As businesses race to unlock the full potential of large language models (LLMs), a critical challenge has emerged: How do you connect these tools to real-time, external data to solve real-world problems? Retrieval-augmented generation (RAG) is the answer. Packed with over 70 practical recipes, this go-to guide tackles a wide range of GenAI applications through structured hands-on learning. Author Dominik Polzer provides the tools you need to design, implement, and optimize RAG systems for your unique use cases.
Description:
As businesses race to unlock the full potential of large language models (LLMs), a critical challenge has emerged: How do you connect these tools to real-time, external data to solve real-world problems? Retrieval-augmented generation (RAG) is the answer. Packed with over 70 practical recipes, this go-to guide tackles a wide range of GenAI applications through structured hands-on learning. Author Dominik Polzer provides the tools you need to design, implement, and optimize RAG systems for your unique use cases.