

			Introducing the security and privacy requirements

			Designing and implementing data encryption for data at rest and in transit

			Encryption at rest

			Encryption in transit

			Designing and implementing a data auditing strategy

			Storage auditing

			SQL auditing

			Designing and implementing a data masking strategy

			Designing and implementing Azure role-based access control and a POSIX-like access control list for Data Lake Storage Gen2

			Restricting access using Azure RBAC

			Restricting access using ACLs

			Designing and implementing row-level and column-level security

			Designing row-level security

			Designing column-level security

			Designing and implementing a data retention policy

			Designing to purge data based on business requirements

			Purging data in Azure Data Lake Storage Gen2

			Purging data in Azure Synapse SQL

			Managing identities, keys, and secrets across different data platform technologies

			Azure Active Directory

			Azure Key Vault

			Access keys and Shared Access keys in Azure Storage

			Implementing secure endpoints (private and public)

			Implementing resource tokens in Azure Databricks

			Loading a DataFrame with sensitive information

			Writing encrypted data to tables or Parquet files

			Designing for data privacy and managing sensitive information

			Microsoft Defender

			Summary

			Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)

			Chapter 13: Monitoring Data Storage and Data Processing

			Technical requirements

			Implementing logging used by Azure Monitor

			Configuring monitoring services

			Understanding custom logging options

			Interpreting Azure Monitor metrics and logs

			Interpreting Azure Monitor metrics

			Interpreting Azure Monitor logs

			Measuring the performance of data movement

			Monitoring data pipeline performance

			Monitoring and updating statistics about data across a system

			Creating statistics for Synapse dedicated pools

			Updating statistics for Synapse dedicated pools

			Creating statistics for Synapse serverless pools

			Updating statistics for Synapse serverless pools

			Measuring query performance

			Monitoring Synapse SQL pool performance

			Spark query performance monitoring

			Interpreting a Spark DAG

			Monitoring cluster performance

			Monitoring overall cluster performance

			Monitoring per-node performance

			Monitoring YARN queue/scheduler performance

			Monitoring storage throttling

			Scheduling and monitoring pipeline tests

			Summary

			Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing

			Technical requirements

			Compacting small files

			Rewriting user-defined functions (UDFs)

			Writing UDFs in Synapse SQL Pool

			Writing UDFs in Spark 

			Writing UDFs in Stream Analytics

			Handling skews in data

			Fixing skews at the storage level

			Fixing skews at the compute level

			Handling data spills

			Identifying data spills in Synapse SQL

			Identifying data spills in Spark

			Tuning shuffle partitions

			Finding shuffling in a pipeline

			Identifying shuffles in a SQL query plan

			Identifying shuffles in a Spark query plan

			Optimizing resource management

			Optimizing Synapse SQL pools

			Optimizing Spark

			Tuning queries by using indexers

			Indexing in Synapse SQL

			Indexing in the Synapse Spark pool using Hyperspace

			Tuning queries by using cache

			Optimizing pipelines for analytical or transactional purposes

			OLTP systems

			OLAP systems

			Implementing HTAP using Synapse Link and CosmosDB

			Optimizing pipelines for descriptive versus analytical workloads

			Common optimizations for descriptive and analytical pipelines

			Specific optimizations for descriptive and analytical pipelines

			Troubleshooting a failed Spark job

			Debugging environmental issues

			Debugging job issues

			Troubleshooting a failed pipeline run

			Summary

			Part 6: Practice Exercises

			Chapter 15: Sample Questions with Solutions

			Exploring the question formats

			Case study-based questions

			Case study – data lake

			Scenario-based questions

			Shared access signature

			Direct questions

			ADF transformation

			Ordering sequence questions

			ASA setup steps

			Code segment questions

			Column security

			Sample questions from the Design and Implement Data Storage section

			Case study – data lake

			Data visualization

			Data partitioning

			Synapse SQL pool table design – 1 

			Synapse SQL pool table design – 2

			Slowly changing dimensions

			Storage tiers

			Disaster recovery

			Synapse SQL external tables

			Sample questions from the Design and Develop Data Processing section

			Data lake design

			ASA windows

			Spark transformation

			ADF – integration runtimes

			ADF triggers

			Sample questions from the Design and Implement Data Security section

			TDE/Always Encrypted

			Auditing Azure SQL/Synapse SQL

			Dynamic data masking

			RBAC – POSIX

			Row-level security

			Sample questions from the Monitor and Optimize Data Storage and Data Processing section

			Blob storage monitoring

			T-SQL optimization

			ADF monitoring

			Setting up alerts in ASA

			Summary

			Other Books You May Enjoy

		

	

			Preface

			Azure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other.

			Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips.

			The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you'll work on sample questions and answers to familiarize yourself with the pattern of the exam.

			By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.

			Who this book is for

			This book is intended for data engineers who want to pass the DP-203: Azure Data Engineer Associate exam and are looking to gain more in-depth knowledge of the Azure cloud stack.

			This book will also help engineers and product managers who are new to Azure or who will be interviewed by companies working on Azure technologies so as to acquire good hands-on experience of the Azure data technologies.

			A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases is expected to help you get the most out of this book.

			What this book covers

			The chapters in this book are designed around the skill sets listed by Microsoft for the coursework:

			Exam DP-203: Data Engineering on Microsoft Azure – Skills Measured

			https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4MbYT

			Chapter 1, Introducing Azure Basics, introduces the audience to Azure and explains its general capabilities. This is a refresher chapter designed to renew our understanding of some of the core Azure concepts, including VMs, data storage, compute options, the Azure portal, accounts, and subscriptions. We will be building on top of these technologies in future chapters.

			Chapter 2, Designing a Data Storage Structure, focuses on the various storage solutions available in Azure. We will cover topics such as Azure Data Lake Storage, Blob storage, and SQL- and NoSQL-based storage. We will also get into the details of when to choose what storage and how to optimize this storage using techniques such as data pruning, data distribution, and data archiving.

			Chapter 3, Designing a Partition Strategy, explores the different partition strategies available. We will focus on how to efficiently split and store the data for different types of workloads and will see some recommendations on when and how to partition the data for different use cases, including analytics and batch processing.

			Chapter 4, Designing the Serving Layer, is dedicated to the design of the different types of schemas, such as the Star and Snowflake schemas. We will focus on designing slowly-changing dimensions, building a dimensional hierarchy, temporal solutions, and other such advanced topics. We will also focus on sharing data between the different compute technologies, including Azure Databricks and Azure Synapse, using metastores.

			Chapter 5, Implementing Physical Data Storage Structures, focuses on the implementation of lower-level aspects of data storage, including compression, sharding, data distribution, indexing, data redundancy, archiving, storage tiers, and replication, with the help of examples.

			Chapter 6, Implementing Logical Data Structures, focuses on the implementation of temporal data structures and slowly-changing dimensions using Azure Data Factory (ADF), building folder structures for analytics, as well as streaming and other data to improve query performance and to assist with data pruning.

			Chapter 7, Implementing the Serving Layer, focuses on implementing a relational star schema, storing files in different formats, such as Parquet and ORC, and building and using a metastore between Synapse and Azure Databricks.

			Chapter 8, Ingesting and Transforming Data, introduces the various Azure data processing technologies, including Synapse Analytics, ADF, Azure Databricks, and Stream Analytics. We will focus on the various data transformations that can be performed using T-SQL, Spark, and ADF. We will also look into aspects of data pipelines, such as cleansing the data, parsing data, encoding and decoding data, normalizing and denormalizing values, error handling, and basic data exploration techniques.

			Chapter 9, Designing and Developing a Batch Processing Solution, focuses on building an end-to-end batch processing system. We will cover techniques for handling incremental data, slowly-changing dimensions, missing data, late-arriving data, duplicate data, and more. We will also cover security and compliance aspects, along with techniques to debug issues in data pipelines. 

			Chapter 10, Designing and Developing a Stream Processing Solution, is dedicated to stream processing. We will build end-to-end streaming systems using Stream Analytics, Event Hubs, and Azure Databricks. We will explore the various windowed aggregation options available and learn how to handle schema drifts, along with time series data, partitions, checkpointing, replaying data, and so on. We will also cover techniques to handle interruptions, scale the resources, error handling, and so on. 

			Chapter 11, Managing Batches and Pipelines, is dedicated to managing and debugging the batch and streaming pipelines. We will look into the techniques to configure and trigger jobs, and to debug failed jobs. We will dive deeper into the features available in the data factory and Synapse pipelines to schedule the pipelines. We will also look at implementing version control in ADF.

			Chapter 12, Designing Security for Data Policies and Standards, focuses on how to design and implement data encryption, both at rest and in transit, data auditing, data masking, data retention, data purging, and so on. In addition, we will also learn about the RBAC features of ADLS Gen2 storage and explore the row- and column-level security in Azure SQL and Synapse Analytics. We will deep dive into techniques for handling managed identities, keys, secrets, resource tokens, and so on and learn how to handle sensitive information.

			Chapter 13, Monitoring Data Storage and Data Processing, focuses on logging, configuring monitoring services, measuring performance, integrating with CI/CD systems, custom logging and monitoring options, querying using Kusto, and finally, tips on debugging Spark jobs.

			Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing, focuses on tuning and debugging Spark or Synapse queries. We will dive deeper into query-level debugging, including how to handle shuffles, UDFs, data skews, indexing, and cache management. We will also spend some time troubleshooting Spark and Synapse pipelines.

			Chapter 15, Sample Questions with Solutions, is where we put everything we have learned into practice. We will explore a bunch of real-world problems and learn how to use the information we learned in this book to answer the certification questions. This will help you prepare for both the exam and real-world problems.

			Note

			All the information provided in this book is based on public Azure documents. The author is neither associated with the Azure Certification team nor has access to any of the Azure Certification questions, other than what is publicly made available by Microsoft. 

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/DP-203-Azure-Data-Engineer-Associate-Certification-Guide. If there's an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801816069_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "And, finally, query from the star schema tables. Here is a sample query to get a list of all those customers whose end location was 'San Jose'."

			A block of code is set as follows:

			SELECT trip.[tripId], customer.[name] FROM 

			dbo.FactTrips AS trip

			JOIN dbo.DimCustomer AS customer

			ON trip.[customerId] = customer.[customerId] 

			WHERE trip.[endLocation] = 'San Jose';

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			df = spark.createDataFrame(data= driverData, schema = columnNames)

			df.write.partitionBy("gender","salary")..parquet("abfss://path/to/output/")

			Any command-line input or output is written as follows:

			az vm extension set \

			  --resource-group <YOUR_RESOURCE_GROUP> \

			  --vm-name <VM_NAME> \

			  --name OmsAgentForLinux \

			  --publisher Microsoft.EnterpriseCloud.Monitoring \

			  --protected-settings '{"workspaceKey":"<YOUR_WORKSPACE_KEY>"}' \

			  --settings '{"workspaceId":"<YOUR_WORKSPACE_ID>"}'

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "You can see that the data in the top table is distributed horizontally based on the Trip ID range."

			Tips or Important Notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

			Share Your Thoughts

			Once you've read Azure Data Engineer Associate Certification Guide, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

			Part 1: Azure Basics

			In this part, we focus on brushing up on the basics of Azure, including the IaaS, PaaS, and SaaS services that are available in Azure. We will cover topics including VMs, VNets, app services, Service Fabric, storage, managing services using the Azure portal, APIs, and command-line options.

			This section comprises the following chapter:

			
					Chapter 1, Introducing Azure Basics

			

		

	

			Chapter 1: Introducing Azure Basics

			With all the initial formalities now behind us, let's start our journey in Azure. Our journey starts here: https://azure.microsoft.com.

			Azure is one of the most important cloud platform providers on the market today. It provides several cloud, hybrid, and on-premises services such as VMs, networks, compute, databases, messaging, machine learning (ML), artificial intelligence, Internet of Things (IoT), and many more services while focusing on security and compliance. You could use these services to build anything from web pages and mobile apps, from data analytics solutions to IoT solutions and more.

			In Azure, users have the flexibility to choose from completely hosted no-code solutions to completely build their solutions ground up using the basic building blocks like VMs and VNets, where the users have full control over each and every aspect of the system. And most of these technologies come prebaked with the cloud advantages, such as geo-replication, high availability, data redundancy, scalability, and elasticity.

			Let's quickly review the basics of Azure. The following sections will focus on brushing up on the fundamentals of Azure. If you already have a working knowledge of Azure and know how to spin up resources in Azure, then you can safely skip this chapter and go directly to the next one.

			In this first chapter, we'll provide an overview of Azure, including introducing some common Azure services. We'll get a good grounding in the basics, such as Accounts, virtual machines (VMs), storage, compute, and networking. We'll also walk through how to spin up services using both the Azure portal and the CLI.

			In this chapter, we will cover the following topics:

			
					Introducing the Azure portal

					Exploring Azure accounts, subscriptions, and resource groups 

					Introducing Azure services

					Exploring Azure VMs

					Exploring Azure storage

					Exploring Azure networking (VNet)

					Exploring Azure compute

			

			Let's get started!

			Technical requirements

			To follow along with this chapter, you will need the following:

			
					An Azure account (free or paid)

					The Azure CLI installed on your workstation

			

			Introducing the Azure portal

			The Azure portal is the starting page for all Azure developers. You can think of it as an index page that contains links to all the services provided by Azure. The following screenshot shows what the Azure portal looks like:

			
				
					[image: Figure 1.1 – The Azure portal home page

]
				

			

			Figure 1.1 – The Azure portal home page

			You can browse through all the services available in Azure or quickly search for them using the search box. Once you click on a service, the corresponding service web page will appear (also known as blades in Azure). Azure maintains strong consistency in terms of blade design. All the service blades will look very similar. So, if you are familiar with one, you should be able to easily navigate the others. We will be exploring a few of the service blades in this chapter.

			Exploring Azure accounts, subscriptions, and resource groups

			You can explore Azure with or without an account. If you are just exploring Azure and are planning to run a few Sandbox experiments, you don't need to create an Azure account. But if you are planning on investing more time in Azure, then it is recommended to create an account. Azure provides USD 200 worth of free credits for the first 30 days for you to play around. This USD 200 should get you fairly good mileage for the practice exercises for this certification. You can enroll for a free account here: https://azure.microsoft.com/free.

			Note 

			Azure requires a valid credit card number to create the account, but it doesn't charge the credit card for free accounts. Once the USD 200 credit is exhausted, it will notify you and then delete the resources.

			Let us start with Azure accounts.

			Azure account

			An Azure account refers to the Azure Billing account. It is mapped to the email id that you used to sign up for Azure. An account can contain multiple subscriptions; each of these subscriptions can have multiple resource groups and the resource groups, in turn, can have multiple resources. The billing is done at the level of subscriptions. So, one account could have multiple invoices raised per subscription.

			Next, let us look at Azure subscription.

			Azure subscription

			Every resource (VMs, VNets, databases, and so on) that you create in Azure is tied to a subscription. A subscription is a container for all the resources that are created for applications and solutions under that subscription. A subscription contains the details of all the VMs, networks, storage, and other services that were used during that month that will be used for billing purposes. Azure creates a default subscription when you create an account. But you could choose to have multiple subscriptions based on your teams (dev, test, sales, marketing, finance, and so on), regions (North America, EMEA, Asia Pacific, and so on), or other logical divisions that you feel are appropriate for your use case.

			Next, let us look at Resource groups.

			Resource groups

			Resource groups are logical groups of resources belonging to an application or a team. You can think of them as tags associated with the resources so that you can easily query, monitor, and manage the collection of resources as one. For example, you could create a resource group called Sandbox for the Azure practice sessions. At the end of the day, you can delete all the resources that were created under that resource group in one go, instead of going through every resource and deleting them. You can have multiple resource groups under a Subscription.

			Resources

			Resources refer to all the VMs, stores, databases, functions, and so on that can be created in Azure.

			Before we move on to the next topic, let us set up an example use case of an imaginary company. We will use this imaginary company as a real-world use case across all the chapters and will try to build our data solutions for it.

			Establishing a use case

			Let's pretend that there is a company called Imaginary Airport Cabs (IAC). IAC wants to build a cab booking portal. They have an engineering team and a marketing team that needs applications to be hosted on Azure. The engineering team is planning to build a scalable web server with an Azure SQL backend. The frontend and the backend are segregated using two different virtual networks for isolation and security reasons. The marketing team, on the other hand, has a simpler requirement of just an Azure SQL database to store their customer information.

			If we plot this requirement against the accounts, subscriptions, resource groups, and resources, it might look something like this:

			
				
					[image: Figure 1.2 – Relationship between accounts, subscriptions, resource groups, and resources

]
				

			

			Figure 1.2 – Relationship between accounts, subscriptions, resource groups, and resources

			We'll be returning to IAC and using Azure to solve their IT needs throughout this book. We will solve more complicated use cases for IAC in the following chapters so that you can understand the Azure concepts with real examples for your certification exam. Azure offers a variety of services that might be useful to IAC. We'll look at some of them in the following section.

			Introducing Azure Services

			Azure provides a wide array of services and technologies that can easily fulfill most real-world use cases. The services provided by Azure can be categorized like so.

			Infrastructure as a Service (IaaS)

			In IaaS, you get the bare infrastructure such as VMs, VNets, and storage, and you need to build the rest of the application stack yourself. This option gives the most flexibility for the developers in terms of OS versions, library versions, custom patches, and so on.

			Platform as a Service (PaaS)

			In PaaS, the software platforms are pre-installed and pre-configured. These are managed services in the sense that Azure manages the life cycle of this software for you. Examples include Azure SQL Server, Azure Databricks, and Azure Kubernetes Service. You will still be able to tune the software to some level, but you might not have the flexibility of choosing particular versions, patches, and so on.

			Software as a Service (SaaS), also known as Function as a Service (FaaS)

			What other platforms call Software as a Service (SaaS), Azure refers to as Function as a Service (FaaS). In SaaS or FaaS, you don't get to see any of the software installation details. You usually have a notebook-like user interface or an API interface for directly submitting your jobs; the cloud service provider takes care of instantiating the service, scaling the service and running the jobs for you. This is the easiest and quickest way to get started but the most restrictive in terms of software setup. Examples include Azure Functions, Azure Synapse SQL Serverless, and so on.

			For those of you who are not very familiar with the IaaS, PaaS, and SaaS services, here is a diagram that explains these concepts:

			
				
					[image: Figure 1.3 – Breakdown of Azure services

]
				

			

			Figure 1.3 – Breakdown of Azure services

			Let us next look at Azure VMs.

			Exploring Azure VMs

			Virtual machines (VMs) are software abstractions of the physical hardware. They can emulate the computer hardware for the applications running on it. We can have multiple VMs running on a single machine. Each VM will have a portion of the host machine's CPU, memory, and storage allocated to it.

			Azure VMs are the most common resources that are spun up in Azure. You can use VMs to set up virtually any application that you want. They are like plain vanilla servers that can be used to install any software that you need, except the OS upgrades and security patches, which are taken care of by Azure. Azure VMs provide the advantage of faster deployments, scalability, security isolation, and elasticity. Azure provides both Windows and Linux VMs. There is a huge collection of OS flavors and versions available in the Azure Marketplace that can be used to spin up the VMs. Here are some of the VM types available at the time of writing this book. You can look for more up-to-date information at https://docs.microsoft.com/en-us/azure/virtual-machines/sizes:

			
					General-purpose

					Compute-optimized

					Memory-optimized

					Storage-optimized

					GPU

					High performance

			

			In the following subsections, we'll walk through the process of creating a VM.

			Creating a VM using the Azure portal

			First, let's learn how to create a virtual machine using the Azure portal and then using the CLI. The following is a screenshot of the Create a virtual machine page:

			
				
					[image: Figure 1.4 – Creating VMs using the Azure portal

]
				

			

			Figure 1.4 – Creating VMs using the Azure portal

			Here are the steps to create the VM using the portal:

			
					From the portal, choose Virtual Machines (using the search bar or Explorer).

					Click on the + Create sign and select Virtual Machines.

					Enter a Virtual machine name, select a Resource group, select a VM image, select the Size of VM property, and an Authentication type.

					Click Review + Create and then Submit. 

					You should see a pop-up with the option to Download private key and create resource. Click on the Download button and save the private key in a safe location. You will need this key to log in to your VM.

					You can also configure Advanced options such as Disks, Networking, Management, and Tags, as shown in the preceding screenshot.

			

			Now, let's learn how to create a VM using the Azure CLI.

			Creating a VM using the Azure CLI

			Since this is the first time we are using the CLI, we'll learn how to get started.

			Installing the CLI

			There are two ways to use the CLI. First, you can use the Azure CLI option directly from the Azure portal, as shown here:

			
				
					[image: Figure 1.5 – Using the CLI directly from the Azure portal

]
				

			

			Figure 1.5 – Using the CLI directly from the Azure portal

			Alternatively, you can choose to install the Azure CLI client on your local machine and run the commands from there. You can learn how to download and install the Azure CLI client here: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows.

			Now, let's look at an example of creating a VM using the Azure CLI.

			To create a VM using the CLI, we will have to follow a sequence of steps. For this example, we'll create an Ubuntu VM:

			
					First, we have to find all the Ubuntu images that are available using the vm image list option:az vm image list --all --offer Ubuntu --all


					Next, we need to find the Azure regions where we want to deploy. We can use account list-locations for this. You can choose a region that is closest to you:az account list-locations --output table


					Once we've done this, we can either create a new resource group or use an existing one to associate this VM with. Let us create a new resource group called IACRG using the group create option, as shown here:az group create --name 'IACRG' --location 'eastus'


					Finally, let us create a VM using the information from the preceding commands. In this example, I've chosen the eastus location to deploy this VM to. All the non-mandatory fields will default to the Azure default values:az vm create --resource-group 'IACRG' --name 'sampleVM' --image 'UbuntuLTS' --admin-username '<your username>' --admin-password '<your password>' --location 'eastus'


			

			The previous command will create a VM named sampleVM under the resource group named IACRG. 

			That should have given you a good idea of how the CLI works in Azure. You can learn more about Azure VMs here: https://azure.microsoft.com/en-in/services/virtual-machines/.

			Next, let's check out the storage options that are available in Azure.

			Exploring Azure Storage

			Azure has multiple storage options that suit a wide range of applications and domains. We will explore the most common ones here.

			Azure Blob storage

			Blob storage is the most common storage type in Azure. It can be used to store unstructured data such as videos, audio, metadata, log files, text, and binary. It is a highly scalable and very cost-effective storage solution. It provides support for tiered storage, so the data can be stored at different tiers based on their access pattern and usage frequency. Highly used data can be kept at hot tiers, the not-so-used data in cold tiers, and historical data can be archived. The data in Blob storage can be easily accessed via REST endpoints, as well as client libraries available in a wide set of languages, such as .NET, Java, Python, Ruby, PHP, Node.js, and more.

			Blob Storage

			You can access your Blob Storage at https://<storage-account>.blob.core.windows.net.

			The following screenshot shows the creation of a storage account from the Azure portal:

			
				
					[image: Figure 1.6 – Creating a storage account using the Azure portal

]
				

			

			Figure 1.6 – Creating a storage account using the Azure portal

			Go ahead and create a storage account now, if you don't already have one. You will need this storage account throughout this book to store all the sample data, scripts, and more.

			Now, let's look at another important storage option provided by Azure that will be used extensively for data lakes: Azure Data Lake Gen2.

			Azure Data Lake Gen 2 

			Azure Data Lake Gen2 or Azure Data Lake Storage Gen 2 (ADLS Gen2) is a superset of Blob storage that is optimized for big data analytics. ADLS Gen2 is the preferred option for data lake solutions in Azure. It provides hierarchical namespace support on top of Blob storage. Hierarchical namespace support just means that directories are supported. Unlike Blob storage, which provides pseudo directory operations via namespaces, ADLS Gen2 provides real support for directories with POSIX compliance and Access Control List (ACL) support. This makes operations such as renaming and deleting directories atomic and quick. For example, if you have 100 files under a directory in Blob storage, renaming that directory would require hundreds of metadata operations. But, in ADLS Gen2, just one metadata operation will need to be performed at the directory level. ADLS Gen2 also supports role-based access controls (RBACs), just like Blob storage does.

			Another important feature of ADL Gen2 is that it is a Hadoop-compatible filesystem. So, building any open source analytics pipeline on top of ADL Gen2 is a breeze.

			Since we are talking about ADL Gen2, you might be curious to learn about what happened to ADL Gen1.

			ADL Gen1, as its name suggests, was the first generation of highly scalable and high-performing data lake storage that was built for data analytics. It is still available but will be deprecated in February 2024. ADLS Gen1 is optimized for large files, so it works best for file sizes of 256 MB and above. The features of Gen1 are available in Gen2 now. Gen2 also has some additional advantages, such as better regional availability, meaning that it is available in all Azure regions, compared to a select few regions where Gen1 is available. Gen2 also supports Locally Redundant Storage (LRS), Zone Redundant Storage (ZRD), and Geo Redundant Storage (GRS) for data redundancy and recovery, while Gen1 only supports LRS.

			ADLS Gen2

			You can access ADLS Gen2 at https://<storage-account>.dfs.core.windows.net.

			To create an ADLS Gen2 account, you need to select the Enable hierarchical namespace checkbox on the Create a storage account screen:

			
				
					[image: Figure 1.7 – Selecting Data Lake Storage Gen2 (Enable hierarchical namespace) 

while creating an Azure Storage instance

]
				

			

			Figure 1.7 – Selecting Data Lake Storage Gen2 (Enable hierarchical namespace) while creating an Azure Storage instance

			Next, let's learn about another Azure storage technology called Azure Files.

			Azure Files

			Azure Files provides remote file shares that can be mounted using Server Message Block (SMB) or Network File Share (NFS) protocols. These are great storage options for anyone planning to migrate on-premises workloads to the cloud with a lift and shift model, for instance, without having to invest in redevelopment for the cloud-based model. Azure files can easily be mounted both from cloud servers and on-premises servers. Azure Files is particularly useful for cases that need shared data, shared configurations, shared applications, and more across multiple users, teams, or regions. Let's look at some example commands for how to create file shares in Azure.

			Creating Azure file shares with the Azure CLI

			As we have already seen a few prior examples of using the Azure portal, let's explore this one using the Azure CLI so that we become familiar with the command-line options too. We will continue to use the IAC example here so that you get a good understanding of how to use the CLI with real examples. You can just glance through these examples to get an idea of how the Azure File commands are structured.

			All the following examples assume that you have already created a storage account named IACStorageAcct. Let's get started:

			
					You can create a new Azure file share for IAC using the share create option. The following command will create a file share named IACFileShare under the IACStorageAcct.az storage share-rm create --resource-group IACRG --storage-account IACStorageAcct --name IACFileShare


					You can list the file shares using the share list option:az storage share list --account-name IACStorageAcct


					You can put a file into our file share using the file upload option:az storage file upload --share-name IACFileShare --source ./testfile.txt


					You can view the files in your file share using file list:az storage file list --share-name IACFileShare


					Finally, you can download the file that we previously uploaded using the file download option:az storage file download --share-name IACFileShare -p testfile.txt --dest ./testfile.txt


			

			As you can see, Azure provides a very easy and intuitive set of commands for interfacing with the various Azure services that are available.

			Let us next look at Azure Queues.

			Azure Queues

			Azure queues are used to store a large number of messages that can be accessed asynchronously between the source and the destination. This helps in decoupling applications so that they can scale independently. Azure queues can be used across applications that are running in the cloud, on-premises, on mobile devices, and more. There are two types of queues: Storage queues and Service Bus.

			Storage queues can be used for simple asynchronous message processing. They can store up to 500 TB of data (per storage account) and each message can be up to 64 KB in size. If your application needs more than a simple async queue and needs advanced features such as pub-sub models, strict ordering of messages, and blocking and non-blocking APIs, then Service Bus is a better option. With Service Bus, the message sizes can be up to 1 MB but the overall size is capped at 80 GB. 

			Azure Queues

			Azure queues URL: https://<storage account>.queue.core.windows.net/<queue>.

			Now, let's look at some example commands for creating queues in Azure.

			Creating Azure Queues using the CLI

			Let's look at some sample CLI commands for creating and using an Azure Queue. Again, we will assume that the IACStorageAcct storage account has already been created:

			
					You can create a new Azure queue using the storage queue create command. The following command will create a queue  named IACqueue under the IACStorageAcct.az storage queue create --name IACqueue --account-name IACStorageAcct


					You can easily list the queues under a storage account using the storage queue list term:az storage queue list --account-name IACStorageAcct


					You can add a new message to the newly created queue using the storage message put option:az storage message put --queue-name IACqueue --content "test"


					Finally, use the storage message peek command to view the message. This command retrieves one or more messages from the front of the queue but does not alter the visibility of the message:az storage message peek --queue-name IACqueue


			

			Now that you understand the basics of Azure queues, let's look at Azure tables.

			Azure tables

			Azure tables are key-value stores provided by Azure. They are good for storing structured non-relational data. There are two solutions available in Azure for Table stores: Azure Table Storage and Cosmos DB.

			Both these features provide the same table model and Create, Read, Update, and Delete (CRUD) features, but the difference lies in their scale, SLAs, and availability. Cosmos DB is the premium version of Table store and can provide more than 10 million operations per second, whereas Azure Table storage has a scaling limit of 20K operations per second.

			Cosmos DB also provides several additional advantages, such as five flexible levels of consistency, up to 99.999% read availability on multi-region databases, serverless mode, global presence, and more. CosmosDB deserves a complete chapter on its own. We will explore CosmosDB in more detail later in this book.

			Azure Table

			Azure Table URL: http://<storage account>.table.core.windows.net/<table>.

			Like the other storage options we looked at, let's look at some example CLI commands to become familiar with this technology. You can just glance through these examples for now. We will provide detailed steps for implementing the examples required for the certification later in this book.

			Creating Azure tables using the CLI

			Let's learn how to use the Azure CLI to create and use an Azure Table:

			
					We can create a new Azure Table for our example company, IAC, by using the storage table create option. The following command will create a table  named IACtable under the IACStorageAcct.az storage table create --name IACtable --account-name IACStorageAcct


					We can easily list the Tables under a storage account using the storage table list option:az storage table list --account-name IACStorageAcct


					We can insert an entity into the newly created Table using the storage entity insert option:az storage entity insert --table-name IACtable --entity PartitionKey=testPartKey RowKey=testRowKey Content=testContent


					Finally, we can use the storage entity show command to view the entry:az storage entity show --table-name IACtable --partition-key testPartKey --row-key testRowKey


			

			With that, we have covered the core storage options provided by Azure. Next, we'll look at Azure Managed Disks, which are required for managing disk/SSD storage for VMs.

			Azure Managed disks

			Azure managed disks are the virtual hard disks that are mounted to an Azure VM. As the name suggests, these disks are completely managed by Azure. So, you don't need to worry about OS upgrades, security patches, and so on. Unlike physical disks, Azure Managed Disks offer 99.999% availability. They achieve such a high availability score by storing three different replicas of the data on different servers. Managed VMs can also be allocated to availability sets and availability zones (distributed across racks and data centers) to increase their survivability in cases of server, rack (stamp), or data center outages. The managed disks also provide options for data encryption at rest and disk-level encryptions. There are different types of managed disks available, such as standard HDD, standard SSD, premium SSD, and ultra disks.

			Creating and attaching Managed Disks to a VM using the CLI

			Let's learn how to use the CLI to create and attach Managed Disks to sampleVM, which we created earlier:

			az vm disk attach --resource-group IACRG --vm-name sampleVM --name IACmgdisk --size-gb 64 –new

			This is a simple one-line command for creating a new disk and attaching it to an existing VM. Please do remember that you also have the option to specify more advanced configuration parameters as part of the CLI command itself that, when not specified, would assume default values.

			You can learn more about Azure storage technologies here: https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction.

			Now, let's explore another core Azure technology, known as Azure Networking.

			Exploring Azure Networking (VNet)

			Like Azure VMs, Azure VNet is another core component of Azure that we should be aware of. A VNet ties all resources, such as VMs, stores, and databases, together securely in a private network. It is used to encapsulate the cloud or on-premises services together within a secure boundary by controlling who can access these services and from which endpoints.

			Azure Networking provides the following four main services:

			
					Secure connectivity within Azure resources using the basic VNet, VNet Peering, and Service Endpoints.

					Networking beyond the Azure Cloud and into the internet and hybrid clouds using Express Routers, Private Endpoints, and Point-to-Site and Site-to-Site VPNs.

					Network filtering or, in other words, Firewall Rules that can be implemented either via the Network or App Security Groups. There are options to implement the same using network appliances, which are ready-made VMs available for specialized networking scenarios.

					Network routing abilities that allow you to configure network routes using Route Tables and Border Gateway Protocols.

			

			Now, let's learn how to create a VNet using the Azure CLI.

			Creating an Azure VNet using the CLI

			Let's look at a simple example of how to create a VNet and assign a VM to it. We will reuse the IACRG resource group that we used in the examples earlier in this chapter:

			
					First, we need to create a VNET by specifying the necessary IP ranges and subnet prefixes. The following command creates a VNET named IACvnet under the IACRG resource group.az network vnet create --address-prefixes 10.20.0.0/16 --name IACvnet --resource-group IACRG --subnet-name IACsubnet --subnet-prefixes 10.20.0.0/24


					Then, we need to create a public IP so that we can access our VM from the internet:az network public-ip create --resource-group IACRG --name IACpubip --allocation-method dynamic


					Next, we must create a network interface card (NIC), which will be the network interface between the VM and the outside world, with the previously created VNet and public IP:az network nic create --resource-group IACRG --vnet-name IACvnet --subnet IACsubnet --name IACnic --public-ip-address IACpubip


					We now have all the components required to create a VM within our new VNet, IACVnet. We can reuse the UbuntuLTS image that we used in the earlier virtual machine creation example to create a new VM within the new VNet:az vm create --resource-group IACRG --name sampleVM --nics IACnic --image UbuntuLTS --generate-ssh-keys


			

			We hope that has given you a good understanding of how to create networking components such as VNets, public IPs, and more. 

			You can learn more about Azure networking here: https://azure.microsoft.com/en-in/product-categories/networking/.

			Next, we'll look at Azure Compute.

			Exploring Azure Compute

			Azure Compute is a generic term for all the compute-focused technologies in Azure. Let's explore some of the common Compute Services provided by Azure. Each of these technologies is worthy of a book, so we will just be focusing on introducing these technologies in this chapter. We will dive deeper into some of the technologies that are required for the certification later in this book.

			VM Scale Sets

			VM Scale Sets is a collection of load-balanced VMs that can be used to build highly scalable services. For example, we can have a set of web servers that can scale horizontally based on the load. The advantage of using VM Scale Sets as opposed to manually setting up VMs is that VM Scale Sets can be launched and managed using centralized templates. It comes with a load balancer by default, so we don't have to set it up manually. It also takes care of automatic scale out and scale in based on the load. In addition, VM Scale Sets have higher reliability as the workload is spread across multiple servers. Even if a few nodes fail, VM Scale Sets can quickly bring up additional nodes to replace the capacity. VM Scale Sets can be configured across availability zones to improve the availability even more.

			You can learn more about VM Scale Sets here: https://azure.microsoft.com/en-in/services/virtual-machine-scale-sets/.

			Azure App Service

			Azure App Service allows you to develop and host web apps, mobile apps, and APIs using a wide selection of languages such as .NET, Java, Node.js, Python, ASP.NET, and more. These are fully managed services that provide support for the entire life cycle of apps such as development, CI/CD, releases, maintenance, debugging, and scaling. Azure App Service is backed by enterprise-grade security and compliance. There are very detailed examples, tutorials, and support available in Azure for building complete web and mobile solutions using Azure App Service.

			You can learn more about Azure App Service here: https://azure.microsoft.com/en-in/services/app-service/.

			Azure Kubernetes Service

			Kubernetes is an open source container orchestration software. Azure Kubernetes Service (AKS) is a PaaS version of Kubernetes that's hosted on Azure. AKS provides a complete life cycle management for containerized apps, starting from development (using Visual Studio, code, and other Kubernetes tools), through to CI/CD (integration with GitHub), deployment, scaling, telemetry, logging, monitoring, and more. AKS also supports Docker images, which are widely used for containerization.

			You can learn more about AKS here: https://azure.microsoft.com/en-in/services/kubernetes-service/.

			Azure Functions

			Azure Functions is a perfect example of a serverless technology and is a SaaS. Serverless doesn't mean that there are no servers, it just means that you don't have to deploy, maintain, or upgrade your servers (VMs); someone else is doing it for you in the background and abstracting the details from you. You can use functions to write your processing logic based on event triggers and bindings such as a transaction in a database, an IoT event, and a REST call. The blocks of code you write are called functions (no points for guessing that). All you need to do is open the Azure Functions Notebook Interface and write your logic (code) directly in it. There are function extensions available in the many languages that support integration with Development, CI/CD, and DevOps tools.

			You can learn more about Azure Functions here: https://azure.microsoft.com/en-in/services/functions/.

			Azure Service Fabric

			Service Fabric is a very powerful cluster technology that takes care of app deployment, scaling, upgrades, and maintenance for microservice-based applications. It can take care of the entire life cycle management process for applications. This is similar to AKS but for non-containerized applications. Many of the core Azure services themselves run on top of Service Fabric. Service Fabric is an open source project and has very high reliability and availability.

			You can learn more about Azure Service Fabric here: https://azure.microsoft.com/en-in/services/service-fabric/.

			Azure Batch

			Azure Batch is used to run large parallel processing applications or high-performance computing applications. Batch provides the necessary resource management, scheduling, and scaling support to run any traditional MPP programs. It spins up the VMs and deploys and runs your programs in a parallel manner. It can dynamically scale up and down as required to optimize the cost. Azure Batch can be used for high volume batch processing, financial modeling, video rendering, weather prediction model generation, and so on.

			You can learn more about Azure Batch here: https://azure.microsoft.com/en-in/services/batch/.

			Summary

			With that, we have completed our first chapter. If it was too overwhelming for you, don't worry – this chapter was just meant to provide an overview of Azure. By the time you complete the next few chapters, your confidence will increase. On the other hand, if this chapter was easy for you, then you are probably already aware of some level of cloud technologies, and the next set of chapters should also be easy for you. 

			Now that you have completed this chapter, you should know how to navigate the Azure portal. You now understand the relationship between Azure accounts, subscriptions, resource groups, and resources. You also know how to create new VMs, Storage instances, VNets, and so on using both the Azure portal and the CLI. You are also aware of the major compute services that are available in Azure. With this foundational knowledge in place, we can move on to more interesting and certification-oriented topics.

			We will be exploring Azure storage technologies in the next chapter. 

		

		
			Exploring Azure accounts, subscriptions, and resource groups     

		

	

			Part 2: Data Storage

			This part dives into the details of the different types of storage, data partition strategies, schemas, file types, high availability, redundancy, and more.

			This section comprises the following chapters:

			
					Chapter 2, Designing a Data Storage Structure

					Chapter 3, Designing a Partition Strategy

					Chapter 4, Designing the Serving Layer

					Chapter 5, Implementing Physical Data Storage Structures

					Chapter 6, Implementing Logical Data Structures

					Chapter 7, Implementing the Serving Layer

			

		

	

			Chapter 2: Designing a Data Storage Structure

			Welcome to Chapter 2. We will be focusing on Azure data storage technologies in this chapter. Azure provides several storage technologies that can cater to a wide range of cloud and hybrid use cases. Some of the important Azure storage technologies includes: Blobs, Files, Queues, Tables, SQL Database, Cosmos DB, Synapse SQL Warehouse, and Azure Data Lake Storage (ADLS). Azure bundles the four fundamental storage technologies, namely:—Blobs, Files, Queues, and Tables—as Azure Storage. Other advanced services such as Cosmos DB, SQL Database, ADLS, and so on are provided as independent Azure services.

			From this chapter onward, we will be following the exact sequence of the DP-203 syllabus.

			We will mostly be focusing on the design aspects of storage structures in this chapter. The corresponding implementation details will be covered in the later chapters.

			This chapter will cover the following topics:

			
					Designing an Azure data lake

					Selecting the right file types for storage

					Choosing the right file types for analytical queries

					Designing storage for efficient querying

					Designing storage for data pruning

					Designing folder structures for data transformation 

					Designing a distribution strategy

					Designing a data archiving solution

			

			Let's get started.

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					The Azure command-line interface (Azure CLI) installed on your workstation. Please refer to the section, in Creating a VM using Azure CLI in Chapter 1, Introducing Azure Basics for instructions on installing the Azure CLI.

			

			Designing an Azure data lake

			If you have been following the big data technologies domain, you would have definitely come across the term data lake. Data lakes are distributed data stores that can hold very large volumes of diverse data. They can be used to store different types of data such as structured, semi-structured, unstructured, streaming data, and so on.

			A data lake solution usually comprises a storage layer, a compute layer, and a serving layer. The compute layers could include Extract, Transform, Load (ETL); Batch; or Stream processing. There are no fixed templates for creating data lakes. Every data lake could be unique and optimized as per the owning organization's requirements. However, there are few general guidelines available to build effective data lakes, and we will be learning about them in this chapter.

			How is a data lake different from a data warehouse?

			The main difference between a data lake and a data warehouse is that a data warehouse stores structured data, whereas a data lake can be used to store different formats and types of data. Data lakes are usually the landing zones for different sources and types of data. This raw data gets processed and the eventual curated data is loaded into structured data stores such as data warehouses. The other main differentiating factor is the scale. Data lakes can easily store data in the range of Petabytes (PB), Exabytes (EB), or even higher, while data warehouses might start choking at the PB range.

			When should you use a data lake?

			We can consider using data lakes for the following scenarios:

			
					If you have data that is too big to be stored in structured storage systems like data warehouses or SQL databases

					When you have raw data that needs to be stored for further processing, such as an ETL system or a batch processing system

					Storing continuous data such as Internet of Things (IoT) data, sensor data, tweets, and so on for low latency, high throughput streaming scenarios

					As the staging zone before uploading the processed data into an SQL database or data warehouse

					Storing videos, audios, binary blob files, log files, and other semi-structured data such as JavaScript Object Notation (JSON), Extensible Markup Language (XML), or YAML Ain't Markup Language (YAML) files for short-term or long-term storage.

					Storing processed data for advanced tasks such as ad hoc querying, machine learning (ML), data exploration, and so on.

			

			Let's next look at the different zones or regions in a data lake.

			Data lake zones

			A data lake can be broadly segregated into three zones where different stages of the processing take place, outlined as follows: 

			
					Landing Zone or Raw Zone: This is where the raw data is ingested from different input sources.

					Transformation Zone: This is where the batch or stream processing happens. The raw data gets converted into a more structured and business intelligence (BI)-friendly format. 

					Serving Zone: This is where the curated data that can be used to generate insights and reports are stored and served to BI tools. The data in this zone usually adheres to well-defined schemas.Tip
In the Landing zones, data gets accumulated from various input sources. If the source is a streaming input or an IoT input, then the files tend to be smaller. Large numbers of small files are known to cause performance issues with data lakes. For example, ADLS Gen2 recommends file sizes of 256 Megabytes (MB) to 100 Gigabytes (GB) for optimal performance. If there are too many small files, then it is recommended to merge them into larger files.


			

			Let's now explore a few standard data lake models.

			Data lake architecture

			The following image shows a data lake architecture for both batch and stream processing. The diagram also includes examples of the Azure technologies that can be used for each of the data lake zones. The names of the services listed by the icons are presented in the image after this:

			
				
					[image: Figure 2.1 – Data lake architecture using Azure services

]
				

			

			Figure 2.1 – Data lake architecture using Azure services

			Here are the names of the services represented by the icons in the preceding diagram:

			
				
					[image: Figure 2.2 – Icon legends

]
				

			

			Figure 2.2 – Icon legends

			We will be learning more about these technologies throughout this book. Next, let's look at batch processing.

			Batch processing

			In a batch processing framework, the data usually lands into the Landing Zone (or Raw Zone) from various input sources. Once the data lands in the Landing Zone, the orchestration framework triggers the data processing pipelines. The pipelines usually have multiple stages that will take the data through various processing stages such as data cleansing, filtering, aggregating the data from various tables and files, and finally generating curated data for BI and exploration. The stages in the pipeline could be run in parallel or in a sequential fashion. Azure provides a service called Data Factory that can be used for building such pipelines. Azure Data Factory (ADF) is a very versatile tool that also provides the ability to ingest data from a variety of sources and perform simple data processing activities such as joins, filtering, and so on.

			Batch processing can be used for ETL jobs, data preparation jobs, periodic report generation, and more. From a certification standpoint, you should be aware of the Azure technologies that can be used for building the batch components of a data lake. The following table lists some of the commonly used Azure technologies for building batch processing pipelines:

			
				
					[image: Figure 2.3 – Azure technologies available for building a batch processing system

]
				

			

			Figure 2.3 – Azure technologies available for building a batch processing system

			Let's next learn about stream processing.

			Stream processing or real-time processing

			Stream processing refers to the near-real-time processing of data. Unlike batch processing, which processes data at rest, stream processing deals with data as and when it arrives. As such, these systems need to be low-latency and high-throughput systems. 

			For example, consider our Imaginary Airport Cabs (IAC) example that we used in Chapter 1, Basics of Azure. We might want to perform surge pricing based on a demand for taxis, so the system needs to process requests for taxis coming from a particular geographical area in near real time. This data can then be aggregated and used to decide the dynamic pricing.

			Generally, in stream processing scenarios, data arrives in small files in quick succession. We refer to these small data files as messages. The streaming system usually does some quick checks for the correct format of data, processes the data, and writes the data to a store. So, we need to ensure that the stores used for real-time processing support high-volume writes with low latency. 

			The following table lists some of the Azure technologies that can be used to build a stream processing pipeline for a data lake:

			
				
					[image: Figure 2.4 – Azure technologies available for building a stream processing system

]
				

			

			Figure 2.4 – Azure technologies available for building a stream processing system

			Let's next learn about two of the common architectures used in data lakes.

			Lambda architecture

			One of the shortcomings of batch processing systems is the time it takes for them to process the data. Usually, a batch pipeline that processes a day or a month's worth of data might run for several hours—or sometimes even days—to generate the results. In order to overcome this shortcoming, we can use a hybrid architecture called Lambda architecture that uses a combination of fast and slow pipelines. The slow path processes a larger volume of data and produces accurate results but takes more time. The fast path, on the other hand, works on a much smaller dataset (usually sampled data) and gives an approximate result much quicker. The fast path could also use different technologies such as streaming technologies to speed up the processing. Both these pipelines feed into a Serving layer that updates the incremental updates from the fast path into the baseline data from the slow path. Any analytics client or reporting tool can then access the curated data from the Serving layer. 

			You can see an overview of Lambda architecture in the following diagram:

			
				
					[image: Figure 2.5 – Lambda architecture

]
				

			

			Figure 2.5 – Lambda architecture

			This Lambda model will help us make informed decisions more quickly, compared to batch-only models.

			Kappa architecture

			Kappa is an alternative architecture to Lambda architecture and focuses only on the fast path or the streaming path. It is built on the assumption that the data under consideration can be represented as an immutable data stream and that such streams can be stored for long periods of time in a data storage solution with the same streaming format. If we need to recalculate some historical data, the corresponding input data from the data store can be replayed through the same Streaming layer to recalculate the results.

			The main advantage of Kappa architecture is reduced complexity, as compared to Lambda architecture, where we implement two pipelines. It thus avoids the dual processing of the same data, as happens in Lambda architecture.

			In Kappa architecture, the input component is a message queue such as an Apache Kafka or Azure Event Hubs queue, and all the processing is usually done through Azure Stream Analytics, Spark, or Apache Storm.

			You can see an overview of Kappa architecture in the following diagram:

			
				
					[image: Figure 2.6 – Kappa architecture

]
				

			

			Figure 2.6 – Kappa architecture

			Kappa architecture can be used for applications such as real-time ML and applications where the baseline data doesn't change very often.

			Exploring Azure technologies that can be used to build a data lake

			Now that we understand some of the recommended ways to build a data lake, let's explore Azure technologies that can be used to build data lakes.

			ADLS Gen2 or Blob storage

			The most important component of a data lake is the storage component. Choosing the right storage could be the difference between the success or failure of a data lake. Azure provides a specialized storage technology for building data lakes, called ADLS Gen2. ADLS Gen2 is usually a good choice for most data lake storage requirements, but we can also choose to use regular Blob storage for the data lake if our requirements are mostly for just storing unstructured data and if we don't need access-control lists (ACLs) on the files and folders. ACLs provide control on which users have read, write, or execute permissions on the files and folders.

			Azure Data Factory (ADF)

			Once we have the store decided, we need a way to automatically move the data around. This functionality is fulfilled by ADF. ADF is a very powerful tool that can be used for the following:

			
					Data ingestion from a wide array of inputs, such as Azure Storage, Amazon Redshift, Google BigQuery, SAP HANA, Sybase, Teradata, generic HyperText Transfer Protocol (HTTP), File Transfer Protocol (FTP), and so on

					Simple data transformations such as joins, aggregations, filtering, and cleanup

					Scheduling pipelines to move the data from one stage to another

			

			Compute and data processing components

			Now that we have figured out where to store the data, how to get the data, and how to move it around, we need to decide on how to process the data for advanced analytics. This can be achieved using a variety of technologies available in Azure. Some of them are listed here:

			
					Azure Synapse Analytics for its SQL and Spark pools

					Azure Databricks for Spark

					Azure HDInsight for Hive, Spark, and other open source software (OSS) technologies

					Azure Stream Analytics for streaming requirements

			

			You might be wondering: Why does Azure have so many options for Spark? Well, Spark has been gaining a lot of traction of late as one of the most popular analytical tools for data engineers. Spark provides something for every developer, be it batch processing, streaming, ML, interactive notebooks, and so on, and Spark makes it very easy to switch between the different use cases by providing very consistent coding interfaces. Once you know how to write a batch program, writing a streaming program is very similar, with a very shallow learning curve. It is this ease of use and support for a wide variety of analytical tools that make Spark the preferred choice for the latest generation of data engineers. Azure understands this trend and provides multiple Spark options. It provides the Azure Databricks version for customers who love the features of Databricks Spark. It provides HDInsight Spark for customers who prefer OSS technologies, and it also provides Synapse Spark, which is a performance-boosted version of the OSS Spark for those customers who prefer an integrated single-pane experience within Azure Synapse Analytics.

			Let's explore these compute technologies a little bit more.

			Azure Synapse Analytics

			Azure Synapse Analytics is the premium analytics service that Azure is investing in quite heavily. When we hear Azure Synapse Analytics, we usually think of it as an SQL data warehouse but, in reality, Synapse Analytics is a complete suite of integrated analytical services. Synapse Analytics has integrated support for several Azure stores, compute technologies such as SQL Data Warehouse and Synapse Spark, orchestration engines such as ADF, specialized stores such as Cosmos DB, cloud-based identity and access management (IAM) services such as Azure Active Directory (Azure AD), data governance support via Azure Purview, and more. 

			Azure Synapse Analytics also doubles up as the analytics store for the Serving layer as it has a highly scalable SQL Warehouse store in its core. This can be used to store the processed data that is reduced in size to be used for analytical queries, data insights, reporting, and so on.

			Azure Databricks

			Azure Databricks is the Databricks version of Spark hosted on Azure. Azure Databricks provides a very feature-rich Notebook experience and is well connected with the other Azure services, including Storage, ADF, Power BI, Authentication, and other Azure features. We can use Azure Databricks to write Spark code or scripts to do the data processing for us. For example, we can use Azure Databricks Spark to clean up the input data, condense it via filtration, aggregation, or sampling, and add a structure to the data so that it can be used for analytics by SQL-like systems.

			Azure HDInsight

			Azure also provides an option to use open-source versions of Apache Spark, Apache Hive, Apache HBase, and more via the HDInsight product. Similar to Azure Databricks, we can use the open source version of Spark or Hive to accomplish the data processing for our data lake. The HDInsight version of Spark uses Jupyter Notebooks. This is one of the commonly used open source Notebooks. Hive, on the other hand, has been the preferred data processing technology till Spark took over the limelight. Hive is still one of the most widely deployed services in enterprise big data platforms.

			Azure Stream Analytics

			Stream processing refers to the quick processing of data as and when it comes in. So, we need technologies that provide high throughput and near-real-time processing capabilities. Azure provides both proprietary and open source options for such stream processing requirements. Azure's native streaming technology is called Azure Stream Analytics (ASA). ASA works natively with all Azure Storage services and can directly connect to reporting tools such as Power BI without an intermediate data store. But, if you prefer to use an open-source service for streaming, we can use services such as Apache Kafka and Apache Storm, available via HDInsight.

			Reporting and Power BI

			Now that we know the components that can be used to transform raw data from the data lake store into more curated forms, we need to decide how to present this data. The final step in data analytics is presenting the data in a manner that drives business insights or generates reports to indicate the state of the business. In either case, we need tooling such as Power BI to display interactive reports. Power BI is a collection of tools that can operate on big data and provide visual insights into the data. Power BI has built-in connectivity with Azure to seamlessly integrate with services such as Cosmos DB, Synapse Analytics, Azure Storage, and more.

			Azure ML

			Azure also provides some advanced services such as Azure ML for advanced analytics and prediction. ML is usually the next step in the progression of an analytics pipeline. Once you start generating insights from the data, the next step is to predict future trends. Azure ML provides support for a wide range of algorithms and models for data analytics. Since ML is not in the syllabus for this book, we will not be going deeper into it, but if you would like to explore the topic, you can check out the details at the following link: https://azure.microsoft.com/en-in/services/machine-learning/.

			You should now have a fairly good understanding of how to build a data lake and which technologies to use from Azure. That was a lot of keywords and technologies to remember. If you feel overwhelmed by all the technologies and the keywords, don't worry—we will be revisiting these technologies throughout the book. By the time we are halfway through the book, you will have a good grasp of these technologies.

			Selecting the right file types for storage

			Now that we understand the components required to build a data lake in Azure, we need to decide on the file formats that will be required for efficient storage and retrieval of data from the data lake. Data often arrives in formats such as text files, log files, comma-separated values (CSV), JSON, XML, and so on. Though these file formats are easier for humans to read and understand, they might not be the best formats for data analytics. A file format that cannot be compressed will soon end up filling up the storage capacities; a non-optimized file format for read operations might end up slowing analytics or ETLs; a file that cannot be easily split efficiently cannot be processed in parallel. In order to overcome such deficiencies, the big data community recommends three important data formats: Avro, Parquet, and Optimized Row Columnar (ORC). These file formats are also important from a certification perspective, so we will be exploring these three file formats in depth in this chapter.

			Choosing the right file type is critical, as it will not be easy to change this later once data starts pouring in. Each of the file formats has its own advantages and disadvantages, but there is rarely one file format that will fit all the requirements. So, based on our requirements, we can even choose to have more than one file format within the data lake. Azure calls this polyglot persistence.

			Tip

			Try to stick with just one or two file formats, ideally one file format per zone of the data lake. Too many file formats might become a management nightmare, with several duplicate copies of data getting generated over time.

			There are multiple factors to be considered while choosing a file format. The most important ones are listed here:

			
					Type of workload: Some file formats perform better with some tools than others—for example, ORC performs better with Hive, while ORC and Parquet both perform well with Spark. So, the data processing technology that we plan to adopt will have a say in deciding the file format too.

					Cost: This is going to be the primary concern for any organization. How do we keep the cost low? The more we store in the data lake, the more we will end up paying for it. So, file formats that support better compression ratios become important here.

					Compression: If we know that our data lake is not going to ever get into PB or EB ranges, then we can decide on data formats that have a good balance of compression versus performance. And, similarly, if our storage size is going to be huge, we definitely need a format that supports higher compression levels.

					Performance: Aspects such as read speed, write speed, the ability to split files for parallel processing, and fast access to relevant data will impact the performance of the analytical tools. So, the performance requirement is another key point when deciding on the file format.Tip
If you still need to store the data in any of the semi-structured formats such as CSV, JSON, XML, and so on, consider compressing them using Snappy compression.


			

			Let's now explore the file formats in detail.

			Avro

			Avro is a row-based storage format. That means it stores each complete row one after the other in its file storage. For example, imagine we have a table like this:

			
				
					[image: Figure 2.7 – A table showing Avro format

]
				

			

			Figure 2.7 – A table showing Avro format

			Avro will store it logically, as shown in the following screenshot. In reality, it would be adding the metadata required for decoding the file together in the same file:

			
				
					[image: Figure 2.8 – An example Avro row, including metadata

]
				

			

			Figure 2.8 – An example Avro row, including metadata

			This format is good for write-intensive transactional workloads such as ETL jobs that need to read entire files to process data.

			Avro information

			More information about Avro can be found at the following link: https://avro.apache.org.

			Parquet

			Parquet, on the other hand, is a column-based format. That means it stores data from each related column together one after the other in its file. For example, if we consider the same table in the Avro example, Parquet will logically store it as shown in the following screenshot. As with Avro, Parquet will also store some metadata along with the actual data in its file:

			
				
					[image: Figure 2.9 – An example Parquet row

]
				

			

			Figure 2.9 – An example Parquet row

			Such column-based storage makes Parquet exceptionally good for read-intensive jobs such as analytical workloads, as they generally query only a subset of columns for processing. This ensures that we don't have to read entire rows just to process a small sub-section of those rows, unlike with row-oriented data formats. Projects such as Apache Spark and Apache Drill are most compatible with Parquet and can take advantage of query optimization features such as Predicate Pushdowns while working with Parquet.

			Parquet information

			More information about Parquet can be found at the following link: https://parquet.apache.org.

			ORC 

			ORC is also a column-based format similar to Parquet and works really well with analytical workloads for that reason. Projects such as Apache Hive are most compatible with ORC, as ORC natively supports some of the Hive data types and enables features such as atomicity, consistency, isolation, and durability (ACID) support and predicate pushdowns in Hive.

			ORC information

			More information about ORC can be found at the following link: https://orc.apache.org.

			Comparing Avro, Parquet, and ORC

			Let's compare the three file formats from the perspective of the core evaluation parameters required for data lake storage, as follows:

			
				
					[image: Figure 2.10 – File format comparisons

]
				

			

			Figure 2.10 – File format comparisons

			Now that we understand the basics of the file formats, here are some tips for choosing the file format for each of the zones described in the Data lake zones section:

			Landing Zone or Raw Zone

			
					If the data size is going to be huge (in terabytes (TB), PB, or higher), you would need good compression, so go with Avro or compressed text using technologies such as Snappy compression.

					If you plan to have a lot of ETL jobs, go with Avro.

					If you plan to have just one file format for ease of maintenance, then Parquet would be a good compromise from both a compression and performance perspective.

			

			Transformation Zone

			
					If you are primarily going to use Hive, go with ORC.

					If you are primarily going to use Spark, go with Parquet.

			

			Choosing the right file types for analytical queries 

			In the previous section, we discussed the three file formats—Avro, Parquet, and ORC—in detail. Any format that supports fast reads is better for analytics workloads. So, naturally, column-based formats such as Parquet and ORC fit the bill. 

			Based on the five core areas that we compared before (read, write, compression, schema evolution, and the ability to split files for parallel processing) and your choice of processing technologies, such as Hive or Spark, you could select ORC or Parquet.

			For example, consider the following:

			
					If you have Hive- or Presto-based workloads, go with ORC.

					If you have Spark- or Drill-based workloads, go with Parquet.

			

			Now that you understand the different types of file formats available and the ones to use for analytical workloads, let's move on to the next topic: designing for efficient querying.

			Designing storage for efficient querying

			In order to design for efficient querying, we will have to understand the different querying technologies that are available in Azure. Even though this chapter is primarily focused on storage technologies, a small diversion into the world of querying will help us understand the process of designing for efficient querying better. There are two types of querying services available: SQL-based ones such as Azure SQL, Synapse Serverless/Dedicated Pools (previously known as SQL Warehouse), and big data analytical engines such as Spark and Hive. Let's explore the important design techniques for both these groups of query engines.

			We can broadly group the techniques available for efficient querying into the following three layers:

			
					Storage layer—Using techniques such as partitioning, data pruning, and eventual consistency

					Application layer—Using techniques such as data caching and application tuning (such as varying the sizes of containers, increasing parallelism) 

					Query layer—Using specialized techniques such as indexing and materialized views that are available within some of the services

			

			Don't worry about all the new keywords in this section. We will be all exploring these technologies in detail in the following sections. Let's start with the Storage layer.

			Storage layer

			Designing a partition strategy correctly early on is important because once we implement the partitions, it will be difficult to change these at a later point. Changing partitions at a later stage will require data transfers, query modifications, changes to applications, and so on. A partition strategy for one type of query might not work for another query, so we should focus on designing a partition strategy for our most critical queries. Let's look at the important points to consider while designing partitions.

			Partitions

			A partition just refers to the way we split the data and store it. The best partitions are those that can run parallel queries without requiring too many inter-partition data transfers. So, we divide the data in such a way that the data is spread out evenly and the related data is grouped together within the same partitions. Partitions are a very important concept from a certification perspective and, as such, there is a whole chapter dedicated to partitions (Chapter 3, Designing a Partition Strategy). So, let's just focus on a high-level overview here.

			Some important partition concepts that can help accelerate query performance are discussed next.

			Replicating data

			Smaller, more frequently used static data such as lookup data or catalog data can be replicated across partitions. This will help reduce the data access time and, in turn, will speed up the queries considerably.

			Reducing cross-partition operations and joins

			Minimizing cross-partition joins by running jobs in parallel within each partition and aggregating only the final results will help in cross-partition data access. Any cross-partition access is an expensive operation, so trying to perform as much data processing within the same partition before exporting only the required filtered data will help improve the overall performance of queries.

			Data pruning

			Data pruning or data exclusion refers to the process of ignoring unnecessary data during querying and thereby reducing input/output (I/O) operations. This is also an important topic for certification, so, we have a complete section dedicated to data pruning later in this chapter.

			Eventual consistency

			Storage systems support different levels of consistency. Cloud stores usually keep redundant copies of your data in multiple servers. Consistency refers to how soon all the internal copies of your data will reflect a change that was made to the primary copy. Data stores usually support strong consistency or eventual consistency, but some stores such as Cosmos DB even support multiple levels in between strong and eventual consistency. If the storage system is strongly consistent, then it ensures that all the data copies are updated before the user can perform any other operation. On the other hand, if the storage system is eventually consistent, then the storage lets the data in each of the copies get updated gradually over time. Queries running on strongly consistent data stores tend to be slower as the storage system will ensure that all the writes (to all the copies) are complete before the query can return. But in eventually consistent systems, the query will return immediately after the first copy is done, and the rest of the updates to all the other copies happen asynchronously. Hence, if your system can tolerate eventual consistency, then it will tend to be faster.

			Next, let's look at the components of the Application Layer.

			Application Layer

			Application layer optimizations deal with how efficiently we use the core components such as the central processing unit (CPU), memory, network, and so on. Let's look at some of the ways to improve performance at the application layer.

			Tuning applications

			Big data analytical services such as Spark and Hive can be optimized by configuring the number of parallel executions and other attributes such as memory, CPU, networking bandwidth, and the size of the containers. Here are some points to consider for tuning such services:

			
					Consider the right virtual machine (VM) sizes. Select VMs that have enough memory, CPU, disk, and network bandwidth for your applications.

					Larger VMs can support more containers and hence increase parallelization, but this is subject to the application's ability to scale with the increased parallelization. Find the sweet spot between the application's ability to scale and the VM sizes.

			

			For example, let's consider Spark. Each of Spark's worker containers is called an executor. You can consider experimenting with the following configurations for executors:

			
					Num-executors—How many executors you want to run in each machine.

					Executor-memory—How much memory you want to allocate to each executor so that they don't run out of memory. This usually depends on the size and skew of your data. Based on how much data will get processed by each executor, you need to configure the memory.

					Executor-cores—How many CPU cores you want to allocate to each executor. If your job is more compute-intensive, then adding more cores to each executor could speed up the processing.

			

			Let's next look at how caching data can help speed up queries.

			Caching

			Caching refers to storing intermediate data in faster storage layers to speed up queries. We can use external services such as Redis cache to store frequently accessed data by queries to save on read latencies. We can also enable inbuilt caching options like Resultset caching available in technologies like Synapse SQL to speed up query performance.

			Next, let's look a bit closer at the query layer.

			Query layer

			The query layer is also technically part of the application layer, but query optimization is an entire area of interest in itself. There are thousands of academic papers dedicated to the area of query optimization. Hence, we look at the options available for query optimizations as a separate section in itself in Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing.

			Indexing

			One of the important techniques to use for efficient querying is indexing. If you have used any SQL technologies before, you might have heard about indexing tables based on certain key columns. Indexes are like the keys in a HashMap that can be used to directly access a particular row without having to scan the entire table. 

			In SQL-based systems, you might be required to access rows using values other than the primary key. In such cases, the query engine needs to scan all the rows to find the value we are looking for. Instead, if we can define a secondary index based on frequently searched column values, we could avoid the complete table scans and speed up the query. The secondary index tables are calculated separately from the primary indexes of the table, but this is done by the same SQL engine.

			In Azure, we have technologies that can perform indexing on huge volumes of data. These indexes can then be used by analytical engines such as Spark to speed up the queries. One such technology that Azure offers is called Hyperspace.

			Hyperspace lets us create indexes on input datasets such as Parquet, CSV, and so on, which can be used for query optimization. The Hyperspace indexing needs to be run separately to create an initial index. After that, it can be incrementally updated for the new data. Once we have the Hyperspace index, any Spark query can leverage the index, similar to how we use indexes in SQL.

			Materialized views

			Views are logical projections of data from multiple tables. Materialized views are just pre-populated versions of such views. If a query needs to do complex merges and joins of multiple tables or multiple partitions, it might be beneficial to perform such merges and joins beforehand and keep the data ready for the query to consume. Materialized views can be generated at regular intervals and kept ready before the actual query runs.

			For all practical purposes, materialized views are just specialized caches for the queries. The data in materialized views is read-only data and can be regenerated at any time. It is not persisted permanently in the storage.

			Now that we have considered how efficient querying needs might influence our designs, let's extend that consideration to data pruning. 

			Designing storage for data pruning

			Data pruning, as the name suggests, refers to pruning or snipping out the unnecessary data so that the queries need not read the entire input dataset. I/O is a major bottleneck for any analytical engine, so the idea here is that by reducing the amount of data read, we can improve the query performance. Data pruning usually requires some kind of user input to the analytical engine so that it can decide on which data can be safely ignored for a particular query.

			Technologies such as Synapse Dedicated Pools, Azure SQL, Spark, and Hive provide the ability to partition data based on user-defined criteria. If we can organize the input data into physical folders that correspond to the partitions, we can effectively skip reading entire folders of data that are not required for such queries. 

			Let's consider the examples of Synapse Dedicated Pool and Spark as they are important from a certification point of view.

			Dedicated SQL pool example with pruning

			Let's consider a very simple example that anyone with a simple SQL background will understand. Once we get into the implementation details in the later chapters, we will explore many of the advanced features provided by Dedicated SQL Pool. 

			Here, we create a trip table for our IAC scenario. Just to refresh your memory, IAC is our sample customer scenario that we are running throughout this book. 

			The table has been partitioned using the PARTITION keyword on tripDate, as illustrated in the following code snippet:

			CREATE TABLE dbo.TripTable

			(

			    [tripId] INT NOT NULL,

			    [driverId] INT NOT NULL,

			    [customerID] INT NOT NULL,

			    [tripDate] INT,

			    [startLocation] VARCHAR(40),

			    [endLocation] VARCHAR(40)

			 )

			 WITH

			 (

			    PARTITION ([tripDate] RANGE RIGHT FOR VALUES

			        ( 20220101, 20220201, 20220301 )

			    )

			)

			The RANGE RIGHT syntax specified just ensures that the values specified in the PARTITION syntax will each belong to the right side of the range. In this example, the partitions will look like this:

			Partition 1: All dates < 20220101

			Partition 2: 20220101 to 20220231

			Partition 3: 20220201 to 20220228

			Partition 4: 20220301 to 20220331

			If we had given RANGE LEFT, it would have ended up creating partitions like this:

			Partition 1:  All dates < 20220102

			Partition 2: 20220102 to 20220201

			Partition 3: 20220202 to 20220301

			Partition 4: All dates > 20220301

			Now, let's say we need to find all the customers who traveled with IAC in the month of January. All you need to do is use a simple filter, such as in the following example:

			SELECT customerID FROM TripTable 

			WHERE tripDate BETWEEN '20220101' AND '20220131'

			If it were not for the partition, the query would have to scan through all the records in the table to find the dates within the range of '20220101' AND '20220131'. But with the partition in place, the query will only scan through the records in the '20220101' partition. This makes the query more efficient.

			Spark example with pruning

			Let's see how we can implement data pruning for Spark. In this example, let's create a simple Spark Data Frame and write it into date partitions such as "year/month/day". Then, we will see how to read only from a required partition of data. We'll proceed as follows:

			
					Let's create some sample data using a simple array, as follows:columnNames = ["tripID","driverID","customerID","cabID","date","startLocation","endLocation"]
tripData = [
  ('100', '200', '300', '400', '20220101', 'New York', 'New Jersey'),
  ('101', '201', '301', '401', '20220102', 'Tempe', 'Phoenix') ]


					Create a DataFrame using the previous data, like this:df = spark.createDataFrame(data= tripData, schema = columnNames)


					Since the tripDate is in simple date format, let's split it into year, month, and day, as follows:dfDate = df.withColumn("date", to_timestamp(col("date"), 'yyyyMMdd')) \
           .withColumn("year", date_format(col("date"), "yyyy")) \
           .withColumn("month", date_format(col("date"), "MM")) \
           .withColumn("day", date_format(col("date"), "dd"))


					Now, repartition the data in memory, like this:dfDate = dfDate.repartition("year", "month", "day")


					And, finally, write it to different files under the abfs://IAC/Trips/Out output directory. Here, abfss refers to the Azure Blob File System driver. The code is illustrated in the following snippet:dfDate.write.partitionBy("year", "month", "day").parquet("abfss://IAC/Trips/Out"))


					At this point, our output directory will be created with the following structure:abfss://IAC/Trips/Out/
                  year=2022/
                            day=01/
                                   part*.parquet


					Now, let's see how pruning works. For example, if we run the following query, Spark will intelligently read only the year="2022/month=01/day=03" folder without requiring us to scan all the data under the IAC/Trips/Out folder:readDF = spark.read.parquet("abfss://IAC/Trips/Out/year=2022").filter("month=01", "day=03")


			

			As you will have observed, partitioning data via good folder structures can help improve the efficiency of queries. This is a good segue into our next topic, which explains how to design folder structures for data lakes.

			Designing folder structures for data transformation

			Considering the variety and volume of data that will land in a data lake, it is very important to design a flexible, but a maintainable, folder structure. Badly designed or ad hoc folder structures will become a management nightmare and will render the data lake unusable. Some points to keep in mind while designing the folder structure are given here:

			
					Human readability—Human-readable folder structures will help improve data exploration and navigation.

					Representation of organizational structure—Aligning the folder structure according to the organizational structure helps segregate the data for billing and access control. Such a folder structure will help restrict cross-team data access.

					Distinguish sensitive data—The folder structure should be such that it can separate sensitive data from general data. Sensitive data will require higher levels of audit, privacy, and security policies, so keeping it separate makes it easy to apply the required policies.

					Manageability of ACLs—If you remember from earlier in the chapter, ACLs are used to provide control on which users have read, write, or execute permissions on files and folders. We should design the folders such that we need to apply ACLs only at the top levels of the folders and not at the leaf folders. We should not end up in a situation whereby we need to update the ACLs every time a subfolder is automatically created, such as new timestamp folders for streaming inputs.

					Optimize for faster and evenly distributed reads—If we can distribute the data evenly, then workloads can access the data in parallel. This will improve query performance. Also, think of support for pruning, which we discussed in an earlier section.

					Consider subscription limits—Azure has per-subscription limits on the size of data, the network ingress/egress, parallelism, and so on. So, if the data is going to be huge, we need to plan to split it at a subscription level.

			

			With the preceding guidelines in mind, let's explore the folder structures for three different use cases.

			Streaming and IoT Scenarios

			Streaming and IoT scenarios are complicated as there will be thousands of files streaming in from different sources such as tweets, sensors, telemetry data, and so on. We need an efficient way to track and organize the data.

			The layout template recommended by Microsoft is given here:

			{Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

			Let's consider the IAC example. If we want to store all the trips made by a particular cab, the folder structure could be something like this:

			New York/cabs/cab1234/trips/2021/12/01

			Or, if we want to collect the customer details for each of the cabs each day, it could be something like this:

			New York/cabs/cab1234/customers/2021/12/01

			But what if the customer details are considered sensitive information that needs to adhere to higher levels of security and privacy policies? In such cases, the preceding folder structure becomes inconvenient because we need to iterate each cab and then apply ACLs for each of the customer folders under it. So, a better structure would look like this:

			New York/sensitive/customers/cab1234/2021/12/01

			In the preceding folder structure, we can easily apply all the security policies and ACLs at the sensitive folder itself. The restrictions will automatically be inherited by all subfolders under it.

			So, if you have data categorized as sensitive, then you could consider the following templates:

			{Region}/Sensitive/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

			{Region}/General/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

			Let's next look at batch scenarios.

			Batch scenarios

			In batch processing systems, we read the input data and write processed data into output directories, so it is intuitive to maintain separate input and output directories in the folder paths. In addition to the I/O directories, it would also be beneficial to have a directory for all bad files such as corrupt files, incomplete files, and so on so that they can be checked at regular intervals by the data administrators.

			The layout template recommended by Microsoft is given here:

			{Region}/{SubjectMatter(s)}/In/{yyyy}/{mm}/{dd}/{hh}/

			{Region}/{SubjectMatter(s)}/Out/{yyyy}/{mm}/{dd}/{hh}/

			{Region}/{SubjectMatter(s)}/Bad/{yyyy}/{mm}/{dd}/{hh}/

			Continuing our IAC example, let's assume we want to generate daily reports for the cab trips. So, our input directory could look like this:

			New York/trips/In/cab1234/2021/12/01/*

			Our output directory could look like this:

			New York/trips/Out/reports/cab1234/2021/12/01

			And finally, the bad files directory could look like this:

			New York/trips/Bad/cab1234/2021/12/01

			Here again, if you have data categorized as sensitive, you could consider the following templates:

			{Region}/General/{SubjectMatter(s)}/In/{yyyy}/{mm}/{dd}/{hh}/

			{Region}/Sensitive/{/{SubjectMatter(s)}/Out/{yyyy}/{mm}/{dd}/{hh}/

			{Region}/General/{/{SubjectMatter(s)}/Bad/{yyyy}/{mm}/{dd}/{hh}/

			Tip

			Do not put date folders at the beginning as it makes applying ACLs to every subfolder more tedious. Also, there are limits on the number of ACLs that can be applied, so there are chances of you running out of ACLs as time progresses.

			Now that we have learned some of the best practices for creating folder structures in a data lake, let's move ahead to explore some optimization strategies involving Azure Synapse Analytics, as required by our certification syllabus.

			Designing a distribution strategy

			Distribution strategies are techniques that are used in Synapse Dedicated SQL Pools. Synapse Dedicated SQL Pools are massively parallel processing (MPP) systems that split the queries into 60 parallel queries and execute them in parallel. Each of these smaller queries runs on something called a distribution. A distribution is a basic unit of processing and storage for a dedicated SQL pool.

			Dedicated SQL uses Azure Storage to store the data, and it provides three different ways to distribute (shard) the data among the distributions. They are listed as follows:

			
					Round-robin tables

					Hash tables

					Replicated tables

			

			Based on our requirements, we need to decide on which of these distribution techniques should be used for creating our tables. To choose the right distribution strategy, you should understand your application, the data layout, and the data access patterns by using query plans. We will be learning how to generate and read query plans and data patterns in later chapters. Right now, let's try to understand the high-level difference in each of the distribution techniques and how to choose the right option.

			Round-robin tables

			In a round-robin table, the data is serially distributed among all the distributions. It is the simplest of the distributions and is the default when the distribution type is not specified. This option is the quickest to load data but is not the best for queries that include joins. Use round-robin tables for staging data or temporary data, where the data is mostly going to be read.

			Here is a simple example of creating a round-robin distributed table in Dedicated SQL Pool:

			CREATE TABLE dbo.CabTable

			(  

			    [cabId] INT NOT NULL,  

			    [driverName] VARCHAR(20),  

			    [driverLicense] VARCHAR(20)  

			)

			There is no need to specify any attribute for round-robin tables; it is the default distribution.

			Hash tables

			In a hash table, the rows are distributed to different distributions based on a hash function. The hash key is usually one of the columns in the table. Hash tables are best for queries with joins and aggregations. They are ideal for large tables.

			Here is a simple example of creating a hash distributed table in Dedicated SQL Pool:

			CREATE TABLE dbo.CabTable

			(  

			    [cabId] INT NOT NULL,  

			    [driverName] VARCHAR(20),  

			    [driverLicense] VARCHAR(20)  

			)  

			WITH  

			(   

			    DISTRIBUTION = HASH (cabId)

			)

			Tip

			Choose a column key that is distinct and static as this can balance the data distribution among the partitions.

			Replicated tables

			With replicated tables, the table data is copied over to all the distributions. These are ideal for small tables where the cost of copying the data over for the query joins outweighs the storage costs for these small tables. Use replicated tables for storing quick lookup tables (LUTs).

			Here is a simple example of creating a replicated table in Dedicated SQL Pool:

			CREATE TABLE dbo.CabTable

			(  

			    [cabId] INT NOT NULL,  

			    [driverName] VARCHAR(20),  

			    [driverLicense] VARCHAR(20)  

			)  

			WITH  

			(   

			    DISTRIBUTION = REPLICATE

			)

			We will be revisiting these concepts in detail when we learn how to implement them for practical problems in the following chapters. Let's now move on to the last topic of our chapter, which appropriately deals with the end of life for our data. 

			Designing a data archiving solution

			Now that we have learned how to design a data lake and optimize the storage for our analytical queries, there is one final component that remains to be designed. How do we archive or clean up the old data? Without a proper archiving and/or deletion solution, the data will grow and fill up the storage very soon. 

			Azure provides three tiers of storage: Hot Access Tier, Cold Access Tier, and Archive Access Tier.

			Hot Access Tier

			The Hot Access Tier is ideal for data that is accessed frequently. It provides the lowest access cost but at a higher storage cost.

			Cold Access Tier

			The Cold Access Tier is ideal for data that is accessed occasionally, such as slightly older data that is probably used for backups or monthly reports. It provides lower storage costs but at higher access costs. Azure expects the cold access tier data to be stored for at least 30 days. Early deletion or tier change might result in extra charges.

			Archive Access Tier

			The Archive Access Tier is ideal for storing data for long durations. It could be for compliance reasons, long-term backups, data archival, and so on. The Archive Access Tier is an offline storage solution, which means you will not be able to access the data unless you rehydrate that data from Archive to an Online tier. This is the cheapest storage option among all the tiers. Azure expects the Archive Tier data to be stored for at least 180 days. Early deletion or tier change might result in extra charges.

			Data life cycle management

			Azure Blob storage provides tools for data life cycle management. Using these tools, we can define policies such as how long a particular data needs to be in the Hot Access Tier, when to move the data between the different access tiers, when to delete blobs, and so on. Azure runs these policies on a daily basis.

			Let's see an example of how to create a data life cycle policy. 

			Azure portal

			Let's explore how to create a data life cycle policy using the Azure portal, as follows:

			
					In the Azure portal, select your storage account.

					Go to the Data Management tab and select Life Cycle Management.

					Click on the + sign to add a new rule.

					In the Details page, add a name for your rule and select which storage blobs this rule needs to apply.

					Click Next, and on the Base blobs page, you can specify the actual rule. An example is shown in Figure 2.11.

					Once done, click on the Add button.

			

			You can see an overview of this in the following screenshot:

			
				
					[image: Figure 2.11 – How to specify data life cycle management rules in Azure Storage

]
				

			

			Figure 2.11 – How to specify data life cycle management rules in Azure Storage

			Note

			Azure runs data life cycle policies only once a day, so it could take up to 24 hours for your policies to kick in.

			Summary

			With that, we have come to the end of our second chapter. We explored the various data lake designs in detail and learned good practices for designing one. You should now be comfortable answering questions related to data lake architectures and the storage, compute, and other technologies involved in creating a data lake. You should also be familiar with common file formats such as Avro, Parquet, and ORC and know when to choose which file formats. We also explored different optimization techniques such as data pruning, partitioning, caching, indexing, and more. We also learned about folder structures, data distribution, and finally, designing a data life cycle by using policies to archive or delete data. This covers the syllabus for DP-203 exam, Design a Data Storage Structure chapter. We will be reinforcing the learnings from this chapter via implementation details and tips in the following chapters.

			Let's explore the concept of partitioning in more detail in the next chapter.

		

	

			Chapter 3: Designing a Partition Strategy

			Data partitioning refers to the process of dividing data and storing it in physically different locations. We partition data mainly for performance, scalability, manageability, and security reasons. Partitioning itself is a generic term, but the methods and techniques of partitioning vary from service to service—for example, the partitioning techniques used for Azure Blob storage might not be the same as those applied for database services such as Azure SQL or Azure Synapse Dedicated SQL pool. Similarly, document databases such as Cosmos DB have different partitioning techniques from Azure Queues or Azure Tables. In this chapter, we will explore some of the important partitioning techniques and when to use them. 

			As in the previous chapter, we will again be focusing more on the design aspects, as per the syllabus. The implementation details will be covered in Chapter 5, Implementing Physical Data Storage Structures. 

			This chapter will cover the following topics:

			
					Understanding the basics of partitioning

					Designing a partition strategy for files

					Designing a partition strategy for analytical workloads

					Designing a partition strategy for efficiency/performance

					Designing a partition strategy for Azure Synapse Analytics

					Identifying when partitioning is needed in Azure Data Lake Storage Gen2 (ADLS Gen2)

			

			Almost all of the major Azure Storage and Azure Analytics services support partitioning in one way or another, but in the interest of the certification, we will be covering only those services that are relevant to the certification. If you are interested in learning about partitioning in the other Azure services, you can refer to the following link: https://docs.microsoft.com/en-us/azure/architecture/best-practices/data-partitioning-strategies.

			Let's dive into the world of partitioning!

			Understanding the basics of partitioning

			In the previous chapter, we briefly introduced the concept of partitioning as part of the Designing storage for efficient querying section. We explored storage-side partitioning concepts such as replicating data, reducing cross-partition operations such as joins, and eventual consistency to improve query performance. In this chapter, we will deep dive more systematically into both storage and analytical partitioning techniques. Let's start with the benefits of partitioning.

			Benefits of partitioning

			Partitioning has several benefits apart from just query performance. Let's take a look at a few important ones.

			Improving performance

			As we discussed in the previous chapter, partitioning helps improve the parallelization of queries by splitting massive monolithic data into smaller, easily consumable chunks.

			Apart from parallelization, partitioning also improves performance via data pruning, another concept that we already discussed in the previous chapter. Using data pruning queries can ignore non-relevant partitions, thereby reducing the input/output (I/O) required for queries. 

			Partitions also help with the archiving or deletion of older data. For example, let's assume we need to delete all data older than 12 months. If we partition the data into units of monthly data, we can delete a full month's data with just a single DELETE command, instead of deleting all the files one by one or all the entries of a table row by row.

			Let's next look at how partitioning helps with scalability.

			Improving scalability

			In the world of big data processing, there are two types of scaling: vertical and horizontal. 

			Vertical scaling refers to the technique of increasing the capacity of individual machines by adding more memory, CPU, storage, or network to improve performance. This usually helps in the short term, but eventually hits a limit beyond which we cannot scale. 

			The second type of scaling is called horizontal scaling. This refers to the technique of increasing processing and storage capacity by adding more and more machines to a cluster, with regular hardware specifications that are easily available in the market (commodity hardware). As and when the data grows, we just need to add more machines and redirect the new data to the new machines. This method theoretically has no upper bounds and can grow forever. Data lakes are based on the concept of horizontal scaling. 

			Data partitioning helps naturally with horizontal scaling. For example, let's assume that we store data at a per-day interval in partitions, so we will have about 30 partitions per month. Now, if we need to generate a monthly report, we can configure the cluster to have 30 nodes so that each node can process one day's worth of data. If the requirement increases to process quarterly reports (that is, reports every 3 months), we can just add more nodes—say, 60 more nodes to our original cluster size of 30 to process 90 days of data in parallel. Hence, if we can design our data partition strategy in such a way that we can split the data easily across new machines, this will help us scale faster.

			Let's next look at how partitioning helps with data management.

			Improving manageability

			In many analytical systems, we will have to deal with data from a wide variety of sources, and each of these sources might have different data governance policies assigned to them. For example, some data might be confidential, so we need to restrict access to that; some might be transient data that can be regenerated at will; some might be logging data that can be deleted after a few months; some might be transaction data that needs to be archived for years; and so on. Similarly, there might be data that needs faster access, so we might choose to persist it on premium solid-state drive (SSD) stores and other data on a hard disk drive (HDD) to save on cost.

			If we store such different sets of data in their own storage partitions, then applying separate rules—such as access restrictions, or configuring different data life cycle management activities such as deleting or archiving data, and so on—for the individual partitions becomes easy. Hence, partitioning reduces the management overhead, especially when dealing with multiple different types of data such as in a data lake.

			Let's next look at how data partitioning helps with security.

			Improving security

			As we saw in the previous section about improving manageability, confidential datasets can have different access and privacy levels. Customer data will usually have the highest security and privacy levels. On the other hand, product catalogs might not need very high levels of security and privacy. 

			So, by partitioning the data based on security requirements, we can isolate the secure data and apply independent access-control and audit rules to those partitions, thereby allowing only privileged users to access such data.

			Let's next look at how we can improve data availability using partitioning.

			Improving availability

			If our data is split into multiple partitions that are stored in different machines, applications can continue to serve at least partial data even if a few partitions are down. Only a subset of customers whose partitions went down might get impacted, while the rest of the customers will not see any impact. This is better than the entire application going down. Hence, physically partitioning the data helps improve the availability of services. 

			In general, if we plan our partition strategy correctly, the returns could be significant. I hope you have now understood the benefits of partitioning data. Let's next look at some partition strategies from a storage/files perspective.

			Designing a partition strategy for files

			In this section, we will look at the partitioning techniques available for Azure Storage, which should also cover files. The Azure Storage services are generic and very flexible when it comes to partitioning. We can implement whatever partition logic we want, using the same Create, Read, Update, Delete (CRUD) application programming interfaces (APIs) that are publicly available. There are no special APIs or features available for partitioning. With that background, let's now explore the partitioning options available in Azure Blob storage and ADLS Gen2.

			Azure Blob storage

			In Azure Blob storage, we first create Azure accounts; then, within accounts, we create containers; and within containers, we create actual storage blobs. These containers are logical entities, so even when we create data blobs within containers, there is no guarantee that the data will land within the same partition. But there is a trick to enhance our chances of storing the blobs in the same partition.

			Azure uses something called range partitioning for storing blobs. In a range partition, files that are in a lexical sequence end up together in a partition. 

			For example, if we have filenames such as Cab1-20211220, Cab1-20211221, Cab1-20211222, and Cab1-20211223, these files will mostly end up in the same partition.

			Similarly, filenames such as IAC-Cabs, IAC-Routes, IAC-Customers, and IAC-Drivers will mostly end up within the same partition.

			Azure Storage uses <account name + container name + blob name> as the partition key. It continues to store blobs in the same partition until it reaches the partition's internal limit. At that point, Azure Storage repartitions and rebalances the data and spreads it evenly among the partitions. This entire process of repartitioning and rebalancing will be taken care of automatically by Azure Storage, without intervention from the user.

			If the amount of data stored is large and Azure Storage starts repartitioning and rebalancing the data, the latency of the CRUD APIs will get impacted. You can avoid or delay such repartitions by adding a three-digit hash value (random value) to your filenames. This will cause the data to be distributed across multiple partitions.

			For example, your filenames could use the following format:

			New York/cabs/cab1234/customers/{XYZYYYYMMDD}

			Here, XYZ could be the random hash value.

			ADLS Gen2

			The solution to file partitioning in a data lake is the same as designing the folder structure, which we already discussed in the previous chapter. We can apply different security policies or different data life cycle management configurations to individual folders in ADLS Gen2. Since we have already explored the folder structure topic in detail, we will not be covering it again here.

			Apart from the folder structure, we can also partition data for the benefits we discussed earlier in this chapter, such as performance, scalability, manageability, security, availability, and so on. The process of segregating the data into partitions could either be done manually or it could be automated using Azure Data Factory (ADF). We will be looking deeper into automation using ADF in the later implementation-oriented chapters.

			Now that we have a fairly good idea about storage- and file-based partitioning optimizations, let's explore partitioning from an analytical workload standpoint.

			Designing a partition strategy for analytical workloads

			There are three main types of partition strategies for analytical workloads. These are listed here:

			
					Horizontal partitioning, which is also known as sharding

					Vertical partitioning

					Functional partitioning

			

			Let's explore each of them in detail.

			Horizontal partitioning

			In a horizontal partition, we divide the table data horizontally, and subsets of rows are stored in different data stores. Each of these subsets of rows (with the same schema as the parent table) are called shards. Essentially, each of these shards is stored in different database instances.

			You can see an example of a horizontal partition here:

			
				
					[image: Figure 3.1 – Example of a horizontal partition

]
				

			

			Figure 3.1 – Example of a horizontal partition

			In the preceding example, you can see that the data in the top table is distributed horizontally based on the Trip ID range.

			Selecting the right shard key

			It is very important we select the right shard key (also called partition key) for partitioning the data, as changing it later will be a very expensive operation. The following guidelines will help us with this:

			
					Select a key that spreads the data in such a way that the application traffic to the data partitions is evenly distributed. 

					Select a key that doesn't change too often. Good keys are static and are widespread—in other words, the range of that key should neither be too small nor too large. As a general rule, a key that can generate hundreds of partitions is good. Avoid keys that generate too few partitions (tens of partitions) or too many partitions (thousands of partitions).Note
Don't try to balance the data to be evenly distributed across partitions unless specifically required by your use case because usually, the most recent data will get accessed more than older data. Thus, the partitions with recent data will end up becoming bottlenecks due to high data access.


			

			We will be covering the sharding pattern in depth in the next section when we talk about partitioning for efficiency and performance.

			Vertical partitioning

			In a vertical partition, we divide the data vertically, and each subset of the columns is stored separately in a different data store. In the case of vertical partitioning, we partially normalize the table to break it into smaller tables (fewer columns). This type of partitioning is ideal in cases where a table might have a subset of data that is accessed more frequently than the rest. Vertical partitioning can help speed up queries as only the required subset of data can be selectively retrieved, instead of reading entire rows. This is ideal for column-oriented data stores such as HBase, Cosmos DB, and so on.

			You can see an example of a vertical partition here:

			
				
					[image: Figure 3.2 – Example of a vertical partition

]
				

			

			Figure 3.2 – Example of a vertical partition

			In the preceding example, you can see that columns such as Trip Rating and Customer Feedback that might not be used frequently are split into separate partitions. This will help reduce the amount of data being read for queries.

			Functional partitioning

			Functional partitions are similar to vertical partitions, except that here, we store entire tables or entities in different data stores. They can be used to segregate data belonging to different organizations, frequently used tables from infrequently used ones, read-write tables from read-only ones, sensitive data from general data, and so on.

			You can see an example of a functional partition here:

			
				
					[image: Figure 3.3 – Example of a functional partition

]
				

			

			Figure 3.3 – Example of a functional partition

			In this example, you can see how the customer data is moved into its own partition. This segregation will help us apply different privacy and security rules for the different partitions.

			Azure services such as Azure SQL and Azure Synapse Dedicated pool support all the partitioning formats discussed in this section.

			Designing a partition strategy for efficiency/performance

			In the last few sections, we explored the various storage and analytical partitioning options and learned about how partitioning helps with performance, scale, security, availability, and so on. In this section, we will recap the points we learned about performance and efficiency and learn about some additional performance patterns.

			Here are some strategies to keep in mind while designing for efficiency and performance:

			
					Partition datasets into smaller chunks that can be run with optimal parallelism for multiple queries. 

					Partition the data such that queries don't end up requiring too much data from other partitions. Minimize cross-partition data transfers.

					Design effective folder structures to improve the efficiency of data reads and writes.

					Partition data such that a significant amount of data can be pruned while running queries.

					Partition in units of data that can be easily added, deleted, swapped, or archived. This helps improve the efficiency of data life cycle management.

					File sizes in the range of 256 megabytes (MB) to 100 gigabytes (GB) perform really well with analytical engines such as HDInsight and Azure Synapse. So, aggregate the files to these ranges before running the analytical engines on them.

					For I/O-intensive jobs, try to keep the optimal I/O buffer sizes in the range of 4 to 16 MB; anything too big or too small will become inefficient.

					Run more containers or executors per virtual machine (VM) (such as Apache Spark executors or Apache Yet Another Resource Negotiator (YARN) containers).

			

			Try to remember the preceding good practices when you design your next partition strategy. Let's next try to understand how to actually find the right data to partition and how much data to partition.

			Iterative query performance improvement process

			Here is a high-level iterative process to improve query performance:

			
					List business-critical queries, the most frequently run queries, and the slowest queries.

					Check the query plans for each of these queries using the EXPLAIN keyword and see the amount of data being used at each stage (we will be learning about how to view query plans in the later chapters).

					Identify the joins or filters that are taking the most time. Identify the corresponding data partitions.

					Try to split the corresponding input data partitions into smaller partitions, or change the application logic to perform isolated processing on top of each partition and later merge only the filtered data.

					You could also try to see if other partitioning keys would work better and if you need to repartition the data to get better job performance for each partition.

					If any particular partitioning technology doesn't work, you can explore having more than one piece of partitioning logic—for example, you could apply horizontal partitioning within functional partitioning, and so on.

					Monitor the partitioning regularly to check if the application access patterns are balanced and well distributed. Try to identify hot spots early on.

					Iterate this process until you hit the preferred query execution time.

			

			We will be using these guidelines in our examples in future chapters too. Let's next explore the specifics of partitioning in Azure Synapse Analytics.

			Designing a partition strategy for Azure Synapse Analytics

			We learned about Azure Synapse Analytics in Chapter 2, Designing a Data Storage Structure. Synapse Analytics contains two compute engines, outlined here: 

			
					A Structured Query Language (SQL) pool that consists of serverless and dedicated SQL pools (previously known as SQL Data Warehouse)

					A Spark pool that consists of Synapse Spark pools

			

			But when people refer to Azure Synapse Analytics, they usually refer to the Dedicated SQL pool option. In this section, we will look at the partition strategy available for Synapse Dedicated SQL pool. 

			Note

			We have already briefly covered partitioning in Spark as part of the Data pruning section in the previous chapter. The same concepts apply to Synapse Spark, too.

			Before we explore partitioning options, let's recap the data distribution techniques of a Synapse dedicated pool from the previous chapter as this will play an important role in our partition strategy, as follows:

			A dedicated SQL pool is a massively parallel processing (MPP) system that splits the queries into 60 parallel queries and executes them in parallel. Each of these smaller queries runs on something called a distribution. A distribution is a basic unit of processing and storage for a dedicated SQL pool. There are three different ways to distribute (shard) data among distributions, as listed here:

			
					Round-robin tables

					Hash tables

					Replicated tables

			

			Partitioning is supported on all the distribution types in the preceding list. Apart from the distribution types, Dedicated SQL pool also supports three types of tables: clustered columnstore, clustered index, and heap tables. We will be exploring these table options in detail in the upcoming chapters. Partitioning is supported in all of these types of tables, too.

			In a dedicated SQL pool, data is already distributed across its 60 distributions, so we need to be careful in deciding if we need to further partition the data. The clustered columnstore tables work optimally when the number of rows per table in a distribution is around 1 million. 

			For example, if we plan to partition the data further by the months of a year, we are talking about 12 partitions x 60 distributions = 720 sub-divisions. Each of these divisions needs to have at least 1 million rows; in other words, the table (usually a fact table) will need to have more than 720 million rows. So, we will have to be careful to not over-partition the data when it comes to dedicated SQL pools.

			That said, partitioning in Synapse dedicated pools has two distinct advantages, as we'll see now. 

			Performance improvement while loading data

			Partitioning helps while loading data for queries in dedicated SQL pools. This is a technique that we already discussed in the Benefits of partitioning section of this chapter. If we can group the data belonging to a particular time frame together in a partition, then adding or removing that data becomes as simple as running a simple ADD or DELETE command. For example, let's assume that we need to generate a rolling 12-month report. At the end of every month, we remove the oldest month and add a new month to the report. If we have partitioned the data with the granularity of months, then we can easily delete the old data and add the new data using a partition-switching technique in a dedicated SQL pool.

			Performance improvement for filtering queries

			Partitioning can also help improve query performance by being able to filter the data based on partitions. In particular, partitions help with the WHERE clause in queries. For example, if we have partitioned the data based on the months of a year, we can specify which exact month to look for in our queries, thereby skipping the rest of the months.

			I hope you have understood the features and restrictions for partitioning in Azure Synapse dedicated pools. Let's move to our next section, which talks about when to start partitioning data in ADLS Gen2.

			Identifying when partitioning is needed in ADLS Gen2

			As we have learned in the previous chapter, we can partition data according to our requirements—such as performance, scalability, security, operational overhead, and so on—but there is another reason why we might end up partitioning our data, and that is the various I/O bandwidth limits that are imposed at subscription levels by Azure. These limits apply to both Blob storage and ADLS Gen2. 

			The rate at which we ingest data into an Azure Storage system is called the ingress rate, and the rate at which we move the data out of the Azure Storage system is called the egress rate.

			The following table shows a snapshot of some of the limits enforced by Azure Blob storage. This table is just to give you an idea of the limits that Azure Storage imposes. When we design our data lake applications, we need to take care of such restrictions as part of our design itself:

			
				
					[image: Figure 3.4 – Some of the limits for Azure Blob storage as of the time this book was published

]
				

			

			Figure 3.4 – Some of the limits for Azure Blob storage as of the time this book was published

			So, for example, if your egress rate is beyond 50 gigabits per second (Gbps) for your data lake, you will have to create multiple accounts and partition your data among those accounts.

			Tip

			If you are using a hybrid setup of on-prem and on-cloud systems and if you transfer data between such systems often, then ensure that your source/destination machines and the actual public network can support the level of ingress and egress data transfer rates provided by Azure Storage. If you are moving data from on-prem sources, consider using Azure ExpressRoute.

			For complete and up-to-date Azure Storage limits, please refer to the following documentation: https://docs.microsoft.com/en-us/azure/storage/common/scalability-targets-standard-account.

			Note that some of the limits in the table (such as ingress rates and storage capacity limits) are soft limits, which means you can reach out to Azure Support to increase those limits to some extent; however, you will eventually hit the hard limits for each option. Other resources such as Internet Protocol (IP), addresses, virtual networks (VNets), and so on are hard limits, so you need to plan the partitions with these numbers in mind.

			Note

			The higher ingress/egress requirements could also come from the applications running on top of Azure Storage and not just via direct data uploads and downloads into the Azure store. For example, if we have an Azure SQL or Azure Synapse dedicated pool (data warehouse) that has a very busy shard, it might exceed the read (egress) limits of that storage account. In such cases, we will have to repartition that shard to divide the data among multiple accounts.

			In general, for any Azure service, do keep an eye on the resource limits so that it doesn't come as a surprise when your product is deployed to production.

			Summary

			With that, we have come to the end of our third chapter. I hope you enjoyed learning about the different partitioning techniques available in Azure! We started with the basics of partitioning, where you learned about the benefits of partitioning; we then moved on to partitioning techniques for storage and analytical workloads. We explored the best practices to improve partitioning efficiency and performance. We understood the concept of distribution tables and how they impact the partitioning of Azure Synapse Analytics, and finally, we learned about storage limitations, which play an important role in deciding when to partition for ADLS Gen2. This covers the syllabus for the DP-203 exam, Designing a Partition Strategy. We will be reinforcing the learnings from this chapter via implementation details and tips in the following chapters.

			Let's explore the serving layer in the next chapter.

		

	

			Chapter 4: Designing the Serving Layer

			In this chapter, we will be learning about the techniques and technologies involved in designing a data serving layer. As we have seen previously in the data lake design, data passes through several zones. It starts from a Landing Zone, from where it gets processed into more useful formats in the Transformation Zone, and finally, the derived data insights land in the Serving Zone (also called the Serving layer). The Serving Zone serves the processed data and insights to the end users. The Landing Zone and Transformation Zone of a data lake focus on aspects such as efficient storage of data, processing huge volumes of data, optimizing queries, and so on. The Serving layer, on the other hand, focuses mainly on how to serve the data in a fast and efficient way to the business intelligence (BI) tools.

			Serving layers are usually built using relational data stores (Structured Query Language (SQL)-based stores). This is done for two reasons: relational data stores can store data in efficient normalized tables and perform queries faster than big data analytical services. This works well because the amount of data in the Serving Zone is usually magnitudes of order smaller than in the Transformation Zone; also, SQL is the preferred language for a majority of data analysts, and it is universally supported by BI tools.

			Azure provides us with a variety of services that can be used to build the Serving layer, such as Azure Synapse Analytics, Azure SQL, Cosmos DB, Apache Hive, Apache HBase, and so on. We will be exploring the important ones for the certification in this chapter.

			In this chapter, we will be focusing on the following topics:

			
					Learning the basics of data modeling and schemas

					Designing Star and Snowflake schemas

					Designing slowly changing dimensions (SCDs)

					Designing a solution for temporal data

					Designing a dimensional hierarchy

					Designing for incremental loading

					Designing analytical stores

					Designing metastores in Azure Synapse Analytics and Azure Databricks

			

			This is the last of the design-focused chapters. The next three chapters will be dedicated to the implementation details of what we have learned so far.

			Let's get started!

			Technical requirements

			For this chapter, you will need an Azure account (free or paid).

			Learning the basics of data modeling and schemas

			Data modeling is a process of designing how data will be represented in data stores. Many data modeling techniques were originally designed for databases and warehouses. Since the Serving layers are usually built with relational data stores such as data warehouses, some of the data modeling techniques can be applied for the Serving layer design too. But do remember that the Serving layer could be built using other storage technologies such as document databases, key-value stores, and so on, based on the customer requirements.

			Unlike data lakes, in databases or data warehouses we don't have the luxury of storing huge volumes of data in the format we like. Databases and data warehouses can perform querying exceptionally fast, provided the data is stored in predetermined formats and is limited in size. Hence, while designing the Serving layer, we need to identify the specifics of which data needs to be stored, which format to store it in, and how much data to store. To be specific, we need to decide on which SQL tables are required, what would be the relationship between these tables, and which restrictions need to be imposed on these tables.

			There are different data-modeling methods such as entity-relationship (ER) modeling, hierarchical modeling, dimensional data modeling, relational data modeling, object-oriented (OO) data modeling, and so on. Among these, dimensional modeling is the most relevant to data warehousing, so we will be focusing only on dimensional modeling techniques in this chapter.

			Dimensional models

			Dimensional modeling focuses on easier and faster information retrieval, whereas other models usually focus on storage optimization. The most commonly used dimensional data models are Star schemas and Snowflake schemas. We will be focusing on these two schemas in the following sections.

			Designing Star and Snowflake schemas

			Schemas are guidelines for arranging data entities such as SQL tables in a data store. Designing a schema refers to the process of designing the various tables and the relationships among them. Star and Snowflake schemas are two of the most commonly used schemas in the data analytics and BI world. In fact, Star schemas are used more frequently than Snowflake schemas. Both have their own advantages and disadvantages, so let's explore them in detail.

			Star schemas

			A Star schema is the simplest of the data warehouse schemas. It has two sets of tables: one that stores quantitative information such as transactions happening at a retail outlet or trips happening at a cab company, and another that stores the context or descriptions of events that are stored in the quantitative table.

			The quantitative tables are called fact tables and the descriptive or context tables are called dimension tables.

			The following diagram shows an example of a Star schema:

			 

			
				
					[image: Figure 4.1 – Example of a Star schema

]
				

			

			Figure 4.1 – Example of a Star schema

			As it might be obvious by the names of the tables, FactTrips is our fact table, and all the other ones—such as DimDriver, DimCustomer, DimDate, and DimCab—are dimension tables.

			Since the relationship diagram of the Star schema is in the shape of a star, it is called a Star schema. The fact table at the middle is the center of the star, and the dimension tables are the arms of the star.

			Let's look at some important points about Star schemas, as follows:

			
					Fact tables are usually of much higher volume than dimension tables.

					Dimension tables are not connected; they are independent of each other.

					Data is not normalized in a Star schema. It is very common to find data replicated in multiple tables. The tables are designed for speed and ease of use.

					They are optimized for BI queries. The queries are usually very simple as it just has one level of joins.

					Queries are usually much faster too due to the lesser number of joins.

			

			Now, let's see how Snowflake schemas are different.

			Snowflake schemas

			A snowflake schema is an extension of the Star schema. In this model, the fact table remains the same, but the dimension tables are further split into their normalized forms, which are referenced using foreign keys. There could be multiple levels of hierarchy among the dimension tables.

			The following diagram shows how the same example used for a Star schema can be extended to a Snowflake schema:

			 

			
				
					[image: Figure 4.2 – Example of a Snowflake schema

]
				

			

			Figure 4.2 – Example of a Snowflake schema

			As you will notice from the preceding diagram, the DimDriver table has been normalized to have the license details separately. Similarly, we have normalized the address details away from the DimCustomer table.

			You can choose a Snowflake schema if you have both BI and non-BI applications sharing the same data warehouse. In such cases, from an overall perspective, it might be better to have normalized data.

			Let's look at some important points about Snowflake schemas, as follows:

			
					Fact tables, here again, are similar to Star schemas and are of much higher volume than dimension tables.

					Dimension data is normalized, thereby avoiding any redundant data.

					Dimensions could be connected to each other.

					The data is optimized for storage and integrity, but not speed.

					The schema is more complex than a Star schema, so this might not be the most preferred option for BI and reporting use cases.

					Queries are usually slower compared to Star schemas due to the multi-level joins required.

			

			I hope you now have a good idea about Star and Snowflake schemas. There is one more type of schema called a Fact Constellation schema or a Galaxy schema. With this type of schema, there could be more than one fact table, and the dimension tables are shared. This schema is not as important as Star and Snowflake schemas from a certification perspective, but if you would like to learn more about this schema, you could start from here: https://www.javatpoint.com/data-warehouse-what-is-fact-constellation-schema.

			Let's next look at how to handle slowly changing data in dimension tables.

			Designing SCDs

			SCDs refer to data in dimension tables that changes slowly over time and not at a regular cadence. A common example for SCDs is customer profiles—for example, an email address or the phone number of a customer doesn't change that often, and these are perfect candidates for SCD. In this section, we will look at how to design for such changes. 

			Services such as Azure SQL provide inbuilt support for SCD, but in data warehouses such as Synapse dedicated pools, we will have to implement them ourselves.

			Here are some of the main aspects we will need to consider while designing an SCD:

			
					Should we keep track of the changes? If yes, how much of the history should we maintain?

					Or, should we just overwrite the changes and ignore the history? 

			

			Based on our requirements for maintaining the history, there are about seven ways in which we can accomplish keeping track of changes. They are named SCD1, SCD2, SCD3, and so on, up to SCD7.

			Among these, SCD1, SCD2, SCD3, SCD4, and SCD6 are the most important ones, and we will be focusing only on those in this chapter. These are also the important ones from a certification perspective.

			Designing SCD1

			In SCD type 1, the values are overwritten and no history is maintained, so once the data is updated, there is no way to find out what the previous value was. The new queries will always return the most recent value. Here is an example of an SCD1 table:

			
				
					[image: Figure 4.3 – Example of SCD type 1

]
				

			

			Figure 4.3 – Example of SCD type 1

			In this example, the value of the City column is changing from New York to New Jersey. The value just gets overwritten.

			Designing SCD2

			In SCD2, we maintain a complete history of changes. Every time there is a change, we add a new row with all the details without deleting the previous values. There are multiple ways in which we can accomplish this. Let's take a look at the most common approaches.

			Using a flag

			In this approach, we use a flag to indicate if a particular value is active or if it is current. Here is an example of this:

			
				
					[image: Figure 4.4 – Example of SCD type 2: flag

]
				

			

			Figure 4.4 – Example of SCD type 2: flag

			In the second table, every time there is a change, we add a new row and update the isActive column of the previous rows to False. That way, we can easily query the active values by filtering on the isActive=True criteria.

			Note

			Surrogate keys are secondary row identification keys. They are added in all SCD2 cases because the primary identification key will not be unique anymore with newly added rows.

			Using version numbers

			In this approach, we use version numbers to keep track of changes. The row with the highest version is the most current value. Here is an example of this:

			
				
					[image: Figure 4.5 – Example of SCD type 2: version numbers

]
				

			

			Figure 4.5 – Example of SCD type 2: version numbers

			In the previous example, we need to filter on the MAX(Version) column to get the current values.

			Using date ranges

			In this approach, we use date ranges to show the period a particular record (row) was active, as illustrated in the following example:

			
				
					[image: Figure 4.6 – Example of SCD type 2: date ranges

]
				

			

			Figure 4.6 – Example of SCD type 2: date ranges

			In the previous example, every time we change a field, we add a new record to the table. Along with that, we update the EndDate column of the previous record and the StartDate column for the new record with today's date. In order to fetch the current record, we have to filter on the EndDate=NULL criteria, or, instead, we could just fill in a very futuristic date instead of NULL—something such as 31-Dec-2100.

			As a variation to the date-range approach, we could also add a flag column to easily identify active or current records. The following example shows this approach:

			
				
					[image: Figure 4.7 – Example of SCD type 2: date ranges and flag

]
				

			

			Figure 4.7 – Example of SCD type 2: date ranges and flag

			Let's now look at designing SCD3.

			Designing SCD3

			In SCD3, we maintain only a partial history and not a complete history. Instead of adding additional rows, we add an extra column that stores the previous value, so only one version of historic data will be preserved. As with the SCD2 option, here again, we can choose to add date columns to keep track of modified dates, but we don't need surrogate keys in this case as the identification key of the record doesn't change. Here is an example of this:

			
				
					[image: Figure 4.8 – Example of SCD type 3

]
				

			

			Figure 4.8 – Example of SCD type 3

			In the previous example, we have added a new column called PrevCity. Every time the value of City changes, we add the previous value to PrevCity and update the City column with the current city.

			Designing SCD4

			SCD4 was introduced for dimension attributes that change relatively frequently. In type 4, we split the fast-changing attributes of the dimension table into another smaller dimension table and also reference the new dimension table directly from the fact table.

			For example, in the following diagram, if we assume that the carpool (also known as High occupancy vehicles) pass needs to be purchased every month, we can move that field to a smaller mini-dimension and reference it directly from the fact table:

			 

			
				
					[image: Figure 4.9 – Example of SCD4: before split

]
				

			

			Figure 4.9 – Example of SCD4: before split

			We can split the table into a mini DimCarPool dimension, as in the following diagram:

			
				
					[image: Figure 4.10 – Example of SCD type 4: after split

]
				

			

			Figure 4.10 – Example of SCD type 4: after split

			This sub-division helps in modifying only a smaller amount of data frequently instead of the complete row.

			Designing SCD5, SCD6, and SCD7

			The rest of the SCDs—SCD5, SCD6, and SCD7—are derivatives of the previous four SCDs. Among these derived ones, SCD6 is a relatively important one, so we will be exploring that as part of the next sub-section. 

			Designing SCD6

			Type 6 is a combination of 1, 2, and 3. In this type, along with the addition of new rows, we also update the latest value in all the rows, as illustrated in the following screenshot:

			
				
					[image: Figure 4.11 – Example of SCD type 6

]
				

			

			Figure 4.11 – Example of SCD type 6

			In the previous example, you would have noticed that the CurrCity value for all the records belonging to customer Adam has been updated. This is just another benefit of extracting the latest values.

			That explains SCD type 6. If you are interested in learning about SCDs 5 and 7, you can find more information at the following links:

			SCD5: https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/type-5/

			SCD7: https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/type-7

			Now that you have a fair idea about SCDs, let's explore how to handle temporal.

			Designing a solution for temporal data

			Temporal data refers to data at specific points in time. Storing temporal data is required in situations like data auditing, forensic investigations, maintaining SCDs, point in time recoveries and so on. Azure SQL and SQL server provides a mechanism called Temporal tables to store temporal data.

			Temporal tables are specialized tables that keep track of data changes over time.  They track the history of data changes like what we had already seen in SCD tables, but in this case the system takes care of managing the time validity period of each row, instead of we having to do it manually. Hence these tables are also called as System-versioned temporal tables.

			Note 

			Temporal table is a concept of Azure SQL database and SQL server. It was not available in Azure Synapse pools as of writing this book.

			Let us look at an example of how to create Temporal tables in Azure SQL:

			CREATE TABLE Customer

			(

			  [customerId] INT NOT NULL PRIMARY KEY CLUSTERED,

			  [name] VARCHAR(100) NOT NULL,

			  [address] VARCHAR(100) NOT NULL,

			  [email] VARCHAR (100) NOT NULL,

			  [phone] VARCHAR(12) NOT NULL,

			  [validFrom] DATETIME2 GENERATED ALWAYS AS ROW START,

			  [validTo] DATETIME2 GENERATED ALWAYS AS ROW END,

			  PERIOD FOR SYSTEM_TIME (validFrom, validTo),

			 )

			WITH (SYSTEM_VERSIONING = ON);

			If you notice, there are three statements that would stand out:

			  [validFrom] DATETIME2 GENERATED ALWAYS AS ROW START,

			  [validTo] DATETIME2 GENERATED ALWAYS AS ROW END,

			  PERIOD FOR SYSTEM_TIME (validFrom, validTo),

			For a temporal table, we need to define the Period Start Column and the Period End Column. In our example, the Period Start Column is validFrom and the Period End Column is the validTo. And we tell the Database engine that these are our start and end time indicators using the PERIOD FOR SYSTEM_TIME (validFrom, validTo) line.

			Note

			There should be only one PERIOD FOR SYSTEM_TIME defined with two datetime2 columns. These two datetime2 columns should be declared as GENERATED ALWAYS AS ROW START / END.

			Now, let us update one of the table entries and see how the temporal table keeps track of the changes.

			UPDATE [dbo].[Customer] SET [address] = '111 Updated Lane, LA' WHERE [customerId] = 101;

			Let us query the table based on the two time boundaries and see all the changes that have happened to the customer with customerId=101.

			
				
					[image: Figure 4.12 – Sample result of a Temporal query

]
				

			

			Figure 4.12 – Sample result of a Temporal query

			As you can see, the Temporal table has kept track of the change along with the timestamps. We have derived the IsActual based on the value of the validTo column.

			When we create a Temporal table, behind the scenes two tables get created. One is called the Temporal table (the one we defined) and another table with the exact schema called the history table. Whenever data changes, the current values get persisted in the Temporal table and the old values get moved into the history table with the end time updated to the current time stamp, indicating that that row is no longer active. There are also options to define our own History tables with additional indexing, distributions and so on and provide that to Azure SQL to use as the history table.

			All you need to do is define the History table and provide the name as shown during the Temporal table creation.

			WITH (SYSTEM_VERSIONING = ON (HISTORY_TABLE = dbo.CustomerHistory));

			Now you know how to can leverage Temporal tables support in Azure SQL for building applications that need to record changes over time.

			You can learn more about Temporal tables here: https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver15

			Let's next look at how to design a dimensional hierarchy.

			Designing a dimensional hierarchy

			Dimensional hierarchy refers to the way we group and organize the dimensional data at multiple levels. In a hierarchical structure, there are usually one-to-many or many-to-many parent-child relationship. Examples of hierarchical structures could be organizational structures, product categories in an online store, a file system and so on. The main characteristic of the hierarchical structure is that all the nodes are identical, and they include pointers to their parent or children's nodes.

			In order to achieve a dimensional hierarchy, we can use a technique called as the self-referencing relationship or self-joins within the dimension table. Let us take an example of an Employee dimension.

			CREATE TABLE DimEmployee (

				[employeeId] VARCHAR(20) NOT NULL,

				[name] VARCHAR(100),

				[department] VARCHAR(50),

				[title] VARCHAR(50),

				[parentEmployeeId] VARCHAR(20)

			)

			Here, we have a column called parentEmployeeID referencing the employeeID column. If the Database supports Foreign key constraint then the parentEmployeeID would be defined as the Foreign Key to employeeID. Synapse SQL doesn't yet support Foreign Keys, so we need to ensure correctness at the application level.

			Note

			The Parent Key should allow NULL entries as the root elements of the hierarchy will not have a parent.

			A sample hierarchical table with entries would look like this:

			
				
					[image: Figure 4.13 – Sample Hierarchical dimension table

]
				

			

			Figure 4.13 – Sample Hierarchical dimension table

			We can see that David reports to Brenda and Brenda reports to Alan. We have effectively created a hierarchy using the same table.

			Tip

			If you are using Dimensional Hierarchy as part of an SCD, always add the Parent key pointing to the Surrogate Key instead of the Business primary key.  Because surrogate keys will be unique, and it will ensure that the dimensional hierarchy doesn't break when changes to the business key happens.

			I hope you got a clear idea about dimensional hierarchies. Let's next look at designing an incremental loading solution for the Serving layer.

			Designing for incremental loading

			Incremental loading or delta loading refers to the process of loading smaller increments of data into a storage solution—for example, we could have daily data that is being loaded into a data lake or hourly data flowing into an extract, transform, load (ETL) pipeline, and so on. During data-ingestion scenarios, it is very common to do a bulk upload followed by scheduled incremental loads.

			Azure has a very versatile service called Azure Data Factory (ADF) which can help with incremental loading. Since this is the first time we are using ADF in this book, let's learn a little more about it now as the information will come in handy in future chapters.

			ADF is a managed cloud service that can be used to coordinate and orchestrate complex cloud- or hybrid- (on-premises)-based pipelines. ADF provides the ability to build ETL and extract, load, transform (ELT) pipelines. With ADF, you can do the following:

			
					Ingest data from a wide variety of sources such as databases, file shares, Internet of Things (IoT) hubs, Amazon Web Services (AWS), Google Cloud Platform (GCP), and more.

					Build complex pipelines using variables, parameters, branches, and so on.

					Transform data by using compute services such as Synapse, HDInsight, Cosmos DB, and so on.

					Schedule and monitor ingestions, control flow, and data flow operations.

			

			Here is how the ADF workspace looks like:

			
				
					[image: Figure 4.14 – Data Factory Workspace landing screen

]
				

			

			Figure 4.14 – Data Factory Workspace landing screen

			ADF is built of some basic set of components. The important ones are listed here:

			
					Pipelines—A pipeline is a collection of activities that are linked together to perform some control flow or data transformation.

					Activities—Activities in ADF refer to the steps in the pipeline such as copying data, running a Spark job, and so on.

					Datasets—This is the data that your pipelines or activities operate on.

					Linked Services—Linked services are connections that ADF uses to connect to a variety of data stores and computes in Azure. They are like connection strings that let you access data from external sources.

					Triggers—Triggers are events that are used to start pipelines or start an activity.

			

			We will be using a lot of the preceding terminologies while using ADF, so it's good to understand them.

			Now that we know what ADF is, let's explore the different ways in which we can design incremental loading using ADF. Based on the type of data source, we can have different techniques to implement incremental loading. Some of them are listed here:

			
					Using watermarks—If the data source is a database or relational table-based system

					Using file timestamps—If the source is a filesystem or blob storage

					Using partition data—If the source is partitioned based on time

					Using folder structure—If the source is divided based on time

			

			Let's explore each of these techniques in detail.

			Watermarks

			Watermarking is a very simple technique whereby we just keep track of the last record loaded (our watermark) and load all the new records beyond the watermark in the next incremental run.

			In relational storage technologies such as SQL databases, we can store the watermark details as just another simple table and automatically update the watermark with stored procedures. Every time a new record is loaded, the stored procedure should get triggered, which will update our watermark table. The next incremental copy pipeline can use this watermark information to identify the new set of records that need to be copied. Let's look at how we can implement a watermark design with ADF using Azure SQL as a source. Let's assume we have a simple table named FactTrips that needs to be incrementally loaded into an Azure SQL table. Proceed as follows:

			
					Select the Azure SQL service from the Azure dashboard and create a new Azure SQL instance if you don't already have one. Create a simple FactTrips table as shown in the following screenshot and insert some dummy values into it using the Query editor (preview) option:

			

			
				
					[image: Figure 4.15 – Creating a simple table in Azure SQL

]
				

			

			Figure 4.15 – Creating a simple table in Azure SQL

			
					Create a watermark table, like this:CREATE TABLE WatermarkTable
(
  [TableName] VARCHAR(100),
  [WatermarkValue] DATETIME,
);


					Create a stored procedure to automatically update the watermark table whenever there is new data.CREATE PROCEDURE [dbo].uspUpdateWatermark @LastModifiedtime DATETIME, @TableName VARCHAR(100)
AS
BEGIN
UPDATE [dbo].[WatermarkTable] SET [WatermarkValue] = @LastModifiedtime WHERE [TableName] = @TableName
END


					Now, on the ADF side, we need to create a new pipeline for finding the delta between the old and new watermarks and then initiate an incremental copy.

					From the Pipeline page in ADF, create two Lookup activities. They can be found at Activities -> General -> Lookup. Here is a sample ADF screen:

			

			
				
					[image: Figure 4.16 – ADF Authoring Page

]
				

			

			Figure 4.16 – ADF Authoring Page

			
					Configure the first one to look up the previous watermark table entry, as shown in the following screenshot. The Watermark dataset has been configured to point to the Azure WatermarkTable.

			

			
				
					[image: Figure 4.17 – lookup configuration using the watermark table

]
				

			

			Figure 4.17 – lookup configuration using the watermark table

			
					Configure the next Lookup activity to look at the latest file modified time in the source table, which in our case would be the FactTrips table:SELECT MAX(LastModifiedTime) AS NewWatermarkValue FROM FactTrips;


			

			You will have to enter the following query in the Query textbox under the Settings tab:

			
				
					[image: Figure 4.18 – New watermark lookup configuration using LastModifiedTime

]
				

			

			Figure 4.18 – New watermark lookup configuration using LastModifiedTime

			
					Finally, add a new Copy activity from Activities -> Move and Transform -> Copy Data and configure it as follows:SELECT * FROM FactTrips WHERE 
LastModifiedTime > '@{activity('PreviousWatermark').output.firstRow.WatermarkValue}'
AND
LastModifiedTime <= '@{activity('NewWatermark').output.firstRow.WatermarkValue}';


			

			In the Query section under the Source tab, enter the following query: 

			
				
					[image: Figure 4.19 – ADF Copy activity with watermark-based delta generation

]
				

			

			Figure 4.19 – ADF Copy activity with watermark-based delta generation

			
					Save (publish) the preceding pipeline and set up a scheduled trigger using the Add Trigger button in the Pipeline screen. Now, every time there are changes to the FactTrips table, it will get copied into our destination table at regular intervals.

			

			Let's next learn how to do incremental copying using file timestamps.

			File timestamps

			There's another technique available to incrementally load only the new files from a source to a destination: ADF's Copy Data tool functionality. This tool provides an option to scan the files at the source based on the LastModifiedDate attribute. So, all we need to do is to specify the source and destination folders and select the Incremental load: LastModifiedDate option for the File loading behavior field.

			You can launch the Copy Data tool functionality from the ADF main screen, as shown in the following screenshot:

			
				
					[image: Figure 4.20 – ADF Copy Data tool launch screen

]
				

			

			Figure 4.20 – ADF Copy Data tool launch screen

			Once you click Copy Data tool, it launches a wizard screen where you can specify the incremental load details, as illustrated in the following screenshot:

			- 

			
				
					[image: Figure 4.21 – Selecting Tumbling window for incremental load based on file modified time

]
				

			

			Figure 4.21 – Selecting Tumbling window for incremental load based on file modified time

			Note

			In the Properties tab shown in the previous screenshot, you need to select Tumbling window for the Task Cadence or task schedule setting; otherwise, the incremental load option won't show up.

			In the Source window, select the Incremental load: LastModified Date option, as shown in the following screenshot:

			
				
					[image: Figure 4.22 – ADF incremental load option with LastModifiedDate timestamps

]
				

			

			Figure 4.22 – ADF incremental load option with LastModifiedDate timestamps

			Fill in the rest of the fields and select Next at the Summary screen to create an incremental copy pipeline using file modified dates.

			Let's next learn how to do incremental copying using folder structures.

			File partitions and folder structures

			For both the options of file partitioning and data organized in date-based folder structures, we can use the ADF Copy Data tool functionality to perform incremental loading. The files and folders in both approaches will have a similar folder hierarchy based on date/time. If you recall the section on folder structure in Chapter 2, Designing a Data Storage Structure, we designed a folder structure using a date hierarchy. Let's assume that our input data is landing in a date-structured folder, as shown here: 

			New York/Trips/In/2022/01/01

			Let's try to incrementally upload this data to another location in the blob storage on a regular basis. ADF's Copy Data tool has support for incremental copying for files and folders that are partitioned using date/time. Similar to how we instantiated a Copy activity in the previous section for the incremental copy based on file modified date timestamps, we need to instantiate the Copy Data tool functionality with the File Loading behavior field set to Incremental load: time-partitioned folder/file names. In this screen, once you start typing the input format using date variables such as {year}/{month}/{day}, the Options section expands to show the year format, month format, and day format fields. You can select your preferred folder structure format using the dropdowns and complete the rest of the flow. The following screenshot shows an example of this:

			
				
					[image: Figure 4.23 – ADF incremental load option with time-partitioned folders

]
				

			

			Figure 4.23 – ADF incremental load option with time-partitioned folders

			Once you review the details and click Next on the Summary screen, the incremental pipeline for partitioned data/folder structures will get deployed.

			We have now learned three different methods to perform incremental copying. Let's next explore how to select the right analytical data store for our Serving layer.

			Designing analytical stores

			Analytical stores could either be SQL or NoSQL data stores deployed in the data lake Serving Zone. The main job of an analytical data store is to serve the data generated by the data transformation pipelines to the BI tools in a fast and simple manner. Analytical stores are usually subjected to ad hoc querying from business analysts and other end users. As such, these stores need to perform really well with random reads. Azure provides a variety of storage technologies that can cater to these requirements. Here are some of the most important ones:

			
					Azure Synapse Analytics (Serverless/dedicated SQL pools and Spark pools)—Synapse Analytics provides both SQL pools and Spark pools. Among these, the SQL dedicated pools are massively parallel processing (MPP) data warehouses and are usually ideal for a majority of analytical store situations. Serverless SQL pools can be used for ad hoc querying. Spark pools, on the other hand, can support analytical workloads through their in-memory store and wide columnstore support. Both support SQL/SQL-like interfaces.

					Azure Databricks—Azure Databricks is another Spark distribution that can provide limited analytical store capabilities via its in-memory stores and wide columnstore support. It also supports SQL-like interfaces.

					Azure Cosmos DB—Cosmos DB provides support for document databases, key-value stores, graph stores, wide columnstores, and more. It also supports SQL/SQL-like interfaces.

					Azure SQL Database/SQL Database on custom virtual machines (VMs)—Azure SQL provides relational database support and, of course, supports the SQL interface.

					HBase/Phoenix on HDInsight—Provides analytical store support through the in-memory store and wide columnstore support. It also supports SQL/SQL-like interfaces.

					Hive LLAP on HDInsight—Provides analytical store support through the in-memory store. It also supports SQL/SQL-like interfaces.

					Azure Data Explorer—Provides relational store and time-series support. It also supports SQL/SQL-like interfaces.

			

			There are other criteria such as security and scalability that you might want to consider. 

			Security considerations

			Here is a high-level security comparison table reproduced from the Azure documentation that can help you decide on the right analytical store for you:

			
				
					[image: Figure 4.24 – Security comparison of the different Azure analytical stores

]
				

			

			Figure 4.24 – Security comparison of the different Azure analytical stores

			Let's look at the scalability comparison next.

			Scalability considerations

			Here is another comparison table that can help you decide on an analytical store based on your data size and speed considerations:

			
				
					[image: Figure 4.25 – Scalability comparison of the different Azure analytical stores

]
				

			

			Figure 4.25 – Scalability comparison of the different Azure analytical stores

			You can learn more about analytical store selection criteria here: https://docs.microsoft.com/en-us/azure/architecture/data-guide/technology-choices/analytical-data-stores

			We are almost at the end of this chapter. In the last section, let's explore what metastores are and how to set them up in Azure Synapse Analytics and Azure Databricks.

			Designing metastores in Azure Synapse Analytics and Azure Databricks

			Metastores store the metadata of data in services such as Spark or Hive. Think of a metastore as a data catalog that can tell you which tables you have, what the table schemas are, what the relationships among the tables are, where they are stored, and so on. Spark supports two metastore options: an in-memory version and an external version.

			In-memory metastores are limited in accessibility and scale. They can help jobs running on the same Java virtual machine (JVM) but not much further than this. Also, the metadata is lost once the cluster is shut down.

			For all practical purposes, Spark uses an external metastore, and the only supported external metastore at the time of writing this book was Hive Metastore. Hive's metastore is mature and provides generic application programming interfaces (APIs) to access it. Hence, instead of rebuilding a new metastore, Spark just uses the mature and well-designed Hive metastore for its own cataloging.

			Let's explore the metastore features available in both Azure Synapse Analytics and Azure Databricks.

			Azure Synapse Analytics

			Synapse Analytics supports metadata sharing among its computational pools such as Spark and SQL. Spark databases and external tables that are created using Parquet format can be easily accessed from the SQL pools.

			Two main metadata components can be shared in the current version of Synapse: databases and tables. Let's look at them in detail.

			Databases

			Any database you create using Spark SQL can be directly accessed by the dedicated or serverless SQL pools in Synapse, provided both these pools have storage-level access to the newly created database.

			For example, create a FactTrips table in Spark by running the following code:

			spark.Sql("CREATE DATABASE FactTrips")

			Then, read it from SQL, like this:

			SELECT * FROM sys.databases;

			You don't have to do any configuration; Synapse automatically makes the databases visible across its compute pools. Now, let's look at the other metadata component that can be shared in the current version of Synapse: tables.

			Tables

			Any Parquet-based table that Spark stores in the warehouse directory is automatically shared to the SQL pools.

			Any Parquet-based external tables created by Spark can also be shared with the SQL pools, by providing the location of the table.

			Azure Databricks (and Azure Synapse Spark)

			As we briefly saw in Chapter 2, Designing a Data Storage Structure, Azure Databricks is the Databricks version of Spark hosted on Azure. It is available as an independent Azure service and is well connected to most of the Azure services. Azure Databricks and Azure Synapse Spark both use Hive Metastore as their external metastore. Such external metastores enable data access between different Spark clusters and also between other computes such as Hive. Theoretically, any service that can talk to the Hive metastore and has the right access levels can read the Spark catalogs persisted in the metastore. The Hive metastore itself is usually deployed on top of a SQL database such as Azure SQL. Setting up an external Hive metastore is a manual procedure for both Databricks and Synapse Spark. There are two sets of configurations that you will have to set up, one for Spark and one for Hive.

			On the Spark side, while creating a cluster, you just need to add the following parameters into the Spark configuration options field. Here, we assume that you already have a Hive cluster and an Azure SQL database (to be used as the metastore) up and running. You can choose to use any SQL database, not necessarily Azure SQL for the metastore. Proceed as follows:

			
					Specify the Java Database Connectivity (JDBC) connect string for a JDBC metastore, as follows:spark.hadoop.javax.jdo.option.ConnectionURL <mssql-connection-string>


					Specify the username to be used for the metastore, as follows:spark.hadoop.javax.jdo.option.ConnectionUserName <mssql-username>


					Specify the password to be used for the metastore, as follows:spark.hadoop.javax.jdo.option.ConnectionPassword <mssql-password>


					Specify the driver class name for a JDBC metastore, as follows:spark.hadoop.javax.jdo.option.ConnectionDriverName com.microsoft.sqlserver.jdbc.SQLServerDriver


					Specify the Hive metastore version, as follows:spark.sql.hive.metastore.version <hive-version>


					Specify the location of the metastore jars, Java ARchive (JAR) files, as follows:spark.sql.hive.metastore.jars <hive-jar-source>
Note
A spark.hadoop prefix is added to make sure these Hive-specific options propagate to the metastore client.


			

			And on the Hive server, please update the following configurations with the right values:

			
					Specify the JDBC connect string for a JDBC metastore, as follows:javax.jdo.option.ConnectionURL <mssql-connection-string>


					Specify the username for the metastore database, as follows:javax.jdo.option.ConnectionUserName <mssql-username>


					Specify the password metastore database, as follows:javax.jdo.option.ConnectionPassword <mssql-password>


					Specify the connection driver class name for the JDBC metastore, as follows:javax.jdo.option.ConnectionDriverName com.microsoft.sqlserver.jdbc.SQLServerDriver


			

			If your versions of Spark/Hive don't match the default ones provided by Azure, then you will have to download the right version of the JAR files and upload them into the workspace. The following link has more details on this: https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore.

			Summary

			That brings a close to our fourth chapter. Congratulations on making it this far.

			Just to recap, we started off with the basics of data modeling and learned about Star and Snowflake schemas. We then learned about designing for SCDs, the different sub-types of SCDs, dimensional hierarchies, handling temporal data by using time dimensions, loading data incrementally using ADF, and selecting the right analytical store based on the customer's requirements. Finally, we learned about creating metastores for Synapse and Azure Databricks. All these topics complete the syllabus for DP203 – Design the Serving Layer. You have now learned how to design your own Serving layer in Azure.

			We have now come to the end of our design chapters. We will be focusing on the implementation details from the next chapter onward. Yay!

		

	

			Chapter 5: Implementing Physical Data Storage Structures

			Hope you have had a good learning experience up till now. Let's continue our journey toward certification with more interesting topics in this chapter. Till the previous chapter, we have been focusing on the design aspects, but from now on, we will be focusing on the implementation details. We will learn how to implement the storage-level concepts that we learned in the previous chapters. Once you complete this chapter, you should be able to decide on and implement the following: what kind of data sharding is required, when to compress your data, how many partitions to create, what kind of data redundancy to maintain, and so on.

			We will cover the following topics in this chapter:

			
					Getting started with Azure Synapse Analytics

					Implementing compression

					Implementing partitioning

					Implementing horizontal partitioning or sharding

					Implementing distributions

					Implementing different table geometries with Azure Synapse Analytics pools

					Implementing data redundancy

					Implementing data archiving

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Synapse workspace

			

			Let's start implementing!

			Getting started with Azure Synapse Analytics

			Most of the examples in this chapter will be executed in an Azure Synapse Analytics workspace, so let's look at how to create one. Proceed as follows:

			
					From the Azure portal, search for Synapse. From the results, select Azure Synapse Analytics.

					Once inside, click on + Create and enter the details for a new workspace. The Create Synapse workspace screen is shown in the following screenshot:

			

			
				
					[image: Figure 5.1 – Azure Synapse workspace creation

]
				

			

			Figure 5.1 – Azure Synapse workspace creation

			
					Once done, click on the Review + create button and, finally, the Create button on that screen to create a new Synapse workspace.

			

			This workspace will provide us with Structured Query Language (SQL) and Spark pools, required to experiment with the various concepts that we learned in the previous chapters. Let's start by implementing compression in the next section.

			Implementing compression

			In the previous chapters, we learned about the importance of data compression in data lakes. As the size of the data in data lakes grows, it becomes important that we store the data in a compressed format in order to save on cost. There are numerous ways in which we can implement compression in Azure. There are a lot of compression libraries available in the market and technically, all we need to do is write some scripts to call those libraries to compress data. But writing ad hoc scripts brings its own maintenance complexity, so let's look at some easy-to-maintain ways of implementing compression in Azure using Azure Synapse Pipelines. The same can be achieved using Azure Data Factory too. Azure Synapse Pipelines is just the same Azure Data Factory implementation within Synapse Analytics.

			Compressing files using Synapse Pipelines or ADF

			In the previous chapter, we learned about ADF. Like ADF, Synapse Pipelines can be used to create pipelines to do a wide range of activities such as extract, transform, load (ETL), extract, load, transform (ELT), copying data, and so on. ADF and Synapse Pipelines supports several dozens of services as data sources and sinks, both within Azure and outside Azure. Among them, services such as Azure Blob Storage or Azure Data Lake Storage Gen2 (ADLS Gen2) support the option of compressing the data before copying. Let's see an example of reading uncompressed files and compressing them before writing them back into ADLS Gen2 using Synapse Pipelines.

			Proceed as follows:

			
					Create a Copy Data tool instance by clicking on the + sign, as shown in the following screenshot:

			

			
				
					[image: Figure 5.2 – Selecting Copy Data tool in Synapse Pipelines

]
				

			

			Figure 5.2 – Selecting Copy Data tool in Synapse Pipelines

			
					In the Copy Data tool instance, enter the Source and Destination folders on your Azure data store.

					On the Configuration page, you can specify a Compression type option, as shown in the following screenshot:

			

			
				
					[image: Figure 5.3 – Compression type options in the destination data store page of Copy Data tool

]
				

			

			Figure 5.3 – Compression type options in the destination data store page of Copy Data tool

			
					Select one of the Compression type options, fill in the other mandatory fields in the other tabs, then finally click Publish on the Review and finish page to save this Copy Data tool instance.

					You can then trigger this Copy Data tool instance on demand or set up a recurring trigger to perform the compression at regular intervals from the ADF pipeline screen.

			

			That is how simple it is to set up a regular compression job using Synapse Pipelines (similarly in ADF). Next, let's explore how to compress files using Spark, which is one of the compute pools available in Synapse. You can also choose to use Azure Databricks Spark. The examples provided here will work fine with any flavor of Spark.

			Compressing files using Spark

			Spark provides libraries that can directly write the outputs in compressed formats such as Parquet, ORC, and so on. On top of this, we can specify the compression algorithms to be used. For example, the following Python script stores the data in Parquet format using gzip compression:

			columnNames = ["name","license","gender","salary"]

			driverData = [

			  ('Alice', 'A224455', 'Female', 3000),

			  ('Bryan','B992244','Male',4000),

			  ('Catherine','C887733','Female',4000)

			]

			df = spark.createDataFrame(data= driverData, schema = columnNames)

			df.write.option("compression", "gzip"). parquet("abfss://path/to/output")

			Note

			Spark supports these compression options: snappy, gzip, lzo, brotli, lz4, and zstd. You can learn more about Spark compression options at https://spark.apache.org/docs/latest/configuration.html.

			Now that we have learned how to compress data using ADF and Spark, let's look at the different ways to partition data in Azure Synapse.

			Implementing partitioning

			In Chapter 3, Designing a Partition Strategy, we covered the basics of partitioning. In this section, we will be learning how to implement the different types of partitioning. We will start with partitioning on Azure data stores and then look into partitioning for analytical workloads.

			For storage-based partitioning, the main technique is to partition the data into the correct  folder structure. In the previous chapters, we learned about how to store the data in a date-based format. The recommendation from Azure is to use the following pattern:

			{Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

			Let's learn how to implement folder creation in an automated manner using ADF.

			Using ADF/Synapse pipelines to create data partitions

			You can use ADF or Synapse Pipelines, as both use the same ADF technology. In this example, I'm using Synapse Pipelines. Let's look at the steps to partition data in an automated fashion:

			
					In your Synapse workspace, select the Pipelines tab and select a Data flow activity, as illustrated in the following screenshot:

			

			
				
					[image: Figure 5.4 – Selecting the Data flow activity in Synapse Pipelines

]
				

			

			Figure 5.4 – Selecting the Data flow activity in Synapse Pipelines

			
					Double-click on the Data flow activity to reveal the Source and Destination nodes.

					Configure the Source details. Under the Source options tab, fill in the Wildcard paths field, similar to the example shown in the following screenshot:

			

			
				
					[image: Figure 5.5 – Entering source information in the Data flow activity

]
				

			

			Figure 5.5 – Entering source information in the Data flow activity

			
					Now, click on the Destination node and fill in the destination folder details, as illustrated in the following screenshot:

			

			
				
					[image: Figure 5.6 – Entering destination information in the Data flow activity

]
				

			

			Figure 5.6 – Entering destination information in the Data flow activity

			
					The important field here is Folder path. This field accepts dynamic expressions. If you click on the folder path text box, it pops up an Expression Builder tool that can be used to build complex expressions denoting the file format that we need. 

					Here is a sample expression that can be used to create date directories:"staging/driver/out/" + toString(year(currentDate()))  + "/" + toString(month(currentDate())) + "/" + toString(dayOfMonth(currentDate()))


					If the current date is January 1, 2022, the previous expression would generate a folder such as this:staging/driver/out/2022/01/01


					And the next day, a new folder with the date 02 would get created, and so on.

					Once you are done adding the folder path, publish the pipeline and trigger it.

			

			This is how we can automatically partition and store incoming data. Let's next look at the partitioning options available for analytical workloads.

			Partitioning for analytical workloads

			In Chapter 3, Designing a Partition Strategy, we learned about the three types of partitioning for analytical workloads, which are listed again here:

			
					Horizontal partitioning or sharding

					Vertical partitioning

					Functional partitioning

			

			Among these, horizontal partitioning or sharding techniques are dynamic in nature and are done after schemas are created. They are usually performed regularly during data loading or during the data transformation phase. Synapse dedicated pools and Spark pools provide several options to perform sharding. We will be dedicating a full section to sharding next.

			Vertical or functional partitioning, on the other hand, is done at the time of schema build-out. These types of partitioning involve figuring out the right set of tables based on the queries and the data distribution. Once we figure out the required tables based on our business needs, the implementation just involves creating multiple tables using the CREATE TABLE command and linking the tables using a constraint such as a FOREIGN KEY constraint.

			Note

			As of writing this book, the FOREIGN KEY constraint is not yet supported in dedicated SQL pools.

			From a certification perspective, sharding is more important, so let's focus on that next.

			Implementing horizontal partitioning or sharding

			Let's explore sharding from two different perspectives: a dedicated SQL pool and Spark. Just note that we will be using the terminologies horizontal partitioning and sharding interchangeably throughout the book, but they mean the same thing.

			Sharding in Synapse dedicated pools

			Synapse SQL dedicated pools have three different types of tables based on how the data is stored, outlined as follows:

			
					Clustered columnstore

					Clustered index

					Heap

			

			We will be learning more about these table types later in this chapter. Synapse dedicated pools support sharding for all these table types. They provide three different ways to shard the data, as follows:

			
					Hash

					Round-robin

					Replicated

			

			These methods through which a SQL dedicated pool distributes data among its tables are also called distribution techniques. Sharding and distribution techniques are overlapping technologies that are always specified together in SQL CREATE TABLE statements.

			Note

			The dedicated SQL pool by default partitions the data into 60 distributions. The partitions that we specify explicitly add to the partitions that the SQL dedicated pool already creates. So, ensure that you don't end up over-partitioning the data, as this can negatively affect the query performance.

			Let's now take a look at examples of how to shard data in a dedicated SQL pool.

			Using dedicated SQL pools to create sharding

			Dedicated SQL pools have an option called PARTITION that can be used during the table creation process to define how the data has to be partitioned. Let's use the same base example that we used in Chapter 2, Designing a Data Storage Structure, to try the partitioning. We'll proceed as follows:

			
					Let's create a simple table that partitions on the tripDate field, as follows:CREATE TABLE dbo.TripTable
(
    [tripId] INT NOT NULL,
    [driverId] INT NOT NULL,
    [customerId] INT NOT NULL,
    [tripDate] INT,
    [startLocation] VARCHAR(40),
    [endLocation] VARCHAR (40)
 )
 WITH
 (
    CLUSTERED COLUMNSTORE INDEX,
    DISTRIBUTION = HASH ([tripId]),
    PARTITION ([tripDate] RANGE RIGHT FOR VALUES
        ( 20220101, 20220201, 20220301 )
    )
)


					Insert some sample data into the table, as shown in the following code block:INSERT INTO dbo.TripTable VALUES (100, 200, 300, 20220101, 'New York', 'New Jersey');
INSERT INTO dbo.TripTable VALUES (101, 201, 301, 20220101, 'Miami', 'Dallas');
INSERT INTO dbo.TripTable VALUES (102, 202, 302, 20220102, 'Phoenix', 'Tempe');
. . .


					Now, let's run the query as shown in the following screenshot. Don't worry if you don't understand the details of the query—it is just trying to get the partition details in an easy-to-read format. This query can be found in the Synapse documentation:

			

			
				
					[image: Figure 5.7 – Output of the partition command

]
				

			

			Figure 5.7 – Output of the partition command

			
					As you can see in the Results section, four partitions have been created.

			

			Two of the attributes used while defining the partition are RANGE RIGHT and RANGE LEFT. We learned about these keywords in Chapter 2, Designing a Data Storage Structure, while learning about data pruning. Just to recap, RANGE RIGHT ensures that the value specified in the PARTITION syntax will belong to the right-side partition and vice versa for the RANGE LEFT keyword.

			Next, let's look at the options Spark provides for sharding.

			Sharding using Spark

			Spark by default partitions data based on the number of cores available or the number of Hadoop Distributed File System (HDFS) blocks (if it is running on HDFS). If we need to partition the data in any other custom format, then Spark provides options for that too. Spark supports two types of partitioning: in-memory partitioning and on-disk partitioning. Let's look at both these types of partitioning in detail.

			In-memory partitioning

			Spark provides the following three methods to perform in-memory partitioning: 

			
					repartition()—To increase the number of partitions.

					coalesce()—To decrease the number of partitions.

					repartitionByRange()—This is a specialization of the repartition command where you can specify the ranges.

			

			Let's consider an example Spark snippet to understand these three partition types, as follows:

			columnNames = ["name","license","gender","salary"]

			driverData = [

			  ('Alice', 'A224455', 'Female', 3000),

			  ('Bryan','B992244','Male',4000),

			  ('Catherine','C887733','Female',2000),

			  ('Daryl','D229988','Male',3000),

			  ('Jenny','J663300','Female', 6000)

			]

			df = spark.createDataFrame(data= driverData, schema = columnNames)

			print("Default Partitions: " + str(df.rdd.getNumPartitions()))

			repartitionDF = df.repartition(3)

			print("Repartition Partitions: " + str(repartitionDF.rdd.getNumPartitions()))

			coalesceDF=df.coalesce(2)

			print("Coalesce Partitions: " + str(coalesceDF.rdd.getNumPartitions()))

			repartitionRangeDF = df.repartitionByRange(1,'salary')

			print("Range Partitions: " + str(repartitionRangeDF.rdd.getNumPartitions()))

			The output of the previous code snippet would look something like this:

			Default Partitions: 8 

			Repartition Partitions: 3 

			Coalesce Partitions: 2 

			Range Partitions: 1

			As you can see, with each of the partition commands, the number of partitions gets updated. 

			Now that we have explored in-memory partitions in Spark, let's next look into on-disk partitioning methods.

			On-disk partitioning

			Spark provides the partitionBy() operator, which can be used to partition the data and store it in different files while writing the output. Here is a sample code snippet to perform partitionBy(). This example continues the example from the In-memory partitioning section:

			df = spark.createDataFrame(data= driverData, schema = columnNames)

			df.write.partitionBy("gender","salary")..parquet("abfss://path/to/output/")

			The preceding code snippet will create two separate folders, one for Female and one for Male. The output will be as shown here:

			
				
					[image: ]
				

			

			Figure 5.8 – Output of the PartitionBy command

			With that, we have covered how we can perform partitioning using Spark. Now, let's move on to distributions, which is a concept related to partitions in dedicated SQL pools.

			Implementing distributions

			A dedicated SQL pool massively parallel processing (MPP) engine splits the data into 60 parallel partitions and executes them in parallel. Each of these smaller partitions, along with the compute resources to run the queries, is called a distribution. A distribution is a basic unit of processing and storage for a dedicated SQL pool.

			Dedicated SQL pools provide three options for distribution. Let's look at each of them in detail.

			Hash distribution

			This type of distribution distributes the data based on a hash function. Rows with the same values for the hashed column will always move to the same partition. This can be implemented by providing the DISTRIBUTION = HASH (COLUMN_ID) value in the WITH clause of CREATE TABLE. Here is an example:

			CREATE TABLE dbo.TripTable

			(

			    [tripId] INT NOT NULL,

			    [driverId] INT NOT NULL,

			    [customerID] INT NOT NULL,

			    [tripDate] INT,

			    [startLocation] VARCHAR(40),

			    [endLocation] VARCHAR(40)

			 )

			 WITH

			 (

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = HASH ([tripId]),

			    PARTITION ([tripDate] RANGE RIGHT FOR VALUES

			        ( 20220101, 20220201, 20220301 )

			    )

			)

			Tip

			Use hash distribution if the table size is greater than 2 gigabytes (GB) or if the table has very frequent updates.

			Round-robin distribution

			This type of distribution just distributes the data randomly across nodes in a round-robin fashion. It can be implemented by providing the DISTRIBUTION = ROUND_ROBIN value in the WITH clause of CREATE TABLE. Here is an example:

			WITH

			(

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = ROUND_ROBIN

			    PARTITION (…)

			)

			Choose round-robin distributions while loading data into staging tables or when there is no good indexing to choose from.

			Replicated distribution

			This type of distribution just copies the complete table across all the nodes. It can be implemented by providing the DISTRIBUTION = REPLICATE value in the WITH clause of CREATE TABLE. Here is an example:

			WITH

			(

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = REPLICATE

			    PARTITION (…)

			)

			Use REPLICATE to copy small but frequently accessed data such as retail catalog tables, price chart tables, and so on.

			I hope you got a good grasp of sharding and distributions in a Synapse SQL pool. Now that we know how to implement distributions, let's learn about the other attributes of Synapse tables.

			Implementing different table geometries with Azure Synapse Analytics pools

			The term table geometry is not standard database terminology, so I'm taking an educated guess that the certification team meant the different features of Azure Synapse dedicated pool tables.

			The main features of Synapse dedicated pool tables are partitions, indexes, and distributions. We have already covered partitions and distributions in detail, so we will focus on the remaining feature, which is indexing.

			SQL dedicated pools provide the following three types of indexing:

			
					Clustered columnstore indexing

					Heap indexing

					Clustered indexing

			

			Let's look at them in detail.

			Clustered columnstore indexing

			Clustered columnstore is the default indexing option of a dedicated SQL pool table. This type of indexing works best for large fact tables. It is a column-based data storage and provides very high levels of compression and better query performance than row-based indexes.

			Here is an example of how to create a table with clustered columnstore indexing:

			CREATE TABLE dbo.Driver

			  (  

			    [driverId] INT NOT NULL,  

			        [name] VARCHAR(40),  

			    . . . 

			  )  

			WITH ( CLUSTERED COLUMNSTORE INDEX );

			Heap indexing

			Heap tables are used as temporary data-loading tables as they provide faster loading times. They are usually used for staging data before loading it into other refined tables. Heap indexing works better for smaller tables.

			Here is an example of how to create a table with heap indexing:

			CREATE TABLE dbo.Driver

			  (  

			    [driverId] INT NOT NULL,  

			    [name] VARCHAR(40),  

			    . . .

			  )  

			WITH ( HEAP );

			Clustered indexing

			Clustered index tables are row-based storage tables. They are usually faster for queries that need row lookups with highly selective filters on the clustered index column.

			Here is an example of how to create a table with clustered indexing:

			CREATE TABLE dbo.Driver

			  (  

			    [driverId] INT NOT NULL,  

			    [name] VARCHAR(40),  

			    . . .

			  )  

			WITH ( CLUSTERED INDEX (driverId) );

			Note

			If your table size is less than the recommended 60 million rows for clustered columnstore indexing, consider using heap or clustered index tables.

			You have now learned some of the important features of SQL dedicated pool tables, such as partitioning, indexing, and distributions. Now, let's look into our next topic: data redundancy.

			Implementing data redundancy

			Data redundancy is the process of storing multiple copies of data at different locations, in order to protect the data from events such as power failures, disk failures, network failures, and even major catastrophes such as entire data center outages. Azure Storage provides multiple options for data redundancy both at local data center levels and across data centers. We can broadly group the options into these two categories:

			
					Primary region redundancy

					Secondary region redundancy

			

			Let's look at these options in detail.

			Azure storage redundancy in the primary region

			This type of redundancy covers localized failures such as disk failures, machine failures, and rack failures. There are two types of primary region redundancy, as detailed next.

			Locally redundant storage (LRS)

			With this type of redundancy, the data is copied three times across multiple machines in the same physical region within a data center. This option provides protection against local failures such as disk, machine, or local network failures. If all three data copies end up residing on the same rack and if the rack loses power, we might then end up losing the data. This is the cheapest of all the redundant-storage options.

			Zone-redundant storage (ZRS)

			This type of redundancy is similar to LRS, but the data is intelligently copied across multiple Availability Zones (AZs). AZs are local regions within a data center that have different power and networking supplies and non-overlapping maintenance periods. This ensures that even if one of the zones is down, the other zones can continue serving the data. This option is more expensive than LRS.

			Azure storage redundancy in secondary regions

			This type of redundancy provides data protection against major geographical region failures such as total data center outages caused due to massive power outages, earthquakes, hurricanes, and so on. With this type of redundancy, along with the local copies, a copy of the data is stored in a data center at a different geological location. If the primary region goes down, the applications would be able to either automatically or manually fail over to the secondary region. There are two options for secondary region redundancy, as detailed next.

			Geo-redundant storage (GRS)

			GRS is basically an LRS setup at both the primary and secondary regions. The data is first written in an LRS fashion synchronously at the primary region, and then a remote copy happens asynchronously at the secondary region. At the remote site, the data is again replicated three times using local LRS.

			Azure also provides a read-only extension to GRS called read-access GRS (RA-GRS). The only difference is that the remote copy is a read-only copy in this case.

			Geo ZRS (GZRS)

			GZRS is ZRS at the primary region and LRS at the secondary region. Similar to GRS, the local copies are synchronously copied, and the remote ones are asynchronously copied. The remote location still keeps an LRS copy, but not a ZRS one. This is the highest data-redundancy option provided by Azure and, not surprisingly, the most expensive one too. As with GRS, GZRS also provides a read-only remote copy option called RA-GZRS.

			Similar to the storage data redundancy options, there are some additional specialized data redundancy options available for services like Azure SQL, Synapse SQL, CosmosDB and other similar services. Let us briefly look at them too.

			Azure SQL Geo Replication

			Azure SQL provides a feature called Active Geo replication. This is a data redundancy feature that replicates the complete Azure SQL server instance to the secondary servers configured in a different geographical back up region. The secondary servers serve as read only servers and can be switched to read-write during failovers. The failovers can be initiated programmatically, thereby reducing the time to switch over during failures.

			You can learn more about Azure SQL Active Geo Replication here: https://docs.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview

			Azure Synapse SQL Data Replication

			Azure Synapse does geo-backups to its paired data centres (usually geographically distributed) every 24 hours unless you have opted out of this feature. You can restore from your geo-backups to any Synapse SQL pool in any region if that region has support for Synapse SQL pools.

			You can learn more about Azure SQL Pool data redundancy here:

			https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/backup-and-restore#geo-backups-and-disaster-recovery

			CosmosDB Data Replication

			CosmosDB is a globally distributed database that transparently replicates your data to the configured geographical locations. It provides very low latencies by allowing read and write from the local replicas of the data base. Hence, just by configuring CosmosDB in multiple geo-locations you get data redundancy.

			CosmosDB also automatically backs up your data periodically. You can use the automatic backups to recover in case of accidental deletes, updating of your CosmosDB account and so on.

			You can learn more about CosmosDB global data replication here:

			https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally.

			Note

			Not all Azure services or regions support all four redundancies, so please read about the redundancy support available for each service and plan for your product deployment accordingly.

			Now, let's see how to implement redundancy in Azure Storage.

			Example of setting up redundancy in Azure Storage

			While creating a new storage account, you can choose among the four data-redundancy options, as shown in the following screenshot:

			
				
					[image: Figure 5.9 – Choosing data redundancy option during storage account creation

]
				

			

			Figure 5.9 – Choosing data redundancy option during storage account creation

			If you wish to change the redundancy after the storage has been created, you can still do that from the following Configuration screen:

			
				
					[image: Figure 5.10 – Choosing data redundancy option after storage account creation

]
				

			

			Figure 5.10 – Choosing data redundancy option after storage account creation

			However, changing the redundancy after creation will require you to do manual or live migration. Manual migration refers to the process of either copying the data over to the new storage manually or automating it using ADF. This will usually result in application downtime.

			On the other hand, if you need your applications to be up during the migration, you can request a live migration with Microsoft Support. This might result in some support charges.

			Implementing data archiving

			In Chapter 2, Designing a Data Storage Structure, we already explored how to design and implement data archiving. We learned about the Hot, Cold, and Archive tiers of data storage and how to build data life cycle management policies. As we have covered the details already, we will not be repeating them here. Please refer to the Designing a data archiving solution section of Chapter 2, Designing a Data Storage Structure, again if you have forgotten about archiving.

			Summary

			That brings us to the end of this chapter. I hope you enjoyed it as much as I enjoyed writing it. We started with learning how to compress data in a clean way using Synaspe Pipelines and ADF, and natively using Spark. Then, we focused on learning about implementing partitioning, sharding, and distributions in SQL dedicated pools and Spark. After that, we learned about the different types of tables and indexing available in SQL dedicated pools, and finally, we concluded with learning how to set up data redundancy and archiving.

			All the preceding topics should cover the syllabus of DP203 – Implement Physical Data Storage Structures. We will focus on implementing logical data storage structures in the next chapter.

		

	

			Chapter 6: Implementing Logical Data Structures

			I hope you enjoyed learning about the implementation details of storage structures. In this chapter, we will be covering the implementation details of logical data structures. You will learn to implement advanced data loading concepts like slowly changing dimensions, storage based solutions for optimizing query performance and techniques to read external data without having to copy them over to local storage.

			We will cover the following topics in this chapter:

			
					Building a temporal data solution

					Building a slowly changing dimension

					Building a logical folder structure

					Implementing file and folder structures for efficient querying and data pruning

					Building external tables

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					The Azure CLI installed on your workstation

					An active Synapse workspace

			

			Let's get started!

			Building a temporal data solution

			Temporal data refers to data at specific points in time. Building a temporal solution deals with building systems that can handle and store such time based data. We have already seen how to use the Azure SQL Temporal tables feature to build such a system in Chapter 4, Designing the Serving Layer under the section: Designing a solution for temporal data. Since we have already explored this topic in detail there, we will not be repeating it again. Please refer to Chapter 4 to refresh your memory about Temporal tables.

			Let us next learn how to implement a slowly changing dimension.

			Building a slowly changing dimension

			In Chapter 4, Designing the Serving Layer, we learned about the different ways to build Slowly Changing Dimensions (SCDs). In this section, we will learn to implement a few of them using ADF/Synapse Pipelines Mapping flows. We will implement the Type 2 SCD as it involves a slightly more complicated workflow. Once you know how to implement one of the SCDs, implementing the others will be similar.

			Let's consider the following example scenario:

			
					We have a DimDriver dimension table in a Synapse SQL dedicated pool that contains the driver's data. This data doesn't change very often, so it is a good choice for an SCD.

					Let us assume that the changes to the driver data appears periodically as a CSV file in a folder in Azure Data Lake Gen2.

					We have to build an ADF pipeline to take the data from the CSV file and apply it to the DimDriver table while maintaining its history.

					We will build the Flag-based SCD option in this example.

			

			Creating a pipeline in ADF is like building the steps of a flow chart. We will have to take the data through various steps to reach the final desired result. The following SCD example is going to be slightly lengthier. I have tried to explain each and every step so that it will be easy for you to understand. But, if you find it difficult to follow, I'd recommend you to first look at Chapter 8, Ingesting and Transforming Data section: Transforming data by using ADF to get a good understanding of the ADF activities. That section has a lot of smaller ADF examples which can help you understand the following ADF example better.

			Let's look at the steps that are required for the SCD2 example. On a high level, we are going to perform the following steps:

			
					If the incoming data is for new drivers, we just add them directly to the Synapse SQL DimDriver table with isActive column set to 1.

					If the incoming data is an update to an existing row in the DimDriver table, then we need to take care of two conditions:

			

			a. The first condition updates the latest rows from the CSV file as the active row for the corresponding DriverIds by setting the isActive column to 1. 

			b. The second condition updates all the previous rows for those DriverIds as inactive, by setting the isActive column to 0. 

			The preceding logic can be executed using three separate flows within a Data flow, one for the new rows and two for the modified rows. Let us look at the new rows case first.

			Updating new rows

			Here are the steps to build the flow to update the new rows:

			
					The first step is to create a new Data flow, which can be used to chain the transformation steps, also called as Activities together. Click on the + sign and choose Data flow option from the ADF or Synapse Studio, as shown:

			

			
				
					[image: Figure 6.1 – Creating a new Data flow in Synapse Pipelines

]
				

			

			Figure 6.1 – Creating a new Data flow in Synapse Pipelines

			
					The next step is to create a source dataset for our CSV file. Click on the Add Source link in the Data flow canvas region, as shown in the following image.

			

			
				
					[image: Figure 6.2 – Creating a new data source

]
				

			

			Figure 6.2 – Creating a new data source

			
					When you click on the Add Source a new Source dataset screen pops up. In that screen, you can create a new dataset using the + New link, to point to the input driver CSV folder, as shown next:

			

			
				
					[image: Figure 6.3 – Sample input dataset creation

]
				

			

			Figure 6.3 – Sample input dataset creation

			
					We have to create a similar Source dataset to find the MaxSurrogateID from the Synapse SQL DimDriver table. While creating a new Dataset pointing to Synapse SQL, we have to specify the query to be run to fetch the max surrogateId. We will use this value later to distinguish the newly added rows from the existing rows in the DimDriver table. Here is a screen shot of how to specify the query.

			

			
				
					[image: Figure 6.4 – Finding the max value of the surrogate keys

]
				

			

			Figure 6.4 – Finding the max value of the surrogate keys

			
					Now, let us add the newly calculated maxSurrogate value to the incoming CSV driver dataset as a new column using the Join activity, as shown in the following screenshot:

			

			
				
					[image: Figure 6.5 – Adding the MaxSurrogateID column to the input CSV data

]
				

			

			Figure 6.5 – Adding the MaxSurrogateID column to the input CSV data

			
					Now that we have the MaxSurrogateID along with our CSV Driver data, we need to find the list of all the modified rows vs newly added rows. We can use a Lookup activity with LEFT OUTER JOIN between the Driver CSV and the Synapse SQL DimDriver table to achieve this. Here is a screen shot of how to achieve this:

			

			
				
					[image: Figure 6.6 – Using LEFT OUTER JOIN to get the updated rows

]
				

			

			Figure 6.6 – Using LEFT OUTER JOIN to get the updated rows

			
					In the preceding Lookup setting, I'd have used a slightly modified DimDriver table called ChangedNames for joining. This table is obtained by renaming the column names of the Synapse SQL DimDriver table. This is required as both the left and right tables for the join will otherwise have the exact same column names. Here is how we can rename the column names using a Select activity.

			

			
				
					[image: Figure 6.7 Changing column names using Select activity

]
				

			

			Figure 6.7 Changing column names using Select activity

			
					Now that we have identified the rows to be updates, let us split the data flow into two branches using Conditional split: one that takes care of the newly added values and another that updates the modified rows:

			

			
				
					[image: Figure 6.8 – Splitting the flow into two branches – new and modified rows

]
				

			

			Figure 6.8 – Splitting the flow into two branches – new and modified rows

			
					In the NewRows branch, just add a column (isNewActive=1), using the Derived Column activity. We will change this name to isActive just before updating it to the Synapse SQL tables at the last Sink activity.

			

			
				
					[image: Figure 6.9 – Adding isActive column to the input rows

]
				

			

			Figure 6.9 – Adding isActive column to the input rows

			
					Now send all these new rows with the isNewActive column renamed as isActive, to the destination using a Sink activity. We are using a temporary isNewActive flag to avoid column name collisions. You will have to disable Auto mapping and ensure that the field mapping is done correctly at the SQL Sink, as shown in the following image:

			

			
				
					[image: Figure 6.10 – An example of writing to the Sink, which is the Synapse SQL table in our case

]
				

			

			Figure 6.10 – An example of writing to the Sink, which is the Synapse SQL table in our case

			With this we have completed the flow for the newly added rows. Now let us look at the steps for the modified rows branch, the one where we conditionally split the branch based on NewRows vs ModifiedRows (Figure 6.8).

			Updating the modified rows

			Here are the steps to update the modified rows.

			
					For the modified rows branch, there are two sub tasks. The newly updated rows can be directly added with isActive=1 and the old rows for the corresponding DriverIds need to be updated with isActive=0. So, we need to split the ModifiedRows data set into two branches using the New branch option. Click on the little + sign after the activity box to get the New branch option, as shown:

			

			
				
					[image: Figure 6.11 creating a new branch

]
				

			

			Figure 6.11 creating a new branch

			
					In one of these branches, just add the isActive column with value of 1 and write it to the Synapse DimDriver table Sink, similar to what we did earlier for the new rows (refer Figure 6.9) . This should take care of the first sub-task of modified rows.

					Now, we have to make isActive=0 for the previous rows with the same driverID. For this, we can add a Derived column activity to add an isActive column to all the rows, followed by a Filter activity to filter only the old rows before writing to the sink. That way the latest row for that DriverId, which was updated in the previous step doesn't get changed. Here also, I use a temporary column called isOldRowActive to avoid column name conflict. This will be changed to isActive just before writing it to the SQL DimDriver sink.

			

			
				
					[image: Figure 6.12 Adding an extra column using Derived Column

]
				

			

			Figure 6.12 Adding an extra column using Derived Column

			
					Now filter the old rows out, by using the Dim_surrogateId <= MaxSurr condition, as shown:

			

			
				
					[image: Figure 6.13 – Filtering only the old rows

]
				

			

			Figure 6.13 – Filtering only the old rows

			
					Use an Alter row step to update only the rows whose surrogate IDs are smaller than the max surrogate value into the Synapse SQL using a Sink activity:

			

			
				
					[image: Figure 6.14 – Altering the number of rows while using the MaxSurr value as a reference

]
				

			

			Figure 6.14 – Altering the number of rows while using the MaxSurr value as a reference

			
					Here is how the Sink configuration will look:

			

			
				
					[image: Figure 6.15 Synapse SQL Sink configuration

]
				

			

			Figure 6.15 Synapse SQL Sink configuration

			
					Finally, set up a pipeline and trigger it to run the data flow periodically. Your ADF pipeline should look similar to the following:

			

			
				
					[image: Figure 6.16 – Sample ADF pipeline for SCD 2

]
				

			

			Figure 6.16 – Sample ADF pipeline for SCD 2

			That is how we build SCDs using Synapse Pipelines (or ADF). You might find it difficult to follow all the steps the first time. So try reading this section again after you complete Chapter 8, Ingesting and Transforming Data, which has more ADF/Synapse Pipelines examples.

			Now, let's learn how to implement logical folder structures.

			Building a logical folder structure

			We learned about efficient folder structures in Chapter 2, Designing a Data Storage Structure, where we explored the best practices for storing data for batch processing and streaming scenarios. The rule of thumb is to store the data in a hierarchical date folder structure, with the date part added toward the end, as shown here:

			{Region}/{SubjectMatter(s)}/{yyyy}/{mm}/{dd}/{hh}/

			We can have more intermediate folders in the folder path based on our business requirements. Please refer to Chapter 2, Designing a Data Storage Structure, to refresh your memory on designing efficient folder structures.

			To create a container on Azure Data Lake Gen 2, you can use the following command via the Azure CLI:

			az storage fs create -n <container name> --account-name <account name> --auth-mode login

			Once you have created a container, you can easily create folders in it by using the following command:

			az storage fs directory create -n <folder path> -f <container name> --account-name <account name> --auth-mode login

			You can also use UI tools like the Azure Storage portal or Azure Storage Explorer to create the folder structure.

			Since we have already covered this topic in detail in the previous chapters, let's move on and look at what data structures we can use for effective querying and pruning.

			Implementing file and folder structures for efficient querying and data pruning

			The concepts we explored in the previous section applies here too. Once we have a date-based hierarchical folder structure, query performance can be improved via data partitioning. If we divide the data into partitions and if we ensure that the partitions are stored in different folder structures, then the queries can skip scanning the irrelevant partitions altogether. This concept, as we already know, is called data pruning.

			Another benefit of partitioning is the increased efficiency of data loading and deletion by performing partition switching and partition deletion. Here, instead of reading each row and updating it, huge partitions of data can be added or deleted with simple metadata operations. Chapter 2, Designing a Data Storage Structure, already covered examples of how queries can benefit from data pruning by skipping reading from unnecessary partitions. In this section, we'll learn how to improve data load and unload performance via partition switching.

			Note

			Partitions have to be aligned perfectly on the boundaries for partition switching.

			Let's consider the same example Fact table that we have been using so far:

			CREATE TABLE dbo.TripTable

			(

			    [tripId] INT NOT NULL,

			    [driverId] INT NOT NULL,

			    [customerId] INT NOT NULL,

			    [tripDate] INT,

			    [startLocation] VARCHAR (40),

			    [endLocation] VARCHAR (40)

			 )

			 WITH

			 (

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = HASH ([tripId]),

			    PARTITION ([tripDate] RANGE RIGHT FOR VALUES

			        ( 20220101, 20220201, 20220301 )

			  )

			)

			Let's assume that we need to store only 3 months' worth of data. Our Fact table, dbo.TripTable, contains the data for 20220101, 20220201, and 20220301. Now, let's learn how to delete the first month's data and add the latest month's data, 20220401, to the table.

			Deleting an old partition

			To delete a partition, we need to create a dummy table that has the same structure as the original table and then swap out the partition for the dummy table. This section will show you how to switch out the 20220101 partition.

			Create a dummy table that contains the partition that needs to be switched out, as follows:

			CREATE TABLE dbo.TripTable_20220101

			WITH

			 (

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = HASH ([tripId]),

			    PARTITION ([tripDate] RANGE RIGHT FOR VALUES (20220101) ) 

			  )

			AS

			SELECT * FROM dbo.TripTable WHERE 1=2 ;

			Note that to switch out temporary tables, we can just have the one partition that we are planning to switch out. 20220101 is the second partition since the first partition will correspond to all the values before 20220101, which, in our case, would be empty. Run the ALTER TABLE command, as shown in the following code block, to swap the partition out:

			ALTER TABLE dbo.TripTable SWITCH PARTITION 2 TO dbo.TripTable_20220101 PARTITION 2 WITH (TRUNCATE_TARGET = ON);

			Now, dbo.TripTable will contain 0 rows for partition 2, which corresponds to 20220101.

			Next, let's add a new partition, 20220401, to the table.

			Adding a new partition

			To add our new partition, we need to split the last partition into two partitions. We can use the following SPLIT command to do this:

			ALTER TABLE dbo.TripTable SPLIT RANGE (20220401);

			This will split the last partition into 20220301 and 20220401.

			Note

			The split will not work if the partition contains data. So, we will have to temporarily swap out the last partition to a dummy table, as we did earlier in the Deleting an old partition section. Once the last partition is empty, split that partition using the split command and then add the temporarily swapped-out partition back to the original table.

			Once we have created the new partition for 20220401, we must create a dummy table with the same partition alignment to load the 20220401 data. The following code snippet does this:

			CREATE TABLE dbo.TripTable_new

			WITH

			 (

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = HASH ([tripId]),

			    PARTITION ([tripDate] RANGE RIGHT FOR VALUES

			        (20220101, 20220201, 20220301, 20220401)

			  )

			)

			AS

			SELECT * FROM dbo.TripTable WHERE 1 = 2;

			For the sake of this example, let's add some values to the new partition:

			INSERT INTO dbo.TripTable_new

			VALUES (333, 444, 555, 20220401, "New York", "New Jersey");

			Once we have loaded the partition data into the dummy table, we can switch the partition into our Fact table using the ALTER command, as shown in the following code block. This command will switch the last partition for April (20220401) into the original TripTable:

			ALTER TABLE dbo.TripTable_new SWITCH PARTITION 5 TO dbo.TripTable PARTITION 5 WITH (TRUNCATE_TARGET = ON);

			These ALTER TABLE commands will return almost immediately as they are metadata operations and don't involve copying rows from one partition to another. And that is how we can increase the efficiency of the data load and delete operations. You can refer to the complete example in the GitHub repository of this book.

			Let us next look at accessing data using external tables.

			Building external tables

			External tables are similar to regular tables except that the data is stored in external storage locations such as Azure Data Lake, Azure Blob storage, and HDFS. With external tables, you don't need to copy data into internal tables for processing. They can directly read the data from external sources, which saves on the data transfer cost. In Synapse, both dedicated SQL and serverless SQL support external tables. We have to define the following three constructs to access data via external tables:

			
					EXTERNAL DATA SOURCE

			

			Here is an example of how we can create an external data source named users_iacstoreacct:

			CREATE EXTERNAL DATA SOURCE [Dp203DataSource] 

				WITH ( LOCATION  = 'abfss://path/to/data')

			
					EXTERNAL FILE FORMAT

			

			Here is an example of how to create an external file format named SynapseParquetFormat:

			CREATE EXTERNAL FILE FORMAT [Dp203ParquetFormat] 

				WITH ( FORMAT_TYPE = PARQUET )

			
					EXTERNAL TABLE

			

			We can use the external data source and the external file format to create the external table:

			CREATE EXTERNAL TABLE TestExtTable (

				[tripId] INT,

				[driverId] INT,

				. . .

				[endLocation] VARCHAR (50)

			)

			WITH (

				LOCATION = '/path/to/*.parquet',

				DATA_SOURCE = [Dp203DataSource],

				FILE_FORMAT = [Dp203ParquetFormat]

			)

			You can also easily create external tables from Synapse UI, as shown in the following screenshot:

			
				
					[image: Figure 6.17 – An example of creating an external table from Synapse UI

]
				

			

			Figure 6.17 – An example of creating an external table from Synapse UI

			On the screen that appears, you need to do the following:

			
					Select SQL Pool.

					Enter a name for the database to be created.

					Enter a name for the external table to be created.

			

			
				
					[image: Figure 6.18 – Specifying the details for external table

]
				

			

			Figure 6.18 – Specifying the details for external table

			Once you click on Open script, Synapse will autogenerate the SQL script for creating external tables.

			Summary

			That brings us to the end of this chapter. This was a smaller chapter but it had some very important concepts from the certification's perspective. We started by looking at building SCDs, which was a lengthy but relatively easy process as we mostly had to just drag and drop the components into Synapse pipelines and configure them. Then, we revisited the general rule of thumb for building an efficient folder structure. We also learned how to quickly switch partitions in and out using Synapse SQL. Finally, we learned how easy it is to create external tables in Synapse.

			All the topics that were covered in this chapter should cover the syllabus for DP203 – Implementing the logical data structures. In the next chapter, we will focus on implementing the serving layer.

		

	

			Chapter 7: Implementing the Serving Layer

			I hope you enjoyed learning about the implementation details of the logical data structures in the previous chapter. In this chapter, we will learn about implementing the serving layer, which involves implementing star schemas, techniques to read and write different data formats, sharing data between services such as SQL and Spark, and more. Once you complete this chapter, you should be able to understand the differences between a Synapse dedicated SQL pool versus traditional SQL systems for implementing the Star schema, the various ways of accessing Parquet data using technologies such as Spark and SQL, and the details involved in storing metadata across services. All this knowledge should help you build a practical and maintainable serving layer in a data lake and, of course, clear the certification too.

			We will cover the following topics in this chapter:

			
					Delivering data in a relational star schema

					Implementing a dimensional hierarchy

					Delivering data in Parquet files

					Maintaining metadata

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Synapse workspace

			

			Let's get started.

			Delivering data in a relational star schema

			We had learned about star schema in Chapter 4, Designing the Serving Layer. We will take the same example here and show how to implement a star schema in Synapse SQL and deliver data from it.

			Star schemas have two types of tables, fact tables and dimensional tables. Fact tables are usually much higher in volume than the dimension tables and hence would benefit from using a hash distribution with clustered columnstore indexing. On the other hand, dimension tables are smaller and can benefit from using replicated tables.

			Important Note

			Synapse dedicated SQL pools didn't support foreign key constraints at the time of writing this book. Hence, the responsibility of maintaining data integrity falls on the applications.

			Let's consider the same Imaginary Airport Cabs (IAC) cab rides example for our star schema from Chapter 4, Designing the Serving Layer. We had the following tables in that design:

			
					FactTrips

					DimDriver

					DimCustomer

					DimCab

					DimDate

			

			Let's see how to implement these tables.

			
					In the Synapse screen, create a new SQL pool from the Manage tab, as shown in the following screenshot. Click on the +New symbol and fill in the details to create a new dedicated SQL pool.

			

			
				
					[image: Figure 7.1 – Creating a new dedicated SQL Pool

]
				

			

			Figure 7.1 – Creating a new dedicated SQL Pool

			
					Next, create a new SQL script from the Editor tab by clicking on the + sign, as shown in the next screenshot:

			

			
				
					[image: Figure 7.2 – Creating a new SQL script

]
				

			

			Figure 7.2 – Creating a new SQL script

			
					In the SQL editor, you can enter SQL commands to create tables representing the star schema. Here is an example of how to create a sample fact table, FactTrips:CREATE TABLE dbo.FactTrips
(
    [tripId] INT NOT NULL,
    [driverId] INT NOT NULL,
    [customerId] INT NOT NULL,
    [tripdate] INT,
    [startLocation] VARCHAR(40),
    [endLocation] VARCHAR(40)
 )
 WITH
 (
    CLUSTERED COLUMNSTORE INDEX,
    DISTRIBUTION = HASH ([tripId])
 )


			

			Here is an example of a sample customer dimension table:

			CREATE TABLE dbo.DimCustomer

			(

			    [customerId] INT NOT NULL,

			    [name] VARCHAR(40) NOT NULL,

			    [emailId] VARCHAR(40),

			    . . .

			    [city] VARCHAR(40)

			)

			WITH

			(

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = REPLICATE

			)

			Here is an example of a date dimension table:

			CREATE TABLE dbo.DimDate

			(

			    [dateId] INT NOT NULL,

			    [date] DATETIME NOT NULL,

			    [dayOfWeek] VARCHAR(40),

			    [fiscalQuarter] VARCHAR(40)

			)

			WITH

			(

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = REPLICATE

			)

			
					Now, let's look at how to load data into these tables. You can use the COPY INTO statement to populate the tables. The fact and dimension tables will have the same syntax for loading information:COPY INTO dbo.DimCustomer
FROM 'https://path/to/customer.csv'
WITH (
    FILE_TYPE='CSV',
    FIELDTERMINATOR=',',
    FIELDQUOTE='',
    ROWTERMINATOR='\n',
    ENCODING = 'UTF8',
    FIRSTROW = 2 // To skip the header line
)


					And, finally, query from the star schema tables. Here is a sample query to get the list of all customers whose end location was 'San Jose':SELECT trip.[tripId], customer.[name] FROM 
dbo.FactTrips AS trip
JOIN dbo.DimCustomer AS customer
ON trip.[customerId] = customer.[customerId] 
WHERE trip.[endLocation] = 'San Jose';


			

			As you can see, once we understand the concept of star schemas, creating them is as simple as creating tables in Synapse SQL.

			You can learn more about Synapse SQL and schemas here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-overview.

			Let's next look at implementing a dimensional hierarchy.

			Implementing a dimensional hierarchy

			As we have already explored dimensional hierarchy in Chapter 4, Designing the Serving Layer under the Designing a dimensional hierarchy section we will not be repeating it here. Please have a look at Chapter 4 to refresh your understanding of dimensional hierarchy.

			Let's next look at the techniques available for reading and writing data in Parquet files.

			Delivering data in Parquet files

			In this section, we will learn to deliver data that is present in Parquet files via both Synapse SQL and Spark. We will use the concept of external tables that we learned in the previous chapter to accomplish this.

			Let's consider an example where we have the trips data stored as Parquet files. We will use Synapse SQL serverless pools and Spark to access the data and run some sample queries on it.

			Synapse SQL serverless

			Let's create an external table from within the Synapse SQL query editor that points to the Parquet files on the Azure storage. The following screenshot shows an example:

			
				
					[image: Figure 7.3 – Creating SQL pool external tables

]
				

			

			Figure 7.3 – Creating SQL pool external tables

			Now, let's run a sample query, like how a BI tool would access this data. Let's try to find the number of trips per location from the data loaded in the previous step and view it as a chart:

			
				
					[image: Figure 7.4 – Sample query on Parquet data visualized as a chart

]
				

			

			Figure 7.4 – Sample query on Parquet data visualized as a chart

			You have to select the Chart option in the Results screen to view the charts. Synapse SQL provides several options to configure the charts, as shown on the right-hand side of the previous image.

			As you can see, reading and serving data from Parquet files is as simple as defining an external table and querying it.

			You can learn more about using external tables in Synapse SQL here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-external-tables.

			Now, let's try the same exercise using Spark.

			Synapse Spark

			In a Synapse Spark Notebook, you can read Parquet files using the spark.read.load('path/to/parquet/files', format='Parquet') command. The following screenshot shows an example:

			
				
					[image: Figure 7.5 – Using Spark to query Parquet files

]
				

			

			Figure 7.5 – Using Spark to query Parquet files

			Spark also provides charting options as shown in the previous image.

			Let's next explore how we can accomplish the same using Azure Databricks.

			Azure Databricks

			Azure Databricks' Spark examples are similar to the Synapse Spark examples. In the case of Azure Databricks, you will need to define a service principal for Azure Databricks to talk to Azure Data Lake Storage Gen2.

			You can find detailed information on setting up the service principal here: https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-extract-load-sql-data-warehouse.

			Once you have the session configured, you can use the exact same Spark syntax that we saw in the Synapse Spark use case here too. The following is an example to view the contents of all the Parquet files in the parquet/trips folder:

			
				
					[image: Figure 7.6 – Azure Databricks notebook with the Azure Data Lake Storage Gen2 access example

]
				

			

			Figure 7.6 – Azure Databricks notebook with the Azure Data Lake Storage Gen2 access example

			Here is an example of the same transformation query that we ran earlier in Synapse Spark, in Databricks:

			
				
					[image: Figure 7.7 – Simple Spark query on Parquet data

]
				

			

			Figure 7.7 – Simple Spark query on Parquet data

			Azure Databricks also provides a rich set of charting options that can be used to visualize the data. You can access the charting options by clicking on the Chart icon below the results.

			You can learn more about using Spark and Parquet here: https://spark.apache.org/docs/latest/sql-data-sources-parquet.html.

			I hope you now have an idea of how to serve Parquet data using both SQL and Spark services in Azure. Let's next look at the metadata options available in Azure.

			Maintaining metadata

			As we have seen in Chapter 4, Designing a Partition Strategy, metastores are like data catalogs that contain information about all the tables you have, the table schemas, the relationships among them, where they are stored, and so on. In that chapter, we learned at a high level about how to access the metadata in Synapse and Databricks. Now, let's learn the details of implementing them.

			Metadata using Synapse SQL and Spark pools

			Synapse supports a shared metadata model. The databases and tables that use Parquet or CSV storage formats are automatically shared between the compute pools, such as SQL and Spark.

			Important Note

			Data created from Spark can only be read and queried by SQL pools but cannot be modified at the time of writing this book.

			Let's look at an example of creating a database and a table using Spark and accessing it via SQL:

			
					In the Synapse Spark notebook, create a sample table, as shown in the following screenshot:

			

			
				
					[image: Figure 7.8 – Creating a sample table in Spark

]
				

			

			Figure 7.8 – Creating a sample table in Spark

			
					Now, let's query the contents of the table from the SQL serverless pool.Important Note
This database will be synced asynchronously, so there might be a slight delay before you see the databases and tables in the SQL pool.


					SQL serverless pool is an on-demand service, so all you need to do is just click on the + sign in the Synapse workspace page and select SQL script to create a new SQL editor, as shown in the following screenshot:

			

			
				
					[image: Figure 7.9 – Creating a new SQL script

]
				

			

			Figure 7.9 – Creating a new SQL script

			
					Then, in the Connect to field, select the Built-in pool, as shown in the following screenshot:[image: Figure 7.10 – Connecting to serverless SQL pool

]


			

			 

			Figure 7.10 – Connecting to serverless SQL pool

			
					Now, just run a simple script to query the shared table; in the example, the shared table would be the tripID table:

			

			
				
					[image: Figure 7.11 – Accessing the Spark table in SQL

]
				

			

			Figure 7.11 – Accessing the Spark table in SQL

			As you just noticed, the shared data model of Synapse makes it very easy to share data between SQL and Spark pools. Everything is already taken care of by Synapse and the data is readily made available to us.

			You can learn more about maintaining metadata in Synapse here: https://docs.microsoft.com/en-us/azure/synapse-analytics/metadata/overview.

			Let's next explore how to work with metastores in Azure Databricks.

			Metadata using Azure Databricks

			In order to share data between Spark and other services outside of Synapse, we have to make use of the Hive metastore. Spark uses the Hive metastore to share information with other services. Let's look at an example of sharing data between Azure Databricks Spark and Azure HDInsight Hive. The logic and steps for using an external Hive metastore would be similar for Synapse Spark too. Here are the steps:

			
					We will need a standalone database that can be used by Spark to store the metadata. Let's use Azure SQL for this purpose. Create an Azure SQL database from the Azure portal. Search for Azure SQL from the portal search box and select it. Click on the + Create option. You will see a screen, as shown in the following screenshot:

			

			
				
					[image: Figure 7.12 – Azure SQL plans

]
				

			

			Figure 7.12 – Azure SQL plans

			
					Select the SQL databases box and click the Single database option from the dropdown.

					You can create the database with pre-populated sample data so that we have ready-made data for experimentation. Select the Sample option for the Use existing data field, as shown in the following screenshot:

			

			
				
					[image: Figure 7.13 – Populating the database with sample data

]
				

			

			Figure 7.13 – Populating the database with sample data

			
					Fill up the rest of the tabs and click on Review + create to create the Azure SQL database.

					Retrieve the JDBC connection string from the Connection Strings tab, as shown in the following screenshot, and save it in Notepad. We will need this information later:

			

			
				
					[image: Figure 7.14 – Getting the connection strings for Azure SQL

]
				

			

			Figure 7.14 – Getting the connection strings for Azure SQL

			
					Next, we have to create an HDInsight Hive cluster. By now, you might already know the process to instantiate any Azure service. Just search for HDInsight in the portal search bar and click on it. On the HDInsight portal home page, click on the + Create link to open the create form and fill in the details.

					On the Create HDInsight cluster screen, you can choose either the Hadoop option or the Interactive Query option for cluster type, as both will install Hive. Refer to the next screenshot for the options available:

			

			
				
					[image: Figure 7.15 – Selecting the cluster type for HDInsight clusters

]
				

			

			Figure 7.15 – Selecting the cluster type for HDInsight clusters

			
					Once you have selected the type of cluster, fill up the rest of the fields on the Basics screen.

					In the Storage tab, under the External metadata stores section, provide the Azure SQL database that we created in the earlier steps as SQL database for Hive. The following screenshot shows the location:

			

			
				
					[image: Figure 7.16 – Creating a Hive cluster in HDInsight with Azure SQL as the metastore

]
				

			

			Figure 7.16 – Creating a Hive cluster in HDInsight with Azure SQL as the metastore

			
					Complete the rest of the fields and then click on Review + Create to create the HDInsight cluster.

					Once the cluster is created, go to the Ambari home page from the HDInsight portal by clicking on the Ambari home link, as shown in the following screenshot:

			

			
				
					[image: Figure 7.17 – Link to Ambari home from the HDInsight portal home page

]
				

			

			Figure 7.17 – Link to Ambari home from the HDInsight portal home page

			
					From the Ambari dashboard, click on Hive view 2.0, as shown in the following screenshot:

			

			
				
					[image: Figure 7.18 – Hive view 2.0 from the Ambari dashboard

]
				

			

			Figure 7.18 – Hive view 2.0 from the Ambari dashboard

			
					Now, you should be able to see the Hivesampletable database in the Hive dashboard, as shown in the following screenshot:

			

			
				
					[image: Figure 7.19 – Hive query view of the sample table

]
				

			

			Figure 7.19 – Hive query view of the sample table

			
					Now that we have the HDInsight cluster, we have to next create an Azure Databricks cluster. We have to create a new cluster with the following configurations. Let's see how to enter these configurations in the Spark create screen in the next step:spark.sql.hive.metastore.version 2.1.1 // For HDInsight Interactive 2.1 version
spark.hadoop.javax.jdo.option.ConnectionUserName <Your Azure SQL Database Username> 
spark.hadoop.javax.jdo.option.ConnectionURL <Your Azure SQL Database JDBC connection string> 
spark.hadoop.javax.jdo.option.ConnectionPassword <Your Azure SQL Database Password>
spark.hadoop.javax.jdo.option.ConnectionDriverName com.microsoft.sqlserver.jdbc.SQLServerDriver
spark.sql.hive.metastore.jars <Location where you have copied the Hive Metastore Jars>
datanucleus.autoCreateSchema true 
datanucleus.fixedDatastore false 


			

			Note that you will have to use the JDBC link that you had saved earlier, for the config that says spark.hadoop.javax.jdo.option.ConnectionURL.

			
					You will have to enter the configs in the Spark Config field on the Create Cluster page, as shown in the following screenshot:

			

			
				
					[image: Figure 7.20 – Adding custom configuration while creating the Azure Databricks cluster

]
				

			

			Figure 7.20 – Adding custom configuration while creating the Azure Databricks cluster

			Important Note

			Apart from the config fields, you will also have to download the Hive metastore JAR files and provide them a location where the Azure Databricks clusters can access them. Azure provides step-by-step instructions along with readymade scripts to easily download the JAR files here: https://docs.microsoft.com/en-us/azure/databricks/_static/notebooks/setup-metastore-jars.html.

			
					Once you have created the Spark cluster, you will be able to access the Hive Metastore tables directly from a Spark notebook. In the following screenshot, you can see how the Databricks Spark cluster is able to access the HiveSampletable table that we saw earlier using the Hive query view:

			

			
				
					[image: Figure 7.21 – Spark's able to access data from the Hive external metastore

]
				

			

			Figure 7.21 – Spark's able to access data from the Hive external metastore

			Hurray! Now you know how to access metadata between Spark and Hive clusters using an external Hive metastore.

			You can learn more about Azure Databricks metastores here: https://docs.microsoft.com/en-us/azure/databricks/data/metastores/external-hive-metastore. With that, we have come to the end of this section and the chapter. You should now be familiar with the different ways in which metadata can be shared across the SQL, Spark, and Hive services in Azure.

			Summary

			This was another small but interesting chapter. We started with implementing the star schema, then learned about delivering data in Parquet format, and, finally, looked at how we can share data between the SQL-Spark and Spark-Hive services in Azure. With all this knowledge, you should now be able to design and implement a basic serving layer for a data lake architecture using Azure services. To learn more, please follow the links that I have provided at the end of important topics.

			With this, we have reached the end of the first major section of the DP-203 syllabus, Designing and Implementing Data Storage. This covers about 40–45% of the certification examination. We are getting closer to the halfway mark. Good going!

			In the next section, we will learn about designing and developing data processing systems and, more specifically, about ingesting and transforming data in data lakes.

		

	

			Part 3: Design and Develop Data Processing (25-30%)

			The third part of this book focuses on the next level of the stack, which is the data processing layer.

			This section comprises the following chapters:

			
					Chapter 8, Ingesting and Transforming Data

					Chapter 9, Designing and Developing a Batch Processing Solution

					Chapter 10, Designing and Developing a Stream Processing Solution

					Chapter 11, Managing Batches and Pipelines

			

		

	

			Chapter 8: Ingesting and Transforming Data

			Welcome to the next major section of the book. In this section, we will focus on designing and developing data processing systems.

			In the last chapter, we learned about implementing the serving layer and saw how to share data between services such as Synapse SQL and Spark using metastores. In this chapter, we will focus on data transformation—the process of transforming your data from its raw format to a more useful format that can be used by downstream tools and projects. Once you complete this chapter, you will be able to read data using different file formats and encodings, perform data cleansing, and run transformations using services such as Spark, SQL, and Azure Data Factory (ADF).

			We will cover the following topics in this chapter:

			
					Transforming data by using Apache Spark

					Transforming data by using Transact-SQL (T-SQL)

					Transforming data by using ADF

					Transforming data by using Azure Synapse pipelines

					Transforming data by using Stream Analytics

					Cleansing data

					Splitting data

					Shredding JavaScript Object Notation (JSON)

					Encoding and decoding data

					Configuring error handling for the transformation

					Normalizing and denormalizing values

					Transforming data by using Scala

					Performing exploratory data analysis (EDA)

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Synapse workspace

					An active ADF workspace

			

			Let's get started.

			Transforming data by using Apache Spark 

			Apache Spark supports transformations with three different Application Programming Interfaces (APIs): Resilient Distributed Datasets (RDDs), DataFrames, and Datasets. We will learn about RDDs and DataFrame transformations in this chapter. Datasets are just extensions of DataFrames, with additional features like being type-safe (where the compiler will strictly check for data types) and providing an object-oriented (OO) interface.

			The information in this section applies to all flavors of Spark available on Azure: Synapse Spark, Azure Databricks Spark, and HDInsight Spark.

			What are RDDs?

			RDDs are an immutable fault-tolerant collection of data objects that can be operated on in parallel by Spark. These are the most fundamental data structures that Spark operates on. RDDs support a wide variety of data formats such as JSON, comma-separated values (CSV), Parquet, and so on.

			Creating RDDs

			There are many ways to create an RDD. Here is an easy way using the parallelize() function:

			val cities = Seq("New York", "Austin")

			val rdd=spark.sparkContext.parallelize(cities)

			Once we have created an RDD, we can run different kinds of transformations on them. Let's explore the most common ones.

			RDD transformations

			Here are some of the most commonly used RDD transformations in Spark: 

			
					map()—Applies the function provided as a parameter to all the elements of the source and returns a new RDD. Here is an example to do a word count:val maprdd=rdd.map(word => (word,1))
maprdd.collect.foreach(println)


					flatMap()—Similar to map(), but can apply the function provided to more than one element, as illustrated here:val fmrdd = rdd.flatMap(word => word.split(" "))
fmrdd.collect.foreach(println)


					filter()—Returns a new RDD that satisfies the filter condition, as illustrated here:val emptystrfilterrdd = rdd.filter(_.nonEmpty)
emptystrfilterrdd.collect.foreach(println)


					groupByKey()—Collects identical data into groups and can perform aggregate actions on top of it, as illustrated here:val groupbyrdd = rdd.groupBy(word => word.charAt(0))
groupbyrdd.collect.foreach(println)


					union()—Returns a new RDD that is a union of the two datasets, as illustrated here:val rdd1 = spark.sparkContext.parallelize(List(1, 2, 3))
val rdd2 = spark.sparkContext.parallelize(List(4, 5, 6))
val unionrdd = rdd1.union(rdd2)
unionrdd.collect().foreach(println)


					distinct()—Returns a new dataset that contains only the unique elements from the input dataset, as illustrated here:val distrinctrdd = rdd.distinct()
distrinctrdd.collect.foreach(println)


			

			Spark supports a huge list of transformations. If you would like to view the complete list, please refer to the Apache Spark documentation here: https://spark.apache.org/docs/latest/rdd-programming-guide.html.

			Let's next look at DataFrames.

			What are DataFrames?

			DataFrames are similar to tables in relational databases. They are like RDDs in that they are also immutable, redundant, and distributed, but they represent a higher form of data abstraction. DataFrames contain schemas, columns, and rows, just as in relational tables, and are useful in processing large volumes of data while using relational table-like operations.

			Creating DataFrames

			Let's look at the options available to create DataFrames. They're set out here: 

			
					Converting an RDD to a DataFrame, as follows:val df = rdd.toDF()


					Creating a DataFrame from a CSV file, as follows:csvDf = spark.read.csv("/path/to/file.csv")


					Creating a DataFrame from a JSON file, as follows:jsonDf = spark.read.json("/path/to/file.json")


					Creating a DataFrame with a schema, as follows:data = [("Adam","Smith","Male","CA"),
        ("Brenda","Jones","Female","FL")]
schema = ["firstname","lastname","gender","state"]
df = spark.createDataFrame(data = data, schema = schema)


			

			Next, let's look at DataFrame transformations.

			DataFrame transformations

			For data analytics, DataFrame transformations are more relevant than RDD transformations as they deal with table-like abstractions, which makes it easier for data analysts.

			Note

			A DataFrame transformation is eventually converted into an RDD transformation within Spark:

			Let's look at some important DataFrame transformations. Let's assume that df, df1, and df2 are valid DataFrames. 

			
					select()—To select data from a subset of columns, as follows:df.select("firstname","lastname").show()


					filter()—To filter rows based on condition, as follows:df.filter('location === "Florida").show()


					distinct()—To select unique rows from the input, as follows:df.distinct().show()


					orderBy()—To sort rows by a particular column, as follows:df.orderBy("location").show()


					join()—To join two tables based on the provided conditions, as follows:df1.join(df2, df1("id") === df2("id"),"inner")


					groupBy() and avg()—Can be used in combination to aggregate values that are grouped together on some column values, such as location in the following case:df.groupBy("location").avg("salary").show()


			

			The preceding examples should give you a good sense of the types of transformations available in Spark. You can learn more about DataFrames here: https://spark.apache.org/docs/latest/sql-programming-guide.html.

			Now, let's see the transformations available in T-SQL.

			Transforming data by using T-SQL

			T-SQL is a procedural language that is used by both dedicated and serverless SQL pools in Synapse. Similar to the transformations that we have seen in Spark, T-SQL also provides a rich set of transformations. Let's look at some of the important ones here: 

			
					SELECT—To select data from a subset of columns, as follows:[firstName], [lastName] from dbo.Driver WHERE [city] = 'New York';


					ORDER BY—To sort rows by a particular column, as follows:SELECT [firstName], [lastName] from dbo.Driver ORDER BY [firstName];


					DISTINCT—To select unique rows from the input, as follows:SELECT DISTINCT [firstName], [lastName] from dbo.Driver;


					GROUP BY—To group rows by columns so that aggregate operations can be performed on them, as follows:SELECT [gender], AVG([salary]) AS 'AVG salary' from dbo.Driver GROUP BY [gender];


					UNION—To combine rows from two tables containing the same schema, as follows:SELECT [firstName], [lastName] FROM
dbo.Driver
WHERE [city] = 'New York'
UNION 
select [firstName], [lastName] FROM
dbo.TempDriver
WHERE [city] = 'New York';


					JOIN—To join two tables based on the provided conditions, as follows:SELECT driver.[firstName], driver.[lastName], feedback.[rating], Feedback.[comment] FROM
dbo.Driver AS driver
INNER JOIN dbo.Feedback AS feedback
ON driver.[driverId] = feedback.[driverId]
WHERE driver.[city] = 'New York';


					VIEW—Apart from the standard transformations, T-SQL also provides a VIEW transformation, which can help in reporting and ad hoc querying. We'll now look at a simple example of how to create and use a VIEW transformation, as follows:CREATE VIEW CompleteDriverView 
AS
SELECT driver.[firstName], driver.[lastName], feedback.[rating], feedback.[comment] FROM
dbo.Driver AS driver
INNER JOIN dbo.Feedback AS feedback
ON driver.[driverId] = feedback.[driverId]
WHERE driver.[city] = 'New York';


			

			Here is how you can use a VIEW transformation:

			SELECT DISTINCT * from CompleteDriverView;

			That covers some of the important transformations in T-SQL. For a more comprehensive list, please refer to the T-SQL documentation available here: https://docs.microsoft.com/en-us/sql/t-sql/language-reference.

			Let's next learn about the transformation options available in ADF.

			Transforming data by using ADF 

			We have already seen a few examples of ADF in the previous chapters. Just to refresh, search for Azure Data Factory from the Azure portal and create a new Azure data factory. Once created, you can launch the Azure data factory, as shown in the following screenshot:

			
				
					[image: Figure 8.1 – Launching the Azure data factory

]
				

			

			Figure 8.1 – Launching the Azure data factory

			This will open up the ADF workspace where you can build your pipelines, as shown in the following screenshot:

			
				
					[image: Figure 8.2 – ADF Studio

]
				

			

			Figure 8.2 – ADF Studio

			All ADF transformations happen on datasets. So, before we can do any transformation, we will have to create datasets of the source data. You can click on the + symbol to create a new dataset, as shown in the following screenshot:

			
				
					[image: Figure 8.3 – Creating a new dataset in ADF

]
				

			

			Figure 8.3 – Creating a new dataset in ADF

			ADF provides a wide range of Azure and non-Azure data sources, as shown in the following screenshot.

			
				
					[image: Figure 8.4 – Dataset source options in ADF

]
				

			

			Figure 8.4 – Dataset source options in ADF

			You can select the appropriate data source, click on Continue, and add the location of the source data files or folders that need to be transformed. This will create source datasets.

			ADF provides convenient code-free transformation options called mapping data flows. Mapping data flows provide three types of transformations, as outlined here:

			
					Schema transformations—Such as adding new columns.

					Row transformations—Such as updating rows, creating views, and so on.

					Multi-input/output (I/O) transformations—Such as splitting rows, merging rows, and so on.

			

			Let's look in detail at some of the important options available under these three transformation types.

			Schema transformations

			Schema transformations refer to the actions that result in changing the schema of the table or DataFrames. Let's look at some commonly used schema transformations, as follows:

			
					Aggregate—To perform Min, Max, Sum, Count, and so on the incoming data. Here is a screenshot of how to find the average of the Salary column:

			

			
				
					[image: Figure 8.5 – Aggregate transformation in ADF

]
				

			

			Figure 8.5 – Aggregate transformation in ADF

			Note

			Aggregate transforms will only output the columns used in the aggregation. So, perform a self-join with the source data after this stage if you want the other columns to be present for further stages.

			
					Derived column—Use this transformation to add any new columns to existing data. In the following screenshot, we are adding a simple isActive column to the Driver table extracted from a CSV file:

			

			
				
					[image: Figure 8.6 – Derived column transformation in ADF

]
				

			

			Figure 8.6 – Derived column transformation in ADF

			
					Select—You can use this transformation to select only the required columns from the input or to change the name of the columns before storing them in a data store, as demonstrated in the following screenshot. You can click on the trash can icon to delete the columns that are not needed:

			

			
				
					[image: Figure 8.7 – Select transformation in ADF

]
				

			

			Figure 8.7 – Select transformation in ADF

			Next, let's look at some row transformations.

			Row transformations

			These are transformations that apply to the rows of the table, and are outlined here:

			
					Alter row—Used to insert, delete, update, and upsert (insert or update) rows into a database or data warehouse. In the following screenshot, we insert the rows into a database only if the DriverId value is not NULL:

			

			
				
					[image: Figure 8.8 – Alter row transformation

]
				

			

			Figure 8.8 – Alter row transformation

			Note

			Alter row works only on databases, Cosmos DB, or REpresentational State Transfer (REST) endpoint sinks.

			
					Filter—To filter rows based on conditions. In the following screenshot, we are filtering the rows where the City value is New York:

			

			
				
					[image: Figure 8.9 – Filter transformation in ADF

]
				

			

			Figure 8.9 – Filter transformation in ADF

			
					Sort—To sort rows based on any column or group of columns, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.10 – Sort transformation

]
				

			

			Figure 8.10 – Sort transformation

			Next, let's look at multi-I/O transformations.

			Multi-I/O transformations

			These are transformations that operate on more than one input or, conversely, split the input into more than one output. They are outlined here:

			
					Conditional split—This can be used to split the input into two output streams based on conditions. In the following screenshot, we split the input based on Rating:

			

			
				
					[image: Figure 8.11 – Conditional split transformation in ADF

]
				

			

			Figure 8.11 – Conditional split transformation in ADF

			
					Join—This is used to join two streams based on one or more join conditions. The following screenshot shows how to merge the DriverCSV and RatingsCSV datasets by using the DriverId value:

			

			
				
					[image: Figure 8.12 – Join transformation in ADF

]
				

			

			Figure 8.12 – Join transformation in ADF

			
					Union—This merges two input datasets with the same schema into one, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.13 – Union example in ADF

]
				

			

			Figure 8.13 – Union example in ADF

			For a complete list of transformations, you can refer to the Azure ADF documentation available here: https://docs.microsoft.com/en-us/azure/data-factory/data-flow-transformation-overview.

			ADF provides convenient templates that can accomplish a lot of the standard pipeline activities. Let's look at these next.

			ADF templates

			ADF provides standard templates that you can use for various data copy and transformation activities. You can explore the templates under the Pipeline templates link on the ADF Studio home page, as shown in the following screenshot:

			
				
					[image: Figure 8.14 – Pipeline templates link

]
				

			

			Figure 8.14 – Pipeline templates link

			Here is a sample of the template gallery:

			
				
					[image: Figure 8.15 – ADF template gallery sample

]
				

			

			Figure 8.15 – ADF template gallery sample

			Please use the templates wherever possible instead of reinventing the procedures, as this will save you a lot of time and prevent common pitfalls.

			Let's next look at transformations using Synapse pipelines.

			Transforming data by using Azure Synapse pipelines

			Azure Synapse pipelines is just ADF implemented inside Azure Synapse Analytics, so the transformation examples that we saw in the ADF section apply here too. The only difference is the launching page. You can launch Synapse pipelines from the Synapse Analytics tab, as shown in the following screenshot:

			
				
					[image: Figure 8.16 – Launching Synapse pipelines

]
				

			

			Figure 8.16 – Launching Synapse pipelines

			Hope you got a grasp of the transformations available in ADF and Synapse pipelines. Let's next look at the transformation options available in Stream Analytics.

			Transforming data by using Stream Analytics

			Stream Analytics setup, concepts, and other details will be covered in Chapter 10, Designing and Developing a Stream Processing Solution. Since we need streaming background before we can talk about the transformations, we will cover Stream Analytics transformations as part of Chapter 10, Designing and Developing a Stream Processing Solution.

			Let us next look at the concept of Cleansing data.

			Cleansing data

			Cleansing data is an important activity in any data pipeline. As data flows in from various sources, there are chances that the data won't adhere to the schemas and there might be missing values, non-standard entries, duplicates, and so on. During the cleansing phase, we try to correct such anomalies. Let's look at a few common data cleansing techniques.

			Handling missing/null values

			We can handle missing or Null values in multiple ways. We can choose to filter out such rows, substitute missing values with default values, or substitute them with some meaningful values such as mean, median, average, and so on. Let's look at an example of how we can replace missing values with some default string such as 'NA'.

			Substituting with default values

			Substituting with default values can be achieved using the Derived columns transformation, as shown in the following screenshot:

			 

			
				
					[image: Figure 8.17 – Substituting with default values

]
				

			

			Figure 8.17 – Substituting with default values

			Let's next look at filtering out null values.

			Filtering out null values

			You can filter out null values using the Alter row transformation, as we have already seen in Figure 8.8.

			Let's next look at how to trim input values.

			Trimming inputs

			Values with trailing whitespace are a common problem. You can easily trim such values using the trim() method from within a Derived column transformation. Here is an example of this:

			 

			
				
					[image: Figure 8.18 – Trimming whitespace

]
				

			

			Figure 8.18 – Trimming whitespace

			Let's next look at standardizing input values.

			Standardizing values

			Different input sources might use different conventions for the data. For example, say one of the input sources uses the $ symbol to represent the dollar value and another input stream uses USD, we might want to standardize the inputs before sending them downstream for further processing. In the following screenshot, we can see how to replace the $ symbol in the Salary column with USD. You just have to use the replace({ Salary}, '$', 'USD') script in the Expression field:

			 

			
				
					[image: Figure 8.19 – Replacing values using the Derived column

]
				

			

			Figure 8.19 – Replacing values using the Derived column

			Let's next see how to handle outlier values.

			Handling outliers

			If the values of some of the fields look abnormal, you could replace them with averages or median values. Let's see an example of how to do this, as follows:

			 

			
				
					[image: Figure 8.20 – Using the Derived column to substitute values

]
				

			

			Figure 8.20 – Using the Derived column to substitute values

			In the preceding screenshot, in the Expression field, we are substituting any value > 5000 with the average salary. 

			Note

			You can use the Aggregate transformation to find the average, median, min, max, and other mathematical grouping functions.

			Let's next look at how to remove duplicates.

			Removing duplicates/deduping

			You can remove duplicate rows using the Aggregate transformation. Here is an example of this:

			
				
					[image: Figure 8.21 – Deduping using Aggregate transformation

]
				

			

			Figure 8.21 – Deduping using Aggregate transformation

			Aggregates by default emit only the column that is operated upon. In this case, since I've grouped it on DriverId, so it would just emit the DriverId column. In order to overcome this, under the Column field, for the Each column that matches option, I've specified name != DriverId so that all the other columns also show up in the output.

			Note

			You can accomplish any of this cleansing and data preparation work using the Spark or SQL transformations that we discussed earlier in the chapter. Those would work perfectly fine too.

			We have now covered the details of the most commonly used cleansing operations. With the variety of transformations available in ADF, Spark, and SQL, you can get creative on how to accomplish your tasks in an efficient manner. Let's next look at how to split data in data pipelines.

			Splitting data

			ADF provides multiple ways to split data in a pipeline. The important ones are Conditional Split and cloning (New branch). While Conditional Split is used to split data based on certain conditions, the New branch option is used to just copy the entire dataset for a new execution flow. We have already seen an example of Conditional Split in Figure 8.11. Let's see how we can create a new branch in the data pipeline. 

			In order to create a new branch, just click on the + icon next to any data source artifact (such as the DriverCSV11 block shown in the following screenshot). From there, you can choose the New branch option:

			
				
					[image: Figure 8.22 – New branch option in ADF

]
				

			

			Figure 8.22 – New branch option in ADF

			Apart from these two options, ADF also provides the ability to split the input files into multiple sub-files using partitions. Let's see how to accomplish that next.

			File splits

			In order to use file splits, create a new Sink artifact, and in the Optimize tab, just specify the number of partitions required. The following screenshot shows how this can be done:

			
				
					[image: Figure 8.23 – Splitting files using ADF

]
				

			

			Figure 8.23 – Splitting files using ADF

			Now that we know how to split the data for processing, let's look next at how to extract data from JSON files.

			Shredding JSON

			Shredding refers to the process of extracting data from JSON files into tables. Spark, Synapse SQL pools, and ADF provide native support to extract data from JSON. Let's look at examples for each of the services.

			Extracting values from JSON using Spark

			Spark can directly read JSON files and extract the schema from them. Here is a simple code snippet that can accomplish the JSON read:

			val dfJSON = spark.read.json("abfss://path/to/json/*.json")

			dfJSON.printSchema()

			dfJSON.show(false)

			Here is how the output looks:

			
				
					[image: Figure 8.24 – Output of JSON operation

]
				

			

			Figure 8.24 – Output of JSON operation

			You can also manually specify the schema, as shown in the following example:

			val driverSchema = new StructType()

			 .add("firstname", StringType)

			 .add("middlename", StringType)

			 . . .

			 .add("salary",IntegerType)

			val dfJSON = spark.read.schema(driverSchema).json("abfss://path/to/json/*.json")

			Once you have the data in the DataFrame, you can use any of the transformations available in Spark on it to extract and modify data.

			Next, let's look at how to extract values from JSON using SQL.

			Extracting values from JSON using SQL

			T-SQL provides the OPENROWSET function to query remote data stores. We can use this function to bulk load data into dedicated or serverless SQL instances. Here is an example of how we can load and parse JSON files from remote storage using serverless SQL:

			SELECT     

			    JSON_VALUE(doc, '$.firstname') AS firstname,

			    JSON_VALUE(doc, '$.lastname') AS lastname,

			    CAST(JSON_VALUE(doc, '$.id') AS INT) as driverid,

			    CAST(JSON_VALUE(doc, '$.salary') AS INT) as salary

			FROM openrowset(

			        BULK 'abfss://path/to/json/*.json',

			        FORMAT = 'csv',

			        FIELDTERMINATOR ='0x0b',

			        FIELDQUOTE = '0x0b'

			    ) WITH (doc nvarchar(max)) AS ROWS

			GO

			The results for the preceding query would look something like this:

			
				
					[image: Figure 8.25 – Sample output of parsing JSON using OPENROWSET

]
				

			

			Figure 8.25 – Sample output of parsing JSON using OPENROWSET

			Note

			You need to specify the FORMAT value as CSV for JSON, as highlighted in the previous code snippet.

			Extracting values from JSON using ADF

			ADF provides Flatten transformation to convert hierarchical data structures such as JSON into flat structures such as tables. There is another similar denormalization transformation called Pivot, which you will learn about later in this chapter.

			Let's assume that you have a source dataset with the following JSON:

			{

			  "firstname": "Alice",

			  "middlename": "",

			  "lastname": "Hood",

			  "id": "100",

			  "locations": [{"city": "San Francisco","state": "CA"},

			    {"city": "San Jose","state": "CA"},

			    {"city": "Miami", "state": "FL"}

			  ],

			  "gender": "Female"

			}

			Select Flatten transformation from ADF and specify the column mapping as shown in the following figure:

			
				
					[image: Figure 8.26 – Flatten transformation in ADF

]
				

			

			Figure 8.26 – Flatten transformation in ADF

			For complex structures such as arrays within JSON, you can use Unroll by to split them into multiple rows. In our example, you can see that the Location field, which was an array, has been denormalized into separate lines in the Input columns section. 

			You can learn more about Flatten transformation here: https://docs.microsoft.com/en-us/azure/data-factory/data-flow-flatten.

			Let's next look at how to encode and decode data.

			Encoding and decoding data

			In this section, we will see how to take care of encoding and decoding values such as American Standard Code for Information Interchange (ASCII), Unicode Transformation Format 8 (UTF-8), UTF-16, and so on while reading or writing data from different sources. We will see examples using Spark, SQL, and ADF here again.

			Encoding and decoding using SQL

			In Synapse SQL, collation defines the encoding type, sorting type, and so on in SQL strings. Collation can be set at both the database and table level. At the database level, you can set the collation, as shown here: 

			CREATE DATABASE TripsDB COLLATE Latin1_General_100_BIN2_UTF8;

			At the table level, you can set it as shown here: 

			CREATE EXTERNAL TABLE FactTrips (

			    [tripId] VARCHAR (40) COLLATE Latin1_General_100_BIN2_UTF8,

			    . . . 

			)

			Once you define the right collation, Synapse SQL takes care of storing the data in the right format and using the right set of encoding for further operations on that dataset.

			Let's next look at how to accomplish coding/decoding in Spark.

			Encoding and decoding using Spark

			Spark supports methods called encode and decode, which can be used to accomplish conversion. The following Spark SQL example shows a simple encode and decode operation. We convert the data to hexadecimal (hex) format to display the results in a compact and readable format, but you can also directly use the encode and decode methods without the hex() function:

			>SELECT hex(encode('Azure', 'UTF-16'));

			FEFF0041007A007500720065

			>SELECT decode(X'FEFF0041007A007500720065', 'UTF-16')

			Azure

			The encode and decode methods are also available in the Python and Scala versions of Spark.

			Encoding and decoding using ADF 

			ADF provides the ability to specify the right encoding in the dataset artifacts. If you click on the Connection tab, you can see the Encoding field, as shown in the following screenshot:

			
				
					[image: Figure 8.27 – Encoding function in ADF source datasets

]
				

			

			Figure 8.27 – Encoding function in ADF source datasets

			Apart from the dataset encoding option, ADF also provides functions to encode and decode Uniform Resource Identifiers (URIs), Base64, and so on using its conversion commands. I've shared a few conversion commands from the ADF documentation, as follows:

			
				
					[image: Figure 8.28 – Table of encoding/decoding functions available in ADF

]
				

			

			Figure 8.28 – Table of encoding/decoding functions available in ADF

			You can find a detailed list of conversion functions in ADF here: https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions#conversion-functions.

			Let's next look at how to configure error handling in ADF transformations.

			Configuring error handling for the transformation

			In all our examples of ADF pipelines till now, we have seen only success cases. ADF also provides a separate flow to handle errors and failures. In fact, ADF supports four different flows, as shown in the following screenshot:

			
				
					[image: Figure 8.29 – ADF activity flows

]
				

			

			Figure 8.29 – ADF activity flows

			In case of any errors in any step of the pipeline, we can build an error-handling branch that can be used to either fix the errors or store them for future actions. The following screenshot shows one such pipeline. You will have to connect the orange line to the error-handling activity:

			
				
					[image: Figure 8.30 – Creating an error-handling pipeline

]
				

			

			Figure 8.30 – Creating an error-handling pipeline

			Select the Execute Pipeline activity and link the Failure flow (the orange line) from any of the other activities to it. This new Execute Pipeline activity could be a full-fledged pipeline in itself, as with the transformation pipelines that we saw earlier in the chapter, or it could be a simple standalone activity to just record the error logs. It can also be configured to insert the error details into a database so that we can analyze the errors later using the familiar SQL scripts.

			ADF Sink also provides options to automatically write error lines to an external data store such as a blob store. This is another convenient option that helps analyze errors asynchronously. It can be configured using the Error row handling settings option under the Settings tab of the Sink activity, as shown in the following image.

			
				
					[image: Figure 8.31 – Redirecting error lines to blob storage

]
				

			

			Figure 8.31 – Redirecting error lines to blob storage

			Let's next look at the Pivot and Unpivot features, which are used to normalize and denormalize tables.

			Normalizing and denormalizing values

			We have already seen the ADF Flatten activity, which helps to denormalize data. There are two more such transformations to help normalize and denormalize datasets—Pivot and Unpivot. Let's look at them in detail.

			Denormalizing values using Pivot

			Let's assume that you have a table with a normalized column to store City values, but for reporting purposes, you want to have one column per city in your tables. In such a case, you can use the Pivot function to denormalize the table. The Pivot function takes the unique row values and converts them into table columns. Here is an example of how to pivot the tables:

			
					Let's consider the following sample table:

			

			
				
					[image: Figure 8.32 – Sample table before pivoting

]
				

			

			Figure 8.32 – Sample table before pivoting

			
					Select the Pivot activity from the ADF Data Flow tile, and in the Group by tab, specify Gender, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.33 – Group by settings for pivot operation

]
				

			

			Figure 8.33 – Group by settings for pivot operation

			
					In the Pivot key tab, specify City as the pivot key, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.34 – Pivot key tab of the Pivot function

]
				

			

			Figure 8.34 – Pivot key tab of the Pivot function

			
					And finally, specify any aggregation that you need, along with the prefix to be used for the column names, as shown in the following screenshot:

			

			
				
					[image: Figure 8.35 – Specifying the column name pattern and aggregation for the Pivot function

]
				

			

			Figure 8.35 – Specifying the column name pattern and aggregation for the Pivot function

			
					After the pivot operation, the table would look like this:

			

			
				
					[image: Figure 8.36 – Post-Pivot table

]
				

			

			Figure 8.36 – Post-Pivot table

			You can see that the rows of the table have been converted to columns here. Next, let's look at the Unpivot operation.

			Normalizing values using Unpivot

			Unpivot is the reverse of Pivot. This can be used to normalize the data—for example, if we have a column each for multiple cities, then we can unpivot them into a single column called City. Follow these next steps:

			
					For this example, specify Gender under the Ungroup by column, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.37 – Ungroup By tab for Unpivot operation

]
				

			

			Figure 8.37 – Ungroup By tab for Unpivot operation

			
					Add a new name and type for the unpivoted column under the Unpivot key tab, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.38 – Specifying Unpivot key for the Unpivot operation

]
				

			

			Figure 8.38 – Specifying Unpivot key for the Unpivot operation

			
					In the Unpivoted columns tab, you can specify aggregate operations, as illustrated in the following screenshot:

			

			
				
					[image: Figure 8.39 – Unpivoted columns tab of Unpivot operation

]
				

			

			Figure 8.39 – Unpivoted columns tab of Unpivot operation

			
					After the Unpivot operation, the output table will look like this:

			

			
				
					[image: Figure 8.40 – Unpivoted table

]
				

			

			Figure 8.40 – Unpivoted table

			Now that you have learned how to denormalize and normalize using the Pivot and Unpivot operations, let's next look at Scala transformations.

			Transforming data by using Scala

			All the Spark transformation examples that we saw in the initial sections of this chapter were in Scala, so you already know how to transform data using Scala. Since learning Scala is not in the scope of this book, we will not go deeper into the language aspects of Scala. If you are interested in learning Scala, then you can find some good resources here: https://www.scala-lang.org/.

			Performing Exploratory Data Analysis (EDA)

			Data exploration is much easier from inside Synapse Studio as it provides easy one-click options to look into various formats of data. Let's look at some of the options available for data exploration using Spark, SQL, and ADF/Synapse pipelines.

			Data exploration using Spark

			From within Synapse Studio, you can just right-click on the data file and select Load to DataFrame, as shown in the following screenshot:

			
				
					[image: Figure 8.41 – Launching a DataFrame from the Synapse data file

]
				

			

			Figure 8.41 – Launching a DataFrame from the Synapse data file

			Once you click on Load to DataFrame, Synapse creates a new notebook, as shown in the following screenshot. After that, all you have to do is just click on the Run icon (the little triangle symbol) to see the contents of the file, which are displayed in the following screenshot:

			
				
					[image: Figure 8.42 – Exploration using Spark Load to DataFrame

]
				

			

			Figure 8.42 – Exploration using Spark Load to DataFrame

			This is one easy way to explore the contents of a file. Let's next look at how to do the same via SQL.

			Data exploration using SQL

			Synapse SQL also provides similar options to explore data. You can select the file, click on New SQL script, and then choose Select TOP 100 rows, as shown in the following screenshot:

			
				
					[image: Figure 8.43 – Launching a SQL script to explore data from the Synapse data file

]
				

			

			Figure 8.43 – Launching a SQL script to explore data from the Synapse data file

			Once you click the Select TOP 100 rows option, Synapse opens a new SQL script, as shown in the following screenshot. Now, just click Run to get the top 100 rows:

			
				
					[image: Figure 8.44 – Sample of the SQL script that Synapse auto launches to help us explore data

]
				

			

			Figure 8.44 – Sample of the SQL script that Synapse auto launches to help us explore data

			Next, let's look at how to accomplish this in ADF.

			Data exploration using ADF 

			ADF provides a Data preview tab that works when we have the Data flow debug setting turned on. Once we have the debug turned on, a small Azure Databricks cluster (called the ADF Integration Runtime) runs behind the scenes and fetches real data so that we can quickly explore and fine-tune our transformations and pipelines. An example is shown in the following screenshot:

			
				
					[image: Figure 8.45 – Data exploration using the ADF Data preview tab

]
				

			

			Figure 8.45 – Data exploration using the ADF Data preview tab

			As you can see, Synapse and ADF make it very easy to explore data without having to leave the studio.

			Summary

			With that, we have come to the end of this interesting chapter. There were lots of examples and screenshots to help you understand the concepts. It might be overwhelming at times, but the easiest way to follow is to open a live Spark, SQL, or ADF session and try to execute the examples in parallel. 

			We covered a lot of details in this chapter, such as performing transformations in Spark, SQL, and ADF; data cleansing techniques; reading and parsing JSON data; encoding and decoding; error handling during transformations; normalizing and denormalizing datasets; and, finally, a bunch of data exploration techniques. This is one of the important chapters in the syllabus. You should now be able to comfortably build data pipelines with transformations involving Spark, SQL, and ADF. Hope you had fun reading this chapter. We will explore designing and developing a batch processing solution in the next chapter.

		

	

			Chapter 9: Designing and Developing a Batch Processing Solution

			Welcome to the next chapter in the data transformation series. If you have come this far, then you are really serious about the certification. Good job! You have already crossed the halfway mark, with only a few more chapters to go.

			In the previous chapter, we learned about a lot of technologies, such as Spark, Azure Data Factory (ADF), and Synapse SQL. We will continue the streak here and learn about a few more batch processing related technologies. We will learn how to build end-to-end batch pipelines, how to use Spark Notebooks in data pipelines, how to use technologies like PolyBase to speed up data copy, and more. We will also learn techniques to handle late-arriving data, scaling clusters, debugging pipeline issues, and handling security and compliance of pipelines. After completing this chapter, you should be able to design and implement ADF-based end-to-end batch pipelines using technologies such as Synapse SQL, Azure Databricks Spark, PolyBase, and Azure Batch in the ADF pipelines.

			This chapter is going to be slightly lengthier as we need to cover a lot of important concepts. I've taken the liberty of rearranging the syllabus topics for this chapter by grouping the related ones together. This will help in creating a better flow for the chapter. We will be covering the following topics:

			
					Designing a batch processing solution

					Developing batch processing solutions using Data Factory, Data Lake, Spark, Azure Synapse Pipelines, PolyBase, and Azure Databricks

					Creating data pipelines

					Integrating Jupyter/Python notebooks into a data pipeline

					Designing and implementing incremental data loads

					Designing and developing slowly changing dimensions

					Handling duplicate data

					Handling missing data

					Handling late-arriving data

					Upserting data

					Regressing to a previous state

					Introducing Azure Batch

					Configuring the batch size

					Scaling resources

					Configuring batch retention

					Designing and configuring exception handling

					Designing and creating tests for data pipelines

					Debugging Spark jobs using the Spark UI

					Handling security and compliance requirements

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Synapse workspace

					An active Azure Data Factory workspace

			

			Let's get started!

			Designing a batch processing solution

			In Chapter 2, Designing a Data Storage Structure, we learned about the data lake architecture. I've presented the diagram here again for convenience. In the following diagram, there are two branches, one for batch processing and the other for real-time processing. The part highlighted in green is the batch processing solution for a data lake. Batch processing usually deals with larger amounts of data and takes more time to process compared to stream processing.

			
				
					[image: Figure 9.1 – Batch processing architecture

]
				

			

			Figure 9.1 – Batch processing architecture

			A batch processing solution typically consists of five major components:

			
					Storage systems such as Azure Blob storage, ADLS Gen2, HDFS, or similar

					Transformation/batch processing systems such as Spark, SQL, or Hive (via Azure HDInsight)

					Analytical data stores such as Synapse Dedicated SQL pool, Cosmos DB, and HBase (via Azure HDInsight)

					Orchestration systems such as ADF and Oozie (via Azure HDInsight)

					Business Intelligence (BI) reporting systems such as Power BI

			

			We have already explored many of these technologies independently in the previous chapters. In the upcoming sections, we will see how to link them up to create a pipeline for a batch processing system.

			But before we get into the details, I want to introduce you to another technology with the same name – Azure Batch. Azure Batch is a general-purpose batch processing system that can be used to run High-Performance Computing (HPC). Azure Batch takes care of running your applications in parallel on multiple Virtual Machines (VMs) or containers. Azure Batch is an independent service in Azure whereas the batch pipeline we are discussing is a collection of services put together as a pipeline to derive insights from data. We will explore more about Azure Batch later in this chapter.

			Let's now look at how to build a batch processing system using ADF, Spark, Synapse, PolyBase, and Azure Databricks.

			Developing batch processing solutions by using Data Factory, Data Lake, Spark, Azure Synapse Pipelines, PolyBase, and Azure Databricks

			Let's try to build an end-to-end batch pipeline using all the technologies listed in the topic header. We will use our Imaginary Airport Cab (IAC) example from the previous chapters to create a sample requirement for our batch processing pipeline. Let's assume that we are continuously getting trip data from different regions (zip codes), which is stored in Azure Blob storage, and the trip fares are stored in an Azure SQL Server. We have a requirement to merge these two datasets and generate daily revenue reports for each region. 

			In order to take care of this requirement, we can build a pipeline as shown in the following diagram:

			
				
					[image: Figure 9.2 – High-level architecture of the batch use case

]
				

			

			Figure 9.2 – High-level architecture of the batch use case

			The preceding pipeline, when translated into an ADF pipeline, would look like the following figure:

			
				
					[image: Figure 9.3 – Sample data pipeline

]
				

			

			Figure 9.3 – Sample data pipeline

			As you can see, the pipeline has four stages: 

			
					Data ingestion: The first two stages, FetchTripsFrmBlob and FetchFaresFrmSQL get the data into the data lake.

					Data cleansing: The DataCleansing stage in the diagram cleans up the data.

					Transformation: The Spark Notebook Transform stage in the diagram transforms the data.

					Loading into an analytical database: The PolyBaseCopySQLDW stage to copies the data into a Synapse SQL pool.

			

			The last stage would be BI tools reading from the analytical database and generating reports (which is not shown in the diagram as that is not an ADF activity).

			Before we start looking into each of these stages, let's define what our storage is going to be.

			Storage

			Let's consider ADLS Gen2 as our data lake storage. We can create the following folder structure to handle our batch pipeline:

			
					The raw trips data can be stored here:iac/raw/trips/2022/01/01


					The cleaned-up data can be copied over to the transform/in folder:iac/transform/in/2022/01/01


					The output of the transformed data can move into the transform/out folder:iac/transform/out/2022/01/01


					Finally, we can import the data from transform/out into Synapse SQL Dedicated pool using PolyBase.

			

			Note that tools such as ADF and PolyBase also provide the ability to directly move data between Spark and Synapse SQL Dedicated pool. You can choose this direct approach instead of storing the intermediate data in the data lake if that works better for you in terms of performance and cost. But in most data lakes, more than one tool might access the intermediate data from the data lake and it will be useful to keep historical datasets for future analysis. Hence it might make sense to keep a copy in the data lake also.

			Now let's look into each of the batch pipeline stages in detail.

			Data ingestion

			This is the process of getting all the raw data into the data lake. Data from various sources lands in the raw zone of the data lake. Based on where the data is coming from, such as on-premise systems, other cloud systems, and so on, we could use different ingestion tools. Let's look at some of the options available in Azure:

			
					Azure Data Factory – You are already familiar with this technology. It provides data ingestion support from hundreds of data sources, and even from other clouds such as AWS, GCP, Oracle, and so on. We will be using this again to build our pipeline as recommended in the syllabus.

					Azure Copy (AzCopy) – This is a command-line tool that can be used to copy data over the internet and is ideally suited for smaller data sizes (preferably in the 10–15 TB range). You can learn more about AzCopy here: https://docs.microsoft.com/en-us/azure/storage/common/storage-use-azcopy-v10.

					Azure ExpressRoute – If you need a secure way to transfer data into Azure, then use ExpressRoute. It routes your data through dedicated private connections to Azure instead of the public internet. This is also the preferred option if you want to have a dedicated pipeline with a faster data transfer speed. You can learn more about Azure ExpressRoute here: https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction.

			

			Let's consider an ingestion example using ADF to read from the Blob store:

			
					In order to first connect to the Blob store, you will have to create a linked service in ADF. You can create one from the Manage tab of ADF as shown in the following screenshot.

			

			
				
					[image: Figure 9.4 – Configuring a linked service in ADF

]
				

			

			Figure 9.4 – Configuring a linked service in ADF

			
					Click on the + New symbol and choose Azure Blob storage from the list. You will get a page as shown in the following screenshot. Once you fill it up and create the linked service, you will be able to access the data in your Blob storage directly from ADF.

			

			
				
					[image: Figure 9.5 – Creating an Azure blob storage linked service

]
				

			

			Figure 9.5 – Creating an Azure blob storage linked service

			
					The next step is to create a data flow in ADF.

			

			
				
					[image: Figure 9.6 – Creating a new data flow in ADF

]
				

			

			Figure 9.6 – Creating a new data flow in ADF

			
					In the data flow, you will have to specify the source and destination. For Source type, select the Dataset option and define a new dataset using the Blob storage linked service that you created earlier. 

			

			
				
					[image: Figure 9.7 – Creating source and destination datasets in a data flow

]
				

			

			Figure 9.7 – Creating source and destination datasets in a data flow

			Here is how the dataset creation screen looks when you click on + New for the Dataset option.

			
				
					[image: Figure 9.8 – Sample dataset screen

]
				

			

			Figure 9.8 – Sample dataset screen

			With the data flow created, we now have the data ingestion part taken care of. Well, actually the step is still not complete. We still have to add this copy data step to our pipeline and run it to see the results. But before that, let's learn about all the remaining batch processing components. Let's next look at the data preparation/data cleansing component.

			Data preparation/data cleansing

			In Chapter 8, Ingesting and Transforming Data, we explored multiple data cleansing transformations, such as handling missing data, deduping, removing outlier data, and so on. You can use the exact same transformations for this stage. As we have already explored the details in the previous chapter, we will not repeat them again here. Let's jump to the transformation step.

			Transformation

			Once our data is clean and prepped, we can run our transformation logic using services such as Spark, SQL, Hive, and so on. In this example, as per the certification syllabus, we will use Azure Databricks Spark. Here are the steps:

			
					Create an ADB workspace – select Azure Databricks from the Azure portal and create a new workspace as shown in the following screenshot.

			

			
				
					[image: Figure 9.9 – Sample Azure Databricks workspace creation page

]
				

			

			Figure 9.9 – Sample Azure Databricks workspace creation page

			
					Once the workspace is created, click on the Launch Workspace button to launch the workspace. This will take you to the Azure Databricks portal.

			

			
				
					[image: Figure 9.10 – Launching the Azure Databricks workspace

]
				

			

			Figure 9.10 – Launching the Azure Databricks workspace

			From this screen, you can create clusters, notebooks, and more. That brings us to the next step.

			
				
					[image: Figure 9.11 – Azure Databricks portal

]
				

			

			Figure 9.11 – Azure Databricks portal

			
					Create an ADB cluster – click on the New Cluster link in the Databricks portal and enter the details.

			

			
				
					[image: Figure 9.12 – Azure Databricks cluster creation page

]
				

			

			Figure 9.12 – Azure Databricks cluster creation page

			This will create the cluster that will be required to run the transformations for the batch pipeline.

			
					Next, click Create and then Notebook to build your transformation logic – from the Azure Databricks portal, you can choose New Notebook, or do it from within the side tabs as shown:

			

			
				
					[image: Figure 9.13 – Azure Databricks new notebook creation

]
				

			

			Figure 9.13 – Azure Databricks new notebook creation

			Once you create the new notebook, you will get an editor as shown in the following screenshot. You can write the Spark code within the Cmd blocks. Azure Databricks supports the Scala, Python, SQL, and R languages.

			
				
					[image: Figure 9.14 – Azure Databricks notebook

]
				

			

			Figure 9.14 – Azure Databricks notebook

			In order to generate a daily trip report, we can write a simple Scala transformation script as shown in the following steps. You will have to write these into the Cmd sections shown in the previous screenshot:

			
					First, we need to set up the initial configs for ADB Spark to talk to ADLS Gen2:spark.conf.set("fs.azure.account.auth.type." + storageAccountName + ".dfs.core.windows.net", "OAuth")
spark.conf.set("fs.azure.account.oauth.provider.type." + storageAccountName + ".dfs.core.windows.net", "org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider")
spark.conf.set("fs.azure.account.oauth2.client.id." + storageAccountName + ".dfs.core.windows.net", "" + appID + "")
spark.conf.set("fs.azure.account.oauth2.client.secret." + storageAccountName + ".dfs.core.windows.net", "" + secret + "")
spark.conf.set("fs.azure.account.oauth2.client.endpoint." + storageAccountName + ".dfs.core.windows.net", "https://login.microsoftonline.com/" + tenantID + "/oauth2/token")
spark.conf.set("fs.azure.createRemoteFileSystemDuringInitialization", "true")
spark.conf.set("fs.azure.createRemoteFileSystemDuringInitialization", "false")


					Read the trip data (stored as a CSV file):%scala
      .add("tripId",IntegerType)
      .add("driverId",IntegerType)
      .add("customerId",IntegerType)
      .add("cabId",IntegerType)
      .add("tripDate",IntegerType)
      .add("startLocation",StringType)
      .add("endLocation",StringType)
val tripsCSV = spark.read.format("csv")
      .option("header", "true")
      .schema(tripsSchema)
      .load("abfss:/path/to/csv")


					Read the fare data (stored as Parquet files):%scala
val faresSchema = new StructType()
      .add("tripId",IntegerType)
      .add("fare",IntegerType)
      .add("currency",StringType)
val faresParquet = spark.read.format("parquet")
            .schema(faresSchema)
            .load("abfss:/path/to/parquet")
Join them with tripId and group by startLocation:
val joinDF = tripsCSV.join(
faresParquet,tripsCSV("tripId") === 
      faresParquet("tripId"),"inner")
.groupBy("startLocation")
.sum("fare");


					Join them with tripId and group by startLocation:val joinDF = tripsCSV.join(
faresParquet,tripsCSV("tripId") === 
      faresParquet("tripId"),"inner")
.groupBy("startLocation")
.sum("fare");


					Print the output table with the City and Fare columns:import org.apache.spark.sql.functions.col;
val outputDF = joinDF.select(col("startLocation").alias("City"),col("sum(fare)").alias("Fare"));


					Finally, write the output back to ADLS Gen2 under the transform/fares/out folder:outputDF.write.mode("overwrite").parquet("abfss:/path/to/output")


			

			Try to run the code and debug any issues within Azure Databricks before we hook it up to the ADF pipeline. 

			Tip

			Azure Databricks provides a library called dbutils that can be used for filesystem operations such as listing files and managing secrets and data operations such as summarizing datasets and so on. Here is an example:

			 dbutils.fs.cp("/path/to/source.txt", "/path/to/destination.txt")

			You can learn more about dbutils here: https://docs.microsoft.com/en-us/azure/databricks/dev-tools/databricks-utils.

			Next, let's see how to configure ADF to call the Spark notebook that we have just created.

			Configuring an ADB notebook activity in ADF

			Here are the steps to add an ADB notebook into an ADF pipeline:

			
					From the Azure Data Factory Activities tab, choose Notebook under Databricks and add it to the pipeline by dragging the icon into the worksheet area as shown in the following screenshot.

			

			
				
					[image: Figure 9.15 – Choosing an Azure Databricks activity in ADF

]
				

			

			Figure 9.15 – Choosing an Azure Databricks activity in ADF

			
					You have to link this Notebook activity to the notebook that you created in the previous step. In order to link the notebook, you will have to first get the access token from Azure Databricks. You can generate the access token from the Azure Databricks portal from the User Settings tab as shown in the following screenshot. Click on the Generate New Token button to create a new access token.

			

			
				
					[image: Figure 9.16 – Getting the access token from Azure Databricks

]
				

			

			Figure 9.16 – Getting the access token from Azure Databricks

			
					Now, link the previously created ADB notebook using a linked service. Similar to how we created a linked service to Azure Blob storage, we need to create one for Azure Databricks Spark too. The following screen shows the linked service configuration for Azure Databricks. You will have to fill in Databricks Workspace URL, the Access token field – with the access token that you generated in the previous step, and select whether you want to spin up a New job cluster or point to an Existing interactive cluster, and so on.

			

			
				
					[image: Figure 9.17 – Creating an Azure Databricks linked service

]
				

			

			Figure 9.17 – Creating an Azure Databricks linked service

			Once you have created the linked service and entered those details into the ADF notebook activity, your sample transformation stage will be complete. The final step that is pending is to import the data from this transformation stage into SQL Dedicated pool and to serve the data from there to Power BI. But before we go there, let's look at the options available for batch processing in Azure.

			Batch processing technology choices

			Here is a useful table reproduced from Azure that can help you decide on the technologies to use for your batch scenarios:

			
				
					[image: Figure 9.18 – Comparison of batch processing technologies in Azure

]
				

			

			Figure 9.18 – Comparison of batch processing technologies in Azure

			You can learn more about the batch processing choices here: https://docs.microsoft.com/en-us/azure/architecture/data-guide/technology-choices/batch-processing.

			Let's next see how to copy the data generated from the transformation stage into Synapse SQL using PolyBase.

			Using PolyBase to ingest the data into the Analytics data store

			PolyBase is a tool that enables services such as SQL Server and Synapse Dedicated SQL pool to copy and query data directly from external locations. The external sources could be Azure Storage, Oracle, Teradata, Hadoop, MongoDB, and so on. PolyBase is integrated into T-SQL, so every time we use a COPY INTO <table> FROM command to read data from an external storage location, PolyBase kicks in. PolyBase is one of the fastest and most scalable ways to copy data.

			For the data lake scenario, we are going to use PolyBase to copy the transformed data from Azure Databricks into Synapse Dedicated SQL pool using a staging ADLS or Blob store. The steps to do this are as follows:

			
					Prepare the source data in text files in ADLS or the Blob store.

					Define an external table with the right schema in the Dedicated SQL pool instance. The format of the incoming data should match the external table schema accurately. If not, rows might get dropped.

					If the data is coming from a non-relational source, we will have to transform it into a rows and columns format that matches the external table schema correctly.

					Run the COPY INTO command to load the data into dedicated SQL pool external tables using PolyBase. 

					From here, you can either serve the data directly or do more processing using a Dedicated SQL pool before serving it to the BI tools.

			

			Here is an example of how to use PolyBase:

			CREATE EXTERNAL FILE FORMAT [Dp203ParquetFormat] 

				WITH ( FORMAT_TYPE = PARQUET)

			CREATE EXTERNAL DATA SOURCE [Dp203DataSource] 

				WITH (

					LOCATION = 'abfss://path/to/storage/location' 

				)

			CREATE EXTERNAL TABLE TripExtTable

			WITH (

				LOCATION = '/path/to/data/*.parquet',

				DATA_SOURCE = [Dp203DataSource],

				FILE_FORMAT = [Dp203ParquetFormat]

			) AS 

			SELECT 

				[tripId] INT,

				[driverId] INT,

			. . .

				[endLocation] VARCHAR(50)

			FROM 

			    OPENROWSET(BULK '/path/to/data/*.parquet', FORMAT='PARQUET')

			Now copy the data from the external table into an actual SQL table:

			CREATE TABLE TripsProdTable 

			WITH

			(

			    CLUSTERED COLUMNSTORE INDEX,

			    DISTRIBUTION = ROUND_ROBIN

			)

			AS

			SELECT * FROM TripsExtTable

			With the last CREATE EXTERNAL TABLE AS SELECT (CETAS) statement, PolyBase copies the data into Synapse SQL Dedicated pool.

			Note

			PolyBase does not support nested formats such as JSON, XML, and WinZip as of writing this book. For JSON files, you could try to flatten the data first using the techniques we saw in Chapter 8, Ingesting and Transforming Data, under the Shredding JSON section, before using PolyBase to load them into Synapse SQL.

			Options for loading with PolyBase

			PolyBase is also available as part of other services, such as the following:

			
					Azure Data Factory – This version of PolyBase can be used as an activity within ADF. The data copy activity can be defined as a pipeline that can be scheduled regularly. You can read more about it here: https://docs.microsoft.com/en-us/azure/data-factory/connector-azure-sql-data-warehouse?tabs=data-factory#use-polybase-to-load-data-into-azure-synapse-analytics.

					Azure Databricks – This version of PolyBase can be used to transfer data between Azure Databricks and Synapse SQL pools. You can learn more about it here: https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-extract-load-sql-data-warehouse.

					SQL Server – This version can be used if the source is a SQL Server. The SQL Server Integration Services (SSIS) platform can be used to define the source and destination mappings and do the orchestration while using the SSIS version of PolyBase. You can learn more about it here: https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services.

			

			You can learn more about PolyBase here: https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-versioned-feature-summary.

			Let's next look at the last piece of our puzzle in the batch processing pipeline, which is to view the insights using Power BI.

			Using Power BI to display the insights

			Power BI is a Business Intelligence (BI) data visualization tool that is deeply integrated with Azure cloud services. It has built-in connectivity to many clouds and on-premises technologies and helps visualize and share insights from data.

			The steps involved in visualizing the Synapse SQL data via Power BI are as follows:

			
					Go to powerbi.microsoft.com and create an account. Once you have logged in, create a new workspace by clicking on the Create a workspace button from the Workspaces tab as shown in the following screenshot.

			

			
				
					[image: Figure 9.19 – Creating a workspace in Power BI

]
				

			

			Figure 9.19 – Creating a workspace in Power BI

			
					Next, go to the Synapse workspace and create a linked service to Power BI. Click on the Manage tab in the Synapse workspace and select Linked services. Then click on + New and search for Power BI as shown in the following screenshot.

			

			
				
					[image: Figure 9.20 – Creating a Power BI linked service

]
				

			

			Figure 9.20 – Creating a Power BI linked service

			
					On the linked service configuration screen, give a name to the linked service and select the previously created Power BI workspace for the Workspace name field.

			

			
				
					[image: Figure 9.21 – Power BI linked service configuration

]
				

			

			Figure 9.21 – Power BI linked service configuration

			
					Once you fill in the fields and click on Create, a new linked service to Power BI is created.

					Now go to the Editor tab in the Synapse workspace. You should see a Power BI section as shown in the following screenshot. Click on + New Power BI dataset and choose the SQL table that you want to include as your Power BI dataset.

			

			
				
					[image: Figure 9.22 – Creating a new Power BI dataset in Synapse

]
				

			

			Figure 9.22 – Creating a new Power BI dataset in Synapse

			
					A download screen will pop up as shown in the following screenshot. Just download the .pbids file.

			

			
				
					[image: Figure 9.23 – Downloading the .pbids file for Power BI

]
				

			

			Figure 9.23 – Downloading the .pbids file for Power BI

			
					Next, double-click on the .pbids file and it will open Power BI Desktop. If you don't have Power BI Desktop, you can install it from here: https://Power BI.microsoft.com/en-us/downloads/.

					Once Power BI Desktop opens, choose any of the Visualizations and drag and drop the table fields from the right-hand Fields tab. Power BI will now show the graphs for your data.

			

			
				
					[image: Figure 9.24 – Visualizing data from Power BI Desktop

]
				

			

			Figure 9.24 – Visualizing data from Power BI Desktop

			And that's how you can connect a BI reporting tool to your Synapse SQL pool.

			You can learn more about linking Synapse SQL to Power BI here: https://docs.microsoft.com/en-us/azure/synapse-analytics/get-started-visualize-power-bi.

			Now that we have all the components required to build the pipeline, let's see how to actually link them together in Azure Data Factory and create the pipeline.  

			Creating data pipelines 

			Data pipelines are a collection of various data processing activities arranged in a particular sequence to produce the desired insights from raw data. We have already seen many examples in Azure Data Factory where we chain the activities together to produce a final desirable outcome. ADF is not the only technology available in Azure. Azure also supports Synapse pipelines (which is an implementation of ADF within Synapse) and open source technologies such as Oozie (available via Azure HDInsight), which can help orchestrate pipelines. If your workload only uses open source software, then Oozie could fit the bill. But if the pipeline uses other Azure or external third-party services then ADF might be a better fit as ADF provides readily available source and sink plugins for a huge list of technologies.

			You can create a pipeline from the Pipeline tab of Azure Data Factory. All you need to do is to select the activities for your pipeline from the Activities tab and click and drag it into the canvas. You can link the activities using the green box (on the right side of each activity) and chain the blocks together either sequentially or parallelly to derive the required output. The following screenshot shows an example.

			
				
					[image: Figure 9.25 – Creating new pipelines in ADF

]
				

			

			Figure 9.25 – Creating new pipelines in ADF

			Once you have the pipeline stitched together, you can trigger it using the Add trigger button. The trigger could be one-time, event-based, or recurring.

			I hope you now have an understanding of how to create and publish an end-to-end batch pipeline. Let's next look at how to integrate Jupyter and Python notebooks into a data pipeline.

			Integrating Jupyter/Python notebooks into a data pipeline

			Integrating Jupyter/Python notebooks into our ADF data pipeline can be done using the Spark activity in ADF. You will need an Azure HDInsight Spark cluster for this exercise.

			The prerequisite for integrating Jupyter notebooks is to create linked services to Azure Storage and HDInsight from ADF and have an HDInsight Spark cluster running.

			You have already seen how to create linked services, in the Developing batch processing solutions by using Data Factory, Data Lake, Spark, Azure Synapse Pipelines, PolyBase, and Azure Databricks section earlier in this chapter, so I'll not repeat the steps here.

			Select the Spark activity from ADF and specify the HDInsight linked service that you created in the HDInsight linked service field under the HDI Cluster tab as shown in the following screenshot.

			
				
					[image: Figure 9.26 – Configuring a Spark activity in ADF

]
				

			

			Figure 9.26 – Configuring a Spark activity in ADF

			Now, start the Jupyter notebook by going to https://<YOURHDICLUSTER>.azurehdinsight.net/jupyter or from the HDInsight dashboard as shown in the following screenshot.

			
				
					[image: Figure 9.27 – Launching the Jupyter notebook from HDInsight

]
				

			

			Figure 9.27 – Launching the Jupyter notebook from HDInsight

			From the Jupyter launch page, you can select PySpark or PySpark3 to start a Python notebook.

			
				
					[image: Figure 9.28 – Launching a PySpark Jupyter notebook from HDInsight

]
				

			

			Figure 9.28 – Launching a PySpark Jupyter notebook from HDInsight

			You can write your transformations in the Jupyter notebook and run it using the ADF pipelines like any other ADF activity. Now you know how to run Jupyter notebooks from data pipelines.

			You can learn more about running Spark notebooks from ADF here: https://docs.microsoft.com/en-us/azure/data-factory/v1/data-factory-spark.

			The next few sections will focus on a few advanced techniques for loading data and data preparation. Some of these topics are repeated from the previous chapters, so we will skip over them by providing references to the previous chapters and focus on the new topics that have not already been covered.

			Designing and implementing incremental data loads

			We covered incremental data loading in Chapter 4, Designing the Serving Layer. Please refer to that chapter to refresh your knowledge of incremental data loads.

			Let's next see how to implement slowly changing dimensions.

			Designing and developing slowly changing dimensions

			We also covered slowly changing dimensions (SCDs) in detail in Chapter 4, Designing the Serving Layer. Please refer to that chapter to refresh your knowledge of the concepts.

			Handling duplicate data

			We already explored this topic in Chapter 8, Ingesting and Transforming Data. Please refer to that chapter to refresh your understanding of handling duplicate data.

			Let's next look at how to handle missing data.

			Handling missing data

			We already explored this topic in Chapter 8, Ingesting and Transforming Data. Please refer to that chapter to refresh your understanding of handling duplicate data.

			Let's next look at how to handle late-arriving data.

			Handling late-arriving data 

			We haven't yet covered this scenario, so let's dive deeper into handling late-arriving data.

			A late-arriving data scenario can be considered at three different stages in a data pipeline – during the data ingestion phase, the transformation phase, and the serving phase.

			Handling late-arriving data in the ingestion/transformation stage

			During the ingestion and transformation phases, the activities usually include copying data into the data lake and performing data transformations using engines such as Spark, Hive, and so on. In such scenarios, the following two methods can be used: 

			
					Drop the data, if your application can handle some amount of data loss. This is the easiest option. You can keep a record of the last timestamp that has been processed. And if the new data has an older timestamp, you can just ignore that message and move forward.

					Rerun the pipeline from the ADF Monitoring tab, if your application cannot handle data loss.

			

			Next, let's look at how to handle late-arriving data in the serving stage.

			Handling late-arriving data in the serving stage

			In the serving phase, data handling is usually done via a star or snowflake schema for OLAP scenarios. In such cases, there might be situations where a dimension arrives late (or a fact might arrive early). Let's look at a few common methods to handle such scenarios:

			
					Drop the message: Like in the ingestion/transformation stage, this is the easiest option, especially if the old data doesn't add much value.

					Store the message and retry after some time: In this technique, store the early-arriving fact rows in a staging table and try inserting this fact when in the next iteration, hoping that the dimension will have arrived by then. Repeat this process a pre-determined number of times before declaring failure.

					Insert a dummy record in the dimension table: In this technique, if the corresponding dimension record doesn't exist, just enter a dummy record in its place. You will have to revisit all the dummy records and update them with real values once the dimension values arrive. 

					If you have enough details about the dimension, you can infer the dimension row and insert the new derived dimension row with a new surrogate key.

			

			These are some of the ways to handle late-arriving data. Let's next look at how to upsert data.

			Upserting data

			Upsert refers to UPDATE or INSERT transactions in data stores. The data stores could be relational, key-value, or any other store that supports the concept of updating rows or blobs. 

			ADF supports upsert operations if the sink is a SQL-based store. The only additional requirement is that the sink activity must be preceded by an Alter Row operation. Here is an example screenshot of an ADF sink with Allow upsert enabled.

			
				
					[image: Figure 9.29 – Upsert operation in ADF

]
				

			

			Figure 9.29 – Upsert operation in ADF

			Once you have saved the preceding setup, ADF will automatically do an upsert if a row already exists in the configured sink. Let's next look at how to regress to a previous state.

			Regressing to a previous state 

			Regressing to a previous state or rolling back to a stable state is a very commonly used technique in databases and OLTP scenarios. In OLTP scenarios, the transformation instructions are grouped together into a transaction and if any of the instructions fail or reach an inconsistent state then the entire transaction rolls back. Although databases provide such functionality, we don't have such ready-made support in Azure Data Factory or Oozie (HDInsight) today. We will have to build our own rollback stages depending on the activity. Let's look at an example of how to do a rollback of a data copy activity in ADF.

			ADF provides options for checking consistency and setting limits for fault tolerance. You can enable them in the Settings options of a copy activity as shown in the following screenshot.

			
				
					[image: Figure 9.30 – Enabling consistency verification and fault tolerance in an ADF copy activity

]
				

			

			Figure 9.30 – Enabling consistency verification and fault tolerance in an ADF copy activity

			If the activity fails due to consistency checks or fault tolerance beyond a level, you can define a follow-up Delete activity on the failure path (orange link) to completely clean up the directory as shown in the following screenshot.

			
				
					[image: Figure 9.31 – Deleting an incomplete copy activity

]
				

			

			Figure 9.31 – Deleting an incomplete copy activity

			Note

			You can select the Recursively checkbox to process all files in the input folder and its subfolders recursively.

			Note that the delete activity technique can be extended for other scenarios such as data insertion into tables, retrying transformations, and so on. The corresponding rollback techniques in such cases will also be different, such as deleting files, deleting rows in a table, and so on.

			I hope you've got the idea of how to roll back to a previous stage using ADF. Next, we will focus on the Azure Batch service that we spoke about in the introduction of this chapter.

			Introducing Azure Batch

			Azure Batch is an Azure service that can be used to perform large-scale parallel batch processing. It is typically used for high-performance computing applications such as image analysis, 3D rendering, genome sequencing, optical character recognition, and so on. 

			Azure Batch consists of three main components:

			
					Resource management: This takes care of node management (things such as VMs and Docker containers), autoscaling, low-priority VM management, and application management. Applications are just ZIP files of all the executables, libraries, and config files required to be run for the batch job.

					Process management: This takes care of the job and task scheduling, retrying failed jobs, enforcing constraints on jobs, and so on. A job is a logical unit of work. A job is split into tasks that can run in parallel on the nodes from the VM or container pool.

					Resource and process monitoring: This takes care of all the monitoring aspects. There are several options available via the Azure portal, Application Insights, and finally logs and metrics.

			

			Like any other Azure service, Batch can be completely provisioned using the Azure portal. Here is a sample screenshot of a Batch screen.

			
				
					[image: Figure 9.32 – Azure Batch portal screen

]
				

			

			Figure 9.32 – Azure Batch portal screen

			You can configure and monitor your Batch jobs directly from the portal. Let's look at how to run a Batch job using the CLI next.

			Running a sample Azure Batch job

			Azure Batch provides multiple approaches for running jobs. We can use the Azure portal, the Azure CLI, and even programmatic interfaces via .NET and PowerShell. Let's look at an example using the Azure CLI for this one, as we have explored the Azure portal quite a lot already.

			In this example, we will learn how to create an Azure Batch account and set up a pool of VMs to execute the job. We will then learn how to run an application on the pool and download the results. You will have to replace the highlighted options within <> with your own entries. You can create a temporary ResourceGroup from the Azure portal and use it in these examples. For all other entries, such as BatchAccountName, BatchPoolName, and so on, you can just specify your own names: 

			
					Create a batch account as shown:az batch account create -g <ResourceGroup> -n <BatchAccountName> -l centralus


					Create a storage account as shown:az storage account create -g <ResourceGroup> -n <BatchStoreAcct> -l centralus --sku Standard_LRS


					Now, link the storage account to the Batch account:az batch account set -g <ResourceGroup> -n <BatchAccountName> --storage-account <BatchStoreAcct> 


					Next, create a pool using Ubuntu VMs to run our Batch application. This operation takes a few minutes:az batch pool create \
    --id <ResourceGroup> --vm-size Standard_A1_v2 \
    --target-dedicated-nodes 2 \
    --image canonical:ubuntuserver:16.04-LTS \
    --node-agent-sku-id "batch.node.ubuntu 16.04"


					You can check the status of the pool creation as shown:az batch pool show --pool-id <BatchPoolName> \
    --query "allocationState"


					Next, create an application that needs to be run by the Batch job:az batch application create --resource-group <ResourceGroup> --name <BatchAccountName> --application-name sampleapp1


					Next, create a job: az batch job create \
    --id <BatchJobName> \
    --pool-id <BatchPoolName> 


					Create the tasks under the job. The tasks will start running as soon as you create them:for i in {1..4}
do
   az batch task create \
    --task-id sampletask$i \
    --job-id <BatchJobName>  \
    --command-line "/bin/bash -c 'printenv; sleep 30s'"
done


					Monitor the jobs as shown:az batch task show \
    --job-id <BatchJobName> \
    --task-id <BatchTaskName>


					Download the results as shown:az batch task file download \
    --job-id <BatchJobName> \
    --task-id <BatchTaskName> \
    --file-path stdout.txt \
    --destination ./stdout.txt


					Finally, you can delete each of the entities as shown:az batch job delete --job-id <BatchJobName> 
az batch task delete –job-id <BatchJobName> --task-id <BatchTaskName>
az batch pool delete --pool-id <BatchPoolName> 


			

			This example should have given you a picture of the entire life cycle of an Azure Batch job. You can learn more about Azure Batch here: https://docs.microsoft.com/en-us/azure/batch/batch-technical-overview.

			Now that you know the basics of Azure Batch, let's next look at how to configure batch sizes.

			Configuring the batch size

			To configure the batch size, we will explore how to determine the batch size in Azure Batch. Batch size refers to both the size of Batch pools and the size of the VMs in those pools. The following guidelines are generic enough that they can be applied to other services such as Spark and Hive too.

			Here are some of the points to consider while deciding on the batch size:

			
					Application requirements: Based on whether the application is CPU-intensive, memory-intensive, storage-intensive, or network-intensive, you will have to choose the right types of VMs and the right sizes. You can find all the supported VM sizes using the following Azure CLI command (here, centralus is an example):az batch location list-skus –location centralus


					Data profile: If you know how your input data is spread, it will help in deciding the VM sizes that will be required. We will have to plan for the highest amount of data that will be processed by each of the VMs.

					The number of tasks that can be run per node (VM): If your tasks don't need an entire VM, it will be beneficial to run multiple tasks within the same VMs.

					Different pools for different batch loads: If you have different types of Batch jobs that need different VM capacities, it will be efficient to have different pools for the different Batch jobs.

					VM availability per region: Not all VM types will be available in all regions. So, you need to consider the geolocations while planning to create your Batch pool.

					VM quotas per Batch account: Apart from VM availability per region, there are usually quota limitations on your Batch accounts and Azure subscriptions. Some of these quota limits are soft limits and can be raised by raising a support request. But eventually, you will hit the hard limits. So, plan your Batch pool size based on your quota limitations. You can verify your quota under the Quotas tab of Batch accounts. Here is a sample screenshot of that page.

			

			
				
					[image: Figure 9.33 – Batch VM quotas

]
				

			

			Figure 9.33 – Batch VM quotas

			You can learn more about Batch VM options here: https://docs.microsoft.com/en-us/azure/batch/batch-pool-vm-sizes.

			Let's next look at how to scale resources in Azure Batch and other batch processing services such as Spark and Synapse SQL.

			Scaling resources

			Scaling refers to the process of increasing or decreasing the compute, storage, or network resources to improve the performance of jobs or reduce expenses. There are two types of scaling: Manual and Automatic. As might be obvious, with manual scaling, we decide on the size beforehand. With automatic scaling, the service dynamically decides on the size of the resources based on various factors, such as the load on the cluster, the cost of running the cluster, time constraints, and more.

			Let's explore the scaling options available in Azure Batch and then quickly glance at the options available in Spark and SQL too.

			Azure Batch

			Azure Batch provides one of the most flexible autoscale options. It lets you specify your own autoscale formula. Azure Batch will then use your formula to decide how many resources to scale up or down to.

			A scaling formula can be written based on the following:

			
					Time metrics: Using application stats collected at 5-minute intervals

					Resource metrics: Using CPU, memory, and network bandwidth usage

					Task metrics: Using the number of tasks queued or completed

			

			The Azure Batch autoscale screen itself provides sample autoscale formulas that you can adapt and enhance to your requirements. Here is a sample autoscale screen with the formula:

			
				
					[image: Figure 9.34 – Batch autoscale formula screen

]
				

			

			Figure 9.34 – Batch autoscale formula screen

			The example in the previous screenshot is setting the number of nodes based on the time of day. You can find more such examples for Azure Batch scaling here: https://docs.microsoft.com/en-us/azure/batch/batch-automatic-scaling.

			Let's next look at how we can set scaling options in Spark and Synapse SQL Dedicated pools.

			Azure Databricks 

			In Azure Databricks, while creating the cluster, you can select Enable Autoscaling and specify the number of Min Workers and Max Workers. The cluster will automatically scale up and down between these two numbers based on the load. Unlike Azure Batch, you don't have the flexibility to provide your own scaling formula here.

			
				
					[image: Figure 9.35 – Azure Databricks Spark autoscale option

]
				

			

			Figure 9.35 – Azure Databricks Spark autoscale option

			If you would like to have a fixed-size cluster, you just have to uncheck the Enable autoscaling option and provide the exact worker count.

			You can save on the cost of your clusters by using Spot instances. Spot instances are unused Azure VMs that are offered by Azure at a cheaper cost, but with no availability guarantees. If Azure needs the capacity back, it can pull back the Spot VMs with 30 seconds' notice. You can use this option if your jobs can handle interruptions, such as very large batch jobs, dev/test jobs, and so on.

			Synapse Spark

			Similar to Azure Databricks, Synapse Spark also provides the option to autoscale on the cluster creation screen. The following screenshot shows the screen with the Autoscale option.

			
				
					[image: Figure 9.36 – Synapse Spark Autoscale option

]
				

			

			Figure 9.36 – Synapse Spark Autoscale option

			Next, let's look at the option available for Synapse SQL Dedicated pools.

			Synapse SQL

			Synapse SQL doesn't provide the option to autoscale, but it provides the option to choose the cluster Performance level while creating the cluster as shown in the following screenshot. The higher the number, the better the performance.

			
				
					[image: Figure 9.37 – Synapse SQL performance setting during cluster creation

]
				

			

			Figure 9.37 – Synapse SQL performance setting during cluster creation

			Now you know how to configure scaling in Azure Batch, Azure Databricks Spark, Synapse Spark, and Synapse SQL.

			Let's next look at how to configure batch retention.

			Configuring batch retention

			The default retention time for tasks in Azure Batch is 7 days unless the compute node is removed or lost. We can, however, set the required retention time while adding a job.

			Here is an example using REST APIs. The retentionTime needs to be set in the request body as shown:

			POST account.region.batch.azure.com/jobs/jobId/tasks?api-version=2021-06-01.14.0

			Examine the following request body:

			{

			  "id": "jobId",

			  "priority": 100,

			  "jobManagerTask": {

			    "id": "taskId",

			    "commandLine": "test.exe",

			    "constraints": {

			      "retentionTime": "PT1H"

			   }

			}

			PT1H specifies 1 hour and uses the ISO_8601 format. You can learn more about the format here: https://en.wikipedia.org/wiki/ISO_8601#Durations.

			Let's next look at designing and configuring exception handling.

			Designing and configuring exception handling 

			Azure Batch provides error codes, logs, and monitoring events to identify and handle errors. Once the errors are identified, we can handle them programmatically via APIs and .NET code.

			Here are some examples of error codes returned by Batch:

			
				
					[image: Figure 9.38 – Sample Batch error codes

]
				

			

			Figure 9.38 – Sample Batch error codes

			You can get the complete list of error codes here: https://docs.microsoft.com/en-us/rest/api/batchservice/batch-status-and-error-codes.

			Next, let's look at some common error types in Azure Batch.

			Types of errors

			There are four common groups of errors:

			
					Application errors: For application errors, Azure Batch writes standard output and standard error to stdout.txt and stderr.txt files in the task directory on the compute node. We can parse these files to identify the issue and take remedial measures.

					Task errors: A task is considered failed if it returns a non-zero exit code. The failure could happen due to multiple reasons, such as preprocessing errors, file upload errors, or command-line errors. In all such cases, the corresponding error codes will be set. And we can programmatically configure Batch to retry the tasks up to a certain number of times. For task errors, we need to check the executionInfo property. This property contains details of errors such as result, exitCode, failureInfo, and so on, which can help identify the errors.

					Job errors: A job is a collection of tasks. Similar to task errors, we need to check the executionInfo property to determine the cause of the error for the jobs.

					Output file errors: During file uploads, Batch writes the logs to two files, namely fileuploadout.txt and fileuploaderr.txt. These two files need to be checked in case of output file loading errors.

			

			Let's next look at some of the common remedial actions.

			Remedial actions

			While the remedial action for each type of error will be unique, the following generic ones help if the jobs get stuck for a long time or there are issues with the nodes:

			
					Reboot the node:API: POST {batchUrl}/pools/{poolId}/nodes/{nodeId}/reboot?api-version=2021-06-01.14.0


					Reimage the node:API: POST {batchUrl}/pools/{poolId}/nodes/{nodeId}/reimage?api-version=2021-06-01.14.0


					Remove the node from the pool:POST {batchUrl}/pools/{poolId}/removenodes?api-version=2021-06-01.14.0


					Disable scheduling jobs on that pool:API: POST {batchUrl}/pools/{poolId}/nodes/{nodeId}/disablescheduling?api-version=2021-06-01.14.0


			

			Let's next look at some of the security and compliance requirements for data pipelines in general. The concepts and ideas discussed here also apply to other technologies, such as Spark and Hive-based pipelines.

			Handling security and compliance requirements 

			Security and compliance will always remain one of the core requirements for any cloud-based system. Azure provides a service called Azure Policy to enable and enforce compliance and security policies in any of the Azure services. In our case, it could be Azure Synapse, Azure Batch, VMs, VNets, and so on. Azure Policy helps enforce policies and remedial actions at scale.

			Azure Policy contains pre-defined policy rules called built-ins. For example, one of the rules could be Allow only VMs of a particular type to be created in my subscription. When this policy is applied, if anyone tries to create a VM of a different SKU, the policy will fail the VM creation. It will show an error saying Not allowed by policy at the validation screen for the resource creation. 

			Azure Policy has a huge list of predetermined policies and remedial actions for different compliance use cases. You can choose the policies that are relevant to your application and apply them. Here is a sample screen of Azure policies:

			
				
					[image: Figure 9.39 – Azure Policy examples

]
				

			

			Figure 9.39 – Azure Policy examples

			Here is a screenshot of the Azure Policy screen where we can apply Azure policies and Remediation methods.

			
				
					[image: Figure 9.40 – Apply Azure policies

]
				

			

			Figure 9.40 – Apply Azure policies

			For example, to be HIPAA compliant, one of the requirements is that you need to ensure audit logging is enabled. 

			So, if any of your Azure services don't have audit logging enabled, then Azure Policy will flag a compliance error. You can even configure the tool to disable the service if it is not compliant.

			You can learn more about the Azure Policy service here: https://docs.microsoft.com/en-us/azure/governance/policy/overview.

			Let's next look at another recommended technique to enhance the security of batch processing systems, the Azure Security Benchmark.

			The Azure Security Benchmark

			Beyond Azure Policy, Azure also provides a set of recommendations to improve the security of cloud-based data, services, and workloads. This set of best practices is called the Azure Security Benchmark. This benchmark covers a wide range of areas, such as network security, identity management, logging, data protection, and so on. You can validate your service against this benchmark to ensure that you are following the industry standard.

			Examples of Network Security (NS) benchmark rules are as follows:

			
					NS-1: Deploy Azure Batch pool(s) within a virtual network.

					NS-2: Connect private networks together.

					NS-3: Establish private network access to Azure services.

					NS-4: Protect applications and services from external network attacks.

			

			Examples of identity management benchmark rules are as follows:

			
					IM-1: Standardize Azure AD as the central identity and authentication system.

					IM-2: Manage application identities securely and automatically.

					IM-3: Use Azure AD single sign-on (SSO) for application access, and so on.

			

			You can find the comprehensive list here: https://docs.microsoft.com/en-us/security/benchmark/azure/overview.

			Let's next look at some of the best practices for the Azure Batch service.

			Best practices for Azure Batch

			Here is a summary of some of the best practices to secure batch systems derived from the Azure documentation:

			
					Use private endpoints: You can use the Azure Private Link service to restrict access to the batch processing services from external networks.

					Create pools in virtual networks: In the Azure Batch service, you can create batch pools within a virtual network so that the nodes can communicate securely with each other.

					Create pools without public IP addresses: To reduce the chances of discoverability from public networks. 

					Limit remote access to pool nodes by configuring firewalls.

					Encrypt data in transit by using https://.

					Encrypt Batch data at rest by using secret keys.

					Apply compliance and security policies described in the previous sections to your Azure Batch instance.

			

			You can find an exhaustive list here: https://docs.microsoft.com/en-us/azure/batch/security-best-practices.

			Summary

			I hope you now have a good idea about both batch pipelines and the Azure Batch service. We learned about creating end-to-end batch pipelines by diving deep into each of the stages, such as ingestion, transformations, BI integrations, and so on. We then learned about a new service called Azure Batch and learned about batch retention, handling errors, handling autoscale, building data pipelines using Batch, and more. We also learned about some of the critical security and compliance aspects. That is a lot of information to chew on. Just try to glance through the chapter once again if you have any doubts. 

			We will next be focusing on how to design and develop a stream processing solution.

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

		
			Developing batch processing solutions     

		

	

			Chapter 10: Designing and Developing a Stream Processing Solution

			Welcome to the next chapter in the data transformation series. This chapter deals with stream processing solutions, also known as real-time processing systems. Similar to batch processing, stream processing is another important segment of data pipelines. This is also a very important chapter for your certification.

			This chapter will focus on introducing the concepts and technologies involved in building a stream processing system. You will be learning about technologies such as Azure Stream Analytics (ASA), Azure Event Hubs, and Spark (from a streaming perspective). You will learn how to build end-to-end streaming solutions using these technologies. Additionally, you will learn about important streaming concepts such as checkpointing, windowed aggregates, replaying older stream data, handling drift, and stream management concepts such as distributing streams across partitions, scaling resources, handling errors, and upserting data. 

			Once you have completed this topic, you should be confident enough to build an end-to-end streaming pipeline using the technologies that are available in Azure.

			As with the other chapters, I've taken the liberty of rearranging the syllabus topics for this chapter by grouping the related ones together. This helps create a good flow for the chapter. We will be covering the following topics:

			
					Designing a stream processing solution

					Developing a stream processing solution using ASA, Azure Databricks, and Azure Event Hubs

					Processing data using Spark Structured Streaming

					Monitoring for performance and functional regressions

					Processing time series data

					Designing and creating windowed aggregates

					Configuring checkpoints/watermarking during processing

					Replaying archived stream data

					Handling schema drifts

					Processing across partitions

					Processing within one partition

					Scaling resources

					Handling interruptions

					Designing and configuring exception handling

					Upserting data

					Designing and creating tests for data pipelines

					Optimizing pipelines for analytical or transactional purposes

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (this could be either free or paid)

					The ability to read basic Python code (don't worry, it is very easy)

			

			Let's get started!

			Designing a stream processing solution

			Stream processing systems or real-time processing systems are systems that perform data processing in near real time. Think of stock market updates, real-time traffic updates, real-time credit card fraud detection, and more. Incoming data is processed as and when it arrives with very minimal latency, usually in the range of milliseconds to seconds. In Chapter 2, Designing a Data Storage Structure, we learned about the Data Lake architecture, where we saw two branches of processing: one for streaming and one for batch processing. In the previous chapter, Chapter 9, Designing and Developing a Batch Processing Solution, we focused on the batch processing pipeline. In this chapter, we will focus on stream processing. The blue boxes in the following diagram show the streaming pipeline:

			
				
					[image: Figure 10.1 – The stream processing architecture

]
				

			

			Figure 10.1 – The stream processing architecture

			Stream processing systems consist of four major components:

			
					An Event Ingestion service such as Azure Event Hubs, Azure IoT Hub, Apache Kafka and so on. which helps to capture, store, and transmit events from multiple input sources to the stream processing services. They act as a buffer between the input sources and the data processing services. Sometimes, the event ingress rate might be too much for the stream processing systems to handle, and sometimes, it might be too little. If the event ingress rate is higher, then the ingestion service would store the events until the downstream services can process them. If the event ingress rate is lower, the ingestion service can batch them up for efficiency and send them downstream. 

					Stream processing systems such as ASA, Spark Streaming, Apache Storm, Apache Flink, and so on which provide the ability to quickly filter, join, and aggregate the incoming events to derive insights. They are very similar to batch transformations but work on much smaller data sizes and more frequently than batch systems.

					Analytical data stores such as Synapse Dedicated SQL pool, CosmosDB, HBase, and so on, where the processed data from the stream processing systems is usually stored for BI reporting and other ad hoc queries. Some systems such as ASA can directly send data to reporting systems such as Power BI without the need for an analytical data store.

					Reporting systems such as Power BI. This is the final piece of the pipeline where we present the processed data in the form of reports for business consumption and decision-making.

			

			Now, let's look at the services that are available in Azure to build stream processing systems. We will start with Azure Event Hubs.

			Introducing Azure Event Hubs

			Azure Event Hubs is a distributed ingestion service that can ingest, store, and transfer millions of events from various input sources to multiple consumers. It acts as a buffer between the event producers and the event consumers and decouples the event producers from the event consumers. This helps the downstream stream components such as ASA or Spark Streaming to asynchronously process the data. Azure Event Hubs is a fully managed PaaS service, so we don't have to worry about the upkeep of the service. Event Hubs can auto-inflate to meet the increasing requirements of the streaming system.

			Here is a simplified architecture diagram of Azure Event Hubs: 

			
				
					[image: Figure 10.2 – The Azure Event Hubs architecture

]
				

			

			Figure 10.2 – The Azure Event Hubs architecture

			As you can see from the preceding diagram, Event Hubs can take inputs via two protocols: the Hypertext Transfer Protocol (HTTP) or the Advanced Message Queuing Protocol (AMQP). It then distributes the data into partitions. The event receivers, which are part of consumer groups, can subscribe to the partitions and read the events from there. Let's take a look at what these terminologies, including partitions and consumer groups, mean.

			Event Hubs partitions

			Event Hubs distributes the incoming data into one or more partitions, as shown in Figure 10.2. Partitions help with horizontal scaling as they allow multiple consumers to read data in parallel.

			Event Hubs consumer groups

			A consumer group is a view of the event hub. There could be many consumer groups for each event hub, and each consumer group can have its own view of the event hub. In other words, they have access to different sets of streams or partitions. The consumers (typically, downstream applications) access the partitions via their own consumer group. The consumer group maintains state-like offsets in the stream, checkpointing information, and more. The applications within a consumer group can independently process the data without worrying about other clients.

			You can learn more about Event Hubs at https://docs.microsoft.com/en-us/azure/event-hubs/.

			Next, let's look at ASA.

			Introducing ASA

			ASA is Azure's primary stream processing engine. It can process large volumes of data with minimal latencies. It can be used to perform analytical functions such as filter, aggregate, join, and more to derive quick results from the incoming stream of data. ASA can be used for scenarios such as retail point-of-sale analysis, credit card fraud detection, IoT sensing and failure detection, click-stream analysis, and so on. Typically, an ASA job has three stages:

			
					It reads from an ingestion service such as Event Hubs, IoT Hub, or Kafka. 

					It processes the data and generates insights.

					Finally, it writes the data into an analytical store, such as Azure Synapse Analytics, CosmosDB, or sends the results directly to a BI reporting service. ASA can directly send the results to Power BI. 

			

			Similar to Event Hubs, ASA is also a fully managed PaaS service. So, we don't have to worry about its upgrades and patches.

			You can learn more about ASA at https://docs.microsoft.com/en-us/azure/stream-analytics/.

			Next, let's look at Spark Streaming.

			Introducing Spark Streaming

			In the previous chapters, we looked at Spark from a batch processing perspective, but what you might not be aware of is that you can use the same Apache Spark core APIs to build a streaming solution. Similar to ASA, Spark can also read from data ingestion services such as Azure Event Hubs, Kafka, and more, implement the data transformations, and finally, write the output to analytical databases or any other store for that matter.

			Spark Streaming internally splits the incoming stream into micro-batches and processes them, so the output will be a stream of micro-batches.

			You can learn more about Spark Streaming at https://spark.apache.org/docs/latest/streaming-programming-guide.html.

			Next, let's look at how to build a stream processing solution using all the technologies that we have learned about so far.

			Developing a stream processing solution using ASA, Azure Databricks, and Azure Event Hubs

			In this section, we will look at two examples: one with ASA as the streaming engine and another with Spark as the streaming engine. We will use a dummy event generator to continuously generate trip events. We will configure both ASA and Azure Databricks Spark to perform real-time processing and publish the results. First, let's start with ASA.

			A streaming solution using Event Hubs and ASA 

			In this example, we will be creating a streaming pipeline by creating an Event Hubs instance, an ASA instance, and linking them together. The pipeline will then read a sample stream of events, process the data, and display the result in Power BI:

			
					First, let's create an Event Hub instance. From the Azure portal, search for Event Hubs and click on the Create button, as shown in the following screenshot:

			

			
				
					[image: Figure 10.3 – The Event Hubs creation screen

]
				

			

			Figure 10.3 – The Event Hubs creation screen

			
					This will bring up the Event Hubs Create Namespace screen, as shown in the following screenshot. Fill in the details including Resource group, Namespace name, Location, Throughput Units, and any other required fields:

			

			
				
					[image: Figure 10.4 – Creating the Event Hubs namespace 

]
				

			

			Figure 10.4 – Creating the Event Hubs namespace 

			
					Enter the details and click on the Review + create button to create the Event Hubs workspace. Once the workspace has been created, click on the + Event Hub link (as shown in the following screenshot) to create a new event hub within the workspace:

			

			
				
					[image: Figure 10.5 – Creating an event hub from within the Event Hubs workspace

]
				

			

			Figure 10.5 – Creating an event hub from within the Event Hubs workspace

			
					This will pop up a screen, as shown in the following screenshot. Enter a Name in the field given, select the Partition Count value (we will learn more about partitions later), and click on Create:

			

			
				
					[image: Figure 10.6 – The Create Event Hub screen

]
				

			

			Figure 10.6 – The Create Event Hub screen

			
					Now that we have an event hub, next, let's create an ASA instance. Search for Stream Analytics jobs in the Azure portal and select the option. On the Stream Analytics jobs page, click on the + Create link:

			

			
				
					[image: Figure 10.7 – Creating an ASA job

]
				

			

			Figure 10.7 – Creating an ASA job

			
					This will pop up the analytics job creation screen, as shown in the following screenshot. Fill in the details including Job name, Subscription, Resource group, Location, Streaming units, and any other required fields. Then, click on the Create button to create a new ASA job:

			

			
				
					[image: Figure 10.8 – The ASA creation screen

]
				

			

			Figure 10.8 – The ASA creation screen

			
					The next step is to link the input to Event Hubs. Before this step, we will need to get the connection string from Event Hubs. Go to the Event Hubs page, and click on Shared access policies. Click on the + Add button, and add a new policy, as shown in the following screenshot:

			

			
				
					[image: Figure 10.9 – Creating shared access policies in Event Hubs

]
				

			

			Figure 10.9 – Creating shared access policies in Event Hubs

			
					Once the policy has been created, you can simply click on the policy to retrieve the Connection string link, as shown in the following screenshot:

			

			
				
					[image: Figure 10.10 – Accessing the connection string for Event Hubs

]
				

			

			Figure 10.10 – Accessing the connection string for Event Hubs

			
					Now, go back to the ASA portal and link the input (Event Hubs) and output (Power BI) to the ASA instance. Click on the Inputs tab and select Event Hub from the + Add stream input drop-down list. This will pop up a screen where you can select the Event Hub instance that you created earlier: 

			

			
				
					[image: Figure 10.11 – Selecting an event hub as input for the ASA job

]
				

			

			Figure 10.11 – Selecting an event hub as input for the ASA job

			
					On the Event Hub New input screen, enter the connection string that you copied from Figure 10.10:

			

			
				
					[image: Figure 10.12 – Linking the event hub as an input in ASA

]
				

			

			Figure 10.12 – Linking the event hub as an input in ASA

			
					Similarly, click on the Outputs tab and select Power BI for the ASA output: 

			

			
				
					[image: Figure 10.13 – Selecting Power BI as the output for the ASA job

]
				

			

			Figure 10.13 – Selecting Power BI as the output for the ASA job

			
					This will pop up a screen as follows. Here, you will have to fill in your Power BI details:

			

			
				
					[image: Figure 10.14 – Configuring the Power BI sink details for the ASA job

]
				

			

			Figure 10.14 – Configuring the Power BI sink details for the ASA job

			
					Now that we have the input and output set up and ready, run a sample event generator to generate test events. Here is a simple Python event generator module. The complete code is available in the accompanying GitHub repository.

			

			a) Import the required Event Hub libraries:

			from azure.eventhub.aio import EventHubProducerClient

			from azure.eventhub import EventData

			b) Instantiate a producer client:

			producer = EventHubProducerClient.from_connection_string(

			      conn_str=<SAS Access Connection String>, 

			      eventhub_name=<Event Hub Name>)

			c) Create an event batch instance:

			eventDataBatch = await producer.create_batch()

			d) Create a JSON event:

			cityList = ["San Franciso", "San Jose", "Los Angeles",…]

			tripDetail = {'tripId': str(uuid.uuid4()), 

			     'timestamp': str(datetime.datetime.utcnow()),

			     'startLocation': random.choice(cityList),

			     'endLocation': random.choice(cityList), 

			     'distance': random.randint(10, 1000), 

			     'fare': random.randint(100, 1000) }

			e) Add events to the batch:

			eventDataBatch.add( 

			      EventData(json.dumps(tripDetail)))

			f) Send the batch of events to the event hub:

			producer.send_batch(eventDataBatch)

			You can repeat steps d, e, and f in a for loop for as long as you need.

			
					When you run the preceding code from the command line, you will be able to view the events arriving at the event hub on the Event Hubs overview page, as follows:

			

			
				
					[image: Figure 10.15 – The Event Hubs overview pages showing the event metrics

]
				

			

			Figure 10.15 – The Event Hubs overview pages showing the event metrics

			
					Now, let's read this data and publish the number of trips per location. On the ASA Overview page, you can enter the Query as shown in the following screenshot, and click on Start:

			

			
				
					[image: Figure 10.16 – The ASA sample code

]
				

			

			Figure 10.16 – The ASA sample code

			
					Now, the ASA job will continuously read the input event hub stream, process the data, and publish it to Power BI. If you navigate to My workspace in your Power BI portal, you should see the ASA dataset that was configured earlier on the Power BI output configuration screen (Figure 10.14):

			

			
				
					[image: Figure 10.17 – The Power BI dataset screen

]
				

			

			Figure 10.17 – The Power BI dataset screen

			
					You can right-click on the dataset and create a report out of it, as shown in the following screenshot:

			

			
				
					[image: Figure 10.18 – Creating the Power BI dashboard from the ASA streaming output

]
				

			

			Figure 10.18 – Creating the Power BI dashboard from the ASA streaming output

			Now you know how to build a streaming pipeline using Event Hubs, ASA, and Power BI.

			ASA can also work with IoT Hub as the ingestion service. With IoT Hub, ASA can be deployed in two different modes:

			
					In Cloud mode: Here, the IoT devices send the events to an ASA job on the Azure cloud, which is very similar to the Event Hubs model.

					In Edge mode: Here, ASA can run directly on the IoT devices themselves, perform real-time processing, and send the events to IoT Hub. 

			

			You can find more details about ASA's Edge mode at https://docs.microsoft.com/en-us/azure/iot-edge/tutorial-deploy-stream-analytics?view=iotedge-2020-11.

			Next, let's look at how to build a streaming solution using Azure Databricks Spark.

			A streaming solution using Event Hubs and Spark Streaming

			In this example, we will use the same event hub and data generator that we used for the ASA option. The only change is that we will use Azure Databricks Spark instead of ASA. Let's look at how to read data from Event Hubs using Databricks Spark.

			Before we can connect to Event Hubs and start reading, we will have to create a Spark cluster. We learned how to create a Databricks Spark cluster in Chapter 9, Designing and Developing a Batch Processing Solution, in the Developing batch processing solutions using Data Factory, Data Lake, Spark, Azure Synapse Pipelines, PolyBase, and Azure Databricks section. Please use the same instructions to create a new Spark cluster:

			
					Once the Spark cluster is up and running, open a Spark Notebook and enter the following sample code to process the stream data into the notebook.

					Set the connection to the Event Hubs instance in the same way that we generated it in Figure 10.10, as shown in the following code block:EHConnectionString = "<EVENT HUB CONNECTION STRING>"
EHConfig = {}
EHConfig['eventhubs.connectionString'] = sc._jvm.org.apache.spark.eventhubs.EventHubsUtils .encrypt( EHConnectionString )


					Connect to the event hub:EHStreamDF = spark.readStream.format("eventhubs") .options(**EHConfig).load()


					Next, we need to define the schema of the streaming input:JsonSchema = StructType() \
.add("tripId", StringType()) \
.add("createdAt", TimestampType()) \
.add("startLocation", StringType()) \
.add("endLocation", StringType()) \
.add("distance", IntegerType()) \
.add("fare", IntegerType())


					Now, let's define the stream-handling DataFrame (EHStreamJsonDF) to extract the key values from the incoming JSON events:stringDF = EHStreamDF.selectExpr("CAST(body AS STRING)")
jsonDF= stringDF.withColumn('tripjson', from_json(col('body'),schema=JsonSchema))
EHStreamJsonDF= jsonDF.select("tripjson.*")


					Up to this point, we have ensured that the events from the event hub can be processed and acted upon directly using DataFrames. The next step is to define the transformation to be applied and actually start the streaming:EHStreamJsonDF.groupBy(window('createdAt',"1 minutes"),'startLocation').count().orderBy('window')\
.writeStream.format("memory") \
.outputMode("complete") \
.option("truncate", "false") \
.option("checkpointLocation", "dbfs:/tripsCheckpointLocation/") \
.queryName("TripsTumblingQuery").start()


					In the preceding step, we are using a window of 1 minute and counting the number of trips based on startLocation. In the upcoming sections, we will learn about windowing, the different output modes, checkpointing, and more.

					Once we run Step 6, the streaming starts and continuously looks for events from the event hub, processes them, and sends the output to a table named TripsTumblingQuery. If you SELECT * from the table, you can view the trip counts: 

			

			
				
					[image: Figure 10.19 – Viewing the results of the streaming query

]
				

			

			Figure 10.19 – Viewing the results of the streaming query

			
					You can stop the streaming, as shown in the following code block:for s in spark.streams.active:
    s.stop()


			

			So, this is how we can connect Azure Databricks to Event Hubs and process real-time data.

			You can learn more about Azure Databricks and Event Hubs at https://docs.microsoft.com/en-us/azure/databricks/scenarios/databricks-stream-from-eventhubs.

			Next, let's look at Spark Structured Streaming.

			Processing data using Spark Structured Streaming

			Structured Streaming is a feature in Apache Spark where the incoming stream is treated as an unbounded table. The incoming streaming data is continuously appended to the table. This feature makes it easy to write streaming queries, as we can now write streaming transformations in the same way we handle table-based transformations. Hence, the same Spark batch processing syntax can be applied here, too. Spark treats the Structured Streaming queries as incremental queries on an unbounded table and runs them at frequent intervals to continuously process the data.

			Spark supports three writing modes for the output of Structured Streaming:

			
					Complete mode: In this mode, the entire output (also known as the result table) is written to the sink. The sink could be a blob store, a data warehouse, or a BI tool.

					Append mode: In this mode, only the new rows from the last time are written to the sink.

					Update mode: In this mode, only the rows that have changed are updated; the other rows will not be updated.

			

			In the previous section, when we used Azure Databricks Spark to process the stream, we had already used the concept of Spark Structured Streaming. Every time we use the writestream or readstream methods, Spark uses Structured Streaming. Let's look at another example in which we continuously write the streaming trips data and query it like a regular table:

			EHStreamJsonDF.selectExpr(

			                  "tripId"\

			                  ,"timestamp"\

			                  ,"startLocation"\

			                  ,"endLocation"\

			                  ,"distance"\

			                  ,"fare")\

			.writeStream.format("delta")\

			.outputMode("append")\

			.option("checkpointLocation", "dbfs:/TripsCheckpointLocation/")\

			.start("dbfs:/TripsEventHubDelta")

			In the preceding query, we are specifying the column names to be extracted as part of selectExpr, the format to be written as delta, the output mode as append, the checkpoint location as dbfs:/TripsCheckpointLocation, and finally, the sink location to be written as dbfs:/TripsEventHubDelta within the start() method. Delta is an open source storage layer that can be run on top of data lakes. It enhances the data lake to support features such as ACID transactions, updates, deletes, unified batch, interactive and streaming systems via Spark. We will learn more about Delta in the Compacting small files section of Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing.

			Now you can query the data like a regular table, as follows:

			%sql 

			CREATE TABLE IF NOT EXISTS TripsAggTumbling

			    USING DELTA LOCATION "dbfs:/TripsEventHubDelta/"

			SELECT * FROM TripsAggTumbling

			This is how we can use Spark Structured Streaming to handle streaming data. You can learn more about Structured Streaming at https://docs.microsoft.com/en-us/azure/databricks/getting-started/spark/streaming.

			Next, let's look at how to monitor the streaming performance.

			Monitoring for performance and functional regressions

			Let's explore the monitoring options available in Event Hubs, ASA, and Spark for streaming scenarios.

			Monitoring in Event Hubs

			The Event Hubs Metric tab provides metrics that can be used for monitoring. Here is a sample screenshot of the metric options that are available:

			
				
					[image: Figure 10.20 – The metrics screen of Event Hubs

]
				

			

			Figure 10.20 – The metrics screen of Event Hubs

			We can get useful metrics such as the number of Incoming Messages, the number of Outgoing Messages, Server Errors, CPU and memory utilization, and more. You can use all of these metrics to plot graphs and dashboards as required. 

			Next, let's look at the monitoring options in ASA.

			Monitoring in ASA 

			The ASA Overview page provides high-level monitoring metrics, as shown in the following screenshot:

			
				
					[image: Figure 10.21 – The ASA Overview page with metrics

]
				

			

			Figure 10.21 – The ASA Overview page with metrics

			Similar to the Event Hubs metric page, ASA also provides a rich set of metrics that can be used for monitoring. Here is a sample screenshot of the ASA Metric tab:

			
				
					[image: Figure 10.22 – The ASA Metric tab with metrics

]
				

			

			Figure 10.22 – The ASA Metric tab with metrics

			As you can see from the preceding screenshot, it provides useful information such as SU % Utilization, Runtime Errors, Watermark Delay, and more. We can even configure alerts on top of these metrics. Let's look at an example of how to configure an alert to trigger if SU% crosses 80%.

			Configuring alerts in ASA

			Let's examine how to configure an alert for high SU% usage.

			Select the New alert rule link in Figure 10.22. This will take you to a page that lists all the signals available to build the alert on. Select the SU % Utilization option, as shown in the following screenshot:

			
				
					[image: Figure 10.23 – Selecting the signal name to set up the alert

]
				

			

			Figure 10.23 – Selecting the signal name to set up the alert

			On the page that opens, you can configure the alert logic to set the threshold to 80%. This is shown in the following screenshot:

			
				
					[image: Figure 10.24 – Configuring the ASA alert logic

]
				

			

			Figure 10.24 – Configuring the ASA alert logic

			Once we have defined the alert logic, we have to define an action group (not shown in the preceding screenshot) to determine what should be done when the preceding condition matches. We could link it to an automation runbook, trigger an Azure function to perform an action, trigger a Webhook, or simply send notifications using emails.

			The process of creating alerts is similar to other technologies such as Event Hubs, Synapse SQL, and more. 

			Next, let's look at the monitoring options available in Spark Streaming.

			Monitoring in Spark Streaming

			Azure Databricks Spark notebooks provide built-in graphs that continuously display metrics such as Input rate, Processing rate, Batch Duration, and more. Here is an example screenshot:

			
				
					[image: Figure 10.25 – Spark Streaming metrics from within a Spark notebook

]
				

			

			Figure 10.25 – Spark Streaming metrics from within a Spark notebook

			These graphs can be used to monitor the progress of the Spark Streaming jobs. 

			That is how we can monitor streaming jobs. Let us next look at how to processing time series data.

			Processing time series data

			Time series data is nothing but data recorded continuously over time. Examples of time series data could include stock prices recorded over time, IoT sensor values, which show the health of machinery over time, and more. Time series data is mostly used to analyze historic trends and identify any abnormalities in data such as credit card fraud, real-time alerting, and forecasting. Time series data will always be appended heavily with very rare updates.

			Time series data is a perfect candidate for real-time processing. The stream processing solutions that we discussed earlier in this chapter, in the Developing a stream processing solution using ASA, Azure Databricks, and Azure Event Hubs section, would perfectly work for time series data. Let's look at some of the important concepts of time series data.

			Types of timestamps

			The central aspect of any time series data is the time attribute. There are two types of time in time series data: 

			
					Event time: This indicates the actual time when the event occurred.

					Processing time: The time when the event is processed by a data processing system.

			

			It is important to consider the event time while processing events rather than the processing time, as the latter might be delayed due to processing speed, network delays, and other issues in the stream processing pipeline.

			Windowed aggregates

			Since time series events are unbounded events, or in other words, since they don't have a well-defined end time, it is necessary to process the events in small batches (that is, windows of time). There are different windowing mechanisms available such as tumbling windows, hopping windows, sliding windows, and more. We will explore these windowing techniques, in detail, in the next section.

			Checkpointing or watermarking

			Checkpointing or watermarking refers to the process of keeping track of the last event or timestamp that was processed by the stream processing system. This helps ensure that we start from the previously stopped place and don't miss out on processing any events after outages, system upgrades, processing delays, and more. We will learn how we can achieve this in the Configuring checkpoints/watermarking during processing section of this chapter.

			Replaying data from a previous timestamp

			We might be required to reprocess older events in the case of machine failures or errors in processing logic. In such cases, tools such as Event Hubs provide features that allow you to replay the events again from a previous offset location. 

			You can learn more about time series data at https://docs.microsoft.com/en-us/azure/architecture/data-guide/scenarios/time-series.

			Next, let's take a look at each of the concepts, in detail, starting with the different windowed aggregate options.

			Designing and creating windowed aggregates

			In this section, let's explore the different windowed aggregates that are available in ASA. ASA supports the following five types of windows:

			
					Tumbling windows 

					Hopping windows

					Sliding windows

					Session windows

					Snapshot windows

			

			Let's look at each of them in detail. We will be using the following sample event schema in our examples.

			eventSchema = StructType()

			  .add("tripId", StringType())

			  .add("createdAt", TimestampType())

			  .add("startLocation", StringType())

			  .add("endLocation", StringType())

			  .add("distance", IntegerType())

			  .add("fare", IntegerType())

			Let us start with Tumbling windows.

			Tumbling windows

			Tumbling windows are non-overlapping time windows. All the windows are of the same size. Here is a depiction of how they look:

			
				
					[image: Figure 10.26 – An example of a tumbling window

]
				

			

			Figure 10.26 – An example of a tumbling window

			Here is the syntax of how to use a tumbling window:

			{TUMBLINGWINDOW | TUMBLING} ( timeunit  , windowsize, [offsetsize] )  

			{TUMBLINGWINDOW | TUMBLING} ( Duration( timeunit  , windowsize ), [Offset(timeunit  , offsetsize)] )

			Here is sample code to use a tumbling window in ASA. It calculates the number of trips grouped by tripLocation, in 10-second-wide tumbling windows:

			SELECT System.Timestamp() AS WindowEnd, tripLocation, COUNT(*)  

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt  

			GROUP BY tripLocation, TumblingWindow(Duration(second, 10), Offset(millisecond, -1))

			Next, let's look at hopping windows.

			Hopping windows

			Hopping windows are just overlapping tumbling windows. Each window will have a fixed size overlap with the previous window. Here is a depiction of how it looks:

			
				
					[image: Figure 10.27 – An example of a hopping window

]
				

			

			Figure 10.27 – An example of a hopping window

			Here is the syntax for a hopping window:

			{HOPPINGWINDOW | HOPPING} ( timeunit  , windowsize , hopsize, [offsetsize] )

			{HOPPINGWINDOW | HOPPING} ( Duration( timeunit  , windowsize ) , Hop (timeunit  , windowsize ), [Offset(timeunit  , offsetsize)])

			If windowsize and hopsize have the same timeunit, you can use the first syntax.

			Here is an example of a hopping window. Every 10 seconds, fetch the trip count per tripLocation for the last 20 seconds. Here, the window size is 20 seconds, and the hop size is 10 seconds:

			SELECT System.Timestamp() AS WindowEnd, tripLocation, COUNT(*)  

			INTO [Output]

			FROM [Input]  TIMESTAMP BY createdAt  

			GROUP BY tripLocation, HoppingWindow(Duration(second, 20), Hop(second, 10), Offset(millisecond, -1))

			Next, let's look at sliding windows.

			Sliding windows 

			Sliding windows have a fixed size, but the window only moves forward when either event is added or removed. Otherwise, they don't emit any results:

			
				
					[image: Figure 10.28 – An example of a sliding window

]
				

			

			Figure 10.28 – An example of a sliding window

			Here is the syntax for the sliding window:

			{SLIDINGWINDOW | SLIDING} ( timeunit, windowsize )

			{SLIDINGWINDOW | SLIDING} ( Duration( timeunit, windowsize ) )

			Here is an example of a sliding window. For every 10 seconds, alert if a location appears more than 5 times:

			SELECT System.Timestamp() AS WindowEnd, tripLocation, COUNT(*)  

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt

			GROUP BY tripLocation, SlidingWindow(second, 10)

			HAVING COUNT(*) > 5

			Next, let's look at session windows.

			Session windows 

			Session windows don't have fixed sizes. We need to specify a maximum window size and timeout duration for session windows. The session window tries to grab as many events as possible within the maximum window size. On the other hand, if there are no events, it waits for the timeout duration and closes the window. Here is a depiction of how it looks:

			
				
					[image: Figure 10.29 – An example of a session window

]
				

			

			Figure 10.29 – An example of a session window

			Here is the syntax for the session window:

			{SESSIONWINDOW | SESSION} (timeunit, timeoutSize, maxDurationSize) [OVER (PARTITION BY partitionKey)]

			{SESSIONWINDOW | SESSION} (Timeout(timeunit , timeoutSize), MaxDuration(timeunit, maxDurationSize)) [OVER (PARTITION BY partitionKey)]

			Here is an example of a session window. Find the number of trips that occur within 5 seconds of each other:

			SELECT System.Timestamp() AS WindowEnd, tripId, COUNT(*)  

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt

			GROUP BY tripId, SessionWindow(second, 5, 10)

			Next, let's take a look at snapshot windows.

			Snapshot windows

			A snapshot window is not really a windowing technique. It is simply used to get a snapshot of the events at a particular time:

			
				
					[image: Figure 10.30 – An example of a snapshot window

]
				

			

			Figure 10.30 – An example of a snapshot window

			Here is how we can use a snapshot window:

			SELECT tripId, COUNT(*)

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt

			GROUP BY tripId, System.Timestamp()

			These are all the windowing options that we have in ASA. You can learn more about the ASA windowing functions at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-window-functions.

			The next important concept for handling time series data is checkpointing or watermarking. Let's dive into that topic next.

			Configuring checkpoints/watermarking during processing

			Let's look at the checkpointing options available in ASA, Event Hubs, and Spark.

			Checkpointing in ASA

			ASA does internal checkpointing periodically. Users do not need to do explicit checkpointing. The checkpointing process is used for job recoveries during system upgrades, job retries, node failures, and more.

			During node failures or OS upgrades, ASA automatically restores the failed node state on a new node and continues processing.

			Note

			During ASA service upgrades (not OS upgrades), the checkpoints are not maintained, and the stream corresponding to the downtime needs to be replayed.

			Next, let's look at how to checkpoint in Event Hubs.

			Checkpointing in Event Hubs

			Checkpointing or watermarking in Event Hubs refers to the process of marking the offset within a stream or partition to indicate the point up to where the processing is complete. Checkpointing in Event Hubs is the responsibility of the event consumer process. Checkpointing is a relatively expensive operation, so it is usually better to checkpoint after a batch of event processing. The main idea of checkpointing is to have a restart point in the event that the event hub fails or undergoes service upgrades.

			Here is sample code of how to perform checkpointing in Event Hubs using the BlobCheckpoint store. All the entries within < > are user-provided values:

			Import asyncio

			from azure.eventhub.aio import EventHubConsumerClient

			from azure.eventhub.extensions.checkpointstoreblobaio import BlobCheckpointStore

			async def on_event(partition_context, event):

			    # Process the event

			    # Checkpoint after processing

			    await partition_context.update_checkpoint(event) 

			async def main():

			    storeChkPoint = BlobCheckpointStore.from_connection_string(

			        <STORE_CONN_STRING>,

			        <STORE_CONTAINER_NAME>

			    )

			    ehClient = EventHubConsumerClient.from_connection_string(

			        <EVENTHUB_CONN_STRING>,

			        <CONSUMER_GROUP_NAME>,

			        eventhub_name=<EVENTHUB_NAME>,

			        checkpoint_store= storeChkPoint

			    )

			    async with ehClient:

			        await ehClient.receive(on_event)

			if __name__ == '__main__':

			    loop = asyncio.get_event_loop()

			    loop.run_until_complete(main())

			Next, let's look at checkpointing in Spark.

			Checkpointing in Spark

			The Structured Streaming feature of Spark delivers end-to-end exactly-once semantics. In other words, it ensures that an event is delivered exactly once. Spark uses checkpointing and write-ahead logs to accomplish this. In our Structured Streaming example earlier, we learned how to configure the checkpointing location in the Spark queries. Here is another simple example:

			EHStreamJsonDF.writeStream.format("delta")\

			.outputMode("append")\

			.option("checkpointLocation", "dbfs:/TripsCheckpointLocation/")\

			.start("dbfs:/TripsEventHubDelta")

			Spark Structured Streaming takes care of checkpointing internally. This is so that the user does not need to worry about manually checkpointing the input stream.

			Now that we have learned how to checkpoint data, let's look at how to replay old data in the case of failures, restarts, upgrades, and more. 

			Replaying archived stream data

			Event Hubs stores up to 7 days of data, which can be replayed using the EventHub consumer client libraries. Here is a simple Python example:

			Consumer_client = EventHubConsumerClient.from_connection_string(

			    conn_str=CONNECTION_STR,

			    consumer_group='$Default',

			    eventhub_name=EVENTHUB_NAME,

			)

			consumer_client.receive(

			    on_event=on_event,

			    partition_id="0",

			    starting_position="-1" # "-1" is the start of the partition.

			)

			You can specify offsets or timestamps for the starting_position value.

			You can learn more about the Python EventHub APIs at https://azuresdkdocs.blob.core.windows.net/$web/python/azure-eventhub/latest/azure.eventhub.html.

			Let's take a look at some of the common data transformations that are possible using streaming analytics.

			Transformations using streaming analytics

			One of the common themes that you might notice in streaming queries is that if there is any kind of transformation involved, there will always be windowed aggregation that has to be specified. Let's take the example of counting the number of distinct entries in a time frame.

			The COUNT and DISTINCT transformations

			This type of transformation can be used to count the number of distinct events that have occurred in a time window. Here is an example to count the number of unique trips in the last 10 seconds:

			SELECT

			    COUNT(DISTINCT tripId) AS TripCount,

			    System.TIMESTAMP() AS Time

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt

			GROUP BY TumblingWindow(second, 10)

			Next, let's look at an example where we can cast the type of input in a different format.

			CAST transformations

			The CAST transformation can be used to convert the data type on the fly. Here is an example to convert the fare into a FLOAT and calculate the total fare every 10 minutes:

			SELECT tripId, SUM(CAST(fare AS FLOAT)) AS TenSecondFares

			INTO [Output]

			FROM [Input] TIMESTAMP BY createdAt

			GROUP BY tripId, TumblingWindow(second, 10)

			Next, let's look at how to compare entries using LIKE.

			LIKE transformations

			We can use this transformation to perform string matching using patterns. In the following example, we try to match all the startLocation from San Francisco:

			SELECT *

			INTO [Output]

			FROM [Input] TIMESTAMP BY timestamp

			WHERE startLocation LIKE 'S%F'

			These are just a few sample transformations. You can find a more detailed list at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-stream-analytics-query-patterns.

			Next, let's look at how to handle schema drifts in a streaming solution.

			Handling schema drifts

			A schema drift refers to the changes in schema over time due to changes happening in the event sources. This could be due to newer columns or fields getting older, columns getting deleted, and more. 

			Handling schema drifts using Event Hubs

			If an event publisher needs to share schema details with the consumer, they have to serialize the schema along with the data, using formats such as Apache Avro, and send it across Event Hubs. Here, the schema has to be sent with every event, which is not a very efficient approach.

			If you are dealing with statically defined schemas on the consumer side, any schema changes on the producer side would spell trouble.

			Event Hubs provides a feature called Azure Schema Registry to handle schema evolution and schema drift. It provides a central repository to share the schemas between event publishers and consumers. Let's examine how to create and use Azure Schema Registry.

			Registering a schema with schema registry

			Here is an example of how to register a schema:

			
					Import the necessary libraries:From azure.schemaregistry import SchemaRegistryClient
from azure.identity import DefaultAzureCredential 


					Define your schema:sampleSchema = """
{"namespace": "com.azure.sampleschema.avro",
 "type": "record",
 "name": "Trip",
 "fields": [
     {"name": "tripId", "type": "string"},
     {"name": "startLocation", "type": "string"},
     {"name": "endLocation", "type": "string"}
 ]
}"""


					Create the Schema Registry client:azureCredential = DefaultAzureCredential()
schema_registry_client = SchemaRegistryClient(
fully_qualified_namespace=<SCHEMA-NAMESPACE>.servicebus.windows.net, 
credential=azureCredential)


					Register the schema:With schema_registry_client:
    schema_properties = schema_registry_client.register_schema(
      <SCHEMA_GROUPNAME>,
      <SCHEMA_NAME>, 
      sampleSchema, 
      "Avro")


					Get the schema ID:    schema_id = schema_properties.id 


			

			Next, let's see how to retrieve the schema.

			Retrieving a schema from Schema Registry 

			Here are the high-level steps to retrieve the schema:

			
					Import the necessary libraries:from azure.identity import DefaultAzureCredential
from azure.schemaregistry import SchemaRegistryClient


					Create the Schema Registry client:azureCredential = DefaultAzureCredential()
schema_registry_client = SchemaRegistryClient(
fully_qualified_namespace=<SCHEMA-NAMESPACE>.servicebus.windows.net, 
credential=azureCredential)


					Retrieve the schema:With schema_registry_client:
    schema = schema_registry_client.get_schema(schema_id)
    definition = schema.definition
    properties = schema.properties


			

			Once you have the schema, you can define your events and start reading the data in the correct format.

			You can learn more about Event Hubs Schema Registry at https://docs.microsoft.com/en-us/azure/event-hubs/schema-registry-overview.

			Next, let's look at how to handle schema drifts in Spark.

			Handling schema drifts in Spark

			Azure Databricks Delta Lake provides a feature called Schema Evolution to take care of schema changes over time. It automatically adapts to the new schema when new columns get added. Schema Evolution can be enabled by adding the .option('mergeSchema', 'true') option to the writeStream streaming command.

			Here is a simple example:

			StreamDF.writeStream.format("delta")\

			.option("mergeSchema", "true") \

			.outputMode("append")\

			.option("checkpointLocation", "dbfs:/CheckpointLocation/")\

			.start("dbfs:/StreamData")

			Once the mergeSchema option has been specified, Spark takes care of handling newer columns in the stream automatically. 

			Next, let's look at the partitioning of events in Event Hubs.

			Processing across partitions

			Before we look at how to process data across partitions, first, let's understand partitions.

			What are partitions?

			Event Hubs can distribute incoming events into multiple streams so that they can be accessed, in parallel, by the consumers. These parallel streams are called partitions. Each partition stores the actual event data and metadata of the event such as its offset in the partition, its server-side timestamp when the event was accepted, its number in the stream sequence, and more. Partitioning helps in scaling real-time processing, as it increases the parallelism by providing multiple input streams for downstream processing engines. Additionally, it improves availability by redirecting the events to other healthy partitions if some of the partitions fail.

			You can learn more about Event Hubs partitions at https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-scalability.

			Now, let's look at how to send data across partitions and how to process data across partitions.

			Processing data across partitions

			Client libraries to access Event Hubs are available in different languages such as C#, Python, Java, and more. In this section, we will use the Python library for our examples.

			Event Hubs provides the EventHubConsumerClient class as part of the Python client libraries to consume the data from the event hub. EventHubConsumerClient can be used to read events from all the partitions with load balancing and checkpointing. We have already used this class in the checkpointing example in the Checkpointing in Event Hubs section. The same example will work for reading across partitions. Here, we will provide the important steps again for convenience.

			Note that all the entries within the angular brackets, < >, are user-provided values:

			
					Instantiate the checkpoint store:storeChkPoint = BlobCheckpointStore.from_connection_string(
        <STORE_CONN_STRING>,
        <STORE_CONTAINER_NAME>
    )


					Instantiate the EventHubConsumerClient class:ehClient = EventHubConsumerClient.from_connection_string(
        <EVENTHUB_CONN_STRING>,
        <CONSUMER_GROUP_NAME>,
        eventhub_name=<EVENTHUB_NAME>,
        checkpoint_store= storeChkPoint # This enables load balancing across partitions
    )


					Define an on_event method to process the event when it arrives:Def on_event(partition_context, event):
    # Process the event
    partition_context.update_checkpoint(event)


					Call the on_event method when an event arrives:With ehClient:
    ehClient.receive(
        on_event=on_event,
        starting_position="-1",  # To start from the beginning of the partition.
    )


			

			When we don't specify a specific partition while instantiating the EventHubConsumerClient class, it will automatically read from across all the partitions in the specified consumer group. You can learn more about the Event Hubs Python libraries at https://azuresdkdocs.blob.core.windows.net/$web/python/azure-eventhub/latest/azure.eventhub.html.

			Next, let's look at the details of how to process the data within a partition.

			Processing within one partition

			Similar to the previous example, where we learned how to process across partitions, we can use the EventHubConsumerClient class to process data within single partitions, too. All we have to do is specify the partition ID in the client.receive call, as demonstrated in the following code snippet. The rest of the code will remain the same as the previous example:

			With client:

			    client.receive(

			        on_event=on_event,

			        partition_id='0', # To read only partition 0

			    )

			This is how we can programmatically process the data from specific Event Hubs partitions. 

			Next, let's look at how to scale resources for stream processing.

			Scaling resources

			Let's look at how to scale resources in Event Hubs, ASA, and Azure Databricks Spark.

			Scaling in Event Hubs

			There are two ways in which Event Hubs supports scaling:

			
					Partitioning: We have already learned how partitioning can help scale our Event Hubs instance by increasing the parallelism with which the event consumers can process data. Partitioning helps reduce contention if there are too many producers and consumers, which, in turn, makes it more efficient.

					Auto-inflate: This is an automatic scale-up feature of Event Hubs. As the usage increases, EventHub adds more throughput units to your Event Hubs instance, thereby increasing its capacity. You can enable this feature if you have already saturated your quota using the partitioning technique that we explored earlier, in the Processing across partitions section.

			

			Next, let's explore the concept of throughput units.

			What are throughput units?

			Throughput units are units of capacity that can be purchased in Event Hubs. A single throughput unit allows the following:

			
					Ingress of up to 1 MB per second or 1,000 events per second

					Egress of up to 2 MB per second or 4,096 events per secondNote
In the Event Hubs Premium tier, the throughput units are called processing units.


			

			Here is how you can enable the auto-inflate feature in Event Hubs:

			
				
					[image: Figure 10.31 – Enabling Auto-inflate in Event Hubs

]
				

			

			Figure 10.31 – Enabling Auto-inflate in Event Hubs

			You can learn more about Event Hubs' scalability at https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-scalability.

			Next, let's look at how to scale the processing engine, ASA.

			Scaling in ASA

			You can scale your ASA clusters directly from the Azure portal. Just click on the Scale tab on the ASA home page, and configure the Streaming units toggle, as shown in the following screenshot:

			
				
					[image: Figure 10.32 – Scaling an ASA job

]
				

			

			Figure 10.32 – Scaling an ASA job

			Streaming units are a measure of the streaming capacity. Scaling units doesn't have an absolute capacity configuration like in the case of Event Hubs throughput units. In general, the higher the number of streaming units, the higher the capacity. You will have to do some trial-and-error runs to identify the sweet spot.

			Tip

			For ASA queries that are not using the PARTITION BY transformation, the recommendation is to start with six SUs and then modify the numbers iteratively by running your jobs and monitoring the SU% utilization metric.

			You can learn about streaming unit optimization at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-streaming-unit-consumption.

			You can learn more about scaling ASA at https://docs.microsoft.com/en-us/azure/stream-analytics/scale-cluster.

			ASA doesn't have an internal autoscale mechanism. However, you can simulate one using services such as Azure Automation. This is an external service that can be used to monitor the ASA metrics and trigger a scale up or scale down externally.

			If you are interested in learning more, you can refer to https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-autoscale.

			Next, let's look at how to scale Azure Databricks Spark.

			Scaling in Azure Databricks Spark Streaming

			We learned how to configure autoscaling for Azure Databricks in Chapter 9, Designing and Developing a Batch Processing Solution, in the Scaling resources section. Please refer to that section to refresh your memory regarding how to configure autoscaling for Spark.

			Next, let's look at how to handle interruptions.

			Handling interruptions

			Interruptions to stream processing might occur due to various reasons such as network connectivity issues, background service upgrades, intermittent bugs, and more. Event Hubs and ASA provide options to handle such interruptions natively using the concept of Azure Availability zones. Availability zones are physically isolated locations in Azure that help applications become resilient to local failures and outages. Azure lists the regions that are paired together to form availability zones. 

			Services that support availability zones deploy their applications to all the locations within the availability zone to improve fault tolerance. Additionally, they ensure that service upgrades are always done one after the other for the availability zone locations. Therefore, they ensure that at no point will all the locations suffer an outage due to service upgrade bugs. Both Event Hubs and ASA support availability zones. Let's look at how to enable this feature for both Event Hubs and ASA.

			Handling interruptions in Event Hubs 

			When Event Hubs is deployed to regions that are part of the availability zones, both the metadata and events are replicated to all the locations in that availability zone. In order to use availability zones, all you need to do is to select a region that supports the availability zone for the Location field, as shown in the following screenshot:

			
				
					[image: Figure 10.33 – Choosing locations with availability zones in Event Hubs

]
				

			

			Figure 10.33 – Choosing locations with availability zones in Event Hubs

			Once you have chosen the availability zone-supported region and clicked on Review + create, the Event Hubs instance is created in all the locations of the availability zone.

			Here are a few other points to make the Event Hubs instance more resilient:

			
					Try to build back off and retry logic into your applications. This is so that transient errors can be caught, and the stream processing can be retried. If your application is built using the Event Hubs SDKs, then the retry logic is already built in.

					If the application doesn't need strictly ordered messages, you can send the events without specifying a partition. This will ensure that Event Hubs load balances the events across all partitions. If a partition fails, the Event Hubs instance will distribute the event to other partitions, thereby improving availability.

			

			You can learn more about Event Hubs availability zones at https://docs.microsoft.com/en-in/azure/event-hubs/event-hubs-geo-dr.

			Next, let's look at how to handle interruptions in ASA.

			Handling interruptions in ASA

			Similar to Event Hubs, ASA also deploys to availability zones (or Azure-paired regions) by default. Additionally, ASA ensures that service updates always happen in separate batches between the locations of the availability zones. There is no configuration required from the users.

			Note

			At the time of writing, the Central India region does not have a paired region for ASA.

			You can learn more about availability zones and interruption handling in ASA at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-job-reliability.

			Next, let's look at how to design and configure exception handling.

			Designing and configuring exception handling

			Event Hubs' exceptions provide very clear information regarding the reason for errors. All EventHub issues throw an EventHubsException exception object.

			The EventHubsException exception object contains the following information:

			
					IsTransient: This indicates whether the exceptions can be retried.

					Reason: This indicates the actual reason for the exception. Some example reasons could include timeouts, exceeding quota limits, exceeding message sizes, client connection disconnects, and more.

			

			Here is a simple example of how to catch exceptions in .NET:

			try

			{

			    // Process Events

			}

			catch (EventHubsException ex) where 

			(ex.Reason == EventHubsException.FailureReason.MessageSizeExceeded)

			{

			    // Take action for the oversize messages

			}

			You can learn more about exception handling at https://docs.microsoft.com/en-us/azure/event-hubs/exceptions-dotnet.

			Next, let's look at upserting data using Synapse Analytics.

			Upserting data

			Upserting refers to the INSERT or UPDATE activity in a database or any analytical data store that supports it. We have already seen UPSERT as part of the batch activity, in the Upserting data section of Chapter 9, Designing and Developing a Batch Processing Solution. ASA supports UPSERT with CosmosDB. CosmosDB is a fully managed, globally distributed No-SQL database. We will learn more about CosmosDB in Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing, in the Implementing HTAP using Synapse Link and CosmosDB section. 

			ASA has two different behaviors based on the compatibility level that is set. ASA supports three different compatibility levels. You can think of compatibility levels as API versions. As and when ASA evolved, the compatibility levels increased. 1.0 was the first compatibility version, and 1.2 is the latest compatibility version. The main change in version 1.2 is the support for the AMQP messaging protocol.

			You can set the compatibility level, as shown in the following screenshot:

			
				
					[image: Figure 10.34 – Updating the compatibility level in ASA

]
				

			

			Figure 10.34 – Updating the compatibility level in ASA

			With the compatibility levels of 1.0 and 1.1, ASA does a property level insert or update within the document. It enables partial updates to the document as a PATCH operation.

			With a compatibility level of 1.2 onward, ASA does an insert or replace document operation. First, ASA does an insert. If that fails due to a document ID conflict, then it does an update.

			Note

			Upserts work in CosmosDB when the document ID is set. If it has not been set, the update scenarios will throw an error.

			You can learn more about ASA – CosmosDB Upserts at https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-documentdb-output#upserts-from-stream-analytics.

			Next, let's look at how to create tests for data pipelines.

			Designing and creating tests for data pipelines

			This section has already been covered in Chapter 9, Designing and Developing a Batch Processing Solution, in the Designing and creating tests for data pipelines section. Please refer to that section for details.

			Optimizing pipelines for analytical or transactional purposes

			We will be covering this topic in Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing, under the Optimizing pipelines for analytical or transactional purposes section, as that entire chapter deals with optimizations.

			Summary

			That brings us to the end of this chapter. This is one of the important chapters both from a syllabus perspective and a data engineering perspective. Batch and streaming solutions are fundamental to building a good big data processing system.

			So, let's recap what we learned in this chapter. We started with designs for streaming systems using Event Hubs, ASA, and Spark Streaming. We learned how to monitor such systems using the monitoring options available within each of those services. Then, we learned about time series data and important concepts such as windowed aggregates, checkpointing, replaying archived data, handling schema drifts, how to scale using partitions, and adding processing units. Additionally, we explored the upsert feature, and towards the end, we learned about error handling and interruption handling.

			You should now be comfortable with creating streaming solutions in Azure. As always, please go through the follow-up links that have been provided to learn more, and try the examples yourself to understand the nitty-gritty details of these technologies.

			In the next chapter, we will learn how to manage batches and pipelines.

		

	

			Chapter 11: Managing Batches and Pipelines

			Welcome to Chapter 11! This is one of the smaller and easier chapters and will be a breeze to read through. In this chapter, we will be focusing on four broad categories: triggering Batch jobs, handling failures in Batch jobs, managing pipelines, and configuring version control for our pipelines. Once you have completed this chapter, you should be able to comfortably set up and manage Batch pipelines using Azure Batch, Azure Data Factory (ADF), or Synapse pipelines.

			In this chapter, we will cover the following topics:

			
					Triggering Batches

					Handling failed Batch loads

					Validating Batch loads

					Managing data pipelines in Data Factory/Synapse pipelines

					Scheduling data pipelines in Data Factory/Synapse pipelines

					Managing Spark jobs in a pipeline

					Implementing version control for pipeline artifacts

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Synapse workspace

					An active Azure Data Factory workspace

			

			Let's get started!

			Triggering batches

			We learned about Azure Batch in Chapter 9, Designing and Developing a Batch Processing Solution, in the Introducing Azure Batch section. In this section, we will learn how to trigger those Batch jobs using Azure Functions. Azure Functions is a serverless service provided by Azure that helps build cloud applications with minimal code, without you having to worry about hosting and maintaining the technology that runs the code. Azure takes care of all the hosting complexities such as deployments, upgrades, security patches, scaling, and more. Even though the name says serverless, it has servers running in the background. It just means that you don't have to maintain those servers – Azure does it for you.

			For our requirement of triggering a Batch job, we will be using the Trigger functionality of Azure Functions. A Trigger defines when and how to invoke an Azure function. Azure Functions supports a wide variety of triggers, such as timer trigger, HTTP trigger, Azure Blob trigger, Azure EventHub trigger, and so on.

			Note

			An Azure function can have only one trigger associated with it. If you need multiple ways to trigger a function, you will have to define different functions for it.

			For our example, we will define a blob trigger and define an Azure function that can call our Batch job:

			
					From the Azure portal, search for Function App and create a new function app. Once created, click on the + Create button to create a new function, as shown in the following screenshot:

			

			
				
					[image: Figure 11.1 – Creating a new Azure Function App

]
				

			

			Figure 11.1 – Creating a new Azure Function App

			
					The Create function screen will look as shown in the following image. Select the Azure Blob Storage trigger option from the Select a template section and configure the required details, such as the function name (New Function), Path, and so on:

			

			
				
					[image: Figure 11.2 – Creating an Azure Blob Storage trigger

]
				

			

			Figure 11.2 – Creating an Azure Blob Storage trigger

			
					Click on the Create button to create the function that you will use as the trigger.

					Now that we have the trigger, we need to define what to do when the trigger fires. Go to the Code + Test tab and add your business logic there. The business logic code could be in C#, Java, Python, or PowerShell:

			

			
				
					[image: Figure 11.3 – Entering code for the Trigger function

]
				

			

			Figure 11.3 – Entering code for the Trigger function

			In our example, we will use snippets of C# code to demonstrate the flow. We must add the business logic inside a Run() method. Here is a sample code reference block: 

			public static void Run(…)

			{

			   // Initialize the credentials

			   BatchSharedKeyCredentials cred = new BatchSharedKeyCredentials(…);

			   // Create a Batch client

			   BatchClient batchClient = BatchClient.Open(cred))

			   // Create a Batch job

			   CloudJob job = batchClient.JobOperations.GetJob(<JOB_ID>);

			   // Add your business logic

			   // Add tasks to the job.

			   CloudTask task = new CloudTask(<TASK_ID>, <COMMAND>);

			   batchClient.JobOperations.AddTask(<JOB_ID>, task);

			}

			Now, every time we add or update a file in the blob storage in the Path field, the preceding function will get called, which will start a Batch job.

			You can refer to the complete sample C# job by going to this book's GitHub repository: https://github.com/Azure-Samples/batch-functions-tutorial.

			Next, let's learn how to handle failed jobs in Azure Batch.

			Handling failed Batch loads

			An Azure Batch job can fail due to four types of errors:

			
					Pool errors

					Node errors

					Job errors

					Task errors

			

			Let's look at some of the common errors in each group and ways to handle them.

			Pool errors

			Pool errors occur mostly due to infrastructure issues, quota issues, or timeout issues. Here are some sample pool errors:

			
					Insufficient quota: If there is not enough of a quota for your Batch account, pool creation could fail. The mitigation is to request an increase in quota. You can check the quota limits here: https://docs.microsoft.com/en-us/azure/batch/batch-quota-limit.

					Insufficient resources in your VNet: If your virtual network (VNet) doesn't have enough resources, such as available IP addresses, Network Security Groups (NSGs), VMs, and so on, the pool creation process may fail. The mitigation is to look for these errors and request higher resource allocation or move to a different VNet that has enough capacity. 

					Short timeouts: Some of the operations, such as pool resizing, may take more than 15 minutes, which is the default that's set by Azure Batch. In such cases, increasing your timeout using the following API could help:POST {batchUrl}/pools?timeout={timeout}&api-version=2021-06-01.14.0


			

			Next, let's look at some of the common node errors.

			Node errors

			Node errors could be due to hardware issues or due to failures in the job setup activities, such as the startup scripts, download scripts, and so on. Here are some sample node errors:

			
					Start task failures: If you have configured a start task for your job and it fails, then the node becomes unusable. You can look for the errors in the TaskExecutionResult and TaskFailureInformation fields in the response of the following API:GET {batchUrl}/pools/{poolId}/nodes/{nodeId}?api-version=2021-06-01.14.0


			

			Once you have identified the error, you will have to take corrective actions, such as fixing the user's start scripts.

			
					Application download failures: If Batch is unable to download your application package, then it will throw a node error. The ComputeNodeError property in the response of the previously shown GET API will list such application download failures. Check for file permissions, correct locations, and so on to fix such issues.

					Nodes going into a bad state: This could happen due to infrastructure failures, network issues, bad OS/security upgrades, the disk being full, and so on.

			

			In such cases, the ComputeNodeError property in the response of the GET API will indicate the error. Based on the error, you will have to take corrective actions, such as spinning up new nodes, fixing network issues, cleaning up the disk, and so on.

			You can learn more about handling pool and node errors here: https://docs.microsoft.com/en-us/azure/batch/batch-pool-node-error-checking.

			Next, let's look at job errors.

			Job errors

			Jobs can fail due to multiple reasons. Let's look at a few of them:

			
					Job constraints such as setting maxWallClockTime can result in job failures.

					Errors in job preparation or job release tasks. These are tasks that are run before the first task and after the last task of the job. Any failures in these can cause the job to fail.

			

			In all such cases, the JobExecutionInformation and JobSchedulingError properties in the response of the following API will contain the error's details:

			GET {batchUrl}/jobs/{jobId}?api-version=2021-06-01.14.0

			Based on the actual error that's identified by the preceding API response, we should be able to fix the issue. Now, let's look at task errors.

			Task errors

			Task failures can happen in the following cases:

			
					The tasks command fails and returns a non-zero exit code.

					Resource file download issues, such as if the task is unable to download the resource files from the source folders.

					Output files upload issues, such as if the task is unable to upload the output file to the destination folders.

			

			In all such cases, you can check the TaskExecutionInformation property in the response of the following REST API to get the details of the task error:

			GET {batchUrl}/jobs/{jobId}/tasks/{taskId}?api-version=2021-06-01.14.0

			For the file output issues, the Batch tasks also write the Fileuploadout.txt and fileuploaderr.txt files on the node. These files can also provide valuable information about the errors.

			You can learn more about handling job and task errors here: https://docs.microsoft.com/en-us/azure/batch/batch-job-task-error-checking.

			In the next section, we will look at the options that are available for validating Azure Batch loads.

			Validating Batch loads

			Batch jobs are usually run as part of Azure Data Factory (ADF). ADF provides functionalities for validating the outcome of jobs. Let's learn how to use the Validation activity in ADF to check the correctness of Batch loads:

			
					The Validation activity of ADF can be used to check for a file's existence before proceeding with the rest of the activities in the pipeline. The validation pipeline will look similar to the following:

			

			
				
					[image: Figure 11.4 – ADF Validation activity

]
				

			

			Figure 11.4 – ADF Validation activity

			
					Once we have validated that the files exist, we can use the Get Metadata activity to get more information about the output files. In the following screenshot, we output Column count, which we'll check later using an If Condition activity to decide if the output files are any good:

			

			
				
					[image: Figure 11.5 – Configuring the Get Metadata activity to publish the Column count

]
				

			

			Figure 11.5 – Configuring the Get Metadata activity to publish the Column count

			
					Once we get the metadata, we must use the If Condition activity to decide on if we want to continue processing the pipeline or not based on the metadata from the previous stage:

			

			
				
					[image: Figure 11.6 – Using the metadata from the Get Metadata activity to make a decision

]
				

			

			Figure 11.6 – Using the metadata from the Get Metadata activity to make a decision

			The condition could be something as follows, where we check if the number of columns is equal to the expected column count. In this example, I'm expecting five columns:

			@equals(activity('TripFileMetadata').output.columnCount, 5)

			You can perform similar validation checks using a combination of ADF activities for Batch and other technologies.

			Now, let's learn how to schedule data pipelines in ADF and Synapse Pipelines.

			Scheduling data pipelines in Data Factory/Synapse pipelines

			Scheduling pipelines refers to the process of defining when and how a pipeline needs to be started. The process is the same between ADF and Synapse pipelines. ADF and Synapse pipelines have a button named Add Trigger in the Pipelines tab that can be used to schedule the pipelines, as shown in the following screenshot:

			
				
					[image: Figure 11.7 – Adding a trigger from ADF/Synapse pipelines

]
				

			

			Figure 11.7 – Adding a trigger from ADF/Synapse pipelines

			The following screenshot shows the details that are required to configure a Schedule trigger:

			
				
					[image: Figure 11.8 – Defining the trigger in ADF

]
				

			

			Figure 11.8 – Defining the trigger in ADF

			ADF and Synapse pipeline services support four types of triggers:

			
					Schedule trigger: This triggers a pipeline once or regularly based on the wall clock time.

					Tumbling window trigger: This triggers a pipeline based on periodic intervals while maintaining state; that is, the trigger understands which window of data was processed last and restarts from there.

					Event-based trigger: This triggers a pipeline based on store events such as files being created in Blob or ADLS.

					Custom trigger: This triggers pipelines based on events from Azure Event Grid. ADF can listen to topics in Azure Event Grid and trigger pipelines based on certain messages or events occurring in the Event Grid topic.

			

			Once the trigger has been set up, you can see the pipelines being triggered automatically from the Monitoring tab of ADF or Synapse pipelines. 

			You can learn more about triggers and scheduling pipelines here: https://docs.microsoft.com/en-us/azure/data-factory/concepts-pipeline-execution-triggers.

			Now, let's learn to manage and monitor data pipelines in ADF and Synapse pipelines.

			Managing data pipelines in Data Factory/Synapse pipelines

			ADF and Synapse pipelines provide two tabs called Manage and Monitor, which can help us manage and monitor the pipelines, respectively.

			In the Manage tab, you can add, edit, and delete linked services, integration runtimes, triggers, configure Git, and more, as shown in the following screenshot:

			
				
					[image: Figure 11.9 – The Manage screen of ADF

]
				

			

			Figure 11.9 – The Manage screen of ADF

			We have already learned about linked services throughout this book. Now, let's explore the topic of integration runtimes in ADF and Synapse pipelines.

			Integration runtimes

			An integration runtime (IR) refers to the compute infrastructure that's used by ADF and Synapse Pipelines to run data pipelines and data flows. These are the actual machines or VMs that run the job behind the scenes.

			The IR takes care of running data flows, copying data across public and private networks, dispatching activities to services such as Azure HDInsight and Azure Databricks, and executing SQL Server Integration Services (SSIS).

			You can create IRs from the Manage tab of ADF and Synapse pipelines by clicking on the + New button, as shown in the following screenshot:

			
				
					[image: Figure 11.10 – Creating a new integration runtime

]
				

			

			Figure 11.10 – Creating a new integration runtime

			ADF provides support for three types of IRs:

			
					Azure Integration Runtime: This is the default option and supports connecting data stores and compute services across public endpoints. Use this option to copy data between Azure-hosted services. Azure IR also supports connecting data stores using private links.

					Self-Hosted Integration Runtime: Use this option when you need to copy data between on-premises clusters and Azure services. You will need machines or VMs on the on-premises private network to install a self-hosted IR.

					Azure – SSIS Integration Runtime: The SSIS IRs are used for SSIS lift and shift uses cases.

			

			You can learn more about IRs here: https://docs.microsoft.com/en-us/azure/data-factory/create-azure-integration-runtime?tabs=data-factory.

			Next, let's look at the monitoring options in ADF.

			ADF monitoring

			Pipelines can be triggered manually or automatically (using triggers). Once they're triggered, we can monitor them from the Monitor tab, as shown in the following screenshot:

			
				
					[image: Figure 11.11 – Monitoring ADF pipelines

]
				

			

			Figure 11.11 – Monitoring ADF pipelines

			You can Cancel any in-progress runs and Rerun any failed pipelines from the Monitor tab. You can click on each of those runs to look at the details of each flow, as shown in the following screenshot. Click on the spectacles icon for statistics about the run, such as how many stages were there, how many lines were processed, how long each stage took, and so on:

			
				
					[image: Figure 11.12 – Data flow details in the Activity runs tab

]
				

			

			Figure 11.12 – Data flow details in the Activity runs tab

			Synapse pipelines also provides similar Manage and Monitor screens, so we will not be repeating them here.

			Next, let's learn how to manage Spark jobs in an ADF pipeline.

			Managing Spark jobs in a pipeline

			Managing Spark jobs in a pipeline involves two aspects:

			
					Managing the attributes of the pipeline's runtime that launches the Spark activity: Managing the Spark activity pipeline attributes is no different than managing any other activities in a pipeline. The Managing and Monitoring pages we saw in Figure 11.9, Figure 11.11, and Figure 11.12 are the same for any Spark activity as well. You can use the options provided on these screens to manage your Spark activity.

					Managing Spark jobs and configurations: This involves understanding how Spark works, being able to tune the jobs, and so on. We have a complete chapter dedicated to optimizing Synapse SQL and Spark jobs towards the end of this book. You can refer to Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing, to learn more about managing and tuning Spark jobs.

			

			In this section, we'll learn how to add an Apache Spark job (via HDInsight) to our pipeline so that you get an idea of the parameters that can be configured while setting up a Spark job using ADF and HDInsight. This is slightly different than adding Databricks Notebooks to the ADF pipeline. Here are the steps:

			
					We must create a Linked service for an HDInsight cluster from the Manage tab of ADF. The following screenshot shows how to create this linked service. You can use AutoResolveIntegrationRuntime as your HDInsight cluster since they are also hosted on Azure. Specify the other details, such as an existing Hdi Cluster name or an On-demand HDInsight cluster, as well as the Azure Storage linked service name associated with the storage account for that HDI cluster to create the linked service:

			

			
				
					[image: Figure 11.13 – Creating an HDInsight linked service

]
				

			

			Figure 11.13 – Creating an HDInsight linked service

			
					Next, select the Spark activity from the ADF activity tab and select the linked service that we created in the previous step for the HDInsight linked service field:

			

			
				
					[image: Figure 11.14 – Configuring the HDInsight Spark cluster inside the ADF pipeline

]
				

			

			Figure 11.14 – Configuring the HDInsight Spark cluster inside the ADF pipeline

			
					In the Script/Jar tab, provide the link to the actual Spark driver job file. In this case, we will point it to a wordcount script, which was uploaded into the Blob storage:

			

			 

			
				
					[image: Figure 11.15 – Creating a pipeline with Spark

]
				

			

			Figure 11.15 – Creating a pipeline with Spark

			
					Now, if we just trigger this pipeline using the Add Trigger button, the entire Spark pipeline will run.

			

			That should have given you a good understanding of managing Spark in pipelines. Next, let's learn how to implement version control in ADF.

			Implementing version control for pipeline artifacts

			By default, ADF and Synapse pipelines save pipeline details in their internal stores. These internal stores don't provide options for collaboration, version control, or any other benefits provided by the source control systems. Every time you click on the Publish All button, your latest changes are saved within the service. To overcome this shortcoming, both ADF and Synapse pipelines provide options to integrate with source control systems such as Git. Let's explore how to configure version control for our pipeline artifacts.

			Configuring source control in ADF

			ADF provides a Set up code repository button at the top of the home screen, as shown in the following screenshot. You can use this button to start the Git configuration process:

			
				
					[image: Figure 11.16 – The Set up code repository button on the ADF home screen

]
				

			

			Figure 11.16 – The Set up code repository button on the ADF home screen

			You can also reach the Git Configuration page from the Manage tab (the toolkit icon), as shown in the following screenshot. This screenshot shows Synapse pipelines, but ADF has a very similar page:

			
				
					[image: Figure 11.17 – Launching Git configuration from Synapse's Manage tab

]
				

			

			Figure 11.17 – Launching Git configuration from Synapse's Manage tab

			Both ADF and Synapse pipelines support the Azure DevOps version of Git and external GitHub accounts. Let's learn how to integrate both these source control systems into ADF and Synapse.

			Integrating with Azure DevOps

			Let's look at the configuration for Azure DevOps. You will need to have an existing Azure DevOps account. If you don't have one, you can easily create one:

			
					Just search for Azure DevOps Organizations from the Azure portal. Click on the My Azure DevOps Organizations button on the Azure DevOps screen, as shown in the following screenshot, and set one up. Alternatively, you could also directly visit https://azure.microsoft.com/en-us/services/devops/ to get started with Azure DevOps:

			

			
				
					[image: Figure 11.18 – Creating a new DevOps organization

]
				

			

			Figure 11.18 – Creating a new DevOps organization

			Once you have created a new Azure DevOps organization, you can create new Git repositories under it.

			
					Now, go back to the Azure Data Factory Git Configuration screen and click on the Configure button (Figure 11.17). here, you will be able to choose between Azure DevOps and GitHub. If you choose Azure DevOps, you will see the Configure a repository screen, as shown in the following screenshot. Here, you must provide an Azure DevOps organization name, Project name, Repository name, Collaboration branch, Publish branch, Root folder, and so on:

			

			
				
					[image: Figure 11.19 – Configuring Azure DevOps Git as the source control for ADF

]
				

			

			Figure 11.19 – Configuring Azure DevOps Git as the source control for ADF

			
					Fill in the details and click Apply to configure the Azure DevOps Git repository. From now on, every time you click Publish it will save the changes to the git repository specified by you.

			

			Now, let's look at the GitHub configuration details.

			Integrating with GitHub

			The configuration screen for GitHub is also very similar. You will have to specify attributes such as Repository name, Collaboration branch, Publish branch, Root folder, and so on, as shown in the following screenshot:

			
				
					[image: Figure 11.20 – Configuring GitHub as the source control for ADF

]
				

			

			Figure 11.20 – Configuring GitHub as the source control for ADF

			Note

			In both these cases, ADF creates a new branch called adf_publish, which it will use as the source to publish to the ADF service. You will not be able to make changes to this branch directly, but you can merge your changes via pull requests.

			Once you have configured the Azure DevOps or GitHub version of Git, every time you click on Publish, the pipeline artifacts will be stored in the Git repository.

			Now that you know how to configure version control for pipeline artifacts, let's summarize this chapter.

			Summary

			With that, we have come to the end of this small chapter. We started by learning how to trigger Batch loads, how to handle errors and validate Batch jobs, and then moved on to ADF and Synapse pipelines. We learned about setting up triggers, managing and monitoring pipelines, running Spark pipelines, and configuring version control in ADF and Synapse Pipelines. With all this knowledge, you should now be confident in creating and managing pipelines using ADF, Synapse Pipelines, and Azure Batch.

			This chapter marks the end of the Designing and Developing Data Processing section, which accounts for about 25-30% of the certification goals. From the next chapter onward, we will next move on to the Designing and Implementing Data Security section, where we will be focusing on the security aspects of data processing.

		

	

			Part 4: Design and Implement Data Security (10-15%)

			This part focuses on data security and compliance. Security and compliance are integral components of any cloud system. Different countries and governments have different compliance requirements. Even though Azure provides very high levels of security, the compliance aspect depends on the individual components. We need to ensure that the technologies we choose satisfy the compliance requirements of the countries or companies that you work with.

			This section comprises the following chapter:

			
					Chapter 12, Designing Security for Data Policies and Standards

			

		

	

			Chapter 12: Designing Security for Data Policies and Standards

			Welcome to the next section of the syllabus, Design and Implement Data Security. This section accounts for about 10–15% of the questions in the certification. According to the syllabus, this section is supposed to have two chapters: one focusing on the design aspects, and another focusing on implementation aspects. But, to ensure a better flow of topics and to avoid too many context switches, I've merged both the design and implementation details into this single chapter. Once you have completed this chapter, you should be able to recognize sensitive information and be able to design and implement various sensitive information-handling techniques such as data masking, row and column level security, implementing role-based access and access-controlled lists, enabling encryption and more. You will also be aware of the good practices for handling keys, secrets, and certificates, and understand the low-level implementation details of handling secure data in Spark. Overall, you will be able to take care of the design and implementation of the data security and privacy aspects of your data lake.

			We will be covering the following topics in this chapter:

			
					Designing and implementing data encryption for data at rest and in transit

					Designing and implementing data auditing strategies

					Designing and implementing data masking strategies

					Designing and implementing Azure role-based access control and POSIX-like access control lists for Data Lake Storage Gen2

					Designing and implementing row-level and column-level security

					Designing and implementing data retention policies

					Designing and implementing purging data based on business requirements

					Managing identities, keys, and secrets across different data platform technologies

					Implementing secure endpoints (private and public)

					Implementing resource tokens in Azure Databricks

					Loading DataFrames with sensitive information

					Writing encrypted data to tables or Parquet files

					Designing for data privacy and managing sensitive information

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

			

			Let's get started!

			Introducing the security and privacy requirements

			How do you go about designing for the security and privacy of data? Well, let's take an example and try to walk through some scenarios. Let's consider our faithful Imaginary Airport Cabs (IAC) example that we used in our previous chapters. We have already seen that the cab company gets a lot of trips, customers, and driver information streaming in. We have also learned how to store the data in the data lake and SQL stores. Now, let's get a little deeper into the storage topic and figure out how to safeguard confidential and private information.

			Let's consider the following requirements from the IAC security team:

			
					Data needs to be stored and transferred securely as we are dealing with cloud systems, and no one other than the IAC employees should have access to the data.

					Changes to data and any activity on the data should be recorded for compliance reasons.

					Not everyone should have access to all the data. It should be on a need-to-know basis.

					Maintain customer privacy at all costs.

					Older data should be safely deleted after one month.

			

			These look like pretty standard requirements for any company. Now, let's get into each of the topics in this chapter and learn how they help accomplish the preceding requirements.

			Designing and implementing data encryption for data at rest and in transit

			The usual questions from anyone who wants to store data on a public cloud would be as follows: 

			
					How safe is my data?

					Can the employees of the cloud company access my data?

					Can any outsiders access my data?

			

			Such concerns are usually addressed by cloud companies like Azure using encryption at rest and in transit. This also happens to be the first requirement of our example requirements for IAC. Let's look at encryption at rest in detail.

			Encryption at rest

			Encryption at rest is the process of encrypting data before writing it to disks and decrypting the data when requested by applications. Encryption at rest protects data from physical disk theft, retrieval of data from lost disks, unauthorized data access by malicious cloud company employees, and so on. Unless someone has the decryption key or possesses insanely powerful supercomputing resources (the kind that governments might have – although, even with the current supercomputers, it is extremely difficult if the encryption key is strong and big enough), the data cannot be retrieved. It will just appear as gibberish if anyone tries to directly copy the data from the disks.

			This form of security has become a fundamental requirement for any data stored on the cloud, and Azure does a good job of providing encryption-at-rest options for most of its storage solutions. In this topic, we will look at the encryption-at-rest options available in Azure Storage and Azure Synapse SQL.

			Encryption at rest and in transit is usually required for compliance with various regulations. So, it is not just about customer concerns; it might be required by law too. You can learn about the various regulations and the levels of compliance provided by the various Microsoft services here: https://docs.microsoft.com/en-us/compliance/regulatory/offering-home.

			Let's now learn how Azure Storage and Synapse SQL pools provide encryption at rest. 

			Encryption at rest in Azure Storage

			Azure Storage provides encryption at rest by default. It secures your data without you even requesting it. In fact, you cannot disable Azure Storage encryption. Azure Storage uses its own keys to encrypt data. It also provides the option for customers to use their own encryption keys. This provides additional control to the user. Such user-provided keys are called Customer-Managed Keys (CMKs). You can enable CMKs from the Azure Storage screen, as shown here:

			
				
					[image: Figure 12.1 – Enabling CMKs in Azure Storage

]
				

			

			Figure 12.1 – Enabling CMKs in Azure Storage

			One of the requirements for the CMK is that the customer's key needs to be safely stored in Azure Key Vault. Think of Azure Key Vault as an online version of a physical vault. You can store all your passwords, secret keys, access keys, and so on in Key Vault and applications can access these keys securely during runtime. This method ensures that secrets and passwords need not be stored as part of the code base. We will learn more about Key Vault later in this chapter.

			You can learn more about CMKs here: https://docs.microsoft.com/en-us/azure/storage/common/customer-managed-keys-overview.

			Encryption using CMKs would address IAC's concerns about the secure storage of data. Let's look next at how Synapse SQL encrypts data files.

			Encryption at rest in Azure Synapse SQL

			This section applies to Azure SQL technologies in general. In Azure Synapse SQL, encryption at rest is accomplished using a feature called Transparent Data Encryption (TDE). In TDE, the encryption happens in real time at the page level. Pages are encrypted before writing to disk and decrypted before reading back into memory. Unlike Azure Storage, TDE must be manually enabled for Azure Synapse SQL. But for other SQL technologies such as Azure SQL, it is enabled by default.

			You can enable TDE in Azure Synapse SQL from the SQL pool screen under the Transparent data encryption tab:

			
				
					[image: Figure 12.2 – Enabling TDE using the Azure portal

]
				

			

			Figure 12.2 – Enabling TDE using the Azure portal

			You can also enable TDE by executing the following statement as an admin user on the Azure Synapse SQL terminal:

			ALTER DATABASE <TABLENAME> SET ENCRYPTION ON;

			Note

			TDE encrypts the database and secures against data theft by encrypting the backup and snapshot files too.

			You can learn more about TDE here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-encryption-tde-tsql.

			Azure Synapse SQL also provides the option for customers to bring in their own encryption keys. If you need to configure a Customer Managed Key (CMK), you should enable double encryption using a CMK during the creation of a Synapse workspace itself, as shown in the following screenshot.

			 

			
				
					[image: Figure 12.3 – Configuring a CMK in Azure Synapse SQL

]
				

			

			Figure 12.3 – Configuring a CMK in Azure Synapse SQL

			You can learn more about CMKs with TDE here: https://docs.microsoft.com/en-us/azure/azure-sql/database/transparent-data-encryption-tde-overview?tabs=azure-portal#customer-managed-transparent-data-encryption---bring-your-own-key.

			Let's look at the Always Encrypted feature of Azure SQL next.

			Always Encrypted

			Always Encrypted is a feature provided by Azure SQL and SQL Server databases to encrypt selected database columns using client drivers. The Always Encrypted client driver fetches the encryption key from a secure location such as Azure Key Vault to encrypt or decrypt the specified column data. Since the encryption key is never available to the database engine, the database administrators cannot access the data; only the data owners who have access to the encryption keys will be able to access the data.

			There are two types of keys used for Always Encrypted:

			
					Column encryption key – The key that is used to encrypt/decrypt a column

					Column master key – The protection key to encrypt column encryption keys

			

			Here is sample code to encrypt the two columns Email and SSN of a Customer table:

			CREATE COLUMN MASTER KEY CMK  

			WITH (  

			     KEY_STORE_PROVIDER_NAME = 'AZURE_KEY_VAULT',   

			     KEY_PATH = 'KeyVault/key/path'  

			   );  

			---------------------------------------------  

			CREATE COLUMN ENCRYPTION KEY CEK   

			WITH VALUES (  

			    COLUMN_MASTER_KEY = CMK,   

			    ALGORITHM = 'RSA_OAEP',   

			    ENCRYPTED_VALUE = 0x020002134……

			);  

			---------------------------------------------  

			CREATE TABLE Customer (  

			   [name] VARCHAR(30),

			   [email] VARCHAR(10)   

			        COLLATE  Latin1_General_BIN2 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = CEK,  

			        ENCRYPTION_TYPE = RANDOMIZED,  

			        ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256'),   

			   [phone] VARCHAR (12),

			   [SSN] VARCHAR (11)   

			        COLLATE  Latin1_General_BIN2 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = CEK,  

			        ENCRYPTION_TYPE = DETERMINISTIC ,  

			        ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256'),   

			);  

			The DETERMINISTIC option specified for email ensures the client driver always generates the same encrypted value for the given plain text. The RANDOMIZED option, on the other hand, generates a different encrypted value each time.

			Tip

			If you plan to use the encrypted column in JOINs, INDEXES, AGGREGATES, and so on, use the Deterministic type and not a random type.

			There are four database permissions that are needed for Always Encrypted.

			
					ALTER ANY COLUMN MASTER KEY – For creating and deleting column master keys

					ALTER ANY COLUMN ENCRYPTION KEY – For creating and deleting column encryption keys

					VIEW ANY COLUMN MASTER KEY DEFINITION – To read column master keys to query encrypted columns

					VIEW ANY COLUMN ENCRYPTION KEY DEFINITION – To read column master keys to query encrypted columnsNote
Since the encryption and decryption are done using a client driver, server-side operations such as SELECT INTO, UPDATE, and BULK INSERT will not work with Always Encrypted columns.


			

			You can learn more about Always Encrypted here: https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15.

			Next, let's look at encryption in transit.

			Encryption in transit

			Another important security concept is encryption in transit. This refers to encrypting the data that is being sent over a wire or, in other words, any data that is being moved from one place to another. Examples of data movement could be data being read by an application, data getting replicated to a different zone, or data being downloaded from the cloud. Safeguarding the data during transfer is as important as keeping it safe while storing. 

			Encryption in transit is usually accomplished via two protocols, Secure Sockets Layer (SSL) or Transport Layer Security (TLS). SSL support is being discontinued for some Azure services, so TLS is the preferred network protocol to encrypt data during transit.

			Let's learn how Azure Storage and Synapse SQL pools provide encryption in transit.

			Enabling encryption in transit for Azure Storage

			Let's look at how to enable TLS in Azure Storage.

			You can go to the Blob or ADLS Gen2 storage home page and select the Configuration tab under Settings. On the configuration page, you will be able to configure the minimum TLS version. The recommendation is to go with TLS version 1.2. Here is a screenshot of the TLS version page.

			
				
					[image: Figure 12.4 – Enabling TLS in Azure Storage

]
				

			

			Figure 12.4 – Enabling TLS in Azure Storage

			This is how we can enable TLS for Azure Storage. Next, let's look at how to configure TLS in a Synapse SQL pool.

			Enabling encryption in transit for Azure Synapse SQL

			Azure Synapse SQL automatically secures data in transit using TLS protocols. In fact, Synapse SQL enforces encryption of all the connections irrespective of the setting of Encrypt or TrustServerCertificate in the connection string. So, we don't need to do any additional configurations from our side.

			You can learn more about information protection in Azure Synapse SQL and other Azure SQL variants here: https://docs.microsoft.com/en-us/azure/azure-sql/database/security-overview.

			Apart from encryption, the other ways to secure data while in transit is to set up dedicated Virtual Private Networks (VPNs) or to use Azure ExpressRoute. 

			You can find more information about VPNs here: https://docs.microsoft.com/en-us/azure/vpn-gateway/.

			ExpressRoute provides a private connection from your on-premises network to the Azure cloud. It uses connectivity providers for the connection and doesn't use the public internet. As such, the connections are fast, reliable, and secure.

			You can find more about Azure ExpressRoute here: https://docs.microsoft.com/en-us/azure/expressroute/.

			Let's look next at data auditing strategies.

			Designing and implementing a data auditing strategy

			This was the second requirement of our example IAC requirements – to keep track of the activities on the data store for compliance purposes. Data auditing is the process of keeping track of the activities that were performed on a service. This is usually done via logs and metrics. Let's look at how Azure Storage supports data auditing.

			Storage auditing

			Azure Storage supports audit logging via Storage Analytics logging. This is now called classic monitoring. There is a newer version of logging available under Azure Monitor. Azure Monitor storage support was in preview mode at the time of writing this book. Let's look at both ways of enabling audit logging. Storage Analytics logging can be enabled as shown in the following screenshot:

			Using a classic diagnostic setting

			
				
					[image: Figure 12.5 – Enabling metrics logging for auditing in the Azure storage

]
				

			

			Figure 12.5 – Enabling metrics logging for auditing in the Azure storage

			Once enabled, the logs will get stored in a container called $logs under your storage account. You can use any data explorer or data processing tools to view and analyze the data under this folder.

			Important Note

			It might take up to an hour for the logs to appear under the $logs container. Storage Analytics doesn't immediately flush the logs. It does it at regular intervals or when it has enough data to flush the data to the blob.

			You can learn more about Azure Storage Analytics logging here: https://docs.microsoft.com/en-us/azure/storage/common/storage-analytics-logging.

			Next, let's look at how to achieve this using Azure Monitor.

			Using Azure Monitor

			Azure Monitor is Azure's full-stack monitoring service. It is enabled by default for most Azure services. It collects certain default metrics and logs for every service and can be configured to collect more detailed logs and metrics as required. In the case of Azure Storage, Azure Monitor starts collecting metrics and logs once we enable Diagnostic settings on the Azure Storage screen in the Azure portal, as shown in the following screenshot:

			
				
					[image: Figure 12.6 – Azure Monitoring – Diagnostic settings

]
				

			

			Figure 12.6 – Azure Monitoring – Diagnostic settings

			Click on the + Add diagnostic setting link to configure the diagnostic setting, as shown in the following screenshot:

			
				
					[image: Figure 12.7 – Configuring a diagnostic setting using Azure monitoring

]
				

			

			Figure 12.7 – Configuring a diagnostic setting using Azure monitoring

			On the Diagnostic setting screen, you can specify which logs and metrics you want to record and which location/tool to send them to. Azure Monitor will start recording and sending the logs and metrics from then on to the configured service. You can also select the destination where you want to send the logs to. Remember that there will be a cost associated with storing the logs in any of these destinations, similar to the cost of storing any other data in them.

			You can learn more about Azure monitoring for storage here: https://docs.microsoft.com/en-us/azure/storage/blobs/monitor-blob-storage.

			Let's look next at auditing in SQL.

			SQL auditing

			Azure Synapse SQL provides the option to track all database events and activities via its Auditing feature. You can easily enable Auditing from the Azure SQL Auditing tab on the SQL pool portal page. An example is shown in the next screenshot. It provides multiple storage options, such as Azure Storage, Log Analytics, and Event Hub as the destination of the audit logs. You can configure the destination according to your business needs. For example, if you want to do some real-time analysis of audit logs, then you can send them to Event Hub. If you want to store it for compliance purposes, you can choose to store it in Azure Blob storage. If you want to do some ad hoc querying and analysis, then use Log Analytics. We will learn more about Log Analytics later in this chapter.

			
				
					[image: Figure 12.8 – Configuring Azure Synapse SQL Auditing

]
				

			

			Figure 12.8 – Configuring Azure Synapse SQL Auditing

			You can learn more about SQL Auditing here: https://docs.microsoft.com/en-us/azure/azure-sql/database/auditing-overview.

			Let's look next at data masking strategies.

			Designing and implementing a data masking strategy

			Data masking is a technique used in SQL technologies to hide sensitive data in SQL query results from non-privileged users. For example, the credit card info of a customer might be masked as XXXX-XXXX-XXXX-1234 instead of showing the complete number while querying a customer table in Synapse SQL. The data itself is not changed in the tables, but the queries and views modify the data dynamically to mask sensitive information.

			This feature helps enforce the following two requirements of IAC:

			
					Not everyone should have access to all the data – it should be on a need-to-know basis.

					Maintain customer privacy at all costs.

			

			You can easily create a data mask in Azure Synapse SQL (and in Azure SQL too) using a feature called Dynamic Data Masking (DDM). The following screenshot shows how this can be done in Azure Synapse SQL:

			
				
					[image: Figure 12.9 – Setting up DDM from the Azure portal

]
				

			

			Figure 12.9 – Setting up DDM from the Azure portal

			From the previous screen, you can click on the + Add mask link to create a new mask. For example, if you want to create an email mask, you just need to select the Email option from the drop-down list, as shown in the following screenshot:

			
				
					[image: Figure 12.10 – Creating an email mask

]
				

			

			Figure 12.10 – Creating an email mask

			The previous screenshot also shows other options that you can use, such as Credit card value, Number, and Custom string.

			You can also set up DDM using T-SQL in Azure Synapse SQL, as shown here:

			ALTER TABLE dbo.DimCustomer  

			ALTER COLUMN emailId ADD MASKED WITH (FUNCTION = 'email()');

			Note

			DDM does not encrypt the column. It only masks the values during queries.

			You can learn more about DDM here: https://docs.microsoft.com/en-us/azure/azure-sql/database/dynamic-data-masking-overview.

			Let's look next at Azure RBAC and ACL policies, which also deal with a similar requirement of restricting access to data.

			Designing and implementing Azure role-based access control and a POSIX-like access control list for Data Lake Storage Gen2

			This section also deals with restricting data access to unauthorized users and satisfies the following requirement of our sample IAC requirements:

			Not everyone should have access to all the data. It should be on a need-to-know basis.

			Azure uses and recommends the principle of least privilege, which means assigning the least possible privilege required to accomplish a task. Let's see how RBAC and ACLs help to achieve this goal.

			Restricting access using Azure RBAC

			Azure Role-Based Access Control (Azure RBAC) is an authorization system that controls who can access what resources in Azure. Azure RBAC works hand in hand with Azure AAD. Let's try to understand the basics of RBAC before getting into the details.

			RBAC has three components:

			
					Security principal: This could be any user, group, or managed identity (service accounts whose life cycle is completely managed by Azure) created within AAD. You can think of the service principal as the "who" part of the authorization. It is the entity that we are requesting permission for. It could be real people or service accounts that are used to run services automatically without human intervention.

					Role: Think of the examples of admin roles or read-only guest roles that you have used to log in to any system. An admin role would have had complete access to create, read, write, delete, and so on, while a guest account might have just had read-only access. A role basically defines what actions can be performed by a user. Azure has a huge list of predefined roles, such as Owner, Contributor, and Reader, with the right list of permissions already assigned. So, you can just choose to use one of them instead of creating a new role.

					Scope: Scope refers to all the resources where the role needs to be applied. Do you want the rules to apply only to a resource group? Only to a container in storage? Multiple containers? And so on.

			

			In order to define an RBAC rule, we need to define all three of the above and assign a role and scope to the security principal.

			Now, let's look at how to accomplish this for a data lake. From the Azure Storage home page, select Access Control (IAM). There, you can add role assignments, as shown in the following screenshot. You can select the role from the Role field, the security principal from the Assign access to field, and finally, the scope, in this case, would be the Storage account itself:

			
				
					[image: Figure 12.11 – Configuring the RBAC role assignment in ADLS Gen2

]
				

			

			Figure 12.11 – Configuring the RBAC role assignment in ADLS Gen2

			You can learn more about Azure RBAC here: https://docs.microsoft.com/en-us/azure/role-based-access-control/.

			Let's look next at Access Control Lists (ACLs).

			Restricting access using ACLs

			While Azure RBAC provides coarse-grained access such as who can read/write data in an account, ACLs provide more fine-grained access such as who can read data from a specific directory or a file. RBAC and ACL complement each other to provide a wide spectrum of access control.

			Each directory and file in Azure Storage has an ACL. You can assign any of (or all of) the read, write, and execute permissions to individual security principals (users) or groups to provide them with the required access to the file or directory. ACLs are enabled by default for ADLS Gen2.

			Here is how we can assign ACLs in ADLS Gen2. Just right-click on the file or folder name and select Manage ACL:

			
				
					[image: Figure 12.12 – Right-click on the files or folders to select Manage ACL

]
				

			

			Figure 12.12 – Right-click on the files or folders to select Manage ACL

			On the Manage ACL screen, you can assign Read, Write, and Execute access to the principals under Security principal, as shown in the following screenshot:

			
				
					[image: Figure 12.13 – Configuring the ACL in ADLS Gen2

]
				

			

			Figure 12.13 – Configuring the ACL in ADLS Gen2

			You can configure the right access level for users according to your requirements. Let's next see the order in which Azure evaluates RBAC and ACLs.

			How does Azure decide between RBAC and ACLs if there are conflicting rules?

			Here is a flow chart reproduced from Azure that shows how the authorization decision is made between RBAC and ACL:

			
				
					[image: Figure 12.14 – RBAC and ACL evaluation sequence

]
				

			

			Figure 12.14 – RBAC and ACL evaluation sequence

			In case of conflicts, Azure gives precedence to RBAC. So be aware of this priority rule while designing the security/compliance aspects of your data lake.

			Let's next learn about some of the limitations of RBAC and ACLs.

			Limitations of RBAC and ACL

			Here are some other restrictions on RBAC and ACL that you should be aware of while designing for security and privacy requirements:

			
					Azure RBAC allows 2,000 role assignments per subscription.

					ACL allows up to 32 ACL entries per file and directory. This number is a bit restricting, so ensure that you don't end up adding too many individual users; instead, create groups and add only groups to ACLs.

			

			You can learn more about ACLs here: https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-access-control.

			Azure also supports two other authentication methods, called Shared Key authorization and Shared Access Signature (SAS) authorization. Shared Key authorization involves sharing an Access key, which basically gives admin-like access to the resource to anyone possessing the key. SASs are slightly better because you can define what actions are allowed with the SAS key. 

			If you use Shared Key or SAS authorization methods, they will override both RBAC and ACLs. The recommendation is to use AAD RBAC and ACLs wherever possible. We will learn more about SAS keys later in this chapter.

			Let's next learn about row- and column-level security in Azure Synapse SQL. Since this also deals with restricting access to data, I've grouped it together with the RBAC and ACL sections.

			Designing and implementing row-level and column-level security

			Azure Synapse SQL (and Azure SQL) provide some very useful fine-grained security at the level of rows and columns in a table. Let's learn how to use these features for restricting data access, starting with row-level security.

			Designing row-level security

			Row-level security restricts access to certain table rows to unauthorized users. On a high level, you can think of this as similar to using WHERE conditions in a SELECT statement. Row-level security is achieved by creating security policies. We will look at an example of how to create such a rule in the next few pages. These rules reside in the database itself. Hence, irrespective of how the data is accessed, either via queries, views, or any other methods, the data access restriction will be enforced.

			Let's look at an example using our IAC scenario again. Let's imagine that the IAC company is trying to launch their service at a bunch of new locations, but they want to keep the details under wrap as they don't want the news to be leaked. So, they define two sets of users, one called HiPriv_User that has access to all the rows and one called LowPriv_Users that doesn't have access to all the rows. Let's see how to implement this example in Azure Synapse SQL. Start a Synapse dedicated pool and open an editor from the Synapse workspace:

			
					Create a new schema to store our row access policy:CREATE SCHEMA Security;  


					Create a T-SQL function that has the logic to decide who has access to the pre-launch data. In this case, we can assume that all the tripId >= 900 are the pre-launch locations:CREATE FUNCTION Security.tvf_securitypredicate(@tripId AS int)  
    RETURNS TABLE  
WITH SCHEMABINDING  
AS  RETURN SELECT 1 AS tvf_securitypredicate_result
WHERE  @tripId < 900 OR USER_NAME() = 'HiPriv_User';  


					Create a security policy using the previously defined function:CREATE SECURITY POLICY PrivFilter 
ADD FILTER PREDICATE Security.tvf_securitypredicate(tripId)
ON dbo.TripTable WITH (STATE = ON);


					Now, test it out with HiPriv_User:EXECUTE AS USER = 'HiPriv_User';
SELECT * from dbo.TripTable


					When executed as HiPriv_User, all the rows, including the pre-launch rows with ID >= 900, show up, as shown in the following screenshot:

			

			
				
					[image: Figure 12.15 – All rows including pre-launch show up

]
				

			

			Figure 12.15 – All rows including pre-launch show up

			
					Now, let's test it out with LowPriv_User:EXECUTE AS USER = ‹LowPriv_User›;
SELECT * from dbo.TripTable


					When executed as LowPriv_User, the pre-launch lines are hidden, as shown in the following screenshot:

			

			
				
					[image: Figure 12.16 – Row-level security blocking the pre-launch location rows

]
				

			

			Figure 12.16 – Row-level security blocking the pre-launch location rows

			I hope that you've got a good idea of the row-level security concept. Now, let's look next at column-level security.

			Designing column-level security

			Column-level security is similar to the data masking feature that we saw earlier in this chapter in the Designing and implementing a data masking strategy section. But instead of just masking the values of the column, here we restrict the column access completely to unauthorized users. In the case of column-level security also, the rules reside in the database itself. Hence, irrespective of how the data is accessed – say, via queries, views, or any other method – the data access restriction will be enforced.

			Here is an example of how to implement column restrictions.

			Let's consider our IAC example, the DimCustomer dimension table. Here is the definition of the table:

			CREATE TABLE dbo.DimCustomer

			(

			    [customerId] INT NOT NULL,

			    [name] VARCHAR(40) NOT NULL,

			    [emailId] VARCHAR(40),

			    [phoneNum] VARCHAR(40),

			    [city] VARCHAR(40)

			)

			In order to restrict access, you need to use the GRANT command, as shown here:

			GRANT SELECT ON dbo.DimCustomer (customerId, name, city) TO LowPriv_User;

			Here, we just give LowPriv_User access to the customerId, name, and city columns. LowPriv_User will not have access to the emailId or phoneNum columns. If you run the following query as LowPriv_User, you will get an error: 

			SELECT * FROM Customer;

			-- The SELECT permission was denied on the column 'emailId' of the object 'DimCustomer', database 'DedicatedSmall', schema 'dbo'. The SELECT permission was denied on the column 'phoneNum' of the object 'DimCustomer', database 'DedicatedSmall', schema 'dbo'.

			The row and column restriction features are particularly useful when only a very small subset of the data in the table is sensitive. This avoids the need to split the table and store the sensitive data separately.

			You can learn more about column-level security here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/column-level-security.

			Let's look next at data retention policies.

			Designing and implementing a data retention policy

			The last requirement for IAC was to securely delete the data so that it doesn't get into the hands of any malicious users.

			Older data should be safely deleted after a period of time.

			This section on data retention and the next section on data purging explain some of the techniques that can be used to achieve regular and secure cleanup of data.

			In Chapter 2, Designing a Data Storage Structure, under the Designing a data archiving solution section, we learned about data life cycle management. We can use the same service to design our data retention policies too. The data life cycle management screen has options to either move data to Cool or Archive tiers or delete the blob itself. Let's look at a screenshot from Chapter 2, Designing a Data Storage Structure, again for convenience: 

			
				
					[image: Figure 12.17 – Configuring data life cycle management

]
				

			

			Figure 12.17 – Configuring data life cycle management

			Based on our requirements, we can configure entire batches of data to be deleted after a specified time.

			You can learn more about data life cycle management in Azure Data Lake Storage here: https://docs.microsoft.com/en-us/azure/storage/blobs/lifecycle-management-overview.

			Let's look next at the other options available to purge data from data lake stores and SQL-based stores.

			Designing to purge data based on business requirements

			Data purging is another overlapping concept with data retention. Data purging refers to the process of safely deleting data as per business requirements. Let's look at the options available in Azure Data Lake Storage and Azure Synapse SQL.

			Purging data in Azure Data Lake Storage Gen2

			There are two ways in which we can achieve scheduled data deletion or data purging. One is the same as data retention, using life cycle management in Azure Storage. The second technique is to use Azure Data Factory. Whenever we delete data in Azure, it ensures that the storage locations are overwritten so that the deleted data cannot be retrieved by a malicious user. You can refer to Microsoft's data protection policy here: https://docs.microsoft.com/en-us/azure/security/fundamentals/protection-customer-data.

			We can periodically or conditionally delete files from Azure Storage using the Delete Activity in ADF. We have already seen the Delete activity as part of the Regressing to a previous stage section in Chapter 9, Designing and Developing a Batch Processing Solution. Let's look at it again here with a different example. Here, we have set up the Delete activity to delete all files older than 30 days:

			
				
					[image: Figure 12.18 – ADF Delete options

]
				

			

			Figure 12.18 – ADF Delete options

			In the End time (UTC) section, we have added the following line to select all files older than 30 days – @{adddays(pipeline().TriggerTime, -30)}. This takes care of deleting all data in the configured folder that is older than 30 days.

			You can learn more about the ADF Delete activity here: https://azure.microsoft.com/en-in/blog/clean-up-files-by-built-in-delete-activity-in-azure-data-factory/.

			Let's look next at how to purge data in SQL.

			Purging data in Azure Synapse SQL

			Purging in Synapse SQL is done using the TRUNCATE command. Here is an example of how that can be done where dbo.DimCustomer is a table name:

			TRUNCATE TABLE dbo.DimCustomer;

			Let's next look at how to create and manage keys, secrets, and managed identities.

			Managing identities, keys, and secrets across different data platform technologies

			There are mainly two technologies used in Azure for managing identities, keys, secrets, certificates, and basically anything confidential. They are Azure Active Directory (AAD) and Azure Key Vault. We looked briefly into Azure Key Vault earlier in this chapter in the Encryption at rest in Azure Storage section. Let's look into both of these services in detail here.

			Azure Active Directory

			AAD is Azure's identity and access management service. It supports managing users, groups, service principals, and so on. You can think of service principals as the service accounts used to run applications automatically. These service principals are also called AAD applications.

			Let's now see an example of creating users in AAD:

			
					From the Azure portal, search for AAD or Azure Active Directory, and select that service. 

					Once inside, you can click on the Users tab under the Manage category, and then select the + Add link, as shown in the following screenshot:

			

			
				
					[image: Figure 12.19 – Creating a new user in AAD

]
				

			

			Figure 12.19 – Creating a new user in AAD

			
					That opens up the New user screen, where you can add the details of the user and click on the Create button to create a new user, as shown in the following screenshot:

			

			
				
					[image: Figure 12.20 – New user creation screen in AAD

]
				

			

			Figure 12.20 – New user creation screen in AAD

			
					To manage users, you can go to the Users tab where you should be able to see the list of users under your AAD tenant. You can select users and perform operations such as edit, delete, and so on. 

			

			Creating groups and apps is similar to creating new users, so we will not be going into the details of it. Next, let's look at another important concept that services and resources (such as VMs, SQL databases, Synapse SQL, and so on) in Azure use to authenticate themselves to AAD.

			Managed identities

			Azure AAD supports another important feature called managed identities. These are identities that are assigned to instances of Azure services such as VMs, Synapse, SQL databases, and so on. The life cycle of these identities is automatically managed by AAD; hence, they are called managed identities. For example, when we create a new Synapse workspace, it has a managed identity automatically created in AAD, and when the workspace is deleted, the managed identity is automatically deleted. This managed identity can be used by the Azure Synapse instance to authenticate itself with AAD, instead of the application owners having to store secrets inside the application or having separate code sections to authenticate each and every service to AAD. You can find the managed identity ID on your application overview page. An example for Synapse is shown in the following screenshot:

			
				
					[image: Figure 12.21 – A managed identity for Synapse

]
				

			

			Figure 12.21 – A managed identity for Synapse

			You can learn more about AAD here: https://docs.microsoft.com/en-us/azure/active-directory/.

			Next, let's learn about storing keys, secrets, and certificates securely using Azure Key Vault.

			Azure Key Vault

			Azure Key Vault is another very commonly used service in Azure that is used to store keys, secrets, and certificates securely. A key vault is just like a real-world vault used to store confidential things. Azure Key Vault is a digital version of a vault that encrypts and decrypts information using 256-bit AES encryption. It provides the following functionalities:

			
					Key Management: Helps in creating and managing encryption keys

					Secrets Management: Helps in creating and storing secrets, passwords, URIs with keys, and so on that can be accessed by authorized applications and users using Key Vault links

					Certificate Management: Helps to create and manage SSL and TLS certificates for Azure resources

			

			Key Vault simplifies secret management. It eliminates the need to store secrets in code. It is a centralized service, so every time we need to change a secret or an encryption key, we just have to update it in Key Vault. It also supports rotating certificates and keys without human intervention. If you have any kind of secrets in your applications, it is highly recommended to use Azure Key Vault.

			Let's look at how to generate some keys and secrets using Key Vault:

			
					From the Azure portal, search for Key Vault and select that service.

					Once inside, select the Keys tab and then select the + Generate/Import link, as shown in the following screenshot:

			

			
				
					[image: Figure 12.22 – Creating keys, secrets, and certificates in Key Vault

]
				

			

			Figure 12.22 – Creating keys, secrets, and certificates in Key Vault

			
					When you click on the +Generate/Import link, you will get the Create a key screen, as shown in the following screenshot:

			

			
				
					[image: Figure 12.23 – Creating new encryption keys in Key Vault

]
				

			

			Figure 12.23 – Creating new encryption keys in Key Vault

			
					Just enter the details and click on Create to create a new encryption key. You can use this encryption key to encrypt your storage accounts or databases.

					Similar to keys, you can also create secrets. You just have to select the Secrets tab on the Azure Key Vault page and click on + Generate/Import; you will see the following screen:

			

			
				
					[image: Figure 12.24 – Creating new secrets in Key Vault

]
				

			

			Figure 12.24 – Creating new secrets in Key Vault

			
					Once you enter the details and click on Create, a new secret will get created.

			

			Next, let's see how to use the secrets stored in Key Vault in other services such as Azure Synapse Analytics. 

			In order to use Key Vault in Synapse Analytics, we have to first add the Key Vault itself as one of the linked services. We have already looked at many examples of adding a linked service, so you should be familiar with the process already. Once we have Key Vault registered as one of the linked services, anytime we add any other linked service, we will have the option to use secrets directly from Azure Key Vault. The following screenshot shows an example of creating a new linked service to Azure MySQL Database. You can see the option to use an Azure Key Vault secret instead of manually entering the Connection string details:

			
				
					[image: Figure 12.25 – Accessing keys from inside Synapse Analytics

]
				

			

			Figure 12.25 – Accessing keys from inside Synapse Analytics

			Azure Key Vault can be accessed using the command line too:

			
					You can also set a new password using the CLI, as shown here:az keyvault secret set --vault-name "<KEYVAULT-NAME>" --name "SamplePassword" --value "SecretValue"


					You can access your passwords using the following URL:https://<KEYVAULT-NAME>.vault.azure.net/secrets/SamplePassword


					You can view the password using the following:az keyvault secret show --name " SamplePassword " --vault-name "< KEYVAULT-NAME>" --query "value"


			

			You can learn more about Azure Key Vault here: https://docs.microsoft.com/en-in/azure/key-vault/.

			I hope this has given you a fairly good understanding of the components involved in managing identities, keys, and secrets in Azure.

			Let's learn a bit more about the Azure Storage SAS keys that we introduced in the RBAC section of this chapter as this is important from a certification perspective.

			Access keys and Shared Access keys in Azure Storage

			Azure Storage generates two 512-bit storage access keys when we create a new storage account. These keys can be used to access the data in the storage accounts. When these keys are used to authenticate access, it Is called the Shared Access key authentication method.

			You can view the access keys from the Storage portal. Select the Security + networking tab and select the Access Keys option under that. 

			Access keys are like root passwords. They give complete access to all the resources in a storage account. So, if we need to give restricted access to someone or some application, we can either use the Azure RBAC option that we discussed earlier in this chapter or use a Shared Access Signature (SAS). A SAS is a URI that grants restricted access for a specific period, to specific IP addresses, specific permissions, and so on. Unlike access keys, SAS keys will not have permissions to modify or delete accounts.

			There are three types of SAS keys:

			
					Service SAS: This type of SAS key provides access to just one of the storage services, such as Blobs, Tables, Files, or Queues. Service SAS keys are signed using Storage access keys.

					Account SAS: This type of SAS key provides access to multiple storage services such as Blobs, Tables, Files, and Queues. Account SAS keys provide access to read, write, and delete operations on multiple services like blob containers, tables, queues, and files. Account SAS keys are signed using Storage access keys.

					User Delegation SAS: If a SAS key is signed by AAD, the SAS is called a User Delegation SAS. This is the SAS approach recommended by Azure. But this option works only for Blob storage and not other storage options such as tables, queues, or file services.Note
Since access keys are used to sign Shared Access keys like service SAS, and account SAS, these keys will get invalidated when you regenerate new access keys for storage.


			

			You can learn more about SAS keys and how to generate them here: https://docs.microsoft.com/en-us/rest/api/storageservices/authorize-with-shared-key.

			Let's look next at how to use private and public endpoints.

			Implementing secure endpoints (private and public)

			A public endpoint refers to the default way of creating Azure services (such as Azure Storage, Azure Synapse, and Azure SQL), where the service can be accessed from a public IP address. So, any service that you create in Azure without configuring a Virtual Network (VNet) would fall under the public endpoint category.

			On the other hand, (as you would have guessed by now), private endpoints are more secure setups involving private IP addresses. A private endpoint is part of a bigger service called the Private Link service. The Private Link service makes your Azure service available only on certain private IP addresses within your VNets. No one from outside your VNets will even be aware of the existence of such a service. The private endpoint technically refers to the network interface that uses the private IP from your VNet, and the Private Link service refers to the overall service that comprises the private endpoints and the private network (link) over which the traffic traverses. When you establish a private link to your Azure service, all the data to that service traverses through Microsoft's backbone network without being exposed to the public internet.

			Let's look at how to create a private link to one of our existing Synapse workspaces:

			
					Create a VNet. From the Azure portal, select Virtual networks and click on the Create virtual network option. You will get a screen like the one shown in the following figure. Fill in the details on this screen:

			

			 

			
				
					[image: Figure 12.26 – Creating a new VNet

]
				

			

			Figure 12.26 – Creating a new VNet

			
					On the IP Addresses tab, you will have the ability to specify your IP address range and subnets, as shown in the following screenshot:

			

			
				
					[image: Figure 12.27 – Configuring IP details for the new VNet

]
				

			

			Figure 12.27 – Configuring IP details for the new VNet

			
					Fill in the rest of the tabs and click on Review + create to create the new VNet.

					Next, we will have to open the Private Link Service page from the Azure portal. Just search for Private Link and you will see the service at the top.

					On the Private Link Center page, select the Private endpoints tab and click on +Add:

			

			
				
					[image: Figure 12.28 – Creating a private endpoint from Private Link Center

]
				

			

			Figure 12.28 – Creating a private endpoint from Private Link Center

			
					On the next page, you can select in which resource you want the endpoint to be created: 

			

			
				
					[image: Figure 12.29 – Configuring the service in which the private endpoint will be created

]
				

			

			Figure 12.29 – Configuring the service in which the private endpoint will be created

			
					On the Configuration tab, you will be able to provide the VNet details:

			

			
				
					[image: Figure 12.30 – Configuring the VNet for the private endpoint

]
				

			

			Figure 12.30 – Configuring the VNet for the private endpoint

			
					Once the preceding details are entered and you have clicked on the Review + create button on the final screen, the private endpoint will be created.

			

			From now on, the Synapse workspace can be accessed only within the analytics-vnet that was specified in the example.

			You can learn more about private endpoints here: https://docs.microsoft.com/en-us/azure/private-link/create-private-endpoint-portal.

			Now that you know how to create a private endpoint, there is another easy way to do so using a managed virtual network and managed endpoints. When you create a Synapse workspace, under the Networking tab, there is a Managed virtual network option, as shown in the following screenshot:

			
				
					[image: Figure 12.31 – Creating a managed virtual network while creating a Synapse workspace

]
				

			

			Figure 12.31 – Creating a managed virtual network while creating a Synapse workspace

			When you enable Managed virtual network, Synapse takes care of creating the VNet, creating the private endpoints, creating the right firewall rules, creating the right subnets, and so on. This is a very convenient and less error-prone way to create private endpoints. A managed private VNet and endpoints are no different than manually created ones. It is just that the life cycle of managed VNets and endpoints are taken care of by the host service, which in our case is Synapse.

			Let's look next at using access tokens in Azure Databricks.

			Implementing resource tokens in Azure Databricks

			Azure Databricks provides access tokens called Personal Access Tokens (PATs) that can be used to authenticate Azure Databricks APIs.  

			The following example shows how to create a new Azure Databricks PAT: 

			
					Select User Settings from the Settings tab.

			

			 

			
				
					[image: Figure 12.32 – Accessing User Settings in Azure Databricks

]
				

			

			Figure 12.32 – Accessing User Settings in Azure Databricks

			
					Click on the Generate New Token button.

			

			 

			
				
					[image: Figure 12.33 – The Generate New Token button in Azure Databricks

]
				

			

			Figure 12.33 – The Generate New Token button in Azure Databricks

			
					Fill in the Comment and Lifetime fields required for the token:

			

			
				
					[image: Figure 12.34 – Creating a new Azure Databricks PAT

]
				

			

			Figure 12.34 – Creating a new Azure Databricks PAT

			Note

			When you click on Generate, it will pop up a screen with the token. You will have to copy and store it safely at that time. You will not be able to copy that token again once that screen is closed. If you lose the token, you will have to delete it and generate a new one.

			
					You can also create a PAT using APIs, as shown here. For example, the following request is for a token that will be valid for 1 day (86,400 seconds):curl --netrc --request POST \
https://<databricks-instance>/api/2.0/token/create \
--data '{ "comment": "ADB PAT token", "lifetime_seconds": 86400 }' 


					Once you have a PAT, you can use it in the APIs, as shown in the following code block:export DATABRICKS_TOKEN=<INSERT YOUR TOKEN>
curl -X GET --header "Authorization: Bearer $DATABRICKS_TOKEN"  
https://<ADB-INSTANCE>.azuredatabricks.net/api/2.0/clusters/list
Note
The maximum number of PATs per Azure Databricks workspace is 600.


			

			You can learn more about PATs here: https://docs.microsoft.com/en-us/azure/databricks/administration-guide/access-control/tokens.

			Similar to the PATs of Azure Databricks, regular AAD tokens can also be used for authorization. If you are interested, you can read about it here: https://docs.microsoft.com/en-us/azure/databricks/dev-tools/api/latest/aad/service-prin-aad-token.

			Let's look next at how to handle sensitive information within Spark DataFrames.

			Loading a DataFrame with sensitive information

			Earlier in this chapter, we learned about techniques such as data masking, and row- and column-level security for Azure Synapse SQL. Spark, at the time of writing this book, didn't have such techniques to handle sensitive information. In this section, we will look at an example of how to best emulate handling sensitive information such as Personally Identifiable Information (PII) using encryption and decryption:

			
					Let's create a simple table that contains PII information such as social security numbers (SSNs) using PySpark:from pyspark.sql.types import StructType,StructField, StringType, IntegerType
cols = StructType([ \
    StructField("Name",StringType(),True), \
    StructField("SSN",StringType(),True), \
    StructField("email",StringType(),True)
  ])
data = [("Adam Smith","111-11-1111","james@james.com"),
    ("Brenda Harman","222-22-2222","brenda@brenda.com"),
    ("Carmen Pinto","333-33-3333", "carmen@carmen.com")
  ]
piidf = spark.createDataFrame(data=data,schema=cols)
display(piidf)


			

			The output will be something like the following:

			 

			
				
					[image: Figure 12.35 – Sample table with PII

]
				

			

			Figure 12.35 – Sample table with PII

			
					Next, let's import the Fernet encryption library, which provides the ability to encrypt and decrypt text. You can download the Fernet library from https://cryptography.io/en/latest/fernet/:from cryptography.fernet import Fernet
encryptionKey = Fernet.generate_key()


					Define the User Defined Function (UDF) encrypt:def encryptUdf(plaintext, KEY):
    from cryptography.fernet import Fernet
    f = Fernet(KEY)
    encryptedtext = f.encrypt(bytes(plaintext, 'utf-8'))
    return str(encryptedtext.decode('ascii'))
encrypt = udf(encryptUdf, StringType())


					Define the UDF decrypt:def decryptUdf(encryptedtext, KEY):
    from cryptography.fernet import Fernet
    f = Fernet(KEY)
    plaintext=f.decrypt( encryptedtext.encode()).decode()
    return plaintext
decrypt = udf(decryptUdf, StringType())


					Encrypt the SSN column DataFrame:df = piidf.withColumn("SSN", encrypt("SSN", lit(encryptionKey)))
display(encrypteddf)


			

			The output will now be encrypted.

			
				
					[image: Figure 12.36 – Output with PII information encrypted

]
				

			

			Figure 12.36 – Output with PII information encrypted

			
					Now, we can go ahead and save it as a table:df.write.format("delta").mode("overwrite").option("overwriteSchema", "true").saveAsTable("PIIEncryptedTable")


					Alternatively, you can also write the encrypted file to Parquet, as shown here:encrypted.write.mode("overwrite").parquet("abfss://path/to/store")


					From now on, only whoever has the encryption key will be able to decrypt and see the PII information. If you have the encryption key, you could decrypt the column, as shown here:decrypted = encrypteddf.withColumn("SSN", decrypt("SSN",lit(encryptionKey)))
display(decrypted)


			

			 

			
				
					[image: Figure 12.37 – Decrypted table with PII again

]
				

			

			Figure 12.37 – Decrypted table with PII again

			I hope you've now got an idea of how to perform column-level encryption and decryption using DataFrames. This technique would work fine with both Synapse Spark and Databricks Spark.

			Next, let's see how to write encrypted data into tables and files.

			Writing encrypted data to tables or Parquet files

			We actually just saw how to write encrypted data into tables and Parquet files in the previous example. Here it is again, writing to tables:

			df.write.format("delta").mode("overwrite").option("overwriteSchema", "true").saveAsTable("PIIEncryptedTable")

			Here it is writing to Parquet files:

			encrypted.write.mode("overwrite").parquet("abfss://path/to/store")

			Let's look next at some guidelines for managing sensitive information.

			Designing for data privacy and managing sensitive information

			Any organization that handles sensitive information is usually bound by its country or state laws and other compliance regulations to keep the data secure and confidential. Aside from legal reasons, keeping sensitive data protected is very important for the reputation of an organization and to reduce the risk of identity theft for its customers. Azure security standards recommend the following techniques to keep sensitive data safe: 

			
					Identifying and classifying sensitive data – The very first step is to analyze and identify all the sensitive data in your data stores. Some might be straightforward, such as SQL tables or structured files, and some might be not so straightforward, such as PII data being logged in log files. Azure also provides tools that can help with the identification and classification of data. For example, the Synapse SQL portal provides a feature for Data Discovery and Classification, which automatically suggests sensitive columns. Here is a sample screenshot of the Data Discovery and Classification page:

			

			
				
					[image: Figure 12.38 – Data Discovery and Classification

]
				

			

			Figure 12.38 – Data Discovery and Classification

			
					Protecting the sensitive data – Once we have cataloged all the sensitive data in our data stores, the next step is to take the necessary steps to protect it. This includes all the techniques we discussed in this chapter and in the storage chapters, such as separating the sensitive data into different accounts, partitions, or folders, restricting access using RBAC and ACLs, encrypting data at rest, encrypting data in transit, data masking, and row- and column-level security.

					Monitoring and auditing the consumption of sensitive data – The best security policy is to not trust anyone, not even the folks who officially have access to the sensitive data. So, adding strong monitoring capabilities and enabling audit trails helps in actively and passively tracking down any malicious data access.

			

			Let's also briefly look at the other services available in Azure to help with security and threat management.

			Microsoft Defender

			In order to further strengthen your Azure application's security and threat management ability, Azure provides a service called Microsoft Defender. Microsoft Defender provides the tools and services required to continuously monitor, alert, and mitigate threats to Azure services. Microsoft Defender is natively integrated into most Azure services, so it can be enabled easily without requiring major changes to your applications.

			Microsoft Defender for Storage

			Microsoft Defender for Storage can help identify threats such as anonymous access, malicious content, compromised credentials, privilege abuse, and so on.

			You can learn more about Microsoft Defender for Storage here: https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-storage-introduction.

			Microsoft Defender for SQL

			Microsoft Defender for SQL can help identify threats such as SQL injection, brute-force attacks, and privilege abuse.

			You can learn more about Microsoft Defender for SQL here: https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-sql-introduction.

			That brings us to the end of this section. You can find more information about handling sensitive information and data protection guidelines at the following links: 

			
					https://docs.microsoft.com/en-us/security/benchmark/azure/security-control-data-protection

					https://docs.microsoft.com/en-us/security/benchmark/azure/security-controls-v2-data-protection

			

			Summary

			With that, we have come to the end of this chapter. This chapter is one of the lengthiest chapters but luckily not so complicated. We started with designing the security requirements of our IAC example and then used that as our guide to explore the various security and compliance topics. We learned about encryption at rest and transit, enabling auditing for Azure Data Lake Storage and Synapse SQL, implementing data masking, RBAC and ACL rules, row- and column-level security, and had a recap on data retention and purging. After that, we continued with topics such as AAD and Key Vault to manage keys, secrets, and certificates, learned about secure endpoints, and details of tokens and encryption in Spark. Finally, we wrapped it up with concepts to be followed to design data privacy. You have now covered more or less all the important topics in handling security and privacy. You should now be able to design and implement a complete security and privacy solution on top of Azure Data Lake.

			We will be exploring monitoring and optimization techniques for data storage and data processing in the next chapter.

		

		
			Designing and implementing Azure role-based access control and a POSIX-like

			access control list for Data Lake Storage Gen2     

		

		
			Designing and implementing Azure role-based access control and a POSIX-like

			access control list for Data Lake Storage Gen2     

		

		
			Designing and implementing Azure role-based access control and a POSIX-like

			access control list for Data Lake Storage Gen2     

		

	

			Part 5: Monitor and Optimize Data Storage and Data Processing (10-15%)

			This part covers the final, but important, aspect of how we monitor, manage, and optimize our data pipelines.

			This section comprises the following chapters:

			
					Chapter 13, Monitoring Data Storage and Data Processing

					Chapter 14, Optimizing and Troubleshooting Data Storage and Data Processing

			

		

	

			Chapter 13: Monitoring Data Storage and Data Processing

			Welcome to the next chapter. We are now in the final leg of our certification training. This is the last section of the certification: Monitoring and Optimizing Data Storage and Data Processing. This section contains two chapters—the current one, Monitoring Data Storage and Data Processing, and the next chapter, Optimizing and Troubleshooting Data Storage and Data Processing. As this chapter's title suggests, we will be focusing on the monitoring aspect of data storage and pipelines. Once you complete this chapter, you should be able to set up monitoring for any of your Azure data services, set up custom logs, process logs using tools such as Azure Log Analytics, and understand how to read Spark directed acyclic graphs (DAGs). As with the previous chapters, I've taken the liberty of reordering the topic sequence to make reading more comfortable, without too many context switches.

			In this chapter, we will cover the following topics:

			
					Implementing logging used by Azure Monitor

					Configuring monitoring services

					Understanding custom logging options

					Interpreting Azure Monitor metrics and logs

					Measuring the performance of data movement

					Monitoring data pipeline performance

					Monitoring and updating statistics about data across a system

					Measuring query performance

					Interpreting a Spark DAG

					Monitoring cluster performance

					Scheduling and monitoring pipeline tests

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Azure Data Factory (ADF) workspace

			

			Let's get started!

			Implementing logging used by Azure Monitor

			Azure Monitor is the service we use to monitor infrastructure, services, and applications. Azure Monitor records two types of data: metrics and logs. Metrics are numerical values that describe an entity or an aspect of a system at different instances of time—for example, the number of gigabytes (GBs) of data stored in a storage account at any point in time, the current number of active pipelines in ADF, and so on. Metrics are stored in time-series databases and can be easily aggregated for alerting, reporting, and auditing purposes.

			Logs, on the other hand, are usually text details of what is happening in the system. Unlike metrics, which are recorded at regular intervals, logs are usually event-driven. For example, a user logging in to a system, a web app receiving a REpresentational State Transfer (REST) request, and triggering a pipeline in ADF could all generate logs.

			Since Azure Monitor is an independent service, it can aggregate logs from multiple different services and multiple instances of the same service in Azure to give a global perspective of what is happening with all our Azure services.

			Here is an architecture diagram reproduced from the Azure documentation that shows the core components of Azure Monitor and the sources and destinations for the metrics and logs data:

			
				
					[image: Figure 13.1 – Azure Monitor architecture

]
				

			

			Figure 13.1 – Azure Monitor architecture

			Let's look at a simple example of how to add Activity logs into Azure Monitor. In order to get started, we need to understand a sub-service of Azure Monitor called Log Analytics workspaces. A Log Analytics workspace is a component of Azure Monitor that specializes in processing and exploring log messages. You can access Log Analytics from the Logs tab of any Azure service or the Logs tab of Azure Monitor's menu. Log Analytics supports a powerful query language called Kusto Query Language (KQL) that can be used to perform analysis on log data. We will be seeing some examples of KQL in this chapter.

			Note

			Log Analytics is one of the options to store logs, and it might incur additional charges based on the storage cost and the number of Kusto queries run. You can also choose to store logs on regular Azure storage options such as Blob and Data Lake or use services such as Event Hubs to do real-time processing of logs.

			Let's look at the steps required to log data to a Log Analytics workspace.

			
					First, we need to create a new Log Analytics workspace. Just search for Log Analytics workspaces in the Azure portal and click on the result. Click the + Create button on the Log Analytics home page. You should see a screen like the one shown next. Fill in the details such as the Resource group, Name, and Region fields for the Log Analytics instance, and then click on Review + Create to create a new Log Analytics workspace:

			

			
				
					[image: Figure 13.2 – Creating a Log Analytics workspace

]
				

			

			Figure 13.2 – Creating a Log Analytics workspace

			
					Next, select the Azure Monitor service from the Azure portal and click on the Activity log tab, as illustrated in the following screenshot:

			

			
				
					[image: Figure 13.3 – Azure Monitor Activity log screen

]
				

			

			Figure 13.3 – Azure Monitor Activity log screen

			
					Click on the Diagnostics settings button and select all the logs that you want to send to the Log Analytics workspace (the workspace you created in Step 1), as illustrated in the following screenshot:

			

			
				
					[image: Figure 13.4 – Diagnostic screen setting

]
				

			

			Figure 13.4 – Diagnostic screen setting

			
					After a few minutes, you will see an AzureActivity table created in the Log Analytics workspace, as shown in the following screenshot:

			

			
				
					[image: Figure 13.5 – AzureActivity table in the Log Analytics workspace

]
				

			

			Figure 13.5 – AzureActivity table in the Log Analytics workspace

			
					From now on, all the Activity logs will start getting populated into this AzureActivity table. You can query the table using KQL to gain insights into the log.

			

			You can learn more about sending logs to a Log Analytics workspace here: https://docs.microsoft.com/en-us/azure/azure-monitor/essentials/quick-collect-activity-log-portal

			Next, let's look at how to configure monitoring for Azure resources.

			Configuring monitoring services

			Azure Monitor is enabled as soon as we create an Azure resource. By default, the basic metrics and logs are recorded without requiring any configuration changes from the user side, but we can perform additional configurations such as sending the logs to Log Analytics, as we saw in the previous section. We can configure monitoring at multiple levels, as outlined here:

			
					Application monitoring—Metrics and logs about the applications that you have written on top of Azure services.

					Operating system (OS) monitoring—OS-level metrics and logs, such as CPU usage, memory usage, disk usage, and so on.

					Azure resource monitoring—Metrics and logs from Azure services such as Azure Storage, Synapse Analytics, Event Hubs, and more.

					Subscription-level monitoring—Metrics and logs of Azure subscriptions, such as how many people are using a particular account, what is the account usage, and so on.

					Tenant-level monitoring—Metrics and logs of tenant-level services such as Azure Active Directory (Azure AD).

			

			For resource, subscription-level, and tenant-level monitoring, the data is mostly already generated and we just need to enable the diagnostic setting, as shown in Figure 13.4, to move that data into any of the following three log destinations:

			
					Log Analytics workspace

					Event Hubs

					Storage account

			

			But for applications and guest OS monitoring, we will have to install the Azure Monitor agent (AMA) or the Log Analytics agent to start collecting metrics and logs. The AMA or Azure Monitor agent can be installed in multiple ways. Here is an easy way to install it via virtual machine (VM) extensions on a Linux server. You can log in to the Azure command-line interface (CLI) and run the following command:

			az vm extension set \

			  --resource-group <YOUR_RESOURCE_GROUP> \

			  --vm-name <VM_NAME> \

			  --name OmsAgentForLinux \

			  --publisher Microsoft.EnterpriseCloud.Monitoring \

			  --protected-settings '{"workspaceKey":"<YOUR_WORKSPACE_KEY>"}' \

			  --settings '{"workspaceId":"<YOUR_WORKSPACE_ID>"}'

			For other ways to install monitoring clients, please refer to the following link: https://docs.microsoft.com/en-us/azure/azure-monitor/agents/log-analytics-agent#installation-options.

			Let's now focus on the options available for monitoring Azure resources, as this is important from a certification perspective. Let's take the example of Azure storage.

			Metrics such as Ingress, Egress, Blob Capacity, and so on that indicate the status of operations within Azure Storage is directly available in the Metrics tab of Azure Storage. You can filter, create new graphs, and create new alerts using all the metrics available on this page, as shown in the following screenshot:

			
				
					[image: Figure 13.6 – Configuring metrics for Azure Storage

]
				

			

			Figure 13.6 – Configuring metrics for Azure Storage

			But if you need to find the status of the storage service itself, such as the availability of the Blob storage account, then we will have to look at Azure Monitor. From Azure Monitor, select Storage accounts. You should be able to see details such as overall Transactions, Transactions Timeline, and so on, as shown in the following screenshot: 

			
				
					[image: Figure 13.7 – Storage metrics from Azure Monitor

]
				

			

			Figure 13.7 – Storage metrics from Azure Monitor

			If you click on any of the storage account links and select the Insights tab, it shows details for Failures, Performance, Availability, and Capacity, as shown in the following screenshot:

			
				
					[image: Figure 13.8 – Storage availability details from Azure Monitor

]
				

			

			Figure 13.8 – Storage availability details from Azure Monitor

			This is how you can use the monitoring features available within the service and with Azure Monitor to get a complete picture of the health of your service.

			Let's next learn about the custom logging options available in Azure Monitor.

			Understanding custom logging options

			The Custom logs option in Azure Monitor helps to collect text-based logs that are not part of the standard logs collected by Azure Monitor, such as the system logs, event logs in Windows, and similar ones in Linux. In order to configure custom logs, the host machine must have the Log Analytics agent or the newer AMA installed on it. We just saw how to install the agents in the previous section.

			Once we have ensured that the agents are in place, it is a very easy process to set up custom logs. Here are the steps:

			
					In the Log Analytics workspace, select the Custom logs section and click on the + Add custom log option, as illustrated in the following screenshot:

			

			
				
					[image: Figure 13.9 – Setting up a new custom log using Log Analytics

]
				

			

			Figure 13.9 – Setting up a new custom log using Log Analytics

			
					In the wizard that follows, upload a sample log file so that the tool can parse it and understand the log format. Here is an example of a sample log file:

			

			
				
					[image: Figure 13.10 – Sample log file

]
				

			

			Figure 13.10 – Sample log file

			
					Browse to the location of the sample file and upload it, as shown in the following screenshot:

			

			
				
					[image: Figure 13.11 – Uploading a sample log file to the custom log wizard

]
				

			

			Figure 13.11 – Uploading a sample log file to the custom log wizard

			
					Click on Next, and on the next screen, you will see your sample log lines displayed, as shown in the following screenshot:

			

			
				
					[image: Figure 13.12 – Sample log lines being displayed in the wizard

]
				

			

			Figure 13.12 – Sample log lines being displayed in the wizard

			
					In the next tab, enter the OS type and the path of the log files, as illustrated in the following screenshot:

			

			
				
					[image: Figure 13.13 – Configuring the log paths

]
				

			

			Figure 13.13 – Configuring the log paths

			
					In the Details tab, enter a Custom log name value and a description for your custom log, as shown in the following screenshot, and click Next:

			

			
				
					[image: Figure 13.14 – Adding a name and description to your custom log

]
				

			

			Figure 13.14 – Adding a name and description to your custom log

			
					Finally, in the Review + Create tab, review the entries, and click on the Create button to create a custom log. It's as easy as that.

			

			Note that custom logs have the following restrictions:

			
					Only the following pre-defined set of timestamp formats are allowed:

			

			YYYY-MM-DD HH:MM:SS

			M/D/YYYY HH:MM:SS AM/PM

			Mon DD, YYYY HH:MM:SS

			yyMMdd HH:mm:ss

			ddMMyy HH:mm:ss

			MMM d hh:mm:ss

			dd/MMM/yyyy:HH:mm:ss zzz

			yyyy-MM-ddTHH:mm:ssK

			
					No log rotations are allowed.

					Only American Standard Code for Information Interchange (ASCII) or Unicode Transformation Format 8 (UTF-8) support is provided.

					Time zone conversion is not available for Linux.

			

			You can learn more about custom logs here: https://docs.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-custom-logs.

			Let's next learn how to interpret Azure Monitor metrics and logs.

			Interpreting Azure Monitor metrics and logs

			As we have seen in the introduction to Azure Monitoring, metrics and logs form the two main sources of data for monitoring. Let's explore how to view, interpret, and experiment with these two types of monitoring data.

			Interpreting Azure Monitor metrics

			The metrics data collected from Azure resources is usually displayed on the overview page of the resource itself, and more details are available under the Metrics tab. Here is an example again of how it looks for a storage account:

			
				
					[image: Figure 13.15 – Metrics data for a storage account

]
				

			

			Figure 13.15 – Metrics data for a storage account

			For each of the metrics, you can aggregate based on Sum, Avg, Min, and Max. The tool also provides the flexibility to overlay with additional metrics using the Add metric option, filter out unwanted data using the Add filter option, and so on. You can access the data for up to 30 days using this metrics explorer.

			Let's next see how to interpret logs.

			Interpreting Azure Monitor logs

			We already learned how to send logs to Log Analytics. Let's now explore how to read and experiment with logs in Log Analytics. Once you start sending logs to Log Analytics, you will be able to see the tables for the Azure resource you configured. In the following screenshot, you will see AzureActivity and StorageBlobLogs tables. These tables will get populated with logs continuously:

			 

			
				
					[image: Figure 13.16 – Log Analytics tables

]
				

			

			Figure 13.16 – Log Analytics tables

			Once we have the log data in the tables, we can use the KQL query language provided by Azure Monitor to query the tables, as we do in Structured Query Language (SQL). KQL queries can be directly typed into the query block, as shown in the following screenshot:

			 

			
				
					[image: Figure 13.17 – Kusto query example

]
				

			

			Figure 13.17 – Kusto query example

			A Kusto query consists of a sequence of statements that can be delimited by semicolons. You start with a source of data such as a table and then use pipes (|) to transform the data from one step to another. For example, consider the previous screenshot. We start with the StorageBlobLogs table—just specifying the name of the table will list the contents of the table. We then pipe that data to take 100. Now, the 100 entries are piped through the next statement, where ServerLatencyMs > 20, which filters the rows whose latency is higher than 20 milliseconds (ms). We then sort it in descending order and print out a table that contains three columns: TimeGenerated, OperationName, and DurationMs, for how long the operation took.

			As you see, Kusto—or KQL—is a very intuitive language that is a mix of SQL and Linux pipes (|). Once you get a hang of it, you can generate very powerful insights by using log data in Log Analytics.

			You can learn more about KQL here: https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/.

			Now that we have learned about configuring and interpreting metrics and logs for Azure services, let's explore how to measure the performance of data movements within such services. We will learn how to check the performance of data movements while using ADF. 

			Measuring the performance of data movement

			ADF provides a rich set of performance metrics under its Monitoring tab. In the following example, we have a sample Copy Data activity as part of a pipeline called FetchDataFromBlob, which copies data from Blob storage into Azure Data Lake Storage Gen2 (ADLS Gen2). If you click on the Pipeline runs tab under the Monitoring tab, you will see the details of each of the pipelines. If you click on any of the steps, you will see diagnostic details:

			
				
					[image: Figure 13.18 – Data movement performance details

]
				

			

			Figure 13.18 – Data movement performance details

			This is how you can monitor the performance of data movement. You can learn more about Copy Data monitoring here: https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-monitoring.

			Let's next look at how to monitor overall pipeline performance.

			Monitoring data pipeline performance

			Similar to the data movement metrics we saw in the previous section, ADF provides metrics for overall pipelines too. In the Pipeline runs page under the Monitoring tab, if you hover over the pipeline runs, a small Consumption icon appears, as shown in the following screenshot:

			
				
					[image: Figure 13.19 – Consumption icon in the Pipeline runs screen

]
				

			

			Figure 13.19 – Consumption icon in the Pipeline runs screen

			If you click on that icon, ADF shows the pipeline consumption details. Here is a sample screen:

			
				
					[image: Figure 13.20 – Pipeline resource consumption details screen

]
				

			

			Figure 13.20 – Pipeline resource consumption details screen

			You can also get additional metrics about each of the runs from the Gantt chart section. You can change the view from List to Gantt, as shown in the following screenshot:

			
				
					[image: Figure 13.21 – Additional pipeline details in the Gantt chart page

]
				

			

			Figure 13.21 – Additional pipeline details in the Gantt chart page

			Note

			ADF only maintains pipeline execution details and metrics for 45 days. If you need to analyze the pipeline data for more than 45 days, you will have to send the data to Log Analytics and then use Kusto queries to get the performance details.

			This is how we can keep track of pipeline performance. Let's next see how to monitor and update statistics about data.

			Monitoring and updating statistics about data across a system

			Statistics is an important concept in query optimization. Generating statistics is the process of collecting metadata about your data—such as the number of rows, the size of tables, and so on—which can be used as additional inputs by the SQL engine to optimize query plans. For example, if two tables have to be joined and one table is very small, the SQL engine can use this statistical information to pick a query plan that works best for such highly skewed tables. The Synapse SQL pool engine uses something known as cost-based optimizers (CBOs). These optimizers choose the least expensive query plan from a set of query plans that can be generated for a given SQL script.

			Let's look at how to create statistics for both Synapse dedicated and serverless pools.

			Creating statistics for Synapse dedicated pools

			You can enable statistics in Synapse SQL dedicated pools using the following command: 

			ALTER DATABASE [DW_NAME] SET AUTO_CREATE_STATISTICS ON

			Once AUTO_CREATE_STATISTICS is ON, any SELECT, INSERT-SELECT, CTAS, UPDATE, DELETE, or EXPLAIN statements will automatically trigger the creation of statistics for the columns involved in the query, if not already present. 

			Note

			Automatic creation of statistics is not available for temporary or external tables.

			You can create statistics on demand using the following command:

			CREATE STATISTICS [statistics_name]

			    ON [schema_name].[table_name]([column_name])

			    WITH SAMPLE 40 PERCENT;

			In the preceding example, we are using a 40% sample. If you do not provide a sample value, the default is 20%. You can also do a full scan instead of sampling by using the following command:

			CREATE STATISTICS [statistics_name]

			    ON [schema_name].[table_name]([column_name])

			    WITH FULLSCAN;

			Tip

			As a general guideline, for less than 1 billion rows, use default sampling (20%). With more than 1 billion rows, use sampling of 2 to 10%.

			Let's next look at updating existing statistics in Synapse dedicated pools.

			Updating statistics for Synapse dedicated pools

			Similar to creating statistics, you can also periodically update statistics. You can use the following command to achieve this:

			UPDATE STATISTICS [schema_name].[table_name]([stat_name]);

			It is a good practice to update statistics after every fresh data load.

			For more information on statistics in Synapse SQL pools, you can refer to the following link: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-statistics#statistics-in-dedicated-sql-pool.

			Next, let's look at how to create statistics for Synapse serverless pools.

			Creating statistics for Synapse serverless pools

			The concept of statistics is the same for dedicated and serverless pools. In the case of serverless pools, the auto-creation of statistics is turned on by default for Parquet files but not for comma-separated values (CSV) files. Since we deal with external tables in serverless pools, we will have to create statistics for external tables. The command for external tables is shown here:

			CREATE STATISTICS [statistics_name]

			ON { external_table } ( column )

			    WITH

			        { FULLSCAN

			          | [ SAMPLE number PERCENT ] }

			        , { NORECOMPUTE }

			Note

			Only single-column statistics are possible on external tables, while others allow multi-column statistics.

			Let's next look at how to update existing statistics for serverless pools.

			Updating statistics for Synapse serverless pools

			In order to update statistics for Synapse serverless pools, you will have to first drop the existing statistics and then recreate them. The following command shows how to drop the old table:

			DROP STATISTICS [OLD_STATISTICS_TABLE_NAME]

			And then, we can recreate the statistics afresh by following the commands shown here: 

			CREATE STATISTICS [statistics_name]

			    on [NEW_STATISTICS_TABLE_NAME] (STATENAME)

			    WITH FULLSCAN, NORECOMPUTE

			Note

			Statistics collection might cause a slight performance degradation if statistics are missing for the columns in a query. But once statistics are generated, future queries will be much faster.

			If you would like to learn more about generating statistics, you can refer to the following link: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/develop-tables-statistics#statistics-in-serverless-sql-pool.

			Let's next look at how to measure query performance.

			Measuring query performance

			Query performance is a very interesting topic in databases and analytical engines such as Spark and Hive. You will find tons of books and articles written on these topics. In this section, I'll try to give an overview of how to monitor query performance in Synapse dedicated SQL pools and Spark. In the next chapter, we will focus on how to actually optimize the queries. I've provided links for further reading in each section so that you can learn more about the techniques if you wish.

			For measuring the performance of any SQL-based queries, it is recommended to set up the Transaction Processing Performance Council H or DS (TPC-H or TPC-DS) benchmarking suites and run them on a regular basis to identify any regressions in the platform. TPC-H and TPC-DS are industry-standard benchmarking test suites. If you are interested in learning more about them, please follow these links:

			
					You can learn more about TPC-H here: http://www.tpc.org/tpch/.

					You can learn more about TPC-DS here: http://www.tpc.org/tpcds/.

			

			Let's next look at how we can monitor Synapse SQL pool performance.

			Monitoring Synapse SQL pool performance

			The Synapse SQL Metrics page itself has quite a lot of metrics that can be easily used to identify any performance regressions. Here is a sample screenshot of the Synapse SQL Metrics section: 

			
				
					[image: Figure 13.22 – Query monitoring screen of Synapse SQL pool

]
				

			

			 

			Figure 13.22 – Query monitoring screen of Synapse SQL pool

			The Metrics tab in Synapse SQL provides metrics for Data Warehouse Unit (DWU) usage, memory usage, and so on, but it doesn't provide details about query performance or query wait times. We will have to use one of the following two approaches to get such query performance details.

			Querying system tables

			Synapse SQL pool provides the following system tables that can be used to monitor query performance:

			
					sys.dm_pdw_exec_requests—This contains all current and recently active requests in Azure Synapse Analytics. It contains details such as total_elapsed_time, submit_time, start_time, end_time, command, result_cache_hit, and so on.

					sys.dm_pdw_waits—This contains details of the wait states in a query, including locks and waits on transmission queues. 

			

			You can find details on all such system tables with monitoring and management information here:

			https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-and-parallel-data-warehouse-dynamic-management-views

			Next, let's look at how to get performance details using a feature called Query Store.

			Using Query Store

			Azure SQL and Synapse SQL support a feature called Query Store that can be used for both query performance monitoring and performance tuning. It is supported in Synapse SQL pool and other flavors of SQL in Azure. Query Store is used to store the history of queries, plans, and runtime statistics. This historical data can then be used to aid in query optimization, identifying query regressions, monitoring trends in resource utilization such as CPU and memory for queries, identifying wait time patterns in query plans, and so on.

			Query Store is not enabled by default for Synapse SQL pool. You can enable Query Store using the following Transact-SQL (T-SQL) command:

			ALTER DATABASE <database_name> SET QUERY_STORE = ON;

			Query Store in Synapse SQL stores the following three main components:

			
					Query details—Details such as query parameters, compilation times, compilation counts, and so on. Here are the specific tables that contain Query Store query details:

			

			sys.query_store_query

			sys.query_store_query_text

			
					Plan details—Query plan details such as the query identifier (ID), query hash, query text, and so on. Here is the specific table that contains Query Store plan details:

			

			sys.query_store_plan

			
					Runtime statistics—Runtime details of queries such as the time taken, CPU time, average duration, row counts, and so on. Here are the specific tables that contain runtime statistics:

			

			sys.query_store_runtime_stats

			sys.query_store_runtime_stats_interval

			Here is a sample of the sys.query_store_runtime_stats table so that you have an idea of how it looks:

			
				
					[image: Figure 13.23 – Sample Query Store runtime statistics

]
				

			

			Figure 13.23 – Sample Query Store runtime statistics

			Wait statistics are not yet available for Azure Synapse SQL, as of writing this book. However, they are available in other Azure SQL flavors, such as Azure SQL Database.

			You can learn more about Query Store here: https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store.

			Let's next look at the options available for monitoring the performance of Spark.

			Spark query performance monitoring

			Spark performance monitoring can be done directly via the Spark user interface (UI). The Spark UI, along with the Spark History server, provides job-specific and stage-specific metrics that can be used to determine if jobs are slowing down compared to previous runs. The techniques we explored in Chapter 9, Designing and Developing a Batch Processing Solution, under the Debugging Spark jobs by using the Spark UI section, will be the same for analyzing performance regression in Spark jobs. Since we have already covered the details in that chapter, we'll not repeat them here. Please glance through Chapter 9, Designing and Developing a Batch Processing Solution, if you have any doubts regarding using the Spark UI.

			Once slow queries are identified via the Spark UI, we can use query optimization techniques to speed up queries. We will explore these techniques in the next chapter. 

			In the meantime, let's explore another topic that is related to performance tuning: interpreting Spark DAGs.

			Interpreting a Spark DAG

			A DAG is just a regular graph with nodes and edges but with no cycles or loops. In order to understand a Spark DAG, we first have to understand where a DAG comes into the picture during the execution of a Spark job. 

			When a user submits a Spark job, the Spark driver first identifies all the tasks involved in accomplishing the job. It then figures out which of these tasks can be run in parallel and which tasks depend on other tasks. Based on this information, it converts the Spark job into a graph of tasks. The nodes at the same level indicate jobs that can be run in parallel, and the nodes at different levels indicate tasks that need to be run after the previous nodes. This graph is acyclic, as denoted by A in DAG. This DAG is then converted into a physical execution plan. In the physical execution plan, nodes that are at the same level are segregated into stages. Once all the tasks and stages are complete, the Spark job is termed as completed.

			Let's look at what a DAG looks like. You can access a Spark DAG from the Spark UI. Just click on any of the job links and then click on the DAG Visualization link.

			Here is a DAG for a simple word count problem:

			
				
					[image: Figure 13.24 – DAG with multiple stages

]
				

			

			Figure 13.24 – DAG with multiple stages

			In the first stage, we see that the word count has three steps and a reduce step in the next stage. Ignore the stage numbers, as Spark assigns consecutive numbers for all jobs that are run in that Spark session. So, if you have run any other job before this job, the number gets sequentially incremented. Here is some further information about each task:

			
					The textFile task corresponds to the reading of the file from the storage.

					The flatMap task corresponds to the splitting of the words.

					The map task corresponds to the formation of (word, 1) pairs.

					The reduceByKey task corresponds to the aggregation of all the (word, 1) pairs together to get the sum of each distinct word.

			

			You can get more details about each step by clicking on the Stage boxes. Here is an example of a detailed view of Stage 12 from the previous screenshot:

			
				
					[image: Figure 13.25 – Detailed view of the stage

]
				

			

			Figure 13.25 – Detailed view of the stage

			The main advantage of learning to read Spark DAGs is that they help you identify bottlenecks in your Spark queries. You can identify how much data movement is happening between stages (also known as data shuffle), if there are too many sequential stages, if there are slow stages in the critical path, and so on.

			You can learn more about Spark DAGs here: https://spark.apache.org/docs/3.0.0/web-ui.html.

			Now that we have learned a bit about query performance monitoring and analyzing Spark DAGs, let's also look at how to monitor overall cluster performance.

			Monitoring cluster performance

			Since services such as Synapse and ADF are platform-as-a-service (PaaS) services where you will not have explicit control over the clusters, the one place where we can control each and every aspect of a cluster is the Azure HDInsight service. In HDInsight, you can create your own Hadoop, Spark, Hive, HBase, and other clusters and control every aspect of the cluster. You can use Log Analytics to monitor cluster performance, as with the other examples we saw earlier in the chapter. You can learn more about using Log Analytics in HDInsight here: https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-oms-log-analytics-tutorial.

			Apart from the Log Analytics approach, there are four main areas of the HDInsight portal that help monitor cluster performance. Let's look at them.

			Monitoring overall cluster performance

			The HDInsight Ambari dashboard is the first place to check for cluster health. If you see very high heap usage, disk usage, or network latencies, then these might be indicators of non-optimal cluster usage. Here is a sample screenshot of the Ambari dashboard:

			
				
					[image: Figure 13.26 – HDInsight Ambari dashboard home page

]
				

			

			Figure 13.26 – HDInsight Ambari dashboard home page

			But these overall cluster details will not be enough to isolate node-level or query-level performance issues. For this, we will have to look into the next monitoring option available, which is a per-node monitor. 

			Monitoring per-node performance

			From the Ambari dashboard home page, if you select the Hosts tab, you will be able to see the per-host performance level, as illustrated in the following screenshot:

			
				
					[image: Figure 13.27 – Per-host metrics in Ambari

]
				

			

			Figure 13.27 – Per-host metrics in Ambari

			If you click on each of the hostnames, it will show even more details of the host, as shown in the following screenshot:

			
				
					[image: Figure 13.28 – Ambari per-host metrics page

]
				

			

			Figure 13.28 – Ambari per-host metrics page

			If you want to drill down deeper to the query level, then we can look at Yet Another Resource Negotiator (YARN) queues.

			Monitoring YARN queue/scheduler performance

			From the Resource Manager page in Ambari, select the Application Queues option. This will show all the applications and metrics related to the applications. On the left-hand side, you will have the Scheduler link, as illustrated in the following screenshot. Select that to see the status of the YARN queues:

			
				
					[image: Figure 13.29 – Checking the YARN queues' status

]
				

			

			Figure 13.29 – Checking the YARN queues' status

			Based on the color of the queue, you should be able to distinguish if a queue is underused or overused.

			There is one more aspect of clusters that usually results in slower performance, and that is storage throttling.

			Monitoring storage throttling

			If you get a 429 Too many requests error code in your applications, you might be encountering throttling from the storage. Either check your storage account to increase the limit or try to distribute your application processing over multiple storage accounts to overcome this problem.

			You can learn more about throttling here: https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/request-limits-and-throttling.

			Hope you got a good idea of how to monitor cluster performance. Now, let's look at how to schedule and monitor ADF pipeline continuous integration/continuous deployment (CI/CD).

			Scheduling and monitoring pipeline tests

			In Chapter 11, Managing Batches and Pipelines, we briefly introduced Azure DevOps for version control. Azure DevOps provides another feature called Azure Pipelines, which can be used to create CI/CD pipelines to deploy ADF. If you are not aware of CI/CD, it is a method of continuously testing and deploying applications to the production environment in an automated manner. In this section, we will look into how to create, schedule, and monitor a CI/CD pipeline.

			Note

			As of writing this book, Azure DevOps Pipelines support for Synapse Pipelines was not available. It is only available for ADF.

			Here are the high-level steps to create a CI/CD pipeline using Azure pipelines:

			
					Select Azure DevOps from the Azure portal. On the Azure DevOps page, select Releases under Pipelines and click the New Pipeline button. This will take you to a new screen, shown in the following screenshot. Choose the Empty job option:

			

			
				
					[image: Figure 13.30 – Azure pipeline creation wizard

]
				

			

			Figure 13.30 – Azure pipeline creation wizard

			
					Next, click on the Add an artifact option and update your ADF source repository details, as shown in the following screenshot:

			

			
				
					[image: Figure 13.31 – Updating artifact information in Azure Pipelines

]
				

			

			Figure 13.31 – Updating artifact information in Azure Pipelines

			
					Once added, click on the View Tasks link on the next page, then click on the + symbol. From the task list, choose the ARM template deployment task, as illustrated in the following screenshot:

			

			
				
					[image: Figure 13.32 – Choosing Azure Pipeline tasks

]
				

			

			Figure 13.32 – Choosing Azure Pipeline tasks

			
					This will bring up the Azure Resource Manager (ARM) template configuration page, as shown in the following screenshot:

			

			
				
					[image: Figure 13.33 – ARM template and template parameters specification page

]
				

			

			Figure 13.33 – ARM template and template parameters specification page

			
					For the Template textbox, browse to the file named ARMTemplateForFactory.json in your ADF folder of the adf_publish branch.

					For the Template parameters textbox, choose the ARMTemplateParametersForFactory.json file in your ADF folder of the adf_publish branch.

					Once you are done filling up the details, save the page.

					Finally, click on the Create Release button at the top to create a CI/CD pipeline.

			

			Now that we have a pipeline to deploy CI/CD, it can be scheduled in multiple ways. Some examples are provided here:

			
					CI triggers—To trigger a pipeline when a user pushes a change to the git branch

					Pull request (PR) triggers—When a PR is raised or changes are submitted to the PR

					Scheduled triggers—Time-based scheduling

					Pipeline completion triggers—Triggering based on the completion of previous pipelines

			

			You can learn more about implementing triggers here: https://docs.microsoft.com/en-us/azure/devops/pipelines/build/triggers?view=azure-devops.

			Once we have the triggers set up, the pipelines continue to get tested and deployed. We can monitor the progress from the Releases tab of Azure DevOps. Here is a sample image of the Pipelines screen with a summary of the pipelines that were run:

			 

			
				
					[image: Figure 13.34 – Release pipelines CI/CD monitoring

]
				

			

			Figure 13.34 – Release pipelines CI/CD monitoring

			Azure DevOps and Pipelines are a huge topic of their own and we will not be able to do them justice in a small section here, so I'm providing follow-up links to understand more about ADF CI/CD, Azure pipelines, and adding tests to pipelines.

			You can learn more about ADF CI/CD here: https://docs.microsoft.com/en-us/azure/data-factory/continuous-integration-delivery.

			Summary

			This chapter introduced a lot of new technologies and techniques, and I hope you got a grasp of them. Even though the number of technologies involved is high, the weightage of this chapter with respect to the certification is relatively low, so you may have noticed that I've kept the topics slightly at a higher level and have provided further links for you to read more on the topics.

			In this chapter, we started by introducing Azure Monitor and Log Analytics. We learned how to send log data to Log Analytics, how to define custom logging options, and how to interpret metrics and logs data. After that, we focused on measuring the performance of data movements, pipelines, SQL queries, and Spark queries. We also learned how to interpret Spark DAGs, before moving on to monitoring cluster performance and cluster pipeline tests. You should now be able to set up a monitoring solution for your data pipelines and be able to tell if your data movement, pipeline setups, cluster setups, and query runs are performing optimally.

			In the next chapter, we will be focusing on query optimization and troubleshooting techniques.

		

	

			Chapter 14: Optimizing and Troubleshooting Data Storage and Data Processing

			Welcome to the final chapter in the Monitoring and Optimizing Data Storage and Data Processing section of the syllabus. The only chapter left after this is the revision and sample questions for the certification. Congratulations on reaching this far; you are now just a hop away from acquiring your certification. 

			In this chapter, we will be focusing on the optimization and troubleshooting techniques for data storage and data processing technologies. We will start with the topics for optimizing Spark and Synapse SQL queries using techniques such as compacting small files, handling UDFs, data skews, shuffles, indexing, cache management, and more. We will also look into techniques for troubleshooting Spark and Synapse pipelines and general guidelines for optimizing any analytical pipeline. Once you complete this chapter, you will have the knowledge to debug performance issues or troubleshoot failures in pipelines and Spark jobs.

			We will be covering the following topics in this chapter:

			
					Compacting small files

					Rewriting user-defined functions (UDFs)

					Handling skews in data

					Handling data spills

					Tuning shuffle partitions

					Finding shuffling in a pipeline

					Optimizing resource management

					Tuning queries by using indexers

					Tuning queries by using cache

					Optimizing pipelines for analytical or transactional purposes

					Optimizing pipelines for descriptive versus analytical workloads

					Troubleshooting a failed Spark job

					Troubleshooting a failed pipeline run  

			

			Technical requirements

			For this chapter, you will need the following:

			
					An Azure account (free or paid)

					An active Azure Data Factory or Synapse workspace

					An active Azure Databricks workspace

			

			Let's get started!

			Compacting small files

			Small files are the nightmares of big data processing systems. Analytical engines such as Spark, Synapse SQL, and Hive, and cloud storage systems such as Blob and ADLS Gen2, are all inherently optimized for big files. Hence, to make our data pipelines efficient, it is better to merge or compact the small files into bigger ones. This can be achieved in Azure using Azure Data Factory and Synapse Pipelines. Let's look at an example using Azure Data Factory to concatenate a bunch of small CSV files in a directory into one big file. The steps for Synapse pipelines will be very similar:

			
					From the Azure Data Factory portal, select the Copy Data activity as shown in the following screenshot. In the Source tab, either choose an existing source dataset or create a new one, pointing to the data storage where the small files are present. Next, choose the Wildcard file path option for File Path type. In the Wildcard Paths field, provide a folder path ending with a *. This will ensure that the Copy data activity considers all the files in that folder. In the following screenshot, all the small files are present in the folder named sandbox/driver/in.

			

			
				
					[image: Figure 14.1 – Specifying the source folder using wildcards

]
				

			

			Figure 14.1 – Specifying the source folder using wildcards

			
					Next, in the Sink tab, select your destination dataset, and, for Copy behavior, select the Merge files option, as shown in the following screenshot:

			

			
				
					[image: Figure 14.2 – Selecting the Merge files copy behavior in Copy Activity of ADF

]
				

			

			Figure 14.2 – Selecting the Merge files copy behavior in Copy Activity of ADF

			Now, if you run this pipeline, the files in the source folder (CSV files in our case) will get merged into a file called Output.csv in the destination folder that is defined in the DestinationCSV dataset.

			You can learn more about the merge option of Copy Activity in ADF here: https://docs.microsoft.com/en-us/azure/data-factory/connector-file-system?tabs=data-factory#copy-activity-properties.

			Another way to compact small files is the incremental copy method that we have already explored in Chapter 4, Designing the Serving Layer, under the Designing for incremental loading section. In this option, we incrementally update tables with small incoming changes. This would also qualify as a compaction option as we are incrementally merging small files into a big one via SQL tables.

			There is a third way of compacting small files using Azure Databricks Spark and Synapse Spark. Spark provides a feature called bin packing, via its specialized storage layer called Delta Lake (note the spelling, not Data Lake). 

			A Delta Lake is an open source storage layer that runs on top of Data Lakes. It enhances the Data Lake to support features including the following:

			
					ACID Transactions: Similar to what is available in databases and data warehouses, Delta Lake enables ACID transactions on top of Data Lakes.

					Unified Batch, Interactive, and Streaming System: Tables defined in Delta Lakes can serve as the source for batch processing systems, interactive systems such as notebooks, and streaming systems.

					Updates and Deletes: This feature supports updates, deletes, and merges to tables. This enables automatic support for Slowly Changing Dimensions (SCDs), streaming upserts, and any other operations that require the ability to update or merge data.

			

			A Delta Lake engine is enabled by default in Azure Databricks and Synapse Spark. So, all you need to do is just attach your Spark notebook to any Databricks or Synapse Spark cluster and run the Delta commands. Let's look at some sample commands of how to read, write, and create tables in Delta Lake:

			
					We can write to Azure Blob storage in delta format as shown. abfss in the following code refers to the Azure storage protocol: Azure Blob File System [Secure]:df.write.mode("overwrite").format("delta").save("abfss://path/to/delta/files")


					Load data from the delta file, as shown here:Val df: DataFrame = spark.read.format("delta").load(abfss://path/to/delta/files)


					Create a table using delta, as shown here:Spark.sql("CREATE TABLE CUSTOMER USING DELTA LOCATION "abfss://path/to/delta/files")


			

			As you may have noticed, working with Delta Lake is very similar to working with file formats such as Parquet, JSON, or CSV. 

			You can learn more about Delta Lake here: https://docs.microsoft.com/en-us/azure/databricks/delta/.

			Now let's look at how to enable bin packing. Bin packing is the feature provided by Delta Lake to compact small files into bigger ones to improve the performance of read queries. We can run bin packing on a folder using the OPTIMIZE command, as shown in the following code block.

			Spark.sql("OPTIMIZE delta.' abfss://path/to/delta/files'")

			This will merge the small files in the folder into optimal large files. 

			The third option is to enable Optimize by default while creating the tables using the following properties: 

			
					delta.autoOptimize.optimizeWrite = true 

					delta.autoOptimize.autoCompact = true 

			

			Here is an example of how to use the optimize properties while creating a table:

			CREATE TABLE Customer (

			id INT, 

			name STRING, 

			location STRING

			) TBLPROPERTIES (

			delta.autoOptimize.optimizeWrite = true, 

			delta.autoOptimize.autoCompact = true

			)

			You can learn more about Azure Databricks bin packing here: https://docs.microsoft.com/en-us/azure/databricks/delta/optimizations/file-mgmt.

			Now you know three different ways to compact small files. Next, let's look at using user-defined functions.

			Rewriting user-defined functions (UDFs)

			User-defined functions are custom functions that can be defined in databases and in certain analytical and streaming engines such as Spark and Azure Stream Analytics. An example of a UDF could be a custom function to check whether a given value is a valid email address. 

			The DP-203 syllabus just mentions the topic as Rewriting user-defined functions. In a literal sense, this is just dropping a UDF and recreating a new one, as we do for SQL or Spark tables. However, I believe the syllabus committee might have referred to rewriting normal repetitive scripts as UDFs to make them efficient from a development perspective. Note that UDFs can also decrease runtime performance if not designed correctly. Let's look at the ways to create UDFs in SQL, Spark, and Streaming.

			Writing UDFs in Synapse SQL Pool

			You can create a user-defined function in Synapse SQL using the CREATE FUNCTION command in Synapse SQL. Here is an example of using the CREATE FUNCTION command to create a simple email validation UDF. The script checks for the email pattern and, if not valid, returns the string "Not Available":

			CREATE FUNCTION dbo.isValidEmail(@EMAIL VARCHAR(100))

			RETURNS VARCHAR(100) AS

			BEGIN     

			  DECLARE @returnValue AS VARCHAR(100)

			  DECLARE @EmailText VARCHAR(100)

			  SET @EmailText= isnull(@EMAIL,'')

			  SET @returnValue = CASE WHEN @EmailText NOT LIKE '_%@_%._%' THEN 'Not Available'

			                          ELSE @EmailText

			                      end

			  RETURN @returnValue

			END 

			Now that we have the UDF, let's see how to use it in a query. Let's say you have a sample table with some valid and invalid email IDs.

			
				
					[image: Figure 14.3 – Sample table with valid and invalid email IDs

]
				

			

			 

			Figure 14.3 – Sample table with valid and invalid email IDs

			We want to mark the rows with invalid email IDs as Not Available. We can accomplish this using the following query.

			
				
					[image: Figure 14.4 – Using UDFs in a query

]
				

			

			Figure 14.4 – Using UDFs in a query

			As expected, the rows with invalid emails got substituted with the Not Available string.

			You can learn more about UDFs in Synapse SQL here: https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-sql-data-warehouse.

			Next, let's look at how to write UDFs in Spark.

			Writing UDFs in Spark 

			Spark also supports the UDF feature. In Spark, UDFs are just like any regular functions. Here is a simple example of registering a UDF in Spark:

			
				
					[image: Figure 14.5 – Simple Spark UDF example

]
				

			

			 

			Figure 14.5 – Simple Spark UDF example

			The sample script just doubles any values given to it. You can define UDFs to reduce the repetition of code.

			You can learn more about Spark UDFs here: https://spark.apache.org/docs/latest/sql-ref-functions-udf-scalar.html.

			Next, let's look at writing UDFs in Azure Stream Analytics.

			Writing UDFs in Stream Analytics

			Azure Stream Analytics supports simple UDFs via JavaScript. The UDFs are stateless and can only return single (scalar) values. Unlike SQL and Spark examples, in Stream Analytics, we have to register the UDF from the portal before using it. Let's see an example:

			
					Here is a UDF definition for extracting customer.id from an input JSON blob:function main(arg) {
var customer = JSON.parse(arg);  
return customer.id;
}


					Next, we need to register the UDF. From the Stream Analytics job page, select Functions under Job topology. Click on the + Add link and select Javascript UDF, as shown in the following screenshot:

			

			 

			
				
					[image: Figure 14.6 – Adding UDFs in Azure Stream Analytics

]
				

			

			Figure 14.6 – Adding UDFs in Azure Stream Analytics

			
					Once you click on the Javascript UDF option, this will reveal a screen as shown in the following screenshot, where you can fill in the UDF code and provide a name for the UDF in the Function alias field. Click on Save to register the new UDF.

			

			
				
					[image: Figure 14.7 – Defining the UDF in the ASA portal

]
				

			

			Figure 14.7 – Defining the UDF in the ASA portal

			
					Once the UDF is registered, you can call it in your streaming queries, as shown here:SELECT UDF.getID(input) AS Id
INTO Stream_output
FROM Stream_input


			

			You can learn more about the Stream Analytics UDF here: https://docs.microsoft.com/en-us/azure/stream-analytics/functions-overview.

			Now you know how to define UDFs in SQL, Spark, and Streaming. Let's next look at handling data skews.

			Handling skews in data

			A data skew refers to an extreme, uneven distribution of data in a dataset. Let's take an example of the number of trips per month of our Imaginary Airport Cab (IAC) example. Let's assume the data distribution as shown in the following graph:

			
				
					[image: Figure 14.8 – An example of skewed data

]
				

			

			Figure 14.8 – An example of skewed data

			As you can see from the graph, the trip numbers for November and December are quite high compared to the other months. Such an uneven distribution of data is referred to as a data skew. Now, if we were to distribute the monthly data to individual compute nodes, the nodes that are processing the data for November and December are going to take a lot more time than the ones processing the other months. And if we were generating an annual report, then all the other stages would have to wait for the November and December stages to complete. Such wait times are inefficient for job performance. To make the processing more efficient, we will have to find a way to assign similar amounts of processing data to each of the compute nodes. We will explore a few options recommended by Azure for handling such data skews.

			Skews can be fixed either at the storage level or the compute level. Based on where we fix the issue, there are different options available.

			Fixing skews at the storage level

			Here are a few techniques for fixing skews at the storage level:

			
					Find a better distribution/partition strategy that would balance the compute time evenly. In our example of the monthly trip count, we could explore partitioning the data into smaller chunks at the weekly level or try to partition along a different dimension, such as ZIP codes altogether, and see whether that helps. 

					Add a second distribution key. If the primary key is not splitting the data evenly, and if the option of moving to a new distribution key is not possible, you could add a secondary partition key. For example, after the data is split into months, you can further split them into, say, states of the country within each month. That way, if you are in the USA, you get 50 more splits, which could be more evenly distributed. 

					Randomize the data and use the round-robin technique to distribute the data evenly into partitions. If you are not able to find an optimal distribution key, then you can resort to round-robin distribution. This will ensure that the data is evenly distributed. 

			

			Note that it might not always be possible to recreate tables or distributions. So, some pre-planning is very important when we first decide on the partition strategy. However, if we end up in a situation where the partitioning strategies are not helping, we might still have one more option left to improve our skew handling. This option is to trust our compute engine to produce an intelligent query plan that is aware of the data skew. Let's look at how to achieve that next.

			Fixing skews at the compute level

			Here are a few techniques for fixing skews at the compute level:

			
					Improving the query plan by enabling statistics. We have already seen how to enable statistics in Chapter 13, Monitoring Data Storage and Data Processing, in the Monitoring and updating statistics about data across a system section. Once we enable statistics, query engines such as the Synapse SQL engine, which uses a cost-based optimizer, will utilize statistics to generate the most optimal plan based on the cost associated with each plan. The optimizer can identify data skews and automatically apply the appropriate optimizations in place to handle skew.

					Ignore the outlier data if not significant. This is probably the simplest of the options, but might not be applicable to all situations. If the data that is skewed is not very important, then you can safely ignore it.

			

			While we are on the topic of handling skews at the compute level, Synapse Spark has a very helpful feature that helps identify data skews in each stage of the Spark job. If you go to the Apache Spark applications tab under the Monitoring section of a Synapse workspace, you can see the skew details. See the following screenshot:

			
				
					[image: Figure 14.9 – Synapse Spark notifying data skews in Spark stages

]
				

			

			Figure 14.9 – Synapse Spark notifying data skews in Spark stages

			This Synapse Spark feature makes it very easy for anyone to identify skews in their datasets.

			Now you know the basic techniques for handling data skews. Let's next look at handling data spills.

			Handling data spills

			Data spill refers to the process where a compute engine such as SQL or Spark, while executing a query, is unable to hold the required data in memory and writes (spills) to disk. This results in increased query execution time due to the expensive disk reads and writes. Spills can occur for any of the following reasons:

			
					The data partition size is too big.

					The compute resource size is small, especially the memory.

					The exploded data size during merges, unions, and so on exceeds the memory limits of the compute node.

			

			Solutions for handling data spills would be as follows:

			
					Increase the compute capacity, especially the memory if possible. This will incur higher costs, but is the easiest of the options.

					Reduce the data partition sizes, and repartition if necessary. This is more effort-intensive as repartitioning takes time and effort. If you are not able to afford the higher compute resources, then reducing the data partition sizes is the best option.

					Remove skews in data. Sometimes, it is the data profile that causes the spills. If the data is skewed, it might cause spills in the partitions with the higher data size. We already looked at the options for handling data skews in the previous section. You could try to use those options.

			

			These are the general techniques for handling spills. However, to fix data spills, we need to first identify the spills. Let's see how to identify spills in Synapse SQL and Spark.

			Identifying data spills in Synapse SQL

			The primary indicator in Synapse SQL that indicates excessive data spills is TempDB running out of space. If you notice your Synapse SQL queries failing due to TempDB issues, it might be an indicator of a data spill. 

			Azure provides the following query to monitor memory usage and TempDB usage for Synapse SQL queries. As the query is big and will not be easy for anyone to read and reproduce from a textbook, I'm just providing the links here:

			
					Query to monitor SQL query memory usage: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-manage-monitor#monitor-memory

					Query to monitor SQL query TempDB usage: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-manage-monitor#monitor-tempdb

			

			Next, let's look at how to identify spills in Spark.

			Identifying data spills in Spark

			Identifying spills in Spark is relatively straightforward as Spark publishes metrics for spills. You can check the spills in the Tasks summary screen from Spark UI.

			
				
					[image: Figure 14.10 – Identifying Spark spills from the Tasks summary metrics

]
				

			

			Figure 14.10 – Identifying Spark spills from the Tasks summary metrics

			The last column Spill (Disk) indicates the bytes of data written to disk. That is how we can identify data spills in Spark. Next, let's look at a Spark technique to tune shuffle partitions.

			Tuning shuffle partitions

			Spark uses a technique called shuffle to move data between its executors or nodes while performing operations such as join, union, groupby, and reduceby. The shuffle operation is very expensive as it involves the movement of data between nodes. Hence, it is usually preferable to reduce the amount of shuffle involved in a Spark query. The number of partition splits that Spark performs while shuffling data is determined by the following configuration:

			spark.conf.set("spark.sql.shuffle.partitions",200)

			200 is the default value and you can tune it to a number that suits your query the best. If you have too much data and too few partitions, this might result in longer tasks. But, on the other hand, if you have too little data and too many shuffle partitions, the overhead of shuffle tasks will degrade performance. So, you will have to run your query multiple times with different shuffle partition numbers to arrive at an optimum number.

			You can learn more about Spark performance tuning and shuffle partitions here: https://spark.apache.org/docs/latest/sql-performance-tuning.html.

			Next, let's look at how to identify shuffles in pipelines in order to tune the queries.

			Finding shuffling in a pipeline

			As we learned in the previous section, shuffling data is a very expensive operation and we should try to reduce it as much as possible. In this section, we will learn how to identify shuffles in the query execution path for both Synapse SQL and Spark.

			Identifying shuffles in a SQL query plan

			To identify shuffles, print the query plan using the EXPLAIN statement. Here is an example.

			Consider a Synapse SQL table, DimDriver, as shown in the following screenshot:

			
				
					[image: Figure 14.11 – Sample DimDriver table

]
				

			

			Figure 14.11 – Sample DimDriver table

			 Here is a sample EXPLAIN statement:

			EXPLAIN WITH_RECOMMENDATIONS

			SELECT

			        [gender], SUM([salary]) as Totalsalary

			    FROM

			       dbo.DimDriver

			    GROUP BY

			        [gender]

			This will generate a plan similar to the one shown in the following screenshot. The query prints an XML plan. I've copied and pasted the plan into a text editor to make it easier to read the XML.

			
				
					[image: Figure 14.12 – Sample query plan from Synapse SQL

]
				

			

			Figure 14.12 – Sample query plan from Synapse SQL

			In the query plan, look for the keyword SHUFFLE_MOVE to identify the shuffle stages. The shuffle move section will have the cost details, the number of rows involved, the exact query causing the shuffle, and more. You can use this information to rewrite your queries to avoid shuffling.

			Tip

			Read a query plan from the bottom up to understand the plan easily.

			Next, let's learn to identify shuffle stages in Spark.

			Identifying shuffles in a Spark query plan

			Similar to SQL, we can use the EXPLAIN command to print the plans in Spark. Here is a simple example to generate two sets of numbers, partition them, and then join them. This will cause lot of data movement:

			val jump2Numbers = spark.range(0, 100000,2) 

			val jump5Numbers = spark.range(0, 200000, 5) 

			val ds1 = jump2Numbers.repartition(3) 

			val ds2 = jump5Numbers.repartition(5) 

			val joined = ds1.join(ds2) 

			joined.explain

			The joined.explain request will print a plan similar to the sample shown as follows:

			== Physical Plan ==

			BroadcastNestedLoopJoin BuildRight, Inner

			:- Exchange RoundRobinPartitioning(3), [id=#216]

			:  +- *(1) Range (0, 100000, step=2, splits=4)

			+- BroadcastExchange IdentityBroadcastMode, [id=#219]

			   +- Exchange RoundRobinPartitioning(5), [id=#218]

			      +- *(2) Range (0, 200000, step=5, splits=4)

			Just search for the Exchange keyword to identify the shuffle stages.

			Alternatively, you can identify the shuffle stage from the Spark DAG. In the previous chapter, we saw how to view the Spark DAG from the Spark UI screen. In the DAG, look for sections named Exchange. These are the shuffle sections. Here is an example Spark DAG containing two Exchange stages:

			
				
					[image: Figure 14.13 – Exchange stages (Shuffle stages) in a Spark job

]
				

			

			Figure 14.13 – Exchange stages (Shuffle stages) in a Spark job

			If there are very expensive shuffle sections, consider enabling the statistics and checking whether the engine generates a better plan. If not, you will have to rewrite the query to reduce the shuffles as much as possible.

			Next, let's look at optimizing resource management for cloud-based analytic pipelines.

			Optimizing resource management

			Optimizing resource management in this context refers to how to reduce your billing expenses while using Azure analytic services. Here are some of the general techniques that can help.

			Optimizing Synapse SQL pools

			Here are a few suggestions for Synapse dedicated SQL pools:

			
					Since the storage and compute are decoupled, you can pause your SQL pool compute when not in use. This will not impact your data but will save you some costs.

					Use the right size of compute units. In the SQL pool, the compute units are defined in terms of Data Warehouse Units (DWUs). You can start with the smallest DWU and then gradually increase to higher DWUs to strike the right balance between cost and performance.

					Manually scale out or scale in the compute resources based on the load. You can also automate the scale-out and in using Azure Functions. 

			

			You can learn more about resource management optimizations for the SQL pool here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-manage-compute-overview.

			Optimizing Spark

			Here are a few suggestions for Spark in both Synapse Spark and Azure Databricks Spark:

			
					Choose autoscale options in Azure Databricks or Synapse Spark while setting up the cluster. This will eliminate the need to manage the resources manually.

					Select the auto-terminate option in Azure Databricks and Synapse Spark so that the cluster automatically shuts down if not used for a configured period of time.

					You can choose spot instances where available to reduce the overall cluster cost. These are nodes that are cheap but might get pulled out if there are higher priority jobs that need the nodes.

					Choose the right type of cluster nodes based on memory-intensive, CPU-intensive, or network-intensive jobs. Always select nodes that have more memory than the maximum memory required by your jobs.

			

			These are some of the ways to optimize your resource usage. Next, let's look at how to tune queries using indexers.

			Tuning queries by using indexers

			Indexing is another common optimization technology used in database systems, data warehouses, and analytical engines such as Spark. Let's look at the indexing options and tuning guidelines for both Synapse SQL and Spark.

			Indexing in Synapse SQL

			If you remember, we learned about the different types of indexing in Chapter 5, Implementing Physical Data Storage Structures, in the Implementing different table geometries with Azure Synapse Analytics pools section. I'll recap the different types of indexers we have along with tips for tuning Synapse SQL here again.

			There are three primary types of indexing available in Synapse SQL:

			
					Clustered Columnstore Index: This is the default index option for Synapse SQL. If you don't specify any indexing options, the table will automatically get indexed using this method. Use this index for large tables > 100 million rows. It provides very high levels of data compression and good overall performance.

					Clustered Index: This type of indexing is better if you have very specific filter conditions that return only a few rows, for example, if you have a WHERE clause that returns only 100 rows from a million rows. Typically, this type of indexing is good for < 100 million rows.

					Heap Index: This index is suitable for temporary staging tables to quickly load data. They are also good for small lookup tables and tables with transient data.Tip
If the index performance degrades over time due to incremental loads or schema drift, try to rebuild your indexes.
You can also build a secondary non-clustered index on top of your clustered index tables to speed up filtering.


			

			You can learn more about indexing in Synapse SQL here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/sql-data-warehouse-tables-index#index-types.

			Next, let's look at the indexing options available for Spark.

			Indexing in the Synapse Spark pool using Hyperspace

			Spark doesn't have any inbuilt indexing options as of the time of writing this book, although there is an external indexing system developed by Microsoft. Microsoft has introduced a project called Hyperspace that helps to create indexes that can be seamlessly integrated into Spark to speed up query performance. Hyperspace supports common data formats such as CSV, JSON, and Parquet. 

			Hyperspace provides a simple set of APIs that can be used to create and manage the indexes. Let's now look at an example of how to use Hyperspace within Spark. In this example, we load two tables, one containing trips data and another containing driver data. We then run a join query to see how Hyperspace indexing kicks in. Let's look at the steps involved:

			
					Load your data into a DataFrame:val tripsParquetPath = "abfss://path/to/trips/parquet/files"
val driverParquetPath = "abfss://path/to/driver/parquet/files"
val tripsDF: DataFrame = spark.read.parquet(tripsParquetPath)
val driverDF: DataFrame = spark.read.parquet(driverParquetPath)


					Create the Hyperspace index:import com.microsoft.hyperspace._
import com.microsoft.hyperspace.index._
val hs: Hyperspace = Hyperspace()
hs.createIndex(tripsDF, IndexConfig("TripIndex", indexedColumns = Seq("driverId"), includedColumns = Seq("tripId")))
hs.createIndex(driverDF, IndexConfig("DriverIndex", indexedColumns = Seq("driverId"), includedColumns = Seq("name")))


					Enable the Hyperspace index and reload the DataFrames from the same file location again:spark.enableHyperspace
val tripIndexDF: DataFrame = spark.read.parquet(tripsParquetPath)
val driverIndexDF: DataFrame = spark.read.parquet(driverParquetPath)


					Run a query with join:val filterJoin: DataFrame = tripIndexDF.join( driverIndexDF, tripIndexDF("driverId") === driverIndexDF("driverId")).select( tripIndexDF("tripId"), driverIndexDF("name"))


					Check how the Hyperspace index was included in your query plan by using the explain command:spark.conf.set("spark.hyperspace.explain.displayMode", "html")
hs.explain(filterJoin)(displayHTML(_))


					Here is a sample of what a query plan with the Hyperspace index would look like:

			

			
				
					[image: Figure 14.14 – Query plan using Hyperspace indexes

]
				

			

			Figure 14.14 – Query plan using Hyperspace indexes

			Notice that FileScan is reading the Hyperspace index file instead of the original Parquet file.

			That is how easy it is to use Hyperspace within Spark. You can learn more about Hyperspace indexing for Spark here: https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-performance-hyperspace.

			Next, let's look at how to tune queries using cache.

			Tuning queries by using cache

			Caching is a well-known method for improving read performance in databases. Synapse SQL supports a feature called Result set caching. As the name implies, this enables the results to be cached and reused if the query doesn't change. Once result set caching is enabled, the subsequent query executions directly fetch the results from the cache instead of recomputing the results. The result set cache is only used under the following conditions:

			
					The query being considered is an exact match.

					There are no changes to the underlying data or schema.

					The user has the right set of permissions to the tables referenced in the query.

			

			You can enable result set caching at the database level in Synapse SQL using the following SQL statement:

			ALTER DATABASE [database_name]

			SET RESULT_SET_CACHING ON;

			You can also turn result set caching on from within a session by using the following command:

			SET RESULT_SET_CACHING { ON | OFF };

			Note

			The maximum size of the result set cache is 1 TB per database. Synapse SQL automatically evicts the old data when the maximum size is reached or if the results are invalidated due to data or schema changes.

			You can learn more about result set caching here: https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/performance-tuning-result-set-caching.

			Similar to Synapse SQL, Synapse Spark and Azure Databricks Spark also support caching, but these are at much smaller scopes like caching a RDD or a Dataframe. Spark provides methods including cache() and persist(), which can be used to cache intermediate results of RDDs, DataFrames, or datasets. Here is a simple example to cache the inputs of a DataFrame created from a CSV file:

			df = spark.read.csv("path/to/csv/file")

			cached_df = df.cache()

			Once you cache the DataFrame, the data is kept in memory and offers you faster query performance. You can learn more about Spark caching options here: https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-performance#use-the-cache.

			Let's next look at how to optimize pipelines for both analytical and transactional use cases.

			Optimizing pipelines for analytical or transactional purposes

			You have surely heard the terms OLAP and OLTP if you have been working in the data domain. Cloud data systems can be broadly classified as either Online Transaction Processing (OLTP) or Online Analytical Processing (OLAP) systems. Let's understand each of these at a high level.

			OLTP systems

			OLTP systems, as the name suggests, are built to efficiently process, store, and query transactions. They usually have transaction data flowing into a central ACID-compliant database. The databases contain normalized data that adheres to strict schemas. The data sizes are usually smaller, in the range of gigabytes or terabytes. Predominantly RDBMS-based systems, such as Azure SQL and MySQL, are used for the main database.

			OLAP systems

			On the other hand, OLAP systems are usually big data systems that typically have a warehouse or key value-based store as the central technology to perform analytical processing. The tasks could be data exploration, generating insights from historical data, predicting outcomes, and so on. The data in an OLAP system arrives from various sources that don't usually adhere to any schemas or formats. They usually contain large amounts of data in the range of terabytes, petabytes, and above. The storage technology used is usually column-based storage such as Azure Synapse SQL Pool, HBase, and CosmosDB Analytical storage, which have better read performance.

			We can optimize the pipelines for either OLAP or OLTP, but how do we optimize for both? Enter Hybrid Transactional Analytical Processing (HTAP) systems. These are a new breed of data systems that can handle both transactional and analytical processing. They combine row- and column-based storage to provide a hybrid functionality. These systems remove the requirement for maintaining two sets of pipelines, one for transactional processing and the other for analytical processing. Having the flexibility to perform both transactional and analytical systems simultaneously opens up a new realm of opportunities, such as real-time recommendations during transactions, real-time leaderboards, and the ability to perform ad hoc queries without impacting the transaction systems.

			Let's now look at how to build an HTAP system using Azure technologies.

			Implementing HTAP using Synapse Link and CosmosDB

			HTAP is accomplished in Azure using Azure Synapse and Azure CosmosDB via Azure Synapse Link. We already know about Azure Synapse, so let's look into CosmosDB and Synapse Link here.

			Introducing CosmosDB

			CosmosDB is a fully managed globally distributed NoSQL database that supports various API formats, including SQL, MongoDB, Cassandra, Gremlin, and Key-Values. It is extremely fast and seamlessly scales across geographies. You can enable multi-region writes across the globe with just a few simple clicks. CosmosDB is suitable for use cases such as retail platforms for order processing, cataloging, gaming applications that need low latency with the ability to handle spurts in traffic, telemetry, and logging applications to generate quick insights.

			CosmosDB internally stores the operational data in a row-based transactional store, which is good for OLTP workloads. However, it also provides support to enable a secondary column-based analytical store that is persisted separately from the transaction store, which is good for analytical workloads. So, it provides the best of both the OLTP and OLAP environments. Hence, CosmosDB is perfectly suited for the HTAP workloads. Since the row store and column store are separate from each other, there is no performance impact on running transactional workloads and analytical workloads simultaneously. The data from the transactional store is automatically synced to the columnar store in almost real time.

			Introducing Azure Synapse Link

			Synapse Link, as the name suggests, links Synapse and CosmosDB to provide cloud-native HTAP capability. We can use any of the Synapse compute engines, be it Synapse Serverless SQL Pool or the Spark pool, to access the CosmosDB operational data and run analytics without impacting the transactional processing on Cosmos DB. This is significant because it completely eliminates the need for ETL jobs, which were required earlier. Prior to the availability of Synapse Link, we had to run ETL pipelines to get the transactional data into an analytical store such as a data warehouse before we could run any analysis or BI on the data. Now, we can directly query the data from the CosmosDB analytical store for BI.

			Here is the Synapse link architecture reproduced from the Azure documentation:

			
				
					[image: Figure 14.15 – Azure Synapse Link for CosmosDB architecture

]
				

			

			Figure 14.15 – Azure Synapse Link for CosmosDB architecture

			Note

			Accessing the Azure Cosmos DB analytics store with Azure Synapse Dedicated SQL pool was not supported as of the time of writing this book. Only the Serverless SQL pool was supported.

			Let's now look at the steps to create a Synapse link and set up an HTAP system:

			
					Let's first create a CosmosDB instance. Search for CosmosDB in the Azure portal and select it. In the CosmosDB portal, select the + Create button to create a new CosmosDB instance, as shown:

			

			
				
					[image: Figure 14.16 – Creating a new CosmosDB instance

]
				

			

			Figure 14.16 – Creating a new CosmosDB instance

			
					When you click + Create, it will show the different API options available in CosmosDB. Select Core SQL. Once this is selected, you will see a screen as shown in the following screenshot. Just complete the details, including Resource Group, Account Name, Location, and other required fields and click on Review + create to create the new CosmosDB instance.

			

			
				
					[image: Figure 14.17 – CosmosDB create screen

]
				

			

			Figure 14.17 – CosmosDB create screen

			
					Once you create the CosmosDB instance, it will prompt you to create a container and add a sample dataset. Go ahead and add them. 

					Now, go to the Azure Synapse Link tab under Integrations. Click on the Enable button to enable Synapse Link, as shown in the following screenshot:

			

			
				
					[image: Figure 14.18 – Enabling Synapse Link in CosmosDB

]
				

			

			Figure 14.18 – Enabling Synapse Link in CosmosDB

			
					Next, go to the Data Explorer tab, click on New Container, and complete the details in the form that pops up as shown in the following screenshot. Select On for the Analytical store option at the bottom of the screen. This should set up the CosmosDB for Synapse link.

			

			
				
					[image: Figure 14.19 – Configuring a new container with Analytical store on

]
				

			

			Figure 14.19 – Configuring a new container with Analytical store on

			
					Now, we have to set up Synapse to talk to CosmosDB. We have to first set up a linked service to CosmosDB from the Synapse workspace. From the Synapse portal, go to the Manage tab and then select Linked Services. Click on the + New button and select Azure CosmosDB (SQL API), as shown in the following screenshot:

			

			
				
					[image: Figure 14.20 – Creating a linked service to Cosmos DB

]
				

			

			Figure 14.20 – Creating a linked service to Cosmos DB

			
					On the screen that will pop up (not shown here), complete the details of the CosmosDB that we created earlier and create the linked service.

					When you click on the newly created linked service, it should show the details of the CosmosDB linked service along with the Connection string details, as shown in the following screenshot:

			

			
				
					[image: Figure 14.21 – CosmosDB linked service details

]
				

			

			Figure 14.21 – CosmosDB linked service details

			
					Now the Synapse link setup is complete. Go to the Synapse workspace, select the Data tab, and you should now be able to see an Azure Cosmos DB entry there. We can explore the data in CosmosDB by clicking on the container names under the Azure Cosmos DB entry and selecting Load to DataFrame, as shown in the following screenshot:

			

			 

			
				
					[image: Figure 14.22 – Loading CosmosDB data using the Synapse link

]
				

			

			Figure 14.22 – Loading CosmosDB data using the Synapse link

			
					You can query the CosmosDB data from the Spark notebook using OLAP, as shown:df = spark.read.format("cosmos.olap")\
    .option("spark.synapse.linkedService", "<Linked Service Name>")\
    .option("spark.cosmos.container", "<CosmosDB Container Name>")\
    .load()


			

			For OLTP queries, change format to cosmos.oltp instead of cosmos.olap.

			
					Now you know how to implement an HTAP system and query from it.

			

			You can learn more about HTAP and the Azure Synapse link here: https://docs.microsoft.com/en-us/azure/cosmos-db/synapse-link.

			Let's next look at how to optimize pipelines for descriptive and analytics workloads.

			Optimizing pipelines for descriptive versus analytical workloads

			Data analytics is categorized into four different types:

			
					Descriptive Analytics: The type of analytics that deals with the analysis of what happened and when it happened. Most BI reports, such as sales reports and trip reports, that display current and historical data points fall under this category. The analytics tasks would usually be counts, aggregates, filters, and so on.

					Diagnostic Analytics: This type of analytics also does the why part, along with the what and when. Examples include Root Cause Analysis (RCA). Apart from identifying what happened, we also delve deeper into the logs or metrics to identify why something happened. For example, you could be looking at why a certain cab route is having a dip in revenue, or why a particular type of VM is failing sooner than others by looking into the load on those machines.

					Predictive Analytics: As the name suggests, this type of analytics refers to the prediction of what will happen. This is usually associated with machine learning. We use historical datasets and trends to predict what could happen next. This could be for predicting sales during holiday seasons, predicting the peak hour rush for cabs, and so on.

					Prescriptive Analytics: This final type of analytics is the most advanced version, where, based on predictions, the system also recommends remediate action. For example, based on the peak sales prediction, the system might recommend stocking up more on certain retail items or, based on the peak hour rush, recommend moving more cabs to a particular region.

			

			The topic of this section says optimizing pipelines for descriptive versus analytical, but in essence, all the previously listed categories are just different types of analytical workloads. I'm taking an educated guess that the syllabus committee might have meant optimizing a data warehouse-centric system versus a data pipeline-based system that can feed data into other services, such as machine learning.

			Descriptive analytics almost always includes a data warehouse system such as a Synapse SQL pool to host the final data that can be served to BI tools. And analytics in a generic sense usually involves big data analytical compute engines such as Spark, Hive, and Flink to process large amounts of data from a variety of sources. The data generated would then be used by various systems, including BI, machine learning, and ad hoc queries. So, let's look at the optimization techniques for pipelines involving data warehouses such as Synapse SQL and technologies such as Spark.

			Common optimizations for descriptive and analytical pipelines

			The optimization techniques we have learned throughout this book will all be applicable to both descriptive and general analytical pipelines. For example, the following techniques are common irrespective of SQL Pool-centric (descriptive) or Spark-centric (analytical) approaches.

			Optimizations at the storage level:

			
					Divide the data clearly into zones: Raw, Transformation, and Serving zones.

					Define a good directory structure, organized around dates.

					Partition data based on access to different directories and different storage tiers.

					Choose the right data format – Parquet with a Snappy comparison works well for Spark.

					Configure the data life cycle, purging old data or moving it to archive tiers.

			

			Optimizations at the compute level:

			
					Use caching.

					Use indexing when available.

					Handle data spills.

					Handle data skews.

					Tune your queries by reading the query plans.

			

			Next, let's look at the specific optimizations for descriptive and analytical pipelines.

			Specific optimizations for descriptive and analytical pipelines

			For Synapse SQL, consider the following optimizations:

			
					Maintain statistics to improve performance while using Synapse SQL's cost-based optimizer.

					Use PolyBase to load data faster.

					Use hash distribution for large tables.

					Use temporary heap tables for transient data.

					Do not over-partition as Synapse SQL already partitions the data into 60 sub-partitions.

					Minimize transaction sizes.

					Reduce query result sizes.

					Use the Result set cache if necessary.

					Use the smallest possible column size.

					Use a larger resource class (larger memory size) to improve query performance.

					Use a smaller resource class (smaller memory size) to increase concurrency.

			

			You can learn more about optimizing a Synapse SQL pipeline here: 

			
					https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/best-practices-dedicated-sql-pool.

					https://docs.microsoft.com/en-us/azure/synapse-analytics/sql-data-warehouse/cheat-sheet#index-your-table.

			

			And for Spark, consider the following optimizations:

			
					Choose the right data abstraction – DataFrames and datasets usually work better than RDDs.

					Choose the right data format – Parquet with a Snappy compression usually works fine for the majority of Spark use cases.

					Use cache – either the inbuilt ones in Spark, such as .cache() and .persist(), or external caching libraries.

					Use indexers – use Hyperspace to speed up queries.

					Tune your queries – reduce shuffles in the query plan, choose the right kind of merges, and so on.

					Optimize job execution – choosing the right container sizes so that the jobs don't run out of memory. This can usually be done by observing the logs for the details of previous runs.

			

			You can learn more about optimizing Spark pipelines here: https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-performance.

			Let's next look at how to troubleshoot a failed Spark job.

			Troubleshooting a failed Spark job

			There are two aspects to troubleshooting a failed Spark job in a cloud environment: environmental issues and job issues. Let's look at both of these factors in detail.

			Debugging environmental issues

			Here are some of the steps involved in checking environmental issues:

			
					Check the health of Azure services in the region where your Spark clusters are running by using this link: https://status.azure.com/en-us/status.

					Next, check whether your Spark cluster itself is fine. You can do this for your HDInsight clusters by checking the Ambari home page. We saw how to check Ambari for the status in Chapter 13, Monitoring Data Storage and Data Processing, in the Monitoring overall cluster performance section. Here is the Ambari screen home page again for your reference:

			

			
				
					[image: Figure 14.23 – Ambari home page showing the status of the cluster

]
				

			

			Figure 14.23 – Ambari home page showing the status of the cluster

			
					Check to see whether any service is down or whether any of the resources are running hot with metrics, such as a very high CPU or very high memory usage.

			

			Next, let's look at how to debug job issues.

			Debugging job issues

			If the cloud environment and the Spark clusters are healthy, we have to next check for job-specific issues. There are three main log files you need to check for any job-related issues:

			
					Driver Logs: You can access the driver log from the Compute tab, as shown, in Azure Databricks:

			

			
				
					[image: Figure 14.24 – Driver Logs location

]
				

			

			Figure 14.24 – Driver Logs location

			
					Tasks logs: You can access the task logs from the Stages tab of Spark UI.

			

			
				
					[image: Figure 14.25 – Task log location in the Spark UI

]
				

			

			Figure 14.25 – Task log location in the Spark UI

			
					Executors log: The executor logs are also available from both the Stages tab, as shown in the preceding screenshot, and from the Executors tab, as shown in the following screenshot: 

			

			
				
					[image: Figure 14.26 – Executor log location in the Spark UI

]
				

			

			Figure 14.26 – Executor log location in the Spark UI

			Start with the driver log, and then proceed to the task logs, followed by the executor logs, to identify any errors or warnings that might be causing the job to fail.

			You can learn more about debugging Spark jobs here: https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-troubleshoot-spark.

			Next, let's look at how to troubleshoot a failed pipeline run.

			Troubleshooting a failed pipeline run

			Azure Data Factory and Synapse pipelines provide detailed error messages when pipelines fail. Here are three easy steps to debugging a failed pipeline:

			
					Check Datasets: Click on Linked Services and then click on the Test connection link to ensure that the linked services are working fine and that nothing has changed on the source. Here is an example of how to use Test connection on the Edit linked service page.

			

			
				
					[image: Figure 14.27 – Using Test connection for linked services

]
				

			

			Figure 14.27 – Using Test connection for linked services

			
					Use data previews to check your transformations: Turn the Data flow debug mode on and check the data previews for each of your pipeline activities, starting from the data source. This will help narrow down the issue. Here is an example of how to use Data preview:

			

			
				
					[image: Figure 14.28 – Using the Data preview option to see whether the data is getting populated correctly

]
				

			

			Figure 14.28 – Using the Data preview option to see whether the data is getting populated correctly

			
					If the issues persist, run the pipeline and click on the error message tag to see what the error code is. Here is an example:

			

			
				
					[image: Figure 14.29 – Troubleshooting from the pipeline monitoring page in ADF

]
				

			

			Figure 14.29 – Troubleshooting from the pipeline monitoring page in ADF

			The following troubleshooting guide has the details of all the error codes and recommendations on how to fix the issues: https://docs.microsoft.com/en-us/azure/data-factory/data-factory-troubleshoot-guide.

			Here is an example of a sample error code and recommendation from the Azure Data Factory troubleshooting guide:

			Error code: 2105

			Message: An invalid json is provided for property '%propertyName;'. Encountered an error while trying to parse: '%message;'.

			Cause: The value for the property is invalid or isn't in the expected format.

			Recommendation: Refer to the documentation for the property and verify that the value provided includes the correct format and type.

			Debugging is a skill that comes with practice. Use the guidelines in this chapter as a starting point and practice with as many examples as possible to become an expert.

			With that, we have come to the end of this chapter. 

			Summary

			Like the last chapter, this chapter also introduced a lot of new concepts. Some of these concepts will take a long time to master, such as Spark debugging, optimizing shuffle partitions, and identifying and reducing data spills. These topics could be separate books on their own. I've tried my best to give you an overview of these topics with follow-up links. Please go through the links to learn more about them.

			Let's recap what we learned in this chapter. We started with data compaction as small files are very inefficient in big data analytics. We then learned about UDFs, and how to handle data skews and data spills in both SQL and Spark. We then explored shuffle partitions in Spark. We learned about using indexers and cache to speed up our query performance. We also learned about HTAP, which was a new concept that merges OLAP and OLTP processing. We then explored the general resource management tips for descriptive and analytical platforms. And finally, we wrapped things up by looking at the guidelines for debugging Spark jobs and pipeline failures.

			You should now know the different optimizations and query tuning techniques. This should help you with both certification and becoming a good Azure data engineer.

			You have now completed all the topics listed in the syllabus for DP-203 certification. Congratulations to you for your persistence in reaching the end!

			The next chapter will cover sample questions to help you prepare for the exam.

		

	

			Part 6: Practice Exercises

			This part focuses on where we put everything we have learned into practice. We will explore a bunch of real-world problems and learn how to use the information we learned in the previous chapters. This will help you prepare for both the exam and real-world problems.

			This section comprises the following chapter:

			
					Chapter 15, Sample Questions with Solutions

			

		

	

			Chapter 15: Sample Questions with Solutions

			This is the last chapter of the book – hurray! This chapter will provide sample questions and tips for attending the DP-203 certification. Once you complete this chapter, you should be familiar with the types of questions that appear in the certification along with some techniques for handling them. After you have read this chapter, I'd recommend you go back and read all the important concepts again and look carefully at the notes, tips, and Further reading sections provided in the previous chapters.

			This chapter will cover the following topics:

			
					Exploring the question formats

					Sample questions from the Design and Implement Data Storage section

					Sample questions from the Design and Develop Data Processing section

					Sample questions from the Design and Implement Data Security section

					Sample questions from the Monitor and Optimize Data Storage and Data Processing section

			

			Let's get started!

			Exploring the question formats

			Azure certification teams regularly update their questions and question formats, so there is no fixed pattern, but the following types of questions are common: 

			
					Case study-based questions

					Scenario-based questions

					Direct questions

					Ordering sequence questions

					Code segment questions

			

			There could be about 40-60 questions and the questions are usually distributed according to the weightage given to the topics in the syllabus.

			
					Design and Implement Data Storage (40-45%)

					Design and Develop Data Processing (25-30%)

					Design and Implement Data Security (10-15%)

					Monitor and Optimize Data Storage and Data Processing (10-15%)

			

			The sequence of the questions will be random. Let's look at an example for each of the common types of questions.

			Case study-based questions

			Let's start with a data lake case study question.

			Case study – data lake

			In a case study question, a use case will be described in detail with multiple inputs such as business requirements and technical requirements. You will have to carefully read the question and understand the requirements before answering the question.

			Note

			In the actual exam, the title of the question will NOT have a category such as Data Lake. I've just added it here so that it is easy for you to locate the questions directly from the table of contents. This is true for all the question headings in this chapter.

			Background

			Let's assume you are a data architect in a retail company that has both online and bricks and mortar outlets all over the world. You have been asked to design their data processing solution. The leadership team wants to see a unified dashboard of daily, monthly, and yearly revenue reports in a graphical format, from across all their geographic locations and the online store.

			The company has analysts who are SQL experts.

			For simplicity, let's assume that the retail outlets are in friendly countries, so there is no limitation in terms of moving data across the countries.

			Technical details

			The online transaction data gets collected into Azure SQL instances that are geographically spread out. The overall size is about 10 GB per day.

			The bricks and mortar point of sale transactions are getting collected in local country-specific SQL Server databases with different schemas. The size is about 20 GB per day.

			The store details are stored as JSON files in Azure Data Lake Gen2.

			The inventory data is available as CSV files in Azure Data Lake Gen2. The size is about 500 MB per day.

			Tip

			The trick is to identify key terminologies such as file formats, streaming, or batching (based on the frequency of reports), the size of the data, security restrictions – if any, and technologies to be used, such as SQL in this case (as the analysts are SQL experts). Once we have all this data, the decision-making process becomes a bit simpler.

			Question 1

			Choose the right storage solution to collect and store all the different types of data.

			[Options: Azure Synapse SQL pool, Azure Data Lake Gen2, Azure Files, Event Hubs]

			Solution

			Azure Data Lake Gen2

			Explanation

			
					ADLS Gen2 can handle multiple different types of formats and can store petabytes of data. Hence, it would suit our use case.

					Azure Synapse SQL pool is for storing processed data in SQL tables.

					Azure Files are file sharing storage services that can be accessed via Server Message Block (SMB) or Network File System (NFS) protocols. They are used to share application settings, as extended on-premises file servers, and so on.

					Event Hubs is used for streaming real-time events and not an actual analytical data store.

			

			Question 2

			Choose the mechanism to copy data over into your common storage.

			[Choices: PolyBase, Azure Data Factory, Azure Databricks, Azure Stream Analytics]

			Solution

			Azure Data Factory

			Explanation

			
					ADF provides connectors to read data from a huge variety of sources, both on the cloud and on-premises. Hence, it will be a good fit for this situation.

					PolyBase is mostly used for converting data from different formats to standard SQL table formats and copying them into Synapse SQL pool.

					Azure Databricks can be used for batch and Spark stream processing, not for storing large volumes of data.

					Azure Stream Analytics is used for stream processing, not for storing large volumes of data.

			

			Question 3

			Choose storage to store the daily, monthly, and yearly data for the analysts to query and generate reports using SQL.

			[Choices: Azure Databricks, Azure Queues, Synapse SQL pool, Azure Data Factory]

			Solution

			Synapse SQL pool

			Explanation

			
					Synapse SQL pool is a data warehouse solution that perfectly fits the requirements for storing data to generate reports and find insights. The daily, monthly, and yearly data is usually the data that is cleaned, filtered, joined, aggregated from various sources, and stored in pre-defined schemas for easy analysis. Since Synapse SQL pools are natively SQL-based, it works well for analysts of the company who are SQL experts.

					Azure Databricks is used for batch and stream processing, not for storing large volumes of data. Hence, it wouldn't fit the bill for our use case.

					Azure Queues storage is a messaging service that can hold millions of messages and that can be processed asynchronously. Hence, it wouldn't fit the bill for our use case.

					Azure Data Factory is used to copy/move data, do basic transformations, and orchestrate pipelines. It cannot be used for storing data.Tip
If you find terminologies that you are not aware of, use the principle of negation to find the most suitable answer. In this case, if you didn't know what Azure Queues does, you can try to establish whether any of the other options is a good solution and then go with it. Or, if you are not sure, try to eliminate the obviously wrong answers and take an educated guess.


			

			Question 4

			Visualize the insights generated in a graphical format.

			[Choices: Azure Data Factory, Synapse Serverless SQL pool, Power BI, Azure Databricks]

			Solution

			Power BI

			Explanation

			
					Power BI can generate insights from various sources of data, such as Synapse SQL pools, Azure Stream Analytics, Azure SQL, and Cosmos DB. It provides a very rich set of tools to graphically display the data.

					ADF provides connectors to read data from a huge variety of sources and orchestration support. Hence, it will not be a good fit for this situation.

					Synapse SQL pool is a data warehouse solution that can be used to process data and store it, to be used by business intelligence tools such as Power BI.

					Azure Databricks can be used for visualizing data patterns, but not usually for generating and visualizing graphical insights.

			

			These were examples of case study-based questions. Let's next look at scenario-based questions.

			Scenario-based questions

			In a scenario-based question, you will be presented with a scenario and asked to derive a solution to the problem in the scenario. Let's look at an example.

			Shared access signature

			You are the security engineer for a company. One of the developers has mistakenly checked in the storage access key as part of a test file into a Git repository. You are planning to immediately regenerate new access keys. Which of the following existing authorization keys will have to be regenerated? [Select all applicable answers]

			
					AAD security groups

					User delegation shared access signature keys

					Account shared access signature keys

					Service shared access signature keys

			

			Solution

			
					Account shared access signature keys

					Service shared access signature keys

			

			Explanation

			
					Both account shared access signature keys and service shared access signature keys are signed using the storage access keys. So, if the access keys are regenerated, it will invalidate the account shared access signature (SAS) and service SAS keys.

					AAD security groups are independent of the storage access keys, and so will not be impacted.

					User delegation shared access signature keys are signed using AAD credentials, so they will also not be impacted.

			

			Let's next look at direct questions.

			Direct questions

			These are just simple direct questions. Let's look at an example.

			ADF transformation

			You are designing the data processing pipeline for a cab company using Azure Data Factory. The company has two fleets of cars: electric and gas. You have to branch the pipeline based on the type of car. Which transformation would you use?

			[Options: Join, Split, Conditional Split, New Branch]

			Solution

			Conditional Split

			Explanation

			
					Conditional Split – This is used to split the input data into multiple streams based on a condition. In our use case, the condition could be the type of car.

					Join – Used to merge two inputs into one based on a Join condition, so will not work for our use case.

					Split – There is no such transformation in ADF.

					New Branch – To replicate the current source as is to perform a different set of transformations on the same source of data. Hence, this will also not work for our use case.

			

			These are usually straightforward questions and there might not be any twists. Let's next look at an ordering sequence question.

			Ordering sequence questions

			In this type of question, you will be given a bunch of statements in a random order. You will have to choose the right set of instructions and arrange them in the right sequential order. Let's look at an example.

			ASA setup steps

			You have been appointed as a technical consultant for the Department of Motor Vehicles (DMV). You have been asked to analyze the data coming in from sensors on roads to identify traffic congestion in real time and display it on a graphical dashboard. Since the DMV doesn't have many technical people, they expect the solution to be code-free or with minimal code. You have decided to go ahead with Event Hubs, ASA, and a Power BI-based solution.

			Here are the options you have to set up the system. Arrange the five actions that you should perform in the right sequence.

			
					A – Configure Power BI as the output for the ASA job.

					B – Start the ASA job.

					C – Build the Power BI dashboard to visualize the traffic data on a map.

					D – Configure Azure Blob storage to store the data coming in from the sensors.

					E – Build the ASA query to aggregate the data based on locality.

					F – Copy the aggregated data into Synapse SQL pool.

					G – Configure Event Hubs as the input for the ASA job.

			

			Solution

			
					G – Configure Event Hubs as the input for the ASA job.

					A – Configure Power BI as the output for the ASA job.

					E – Build the ASA query to aggregate the data based on locality.

					B – Start the ASA job.

					C – Build the Power BI dashboard to visualize the traffic data on a map.

			

			Explanation

			The incorrect options are as follows:

			
					D – Configure Azure Blob storage to store the data coming in from the sensors.

			

			We don't need to configure Blob storage as Event Hubs can stream the data directly to ASA. There was no requirement to store the events for any long-term processing.

			
					F – Copy the aggregated data into Synapse SQL pool.

			

			ASA can directly publish the data to Power BI. Hence, we don't need the Synapse SQL pool in between.

			Tip

			Ordering questions are tricky because unless you have tried the process yourself, you might not remember the sequence in which you will have to perform the tasks. So, do try out the concepts hands-on at least once before your certification.

			Let's next look at coding questions.

			Code segment questions

			In code questions, you might be asked to fill in the missing sections of the code or to identify the right set of the code from multiple choices. Let's look at an example.

			Column security

			Let's assume that you have a Customer table with sensitive information in it. You want to hide the Social Security Number (SSN) details from LowPrivUser. Here is the table definition:

			CREATE TABLE Customer

			(

			   CustomerID VARCHAR (20),

			   Name VARCHAR (200),

			   SSN VARCHAR (9) NOT NULL,

			   Phone VARCHAR (12) NULL,

			);

			Complete the following code snippet: 

			GRANT ___________ Customer (CustomerID, Name, Phone) TO LowPrivUser';

			[ Options: ALTER ON, SELECT ON, MASK ON, ENCRYPT ON]

			Solution

			SELECT ON

			Explanation

			
					SELECT ON – Gives permission to run the SELECT queries only on CustomerID, Name, and Phone, which is what is required in this use case.

					ALTER ON – Gives permission to change the table itself – this is not what is asked in the question.

					MASK ON – Invalid syntax; there is no syntax called MASK ON.

					ENCRYPT ON – Invalid syntax; there is no syntax called ENCRYPT ON.Tip
Coding questions also need practice. So please try out simple code snippets from the book and Azure websites before your certification.


			

			The preceding five examples cover the most common types of questions in Azure certification.

			Note

			During the exam, except possibly for the case study questions, the title of the question will not specify whether it is a scenario, direct, ordering-based, or code-based problem. Once you read the question, it will usually be obvious to you.

			Let's now look at a few more sample questions from each of the sections in the syllabus, starting with data storage.

			Sample questions from the Design and Implement Data Storage section

			Let's look at a random mix of questions from data storage-related topics.

			Case study – data lake

			The case study questions will have a detailed description of the case followed by the questions.

			Background

			You have been hired to build a ticket scanning system for a country's railways department. Millions of passengers will be traveling on the trains every day. It has been observed that some passengers misuse their tickets by sharing them with others or using them for more rides than allowed. The railway officers want a real-time system to track such fraud occurrences.

			Technical details

			
					A ticket is considered fraudulent it if is used more than 10 times a day.

					Build a real-time alerting system to generate alerts whenever such fraud happens.

					Generate a monthly fraud report of the number of incidents and the train stations where it happens.

			

			You need to build a data pipeline. Recommend the services that can be used to build such a fraud detection system.

			Question 1

			You recommend the following components to be used:

			
					Azure Blob storage to consume the data

					Azure Stream Analytics to process the fraud alerts

					Power BI to display the monthly report

			

			[Options: Correct/ Incorrect]

			Solution

			Incorrect

			Explanation

			We cannot use Azure Blob storage to consume real-time data. It is used to store different formats of data for analytical processing or long-term storage.

			Question 2

			You recommend a system to use:

			
					IOT Hub to consume the data

					Azure Stream Analytics to process the fraud alerts

					Azure Databricks to store the monthly data and generate the reports

					Power BI to display the monthly report

			

			[Options: Correct/ Incorrect]

			Solution

			Incorrect

			Explanation

			We cannot use Azure Databricks to store the monthly data. It is not a storage service; it is a compute service.

			Question 3

			You recommend a system to use:

			
					IOT Hub to consume the data

					Azure Stream Analytics to process the fraud alerts

					Azure Synapse SQL pool to store the monthly data and generate the reports

					Power BI to display the monthly report

			

			[Options: Correct/ Incorrect]

			Solution

			Correct

			Explanation

			IOT Hub can be used to consume real-time data and feed it to Azure Stream Analytics. Stream Analytics can perform real-time fraud detection and store the aggregated results in Synapse SQL pool. Synapse SQL pool can store petabytes of data for longer durations to generate reports. Power BI can graphically display both the real-time alerts and monthly reports. So, this is the right set of options.

			Let's look at a data visualization question next.

			Data visualization

			You have data from various data sources in JSON and CSV formats that has been copied over into Azure Data Lake Gen2. You need to graphically visualize the data. What tool would you use?

			
					Power BI

					Azure Databricks/Synapse Spark

					Azure Data Factory

					Azure Storage Explorer

			

			Solution

			Azure Databricks/Synapse Spark

			Explanation

			
					Azure Databricks Spark or Synapse Spark provides graphing options that can be used to sample and visualize data.

					Power BI is not used to visualize raw data. It is used to visualize insights derived from processed data.

					Azure Data Factory provides options to preview the data, but not many options for graphically visualizing it.

					Storage Explorer helps explore the filesystem but doesn't have the ability to visualize the data graphically.Tip
Look for the nuances in the question. The moment we see graphically visualize, we tend to select Power BI. But Azure Databricks Spark has built-in graphing tools that can help visualize the data.
Power BI is used to build and display insights from processed data.


			

			Let's look at a data partition question next.

			Data partitioning

			You have a table as follows in Azure SQL:

			CREATE TABLE Books {

			   BookID VARCHAR(20) NOT NULL,

			   CategoryID VARCHAR (20) NOT NULL,

			   BookName VARCHAR (100),

			   AuthorID VARCHAR (20),

			   ISBN VARCHAR (40)

			}

			Assume there are 100 million entries in this table. CategoryID has about 25 entries and 60% of the books align to about 20 categories. You need to optimize the performance of this table for queries that aggregate on CategoryID. What partitioning technique would you use and what key would you choose?

			
					Vertical partitioning with CategoryID

					Horizontal partitioning with BookID

					Vertical partitioning with BookID

					Horizontal partitioning with CategoryID

			

			Solution

			Horizontal partitioning with CategoryID

			Explanation

			
					Horizontal partitioning with CategoryID is the right choice as we need to horizontally partition (shard) the data based on categoryID, which has a fairly good distribution. This can speed up the processing by distributing the data evenly across the partitions.

					Vertical partitioning with CategoryID – Splitting the table vertically will not optimize as we will have to scan through the entire database to aggregate the categories. Vertical partitioning is effective when we need to speed up queries only based on a few columns.

					Horizontal partitioning with BookID – Horizontal partitioning (sharding) is fine, but the key we are looking to optimize is the categories. So BookID will not create the optimal partitions.

					Vertical partitioning with BookID – For the same reason as vertical partitioning with CategoryID, vertical partitions will not be efficient as we need to access all the rows.

			

			Let's look at a Synapse SQL pool design question next.

			Synapse SQL pool table design – 1 

			You are the architect of a cab company. You are designing the schema to store trip information. You have a large fact table that has a billion rows. You have dimension tables in the range of 500–600 MB and you have daily car health data in the range of 50 GB. The car health data needs to be loaded into a staging table as quickly as possible. What distributions would you choose for each of these types of data?

			
					A – Fact table

					B – Dimension tables

					C – Staging table

			

			[Options: Round Robin, Hash, Replicated]

			Solution

			
					A – Fact table – Hash 

					B – Dimension tables – Replicated

					C – Staging table – Round Robin

			

			Explanation

			
					Replicated – Use replication to copy small tables to all the nodes so that the processing is much faster without much network traffic.

					Hash – Use hash distribution for fact tables that contain millions or billions of rows/are several GBs in size. For small tables, hash distribution will not be very performant.

					Round Robin – Use round robin for staging tables where you want to quickly load the data.

			

			Let's look at another Synapse SQL pool design question next.

			Synapse SQL pool table design – 2

			You are a data engineer for an online bookstore. The bookstore processes hundreds of millions of transactions every month. It has a Catalog table of about 100 MB. Choose the optimal distribution for the Catalog table and complete the following script: 

			CREATE TABLE Catalogue (

			   BookID VARCHAR 50,

			   BookName VARCHAR 100,

			   ISBN: VARCHAR 100,

			   FORMAT: VARCHAR 20

			) WITH

			   CLUSTERED COLUMNSTORE INDEX,

			   DISTRIBUTION = ___________

			)

			[Options: ROUND-ROBIN, REPLICATE, HASH, PARTITION]

			Solution

			Replicate

			Explanation

			
					Replicate distribution copies the data to all the compute nodes. Hence, the processing will be much faster in the case of smaller tables.

					Hash – Use hash distribution for fact tables that contain millions of rows or are several GBs in size. For small tables, hash distribution will not be very performant.

					Round Robin – Use round robin for staging tables where you want to quickly load the data.

					Partition – This is used for data partitioning, which is not our use case.

			

			Let's look at a slowly changing dimension question next.

			Slowly changing dimensions

			Identify the type of SCD by looking at this table definition:

			CREATE TABLE DimCustomer (

			   SurrogateID IDENTITY,

			   CustomerID VARCHAR(20),

			   Name VARCHAR(100),

			   Email VARCHAR(100),

			   StartDate DATE,

			   EndDate DATE,

			   IsActive INT

			)

			[Options: SCD Type 1, SCD Type 2, SCD Type 3]

			Solution

			SCD Type 2

			Explanation

			SCD Type 2 keeps track of all the previous records using the StartDate, EndDate, and, optionally, an IsActive or a VersionNumber field.

			Let's look at a storage tier-based question next.

			Storage tiers

			You are a data engineer working with an ad serving company. There are three types of data the company wants to store in Azure Blob storage. Select the storage tiers that you should recommend for each of the following scenarios.

			
					A – Auditing data for the last 5 years for yearly financial reporting 

					B – Data to generate monthly customer expenditure reports

					C – Media files to be displayed in online ads

			

			[Options: Hot, Cold, Archive]

			Solution

			A – Archive

			B – Cold

			C – Hot

			Explanation

			
					Auditing data is accessed rarely and the use case says yearly financial reporting. So, this is a good candidate for the archive tier. The archive tier requires the data to be stored for at least 180 days.

					Monthly customer expenditure data is not used frequently, so it is a good candidate for cold storage. Cold storage requires the data to be stored for at least 30 days.

					Media files to be displayed in ads will be used every time the ad is displayed. Hence, this needs to be on the hot tier.

			

			Let's look at a disaster recovery question next.

			Disaster recovery

			You work in a stock trading company that stores most of its data on ADLS Gen2 and the company wants to ensure that the business continues uninterrupted even when an entire data center goes down. Select the disaster recovery option(s) that you should choose for such a requirement:

			
					Geo-Redundant Storage (GRS)

					Zone-Redundant Storage (ZRS)

					Geo-Zone-Redundant Storage (GZRS)

					Locally Redundant Storage (LRS)

					Geo-Replication

			

			Solution

			
					Geo-Redundant Storage (GRS) or Geo-Zone-Redundant Storage (GZRS)

			

			Explanation

			
					Both Geo-Redundant Storage (GRS) and Geo-Zone-Redundant Storage (GZRS) can ensure that the data will be available even if entire data centers or regions go down. The difference between GRS and GZRS is that in GRS, the data is synchronously copied three times within the primary region using the LRS technique, but in GZRS, the data is synchronously copied three times within the primary region using ZRS. With GRS and GZRS, the data in the secondary region will not be available for simultaneous read or write access. If you need simultaneous read access in the secondary regions, you could use the Read-Access – Geo-Redundant Storage (RA-GRS) or Read-Access Geo-Zone-Redundant Storage (RA-GZRS) options.

					LRS – LRS provides only local redundancy, but doesn't guarantee data availability if entire data centers or regions go down.

					ZRS – ZRS provides zone-level redundancy but doesn't hold up if the entire data center or region goes down.

					Geo-replication – This is an Azure SQL replication feature that replicates the entire SQL server to another region and provides read-only access in the secondary region.Tip
If you notice any options that you are not aware of, don't panic. Just look at the ones you are aware of and check whether any of those could be the answer. For example, in the preceding question, if you had not read about geo-replication, it would have still been okay because the answer was among the choices that you already knew.


			

			Synapse SQL external tables

			Fill in the missing code segment to read Parquet data from an ADLS Gen2 location into Synapse Serverless SQL: 

			IF NOT EXISTS (SELECT * FROM sys.external_file_formats 

			WHERE name = 'SynapseParquetFormat') 

			    CREATE ____________ [SynapseParquetFormat] 

			    WITH (FORMAT_TYPE = PARQUET)

			IF NOT EXISTS (SELECT * FROM sys.external_data_sources 

			WHERE name = 'sample_acct') 

			    CREATE _____________ [sample_acct] 

			    WITH (

			        LOCATION   = 'https://sample_acct.dfs.core.windows.net/users', 

			    )

			CREATE ______________ TripsExtTable (

			    [TripID] varchar(50),

			    [DriverID] varchar(50),

			    . . .

			    )

			    WITH (

			    LOCATION = 'path/to/*.parquet',

			    DATA_SOURCE = [sample_acct],

			    FILE_FORMAT = [SynapseParquetFormat]

			    )

			GO

			[Options: TABLE, EXTERNAL TABLE, EXTERNAL FILE FORMAT, EXTERNAL DATA SOURCE, VIEW, FUNCTION] 

			You can reuse the options provided above for more than one blank if needed.

			Solution

			EXTERNAL FILE FORMAT, EXTERNAL DATA SOURCE, EXTERNAL TABLE

			Explanation

			
					The correct keywords are EXTERNAL FILE FORMAT, EXTERNAL DATA SOURCE, and EXTERNAL TABLE in the order in which they appear in the question.

					You cannot use TABLE as this is not an internal table. We are reading external Parquet data as an external table.

					You cannot use VIEW as views are logical projections of existing tables.

					You cannot use FUNCTION as this is not a UDF.

			

			Let's next look at some sample questions from the data processing section.

			Sample questions from the Design and Develop Data Processing section

			This section focuses on the data processing section of the syllabus. Let's start with a data lake-based question.

			Data lake design

			You are working in a marketing firm. The firm provides social media sentiment analysis to its customers. It captures data from various social media websites, Twitter feeds, product reviews, and other online forums.

			Technical requirements:

			
					The input data includes files in CSV, JSON, image, video, and plain text formats.

					The data is expected to have inconsistencies such as duplicate entries and missing fields.

					The overall data size would be about 5 petabytes every month.

					The engineering team are experts in Scala and Python and would like a Notebook experience.

					Engineers must be able to visualize the data for debugging purposes.

					The reports have to be generated on a daily basis.

					The reports should have charts with the ability to filter and sort data directly in the reports.

			

			You need to build a data pipeline to accomplish the preceding requirements. What are the components you would select for the following zones of your data lake?

			Landing zone:

			[Options: Azure Data Lake Gen2, Azure Blob storage, Azure Synapse SQL, Azure Data Factory]

			Transformation zone:

			[Options: Synapse SQL pool, Azure Databricks Spark, Azure Stream Analytics]

			Serving zone:

			[Options: Synapse SQL pool, Azure Data Lake Gen2, Azure Stream Analytics]

			Reporting:

			[Azure Databricks Spark, Power BI, the Azure portal]

			Solution

			
					Landing zone: Azure Blob storage

					Transformation zone: Azure Databricks Spark

					Serving zone: Synapse SQL pool

					Reporting: Power BI

			

			Explanation

			Landing zone:

			
					Since the input contains a wide variety of data formats, including images and videos, it is better to store them in Azure Blob storage.

					Azure Data Lake Gen2 provides a hierarchical namespace and is usually a good storage choice for data lakes. But since this use case includes images and videos, it is not recommended here.

					Synapse SQL pool is a data warehouse solution that can be used to process data and store it to be used by business intelligence tools such as Power BI.

					Azure Data Factory provides connectors to read data from a huge variety of sources and orchestration support. Hence, it will not be a good fit for this situation.

			

			Transformation zone:

			
					Since the requirement includes cleaning up the incoming data, visualizing the data, and transforming the different formats into a standard schema that can be consumed by reports, Azure Databricks would fit the bill. Azure Databricks also supports Notebooks with Scala and Python support.

					Synapse SQL pool can be used to store the processed data generated by Azure Databricks, but would not be a good fit for Scala and Python support.

					Azure Stream Analytics is used for real-time processing. Hence, it will not work for our use case.

			

			Serving zone:

			
					Synapse SQL pool, being a data warehouse that can support petabytes of data, would be a perfect choice here.

					Azure Data Lake Gen2 provides a hierarchical namespace and is usually a good storage choice for data lake landing zones, but not for the serving zone. Serving zones need to be able to serve the results quickly to BI systems, so usually SQL-based or key-value-based services work the best. 

					Azure Stream Analytics is used for real-time data processing. Hence, it will not work for our use case.

			

			Reporting:

			
					Power BI is a graphical business intelligence tool that can help visualize data insights. It provides a rich set of graphs and data filtering, aggregating, and sorting options.

					The Azure portal is the starting page for all Azure services. It is the control center for all services that provides options for creating, deleting, managing, and monitoring the services.

			

			Let's next look at an ASA windowed aggregates question.

			ASA windows

			You are working for a credit card company. You have been asked to design a system to detect credit card transaction fraud. One of the scenarios is to check whether a credit card has been used more than 3 times within the last 10 mins. The system is already configured to use Azure Event Hubs and Azure Stream Analytics. You have decided to use the windowed aggregation feature of ASA. Which of the following solutions would work? (Select one or more)

			
					A – Use a tumbling window with a size of 10 mins and check whether the count for the same credit card > 3.

					B – Use a sliding window with a size of 10 mins and check whether the count for the same credit card > 3.

					C – Use a hopping window with a size of 10 mins and a hop of 3 mins and check whether the count for the same credit card > 3.

					D – Use a session window with a size of 10 mins and check whether the count for the same credit card > 3.

			

			Solution

			B – Sliding Window

			Explanation

			
					A sliding window has a fixed size, but the window moves forward only when events are either added or removed. Otherwise, it won't emit any results. This will work perfectly as the window is of a fixed size and is moving after considering each and every event in progressive windows of 10 mins. This is a typical use case for a sliding window: For every 10 seconds, alert if an event appears more than 5 times.

					A tumbling window calculates the number of events in fixed-size non-overlapping windows, so it might miss out on counting the events across window boundaries. Here's a typical use case: Find the number of events grouped by card number, in 10-second-wide tumbling windows.

					A hopping window calculates the count of events at every X interval, for the previous Y window width duration. If the overlap window is not big enough, this will also miss counting the events across window boundaries. Here's a typical use case: Every 10 seconds, fetch the transaction count for the last 20 seconds.

					Session windows don't have fixed sizes. We need to specify a maximum window size and a timeout duration for session windows. The session window tries to grab as many events as possible within the max window size. Since this is not a fixed-size window, it will not work for our use case. Here's a typical use case: Find the number of trips that occur within 5 seconds of each other.

			

			Let's next look at a Spark transformation question.

			Spark transformation

			You work for a cab company that is storing trip data in Parquet format and fare data in CSV format. You are required to generate a report to list all the trips aggregated using the City field. The report should contain all fields from both files.

			Trip file format (Parquet):

			tripId, driverId, City, StartTime, EndTime

			Fare file format (CSV):

			tripId, Fare

			Fill in the blanks of the following code snippet to achieve the preceding objective:

			%%scala

			val fromcsv = spark.read.options(Map("inferSchema"->"true","header"->"true"))

			.csv("abfss://path/to/csv/*")

			val fromparquet = spark.read.options(Map("inferSchema"->"true"))

			.parquet("abfss:// abfss://path/to/parquet/*")

			val joinDF = fromcsv.________(fromparquet,fromcsv("tripId") === fromparquet("tripId"),"inner")._________("City")

			[Options: join, orderBy, select, groupBy]

			Solution

			Join, groupBy

			Explanation

			
					join() – To join two tables based on the provided conditions

					groupBy() – Used to aggregate values based on some column values, such as City in this case

					select() – To select the data from a subset of columns

					orderBy() – To sort the rows by a particular column

			

			Let's next look at an ADF integration runtime-based question.

			ADF – integration runtimes

			You are working as a data engineer for a tax consulting firm. The firm processes thousands of tax forms for its customers every day. Your firm is growing and has decided to move to the cloud, but they want to be in a hybrid mode as they already have invested in a good set of on-premises servers for data processing. You plan to use ADF to copy data over nightly. Which of the following integration runtimes would you suggest?

			
					A – Azure integration runtime

					B – Self-Hosted integration runtime

					C – Azure – SSIS integration runtime

			

			Solution

			B – Self-Hosted Integration Runtime: Since this is an on-premises to the cloud use case, the self-hosted integration would be ideal. Also, since they have their local compute available, it would become much easier to set up the IR on the local servers.

			Explanation

			Azure Integration Runtime – This is the default option and supports connecting data stores and compute services across public endpoints. Use this option to copy data between Azure-hosted services.

			Self-Hosted Integration Runtime – Use the self-hosted IR when you need to copy data between on-premises clusters and Azure services. You will need machines or VMs on the on-premises private network to install a self-hosted integration runtime.

			Azure – SSIS Integration Runtime – The SSIS IRs are used for SQL Server Integration Services (SSIS) lift and shift use cases.

			Let's next look at a question on ADF triggers.

			ADF triggers

			Choose the right kind of trigger for your ADF pipelines:

			
					A – Trigger when a file gets deleted in Azure Blob storage

					B – To handle custom events in Event Grid

					C – Trigger a pipeline every Monday and Wednesday at 9:00 A.M. EST

					D – Trigger a pipeline daily at 9:00 A.M. EST but wait for the previous run to complete

			

			[Options: Storage event trigger, Custom event trigger, Tumbling window trigger, Schedule trigger]

			Solution

			
					A – Storage event trigger

					B – Custom event trigger

					C – Schedule trigger

					D – Tumbling window trigger

			

			Explanation

			
					Schedule trigger – These are triggers that get fired on fixed schedules. You specify the start date, recurrence, and end date, and ADF takes care of firing the pipeline at the mentioned date and time.

					Tumbling window trigger – These are stateful scheduled triggers that are aware of the previous pipeline runs and offer retry capabilities.

					Storage event trigger – These are triggers that get fired on Blob storage events such as creating or deleting a file.

					Custom trigger – These are triggers that work on custom events mainly for Event Grid.

			

			Let's next look at a question from the data security section.

			Sample questions from the Design and Implement Data Security section

			This section contains sample questions from the data security section of the syllabus. Let's start with a Synapse SQL encryption-based question.

			TDE/Always Encrypted

			You have configured active geo-replication on an Azure Synapse SQL instance. You are worried that the data might be accessible from the replicated instances or backup files and need to safeguard it. Which security solution do you configure?

			
					Enable Always Encrypted

					Enable Transport Layer Security (TLS)

					Enable Transparent Data Encryption (TDE)

					Enable row-level security

			

			Solution

			Enable Transparent Data Encryption (TDE)

			Explanation

			
					TDE encrypts the complete database, including offline access files such as backup files and log files.

					Always Encrypted is used to encrypt specific columns of database tables, not the complete database or the offline files.

					TLS is for encrypting data in motion. It doesn't deal with encrypting databases.

					Row-level security is for hiding selected rows from non-privileged database users. It doesn't encrypt the database itself.

			

			Let's next look at an Azure SQL/Synapse SQL auditing question.

			Auditing Azure SQL/Synapse SQL

			You work for a financial institution that stores all transactions in an Azure SQL database. You are required to keep track of all the delete activities on the SQL server. Which of the following activities should you perform? (Select one or more correct options)

			
					Create alerts using Azure SQL Metrics.

					Enable auditing.

					Configure Log Analytics as the destination for the audit logs.

					Build custom metrics for delete events.

			

			Solution

			
					Enable auditing.

					Configure Log Analytics as the destination for the audit logs.

			

			Explanation

			
					Enabling auditing will track all the events in the database, including delete activities.

					Configuring the destination as Log Analytics or Storage (Blob) will suffice the requirement to keep track of the activities. Log Analytics provides the advantage of Kusto queries, which can be run to analyze the audit logs. In the case of Blob storage, we will have to write custom code to analyze the audit logs.

					Building custom metrics is not required as the audit function will automatically keep track of all deletions.

					Creating alerts is not required as the requirement is to only keep track of the delete activities, not to alert.

			

			Let's next look at a Dynamic Data Masking (DDM) question.

			Dynamic data masking

			You need to partially mask the numbers of an SSN column. Only the last four digits should be visible. Which of the following solutions would work?

			
					A – ALTER TABLE [dbo].[Customer] ALTER COLUMN SSN ADD MASKED WITH FUNCTION ='PARTIAL(4, "xxx-xx-", 4)');

					B – ALTER TABLE [dbo].[Customer] ALTER COLUMN SSN ADD MASKED WITH FUNCTION = 'PARTIAL(4, "xxx-xx-", 0)');

					C – ALTER TABLE [dbo].[Customer] ALTER COLUMN SSN ADD MASKED WITH (FUNCTION = 'PARTIAL(0,"xxx-xx-", 4)');

					D – ALTER TABLE [dbo].[Customer] ALTER COLUMN SSN ADD MASKED WITH FUNCTION = 'PARTIAL("xxx-xx-")');

			

			Solution

			C – ALTER TABLE [dbo].[Customer] ALTER COLUMN SSN ADD MASKED WITH FUNCTION ='PARTIAL(0, 'xxx-xx-', 4)');

			Explanation

			The syntax for partial masking is partial(prefix,[padding],suffix).

			Let's next look at an RBAC-based question.

			RBAC – POSIX

			Let's assume that you are part of the engineering AAD security group in your company. The sales team has a directory with the following details:

			
				
					[image: Figure 15.1 – Sample sales directory with owner and permission information

]
				

			

			Figure 15.1 – Sample sales directory with owner and permission information

			Will you be able to read the files under the /Sales directory?

			Solution

			No

			Explanation

			In POSIX representation, there are numbers to indicate the permissions for Owner, Owner Group, and Others.

			In our question, the 740 would expand into:

			Owner: 7 (Read – 4, Write – 2, Execute – 1. Total: 4+2+1 = 7) // Can Read, Write, and Execute

			Owner Group: 4 (Read – 4, Write – 0, Execute – 0. Total: 4+0+0 = 4) // Can Read, but not Write or Execute

			Others: 0 (Read – 0, Write – 0, Execute – 0. Total: 0+0+0 = 0) // Cannot Read, Write, or Execute

			So, the answer to the question would be No. Since you are part of the engineering security group, you would fall under the Other category, which doesn't have any permissions.

			Let's next look at a row-level security question.

			Row-level security

			You are building a learning management system and you want to ensure that a teacher can see only the students in their class with any SELECT queries. Here is the STUDENT table:

			CREATE TABLE StudentTable {

			  StudentId VARCHAR (20),

			  StudentName VARCHAR(40),

			  TeacherName sysname,

			  Grade VARCHAR (3)

			}

			Fill in the missing sections of the following row-level security script:

			
					Step 1:CREATE ______ Security.TeacherPredicate (@TeacherName AS sysname)
RETURNS TABLE
AS RETURN SELECT 1
WHERE @TeacherName = USER_NAME()


			

			[Options: FUNCTION, TABLE, VIEW]

			
					Step 2:CREATE ___________ PrivFilter 
ADD FILTER PREDICATE Security.TeacherPredicate (TeacherName)
ON StudentTable WITH (STATE = ON);


			

			[Options: SECURITY POLICY, TABLE, VIEW]

			Solution

			
					Step 1: FUNCTION

					Step 2: SECURITY POLICY

			

			Explanation

			
					Step 1: You must create a FUNCTION that can be applied as a FILTER PREDICATE, not a TABLE or a VIEW.

					Step 2: You must create a SECURITY POLICY that can be applied on the table, not a TABLE or a VIEW.

			

			Let's next look at a few sample questions from the monitoring and optimization section.

			Sample questions from the Monitor and Optimize Data Storage and Data Processing section

			This section contains sample questions from the monitoring and optimization section of the syllabus. Let's start with a Blob storage monitoring question.

			Blob storage monitoring

			You have been hired as an external consultant to evaluate Azure Blob storage. Your team has been using Blob storage for a month now. You want to find the usage and availability of the Blob storage.

			Question 1:

			You can find the Blob storage usage from the Storage Metrics tab.

			[Options: Yes/No]

			Question 2:

			You can find the Blob availability metrics from the Storage Metrics tab.

			[Options: Yes/No]

			Question 3:

			You can find the Blob availability metrics from the Azure Monitor -> Storage Accounts –> Insights tab.

			[Options: Yes/No]

			Solution

			
					Question 1: Yes

					Question 2: No

					Question 3: Yes

			

			Explanation

			You can find the Blob storage usage from the Metrics tab on the Storage portal page. But it doesn't have the store availability metrics. To look at the availability, you will have to go to Azure Monitor and click on the Insights tab under Storage accounts.

			T-SQL optimization

			You are running a few T-SQL queries and realize that the queries are taking much longer than before. You want to analyze why the queries are taking longer. Which of the following solutions will work? (Select one or more).

			
					A – Create a diagnostic setting for Synapse SQL pool to send the ExecRequests and Waits logs to Log Analytics and analyze the diagnostics table using Kusto to get the details of the running query and the query waits.

					B – Run a T-SQL query against the sys.dm_pdw_exec_requests and sys.dm_pdw_waits table to get the details of the running query and the query waits.

					C – Go to the Synapse SQL Metrics dashboard and look at the query execution and query wait metrics. 

			

			Solution

			B

			Explanation

			The diagnostic setting for Synapse SQL pool didn't provide the options for ExecRequests and Waits as of writing this book.

			sys.dm_pdw_exec_requests – Contains all the current and recently active requests in Azure Synapse Analytics.

			sys.dm_pdw_waits – Contains details of the wait states in a query, including locks and waits on transmission queues.

			The SQL Metrics dashboard doesn't provide the query performance details.

			Let's next look at an ADF monitoring question.

			ADF monitoring

			There are two sub-questions for this question. Select all the statements that apply.

			Question 1:

			How would you monitor ADF pipeline performance for the last month?

			
					A – Use the ADF pipeline activity dashboard. 

					B – Create a diagnostic setting, route the pipeline data to Log Analytics, and use Kusto to analyze the performance data. 

			

			[Options: A, B]

			Question 2:

			How would you monitor ADF pipeline performance for the last 3 months?

			
					A – Use the ADF pipeline activity dashboard. 

					B – Create a diagnostic setting, route the pipeline data to Log Analytics, and use Kusto to analyze the performance data. 

			

			[Options: A, B]

			Solution

			Question 1:

			A and B

			Question 2:

			Only A

			Explanation

			The ADF activity dashboard only keeps 45 days of data. Beyond that, we need to use Azure Monitoring and Log Analytics.

			Let's next look at an ASA alert-related question.

			Setting up alerts in ASA

			Select the four steps required to set up an alert to fire if SU % goes above 80%. Arrange the steps in the right order:

			
					A – Configure diagnostic settings.

					B – Define the actions to be done when the alert is triggered.

					C – Select the signal as SU % utilization.

					D – Redirect logs to Log Analytics and use Kusto to check for Threshold > 80%

					E – Select the scope as your Azure Stream Analytics job.

					F – Set the alert logic as Greater Than Threshold value 80%.

			

			Solution

			E, C, F, B

			Explanation

			The steps involved in setting up an ASA alert for SU % utilization are as follows:

			
					Select the scope as your Azure Stream Analytics job.

					Select the signal as SU % utilization.

					Set the alert logic as Greater Than Threshold value 80%.

					Define the actions to be done when the alert is triggered.

			

			Diagnostic settings and Log Analytics are not required. The required SU % utilization metric is already available as part of ASA metrics.

			That was the last of our sample questions!

			Summary

			With that, we have come to the end of the book. I hope you enjoyed reading it as much as I enjoyed writing it. The questions provided in this chapter are just samples but should give you a good idea of how the questions will be in the certification exam. One last piece of advice before you take the test: please try and get familiar with all the concepts hands-on. The Azure certification tests look for practical experience, so do try to create  the resources, run sample jobs, set up alerts, tune your queries, and so on, to boost your confidence levels.

			Wishing you all the very best for your certification!

		

	

			[image: ]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Other Books You May Enjoy

			If you enjoyed this book, you may be interested in these other books by Packt:

			[image: Mastering Adobe Photoshop Elements

]

			Azure Data Scientist Associate Certification Guide

			Andreas Botsikas , Michael Hlobil

			ISBN: 978-1-80056-500-5

			
					Create a working environment for data science workloads on Azure

					Run data experiments using Azure Machine Learning services

					Create training and inference pipelines using the designer or code

					Discover the best model for your dataset using Automated ML

					Use hyperparameter tuning to optimize trained models

					Deploy, use, and monitor models in production

					Interpret the predictions of a trained model

			

			[image: Mastering Adobe Captivate 2019 - Fifth Edition]

			Data Engineering with Apache Spark, Delta Lake, and Lakehouse

			Manoj Kukreja

			ISBN: 978-1-80107-774-3

			
					Discover the challenges you may face in the data engineering world

					Add ACID transactions to Apache Spark using Delta Lake

					Understand effective design strategies to build enterprise-grade data lakes

					Explore architectural and design patterns for building efficient data ingestion pipelines

					Orchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIs

					Automate deployment and monitoring of data pipelines in production

					Get to grips with securing, monitoring, and managing data pipelines models efficiently

			

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

			Share Your Thoughts

			Now you've finished Azure Data Engineer Associate Certification Guide, we'd love to hear your thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review page for this book and share your feedback or leave a review on the site that you purchased it from.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	
OEBPS/Images/B17525_14_018.jpg
Home > Microsoft Azure CosmosDB-20211211155249 > dp203samplecosmosdb

® dp203samplecosmosdb | Azure Synapse Link

Azure Cosmos DB account

“ Enable Azure Synapse Link

B Todt Enable Azure Synapse Link to run near real-time analytics over operational data in Azure Cosmos DE.
Enabling Synapse Link will have cost implications and disabling is not supported as of today. Learn more.
Integrations
1 PowerBi Enable Azure Synapse Link for this account

[ esmrse i | [ _erabie_|

4 Add Azure Cognitive Search

Enable Azure Synapse Link for your containers
> Add Azure Function

© Do TS T S S R e e B

Containers on the request volume, approving your registration may take anywhere from a day to a week. Please come back
i e R (e e e e S e S

© e S e e

7 scale

B settings <l

8 Document Bl Select containers to enable
cument Explorer
SampleDg

A Query Explorer persons





OEBPS/Images/B17525_14_019.jpg
P search (Ctrl+) «

& Overview

Activity log

A Access control (1AM)

@ Tags

 Diagnose and solve problems
© Cost Management

& quick start

%) Notifications

® Data Explorer

Settings
@ Features

@ Replicate data globally

Default consistency
& Backup & Restore

g Firewall and virtual networks
<> private Endpoint Connections

CoRs.

Keys

P
% Dedicated Gateway
b4
& Advisor Recommendations

[ e comioer ]

SQL AP O<

»
»

& SampleDB
# ToDolist

New Container

* Database id ©
OCrestenen ® Use existing

[Sempics 7]

* Container id ©

=== |

* Partition key ©

[Jessrn \

* Container throughput (400 - unlimited RU/s) ©
O Autoscale @ Manual

Estimate your required RU/s with capacity calculator.

400

Estimated cost (USD) O: 0032 hourly / $0.77 daily / $23.36
‘monthly (1 region, 400RU/s, S0.00008/RU)

Unique keys ©

+ A unigue ey

Analyticalstore ©
@®on OOk

> Advanced






OEBPS/Images/B17525_14_016.jpg
Home >

Azure Cosmos DB »

Default Directory

+ Create | D Restore 8 Manageview v () Refresh

Filter for any field. Subscription =

Showing 0 to 0 of 0 records.

all Reso






OEBPS/Images/B17525_14_017.jpg
> Select API option >

Create Azure Cosmos DB Account - Core ... ~ X

Basics  Global Distribution  Networking  Backup Policy

‘Azure Cosmos DB is 2 fully managed NoSQL database service for building scalable, high
performance applications. Try it for free, for 30 days with unlimited renewals. Go to
production starting at $24/month per database, multiple containers included. Leam more

Project Details

Select the subscription to manage deployed resources and costs. Use resource groups like
folders to organize and manage all your resources.

Subscription * ‘Azure subscription 1

L

Resource Group *

II

Create new
Instance Details

Account Name * Enter account name.
Location *

®
g
5
o
£
[N

Capacity mode @
Leam more about capacity mode

With Azure Cosmos D free ter, you will get the first 1000 RU/s and 25 GB of storage for

free in an account. You can enable free tier on up to one account per subscription.

Estimated $64/month discount per account.

Apply Free Tier Discount @® apply O Do Not Apply

ution

brevious [ NestlabaiD





OEBPS/Images/B17525_14_014.jpg
Plan with indexes:

Project [tripId#sss, name#s7a]
+- BroadcastHashloin [driverIdsseo], [driverId#s73], Inner, BuildRight, false
Filter isnotnull (driverIdsase)
+- ColumnarToRow
+- FileScan Hyperspace(Type: CI, Name: TripIndex, LogVersion: 25) [driverId#860,tripId#8so] Batched: true,
DataFilters: [isnotnull(driverId#860)], Format: Parquet, Location:

InkemoryFileIndex[abfss: //sandbox@dp203teststorage.dfs. core.windous .net/synapse/workspaces/dp203t. . ., PartitionFilters:

Pushedrilters: [IsNotull(driverId)], ReadSchema: struct
+- BroadcastExchange HashedRelationBroadcastiode(List(input[@, string, false]),false), [id=#857]
+- (1) Filter isnotnull(driverIdss73)
+- *(1) ColumnarToRow
- FileScan Hyperspace(Type: CI, Name: Driverindex, LogVersion: 25) [driverId#873,nane#87a] Batched: true,

DataFilters: [isnotnull(driverId#873)], Format: Parquet, Location:

InkemoryFileIndex[abfss: //sandbox@dp203teststorage.dfs. core.windous .net/synapse/workspaces/dp203t. . ., PartitionFilters:

Pushedrilters: [IsNotull(driverId)], ReadSchema: struct

Plan without indexes

broject [tripld#sby, namess/a]
+- BroadcastHashloin [driverId#s6e], [driverId#s73], Inner, BuildRight, false

Filter isnotnull(driverId#860)
+- ColumnarToRow

+- FileScan parquet [tripId#859,driver1d#860] Batched: true, DataFilters: [isnotnull(driverId#860)], Format:
Parquet, Location: InMemoryFileIndex[abfss://sandbox@dp203teststorage.dfs. core.windous.net/hyperspace/trips],
Partitionfilters: [], PushedFilters: [IsNotNull(driverId)], ReadSchema: struct

+- BroadcastExchange HashedRelationBroadcastiode(List(input[0, string, false]),false), [id=#510]

+- (1) Filter isnotnull(driverId#873)
+= *(1) ColumnarToRow
+- FileScan parquet [driverId#873,name#874] Batched: true, DataFilters: [isnotnull(driverId#873)], Format:

Parquet, Location: InMemoryFileIndex[abfss://sandbox@dp203teststorage.dfs. core.windous.net/hyperspace/driver],
Partitionfilters: [], PushedFilters: [IsNotNull(driverId)], Readschema:

struct






OEBPS/Images/B17525_06_018.jpg
New external table

Select target database
Lear more (3

Select SQL pool* ®
[© e

Select a database” ©

[Saienemaibe ]

External table name.

[schemal {tableName]

Create external table
QO Automatically (@) Using SQL script
@ This will generate a SQL script and you will be required to run the SQL script.

==





OEBPS/Images/B17525_14_015.jpg
Trannsactional Store Analytical Store

Row store optimized fol Column store optimized for
transactional reads andﬂites F analytical queries

™
‘ Machine Learning
§ e Cloud-Native HTAP
ata
B  — —_ > — Big Data Analytics
S Auto-Sync
]
ﬁ Azure saL Bl Dashboards
; Synapse Link
v b
Azure Cosmos DB Azure Synapse Analytics






OEBPS/Images/B17525_06_017.jpg
& users %

New SQL script V'

] New notebook Vv & New dataflow  + More V'

& > v A users > raw > driver > sample

Name

[ driver.snappy.parquet

A Last Modified Content Type

7/16/2021, 8:08:07 PM

New SQL script > Select TOP 100 rows

New notebook > | Create external table

New data flow Bulk load
New integration dataset

Manage access...

Rename...

Download

Delete

Properties..

Size

6628





OEBPS/Images/B17525_14_012.jpg
€2xml version="1.0" encoding="utf-8"2%
[El<dsql_query number_nodes="1" number_distributions="60" number_distributions_per_node="60">
<Sq1>SELECT [gender], SUM([salary]) as Totalsalary FROM dbo.DimDriver GROUE BY [gender]
</sql>
<materialized view candidates>

<dsql_operations total_cost="0.01056" total number_operation:
<dsql operation operation type="RND ID">

<dsql operation operation type="ON">

B EOE

<dsql_operation operation types"SHUFFLE_MOVE'>
<operation_cost cost="0.01086" accumulative costs=
output_rows="31.6228" GroupNumber="8"/>
<source statement>SELECT [T1_1].[gender] AS [gender], [T1_1].[col] AS [col] FROM
(SELECT SUM([72_1].[salary]) AS [coll, [T2_1].[gender] AS [gender] FROM
[dp203dadicatedsql] . [dbo] . [DinDriver] AS T2_1 GROUP BY [T2_1].[gender]) AS T1_1
OPTION (MAXDOP 1, MIN GRANT PERCENT = [MIN GRANT], DISTRIBUTED_MOVE(N''))
</source_statement>
<destination_table> [TEME_ID_S]</destination_table>
<shuffle_columns>gender;</shuffle_columns>

t </dsql_operation>

a8 <dsql Gperation operation types"RETURN">

0.01056" average_rowsize="44"

& <dsql _operation operation

|~ <7dsal_operations>
L</dsql_query>





OEBPS/Images/B17525_14_013.jpg
‘Stage 9 (skipped)

‘Scan parquet

Stage 10 (skipped)

ShuffeQueryStage

stage 11






OEBPS/Images/B17525_14_010.jpg
Duration GC Time Spill (Disk)

760ms 1248/4

760ms 1228/4





OEBPS/Images/B17525_14_011.jpg
29 SELECT * FROM dbo.DimDriver;

Results  Messages

1= Export results

driverld firstName middleName lastName city gender salary
a1 Brandon Rhodes New York Male 3000
213 Dennis U Florida Male 2500
210 Alicia Yang New York Female 2000
215 Maile Green Florida Female 4000
212 Cathy Mayor california Female 3000

214 Jeremey stiiton Arizona Male 2500





OEBPS/Images/B17525_06_014.jpg
FilterOldRows AlterRow % DriverSQlTable3
= V| itaing rows uing =2 ]
orendonsanconrs S somam
T A SR oo

Alter row settings ~ Optimize  Inspect  Data preview

P—— e e £
Incoming stream * FilterOldRows -

Alter row conditions * © [+ updateit v | | pim_surogatelg<=Maxsur






OEBPS/Images/B17525_06_013.jpg
AddisActiveColumn3

Cresting/upaiing the
columns ‘aiver.d
ariver_name. emailid

FilterOldRows

? Cot
i
A

Filter settings ~ Optimize  Inspect  Data preview

FilteroldRows Learn more [7
AddisActiveColumn3 ~

Output stream name *
Incoming stream *

Filter on *

AlterRow
Insering updting. 'y
dleing. and/or upserting

using epressionson 4

Dim_surrogateld <= MaxSurr






OEBPS/Images/B17525_06_016.jpg
—[ FindDeltaRows — =3 NewRows —%, AddiActiveCol.. — 5 DriverSQLTablel

||g Inputcsv —13 JoinMaxSurrTo
e e
ModifiedRows  —%, AddisActiveCol.. — 7 FilterOldRows ~ —  AlterRow — 8 DriversQUTable3 |

ModifiedRows  —%,  AddisActiveCol.. — 5 DriversQUable2






OEBPS/Images/B17525_06_015.jpg
AlterRow S DriversQlTable3
Insring, upasting L]

i sndforwpsering o

g soresiorson 3 Gtotal

Sink  Settings Mapping  Optimize Inspect  Data preview

Output stream name * DriversQLTable3 Learn more [3

sink type * = 8 &
Integration dataset Inline: Workspace DB Cache.

Dataset * % DedicatedsQL_DimDriver ~ | £ Testconnection ¢ Open + New

Options ™ Allow schema drift ©

[ validate schema @





OEBPS/Images/B17525_06_010.jpg
Rows. AddisActiveColumn DriversQUTablel
. S

icorsly dstiutng ™ | Cresting/updsting e

st prwaictrit) e

22 basad on coumn: Gt rams. smal.

+ ‘ohone. num. Maxsurr. 4
Settings Mapping  Optimize Inspect  Data preview

Options [ skip duplicate input columns @

™ skip duplicate output columns ©

QD Avtomapping @ O Reset  + Add mapping

Delete

[J  mnput columns Y Output columns Y

O [ erveria V] [ ariveria v +m
[ [ drivername V] » [ name S+ w
[ [ emaiia V] » [ emailig vl +m

[ | phone_num ~

ab¢ phoneNum v+ m

Ofmesme [rwae |+8®






OEBPS/Images/B17525_06_012.jpg
ModifiedRows AddisActiveColumn3 FilterOldRows AlterRow

A AE—

Condiionaly isriuting Inserting up
et m Dim_aeers G expressons on columns dsieing and
groups. base on comns 12 total Oim_surogatel, i Gsing expres

Derived column's settings ~ Optimize Inspect  Data preview

—— -

Incoming stream * splitNewandOldRows@ModifiedRows

+Add M cCone T De [ Open expression builder

Columns * @

[] Column Expression

[ [ soRowsacive Vi





OEBPS/Images/B17525_06_011.jpg
ModifiedRows

AddisActiveColumi

Creating/upcting the

Ko ‘columns ‘driver.ic

T total e s,
[ pearcn

ModifiedRows Multpte nputs/outputs

Condionaly isibuting
ne st in Om_avera
roups. bexed an comes |

i New branch

i Join

=& Conditional split





OEBPS/Images/Figure_4.22_-_Select_Tumbling_Window_for_Incremental_load_based_on_File_Modified_Time.jpg
Copy Data tool

o Properties

Q) Source

® Target

(® Settings

(® Review and finish

Use Copy Data Tool to perform a one-time or scheduled data load from 90+ data sources.
Follow the wizard experience to specify your data loading settings, and let the Copy Data Tool generate the artifacts for you,
including pipelines, datasets, and linked services. Learn more (3

Properties

Select copy data task type and configure task schedule

Task cadence or task schedule *

(ORunoncenow (O schedule (®) Tumbling window

Start Date (UTC) * @
[ 06/24/2021 7:06 Pm

Recurrence * @
EVG'Y‘ 24

== <]

) specify an end date

P Advanced





OEBPS/Images/B17525_14_029.jpg
& Rerun " Rerun from activity & Rerun fro

oata tow go
@b Feiimiman ®

& rantem —
ot zo

Activity runs
Pipeline run ID 63b661f-c862-427b-8b3e-18chBe945324

Allstatus

Showing 1-3 of 3 items

Error details 7 X

Erorcode 3204 Troubleshooting guide [}

User configuration issue

Details Databricks execution failed with error state Terminated.
For more details please check the run page urk
https://adb-3647287209096317.17.zuredatabricks net/?
0=3647287299096317#job/170/run/1.

Source Pipeline Batch Pipeline

R’j How helpful or unhelpful was this error message?

* &k ok ok

Activity name Activity type  Run
Transform Notebook 11/13/21,6:4059PM 000436 @ Failed =
FetchFaresFrmsQL Data flow 11/13/21,63651PM 000402 @ succeeded

iS1PM 00:0407 @ succeeded

FetchTripsFmelob Data flow 11/13/21, 6:






OEBPS/Images/B17525_14_027.jpg
=]

Linked services

Name 1y

Edit linked service (Azure Batch)
Name *
AzureBatchls |
Description
Error details 7 X
Emorcode 9512
Connect via integratio  pepyjs Can not access user batch account, please check batch
AutoResolvelntegrati account settings. Activity ID: 7282c09b-d972-4223-2d56-
adfc057e5552.

Authentication metho

Account Key

Access key *

Account name *

dp203batchacct

R’j How helpful or unhelpful was this error message?

© connection failed More

457, Test connection






OEBPS/Images/B17525_14_028.jpg
saved validate | @) Data flow debug @ | B Debug settings
[BSourceTripsData.. @ DestripsADLS2
e Exporecatato TrpsCSV.
+
Source settings  Source options  Projection  Optimize  Inspect | Data preview @
Number of fows  INSERT 19+ UPDATE 0 x DELETE 0 FUPSERT 0 o LOOKUP
Q) Refresh =
T RidelD b DriveriD CustomeriD  sbe
+ 100 200

300





OEBPS/Images/B17525_14_025.jpg
Libraries ~ Eventlog ~ SparkUl  DriverLogs  Metrics

ironment

Summary Metrics for 2 Completed Tasks

Metric Min 25th percentile Median 75th percentile
Duration 19ms 19ms 19ms 19ms

GC Time oms oms oms oms
Shuffle Read Size / Records  122.08/4 12208/4 12408/4 12408B/4

~vAggregated Metrics by Executor

ExecutoriD +  Address TaskTime  TotalTasks  FalledTasks  Kllled Tasks  Succeeded Tasks  Shuffle Re:
0 stdout 10.139.64.4:37045 81ms 2 4 0 2 2460818
stderr

~Tasks (2)
Index » 1D | Attempt | Status Locality Level Executor D | Host Launch Time Duration | GC Time
0 211 0 SUCCESS PROCESS_LOCAL 0 10.139.64.4 stdout] 2021110124 13:3244 19 ms

stderr
f 212 0 SUCCESS PROCESS_LOCAL 0 10.139.64.4 stdout] 2021110124 13:3244 19 ms

stderr






OEBPS/Images/B17525_14_026.jpg
Configuration ~ Notebooks (0)  Libraries  Eventlog ~ SparkUl  DriverLogs  Metrics Master
Jobs  Stages  Storage  Environment
Executors
» Show Additional Metrics.
Summary
ROD Storage Disk Active Failed Complete Total Task Time (GC Shuffle Shuffle
Blocks  Memory Used  Cores Tasks Tasks Tasks Tasks  Time) Input  Read Write Blacklisted
Active(1) 0 00B/16GB 00B 4 0 0 213 213 27s(15) 38KB 1.9KB 19KB 0
Dead(0) 0 00B/008 008 0 0 0 0 0 oms@ms) 008 008 008 0
Total(1) 0 00B/16GB 008 4 0 0 213 213 275(15) 38KB 1.9KB 19KB 0
Executors
show| 20 v entries Searcn
Executor ROD Storage  Disk Active  Falled  Complete  Total  Task Shuffle  Shuffle
D Address. Status  Blocks  Memory  Used  Cores Tasks  Tasks  Tasks Tasks  (GCTime) Input Read Write Logs
0 10.139.64.4:37045 Active 0 00B/16 008 4 0 0 213 213 27s(1s) 38KB 19kB  19kB | stout
cB stderr






OEBPS/Images/B17525_14_023.jpg
@ Ambari

" A Dashboard

A/ Dashboard

METRICS ~ HEATMAPS

NameNode Heap

6%

NameNode RPC

0.22 ms

Cluster Load

CONFIG HISTORY

HDFS Disk Usage

NameNode CPU

METRIC

wIo
25% 14.3%
Memory Usage Network Usage H
95 300.6KB
46068 195.3K8 | N
NameNode Uptime ResourceManager :
Heap

27m 54s

20%





OEBPS/Images/B17525_14_024.jpg
@® ADBsmall @Edt || bStat || Z1Clne || xDelete

Configuration Libraries  Eventlog  Spark Ul | Driver Logs
Spark Driver Logs

[0 Autofetch data

Recentlog fles

stdout (2690 bytes) stderr (4742 bytes)
stdout (1162 bytes) stderr (0 bytes)
stdout (369518 bytes) stderr (659 bytes)

2021-09-10-15-00
2021-09-10-18-00
2021-09-18-07-00
2021-10-09-14-00

365967 bytes) stder—2021-09-10-
(401836 bytes) stder—2021-09-10-
371133 bytes) stderr—2021-09-18-
369155 bytes) stder—2021-10-09-






OEBPS/Images/B17525_14_021.jpg
Edit linked service (Azure Cosmos DB (SQL API))

Name *

[[samplecosmesbb

Description

[ @ Autoresolveintegrationruntime v]o

Authentication method
[‘account key -]

e Key Vault )

Account selection method @
(O From Azure subscription ~ (@) Enter manually

‘Azure Cosmos DB account URI *

[ https:/ — s documents azure.com443/ ]

Azure Cosmos DB acces: Azure Key Vault

‘Azure Cosmos DB access key *

Database name *

| samplens |

‘Additional connection properties

Apply

457 Test connection





OEBPS/Images/B17525_14_022.jpg
- @ synapselive v £ Validateall (71 Publish all

ﬁ Data + ¥ «

Workspace Linked

4 Azure Cosmos DB 1

) 4 13 sampleCosmosDb (SampleDB)
® b (51 persons

4 {5 sampleContainer

b Azure Data Lake Storage Gen2 L New SQL script >
b Integration datasets F] New notebook > | Load to DataFrame
O Refresh Write DataFrame to container

Create spark table
Load streaming DataFrame from container

Write streaming DataFrame to container





OEBPS/Images/Packt_Logo_Orange__f36f261.png
Pack






OEBPS/Images/B17525_14_020.jpg
Synapse live New linked service

«

Linked services

[ cosmod

Analytics pools

Linked services are muct
£ 5L pools comecttoeemalreo < Al Azure  Compute Database  File

& s

+ New

&3 pata

+ +

External connections

+ +

@ Linked services

@ Azure Purview Azure Cosmos DB Azure Cosmos DB (SQL

(MongoDB API) APY)
Integration

& Tiiggers






OEBPS/Images/B17525_10_002.jpg
Azure Event Hubs

Event Receivers.

HTTP(S) Event Generators iti
(S) Partition 1 Consumer
> Group
Event Receivers
Partition 2
AMQP Event Generators Event Receivers
—_— | Partition 3
Consumer
Group

Partition 4

Event Receivers.






OEBPS/Images/B17525_10_004.jpg
Home > Create a resource > Event Hubs >

7 Create Namespace - X
=" Event Hubs

Basics Tags Review + create

Project Detai

Select the subscription to manage deployed resources and costs. Use resource groups like
folders to organize and manage all your resources.

Subscription * ‘Azure subscription 1

L

Resource group *

a
H
II

Instance Details

Enter required settings for this namespace, including 2 price tier and configuring the number

of units (capacity).

Namespace name * DP203EHWS v
servicebus windows.net

Location * East US v

@ The region slected supports Avalably
Zones Your namespace will have Availabity
Zones enabled. Learm more.

Pricing tier (view full pricing details) *

BI

Throughput Units * O—

<pions [





OEBPS/Images/B17525_10_003.jpg
Home > Create a resource >

Event Hubs =

Microsoft
I Event Hubs © s toravorites
ofo Microsoft
o
= 4.2 (95 Azure ratings)






OEBPS/Images/B17525_10_009.jpg
Home > DP203EHWS Add SAS Puhcy %
® DP203EHWS | Shared access = fertfiues

Event Hubs Namespace

Policy name *

2 search (Ctrl+/) « |4 add [erasaacess 7]

H

Psearchtofil [ Manage

Settings
Policy
? Shared access policies Send
2 RootManages
g Listen

@ Geo-Recovery

A encryption





OEBPS/Images/Figure_4.23_-_ADF_Incremental_Load_with_File_Modified_Date_Timestamps.jpg
Copy Data tool

o Properties

Source
Dataset

O configuration

Target

Settings

(5 Review and finish

Source data store

Specify the source data store for the copy task. You can use an existing data store connection or specify a new data store.

Source type [ = Azure Blob Storage v

Connection * [ = Blobsource v | & Edit + create new connection

File or folder *
If the identity you use to access the data store only has permission to subdirectory instead of the entire
account, specify the path to browse.

‘ testcontainer/ ‘ B3 Browse

Options
File loading behavior

[ Load alr iles V]

Load all files
Incremental load: LastModifiedDate

Incremental load: time-partitioned folder/file names

Recursively @
(] elete files after completion ®

Max concurrent connections ©

|
=3






OEBPS/Images/B17525_10_006.jpg
Create Event Hub

Event Hubs

Name* @

Partition Count @

O

Message Retention ©

Capture @
on off






OEBPS/Images/B17525_10_005.jpg
+ EventHub | [ Delete () Refresh

v Essentials

NAMESPACECONTENTS |l KAFKASURFACE ‘ZONEREDUNDANCY
O event Huss NOT SUPPORTED. ENABLED





OEBPS/Images/B17525_10_008.jpg
Home > Stream Analytics jobs >

New Stream Analytics job

@ This ill reate new Sream Analytics job. You will e charged
accordingto Azure Stream Analytics billng model Leam more.

Job name *

Subscription *

[(azure subsription 1 M

Resource group *

[ v]
e
Location *
[t <)

Hosting environment @

Streaming units (110 192) ©

O

[ secure all private data assets needed by this job in my
Storage account. @

Create





OEBPS/Images/B17525_10_007.jpg
Home >

Stream Analytics jobs =

Default Directory

+ create| @ Manageview v () Refresh L

Filter for any fiel ‘Subscription

Showing 0to 0 of 0 records.

all






OEBPS/Images/Figure_4.7_-_Example_of_SCD_Type_2_-_Date_ranges_and_flag.jpg
Adam New York 01-Jan-2020  25-Mar-2020  False
2 1 Adam New Jersey 25-Mar-2020 01-Dec-2020  False
B il Adam Miami 01-Dec-2020 NULL True





OEBPS/Images/Figure_4.8_-_Example_of_SCD_Type_3.jpg
R

Adam New York NULL

e S B ™ P

Adam New Jersey New York





OEBPS/Images/B17525_11_020.jpg
Configure a repository
© newtonalex
Speciy the settings that you want to use when connecting to your repository.

(@) Select repository (O Use repository link

Repository name * @
[E 3|

Collaboration branch * @
[ ~]
-
[ (adf._publish

branch* @

Import existing resource
[ import existing resources to repository

Import resource into this branch ©






OEBPS/Images/B17525_09_009.jpg
Home > Azure Databricks >

Azure Databricks « Create an Azure Databricks workspace
Detault Directory
Basics Networking  Advanced  Tags  Review + create

+ Create &8 Manage view v

Filter for any field.

Name 7. Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Project Detai

S apBWS

Subscription* © [ Azure subscription 1

L

Resource group * © [

Create new,
Instance Details
Workspace name * [ Enter name for Databricks workspace
Region * [eastus
Pricing Tier * @ [ standard (apache spark, secure with Azure AD)

< page

s <preious [ Next:Networking =






OEBPS/Images/B17525_09_008.jpg
DelimitedText
DailyTripsData

Connection ~ Schema  Parameters

Linked service * & _AzureBlobConnection ~ | & Testconnection 7 Edit + New  Learn more (1

File path * [ daitytrips

Directory File. | B3 erowse | v oo Previewdata | v

Compression e

Column delimiter ©
[ it

Row delimiter © Default (\rAn, or \n) o
[ it

Encoding Default(UTF-8) v

Escape character Backslash () o
[ it

Quote character Double quote ()

[ it

I

First row as header

Null value

H'





OEBPS/Images/B17525_09_007.jpg
@ FetchTripsDataFrom... X

+ validate () Data flow debug

B SourceTripsDatal.. [ DestTripsADLS2

3
—

S Export data o TpsCSV

Source settings  Source options  Projection  Optimize  Inspect  Data preview

Output stream name * SourceTripsDataslob Learn more [3

Source type * =
Dataset Infine

Dataset * B DaiyTripsData V] & Testconnection ¢ open |+ New

Options [ Allow schema drift ©

[[J infer drifted column types ®

[ validate schema @

]

‘Sampling * @ QOenable @) pisable






OEBPS/Images/B17525_09_006.jpg
4 Data flows 5
& ADFTransformations &) New data flow
@ AzuresQLToADLS2 B3 New folder
&P DataCleansing

&P FetchTripsDatafromelob
A JsONDataFlow

b Power Query (Preview) 0





OEBPS/Images/B17525_09_005.jpg
New linked service (Azure Blob Storage)

[ Aaurelobstorage |

Description

Connect via integration runtime = ©

[ AutoresolveintegrationRuntime

Authentication method

[(Account key

Account selection method @

(®) From Azure subscription () Enter manually
Azure subscription ©
[‘seectal

Storage account name *
[ ~]o
Additional connection properties
+ New

Test connection ©
(@ To linked service (O To file path

Create






OEBPS/Images/B17525_09_004.jpg
» By Datafactory Validate all Publish all

® € Linked services

Connections

Linked service defines the connection information to a data store or compute. Learn more [

+ New

9 Integration runtimes

@ Azure Punview (Preview) [ 7 Fitter by name (Annotations : Any )






OEBPS/Images/B17525_09_003.jpg
Data flow.

2
“ FetchTripsFrmBlob e = Notebook

P —_—
“ DataCleansing g Transform

Data flow A

“ FetchFaresFrmSQL.

—

Copy data

n
% PolyBaseCopySQLDW





OEBPS/Images/B17525_09_002.jpg
Input
Sources

Blob

B~

Ingest

Transform

Serve

Report
using
PowerBI






OEBPS/Images/B17525_09_001.jpg
Input
Sources

[P,

<

i

< (@

Ingest

——p | | RealTime

Ingestion

!

Transform
St
Stream
o Processing g
Machine E
Learning

Model and Serve

Storage .

Raw
Data

Enriched
Data

Curated
Data






OEBPS/Images/B17525_02_010.jpg
Features AVRO Parquet ORC
READ Performance Low High High
WRITE Performance High Low Low
Ability to Split files for Yes Yes Yes (Best)
Parallel Processing
Schema Evolution Yes (Best) Yes Yes

Support






OEBPS/Images/B17525_02_011.jpg
Add arule
@ Details @ Base blobs.

Lifecycle management uses your rules to automatically move blobs to cooler tiers or to delete them. If you create multiple
rules, the associated actions must be implemented in tier order (from hot to cool storage, then archive, then deletion).

~+ Add if-then block

i o}

Base blobs were *

(® Last modified
More than (days ago) *
B

|

[ Detete the biob
Move to cool storage 2

For infreauently accessed data that vou want to keep on cool storaae for at least 30 davs.
Move to archive storage

Use if you don't need online access and want to keep the obiect for 180 days or lonaer.
Delete the biob.

Deletes the obiect per the specified conditions.






OEBPS/Images/B17525_11_011.jpg
peline runs
il Dashboards

Triggered  Debug Rerun cancel v | O refresh == editcolumns | (IR G )
Runs ok
@ pipeline runs [ 22 search by run 1D or name (" chennai, Kolkata, Mu... : Last 24 hours )

- N I copy filters
% Trigger runs (Y Add filter )
s B e Showing 1 -2 items
@ Integration runt

integration runtimes [ Pipeline name Runstart 4. Runend Status. Error

&P Data flow debug.

[J Hoisparkeipeline 9/26/21, 6:55:59 PM 9/26/21,6:57:09PM @ Succeeded
Notifcations

[0 +oisparkpipeline 9/26/21, 6:40:04 PM 9/26/21,6:43:13PM € Failed [=}

A Alerts & metrics « I





OEBPS/Images/B17525_11_012.jpg
Activity runs
Pipeline run ID 32922150-081-4a1b-8743-b44e5506093C

Allstatus
Showing 1-3 of 3 items

Activity name Activity type  Runsstart Ny
Notebook  8/26/21, 405:41 PM

ostafow

FetchFaresFrmsQL

Transform

FetchTripsFr..

9/26/21, 3¢

Duration

00:08:36

00:05:41

00:04:55

Status
 railed

@ succeeded
@ succeeded

Error





OEBPS/Images/B17525_11_013.jpg
New linked service (Azure HDInsight)

Type®
(® Bring your own HDInsight - () On-demand HDInsight

[(AutoresolveintegrationRuntime N

Account selection method
(®) From Azure subscription () Enter manually

Azure subscription
["Azure subscription 1 (edbs8963-fcd6-4000-87e3-b27629c5da40) V]
Hai Cluster *

[‘op203HDIspark v]

4 storage accounts associated with cluster ©

Storage Type
dp203hdisparkhdistorage Blob Storage

‘Azure Storage linked service
(@ Blob Storage () ADLS Gen 2

Azure Storage linked service *

[ HDIBlobstoragets v/

@ Connection successful

£ Test connection






OEBPS/Images/B17525_11_014.jpg
Saved B2 saveastemplate v/ Validate

General  HDI Cluster  Script/Jar  User properties

HDInsight linked
service

£, Test connection

S X —

£ Edit + New






OEBPS/Images/B17525_11_010.jpg
Connections
@ Linked services

8 Integration runtimes
© Azure Punview
Source control

@ Git configuration

@ ARM template

«

Integration runtimes
The integration runtime () s the co

+ New O Refresh

Showing 1-10f 1 items

Name Ty





OEBPS/Images/B17525_13_001.jpg
— Azure Monitor

rr
Insights [Applicationj [Container] ( VM ] [Workbooks]
L

Application

.

Visualize (Dashboards] ( Views ] [ Power BI j [Workbooks]

Operating System L

Metrics

Azure Resources

.

| —» Analyze [ Metric Analytics ] ( Log Analytics ]

L

Azure Subscription

Logs

.

Azure Tenant

Respond [ Alerts ] [ Autoscale ]
L

N (0 () (0 ) 0

Custom Sources

\\\_/\_/;/\_/\_/;/)

(
Integrate [ Logic Apps J [ Export APls J

NI






OEBPS/Images/B17525_11_019.jpg
Configure a repository
‘Specify the settings that you want to use when connecting to your repository.

(@ select repository (O Use repository link

‘Azure Devops organization name * ©

[ newton-dp203 ~

Project name * ©
[(adfdev

Repository name * ©
[(adtdev V]

Collaboration branch * @

Publish branch = ©
[(adt_publish

Root folder * @
[z

Import existing resource
[ import existing resources to repository

Import resource into this branch ©






OEBPS/Images/B17525_13_002.jpg
Home > Log Analytics workspaces >

Create Log Analytics workspace - x

Basics Tags Review + Create

@ 1 Log Analytics workspace s the basic management unit of Azure Monitor Logs, Thre are specific
consderations you should take when creating 2 new Log Analytics workspace, Leam more

With Azure Monitor Logs you can easily store, retain, and query data collected from your monitored
resources in Azure and other environments for valuable insights. A Log Analytics workspace is the logical
storage unit where your log data is collected and stored.

Project details.
Select the subscription to manage deployed resources and costs. Use resource groups like folders to
organize and manage all your resources.

Subscription* @ [(Azure subscription 1 M

L

Resource graup* © \ <)
G

Instance details

Name* © [ J

Region * @ [(eastus V]

s [






OEBPS/Images/B17525_13_003.jpg
Home > Monitor

Monitor | Activity log =

Microsoft
0 Search (Ctri+/) « \ Activity Edit columns () Refresh L DownloadasCsv #® Logs
@ overview 2 search | Quicknsights

Subscription : Azure subscription 1 Event severity : All Timespan: Last 6hours < Add Filter
B lerts

First 75 items.

fid Metrics
e Operation name Status  Time Time stamp  Subscription Event initiated by
# Logs

> @ CreateorUpdat Succeeded anhourago  SunOct24.. Azuresubscription 1 newton.packt@gmailcom

@ sevice Health

- > @ Liststorage Acc Succeeded anhourago  Sun Oct24.. Azuresubscription 1 Windows Azure Applicati...
Workbooks

> @ Liststorage Acc Succeeded anhourago  Sun Oct24.. Azuresubscription 1 Windows Azure Applicati...





OEBPS/Images/B17525_13_004.jpg
Home > Monitor > Diagnostic settings >

Diagnostic setting
save X Discard [i] Delete < Feedback
‘A diagnostic setting specifies a list of categories of platform logs and/or metrics that you want to collect from a
subscription, and one or more destinations that you would stream them to. Normal usage charges for the destination
will oceur. Learn more about the different log categories and contents of those logs
Diagnostic setting name ActivityLogAnalytics
Category details Destination details
log |8 send to Log Analytics workspace
[ Administrative Subscription
[Cazure subsaription 1 V]
8 security
Log Analytics workspace
[ Loganalyticsws ( southindia) V]

B servicerealth

& Alert

[[J Archive to a storage account

B Recommendation

[[J stream to an event hub

M Policy

[[J send to partner solution

B Autoscale

B ResourceHealth






OEBPS/Images/B17525_09_019.jpg
Microsoft ‘ Power Bl Home

- . My workspace

| &
Q new|
*
Workspaces
©
No results found

+

B8

=4

P

£

&

@

=1






OEBPS/Images/B17525_09_018.jpg
Azure Data

Capability Azure HDInsight HDInsight HDInsight with Azure
Lake Analytics Synapse with Spark with Hive Hive LLAP Databricks
Autoscaling No No Yes Yes Yes Yes
Scale-out granularity Per job Per cluster Per cluster Per cluster Per cluster Per cluster
In-memory No Yes Yes No Yes Yes
caching of data
Gueariron extemal Yes No Yes No No Yes
relational stores
Authentication Azure AD SQL / Azure AD No Azure AD1 Azure AD1 Azure AD
- 1 1
Auditing Yes Yes No Yes Yes Yes
) 2 1 1
Row-level security No Yes No Yes Yes No
) 3 3
Supports firewalls Yes Yes Yes Yes Yes No
Dynamic data masking No Yes No Yes! Yes" No






OEBPS/Images/B17525_13_005.jpg
. LogAnalyticsWS | Logs =

Log Analytics workspace

€ P Newauary1e <

General © 4 LogAnaiyticWS  Select scope M ( Time range: Last24 hours ) | B Save v 2 Share
== Workspace summary Tables  Queries  Functions - & 1 e

@ workbooks

# Logs 7 N

P soliions (7 Fater) 2 Group by: Saliion: Results  Chart | [ Columns v | (D) Display time (UTC+0000) v/
@ Usage and estimated costs = Collapse all Completed. Showing results from the last 24 hours.

1l properties Favorites TimeGenerated [UTC] V' CalleripAddress Y CategoryValue
*: service Map ;’:: :’:Ci""" favantes by cickingion > 10242021, 2: 2042.4210 Administrative
Workspace Data Sources 4 LogManagement > 107242021, 2042.4210 Administrative
B virtual machines > 107242021, 5 2396114155 Administrative
1 st oS 1o » E StorageBloblogs > 107242021, 5 2396114155 Administrative





OEBPS/Images/B17525_11_015.jpg
2 Swvesstemplate  Valdate > Debug |44 Add trigger

&

gkl HDISpark

T ODb

General  HDICluster  Script/Jar  User properties

 Details
Type * @script O Jar
Job linked service © E_HDIBlobstoragels %

& Testcomection 7 it New

File path * deta x]/

wordcount.py x] B3 srowse | v

& Editscipt 65 Preview script
> Advanced





OEBPS/Images/B17525_13_006.jpg
P Search (Ctrl+/) « 7 Newchart () Refresh |& Share \/ (©) Feedback \/ Local Time: Last 24 hours (Automatic - 15 minut...

< | # Addmetric *y add fiter Line chart Drillinto Logs iew alert rule
Monitoring 2 'v = v & Logs v/ ) New alert rul
57 Apply spiting o
9 nsghs TEE &
B lerts Scope Metric Metric
m = [iacblobstoreacct ] [eb ~ | [gress °
‘Aggregation CAPACITY z
W worooots s
B — Blob Container Count
10008 2 Blob Count I
#® Logs (preview)
92 Index Capacity .
y s
Monitoring (dlassic) TRANSACTION r
i o B 008
il Metrics (classic) s00n # Availability [
7 Egress -
B Diagnostic settings (dlassic) S 2
ey
i Usage (classic) 3008
208
Automation
100
s Tasks (preview) E
oo e S s

3 export template W o)






OEBPS/Images/B17525_09_017.jpg
Edit linked service (Azure Databricks)

@ FetchTripsDataFroms. DailyTripsData 0D BatchPipeline | Name *

Savesstemplate / Validste > Det

Activities ¥«

b Move & transform
4
b Azure Data Explorer
Connect via integration runtime * ©
b Azure Function
[‘AutoresolveintegrationRuntime ~]
b Batch Service
w Oh Account selection method *
b Databricks [enter mancally V]
b Data Lake Analytics R ——
b General [ nttps://adb-3647287299096317.17.azuredatabricks net ]
b HDInsight General  Azure Databricks  Settings | authentication type *
b iteration & conditionals ~ [Access Token V]
Databricks linked service * chpe
b Machine Learning il ‘Azure Key Vault )
)
b Power Query Access token * ©

Select cluster

(@ New job cluster () Existing interactive cluster () Existing instance pool

Cluster version * @

[(s0x-scalaz.12 V]

Cluster node type * ©

[ 'stendard_r4 V]
Python Version *
B ]

Worker options ©
OFixed (@ Autoscaling

Min Workers *

£, Test connection






OEBPS/Images/B17525_09_016.jpg
User Settings

AccessTokens  Gitlntegration  Notebook Settings  Model Registry Seftings  Language Settings|  Signed in as
— I

Personal access tokens can be used for secure authentication to the Databricks AP! instead of passwords.

‘Admin Console

Manage Account
Comment Creation & Expiration roaiou
Running Sample Batch from ADF 2021-09-10 20:36:32 IST 20210913 20:36:32 18T yospaces
v ADBWS

newton packt_gmail com






OEBPS/Images/B17525_13_007.jpg
Home > Monitor

= Monitor | Storage accounts =

Microsoft
P Search (Ctri+/) « @ workbooks ¢ customize O & R © ? O Autorefresh: Off
9 Applications Overview  Capacity

B Virtual Machines

|= Storage accounts I

=
%

& Containers P search
9 Networks Subscription y | ransactions 4 Transactions Timeline e2e Latency |
& sQL (preview)

pr—— [ ]
Vaults
Lo S e B om

S8 Azure Cache for Redis

& Azure Cosmos DB






OEBPS/Images/B17525_11_016.jpg
»

@ Azure Data Factory allows you to configure a Git repository with either Azure DevOps o GitHub. Git is a version
control system that allows for easier change tracking and collaboration. Learn more

Data factory

IACUATDataFactory

.A o





OEBPS/Images/B17525_09_015.jpg
y Resources v«

[ Fiterresources bymame | + v « | B2 savesstemplate + Validaste [> Debug |
> Pipeline s [poaias ]

b Dataset 14 4 Databricks

b Data flows 5 | & Notebook

P Power Query (Preview) o g]ar

© ryon





OEBPS/Images/B17525_11_017.jpg
» © synapselive v~ £ Validateall (T Publishall O

Configure a repository

© Azure Punview (Preview)  ~

‘Connect your workspace with your Git repository just within few dlicks. To lear more

ey about best practices about CI/CD please view document here. Learn more [
2 & <

9 Integration runtimes

Security

L
u
B e
-
L]

B Access cont }
£ Credentials

Codelibraries
No Git repository configured

& workspace packages Connect to a repository for source control and collaboration for work on your

Source control ‘workspace pipelines.

@ Git configuration s






OEBPS/Images/B17525_13_008.jpg
Home > Monitor > iacblobstoreacct

Storage account

P search (Ctrl+) «

11! Endpeints

A Locks

ff Metrics
@ workbooks

Diagnostic settings (preview)

# Logs (preview)
Monitoring (dlassic)

i Metrics (classi)
Diagnostic settings (classic)
fdl Usage (classic)
Automation

3 Tasks (preview)

¥ Export template

Support + troubleshooting >

cblobstoreacct | Insights X

@ worbooks £ customize O & ©

? D Autorefresh: Oft

E IOvervlew Failures  Performance  Availability ~ Capacity

The data comes from Storage metrics. It measures the availability of requests on Storage accounts. Leamn
more

Account Blob Table
ity Asissiity Asissiity

1100+ 1100+ 1100+

Storage health
Availability state 7y Occurred time 7y Reasonchronicity Ty Reported tim
© Available 11/18/2021, 53000 AM Persistent 12/18/2021,1
I ,
Availability by APl name Availability trend w2
Namespace . Availability (%)
B
“Blob (1) @ 100%

GetBlobserviceProp @ 100%






OEBPS/Images/B17525_13_009.jpg
Home > LogAnalyticsWs.

:= LogAnalyticsWS | Custom logs

"= Log Analytics workspace

P search (Ctrl+) «

Custom tables  Custom fields

& Agents configuration

= custom logs + Add custom log
B Computer Groups

BT P Filter by name
= Linked storage accounts Showing 0 results

> Network Isolation





OEBPS/Images/B17525_11_018.jpg
Microsoft Azure

Azure DevOps

Plan smarter, collaborate better, and
ship faster with a set of modern dev
services

My Azure DevOps Organizations

Get started using Azure DevOps
8illing management for Azure DevOps






OEBPS/Images/B17525_09_014.jpg
& @ ADBsmall

® =~ = #f e A

SampleNotebook (scaia) © ? |ADBWS &

2

=

1 print ("Hello world")| Prv—x

(O [T






OEBPS/Images/B17525_02_007.jpg
Driver ID Name License Number
111 Annie A1234
222 Brian B5678
333 Charlie C3456






OEBPS/Images/B17525_09_013.jpg
< databricks





OEBPS/Images/B17525_02_006.jpg
Input Sources.

Realtime
Ingestion

Stream
Processing

%
$

Analytics Client .

Store Events in
Long Term store

Replay Events
f Needed

Long Term Store.






OEBPS/Images/B17525_09_012.jpg
Create Cluster ? | ADBWS &

New Cluster Cancel DBU/ hour: 2.25-6.75

Cluster Name ul | JSON

12 GB Memory, 5

[ TestClusted ]

Cluster Mode @
Standard

Databricks Runtime Version @ Lear more

Runtime: 83 (Scala 2.12, Spark 3.1.1)
B ostebrics Runtme .x uses Deta Lake as the defaut tabe format. Leam more

Autopilot Options
Enable autoscaling ©

Terminate after 120 tes of inactivity @

Worker Type @ Min Workers ~ Max Workers
Standard_DS3_v2 14.GB Memory, 4 Cores 2 8 A O Spotinstances @

B0 Coniours separet poosfor workers and crvers for iy, Leam more

Driver Type

Same as worker 14 GB Memory, 4 Cores

DBU/ hour: 225 -6.75 @ indard_DS3_v2

» Advanced Options






OEBPS/Images/B17525_09_011.jpg
Microsoft Azure | Databricks

? | ADBWS &

&

& Azure Databricks

Drop files or  click to browse

© @

Explore the Quickstart Tutorial Import & Explore Data Create a Blank Notebook

Spin up a cluster, run queries on preloaded data, and Quickly import data, preview its schema, create a table Create a notebook to start querying, visualizing, and
play results in 5 minutes and query itin a notebook modeling your data

Common Tasks Recents Documentation
[3 New Notebook [3 paiyrevenue ' Documentation
BB Create Tavle [3 sparkapLsGen2 7 Release Notes
&% New Cluster [ Getting Started
B NewJob

A New MLflow Experiment
& 1mport Library

7' Read Documentation






OEBPS/Images/B17525_02_009.jpg
111

222

333

Annie

Brian

Charlie

A1234

B5678

3456






OEBPS/Images/B17525_02_008.jpg
111

Annie

Al1234

222

Brian

B5678

333

Charlie

3456






OEBPS/Images/B17525_09_010.jpg
Home >

< ADBWS =

Azure Databricks Service

JSON View

» T Delete
v Essentials
Launch Workspace
Documentation Getting Started Import Data from File

Import Data from Azure

Storage






OEBPS/Images/B17525_02_003.jpg
Storage Technologies

Azure Data Lake Gen2
Azure Blob Storage
Azure CosmosDB

Azure SQL Database

Data Transformation
Technologies

Spark (via Azure Synapse, Azure HDInsight or Azure
Databricks)

Apache Hive (via Azure HDInsight)

Apache Pig (via Azure HDInsight)

Analytical Datastore

Synapse SQL Warehouse (via Azure HDInsight)
Apache HBasc (via Azurc HDInsight)

Apache Hive (via Azure HDInsight)






OEBPS/Images/B17525_02_002.jpg
Azure Synapse
Analytics

Azure Streaming @ Auure Databricks E Azure ML
Analytics

Azure sQL I% SQL Data Warehouse

o,
Azure Event Hub ’ Azure HDInsight

Azure Data Factory

3
87

Azure Streaming Analytics ‘ Power BI






OEBPS/Images/B17525_02_005.jpg
Fast Path (sueam";

[ | processng % 1

Input Sources

Serving Layer Analytics Client .
Slow Path (Batch @

Processing @






OEBPS/Images/B17525_02_004.jpg
Ingestion Tools

Azure Event Hub
Azure loT Hub

Apache Kafka (via Azure HDInsight)

Stream Processing
Tools

Azure Stream Analytics

Spark Streaming (via Azure HDInsight or Azure
Databricks)

Apache Storm (via Azure HDInsight)

Analytical Datastore

Synapse SQL Warehouse
Apache HBase (via Azure HDInsight)

Apache Hive (via Azure HDInsight)






OEBPS/Images/B17525_02_001.jpg
Input
Sources

Ingest Transform
-
—| [restime Processing
Ingeston $
- ‘17 Model and Serve
Machine b e D
toaming Data Store
| [oste
Ingeston

i

storage -

Raw
Data

Enriched
Data

Curated

Analytics
and
Reporting.






OEBPS/Images/B17525_03_004.jpg
Resource

Limit

Number of storage accounts per region per
subscription, including standard, and premium
storage accounts.

250

Maximum storage account capacity

5 PiB (can be increased by calling Azure Support)

Maximum request rate® per storage account

20,000 requests per second

Maximum ingress* per storage account (US, Europe
regions)

10 Gbps

Maximum ingress® per storage account (regions
other than US and Europe)

5 Gbps if RA-GRS/GRS is enabled, 10 Gbps for
LRS/ZRS

Maximum egress for general-purpose v2 and Blob 50 Gbps
storage accounts (all regions)

Maximum number of IP address rules per storage 200
account

Maximum number of virtual network rules per 200

storage account






OEBPS/Images/B17525_03_003.jpg
Shared Domain

e
E

New York ci1 4 an
1002 LosAngeles Brian 2 3 c222
2003 Phoenix Cathy. €333 s €333
2004 Denver Daryl cass i caas

Customer
D

NewYork  Adam  Cl11 4 ) T )
1002 LosAngeles Brian €222 3 =) L )
2003 Phoenix  Cathy  C333 s ca33 I )
2004 Denver  Daryl  C444 1 casa [ ]

General Domain @ Sensitive Domain






OEBPS/Images/B17525_03_002.jpg
Locat Customer
Feedback

R

New York 4

1002 Los Angeles  Brian 3
2003 Phoenix Cathy 5
2004 Denver Daryl i

1002 Los Angeles  Brian
2003 Phoenix Ccathy.
2004 Denver Daryl

Customer
Feedback
£}
{3






OEBPS/Images/B17525_03_001.jpg
Location Customer
ating eedback

New York 4
1002 Los Angeles  Brian 3 (...)
2003 Phoenix Cathy 5 ()
2004 Denver Daryl i )

= I
Rating | Feedback Feedback
1001  NewYork ~ Adam 4 {-} Phoenix  Cathy 5
1002  LosAngeles Brian 3 {3} 2004 Denver Daryl 1
— =
Shard for Shard for

1000-1999 2000-2999





OEBPS/Images/B17525_09_029.jpg
B SampleSource UpdateRow faSynapsesal

Importcata from SsmpleCSV ‘2dd opressions 1o ater rows
+ +

Coumns
Ototal

Sink  Settings Mapping  Optimize Inspect  Data preview

Update method © [ attow insert
[ allow delete

[ Allow upsert

[ allow update

Key columns = @ @ List of columns (O Custom expression ©





OEBPS/Images/B17525_09_028.jpg
Z Jupyter

Files | Rumning  Clusters
Select items to perform actions on them.
o [~|»
O © Pyspark

0 oscala

Upload

TextFile
Folder

Terminal

Notebooks

PySpark
PySpark3

Spark






OEBPS/Images/B17525_09_027.jpg
Home > HDInsight_2021-11-26T11.40.24.627Z >

HDISparkCluster = - X

HDInsight cluster

[ Delete () Refresh A7 Feedback

v Essentials View Cost | JSON View

Overview  Get started

Dashboards
L L] o =
Ambari home Ambari views Zeppelin notebook Jupyter notebook
okt @

‘spark history server Yam





OEBPS/Images/B17525_09_026.jpg
Acti v « + validate [> Debug £ Add trigger

3

 HpInsight

soof HDISpark
sk Sparc

@ 0D @

General  HDI Cluster  Script/Jar  User properties

HDInsight linked

; +®[# rDinsightts
service

& Testconnection ¢ Edit + New






OEBPS/Images/B17525_09_025.jpg
Factory Resources v « (D BatchPipeline x 7z

[ Fiterresources byname._| -+ Activities v « | validate > Debug | v QB oxts flow debug 0B

3 ® £ search activities
Dt o
P Dataset @7 New pipeline m
%
FetchTripsFrmelob
b Data flows 52 Pipeline from template Orer “ = Notebook. Copy data
> "
E7 N ansform PolyBaseCopyToSQLDel
b Power Query "7 New folder g Fem [ s
> Batch Service Data flow e
 Databricks & FeummmsaL
S Notebook

Sar





OEBPS/Images/B17525_09_024.jpg
Modeling ~ View  Help  Format  Data/Drill

File Home Insert
2o ?[Eﬁé[%@@[% P [ il d%ll@r
C i 74
Paste LB CoPY Bxcel PowerBl SQL Enter Dataverse Recent | Transform Refresh = New Text More Sensitivity | Publish
< Format painter daiav workbook datasets Server data sourcesv datav visual box visualsv | measure measure v
Clipboard Data Queries Insert Calculations Sensitivity | Share ~
|Lu| v & < | Visualizations > || Fields »
ooy sirLecaion
= < P Search
o B, TripTable
&g z )
3 O X customerlD
O X driverld
2 O endLocation
@ startlocation
[+ 1 O X tripDate
& Y wipld
: Ads
startLocation v X
Legend
Add data fields here
M Seartie
L startocation 4 Values
tripld v x
Small multiples

Page 1 -

Page 10f 1





OEBPS/Images/B17525_09_023.jpg
Download .pbids file

Download the .pbids file below and save it to your local drive.

 m—aipool pbids





OEBPS/Images/B17525_10_034.jpg
SampleASAJob | Compatibility level

Stream Analytics job

5 search (Ctrt+/) « save 9 Discard
Configixe * Compatibility level ©
B Enformert [&

& “Siorage acoourt seligs 10

% scale i

® Locale 12

52 Event ordering
@ Error policy
& Compatibility level

% Managed Identity





OEBPS/Images/B17525_09_022.jpg
© Synapselive -

Develop

¥ _Filte resources by name

£ Validate all

+ v«

Publish all

B PowerBidatasets X

- New Power 81 dataset|

3

3

QL scripts
Notebooks

Data flows

Power Bl

PowerBiWorkspace
B Power Bl datasets

b B3 Power B reports

5

3

() Refresh

Power Bl datasets (PowerBIWorkspace)

This s a read-only view of datasets existing in
manage these datasets. Lean more (3

Showing 0 item

Name





OEBPS/Images/Figure_4.2_-_Example_of_Snowflake_Schema.jpg
LicenselD DriverID CustomerID Address
License Number Name Name Linel
License State T Phone Phone “~ Line2
Expiry Date Email / Email City
LicenselD ol itz AddressID State
FEED Country
DriverID
CustomerlD
CabID
DatelD CabID
Date / \ CabNumber
DayofWeek Model
DayofMonth Segment

Month





OEBPS/Images/B17525_09_021.jpg
New linked service (Power BI)

@ Choose a name for your linked service. This name cannot be updated later.

Name *

‘ PowerBIWorkspace

Description

Tenant

[ Microsoft (u—————— ~]

Workspace name *
[ PowerBTripws (————— V]

[edit
Annotations

+ New

> Advanced ©






OEBPS/Images/B17525_09_020.jpg
@ Synapselive v

Analytics pools
& saL pools

{1 Apache Spark pools

{3 Data Explorer pools (pre...

External connections

@ Linked services

@ Azure Purview

Integration

& Triggers

Validate all

Linked servi

Linked services
Analytics to conn

+ New

| 7 Fitter by nam

Showing 1-4 0
Name ™

DP203Key

W iacsynapse.

New linked service

5 power

< Al Awmre Compute

Power BI





OEBPS/Images/B17525_10_031.jpg
7 Create Namespace

Event Hubs

Basics Tags Review + create

Project Details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * [ Azure subscription 1 M

L \

Resourcegroup * <]

Create new
Instance Details

Enter required settings for this namespace, including 2 price tier and configuring the number of units (capacity).

Nomespace name \ \

servicebuswindows.net

Locaton* (e <)

@ The region slected supports Availabilty zones. Your namespace will have
Avilabity Zones enabled. Lear more.

Pricing tier (view ful pricing details) * [ Standard (20 Consumer groups, 1000 Brokered connections) M
Throughput Units * =]
Enable Auto-Infiate © ]

Auto-Inflate Maximum Throughput Units O =]

oo [T





OEBPS/Images/B17525_10_030.jpg
0secs 10 secs. 20 secs.

@
®
)]






OEBPS/Images/B17525_10_033.jpg
= Create Namespace - X

= Event Hubs

Basics Tags Review + create

Project Details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and
manage all your resources.

Subscription * [(Azure subscription 1 M

L \

Resource group *

]

Create new
Instance Details

Enter required settings for this namespace, including 2 price tier and configuring the number of units (capacity).

Nomespace name \ \

servicebuswindows.net

ocaton* (o <)

@ The region slected supports vailabilty zones. Your namespace will have
Avilabity Zones enabled. Lear more.

Prcin ier (e ull pricing detais | <)

Throughput Units * O (R

[





OEBPS/Images/B17525_10_032.jpg
SampleASAJob | Scale

Stream Analytics job

P Search (Ctri+/) « save ) Discard

Configure 5

i B Streaming units (1t0 192) * @
% Environment Qmemmmsssmemmeemssameaeae————— E

£ Storage account settings

@ scale






OEBPS/Images/01.jpg
base64ToBinary ()

Return the binary version for a Base64-encoded string.

base64ToString ()

Return the string version for a Base64-encoded string.

decodeBase6b4 ()

Return the string version for a Base64-encoded string.

dataUriToBinary ()

Return the binary version for a data URL

dataUriToString ()

Return the string version for a data URL

decodeDataUri ()

Return the binary version for a data URL






OEBPS/Images/B17525_09_039.jpg
Home > Policy

B Policy | Definitions
.

@ Overview

¥ Getting started
® compliance
@ Remediation
4 events
Authoring

[ Assignments
[S Definitions
@ Exemptions

Related Services

—+ policy + Initiative @ Export O Refresh
Scope Definition type Type Category. Search
[‘azure subscr.. | [allefinition types v | [ Alltypes v | [Alcategories | [ Filterby name or p...

() R T e D M e S T e S TG e

Name Ty

&) Enable Azure Cosmos DB throughput policy

Enable Azure Monitor for Virtual Machine Scale Sets

| 20 SN 2

Enable Azure Monitor for VMs

& [Preview]: Configure machines to automatically install the Azu-

Configure Azure Defender to be enabled on SQL Servers and -

Definition location 1 Policies 1y

Type

Buitin O
Buitin

Buitin

Buitin

Builtin





OEBPS/Images/B17525_09_038.jpg
Error Code Category User Message
AutoScalingFormulaSyntaxError | BadRequest | The specified autoscaling formula has
a syntax error.
CommandLaunchFailed UserError | Failed to launch the specified
command line.
NodeBeingRebooted Conflict The specified node is being rebooted.
DiskFull ServerError | There is not enough disk space on the

node that was selected to run the task.






OEBPS/Images/B17525_09_037.jpg
Microsoft Azure newton.pa

New dedicated SQL pool

Basics *  Additional settings *  Tags  Review + create

Createa QL pool with your pr con ions, C the Basics tab then go to Review + Create to
provision with smart defaults. Learn more (3

Dedicated SQL pool details

Name your dedicated SQL pool and choose its inital settings.

Dedicated SQL pool name * [(enter dedicated SQL pool name
Performance level © —
Estimated price © Est. cost per hour

32637 INR

View pricing details

Review + create






OEBPS/Images/B17525_09_036.jpg
Microsoft Azure

New Apache Spark pool
Basics o Additional settings *  Tags  Review + create

Create an Synapse Analytics Apache Spark pool with your preferred configurations. Complete the Basics tab then o to
Review + Create to provision with smart defaults, or visit each tab to customize.

Apache Spark pool details

Name your Apache Spark pool and choose its inital settings.

Apache Spark pool name * [(enter Apache Spark pool name ]
Isolated compute * © Q Enabled (@) Disabled
Node size family * ["viemory optimized ]
Node size * [(viedium @ vcores / 64 68y ]
Autoscale * © @ Enabled O Disabled

Number of nodes *

Estimated price © Est. cost per hour
) Loading estimated cost information...






OEBPS/Images/B17525_09_035.jpg
Create Cluster ? | ADBWS &

New Cluster | con st 225 675 0 HAUTIE
Cluster Name Ul | JSON
ADBSmallCluster
Cluster Mode ©
Standard
Databricks Runtime Version © Leam more
Runtime: 8.3 (Scala 2.12, Spark 3.1.1)
B3 ostebrics Runtme .x uses Deta Lake as the defaut tabe format. Leam more
Autopilot Options
Enable autoscaling ©
Terminate after 120 | minutes of inactivity @
Worker Type @ Min Workers ~ Max Workers
Standard_DS3_v2 14 G Memory. 4 Cores. 2 8 a|Ospotinstances ©

BB Covrours separe pous for warkers and arvers orfexity, Leam mors

Driver Type

Same as worker 14 68 Memory, 4 Cores

DBU/ hour: 225-6.75 @

» Advanced Options





OEBPS/Images/B17525_09_034.jpg
Home > Microsoft BatchAccount_2021_9_19_10_43_15 > dp203batchacct > iacbatchsy * Sample autoscale formulas

Scale pool
iscoatchamalon

save X Discard [] Stop resizing

Mode

Autoscale Evaluation
Interval @

minutes

Formula * ©

A You must enable autoscale and specfy an autoscale formula o evaluate  new
formula. You can use sample autoscale ormuia fnk below to get started.

Click here to view sample autoscale formulas

L Download [ save custom formula ] Delete custom formula

‘sample formulas

[ Time-based adjustment (Defaulty

the day of the week and time of day, to increase or
decrease the number of nodes in the pool accordingly.
/7 This formula first obtains the current time. If it's
a weekday (1-5) and within working hours (8 AM to 6 PM)
, the target pool size is set to 20 nodes. Otherwise,
it's set to 10 nodes.

ScurTime = tine();
/1 Check current time is within working hours (8 AM to
6 PM) or not

SworkHours = ScurTine.hour >= 8 && ScurTime.hour < 18;
/1 Check current day is a weekday (Monday to Friday) or
not.

$isheekday = $curTime.weekday = 1 & $curTime.weekday
&5s

SisiorkingsieekdayHour = SworkHours 8& $isheekday;

/1 set target pool size to 20 nodes if it's between 8
AM and 6 PM in weekday, otherwise set to 10 nodes
$TargetDedicatednodes = $isworkinghieekdayHour 2 20:10;

@ Cick here o view the detai of creating an automaic scaling formala for scaling compute
nodesin a Batch pool.






OEBPS/Images/B17525_09_033.jpg
Home > dp203batchacct

® dp203batchacct | Quotas =

Batch account

Eaeity ‘

B Overview Active jobs and schedules @
Activity log [100

B2, Access control (1AM) PO

[
@ Tags

Batch accounts per region per subscription ©
Settings. [
& Quick start Low-priority vCPUs ©
= [0
1l Properties
® quotas

A Both the total delicated vCPU quota and the dedicated VCPU per VM Series quotas are

% identity enforced.
A Enayption

Total dedicated vcPUs ©
= Storage account =
¥ i Dedicated vCPUs per VM Series
4 Authentication mode r—— prem—

Locks

8 Lo A series o
Features A Series - compute intensive 0
W Applications Av2 Series i)
B Pools Basic A Series 0
% Jobs D series 0






OEBPS/Images/B17525_09_032.jpg
»

Home > Batch accounts >

£ dp203batchacct

Batch account

P Search (Ctrl+)

«

O Refresh [ Delete £ Keys (© Open in Batch Explorer

JSON View

b

& Quick start 4 A Essentials
1l properties Resource group (change) URL
DP2035andboxRG htps;/ batch.azure.com
® quota:
uotas
Status dentity type
% Identity Online None
T — Location Public network access
e Central US Enabled
= Storage account Subscription (change) pool allocation mode
¢ ‘Azure subscription 1 Batch senvice
Subscription ID Account usage
4 Authentication mode —— Click here to view Account usage
B Locks Tags (change)
Click here to add tags
Features
Show data for last:
W Applications
Comow_whos T ) R
B Pools
£ Jobs
VCPU minutes » Failed tasks
% Job schedules
0
¥ Certificates 1
@
o @
B lerts ’ E3
3 o
il Metrics oo St sAM  UTCHS30 aom St sAM  UTCHS30
B Disgnesticsetings mmm:‘"“l@m::m— Im:mmm
— 0.02 0 -

@ Advisor recommendations






OEBPS/Images/B17525_09_031.jpg
Data flow =z

2\ FetchTripsDataFromdl n

Copy data ob

ﬁ Copy Data to Store

O

Rollback - Delete
I incomplete copy

OO} @

General  Source  Logging settings  User properties

Dataset * © B Cleanedbriverbataset ~| & Open + New 6o Previewdata  Leamn more [1

File path type (File path in dataset (@) Wildcard file path O List of files @
Wildcard file name tostringlyear(currentDate() + " + to...
Start time (UTC) End time (UTC)

Filter by last modified © ‘ ‘ ‘

Recursively © =





OEBPS/Images/B17525_09_030.jpg
General  Source  Sink

Mapping ~ Settings  User properties

@ You will be charged # of used DIUs * copy duration * $0.25/DIU-hour. Local currency and

Data integration unit ©

jism ©

Degree of copy parall

[Jedit

Edit

Data consistency verification ©

Fault tolerance ©
Enable logging ©
 Logging settings
Storage connection name * ©

Enable staging ©

Select all

skip incompatible rows

ng f

Skip m:

Skip forbidden files

ooooo!

Skip files with inv.

+ New





OEBPS/Images/B17525_08_005.jpg
B Drivercsv2 AggregateSalary [ ADLSGen2Store2

Impor:data from Colums: Eport data o o
DverCsVouree 2total CanedDrerdaser

‘Aggregate settings | Optimize  Inspect  Data preview [ Description A
Output stream name * Aggregatesalan] Learn more [§
Incoming stream * Drivercsvz ~

Grouped by: Gender
<+ Add [ Clone [i] Delete [ Open expression builder

[] Ccolumn Expression

O | selary augltolnteger(( Salany}) v+ m






OEBPS/Images/B17525_08_004.jpg
New dataset

In pipeline activities and data flows, reference 2 dataset to specify the location and structure of your
data within a data store. Learn more [

Select a data store

£ search

Al Azure Database File Genericprotocol  NoSQL  Services and apps

Azure Cosmos DB Azure Cosmos DB (SQL
AZkEHionAoiass (MongoDB API) API)

7 4

Azure Data Explorer Azure Data Lake Storage | Azure Data Lake Storage
(Kusto) Gent Gen2

Continue






OEBPS/Images/B17525_08_007.jpg
[ DriverCSV1 SelectColumns. [BADLSGen2Storel
- -

= I N~ | st »
ISeIenseni sI Optimize  Inspect ~ Data preview [ Description A~

[] DriverCsV1's column oy Name as oy

[ [ oriveria v] ——— [oriverd ] +@

[ [ ristvame V] —— [[FistName | +@

[ [ middiename V] ———» [ middie Name ] +@

[ [ Lastiiame V] > [Lestheme ] +@

O [= v V] —— [y ] +@

[ [ cender ~v] ———» [cender ] +@






OEBPS/Images/B17525_08_006.jpg
[2 DriverCsV3 AddNewColumn

-

-] ]
JE——

ety

Optimize  Inspect  Data preview 3 Description

Output stream name * ‘AddNewColumn Learn more [
Incoming stream * Drivercsv3 v

[ Clone  [i] Delete [ Open expression builder

Columns * @
[] column Expression

I [ | isactive v | tued






OEBPS/Images/B17525_08_009.jpg
i [ DriverCsVs NewYorkilter
| Import data from Cotomns.
; DrvercSSaurce 7 total
+
Optimize  Inspect  Data preview

Output stream name *

Incoming stream *

NewYorkFilter
Drivercsvs ~

I ter on *

{3 Description A

Learn more [7






OEBPS/Images/B17525_08_008.jpg
 validate (@) Dataflowdebug @ B+ Debug Settings

B)DriverCsv4 AlterRowlnsert
=
Impor: data from e
DrvercsVsours 7total
4 +

Optimize  Inspect  Data preview @

Output stream name * AlterRowinsert Learn more [%
Incoming stream * Drivercsva v

3 Description

[+ insertif V] [ sisnulriveriay

Alter row conditions * ©

0






OEBPS/Images/B17525_05_10.jpg
Home > iacstoreacct

iacstoreacct | Configuration = - X

Storage account

P Search (Ctrl+/) «

Settings.

& Resource sharing (CORS)
@ Advisor recommendations
Il Endpoints

B Locks

Monitoring
@ Insights
B Alerts
fift Metrics

@ Workbooks

save X Discard () Refresh

Minimum TLS version © e

‘ Version 1.0 v

Blob access tier (default) ©

QO cool (@ Hot

Replication ©

[ Kead-access geo-redundant storage (RA-GKS) A

Locally-redundant storage (LRS)
Geo-redundant storage (GRS)

Read-access geo-redundant storage (RA-GRS)

Identity-based access for file shares

Identity-based access for file shares options have been migrated to the file shares page.

Data Lake Storage Gen2





OEBPS/Images/B17525_10_013.jpg
—, SampleASAJob | Outputs

Stream Analytics job

P search (Ctrl+) «

Job topology
£ Inputs
M Functions

<> Query

= Outputs

Cconfigure
%, Environment.
€ Storage account settings

T Scale

+ Add v

Azure Function
Azure PostgresQL (preview)
Azure Synapse Analytics
Blob storage/ADLS Gen2
Cosmos DB

Data Lake Storage Gen

Event Hub

Power Bl

Service Bus queue





OEBPS/Images/B17525_10_012.jpg
Event Hub X

New input

Input alias *

O Provide Event Hub settings manually

(® Select Event Hub from your subscriptions

Subscription

[(Azure subscription 1

Event Hub namespace * @
[ op20zerws

Event Hub name * ®
O crestenew @ use eising

[(asaeh

Event Hub consumer group * @
Crestenew (@) Use eisting

[(spefautt

Authentication mode

[ connection string

Event Hub policy name * ©
O Crestenew (@) Use existing

BT

Event Hub policy key

Partition key ©

Event serialization format * @
[oson






OEBPS/Images/B17525_10_015.jpg
NAMESPACECONTENTS |l KAFKASURFACE ‘ZONEREDUNDANCY
T event e NOT SUPPORTED ENABLED

Show data for the last: Ghows 12hows 1day  7days  30days)

Requests Messages Throughput
™
s
©
L] S0k8.
» =
- e
- 308
P
30 L 208
»
L] 10k8.
©
R R IR TSR o AR 30 12 1278 5 T2 T80
A g s ) A ] g s som) PR ——
/5 /4 73
" leg "4 1255 " 156.34.c





OEBPS/Images/B17525_10_014.jpg
Power BI X
New output
Output alias *

(® Provide Group workspace settings manually

QO select Group workspace from your subscriptions

Group workspace * ©

Authentication mode

[usertohen >

Dataset name * (O

[(AsaDataset “
Table name *
[ asaTabld v

Authorize connection
You'll need to authorize with Power Bl to configure your output
settings.

Don't have a Microsoft Power Bl account yet?
sign up






OEBPS/Images/B17525_04_024.jpg
Authentication Supports  Supports  Supports  Supports
options data row-level dynamic firewalls

encryption security  data
atrest masking

Synapse Analytics  [Ro(F/.VAT] ("}

Active Directory
(Azure AD)

Azure AD ves No N ves
N o v Yo ves  ves

HBase/Phoenix Local/Azure AD Yes Yes Yes Yes (with
Azure
virtual
networks
(VNets))

Local/Azure AD Yes Yes Yes Yes (with
Azure
VNets)

Azure Data Azure AD Yes No Yes Yes
Explorer

Azure AD Yes Yes No Yes





OEBPS/Images/B17525_09_040.jpg
Home > Policy > Enable Azure Monitor for VMs >

Enable Azure Monitor for VMs

Assign initative

Basics  Parameters | Remediation | Non-compliance messages  Review + create

Scope
Scope_Leam mare about setting the scope *

Exclusions

‘Optionally select resources to exclude from the policy assignment.

Basics

Initiative definition
Enable Azure Monitor for VMs

Assignment name * ©

Enable Azure Monitor for VMs

Description

Policy enforcement ©

Reiew + crate brvious | [ nen ]






OEBPS/Images/B17525_10_011.jpg
57 SampleASAJob | Inputs

Stream Analytics job
P Search (Ctri+/) « + Add stream input
e Blob storage/ADLS Gen2

Job topology

Event Hub
£ Inputs

10T Hub
B Functions






OEBPS/Images/B17525_10_010.jpg
SAS Policy: EH-ASA-Access X

save X Discard [ Delete

& Manage

[ send

¥ visten

Primary key
KiagVks!

|

Secondary key

‘Connection string-primary key

=4

Connection string-secondary key






OEBPS/Images/B17525_10_017.jpg
@
*
®
+
[s]
2
(7
£
@

Microsoft | Power BI

Hide the navigation pane

My workspace
Home
Favorites > |+ Newv
Recent >
e We updated the look of workspaces Take a tour,
Create
Datasets All Content  Datasets + dataflows
Goals
[ Name
Apps

[B)]  AsATestDataset

Shared with me

Deployment pipelines

Learn

Workspaces >

My workspace v | expend






OEBPS/Images/B17525_08_001.jpg
Home >

By IACSampleDataFactory =

Data factory (V2)

P Search (Ctri+/) « T Delete

By Overview Vv Essentials
Activity log
Ao Access control (1AM) Getting started

€ Tags

‘Open Azure Data Factory Studio

Start authoring and monitoring your data
pipelines and data flows.

 Diagnose and solve problems

Settings.

d> Networking





OEBPS/Images/B17525_10_016.jpg
> Start D Stop
0 Running

Overview

Inputs
1

EH-ASA-Stream

Outputs
1

ASA-PowerBI

Iﬁ] Delete O Refresh

Event Hub

Power Bl

M

Query

0 NV A WN R

Edit query
SELECT System.Timestamp as WindowEnd, ]
startLocation as Location,
COUNT(*) as TripCount
INTO [ASA-PowerBI]
FROM [EH-ASA-Stream]
GROUP BY TUMBLINGWINDOW(S, 5), startLocation






OEBPS/Images/B17525_10_019.jpg
Table  Data Profle

window
1 P {stant”
s
3 P {start
o s
s s

» {start”

Shaning ol 1 et

“2021-12-06T11:52:00.000+0000",
*2021-12-06T11:52:00.000+0000",
*2021-12-06T11:52.00.000+0000",
*2021-12-06T11:52:00.000+0000",
*2021-12-06T11:52:00.000+0000",
“2021-12-06T11:52:00.000+0000",

"2021-12-06T11:53:00.000+00007)
2021-12.06T1163.00.000400007)
"2021-12-06T11:53:00.000+00007}
“2021-12.06T1153.00.00040000)
*2021-12-06T11:53:00.000+0000°)
"2021-12-06T11:53:00.000+00007)

o startLocation
San Franciso
Dallas
Atanta
Tempe.

San Jose
Denver

o count &
4





OEBPS/Images/B17525_08_003.jpg
»
all

By Dataractoy v % Validateal

B | Factory Resources « |0

k3 wu et
F— T pipeine
P Dataset
— & Datafow

b Power Query B Power Query

@ copy Datatool





OEBPS/Images/B17525_10_018.jpg
Filev Viewv Readingview Mobilelayout [J1 B + A7 =@ 0O 2 B
ripCount by Location - ¢ Bt 5 Fields »
JEHEREN
0 A M B 2 B AskTestTable
Qlﬂl'b(’@ﬂ ¥ Loation
Te¥ A~DE ¥ 3 TipCount
- EEEEE -8 O  WindowEnd
: EEE-AN RS
I 2R
0
T &
%
0 . Legend
O
Nv‘” o o o« @;ﬁ Add dto filds here
L4 &
Values
L _Location e o






OEBPS/Images/B17525_08_002.jpg
»

®

By Dataractory v

Factory Resources

AR (1) publish all

v

«

0D pipelinet .

Activities v«

‘/WJr

b Pipeline
b Dataset
b Data flows

b Power Query

B

8

£ Search activities

 Move & transform
(T

@ Dataflow

> Azure Data Explorer
> Azure Function

> Batch Service

> Databricks

> Data Lake Analytics

> General

O
7
 Validate 08
O
Gy o
gom ®

B

0

+

(a)

<
&





OEBPS/Images/B17525_14_007.jpg
Home > SampleASAJob >

Javascript function

New function

Function alias *

getiD v

Output type ©
any ~

wfe wn o

function main(arg) {
var customer = JSON.parse(arg);
return customer.id;

ia






OEBPS/Images/B17525_08_016.jpg
Microsoft Azure napse Analytics b iacsynapst

»

© synapselive £ Validateall (1) Publishall

Integrate + v«

£ Filter resources by name @} Pipeline

® copy Data tool

T3 Browse galler
@D DataPartition 2 e

) 0D samplecopy






OEBPS/Images/B17525_08_015.jpg
7 import pipeline template

2 X

Bulk Copy from Database to Azure Data
Explorer

Use this template to copy large amount of datain
bulk from database like SQL Server, Google
BigQuery, etc to Azure Data Explorer (ADX), using...

B2 by Microsoft

i -y

Bulk Copy from Files to Database

Use this template to copy data i bulk from Azure
Data Lake Storage Gen? to Azure Synapse Analytics /
Azure Sal Database.

If you want to copy data from a small number of...

BE by Microsoft

T 60 =

Copy data from Google BigQuery to Azure
Data Lake Store

Use this template to copy data from Google
BigQuery to Azure Datz Lake Storage.

B2 by Microsoft

Bulk Copy from Database

Use this template to copy data in bulk from database
using external control table to store partition lst of
source tables.

B2 by Microsoft

Copy and convert data from Office 365 into
Common Data Model for Open Data.
Use this template to copy data from your Office 365
organization and convert it into Common Data
Model format to be included in the Open Data...

BE by Microsoft

Copy data from HDFS to Azure Data Lake

Store

Use this template to copy data from HDFS (Hadoop
Distributed File System) to Azure Data Lake Storage.

B2 by Microsoft





OEBPS/Images/B17525_14_008.jpg
000

3500

3000

2500

2000

1500

1000

500

o

Jan

Feb Mar

Ao

Number of Trips

May

un

Aug

Nov_ Dec






OEBPS/Images/B17525_08_018.jpg
2 DriverRawCSV6

Impor: data from
Drnvarancs\aourss

Derived column’s settings

Columns * ©

Triminput
Columas: »
A Btotal 4
Optimize  Inspect  Data preview [ Description A
-+ Add [ Clone [i] Delete [ Open expression builder
[] column Expression
[ | Frsthame v |t FirstNamel) o]
[ | Middiename ~ || trim( MiddleNamel) o]
[ | Lostiome ~ | | trim{ LastName)) o]






OEBPS/Images/B17525_14_005.jpg
1 import org.apache.spark.sql. functions.{col, udf}
2 val double = udf((s: Long) =>2-*'s)
3 display(spark.range(1, 20).select(double(col(*id")) as: "doubled”))

4

1 sec - Command executed in 1 sec 802 ms by newton.packt on 12:21:13 PM, 11/14/21

> Job execution Succeeded  Spark 1 executors 4 cores View in monitoring  Open Spark UIZ

import org.apache. spark.sql. functions.{col, udf}

double: org.apache.spark. sql.expressions.UserDefinedFunction =

UserDefinedFunction(<functionl>, LongType,Some (List(LongType)))
View

Chart 1= Export results

doubled





OEBPS/Images/B17525_14_006.jpg
Home > SampleASAJob

Stream Analytics job

SampleASAJob | Functions

P search (Ctrl+/) « + Add v
Job topology - Azure ML Service
£ inputs Azure ML Studio
B Functions Javascript UDA
Javascript UDF

<> Query
= Outputs






OEBPS/Images/B17525_08_017.jpg
2 DriverRawCSV1

Impor: data from
DrvarianS\aourss

NulltoNA

ol
7 total

2 DriverSinkl

Exportdatato. »
Cimneadmernstsser

IDewedcqumn setti gsI Optimize  Inspect  Data preview

{2 Description A

Incoming stream * DriverRawCsv1

+ Add [ Clone [} Open expression builder
Columns * @
[] Column Expression
O | MigdieName ~ | Nl MiddleNeme), A, { MiddleNomel) <]






OEBPS/Images/B17525_14_003.jpg
31 -- View the rows in the table
32 SELECT * FROM dbo.CustomerContact;

1= Export results

Name
Bran
Demin
Arielle
Cathy

Ethan

Email
bryan@domain.com
demin@wrongdomain
arielle
cathy@domain.com

ethan@domain.com





OEBPS/Images/B17525_08_019.jpg
[2 DriverRawCSV5

Impor:daca from
Dveriaucs\Rouss

+

ReplaceDollarToUSD

ol
7 total

0

IDer ed column's set ngsI Optimize  Inspect  Data preview

Incoming stream *

Columns * ©

3 Description
DriverRawcsvs ~
-+ Add [ Clone [i] Delete [ Open expression builder
[] Column Expression
O | selay UsD) ]

v || replaceft salany, *






OEBPS/Images/B17525_14_004.jpg
35 -- Try to use the UDF
36 SELECT CustomerID, Name, dbo.isvalidemail(Email) AS Email FROM dbo.CustomerContact;
37

Results  Messages ~
View = Export results
[P search

CustomeriD Name Email

2 Bran bryan@domain.com

4 Demin Not Available

1 Arielle Not Available

3 Cathy cathy@domain.com

5 Ethan ethan@domain.com





OEBPS/Images/B17525_14_001.jpg
=2

Activities

saveastemplate / Validate

' Validate copy runtime

O

[> Debug £ Add trigger

 Move & transform By Corvactrie 7
& Copy data 0w @
+
General | Source | Sink  Mapping  Settings  User properties
S—
& Open + New ©> Previewdata  Learn more 1
File path type (O File path in dataset (@) Wildcard file path (O List of files ©
Wildard paths users / [ sandbox/driver/in UK
Add dynamic content [Alt+Shift+D]

End time (UTC)

Filter by last modified © ‘

Start time (UTC)
]






OEBPS/Images/B17525_14_002.jpg
Activities ¥«

~ Move & transform

& Cory i

General ~ Source

sink dataset *

5 Saveastemplate / Validate / Validate copy runtime

Sink

Mapping ~ Settings  User properties

@ Destinationcsv v

Copy behavior ©

Merge files v

Max concurrent
connections.

[}

|






OEBPS/Images/B17525_05_01.jpg
Microsoft Azure P Search resources, services, and docs (G+/)

Home > Azure Synapse Analytics >

Create Synapse workspace

Create a Synapse workspace to develop an enterprise analytics solution in just a few clicks.

Project details

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
of your resources.

Subscription * © [ Azure subscription 1 v

Resource group * @ ‘ v ‘

Create new

L

Managed resource group @ | Enter managed resource group name |

Workspace details

Name your workspace, select a location, and choose a primary Data Lake Storage Gen2 file system to serve as the default
location for logs and job output.

Workspace name * [ Enter workspace name |

Region * ‘ East US v ‘

Select Data Lake Storage Gen2 * ) (® From subscription () Manually via URL

L Account name * © [ V]
Create new

Review + create < Previous Next: Security >





OEBPS/Images/B17525_05_02.jpg
Synapse Analytics » synapsews

Microsoft Azure
> @ Synapselive £ Validateall T Publish all

«

Integrate -~ K4

O pipeli
P Filter resources by name peine

5 Copy Data tool

4 Pipelines

. @D DataPartition A wisiss gallery

- (0D samplecopy






OEBPS/Images/B17525_05_03.jpg
Copy Data tool

o Properties

Source
Dataset

Configuration

® Target

() Settings

(® Review and finish

File format settings

Column delimiter

[ comma )

[Jedi

Row delimiter

[ Default A, or\in)

[Tedit
[Jrirst row as header ©

> Advanced

Compression type

=

[Fiter..

bzip2 (bz2)

gzip (g2)
deflate (deflate)

ZipDeflate (zip)

e | EEE






OEBPS/Images/B17525_05_04.jpg
! @ Synapselive £ Validateall LTI Publish all

Integrate + v « (@D DataPartition x

e Activities v« |V vaidate D Debug |~

4 Pipelines :
. Data flow

(@D DataPartition 4 Move & transform

{

m) @D samplecopy @ Data flow

4 Azure Data Explorer

4 Azure Data Explorer C...

4 Data Lake Analytics General ~ Settings ~ Parameters  User properties

B u-saL
' Name *

PartitionData






OEBPS/Images/B17525_05_05.jpg
[Bsource

Columns:
0 total

[2 Destination

Add sink dataset

Source settings ~ Source options  Projection

4 File settings
File mode ©
File system *

Wildcard paths

Allow no files found @

OFile @ wildcard

Optimize

Inspect  Data preview

[on

‘ B3 Browse

*staging/driver/in/*"

adt






OEBPS/Images/B17525_05_06.jpg
@ Source [2 Destination

Columns:
Add source dataset 0 total

Sink  Settings Mapping  Optimize Inspect Data preview [ Description
4 File settings

Folder path * [users | /[ staging/driver/out/” + toString(year... s E3 Browse
Compression type [ None V]

Encoding [ DefauttuTr-g) V]

Column delimiter ® [ comma ) V]






OEBPS/Images/B17525_05_07.jpg
B satartitions .

D Run D Undo | v

75

[ publish g% Query plan

N

Connect to \ @ dedicatedsal

Use database

dedicatedSQL

vl O

m

29 SELECT QUOTENAME(S.[name])+'.'+QUOTENAME(t.[name]) as Table name

3 , i.[name] as Index_name
31, p.partition_number as Partition_nmbr
2, p.[rows] as Row_count
3, p.[data_compression_desc] as Data_Compression_desc
34  FROM  sys.partitions p
35 JOIN  sys.tables t oN  p.[object_id] t.[object_id]
36  JOIN sys.schemas s ON t.[schema_id] s.[schema_id]
37 JOIN  sys.indexes i  ON  p.[object id] [object_1d]
38 AND  p.[index_Id] i.[index_1d]
39 WHERE t.[name] = 'TripTable'
0
41
Results  Messages
I iew (D Chart ) - Its N
Select view (Y art ) Export results
[# search
Table_name Index_name Partition_nmbr. Row_count Data_Compression_desc
[dbo] [TripTable] Clusteredindex 495fcaagf25adbd... 1 250 COLUMNSTORE
[dbo] [TripTable] Clusteredindex 495fcaadf25adbd... 2 250 COLUMNSTORE
[dbo][TripTable] Clusteredindex_495fcaa8f25adbd... 3 250 COLUMNSTORE
[dbo] [TripTable] Clusteredindex_495fcaa8f25adbd... 4 250 COLUMNSTORE

© 00:01:03 Query executed successfully.





OEBPS/Images/B17525_05_08.jpg
T New saL script
& > A [users
Name
B3 gender=Female
B3 gender=Male

) success

~ @) Newdatafiow B Newintegration dataset T Upload L Download

> raw > driver > out

Last Modified Content Type
7/2/2021, 8:35:58 PM Folder
7/2/2021, 8:35:58 PM Folder

7/2/2021, 8:35:58 PM

- More v

size





OEBPS/Images/B17525_10_024.jpg
Monitoring 1 time series ($0.1/time series)
Alert logic °

Threshold ©®

Operator @ Aggregation type * ©
Greater thn <] [amurn <]

Threshold value * @

]
%

Condi

ion preview
Whenever the maximurm su % utilization is greater than 80%
Evaluated based on

Aggregation granularity (Period) * ® Frequency of evaluation ®

5 minutes ~ | [every 1 minute v






OEBPS/Images/B17525_05_09.jpg
Home > Storage accounts >

Create a storage account

Basics  Advanced  Networking

————

Instance details

If you need to create a legacy storage acc

Storage account name @ *

Region @ *

Performance @ *

Data protection ~ Tags ~ Review + create

DP2035andboxRG v

Locally-redundant storage (LRS):
Lowest-cost option with basic protection against server rack and drive
failures. Recommended for non-critical scenarios.

Geo-redundant storage (GRS):
Intermediate option with failover capabilitics in a sccondary region.
Recommended for backup scenarios.

Zone-redundant storage (ZRS):
Intermediate option with protection against datacenter-level failures.
Recommended for high availability scenarios.

Geo-zone-redundant storage (GZRS):
Optimal data protection solution that includes the offerings of both GRS and
ZRS. Recommended for critical data scenarios.

Geo-redundant storage (GRS) ~

Review + create

< Previous Next : Advanced >






OEBPS/Images/B17525_10_023.jpg
Select a signal X
Choose a signal below and configure the logic on the next screen to define the alert condition.

Signal type @ Monitor service @

[veties ][ <]

Displaying 1 - 2 signals out of total 2 search results

[2 utilzatior]

signal name

CPU % Utilization (Preview)

SU % Utilization

. signal type
~ Metric

A Metric

N

Monitor service ™y
Platform

Platform

Done





OEBPS/Images/B17525_10_026.jpg





OEBPS/Images/B17525_10_025.jpg
1 EHStreamJsonDF=newEventHubDf.select("tripjson.

2 display(EHStreamJsonDF)

Cancel <«

» (1) Spark Jobs

~ © display_query_3 (id: 0827800a-fa7b-4992-9832-23cb6766cdec)
Dashboard ~ Raw Data

Last updated: 0 seconds ago

Input vs_ Processing Rate 3recls

47 recls
records per second

Input rate Processing rate
15

10

0 a0 75
M

in milliseconds

Batch Duration

1199.6 ms 634 ms

Average

Latest

a0 75






OEBPS/Images/B17525_10_020.jpg
Chart Title &

% Add metric *y Add filter Apply splitting |5 Line chart N/ [& Drill into Logs \/ [ New alert rule < Pin to dashboard - -

Scope Metric Namespace Metric Aggregation °
newtontesteventhub | ‘ Event Hub standard me... v ‘ [setect metric v ‘ Select aggregation v ‘
T Outgong Bytes. <
100 % Outgoing Messages
Outgoing Messages (Deprecated)
%
Outgoing Messages (obsolete) (Deprecated)

© 2 Quota Exceeded Errors.

) f Server Busy Errors (Deprecated)

o Select a metric above to see data x Server Errors.

v # size -
5 = amm —
Filter + Split o7 Plot multiple metrics 7 Build custom
2 =
dashboards
Apply filters and splits to Create charts with multiple

£ identify outlying segments metrics and resources Pin charts to your dashboards

2

0

3

Tue 07 6AM 12pM 6PM UTC+05:30





OEBPS/Images/B17525_10_022.jpg
v Add metric *y Add fiter % Apply spitting |5 Line chart /[, Drilinto Logs \/ | T New alert ule | 5> Pin to dashboard

Sco Metric Namespace Metric ‘Aggregation
% [sSampleasasob ] [ stream Analytics job sta.. v || Select metric ~ | setect aggregation
TR e

0 4 Input Sources Received
® 4 Late Input vents
» % Outof order Events
- Selecta metic above 0 see a2 3P| 52 011 ents
= e i 2 Runtime Errors
s L

£ # SU% Utization
© , )

Fiter = Spiit 7 Plot mult
» 4% Watermark Delay =
Apply fiiters and splits to Create charts With murtple-
» idenity outying segments || metrcsandresources | Pin charts o your dshboarcs
0
° T T T T
2 shu e

urcsos30





OEBPS/Images/B17525_10_021.jpg
O Search (Ctrl+/) « [> start [ stop [ii] Delete

<} Overview @ Running
Activity log
R Access control (IAM) Mornitoring < Resource utilization >
® Tags
18%
/7 Diagnose and solve problems 250 o L
g 145
Settings 200
12%
3= Properties 50 0%
B Locks 8%
100
%
Job topolo
pology - %
5 Inputs 2%
Q ‘ o%
M Functions 1030PM 1045 PM 11PM Decy 1030PM 1045 PM 1em Dec S
° .
25 i IW e Igw I o
2 o 141 94 0 16+
= Outputs





OEBPS/Images/B17525_08_010.jpg
[@)DriverCsV6

Impor: data from
DrivercsVsoures

Optimize

Output stream name *

Incoming stream *

it

oz
7total

+

Inspect  Data preview

SortonCity
Drivercsve ~

[caseinsensitive

{3 Description A

Learn more [7

options *
[[J sort only within partition

Sort conditions * DriverCSV6's column Order Nulls first
[ city V] [ascensing ] &






OEBPS/Images/B17525_10_028.jpg





OEBPS/Images/B17525_08_012.jpg
B Drivercsvio
mport data om
S e
RatingCSV2

Import dsta from
RatngCSVSource

Pr
"
'h Columns
)
4 a8
A

——t o

Optimize

Output stream name *

Inspect  Data preview

DriverRatingloin

Learn more [7

7 Description

Left stream * Drivercsvi0 -
Right stream * KatingLsv2 ™
e ® [®]|® | ® |eo
Ful uter imner Leftouter Rightouter | Custom (cross)
Left: DrverCSV10's column. Right: RatingCSV2's column
a5 Driverld ~ ] [== v [ oriverd v






OEBPS/Images/B17525_08_011.jpg
Import data from
DrvercvSource

RatingCSV1

DriverRatings HighRating

-"
L'
&

I jain on DriverCsvS Columas:
and RaingCSV1 10 total
+ 4

o

Condiionall disibuting
the cata in Rating groups.
based on columns 11} /4

Optimize  Inspect  Data preview [ Description

| =—O——+ | >

Output stream name *

Incoming stream *

spliton

Conditionalspliti| Learn more [§
DriverRatings <

(@) First matching condition (O All matching conditions

[Spiit con

Stream names Condition

[THighrating ] [ (Rating) > 3

LowRating Rows that do not meet any condition will use this output stream






OEBPS/Images/978-1-80056-500-5.png
Azure Data
Scientist Associate
Certification Guide

A hands-on guide to machine learning in Azure
and passing the Microsoft Certified DP-100 exam

Andreas Botsikas, Ph.D. | Michael Hlobil )





OEBPS/Images/B17525_10_027.jpg





OEBPS/Images/B17525_08_014.jpg
"% Transform data

‘ Ingest
Copy data at scale once or
N e schedile: (4
—

" Tonsiorn yourdtauing

data flows.

Discover more

Orchestrate
Code-free datz pipelines.

Configure SSIS

Manage & run your SSIs
packages in the cloud.

Browse partners
% i gall ipeline templates






OEBPS/Images/B17525_14_009.jpg
Analytics pools ® SparkParquetWrite_smallpool2 1636822525

8 saL pools Completed tasks 12 of 12 Status Running Total duration 15m 40s.
3 Apache Spark pools © cancel () Refresh [ spark Ul

&3 Data Explorer pools (preview)
EXPIOTeT pools (PIEVRM) tempts 1 0f 1

e Alljob IDs | View Playback [> 0ms /9 min 11 sec 679 ms

= SQL requests

Jawo < Jab1 coee bz comee
KQL requests
Stage0 stage2
= s O stage 0
&P Data flow debug Do e Job 0 o
fsterm e
i i wy Ganenl —
Progress: 100%
Pipeline runs
e Duration: 3 sec 30 ms
£ Trigger runs Total tasks: 1
W Integration runtimes Data
Total rows: 0
Read:0 bytes
Written: 0 bytes
Skew.
© Data skew: None detected
Diagnostics  Logs  Input data © Time skew: None detected
b View details 3

~ Driver (stderr)





OEBPS/Images/B17525_10_029.jpg





OEBPS/Images/B17525_08_013.jpg
[ Drivercsv7

Importdea rom o
e o
+
2 DriverCsve
Impert s o
e o
¥
Optimize  Inspect  Data preview {3 Description A

Output stream name * DriverDataUnior| Learn more [
Incoming stream * Drivercsv? e

Union by * © @nName (O Pposition

Union with Streams

[ 5






OEBPS/Images/B17525_08_027.jpg
Schema

Linked service *

File path *

Compression type

Column delimiter ©

Parameters
& AzureDatalakestorage ] & Testcomedion & Edit +
[Tusers raw/driver/sample/csv_| /  driver.csv ]

None

II

Comma ()

[Dedit

Row delimiter © Default (wrAn, or \n) i
[ it

Encoding Default(UTF-8) e

Escape character Backslash () b

[Dedit





OEBPS/Images/B17525_08_026.jpg
2 DriverISONT JSONFlatten [2)I50NSink2

Import g3t from Columns Export gata o el
HirsreneaUsoN A 7total A CanedDrvarDaaset

Optimize  Inspect  Data preview @ O Description A~

Output stream name * JSONFlatten ? Help  Learnmore [}
Incoming stream * Driver)SON1 an
Unroll by * @ I3 locations s

Unroll root © 1} ek

Options [ skip duplicate input columns ~ ©

[ skip duplicate output columns ©

Input columns *

OReset  + Add mapping Delete 7 mappings: 1 column(s) from the inputs left unmapped G}
[J  DriverJSONT's column Y Name as Y
[ [« firstname -] » [ firstname | +@
[ [ < middiename -] » [ migdlename | +@
[ [« tastname -] » [lestname | +@
O [ -] > [ | +m
[0 [ locationsstate -] [(state | +m
Tl [= vowsy ) (= |+ 8
[ [ < gencer -] [ gender | +@






OEBPS/Images/B17525_08_029.jpg
=
@ ADFTansformations

activity on:

W Success
W Failure

B Completion

B Skipped






OEBPS/Images/B17525_06_01.jpg
v o«

Develop

¥ Filter resources by name

sQL script

B kaLscipt

b sQLscripts
=] Notebook
b Notebooks o
b Data flows
5 Apache spark job definition
b PowerBI

Mt Power BI report





OEBPS/Images/B17525_04_009.jpg
EE  peosss

RidelD

CabID
DriverID

CabNumber
CustomerlD —

Model
CabID

Segment
CarPoollD

CarPoolValidity





OEBPS/Images/B17525_06_02.jpg
& Datafiow! .

 validate () Data flow debug

AddSource | \/

19 Add Source

" B Add Flowlet (preview)





OEBPS/Images/B17525_06_03.jpg
& Dataflow! .

 validate () Data flow debug

B inputcsV

total

AddSource | \/

Source settings  Source options  Projection  Optimize  Inspect  Data preview

Output stream name * Inputcsv Learn more [

Source type *

Integration dataset

Dataset * @ Drivercsv b

. Test connection ¢ Open

Workspace DB

Options [ alow schema drift ©
[ infer drifted column types @

[ validate schema @





OEBPS/Images/B17525_06_04.jpg
fuMaxSurrogatelD

1total

Source settings Projection  Optimize  Inspect  Data preview

Input OTable @ query (O stored procedure

Query* © SELECT maxisurrogateld) as MaxSurr From || Import projection
[dbol.[DimDriver]

Enable staging ]
e —
Isolation level © Read uncommitted v





OEBPS/Images/B17525_06_05.jpg
= JoinMaxSurrTolnput FindDeltaRows

5
B e ] e @ o g

e gl

Optimize  Inspect  Data preview CUo

A cross join condition must have at least one column from each stream, ‘InputCSV" stream is not bein

Output stream name * JoinMaxsurrToinput Learn more [
Left stream * Inputcsv v
Right stream * MaxsurrogatelD g

s ® ®® ®
e | s | g | e
[€S)]
Custom (cross)

Condition *






OEBPS/Images/B17525_06_06.jpg
InputCSV

Impor: data from
Drvercs

MaxSurrogatelD J e ChangedNames  f—J

Output stream name

Primary stream *

Lookup stream *

Match multiple rows

Match on *

Lookup con

.
I -1 - [
InputCSV and g ‘the data in Dim_driverid
" Maurmogat=> " izl A groups based o columns

Optimize  Inspect  Data preview

Oo

Left JoinMaxSurTolnput's column

Right: ChangedNames's columnf

™ driver_id

v ] [ oim_drivera






OEBPS/Images/B17525_06_07.jpg
faDimDriverTable ChangedNames

Importdata from ot
Descaasal Dimore | | 6 total

Select settings ~ Optimize  Inspect  Data preview

Output stream name * ChangedNames Learn more [
Incoming stream * DimDriverTable F

Options ™ sip duplicate input columns ©

™ sip duplicate output columns ©

Input columns * QB Avtomapping® O Reset  + Add mapping Delete

[J  DimDriverTable's column Y Name as

O [ surogateid v] ——+ [Dim.surrogateld
[ [ drivera v] ——— [oimdrvend
[ [ name v] ——— [Dimname

O [< emaita v] ———+ [Dimemaid
[J [ phonenum v] ———— [Dim_phonenum
O [ sacie v] —— [oimisadie






OEBPS/Images/B17525_06_08.jpg
put FindDeltaRows NewRows
@ =
JonMasurTaingur
. from Crangeaames |4} A
1 I
Optimize  Inspect  Data preview

| Conditional split settings

Output stream name *

Incoming stream *

splitNewAndOldRows
FindDeltaRows v

AddisActiveColumn
-3

4

Creating/updting the
columns ‘arver.a
aiver_name. emailid

Learn more [1

(@) First matching condition (O All matching conditions

split condition

Stream names

Condition

[Newrows

[ isNolioim_griveria)

Rows that do not meet|






OEBPS/Images/B17525_06_09.jpg
NewRows. AddlsActiveColumn

58| Consiionay daviing

the dats i Dm.avera o
groups based on columns. total
ny + 1

Derived column's settings | Optimize  Inspect  Data preview

(3 DriverSQTablel
WRTER

Eor datato
DedicatedSQl_DimDiver

Output stream name * AddisActiveColumn Learn more [

+Add  DcCone [ Delete

splitNewAndOIdRows@NewRows v

[ Open expression builder

Columns * @

[J Column

Expression

) [enamee

S K






OEBPS/Images/B17525_04_001.jpg
DriverlD CustomerID

Name Name
Phone Phone
Email \ / Email
License Number City

TripID

DriverlD

CustomerlD

CabID

DateiD [Dimcab |

DatelD CabID
Dars / \ CabNumber
DayofWeek Vieekl
DayofMonth Sega:

Month





OEBPS/Images/B17525_15_Table_01.jpg
Container

Owner

Permission (POSIX)

/Sales

Sales AAD security group

740






OEBPS/Images/B17525_04_005.jpg
Adam New York (0]

Adam New York 0
2 1 Adam New Jersey 1
g 1 Adam Miami 2





OEBPS/Images/B17525_12_001.jpg
£ Search (ctrl+) «

Security + networking
& Networking

¥ Access keys

@ Shared access signature

O Security
Data management
@ Geo-replication

Data protection

1]

& Blob inventory
B Static wehsite
& Lifecycle management
Settings.

& Configuration

& Resource sharing (CORS)

Encryption  Encryption scopes

Storage service encryption protects your data at rest. Azure Storage encrypts your data as it's written in
‘our datacenters, and automatically decryps it for you as you access it

Please note that after enabling Storage Service Encryption, only new data will be encrypted, and any

existing files in this storage account will retroactively get encrypted by a background encryption process.
Leam more about Azure Storage encryption &'

Infrastructure encryption © Disabled

Encryption type QO Microsoft-managed keys
(® Ccustomer-managed keys

© When customer-managed keys are enabled, the storage
‘account named ‘iacstoreacct”is granted access to the
selected key vautt. Both soft delete and purge protection
are also enabled on the key vault and cannot be
disabled. Leam more &'

Key selection

Encryption key (® select from key vault
QO Enter key URI

Key vault and key * | Select a key vault and key






OEBPS/Images/B17525_12_002.jpg
Security
B2 Auditing

B9 Data Discovery & Classification
€ Dynamic Data Masking

© secuity Center

without any changes to your application. This setting

. Encrypts your databases, backups, and logs at rest
applies only to this dedicated QL pool.

Leamn more

@ Transparent data encryption

Data encryption

Common Tasks
»d Open in Visual Studio
Moritoring

8 Queryactivity

Encryption status
©Unencrypted






OEBPS/Images/B17525_12_005.jpg
Alerts
Metrics

Workbooks

[N - ]

Diagnostic settings (preview)

%

Logs (preview)

Monitoring (classic)

BN Alerts (classic)

6 Metrics (classic)

Status @

& Diagnostic settings (classic)

fdl Usage (classic)

Automation

Blob properties  File properties  Table properties

Hour metrics

& nable
B nclude API metrics
B Delete data after 7 days

Minute metrics.

[J enable

Logging
Logging version ®

da Tasks (preview)

20






OEBPS/Images/B17525_12_006.jpg
Azure subscription 1 > DP203SandboxRG > iacstoreacct/blob

Monitoring
@ insights Diagnostic settings are used to configure streaming export of
- platform logs and metrics for a resource to the destination of

Alerts your choice. You may create up to five different diagnostic
& Settings to send different logs and metrics to independent

rics destinations. Learn more about diagnostic settings.

8 workbooks Diagnostic settings

Diagnostic settings (preview) Name Storage account Event hub
# Logs (preview) No diagnostic settings defined

« I
+ Add diagnostic setting

Monitoring (classic)

BN Alerts (classic)

Click*Add Diagnostic setting' above to configure the collection

i Metrics (classic) of the following data:

@ Diagnostic settings (classic) * StorageRead
« StorageWrite

i Usage (classic) « StorageDelete
« Transaction






OEBPS/Images/B17525_08_021.jpg
B DriverRawCsV4. DedupeRows

] Za

Impor: data from e
DerRaCSVSourss total
4 +

Aggregate settings | Optimize Inspect  Data preview @

Output stream name * DedupeRows. Learn more [}
Incoming stream * DriverRawCsV4 il

Grouped by: Driverld
-+ Add [ Clone [i] Delete [ Open expression builder

[] column Expressi

[[] |4 Eachcolumn that matches  name %, | creates 1 column(s) ¥ | + [0/

[ss = +@






OEBPS/Images/B17525_12_003.jpg
Workspace encryption

A\ Double encyption configuration cannot be changed ater opting nto using a customer-managed
ey at the time of workspace creaton.

Choose to encrypt all data at rest in the workspace with 2 key managed by you (customer-managed
key). This will provide double encryption with encryption at the infrastructure layer that uses
platform-managed keys. Learn more &

Double encryption using a customer-  (®) Enable () Disable
managed key
Encryption key * ® (® selectakey (O Enter a key identifier
Keyvault and key * © | Select key vault and key
@ Azure Key Vaults in the same region as the workspace:
il be isted.
Managed identity * @ (® uUserassigned () System assigned

User assigned identity * | Select user assigned identity





OEBPS/Images/B17525_08_020.jpg
DriverCSV2

] —ia

Impor: data from
DrivarcsVsouree

JoinAvgSalaryCol

Custom cros) jon on

Dvercs\z na
Avgslary

Optimize  Inspect

SubstituteOutlier

oz
Btotal

Data preview

il Delete

{3 Description A

[ Open expression builder

Expression

<+ Add [ Clone
Columns * @
[] Column
O [ ey

if({ Salary) > 5000, tolnteger{ AvgSalary), { Salary) 125 |






OEBPS/Images/B17525_12_004.jpg
Settings
& Configuration
@ Resource sharing (CORS)

@ Advisor recommendations

Minimum TLS version ©

Version 1.0

Version 1.0

Version 1.1

Version 1.2

Locally-redundant storage (LRS)






OEBPS/Images/B17525_12_009.jpg
P search (Ctrl+) «

B Auditing

B9 Data Discovery & Classification

© Security Center
@ Transparent data encryption
Common Tasks

»d Open in Visual Studio
Monitoring

B Query activity

B Alerts

i Metrics

save X Discard | + Add mask | @ Feedback

Leam more - Getting Started Guide o

Masking rules
Schema Table Column

You haven't created any masking rules.

SQL users excluded from masking
(administrators are always excluded) ©

SQL users excluded from masking (admini... '

Recommended fields to mask

schema Table Column
dbo TempDriver driverid
dbo TempDriver FirstName

Mask Function






OEBPS/Images/B17525_08_023.jpg
EDrivercsVi

Impor: data from
Darce sou

Partition option *

Partition type *

T naming Drvercss
<0 Seecscaiumns it
Sane orvera 4k

+

Settings  Mapping

SelectColumns

EADLSGen2Storel

7total

Inspect

Data preview @

O use current partitioning (O single partition @) set partitioning

pl=

Round Robin

Dynamic Range.

Number of partitions *

\

Fixed Range Key





OEBPS/Images/B17525_08_022.jpg
 validate (@) Dataflowdebug @ B+ Debug Settings

EDrivercsvil NYFilter

T titerng s g

7total

e N,
s
3 Join
=& Conditional Split
#¢ Exists
¥ Union
Source settings  Source options =
@ Lookup
Number , ngerr N/A  + uPDATE
S B

*, Derived Column

O Refresh

ita preview;-@ Description

% Lookup N/A ToTaL N/A

+





OEBPS/Images/B17525_12_007.jpg
Diagnostic setting

save X Discard [i] Delete ) Feedback

A diagnostic setting specifies a st of categories of platform logs and/or metrics that you want to
collect from 2 resource, and one or more destinations that you would stream them to. Normal usage
charges for the destination will occur. Leam more about the different log categories and contents of
those logs

Diguostc seting name \

Category details Destination details
log [J send to Log Analytics workspace
[ storageread [ Achive to a storage account

StorageWrite
[ [ stream to an event hub

[ storageDelete
[[J send to partner solution

metric

[J Transaction






OEBPS/Images/B17525_08_025.jpg
1= Export results

Jenny

Catherine

lastname

Hood

Williams

Jones.

Jones.

simons

driverid

100

101

103

103

104

102

salary
4100
4000
5500
5500
3400

4300





OEBPS/Images/B17525_08_024.jpg
firstnome: string (nullable = true)
gender: string (nullable = true)
1d: string (nullsble = true)
lastnane: string (nullable = true)
location: string (aullable = true)

middlename: steing (nullable = true)

calary: long (nullable = true)

' ' - ' ' ' '
| firstnome|gender|id |lastnome|locotion |middlenome|salory|

+
| Catherine|Female|102] |California|Goodwin  [4300 |
|3enny  |remale|104|simons |artzona  |anne [3s00 |
[sryan  |Male |101|willtams|New York |n Jsooo |
Ialice  |remale|100|mood  [New York | laee |
IDaryl  [Male [103|Jones [Florida | Isse0 |
IDaryl  [Male [103|Jcnes [Florida | Isse0 |

+

+





OEBPS/Images/B17525_12_008.jpg
Security
@ Encryption
@ nNetworking

% Identity

&

Integration settings
< private endpoint connections

Approved Azure AD tenants

Ea
B Azure SQL Auditing
°

‘Security Center

Azure SQL Auditing

Azure SQL Auditing tracks SQL Pool events and
writes them to an audit log in your Azure
storage account. Lear more about Azure SQL
Auditing o

A

‘Azure SQU auditing settings apply only to dedicated SQL pools in this workspace.

Enable Azure SQL Auditing © [ o]

"AUGH log destination (choose at Ieast one)
[ storsge

[J Log Analytics

[ Event Hub






OEBPS/Images/B17525_08_038.jpg
1. Ungroup by | 2. Unpivotkey | 3. Unpivoted columns

Unpivot column name * | Cities ]

Unpivot column type * [ 12 double v]

Option * (®) Pick column names as values () Enter values






OEBPS/Images/B17525_08_037.jpg
Unpivot settings | Optimize  Inspect  Data preview ®

Output stream name * UnpivotOnCity|
Incoming stream * PivotOnCity ¥

1.Ungroup by | 2.Unpivotkey 3. Unpivoted columns

Columns.

s Gender [+ w






OEBPS/Images/B17525_08_039.jpg
1.Ungroupby  2.Unpivotkey [ 3.Unpivoted columns

Column arrangement * s
Lateral

Drop rows with null © =

Columns * Column name Type

- +8






OEBPS/Images/B17525_04_012.jpg
33 SELECT [customerId]

34 5 [name]
35 , [address]

36 » [validerom]

37 , [velidro]

38 , IIF (VEAR(validTo) = 9999, 1, @) AS IsActual

39 FROM [dbo]. [Customer]
40 FOR SYSTEM TIME BETWEEN '2022-61-22° AND '2022-61-24"
41 WHERE CustomerId - 101

42 ORDER BY validFrom DESC;

a3

Results  Messages

29 search to it items..

customerld name. address validFrom validTo IsActual

101 Alan Li 111 Updated Lane, LA 2022-01-23T07:38:32... 9999-12-31T23:59:59.

101 AlanLi 101 Test Lane, LA 2022-01-23T0736:26.... 2022-01-23T0738:32... 0





OEBPS/Images/B17525_04_011.jpg
= W

Adam
Adam
Adam

Miami
Miami

Miami

NULL 01-Jan-2020  25-Mar-2020
New York 25-Mar-2020 01-Dec-2020
New Jersey 01-Dec-2020 NULL

False
False

True





OEBPS/Images/B17525_04_014.jpg
Data factory

IACSampleDataFactory

Ingest

Copy data at scale once or
ona schedule.

Transform data

Transform your data using
data flows.

&

Orchestrate
Code-free data pipelines.

Configure SSIS

Manage & run your SIS
packages in the cloud.





OEBPS/Images/Figure_4.6_-_Example_of_SCD_Type_2_-_Date_ranges.jpg
Adam New York 01-Jan-2020  NULL

Adam New York ~ 01-Jan-2020  25-Mar-2020
2 1 Adam New Jersey 25-Mar-2020 01-Dec-2020
B il Adam Miami 01-Dec-2020  NULL





OEBPS/Images/B17525_04_013.jpg
5 CREATE TABLE DimEmployee (

5 [employeeId] VARCHAR(20) NOT NULL,

7 [name] VARCHAR(100),

s [department] VARCHAR(5@),

° [title] VARCHAR(S0),

10 [parentEnployeeTd] VARCHAR(28)

o)

12

Results  Messages

[0 search to iter items..
employeeld name department title parentemployeeld
100 Alan Li Manufacturing Manager
200 8renda Jackman Manufacturing Supervisor 100
300 David Hood Manufacturing Machine operator 200





OEBPS/Images/B17525_04_016.jpg
»

By Dataractory v £ Validate all [[RIEEED O

A FactoryResources ¥ « 0D pipeinel ° <

2 g
4 [ Fiter resources byname__| + | Activities | v« Validate > Debug

& 2 Search activities

> Data Lake Analyti

o
5
+
o X, Append varizble
Tl oelete
) Eecute Pipeine .
General  Settings  User properties ~
OB) brecute SIS package 5
Name =
R il LookpT
[ Learn more
Description

Bl stored procedure -





OEBPS/Images/B17525_08_030.jpg
Data flow Z (=20 |

“ ADFTransformations p cbocaienng r

E——— %

O error Handiing






OEBPS/Images/B17525_08_032.jpg
Driverld 13 FirstName s MiddleName s LastName abc City s Gender abc Salary 123

200 Alice L Hood NewYork  Female 4100
201 Bryan ™M Williams NewYork  Male 4000
202 Catherine Goodwin uL California ~ Female 4300
203 Daryl 1 Jones Florida Male 5500
204 Jenny Anne Simons Arizona Female 3400

203 Daryl Jones Florida Male 5500





OEBPS/Images/B17525_08_031.jpg
B DriverData @ DatabaseSink
Impor s o Cotumns: o
Cemearsrossse: 0total
4
Mapping ~ Optimize  Inspect  Data preview (3 Description A

Settings

4 Error row handling settings

Continue on error

]

Error row handling ©

Transaction Commit ©

Output rejected data ©

Linked service * ©

& AzureBlobConnection ~ | & Testconnection 7 Edit + New

Storage folder path * [(container ] 7 [Directory

| E3 srowse

Report success on error © ]






OEBPS/Images/B17525_08_034.jpg
1.Groupby [2.Pivotkey | 3. Pivoted columns

Pivot key * [ abe City

Value

[ Enter value (optiona

[ Null value






OEBPS/Images/B17525_08_033.jpg
Impor data from
DrverCSVSource.

Pivot settings

Output stream name *

Incoming stream *

DriverCSV12

PivotOnCity

Optimize  Inspect ~ Data preview @

UnpivotOnCity

Unpivets columns into

row valuss and ungroups.

columns.

DriverCsV12 e

7 Help

+

Learn more [4

1.Groupby | 2.Pivotkey  3.Pivoted columns
Columns Name as
trim({ Gender)) be] Gender

+m





OEBPS/Images/B17525_08_036.jpg
Gender e AvgArizona 12 B  AvgCalifornia 12 B  AvgFlorida 12 B  AvgNewYork 12 @
Female 34000 43000 41000

Male 55000 4000.0





OEBPS/Images/B17525_04_010.jpg
CabID
CabNumber
FactCabRides
Model
RidelD
Segment
DriverID
CustomerlD
CabID
- DimCarPool
CarPoollD
CabID
LastPurchased

Validity





OEBPS/Images/B17525_08_035.jpg
Pivot settings ~ Optimize

Output stream name *

Incoming stream *

1.Groupby 2. Pivotkey | 3.Pivoted columns

Inspect  Data preview

Pivotoncity ? Help
Drivercsviz <

Learn more [1

Column name pattern *

Column arrangement *

[ prefixtexpression prefigmicdliefPivot key valuejsuffix |

[Tprefix ] [ middle ] [suffix ]
N\ mm| N\l
Normal Lateral

avgl{ Salary)

| [avg

+m





OEBPS/Images/B17525_08_041.jpg
& v 4 [users > raw > trips > out > year=2022 > month=01 > day=01

Name ~ Last Modified
[) part-00000-5a233c41- 0.c0005n3ppy.pa.. 7/21/2021, 434:48 PM
New SQL script >
New notebook S| Lozd to pataFrame
New data flow New Spark table

New integration dataset





OEBPS/Images/B17525_08_040.jpg
Gender abx

Female
Female
Female
Male

Male

[

abe

AvgArizona
AvgCalifornia
AvgNew York
AvgFlorida

AvgNew York

AvgSalary 12
34000
43000
41000
55000

4000.0





OEBPS/Images/B17525_08_043.jpg
& >~ 7 lusers > raw > trips > out > year=2022 > month=01 »> day=01

Name

[ part-00000-52233c41-

~  Last Modified

43448PM
New QL script > [setectTop 100 r0ws

New notebook > | Create exteral table

New data flow Bulk load

New integration dataset

Manage access.





OEBPS/Images/B17525_08_042.jpg
m 3

1 sEpyspark
2 df = spark.read.load('abfss://users@iacstoreacct.dfs. core.windows.net/rau/ trips/out/year=2022/month=01/day=61/part-00000-5a233c41-15b7-41ck)
3 display(df.limit(19))

[0l /2 min 50 sec - Apache Spark session started in 2 min 26 sec 770 ms. Command executed in 23 sec 246 ms by newton.packt on 11:59:22 PM, 8/10/21
> Job execution Succeeded  Spark 2 executors 8 cores. View in monitoring  Open Spark UI3
- Gat ) eportres v 7

RidelD DriveriD CustomeriD cabiD DatelD

100 200 300 400 2022-01-01 00:00:00





OEBPS/Images/B17525_08_045.jpg
& ADFTranstormations

~ Validate

£ Debug Settings

[ Drivercsvs NeworkFiter
] 2
impre daa from
DrvercsVeures A
4
Filter settings ~ Optimize  Inspect 3 Description A
Number of rows # INSERT 2 x oeLeTe 0 4+ upseRT 0 a 1ookup 0 ToraL 2
(O Refresh [ E
T Driverld s ae i ae L ae city e |
+ 200 Alice Hood New York
+ 20 Bryan ™

New York





OEBPS/Images/B17525_08_044.jpg
) Undo | v (M publish &% Queryplan | Connectto | @ Builtin Use database | master V] O
1 SeLecT
] Top 100 *
3 FRoM
4 OPENROWSET(
5 BULK °https: // . /i ndous . net/users/raw/trips/out/year=2022/month=01/day=01/part -@00@0-5a233c41-15b:
6 FORMAT="PARQUET
7 ) AS [result] |
H

Results  Messages ~

1= Export results

[P search

RidelD DriveriD. CustomeriD cabiD. Dateld StartLocation EndLocation

100 200 200 00 2022-01-01T00...  New York New Jersey





OEBPS/Images/image_00_003.jpg
On-Premises
( Private Cloud)

Infrastructure
( as a Service)

Platform
(as a Service)

Software
( as a Service )






OEBPS/Images/image_00_004.jpg
Home > Virtual machines >

Create a virtual machine

Basics Disks Networking ~Management  Advanced Tags  Review + create

Create 2 virtual machine that runs Linux or Windows. Select an image from Azure marketplace or use your own customized
image. Complete the Basics tab then Review + create to provision a virtual machine with default parameters or review each
tab for full customization. Learn more &

Project details.

Select the subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all
your resources.

Subscription * © [ FreeTrial
L Resource group * © [ vew) DP203-Sandbox
Create new,
Instance deta
Virtual machine name * © [(samplevm
Region* @ [ws) eastus
Availability options © [N infrastructure redundancy required
Image * © ‘ Ubuntu Server 18.04 LTS - Gen1 ~

See allimages

Azure Spot instance © O
Size* @ [ standard pas v3 - 2 vepus, & GiB memory (z5,048.93/month)
Seeallsizes

Administrator account

Authentication type © (® SSH public key
Q Password

@ Pz now automaticlly generates an SSH key pai for you and allows you to
Ctore it fo future use, 15 3 e, impl, 2nd secure ey o connect & your
sl mac

Reiew + rate <previous





OEBPS/Images/image_00_005.jpg
Microsoft Azure e
DEFAULT DIRECTORY

Resource groups
P

ault

dit columns

"id": "/subscriptions/edb68963-fcd6-400d-87e3-b27629c5dad0/ locations/westeurope”,
"name": "westeurope",
"subscriptionTd": null

¥
1,
"physicallocation”: "Doha",
"regionCategory”: "Other",
"regionType": "Physical”

P

"gatarcentral”,
"regionalDisplayNeme": " (Europe) Qatar Central",
"subscriptionTd": null






OEBPS/Images/image_00_006.jpg
Home > Storage accounts >

Create a storage account

Basics Advanced Networking Dataprotection Tags ~ Review + create

Azure Storage s 2 Microsoft-managed service providing cloud storage that is highly availzble, secure, durable, scalable, and
redundant. Azure Storage includes Azure Blobs (objects), Azure Data Lake Storage Gen2, Azure Fies, Azure Queues, and Azure
Tables. The cost of your storage account depends on the usage and the options you choose below. Learn more about Azure
storage accounts

Project details

Select the subscription in which to create the new storage account. Choose a new or existing resource group to organize and
manage your storage account together with other resources.

Subscription * [(Free Tral ~]
L Resource group * [ vew) DP203-Sandbox ~]
Create new

Instance details

I you need to create a legacy storage account type, please dlick here.

Storage account name @ * [ ap203blobstore ]

Region @ * [(ws)eastus ~]

Performance © * (®) standard: Recommended for most scenarios (general-purpose v2 account)

(O Premium: Recommended for scenarios that require low latency.

Redundancy @ * [ Geo-redundant storage (GRs) ~

I8 Make read access to data available in the event of regional unavailability.

R [ o e s





OEBPS/Images/978-1-80107-774-3.png
Data Engineering
with Apache Spark,
Delta Lake, and Lakehouse

Create scalable pipelines that ingest, curate, and aggregate
complex data in a timely and secure way /‘






OEBPS/Images/image_00_001.jpg
Microsoft Azure (€] [T

docs (64/)

Azure services

+ @

Crestea  Senvice Fabric
resource clusters

Navigate

L —

Tools

ﬁ Microsoft Leam o
Leam Azure with free online

training from Microsot

Useful links

Technical Documentation
‘Azure Miggation Tools

&> 2 k4

Vitual  Batchaccounts  Azure Cosmos
networks

Resource groups

@ ‘Azure Monitor

Mornitor your apps and
infastructure

Azure Senvices ¢
Find an Azure expert

L

Vitwal  App Senvices
machines

Allresources.

Security Center
‘Secure your apps and
infrastructure:

Recent Azure Updates o
Quickstart Center

Storage
accounts

)

-

SQLdatabases  More senvices

Dashboard

Cost Management

‘Analyze and optimize your
cloud spend for free

Azure mobile app






OEBPS/Images/image_00_002.jpg
IAC Azure Account

Marketing
Subscription

Engineering
Subscription

[‘] Dev ‘ Prod [‘] Marketing
Resource
Resource Resource

Group Group Group

ool e (&

VM Scale
Sets

VNet Azure || vMsScale  VNet Azure Azure

sat Sets saL S0,






OEBPS/Images/image_00_007.jpg
Home > Storage accounts >

Create a storage account

Basics® Advanced  Networking  Data protection  Tags

Review + create

Data Lake Storage Gen2

The Data Lake Storage Gen2 hierarchical namespace accelerates big data analytics
workloads and enables file-level access control lsts (ACLS). Leam more

Enable hierarchical namespace O






OEBPS/Images/B17525_11_001.jpg
(£} DP203FunctionApp | Functions

Function App

P Search (Ctri+/) « + create | O Refresh | [ Delete

Functions a

{4} Functions A Filter by name.

? Appkeys
B Appfiles [J Name

o Proxies [ satcheiobTrigger






OEBPS/Images/Figure_4.24_-_ADF_Incremental_Load_with_time_partitioned_folders.jpg
Copy Data tool

o Properties

Source
Dataset

O Configuration

® Target

() Settings

(5 Review and finish

Source data store

Specify the source data store for the copy task. You can use an existing data store connection or specify a new data store.

Source type [ = Azure Blob Storage

Connection * [ = Blobsource 2 Edit ~+ Create new connection

File or folder *
You can use variables in the folder path to copy data from/to a folder or a file that is determined at
runtime. The supported variables are: {year}, {month}, {day}, {hour}, {minute} and {custom}. Example:
inputfolder/fyear}/{month/{day}. If the identity you use to access the data store only has permission to
subdirectory instead of the entire account, specify the path to browse.

‘ testcontainer/{year}/{month}/{day} ‘ B3 Browse

Options

File loading behavior

[ incremental load: time-partitioned folder/file names V]
year format
[w ¥]

month format

[ v
day format
[ad 7

Time to preview generated file path
T

monl o |






OEBPS/Images/B17525_11_002.jpg
Create function %

Select development environment
Instructions will vary based on your development environment. Learn more

Development environ... [ ® pevelop in portal

Select a template

Use a template to create a function. Triggers describe the type of events that invoke your functions. Lear more

[ Fiter
HTTP trigger Afunction that willbe run whenever it receives an HTTP request, responding based on data in the
bodyor query string
Timer trigger Afunction that willbe run on a specified schedule
Azure Queve Storage trigger Afunction that will be run whenever 2 message is added to a specified Azure Storage queve.
‘Azure Service Bus Queue trigger Afunction that will be run whenever 2 message is added to a specified Service Bus queue.
Azure Senice Bus Topic trigger Afunction that willbe run whenever a message is added to the specified Service Bus topic
Azure Blob Storage trigger Afunction thatwill be run whenever a blob is added to a specified container
‘Azure Event Hub trigger Afunction that willbe run whenever an event hub receives a new event.
‘Azure Cosmos DB trigger Afunction thatwill be run whenever documents change in a document callection

‘

« .
Template details

We need more information to create the Azure Blob Storage trigger function. Learn more

New Function* BlobTrigger!
Path*® samples-workitems/{name}
Storage account connection* @ AzureWebJobsStorage v

2

e






OEBPS/Images/B17525_11_003.jpg
Function

P Search (Ctrl+) «

1) Overview

Developer

B Code + Test

7 integration
@ wonitor

¢ Functon keys

Save

BatchBlobTrigger | Code + Test

X Discard () Refresh DT

DP203FunctionApp \ BatchBlobTrigger \

1
2
3
a
s
6
7.
8

public static void Run(..)

{

/1 Tnitialize the credential
BatchsharedkeyCredentials cr
/1 Create a Batch client
BatchClient batchClient = Bat
/1 Create a Batch job
CloudJob job = batchClient.J





OEBPS/Images/B17525_07_11.jpg
pse live v ~£ Validate all

Data + ¥«

Workspace Linked

‘ A Filter resources by name

4 Databases
4 B default (Spark)

> B3 Tables

4 B tripsdatabase (Spark)
4 B3 Tables
4 B tripstable
> B3 columns

> B3 properties

(1 publish all

£ ore B sav b=

D Run D undo | v (T publish &% Queryplan Connect to

SELECT * FROM sys.databases;

-

F

3 SELECT TOP (3) [tripID]

4 ,[customerID]

5, [driverID]

6 | FROM [tripsdatabase].[dbo].[tripstable]

Results  Messages

9 suil

b

Select View Chart ) 1= Export results v
[P search
triplD customerlD driveriD
100 200 300
101 201 301
102 202 302

© 00:00:02 Query executed successfully.





OEBPS/Images/B17525_13_010.jpg
M sampieioq - Notepad

File Fdit Format View Help
2021-12-01 10:20:85 200, Success, LIST API Success

2621-12-01 10:20:10 362, Error, Could not connect o APT Gateway
2021 12 01 10:20:11 303, Error, Ping test failed





OEBPS/Images/B17525_07_10.jpg
B sa bxplore x

D Run 9 Undo| v (T publish &% Queryplan | |connectto [ @ auiltin ]| use database | master MRS
T peiecr
Top 100 *

3 FROM





OEBPS/Images/Table_02.jpg
Service Supports Supports | Supports | Supports
redundant query scale-up in-memory
regional scale-out caching
servers
for high
availability
(HA)

Synapse Analytics | No Yes Yes Yes

Cosmos DB Yes Yes Yes No

Azure SQL Yes No Yes Yes

HBase/Phoenix Yes Yes No No

Hive LLAP No Yes No Yes

Azure Data Yes Yes Yes Yes

Explorer

Azure Analysis No Yes Yes Yes

Services






OEBPS/Images/B17525_13_011.jpg
@ sample (D Record delimiter (3 Collection paths ~ (+) Details () Review + Create
Upload a sample of the custom log. The wizard will parse and display the entries in this file, Learn more

Sample log

Select a sample log * [ *samplelog.bt”






OEBPS/Images/B17525_07_13.jpg
Create SQL Database - X

Microsoft

Basics  Networking ~ Security  Additional settings  Tags
Customize additional configuration parameters including collation & sample data.
Data source

Start with 2 blank database, restore from a backup or select sample data to populate your new
database.

Use existing data * None  sackup (CEEID)

AdventureWorksLT will be created as the sample database.

Database collation
Database collation defines the rules that sort and compare data, and cannot be changed after
database creation. The default database collation is SQL_Latin1_General CP1_CI_AS. Learn
more

Collation @ SOL Latin1 General CP1 CL AS





OEBPS/Images/B17525_07_12.jpg
Home > Azure SQL >

Select SQL deployment option

Microsoft

Q Feedback

How do you plan to use the service?

saL|

SQL databases

Best for moder cloud applications. Hyperscale and
serverless options are available.

Resource type

single database

Show details

b SQL managed instances

Best for most migrations to the cloud. Lift-
and-shift ready.

Resource type

SQL virtual machines

Best for migrations and applications requiring OS-
level access, Lift-and-shift ready.

Image

[ singte instance ~

Show details

Create Show detals





OEBPS/Images/B17525_13_012.jpg
@ sample @ Record delimiter  (*) Collection paths (4 Detai Review + Create

Select a record delimiter. Select New line for files with  single entry per line, or specify 2 Timestamp delimiter for
entries spanning more than one line. Leam more

Record delimiter
Select record delimiter @® Newline (O Timestamp
Preview

Records

2021-12-01 10:20:05 200, Success, LIST API Success

2021-12-01 10:20:10 302, Error, Could not connect to API Gateway

2021-12-01 10:20:11 303, Error, Ping test failed






OEBPS/Images/B17525_13_013.jpg
@ sample @ Record delimiter @ Collection paths ~ (+) Details Review + Create

Define one or more paths on the agent where it can locate the custom log. Leam more

v]@

Collection paths
Type Path

[ uinux | [ warniog/zpp/zppiog

[‘setecttype v ]






OEBPS/Images/B17525_07_15.jpg
Create HDInsight cluster

Storage  Security + networking

New to HDInsight? Get started with our training
Create 2 managed HDInsight cluster. Select from

Project details.

Select the subscription to manage deployed reso
your resources,

Subscription * Az

L

Resource group *

Cluster details

Name your cluster, pick a region, and choose a ¢

Cluster name * Ent
Region * s

Cluster type *

L

Version

Cluster credent

Is

Enter new credentials that will be used to admini

=

« Previous

Cluster login usemame * ©

Review + create

Select cluster type

Hadoop
Petabyte-scale processing with Hadoop components like MapReduce, Hive
(sQL on Hadoop), Pig, Sqoop and Oczie.

Spark
Fast data analytics and cluster computing using in-memory processing.

Kafka

8uild 2 high throughput, low-latency, real-time streaming platform using 2
fast, scalable, urable, and fault-tolerant publish-subscribe messaging
system.

HBase
Fast and scalable NosQL database. Available with both standard and
premium (SSD) storage options.

H

sel

Interactive Query

Build Enterprise Data Warehouse with in-memory analytics using Hive (SQL
on Hadoop) and LLAP (Low Latency Analytical Processing).

Note that this feature requires high memory instances.

E

Storm
Relizbly process infinite streams of data in real-time.

ML Services (R Server)

Analyze data at scale, build intelligent apps and discover valuable insights
‘across your business using both R and Python.

Adds 1.15272416 INR per Core-Hour.

sel

H






OEBPS/Images/B17525_11_008.jpg
New trigger

Name *
[Triggert
Description
4

Type *
['schedute <]
Start date* O
[(0s/25/2021 517 oM ]
Time zone * O
[ coordinated Universai Time uTC) <]
Recurrence * ©

Every[15 ] [[minutets) M|
[ specify an end date

Annotations

+ New

Start trigger ©

B st o o






OEBPS/Images/B17525_13_014.jpg
Create a custom log - X

@ sample @ Record delimiter @ Collection paths @ Details () Review + Create

Add a name and description to the custom log.

“This name will be used for the log type, and will always end with_CL to distinguish it as a custom log. Leam more:

Details

Custom log name * ‘sampleCustomLog v
a

Description ‘Custom log to process my sample application






OEBPS/Images/B17525_11_009.jpg
A Home
& huthor

© wonitor

«

/8% mainbranch v

«
Connections

@ Linked services

@ Integration runtimes
© Azure Purview (Preview)
Source control

@ Git configuration

@ ARM template

Author

5 Triggers

® Global parameters
Security

@ customer managed key
£ Credentials

@

ged private endpoints

£ Validateall [5] saveall [Ty Publish

Linked services

Linked service defines the connection information to a data store or compute. Learn more [

+ New

Showing 1- 8 of 8 tems

Name Ty Type ™

= AzureBatchls Azure Batch

K AzureBlobConnection ‘Azure Blob Storage
K AzureDatalakestorage Azure Data Lake St.
@ AcuresqlDatabasels Azure SQU Database
Ty AzureSynapseAnalytics Azure Synapse An..
K BatchBlobls ‘Azure Blob Storage

« I

Related .






OEBPS/Images/B17525_07_14.jpg
Settings

© compute + storage

S Comnection strings

I Properties

A Locks

ADONET JDBC ODBC PHP Go

JDBC (5QL authentication)

jobesatserver;/ A database v
‘eazuresqlpasswor
{your_password_herekencrypt=truetrustServer
oginTimeout=30;






OEBPS/Images/B17525_07_17.jpg
Activity log

2 Access control (1AM)

€ Tags

& Diagnose and solve problems
Settings

© Cluster size

B Quota limits

URL

Cluster ID

Tags (change)

Overview  Get started

Dashboards

Ambari home

https://testhdicluster.azurehdinsight.net

dd7a2205331b422ebbf29182b391089%

Click here to add tags

"

Ambari views





OEBPS/Images/B17525_13_015.jpg
P Search (Ctrl+/) « 4 Newchart () Refresh & Share \/ (©) Feedback \/ Local Time: Last 24 hours (Automatic - 15 minut...
i B |:vmmm 'ymmwl 5 Line chart \/ [ Drillnto Logs /) New aert ule
onitoring

% Aoplysplting 2 Pinto deshboard

9 nsights

W plerts scope Metric Metric
Foress ~

= [iacblobstoreacct ] [eo
(= hagregton G 5

Diagnostic settings (preview) Blob Container Count
§ 10008 2 Blob Count
# Logs (preview)
= S Index Capacity
s
Monitoring (dlassic) TRANSACTION
008 e
fill Metrics (classic) 6008 Availability
2 Egress -
Diagnostic settings (classic) < S00e. >
ey
fidl Usage (classic) i
208
Automation o
s Tasks (preview) o
oo Sere s =

¥ Export template 1 o sum)





OEBPS/Images/B17525_13_016.jpg
. LogAnalyticsWS | Logs  #

Log Analytics workspace

P search (Ctrl+) «

Data Export

Linked storage accounts
> Network Isolation
General

Workspace summary
@ workbooks

® Logs

# solutions

@ Usage and estimated costs

10 propertes

# Service Map
Workspace Data Sources
B virtual machines.

B Storage accounts logs

& SampleQuery x|+
@ LogAnalyticsWs Select scope

Tables  Queries  Functions

- N
(7 Fiter) I= Group by: Solution
= Collapse all

Favorites

You can add favorites by clicking
onthe % icon

4 LogManagement

» B AzureActivty
» B Operation

4 8 StorsgeBloblogs

t AccountName (string)
t AuthenticationHash (string)

t AuthenticationType (string)





OEBPS/Images/B17525_07_16.jpg
Home > HDInsight clusters >
Create HDInsight cluster - X

Additional Azure Storage -

Link additional Azure Storage accounts to the cluster.

Add Azure Storage

Custom Ambari DB

Use an external Ambari database for greater flexibility, control, and customization. Learn More

SQL database for Ambari © v

External metadata stores

To store your Hive and Oozie metadata outside of this cluster, select a SQL database. Learn More

SQL database for Hive © [ v

SQL database for Oozie ® [ V]






OEBPS/Images/B17525_13_017.jpg
& SampleQuery x| +
@ LogAnalyticsWs Select scope
Tables  Queries  Functions

(7 Fiter)

Group by: Solution

Collapse all
Favorites

You can add favorites by clicking
onthe % icon

4LogManagement

> B Aureactivity

» E Operation

4 E storageBloblogs
t AccountName (string)
t AuthenticationHash (string)
t AuthenticationType (string)
# AuthorizationDetals (dynami.

¢ CalleripAddress (string)

«

[ZBl ( Time range : Last 7 days ) save v & Share v
StorageBlobLogs |

take 100 |uhere ServerlatencyNs > 20 |

sort by Durationts |

project TimeGenerated, Operationiame, Durationtis

i
2
3
a

Results  Chart | (] Columns | () Display time (UTC+00:00) v
Completed. Showing results from the last 7 days.

TimeGenerated [UTC] Y OperationName Y DurationMs

> 12/22/2021,

:49.078 M ListBlobs 1332
> 12/22/2021,3:14:00013 AM  ListBlobs 857

> 12/22/2021,313:59752 AM  GetBlobserviceProper... 716

> 12/22/2021,3:14:02.986 AM  ListBlobs 334
> 12/22/2021.11:09:47.864 PM  ListBlobs 305
> 12/22/2021,3:13:59.680 AM  ListBlobs 248
> 12/22/2021,3:14:06.182 AM  ListBlobs 235
> 12/22/2021,3:14:29.327 AM  ListBlobs 233

> 12/22/2021,3:15:08102 AM  GetBlob 61






OEBPS/Images/B17525_11_004.jpg
Q ValidateBatchOutput

O]

General ~ Settings

Dataset * ©
Timeout ©
Sleep ©

Minimum size ©

If Condition

.ﬂ IfCorrectColumns.

o
— | e 7
T actviies
o False
1 activities 7
User properties.
B wipscsv ] 2 open + New

7.00:00:00

|





OEBPS/Images/B17525_07_19.jpg
Ambari  hdihiveclu 3alerts

HIVE

A QUERY 4 JoBS & TABLES R SAVED QUERIES #- UDFs. # SETTINGS

DATABASE
Select or search database/schema default
TABLES | 1 < - TABLE > HIVESAMPLETABLE
Search D COLUMNS 3 ooL 2 STORAGE INFORMATION (3 DETAILED INFORMATION
clientid string
market string
deviceplatform string
devicemake string
devicemodel string
o
querydwelltime double
sessionid bigint

sessionpagevieworder bigint





OEBPS/Images/B17525_13_018.jpg
E e s »

«

Dashboards

Runs

@ Pipeline runs

% Trigger runs
Runtimes & sessions

9 Integration runtimes
& Data flow debug
Notifications

A Alerts & metrics

Al pipeline runs > CopyfromBlobToADLSG2 - Activity runs > FetchDataFromBlob

@ FetchDataFromBlob

Cluster startup time:2m 525 Number of transformations: 2 Data flow status: Success

O Refresh  Autorefresh @) on® & Edit transformation

5 SampleSource
Sink: @

28/

SampleDestination diagnostics

Sink transformation  Status @ Succeeded  Total columns 7

Stream information

Sink processing time
Rows calculated

Total partition

Stage time

Last update (IST)
Skewness [0}
Kurtosis [}
Pre commands °
duration

Merge files duration ©

3s 794ms
20

1

25 653ms

12/27/2021, 8:59:37 PM

48ms

273ms

SampleDestinati. |

+ New 0

* Updated 7





OEBPS/Images/B17525_07_18.jpg
2 admin ~

A/ Dashboard / Metrics testhdiclu.. 3@ 80

METRICS ~ HEATMAPS  CONFIG HISTORY [ BT
—_— iews

VARN Queue Manager

HDFS Disk Usage H NameNode CPU WIO

\
14% 38% 20.1% 3/3

NameNode Heap





OEBPS/Images/B17525_11_005.jpg
If Condition

+

.f.} IfCorrectColumns
Validation
I Tue s n
Q ValidateBatchOutput 1 activities
False
[ -

General  Dataset  User properties

Field list + New | [T

[ Argument

O [ebmem ]
Ofeis ]






OEBPS/Images/B17525_13_019.jpg
»
® il Dashboards

Runs

Pipeline runs

Triggered  Debug Rerun Cancel v () Refresh

= Edit columns

@ [@rmiews |

[ search by run 1D or name

(_chennai, kolkata, M

Last 24 hours )

£ Trigger runs

Runtimes & sessions

@ Integration runtimes
&P Data flow debug.
Notifications

A Nerts & metrics

Pipeline name : All ) (_status: Al ) (_Runs: Latestruns ) (_Triggered by : All )

C
L
Y
(¥ Add fitter )

Showing 1- 3 items

[J pipeline name
[J copyfromelobToa... |
[J copyfromelobToADLSG2

[J copyfromelobToADLSG2

Runstart 14

Bl 10/23/21,1:2601 PM

Consumption |1:00 P

10/23/21,1:16:01 PM

10723721, 1
10/23/21,1:24:59 PM

10/23/21,1:19:43 PM

DY copy filters

Duration
00:03:54.
00:03:59

00:03:41





OEBPS/Images/B17525_11_006.jpg
Validation

g ValidateBatchOutput

General  Activities (2)  User properties

Expression @equals(activity(TripFileMetadata).ou.. | ®

case Activity
True 1 Activity Va
False 1 Activity Va

1 IiCorrectColumns

o
True

1 sctiviies & +
Fase

1 ctiviies






OEBPS/Images/Cover.png
: ‘.01 -.O:K o, .

Azure Data
Engineer Associate
Certification Guide

A hands-on reference guide to developing your data
engineering skills and preparing for the DP-203 exam

Newton Alex





OEBPS/Images/B17525_11_007.jpg
 validate > Debug | v | % Addtrigger (CQ|Data flow debug
Trigger now

New/Edit






OEBPS/Images/B17525_13_020.jpg
Pipeline run consumption

Quantity Unit
Pipeline orchestration

Activity Runs 1 Activity runs
Data flow

General purpose 05001 Core-hour
Compute optimized 00000 Core-hour
Memory optimized 00000 Core-hour

Learn more [

Pricing calculator (1





OEBPS/Images/B17525_13_021.jpg
Pipeline runs

Triggered Debug Rerun cancel v () Refresh
% search by run 1D or name (chenn:

— D) copy filters
- N
(¥ Add fitter )

Oct23 Oct23 Oct23 Oct23 Oct23 Oct23 Oct23 Oct23 Oct23 Oct23
O1PM O01PM O01PM O01PM O01PM 01PM 02PM 02PM 02PM 02PM

Copyfromglob... X I
Pipeline run ID. e R
Status Succeeded
Start date 10/23/2021, 23400 PM
End date 10/23/2021, 2:34:58 PM
Duration 3 minutes
Average run time 4 minutes
Duration deviation 2%
Longest duration 6 minutes
Shortest duration 3 minutes

Actions ]






OEBPS/Images/B17525_07_02.jpg
@ Synapselive v Validate all (T Publish all

L} Develop Y
u @ sQL script

> SQL scripts Notebook
. > Notebooks Data flow

[E Apache Spark job definition
> Data flows peeecpar)

T3 Browse gallery

. ! Import






OEBPS/Images/B17525_13_022.jpg
O Search (Ctrl+/) « Newchart () Refresh |2 Share \/ (©) Feedback \/

® Uynamic Data Masking

- b used

Min Local for TestSQLDedi

("Local Time: Last 24 hours (Automatic - 15 minut...

dPool &

© Microsoft Defender for Cloud

+ o
@ Transparent data encryption Ahdd menicaRY Add ey

|¢% Line chart \v [, Drillinto Logs \ 1) New alert rule 5 Pin to dashboard

%% Apply splitting
‘Common Tasks
>4 Open in Visual Studio Scope Metric Metric °
5 ‘TestSQLDed\'ca(edPocl ‘ ‘ Dedicated SQL pool sta... v‘ Local tempdb used per... v
Monitoring Aggregation =
Min DWU limit
S] ctivi
Query activity DWU used
B Alerts 100%

Local tempdb used percentage
@ Diagnostic settings

@ Logs

® Advisor recommendations

Local tempdb utilization across all compute nodes -
values are emitted every five minute

Metric ID: LocalTempDBUsedPercent
Namespace: microsottsynapse/workspaces/sqlpools

Automation
% Tasks (preview)

[ Export template 20%

DWU used percentage
Local tempdb used percentage
Memory used percentage

% Queued queries

SQL DEDICATED POOL - WORKLOAD MANAGE... -

N






OEBPS/Images/B17525_13_023.jpg
Connectto | @ TestsQLDedicatedPool | Use database | TestSQLDedicatedPool ™ | ()

D Run D Undo | v (T publish &% Queryplan

25
26 SELECT * from sys.query_store_runtime_stats;|

27
28

Results  Messages

View Table Chat ) 1= Export results
[P search
runtime stats_i.. execution_type  execution_typ.. firstexecution... last execution..  count_executi.. avg_duration last_duration min_duration
1 0 Regular 2021-11-28T16:...  2021-11-28T16... 1 78000 78000 78000
2021-11-28T17:..  2021-11-28T17... 1 93000 93000 93000

2 0 Regular





OEBPS/Images/B17525_07_01.jpg
P ey

@ Synapselive v

Analytics pools

{3} Apache Spark pools
External connections

@ Linked services

@ Azure Purview (Preview)
Integration

& Triggers

9 Integration runtimes

L Validate all (1] Publish all O

sQL pools

The serverless SQL pool, Built-in, is immediately available for your workspace. Dedicated SQL pools
can be configured to adapt to team or organizational requirements and constraints. Learn more [1

O Refresh | @D Allow pipelines ®

Y Filter by name

Showing 1-1of 1 items (1 Serverless, 0 Dedicated)

Name Type Status Size

Built-in Serverless @ online Auto






OEBPS/Images/B17525_07_04.jpg
SELECT COUNT(*) AS 'Trips’, [startlocation] AS 'Location’ FROM TripsExtTable GROUP BY startlocation;

Messages ~
& Chart type

Category column
2

Legend (series) columns

Trips ~

Legend position:

bottom - center

Legend (series) label

¢ I
&

& &S

LA A ) & Category label

. I






OEBPS/Images/B17525_13_024.jpg
DAG Visualization

Stage 12 Stage 13






OEBPS/Images/B17525_13_025.jpg
Stage 12
textFile

abfss:/fusers@iacstoreacct.dfs corewindows net/sandbox/source/1.csv [29]
textFile at command-198540410744361:31

l

abfss:/fusers@iacstoreacct.dfs corewindows.net/sandbox/source/1.csv [30]
textFile at command-198540410744361:31

flatMap

MapPartitionsRDD [31]
fatMap at command-198540410744361:31

map

MapPartitionsRDD [32]
map at command-198549410744361:31





OEBPS/Images/B17525_07_03.jpg
D> Rin 9 undo| v (N

Publish % Query plan

Comeetto

27
28
29
30
31
32
33

Results

CREATE EXTERNAL TABLE TripsExtTable (
[tripId] VARCHAR (10),
[driverId] VARCHAR (10),
[custonerId] VARCHAR (16),
[cabId] VARCHAR (16),
[tripDate] VARCHAR (10),
[startlocation] VARCHAR (50),
[endLocation] VARCHAR (56)

)
i

LOCATION = */parquet/trips/*.parquet’,
DATA_SOURCE =
FILE_FORMAT =

Messages

[Dp203Datasource],
[Dp203ParquetFormat ]

1= Export results

m

driverld

customerld

307

3n

an

tripDate
20220203
20220301
20220101
20220102
20220303

startLocation
Los Angeles
Phoenix

New York

Tempe
New York

endLocation ~
San Diego

Las Vegas
New Jersey
Phoenix

New Jersey

I )





OEBPS/Images/B17525_13_026.jpg
@ Ambari

A Dashboard

A/ Dashboard / Metrics

METRICS ~ HEATMAPS

NameNode Heap
-

6%

NameNode RPC

0.22 ms

Cluster Load

CONFIG HISTORY

H HDFS Disk Usage H

dp203hdicl.

NameNode CPU

\ wio ~
25% 14.3%
H Memory Usage H Network Usage
s568 3906 K8
4568 195.3K8
] NameNode Uptime H ResourceManager
Heap

27m 54s

20%

&

METRIC





OEBPS/Images/B17525_07_06.jpg
ParquetWithSpark-C7 ( Python @ | Schedule v

& © ADBsmall B B M@ © 2 = = |,
3

4 df =
spark.read.load("abfss: // . < - cor e .windows .net/

parquet/trips/x.parquet’,

5 format='parquet')
& df.show(s)
7

» (3) Spark Jobs

df: pyspark sql dataframe. DataFrame = [tripld: string, driverld: string ... 5 more fields]

+ —_—

4

s

+
| tripld|driverId|customerid|cabld|tripate|startiocation|endLocation|
+

| 116] 212 312| 412|20220405| Washington|  Atlantal
| 7] 212 312| 412|20220405] Seattle| Portland|
| 18] 212 312| 412|20220405] Wiami | Tampa|
| 114] 212 312| 412|20220404] San Jose|  Oakland|
| s| 212 312| 412|20220404] Tempe| Scottsdale|
+ +

only showing top 5 rows





OEBPS/Images/B17525_07_05.jpg
df = spark.read.load("abfss:
format="parquet”)
spark.sql("CREATE DATABASE IF NOT EXISTS TripsDatabas
df .urite.mode("overurite”) .option("overuriteschena”,
sqldf = spark.sql(”
SELECT COUNT(*) AS Trips,
startLocation AS Location
FROM TripsTable
GROUP BY startlocation """)
10 display(sqldf)

/N - | . core .windows .net/parquet/trips/*.parquet’

true”).saveAsTable("TripsTable”)

e N e W R

/3 min 54 sec - Apache Spark session started in 2 min 58 sec 614 ms. Command executed in 55 sec 882 ms by newton.pac...

n Succeeded  Spark 2 executors 8 cores View in monitoring  Open Spark UIE2
View 1> Export results V' B
6
Chart type
5
Key
:
e Values
£
2 Series Group
) e
Aggregation
1 Sum v
0

[] Aggregating over all resuits ®

Apply Cancel





OEBPS/Images/B17525_13_027.jpg
Ambari Hosts

httos://dp203hdicluster.azurehdinsightnet/#/main/hosts

Name

1P Address

100013

100014

@ 100010

@ 10008

10009

Rack

/defaultr

/defaultr

/defaultr

/defaultr

/defaultr

Cores

20)

2@)

2

2Q)

20)

RAM

15.64G8

15.6468

15.64G8

15.6468

15.6468

Disk
Usage

Load Avg

713

1638

220





OEBPS/Images/B17525_07_08.jpg
:'lo:bx‘

® synapselive v £ Validate all

Data =

Workspace Linked

[ 2 Fiter resources by name

4 Databases
4 B default (Spark)
> B3 Tables
4 B tripsdatabase (Spark)
4 B3 Tables
4 B tripstable
> B3 columns

> B3 properties

] sparks x B sas 7
> Runall | v (1) publish [ Outline | Attach to
@ Ready
m 3
° CREATE DATABASE IF NOT EXISTS TripsDatabase; m

USE TripsDatabase;

1
2
3
4 CREATE TABLE IF NOT EXISTS TripsTable

5 (tripID INT, customerID INT, driverID INT)
6 USING Parquet;

7

8

9

INSERT INTO TripsTable VALUES
(100, 200, 300),

10 (101, 201, 301),
11 (102, 202, 302);
12

Command executed in 0 sec by newton.packt on 4:59:52 PM, 7/25/21





OEBPS/Images/B17525_13_028.jpg
Host Metrics LAST 1 HOUR ~

130668
Te316B
465068
CPU Usage x Disk Usage x
le3cB \
la608

—

Memory Usage 3

f200 L .

[asm8

L

Network Usage Processes 3





OEBPS/Images/B17525_07_07.jpg
VD AW e

spark.sql(

format='parquet')

SELECT COUNT(x) AS Trips,
startlocation AS Location
FROM TripsTable

GROUP BY startLocation """)

o display(sqldf)

» (7) Spark Jobs

» B dr pyspark sql dataframe DataFrame = [tripld: string, driverld: string
» B sqdf: pyspark sql dataframe. DataFrame = [Trips: long, Location: string]

Chart

Trips

Data Profile

4

2

© Wy, Ses, Mis, Sy Moy, o Los O3y T8
ot 01ty om0 4, e 0, 05 4, o
ng’:ge ose " Yorg o0

Location

Plot Options.. | | &

Python ) B~ il v =

df = spark.read.load('abfss:// N - | s . core.windows.net/parquet/trips/*.parquet’,

"CREATE DATABASE IF NOT EXISTS Tripsbatabase")
df.write.mode("overwrite").option("overwriteschema", "true").saveAsTable("TripsTable")
sqldf = spark.sql("

5 more fields]





OEBPS/Images/B17525_13_029.jpg
~ Cluster

About

Nodes

Node Labels

Applications
NEW
NEW SAVING
SUBMITTED
ACCEPTED
RUNNING
EINISHED
FAILED
KILLED

» Tools

Cluster Metrics

Apps Submitted Apps Pending Apps Running Apps Completed
la [ 2 2
Cluster Nodes Metrics

Active Nodes Decommissioning Nodes
ls 0
Scheduler Metrics

Scheduler Type Scheduling Resource Type

| capacity scheduler [memory-mb (unit=Mi), vcores]

Dump scheduler logs ] 1 min_v.

Application Queues

Legend: | Capacity ' (NUSEHN (WUSSANGVERGApAG)M | Max Capacity
+ (" Queue: root

» [+ Queue: default






OEBPS/Images/B17525_07_09.jpg
»

© Synapselive - Validateall (1) Publich all

A Develop +v o«

"]  Filter resources by name Sarsowt

=] Notebook
b sQL scripts 12 Notebon

B & oatafiow

b Notebooks

W b Dawn [# Apache Spark job definition
ata flows

allt Power BI report
b Power BI

T3 Browse gallery

< Import






OEBPS/Images/B17525_12_030.jpg
Home > Private Link Center >

Create a private endpoint - X

+/Basics /Resource € Configuration (%) Tags

Networking
To deploy the private endpaint, select a virtual network subnet. Learn more.

Virtual network * @ [‘anatytics-vnet M

Subnet* @ [(analytics-vnet/defautt (10.0.0.0/24) M

© if you have a network security group (NSG) enabled for
the subnet above, it will be disabled for private endpoints
‘on this subnet only. Other resources on the subnet will
still have NSG enforcement.

Private DNS integration

To connect privately with your private endpoint, you need a DNS record. We recommend that you
integrate your private endpoint with 2 private DNS zone. You can also utilize your own DNS servers or
create DNS records using the host files on your virtual machines. Learn more

Integrate with private DNS zone @ ves O No

Configuration na...  Subscription Resource group Private DNS zone

cloud-shell-stor... ~ | (new) privatelink:

privatelink-sql-azu






OEBPS/Images/B17525_12_031.jpg
Home > Azure Synapse Analytics >

Create Synapse workspace
*Basics *Security Networking Tags  Review + create

Configure networking options for your workspace.

Managed virtual network

Choose whether to set up a dedicated Azure Synapse-managed virtual network for
your workspace. Learn more &

Managed virtual network @ (® Enable O Disable
Create managed private endpoint to @ ves O No
primary storage account ®

Allow outbound data traffc only to Oves @ no
approved targets ©

Public network access

Choose whether to permit public network access to your workspace. You can mod
the firewall rules after you enable this setting. Learn more

Public network access to workspace @ enable O Disable
endpoints

Ve






OEBPS/Images/B17525_12_034.jpg
Generate New Token

Comment

[ whatstis token for?

Lifetime (days) @
[0






OEBPS/Images/B17525_12_035.jpg
Name & SSN a  email
Adam Smith M-1-411 james@james.com
BrendaHaman  222-22-2222  brenda@brenda.com

Carmen Pinto 333-33-3333  carmen@carmen.com





OEBPS/Images/B17525_12_032.jpg
& Settings






OEBPS/Images/B17525_12_033.jpg
Access Tokens Gt Integration  Notebook Setting

Personal access tokens can be used for secure authent
Datlabricks AP| inslead of passwords.






OEBPS/Images/B17525_12_038.jpg
Overview Classification

@ Dynamic Data Masking Accept selected recommendations Dismiss selected

[J show

© secuity Center

@ Transparent data encryption [ select _

i e v | e | S | e
oo Schema Table Column Information type Sensitivity label
*4 Openin Visual studio O dbo TempDriver driverid National ID Confidential - GDPR
Monitoring O dbo TempDriver FirstName Name Confidential - GDPR
B Query activity O dbo. TempDriver LastName Name Confidential - GDPR






OEBPS/Images/B17525_12_036.jpg
Name o SSN

Adam Smith GAAAAABhYbACiaaO-
twCsrR2CRSxv8ISHSQcQISNLDQPGXrDabn5UWS5a5hGNkzooEEilPqmarmivxganiDF 1

Brenda Hamman | gAAAAABRYbAJEYKEYdqSKyr3DG87EVVre2SMXK2_dfB2zZM4pt1Wim2DKB-
Yi1kinKsdSVP4Fz_EshHTHAUSEHyvj5JU10GBD/

Carmen Pinto GAAAAABRYbACMIC-0rkACMbBSH4A3dLoulxVKjdo_DbxTLAPENuaMBJsnKRMwngK
hZs3mNzdxjHgrXDqQUfugDYdm






OEBPS/Images/B17525_12_037.jpg
» @ decrypled: pyspark sl dataframe DataFrame = [Name: string, SSN: string
Name o SSN o email -
1 Adam Smith AT jomes@james.com
2 Brenda Harman -n-nn brendai@brenda.com
3 ComenPinto 333333333 camen@carmen.com





OEBPS/Images/Figure_4.3_-_Example_of_SCD_Type_1.jpg
mmm_

Adam New York adam@...

mmm_

Adam New Jersey adam@






OEBPS/Images/B17525_13_030.jpg
All pipelines > ¥ New release pipeline

Pipeline  Tasks  Variables Retention Options History

Artifacts | + Add Stages | + Add

% | Stage1l
R | selecta template @

Schedule
(@] notset

Select a template

Or start with an g Empty job

Featured

Others

Azure App Service deployment
Deploy your spplicstion to Azure App Senvice, Choose from
Web App on Windows, Linux,containers, Function Apgs, or
Weblobs.

Deploy a Java app to Azure App Service
Deploy a Java application to 3n Azure Web App.

Deploy a Node.js app to Azure App Service
Deploy 2 Nodejs application to an Azure Web App.

Deploy a PHP app to Azure App Service and
Azure Database for MySQL

Deploy 2 PHP spplication to an Azure Web App and
database to Azure Database for MySQL

Deploy a Python app to Azure App Service
and Azure database for MySQL

Deploy 3 Python Django, Bottle, or Flask appiication to an
Azure Web App and database to Azure Database for
MysaL

Deploy to a Kubernetes cluster

Deploy, configure, update your containerized applications
to 2 Kubernetes cluster.

1IS website and SQL database deployment

Deployment Group: Deploy ASP.NET or ASP.NET Core web
applications to an lIS Website and SQL database on physical
or virtual machines (VM)





OEBPS/Images/B17525_13_031.jpg
All pipelines > ¥ New.

Pipeline  Tasks v Variables

Artifacts | + Add

©

Add an artifact
Schedule
O fotset

Add an artifact

Source type
4 | & O
Build / Azure Re... GitHub

5 more artifact types \/

Project* @
dp203

Source (repository) = @
adf-dev

Defaultbranch* ~ ®

TRVC

Defautversion* @

Latest from the default branch
(O Checkout submodules @
(O Checkout files from LFS

Shallow fetch depth  ©

Sourcealias* @

‘ _adf-dev






OEBPS/Images/B17525_13_032.jpg
Add tasks | O Refresh

Al Build Utiity Test Package Deploy Tool

Archive files

Compress filesinto 7z, targz, or zip

[search

Marketplace

ARM template deployment

Deploy an Azure Resource Manager (ARM) template
to allthe deployment scopes

@ Azure App Service deploy
Deploy to Azure App Service 3 web, mobile, or API
app using Docker, Java, NET, .NET Core, Nodejs,
PHP, Python, or Ruby






OEBPS/Images/B17525_13_033.jpg
Template A

Template location *

Linked artifact

Template* @

“This setting is required.

Template parameters @)

Override template parameters (D)






OEBPS/Images/B17525_13_034.jpg
=
o
a

Azure DevOps

dp203 A

Repos.

L 4

[

ipelines

Pipelines

2 % b

L]

o | b

Environments
Releases

Library

Task groups
Deployment groups

Test Plans.

Atifacts

Project settings. «

© #20211128.1 Set up CI with Azure Pipe

on adf-prod

es Rerun

@  This run will be cleaned up after 1 month based on your project settings.

Summary

Triggered by @) newton

Repositoryand  ®adf-prod

version ¥ main ¢ 0110723
Time started and B Today at 11:50 PM
elapsed ©<1s

Related B0 work items

S0 artifacts

Tests and coverage & Get started

View 2 changes





OEBPS/Images/Figure_4.19.jpg
Lookup

S previouswatermark

Lookup

General ~ Settings ~ User properties

Copy data

‘ IncrementalCopy

Source dataset * ‘ @ FactTripsAzureSQL M

& Open —+ New ©® Preview data

Learn more [

Use query Otable @ auery (O stored procedure

Query [ SELECT MAX(LastModifiedTime) as Ne... ]

Query timeout (minutes) © ‘ 120

Isolation level © [ None

v

Partition option © (® None

Physical partitions of table ® () Dynamic range ®





OEBPS/Images/Figure_4.18.jpg
Lookup

p PreviousWatermark
Copy data

@
‘ IncrementalCopy.

General  Setti

User properties ~

Source dataset * [ watermark v

¢ Open - New ©d Previewdata  Learn more (&

Use query @Table Oauery O stored procedure

Query timeout (minutes) © ‘ 120 ‘

Isolation level O [ None v

Partition option © (@ nNone (O Physical partitions of table © () Dynamic range ©

@ Please preview data to validate the partition settings are correct before you trigger a run or -





OEBPS/Images/Figure_4.17.jpg
Jo

SQL database

AzureSQL (iacazuresqlserver/AzureSQL)

O Search (Ctrl+/) « R login + NewQuery 7T Openquery < Feedback

B Overview

Activity log

@ Tags

/2 Diagnose and solve problems
& Quick start

J# Query editor (preview)

Power Platform
Al Power Bl (preview)
€ Power Apps (preview)

P Power Automate (preview)

Settings

@ Compute + storage
& Connection strings
1! Properties

B Locks

D Rrun [ Cancel query

Query1

CREATE TABLE FactTrips (
tripID INT,

customerID INT,
LastModifiedTime DATETIME

)

VoNO U AW

L savequery ¥ Exportdataas v E Show only Editor

INSERT INTO [dbo].[FactTrips] values (100, 200, CURRENT TIMESTAMP);

10 INSERT INTO [dbo].[FactTrips] values (101, 201, CURRENT TIMESTAMP);
11 INSERT INTO [dbo].[FactTrips] values (102, 202,

Results  Messages

CURRENT_TIMESTAMP);

[ Search to fitter items..

triplD
100
101

102

customerlD

200

201

202

LastModi

ITime

2021-09-03T16:44:54.1300000

2021-09-03T16:45:22.0870000

2021-09-03T16:45:22.0930000





OEBPS/Images/B17525_12_020.jpg
Home > Default Directory >

New user
Defat Directory

AP Got feedback?
Identity

User name * @

Name* @
First name

Last name

Groups and roles
Groups

Roles

Example: chris. ]

‘The domain name | need isn't shown here

[ example: chris Green' ]

0 groups selected

User

Create





OEBPS/Images/B17525_12_023.jpg
Create a key

Options
Name* ©

Keytype ©

RSA key size

Set activation date ©
Set expiration date ©@
Enabled

Tags

@rsa
Otc

@ 2008
Qar

oOtags






OEBPS/Images/B17525_12_024.jpg
Home > dp203keyvault >

Create a secret

Upload options
Manual

‘SynapseSecret

5 g
T
I -
< < <

Content type (optional)

7

Set activation date ©

O

Set expiration date ®@

<« I





OEBPS/Images/B17525_12_021.jpg
© Overview

Activity log

A Access control (1AM)

@ Tags

£ Diagnose and solve problems
Settings

4 SQL Active Directory admin

A Essentials
Resource group (change)
Status

Location

Subscription (change)

Subscription ID

+ DP2035andboxRG
+ Succeeded

* EastUs

+ Azure subscription 1

- ———— 0

Managed virtual network

Managed Identity object .






OEBPS/Images/B17525_12_022.jpg
Home > dp203keyvault

% dp203keyvault | Keys

Key vault
2 search ccti+n ] « |+ eneratesimport | O Refresh
Setti ‘
= Name status
il There are no keys available.
B seacts —

¥ Certificates I





OEBPS/Images/B17525_12_027.jpg
Home > Virtual networks >

Create virtual network - X

Basics  IPAddresses Security Tags Review + create

The virtual network's address space, specified as one or more address prefixes in CIDR notation
(eg. 192.168.1.0/24).

1Pua address space

10.0.0.0/16  10.00.0 - 100.255.255 (65536 addresses) W

[J Add IPv6 address space ©

‘The subnet's address range in CIDR notation (e.g. 192.168.1.0/24). It must be contained by
the address space of the virtual network.

+ Add subnet (& Remove subnet
[J subnet name ‘Subnet address range NAT gateway
[ defautt 10000724 -

@ Use of a NAT gateway s recommendid for outbound internet acces from  subne. You can

Downlozd a template for automation






OEBPS/Images/B17525_12_028.jpg
Home > Private Link Center

(I Private Link Center | Private endpoints

P search (Ctrl+) «

> Overview

Pending connections

<> Pprivate endpoints

@ private link services

+ Add |O Refresh | L Download hostf
[as]
tr by nam: Subscription
Showing 0to 0 of 0 records.
Name 1y Resource Ty

No results.





OEBPS/Images/B17525_12_025.jpg
New linked service (Azure Database for MySQL)

[(Azuremysqin

Description

Connect via integration runtime * ©

AutoResolvelntegrationRuntime. v]e
P

(Connection string

AKV linked service * ©

[oP203keyvautt v]e

Secret name * ©

Add dynamic content [A1+Shift+D]

Secret version @

[[Use the latest version ifleft blank

Annotations

+ New

b Parameters

b

Create






OEBPS/Images/B17525_12_026.jpg
Home > Virtual networks >

Create virtual network - X

Basics IPAddresses Security Tags  Review + create

‘Azure Virtual Network (VNet) is the fundamental building block for your private network in
Azure. VNet enables many types of Azure resources, such as Azure Virtual Machines (VM), to
securely communicate with each other, the internet, and on-premises networks. VNet is similar
to. traditional network that you'd operate in your own data center, but brings with it
additional benefits of Azure's infrastructure such as scale, availability, and isolation.

Leam more about virtuzl network

Project details.

Subscription * © ‘Azure subscription 1

L

Resource group* @

II

Instance details
Region * East US ~

<previous [ etz Adreses

Downlozd a template for automation






OEBPS/Images/B17525_12_029.jpg
Home > Private Link Center >

Create a private endpoint

VBasics @ Resource () Configuration (4 Tags

Review + create

Private Link offers options to create private endpoints for different Azure resources, like your private link
service, a SQL server, or an Azure storage account. Select which resource you would like to connect to

using this private endpoint. Learn more

Connection method ©

Subscription * ©

(® Connect to an Azure resource in my directory.
(O Connect to an Azure resource by resource ID or alias.

[(Azure subscription 1

v]
Resource type * @ [ Microsoftsynapse/workspaces M
Resource * @ [lacsynapsews V]
Target sub-resource * @ [[select a target sub-resource ~]
sql
sqlonDemand
Dev

< Previous ‘Next : Configuration >






OEBPS/Images/Figure_4.21.jpg
» By Datafactory ~ £ Validateall [T/ Publishall

® Factory Resources v«
Pipeline @ Pipeline
b Dataset &4 Pipeline from template
b Data flows B Dataset
b Power Query (Preview) & Dataflow
8 Power Query

(@ Copy ata teol





OEBPS/Images/B17525_07_20.jpg
Create Cluster

Cluster Mode @
Standard

Databricks Runtime Version @ Leam more

Runtime: 83 (Scala 2.12, Spark 3.1.1)
Y ostebrics Runtime 8. and atr ue Dt Lake asth defaut abl formt.Leam more

Autopilot Options
Enable autoscaling ©
Terminate after 120 | minutes of inactivity @

Worker Type @ Min Workers  Max Workers
Standard_DS3_v2 14.GB Memory, 4 Cores 2 8 A O Spotinstances ©

B0 Conours separet poosfor workers and crvers for ity Leam more

Driver Type

Same as worker 1468 Memory, 4 Cores

DBU/ hour: 225-6.75 @ Standard_DS3_v2.

~ Advanced Options

Azure Data Lake Storage Credential Passthrough @ Avaiable on Azure Databricks Fremium Leam more

Spark  Tags  Logging Init Scripts

Spark Config @

spark sql hive. metastore.version 2.1.1 // For HDInsight Interactive 2.1 version
‘spark hadoop javax jdo.option. ConnectionUserName <Your Azure SQL Database Usemame>
spark hadoop javax jdo.option ConnectionURL <Your Azure SQL Database JDBC connection
string>

spark hadoop javax do.option ConnectionPassword <Your Azure SQL Database Password>
spark hadoop javax jdo.option.ConnectionDriverName

‘com microsoft sqiserver jdbc. SQLServerDriver






OEBPS/Images/B17525_07_21.jpg
Microsoft Azure | Databricks

Data ¥
Dabteses o | B default.hivesampletable S Refresh
Filter Datab: Filter Tabl
Q Fiter Databases Q Fitr Tables e
£ default v
Schema:
col_name data_type comment
1 clientid string null
2 querytime string null
3 market string null
4 deviceplatform string null
5 devicemake string null
& devicemodel string null
7 state string null





OEBPS/Images/Figure_4.20.jpg
Lookup
(@]

p PreviousWatermark
&y IncrementaiCopy

0D

®

General  Source  Sink  Mapping  Settings  User properties

Source dataset * ‘ @ FactTripsAzureSQL v

¢ Open - New ©® Previewdata  Learn more (3

Use query Ortable ®@auery O stored procedure

Query | SELECT * FROM FactTrips WHERE LaslMo

Query timeout (minutes) © ‘ 120 ‘

Isolation level O [ None

Partition option © (® None Physical partitions of table ® () Dynamic range @

—O—t





OEBPS/Images/Packt_Logo_Orange__f36f26.png
Packh






OEBPS/Images/B17525_12_012.jpg
Name

Om

Modified

Access tier

& 5 customers
[ M drivers
[ M feres

[ trips

< Rename
25 propertes

@ Generate SAS.

2 Manage ACL

il Delete

-





OEBPS/Images/B17525_12_013.jpg
Manage ACL

container:users (storage account; iacstoreacct)

Learn more about access control lsts (ACLs)

Default permissions

+ Add principal -+ Add mask
Security principal Read write Execute
Owner: Ssuperuser = = /] Va

Owning group: Ssuperuser = O [ ] Va
Other | [o] [m]

© Rt s e e Ry e s
e e 7 i e T st






OEBPS/Images/B17525_12_010.jpg
m Add masking rule

& Add [ Delete

Mask name
dbo_CustomerContact_Email

Schema *
dbo ~
Table *
CustomerContact ~
Column *

Email (varchar)

o
4
2
>
3
=
5
H
2
<

Masking field format

Email (2XX@X00¢com) ~

Default value (0, 000, 01-01-1900)
Credit card value ooo-xoocx000c-1234)

Email (2XX@X000¢com)

Custom string (prefix [padding] suffix)






OEBPS/Images/B17525_12_011.jpg
Home > iacstoreacct

o) iacstoreacct | Acces

Storage account

P search (Ctrl+) «

Add role assignment x

Role @

Owner @ ~

# Diagnose and solve problems

A Access Control (1AM)

& Data migration

¥ Events

Assign access to @
User, group, or service principal v

Select @

‘Search by name or email address






OEBPS/Images/Figure_4.4_-_Example_of_SCD_Type_2_-_Flag.jpg
Adam New York True

Adam New York False
2 1 Adam New Jersey  False

B al, Adam Miami True





OEBPS/Images/B17525_10_001_new.jpg
Input
Sources

[P,

X b

)

< ([

Ingest

Data
Ingestion

|

Transform

-—>

Machine E
Learning

w| Batch

Processing "\
@ °

Model and Serve

Storage .

Raw
Data

Enriched
Data

= Curated
Data






OEBPS/Images/B17525_12_016.jpg
1= Export results

102

103

101

© 000002 Query executed successfully.

206

202

203

201

customeriD

306

302

303

301

tripDate
20220301
20220101
20220102

20220101

startLocation

Atlanta

Miami

Phoenix

New York

endLocation
Chicago
Dallas
Tempe

New Jersey






OEBPS/Images/B17525_12_017.jpg
Add arule -

@ Details @ Base blobs

Lifecycle management uses your rules to automatically move blobs to cooler tiers or to delete them. If you create multiple
rules, the associated actions must be implemented in tier order (from hot to cool storage, then archive, then deletion).

- Add if-then block

Base blobs were *
(®) Last modified

More than (days ago) *

‘30

Then

Delete the blob v
Move to cool storage

»

For infrequently accessed data that vou want to keep on cool storage for at least 30 davs.
Move to archive storage

Use if you don't need online access and want to keep the obiect for 180 days or longer.
Delete the blob

Deletes the object per the specified conditions. ot






OEBPS/Images/B17525_12_014.jpg
The required role
is assigned?

[2] 5 Yes-

No

Has the required
permission?






OEBPS/Images/B17525_12_015.jpg
1= Export results

102

103

© 000002 Query executed successully.

driverid
206
202
209

203

customeriD

306

302

399

303

tripDate
20220301
20220101
20220301

20220102

startLocation

Atlanta

Miami

pre-Launch

Phoenix

endLocation
Chicago
Dallas
Pre-Launch

Tempe






OEBPS/Images/B17525_12_018.jpg
General  Source  Logging settings  User properties

Dataset - ©

& Open + New ©> Previewdata  Learn more 4
File path type (File path in dataset (@) Wildcard file path (O prefix (O List of files @

Filter by last modified ©
Start time (UTC) End time (UTC)

Recursively © =

[ @@dddays(pipelineq.TriggerTime, -3...






OEBPS/Images/B17525_12_019.jpg
Home >

(i Default Directory | Overview

Azure Actve Directory
“ | 4 add v £ Manage ten)
© overview 4
User
B Preview festures
Grovp.

X Diagnose and solve problems
Enterprise application

Manage
o e ‘App registration
& Gioups Name

W External Identities et

&, Roles and administrators
Primary domain





